WorldWideScience

Sample records for targeted alpha therapy

  1. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    Allen, Barry J; Clarke, Raymond; Huang Chenyu

    2013-01-01

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  2. Targeted alpha therapy: Applications and current status

    International Nuclear Information System (INIS)

    Bruchertseifer, Frank

    2017-01-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides 223 Ra, 211 At and 212 Pb/ 212 Bi the alpha emitters 225 Ac and 213 Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with 225 Ac and 213 Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  3. Targeted alpha therapy: Applications and current status

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides {sup 223}Ra, {sup 211}At and {sup 212}Pb/{sup 212}Bi the alpha emitters {sup 225}Ac and {sup 213}Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with {sup 225}Ac and {sup 213}Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  4. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    Directory of Open Access Journals (Sweden)

    Ruqaya AL Darwish

    2015-01-01

    Full Text Available There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB, with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  5. Targeted Alpha Therapy Approach to the Management of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Allen, Barry J.; Abbas Rizvi, Syed M.; Qu, Chang F.; Smith, Ross C.

    2011-01-01

    Evidence for the efficacy of targeted alpha therapy for the control of pancreatic cancer in preclinical models is reviewed. Results are given for in vitro pancreatic cancer cells and clusters and micro-metastatic cancer lesions in vivo. Two complementary targeting vectors are examined. These are the C595 monoclonal antibody that targets the MUC1 antigen and the PAI2 ligand that targets the uPA receptor. The expression of the tumor-associated antigen MUC-1 and the uPA receptor on three pancreatic cancer cell lines is reported for cell clusters, human mouse xenografts and lymph node metastases, as well as for human pancreatic cancer tissues, using immuno-histochemistry, confocal microscopy and flow cytometry. The targeting vectors C595 and PAI2 were labeled with the alpha emitting radioisotope 213 Bi using the chelators cDTPA and CHX-A″ to form the alpha-conjugates (AC). Cell clusters were incubated with the AC and examined at 48 hours. Apoptosis was documented using the TUNEL assay. In vivo, the anti-proliferative effect for tumors was tested at two days post-subcutaneous cell inoculation. Mice were injected with different concentrations of AC by local or systemic administration. Changes in tumor progression were assessed by tumor size. MUC-1 and uPA are strongly expressed on CFPAC-1, PANC-1 and moderate expression was found CAPAN-1 cell clusters and tumor xenografts. The ACs can target pancreatic cells and regress cell clusters (∼100 μm diameter), causing apoptosis in some 70–90 % of cells. At two days post-cell inoculation in mice, a single local injection of 74 MBq/kg of AC causes complete inhibition of tumor growth. Systemic injections of 111, 222 and 333 MBq/kg of alpha-conjugate caused significant tumor growth delay in a dose dependent manner after 16 weeks, compared with the non-specific control at 333 MBq/kg. Cytotoxicity was assessed by the MTS and TUNEL assays. The C595 and PAI2-alpha conjugates are indicated for the treatment of micro

  6. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    Full text: Mucins are high molecular-weight heavily glycosylated glycoproteins with many oligosaccharide side-chains, linked to a protein backbone called apomucin. A total of 19 different mucin genes (MUC1-MUC4, MUC5B, MUC5AC, MUC6-MUC18) have been identified to date. Mucins are present on the surface of most epithelial cells and play a role in their protection and lubrication. In cancer cells the mucin molecule becomes altered, thus representing an important target for diagnosis and therapy. Urinary epithelial mucin1 (MUC1) is found to be frequently up-regulated and abnormally glycosylated in a number of common malignancies, including breast, bladder, colon, ovarian and gastric cancer. The monoclonal antibody C595 is an IgG3 murine MAb raised against the protein core of human MUC1. Epitope mapping has shown that C595 recognizes a tetrapeptide motif (RPAP) within the protein core of MUC1 mucin that contains a large domain of multiples of a highly conserved 20-amino-acid-repeat sequence (PDTRPAPGSTAPPAHGVTSA). This antibody has previously been radiolabelled with 99m Tc and 111 In and used for imaging a range of tumour types including ovary, breast and bladder. The antibody has also been radiolabelled with 67 Cu and 188 Re for the therapy of superficial bladder cancer. More recently we have investigated the pre-clinical use of the C595 antibody for targeted alpha therapy using 213 Bi which emits alpha particles with high linear energy transfer (LET), short range (80 m) radiation and has a short physical half-life of 45.6 minutes. Alpha particles are some 7300 times heavier than beta particles and in theory, following binding of an alpha immunocongugates to the target, a large fraction of the alpha particle energy is delivered to cancer cells, with minimal concomitant radiation of normal tissues. 213 Bi was produced from the 225 Ac/ 213 Bi generator. For antibody conjugation the chelator, cyclic diethylenetriaminepentacetic acid anhydride (DTPA) was used. Initial

  7. Targeted alpha therapy using Radium-223: From physics to biological effects.

    Science.gov (United States)

    Marques, I A; Neves, A R; Abrantes, A M; Pires, A S; Tavares-da-Silva, E; Figueiredo, A; Botelho, M F

    2018-05-25

    With the advance of the use of ionizing radiation in therapy, targeted alpha therapy (TAT) has assumed an important role around the world. This kind of therapy can potentially reduce side effects caused by radiation in normal tissues and increased destructive radiobiological effects in tumor cells. However, in many countries, the use of this therapy is still in a pioneering phase. Radium-223 ( 223 Ra), an alpha-emitting radionuclide, has been the first of its kind to be approved for the treatment of bone metastasis in metastatic castration-resistant prostate cancer. Nevertheless, the interaction mechanism and the direct effects of this radiopharmaceutical in tumor cells are not fully understood neither characterized at a molecular level. In fact, the ways how TAT is linked to radiobiological effects in cancer is not yet revised. Therefore, this review introduces some physical properties of TAT that leads to biological effects and links this information to the hallmarks of cancer. The authors also collected the studies developed with 223 Ra to correlate with the three categories reviewed - properties of TAT, 5 R's of radiobiology and hallmarks of cancer- and with the promising future to this radiopharmaceutical. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. In vitro and preclinical targeted alpha therapy for cancer

    International Nuclear Information System (INIS)

    Allen, B.J.; Rizvi, S.; Li, Y.; Tian, Z.; University of Wollongong, NSW; Ranson, M.; Russell, P.J.

    2000-01-01

    Full text: Targeted Alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The alpha emitting radioisotope Bi-213 is produced by generator and chelated to a cancer affined monoclonal antibody or protein to form the alpha-conjugate (AC) against melanoma, leukaemia, colorectal, bladder, breast and prostate cancers. These ACs are tested for stability, specificity and cytotoxicity. Subcutaneous inoculation of 1.5 million cells into the flanks of nude mice causes tumours to grow in all mice. The tumour growth is compared between untreated controls, nonspecific RIC and specific RIC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. Results: Stable alpha-ACs can be produced which are highly specific and cytotoxic in vitro. Local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Local TAT can also completely regress (11/12) sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts. These results point to the potential application of local TAT and systemic TAT in the management of these cancers. A phase 1 and 2 clinical trial is planned for local TAT of sc recurrent melanoma. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  9. Preclinical studies and clinical trial of targeted alpha therapy for cancer

    International Nuclear Information System (INIS)

    Allen, B.J.

    2002-01-01

    Full text: Targeted Alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT is tested by in vitro and in vivo studies in melanoma, leukemia, colorectal, breast and prostate cancers. Materials and Methods: The alpha-emitting radioisotope is Bi-213, which is produced by the Ac-225 generator and chelated to a cancer specific monoclonal antibody (mab) or protein (eg plasmmogen activator inhibitor PAI2) to form the alpha-conjugate (AC). Stable alpha-ACs have been produced which have been tested for specificity and cytotoxicity in vitro against melanoma (9.2.27 mab), leukemia (WM60 mab), colorectal (C30.6 mab), breast (PAI2) and prostate (PAI2, J591 mab) cancers. Subcutaneous inoculation of 1-1.5 million human cancer cells into the flanks of nude mice causes tumours to grow in all mice. Tumour growth is compared for untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. Results: In vitro studies show that TAT is one to two orders of magnitude more cytotoxic to targeted cells than nonspecific ACs, specific beta emitting conjugates or free isotope. In vivo local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can also completely regress advanced sc melanomas but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts and gives almost complete control of breast and prostate cancer tumour growth. Conclusions: These results point to the application of local and systemic TAT in the management of secondary cancer. A phase 1 and 2 clinical trial of TAT of subcutaneous, secondary melanoma has commenced at St George Hospital, and 10/30 subjects have been treated by intralesional injection

  10. Preclinical targeted alpha therapy for melanoma, leukaemia, breast, prostate and colorectal cancers

    International Nuclear Information System (INIS)

    Allen, B.J.; Rizvi, S.; Li, Y.; Tian, Z.; University of Wollongong, NSW; Ranson, M.

    2000-01-01

    Full text: Targeted Alpha therapy (TAT) offers the potential to inhibit the growth of micro-metastases by selectively killing isolated and preangiogenic clusters of cancer cells. The alpha emitting radioisotopes Tb-149 and Bi-213 are produced by accelerator and generator respectively and are chelated to a cancer specific monoclonal antibody, peptide or protein to form the alpha-conjugates (AC) against melanoma, leukaemia, breast, prostate and colorectal cancers. These ACs are tested for stability, specificity and cytotoxicity in vitro and in vivo using several nude mouse models. The Australian TAT program began some 7 years at ANSTO but was still-born. Later, TAT had a second wind at St George Hospital, where collaborative research led to the investigation of Tb-149 as a new alpha emitting radionuclide. Subsequently, increased emphasis was placed on the Ac-225 generator to produce Bi-213. Although in-house funding was terminated in 1998, the project received its third wind with local fund raising in the Shire and a US grant in 1999, and continues to break new ground in the control of the above cancers. Stable alpha-ACs are produced which are highly specific and cytotoxic in vitro against melanoma, leukaemia, colorectal, breast and prostate cancers. Subcutaneous inoculation of 11.5 million cells into the flanks of nude mice causes tumours to grow in all mice. The tumour growth is compared with untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. Local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can completely regress melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of melanoma xenografts and gives almost complete control of breast cancer tumour growth in the primary site and metastatic invasion of the lymph nodes. These results point to the application of local

  11. Auger radiation targeted into DNA: a therapy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Buchegger, Franz [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); University Hospital of Lausanne, Service of Nuclear Medicine, Lausanne (Switzerland); Perillo-Adamer, Florence; Bischof Delaloye, Angelika [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); Dupertuis, Yves M. [University Hospital of Geneva, Service of Nutrition, Geneva (Switzerland)

    2006-11-15

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of {alpha} particles. In contrast to {alpha} radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided {alpha} and {beta} radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  12. Targeted alpha therapy for melanoma : from bench to bedside

    International Nuclear Information System (INIS)

    Allen, B.J.; Rizvi, S.M.A.; Li, Y.; Tsui, W.; Douglas, S.; Raja, C.; Graham, P.; Smart, R.; Butler, P.; Kearsley, J.; Thompson, J.

    2001-01-01

    Full text: The control of metastatic melanoma remains an elusive objective. Targeted alpha therapy (TAT) offers a new approach to the control of micrometastases and regression of tumours. The alpha emitting immunoconjugate (AIC) against malignant melanoma has been prepared by chelating Bi-213 to the anti-melanoma antibody 9.2.27, and injected locally at 2 d post-inoculation of 1.5 million melanoma cells, or intralesionally into skin tumours. Human subjects receive 50μCi intralesional dose, escalating to 1 mCi. The clearances from the tumour, kidneys and bladder are monitored by a NaI detector that detects the 440 keV gamma ray. Blood samples and tumour photographs are taken at O. 2 and 4 weeks; tumours are excised at 4 weeks. Isolated cancer cells and preangiogenic cell clusters in mice can be eliminated with 25 μCi local AIC injection, and intra-lesional injections of 100 μCi are sufficient to completely regress melanomas with volumes up to 300 mm 3 without side-effects. Systemic TAT with a single administration is less effective with 100% growth delay of tumours observed, and ∼20% complete inhibition. The clinical TAT trial for recurrent subcutaneous melanoma has been approved by the NSW Radiation Advisory Committee and the SES Human Ethics Committee. In a world first phase 1 study, the first 5 subjects have been treated by intralesional injection, 3 at 50 μCi, and 2 at 150 μCi. All subjects having unchanged blood profiles at 2 and 4 weeks post-therapy. Tumour volumes appear little changed. However, histology of a 3 cm melanoma shows that almost complete cell kill occurred at 150 μCi, with only a few small cell clusters surviving. Local TAT inhibits tumourogenesis and intralesional TAT completely regresses melanoma in mice. Intralesional TAT for melanoma in human subjects is non-toxic so far and appears to be a promising modality. The ultimate objective is to apply systemic TAT for the control of melanoma micrometastases. Copyright (2001) Australasian

  13. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy

    International Nuclear Information System (INIS)

    Thiele, Nikki A.; MacMillan, Samantha N.; Wilson, Justin J.; Rodriguez-Rodriguez, Cristina

    2017-01-01

    The 18-membered macrocycle H 2 macropa was investigated for 225 Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all 225 Ac (26 kBq) in 5 min at RT. [ 225 Ac(macropa)] + remained intact over 7 to 8 days when challenged with either excess La 3+ ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled 225 Ac in just minutes at RT, and macropa-Tmab retained >99 % of its 225 Ac in human serum after 7 days. In LNCaP xenograft mice, 225 Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free 225 Ac over 96 h. These findings establish macropa to be a highly promising ligand for 225 Ac chelation that will facilitate the clinical development of 225 Ac TAT for the treatment of soft-tissue metastases. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Nikki A.; MacMillan, Samantha N.; Wilson, Justin J. [Cornell Univ., Ithaca, NY (United States). Chemistry and Chemical Biology; Brown, Victoria; Jermilova, Una; Ramogida, Caterina F.; Robertson, Andrew K.H.; Schaffer, Paul; Radchenko, Valery [TRIUMF, Vancouver, BC (Canada). Life Science Div.; Kelly, James M.; Amor-Coarasa, Alejandro; Nikolopoulou, Anastasia; Ponnala, Shashikanth; Williams, Clarence Jr.; Babich, John W. [Radiology, Weill Cornell Medicine, New York, NY (United States); Rodriguez-Rodriguez, Cristina [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy and Centre for Comparative Medicine

    2017-11-13

    The 18-membered macrocycle H{sub 2}macropa was investigated for {sup 225}Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all {sup 225}Ac (26 kBq) in 5 min at RT. [{sup 225}Ac(macropa)]{sup +} remained intact over 7 to 8 days when challenged with either excess La{sup 3+} ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled {sup 225}Ac in just minutes at RT, and macropa-Tmab retained >99 % of its {sup 225}Ac in human serum after 7 days. In LNCaP xenograft mice, {sup 225}Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free {sup 225}Ac over 96 h. These findings establish macropa to be a highly promising ligand for {sup 225}Ac chelation that will facilitate the clinical development of {sup 225}Ac TAT for the treatment of soft-tissue metastases. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Quantification of activity by alpha-camera imaging and small-scale dosimetry within ovarian carcinoma micrometastases treated with targeted alpha therapy

    DEFF Research Database (Denmark)

    Chouin, N; Lindegren, S; Jensen, Holger

    2012-01-01

    Targeted alpha therapy (TAT) a promising treatment for small, residual, and micrometastatic diseases has questionable efficacy against malignant lesions larger than the α-particle range, and likely requires favorable intratumoral activity distribution. Here, we characterized and quantified......% IA/g at 4 h) in the outer tumor layer and a sharp drop beyond a depth of 50 µm. Small-scale dosimetry was performed on a multi-cellular micrometastasis model, using time-integrated activities derived from the experimental data. With injected activity of 400 kBq, tumors exhibiting uniform activity...... distribution received 100 µm might not be effectively treated by the examined regimen....

  16. Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders.

    Science.gov (United States)

    Bahia, Malkeet S; Silakari, Om

    2010-05-01

    Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.

  17. Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy

    International Nuclear Information System (INIS)

    Chérel, Michel; Barbet, Jacques

    2013-01-01

    Today, cancer treatments mainly rely on surgery or external beam radiation to remove or destroy bulky tumors. Chemotherapy is given when tumours cannot be removed or when dissemination is suspected. However, these approaches cannot permanently treat all cancers and relapse occurs in up to 50% of the patients’ population. Radioimmunotherapy (RIT) and peptide receptor radionuclide therapy (PRRT) are effective against some disseminated and metastatic diseases, although they are rarely curative. Most preclinical and clinical developments in this field have involved electron-emitting radionuclides, particularly iodine-131, yttrium-90 and lutetium-177. The large range of the electrons emitted by these radionuclides reduces their efficacy against very small tumour cell clusters or isolated tumour cells present in residual disease and in many haematological tumours (leukaemia, myeloma). The range of alpha particles in biological tissues is very short, less than 0.1 mm, which makes alpha emitters theoretically ideal for treatment of such isolated tumour cells or micro-clusters of malignant cells. Thus, over the last decade, a growing interest for the use of alpha-emitting radionuclides has emerged. Research on targeted alpha therapy (TAT) began years ago in Nantes through cooperation between Subatech, a nuclear physics laboratory, CRCNA, a cancer research centre with a nuclear oncology team and ITU (Karlsruhe, Germany). CD138 was demonstrated as a potential target antigen for Multiple Myeloma, which is a target of huge clinical interest particularly suited for TAT because of the disseminated nature of the disease consisting primarily of isolated cells and small clusters of tumour cells mainly localized in the bone marrow. Thus anti-CD138 antibodies were labelled with bismuth-213 from actinium-225/bismuth-213 generators provided by ITU and used to target multiple myeloma cells. In vitro studies showed cell cycle arrest, synergism with chemotherapy and very little induction

  18. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab

    International Nuclear Information System (INIS)

    Beyer, G.J.; Soloviev, D.; Buchegger, F.; Miederer, M.; Vranjes-Duric, S.; Comor, J.J.; Kuenzi, G.; Hartley, O.; Senekowitsch-Schmidtke, R.

    2004-01-01

    This study demonstrates high-efficiency sterilisation of single cancer cells in a SCID mouse model of leukaemia using rituximab, a monoclonal antibody that targets CD20, labelled with terbium-149, an alpha-emitting radionuclide. Radio-immunotherapy with 5.5 MBq labelled antibody conjugate (1.11 GBq/mg) 2 days after an intravenous graft of 5.10 6 Daudi cells resulted in tumour-free survival for >120 days in 89% of treated animals. In contrast, all control mice (no treatment or treated with 5 or 300 μg unlabelled rituximab) developed lymphoma disease. At the end of the study period, 28.4%±4% of the long-lived daughter activity remained in the body, of which 91.1% was located in bone tissue and 6.3% in the liver. A relatively high daughter radioactivity concentration was found in the spleen (12%±2%/g), suggesting that the killed cancer cells are mainly eliminated through the spleen. This promising preliminary in vivo study suggests that targeted alpha therapy with 149 Tb is worthy of consideration as a new-generation radio-immunotherapeutic approach. (orig.)

  19. Targeted Therapy for Melanoma

    International Nuclear Information System (INIS)

    Quinn, Thomas; Moore, Herbert

    2016-01-01

    The research project, entitled ''Targeted Therapy for Melanoma,'' was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the "2"1"2"P"b"/"2"0"3Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg"1"1)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of "2"1"2Pb labeled DOTA-Re(Arg"1"1)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particular note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter "2"1"2Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.

  20. Targeted Therapy for Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Thomas [Alphamed, Jackson, TN (United States); Moore, Herbert [Alphamed, Jackson, TN (United States)

    2016-12-05

    The research project, entitled ”Targeted Therapy for Melanoma,” was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg11)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212Pb labeled DOTA-Re(Arg11)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particular note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.

  1. The alpha-cell as target for type 2 diabetes therapy

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Bagger, Jonatan I; Vilsboll, Tina

    2011-01-01

    for type 2 diabetes. Several lines of preclinical evidence have paved the way for the development of drugs, which suppress glucagon secretion or antagonize the glucagon receptor. In this review, the physiological actions of glucagon and the role of glucagon in type 2 diabetic pathophysiology are outlined...... antagonists are confronted with several safety issues. At present, available pharmacological agents based on the glucose-dependent glucagonostatic effects of GLP-1 represent the most favorable way to apply constraints to the alpha-cell in type 2 diabetes.......-coupled receptors in the hepatocytes. Type 2 diabetic patients are characterized by elevated glucagon levels contributing decisively to hyperglycemia in these patients. Accumulating evidence demonstrates that targeting the pancreatic alpha-cell and its main secretory product glucagon is a possible treatment...

  2. Targeted alpha therapy of mCRPC. Dosimetry estimate of {sup 213}bismuth-PSMA-617

    Energy Technology Data Exchange (ETDEWEB)

    Kratochwil, Clemens; Afshar-Oromieh, Ali; Rathke, Hendrik; Giesel, Frederik L. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Schmidt, Karl [ABX-CRO, Dresden (Germany); Bruchertseifer, Frank; Morgenstern, Alfred [European Commission - Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe (Germany); Haberkorn, Uwe [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center (DKFZ), Cooperation Unit Nuclear Medicine, Heidelberg (Germany)

    2018-01-15

    PSMA-617 is a small molecule targeting the prostate-specific membrane antigen (PSMA). In this work, we estimate the radiation dosimetry for this ligand labeled with the alpha-emitter {sup 213}Bi. Three patients with metastatic prostate cancer underwent PET scans 0.1 h, 1 h, 2 h, 3 h, 4 h and 5 h after injection of {sup 68}Ga-PSMA-617. Source organs were kidneys, liver, spleen, salivary glands, bladder, red marrow and representative tumor lesions. The imaging nuclide {sup 68}Ga was extrapolated to the half-life of {sup 213}Bi. The residence times of {sup 213}Bi were forwarded to the instable daughter nuclides. OLINDA was used for dosimetry calculation. Results are discussed in comparison to literature data for {sup 225}Ac-PSMA-617. Assuming a relative biological effectiveness of 5 for alpha radiation, the dosimetry estimate revealed equivalent doses of mean 8.1 Sv{sub RBE5}/GBq for salivary glands, 8.1 Sv{sub RBE5}/GBq for kidneys and 0.52 Sv{sub RBE5}/GBq for red marrow. Liver (1.2 Sv{sub RBE5}/GBq), spleen (1.4 Sv{sub RBE5}/GBq), bladder (0.28 Sv{sub RBE5}/GBq) and other organs (0.26 Sv{sub RBE5}/GBq) were not dose-limiting. The effective dose is 0.56 Sv{sub RBE5}/GBq. Tumor lesions were in the range 3.2-9.0 Sv{sub RBE5}/GBq (median 7.6 Sv{sub RBE5}/GBq). Kidneys would limit the cumulative treatment activity to 3.7 GBq; red marrow might limit the maximum single fraction to 2 GBq. Despite promising results, the therapeutic index was inferior compared to {sup 225}Ac-PSMA-617. Dosimetry of {sup 213}Bi-PSMA-617 is in a range traditionally considered reasonable for clinical application. Nevertheless, compared to {sup 225}Ac-PSMA-617, it suffers from higher perfusion-dependent off-target radiation and a longer biological half-life of PSMA-617 in dose-limiting organs than the physical half-life of {sup 213}Bi, rendering this nuclide as a second choice radiolabel for targeted alpha therapy of prostate cancer. (orig.)

  3. Cross sections of the reaction Pa-231(d,3n)U-230 for the production of U-230/Th-226 for targeted alpha therapy

    Czech Academy of Sciences Publication Activity Database

    Morgenstern, A.; Lebeda, Ondřej; Štursa, Jan; Capote, R.; Sin, M.; Bruchertseifer, F.; Zielinska, B.; Apostolidis, C.

    2009-01-01

    Roč. 80, č. 5 (2009), 054612/1-054612/6 ISSN 0556-2813 Institutional research plan: CEZ:AV0Z10480505 Keywords : Pa-231 * U-230 * Th-226 * reaction cross section * targeted alpha therapy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  4. Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer.

    Science.gov (United States)

    Liu, Hong; Xu, Yiyang; Xiang, Jingyi; Long, Li; Green, Shon; Yang, Zhiyuan; Zimdahl, Bryan; Lu, Jingwei; Cheng, Neal; Horan, Lucas H; Liu, Bin; Yan, Su; Wang, Pei; Diaz, Juan; Jin, Lu; Nakano, Yoko; Morales, Javier F; Zhang, Pengbo; Liu, Lian-Xing; Staley, Binnaz K; Priceman, Saul J; Brown, Christine E; Forman, Stephen J; Chan, Vivien W; Liu, Cheng

    2017-01-15

    The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP 158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 + /AFP + while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP 158 -expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Alpha-1 Antitrypsin Deficiency Targeted Testing and Augmentation Therapy: A Canadian Thoracic Society Clinical Practice Guideline

    Directory of Open Access Journals (Sweden)

    DD Marciniuk

    2012-01-01

    Full Text Available Alpha-1 antitrypsin (A1AT functions primarily to inhibit neutrophil elastase, and deficiency predisposes individuals to the development of chronic obstructive pulmonary disease (COPD. Severe A1AT deficiency occurs in one in 5000 to one in 5500 of the North American population. While the exact prevalence of A1AT deficiency in patients with diagnosed COPD is not known, results from small studies provide estimates of 1% to 5%. The present document updates a previous Canadian Thoracic Society position statement from 2001, and was initiated because of lack of consensus and understanding of appropriate patients suitable for targeted testing for A1AT deficiency, and for the use of A1AT augmentation therapy. Using revised guideline development methodology, the present clinical practice guideline document systematically reviews the published literature and provides an evidence-based update. The evidence supports the practice that targeted testing for A1AT deficiency be considered in individuals with COPD diagnosed before 65 years of age or with a smoking history of <20 pack years. The evidence also supports consideration of A1AT augmentation therapy in nonsmoking or exsmoking patients with COPD (forced expiratory volume in 1 s of 25% to 80% predicted attributable to emphysema and documented A1AT deficiency (level ≤11 μmol/L who are receiving optimal pharmacological and nonpharmacological therapies (including comprehensive case management and pulmonary rehabilitation because of benefits in computed tomography scan lung density and mortality.

  6. The alpha-cell as target for type 2 diabetes therapy

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Bagger, Jonatan I; Vilsboll, Tina

    2011-01-01

    -coupled receptors in the hepatocytes. Type 2 diabetic patients are characterized by elevated glucagon levels contributing decisively to hyperglycemia in these patients. Accumulating evidence demonstrates that targeting the pancreatic alpha-cell and its main secretory product glucagon is a possible treatment....... Furthermore, potential advantages and limitations of antagonizing the glucagon receptor or suppressing glucagon secretion in the treatment of type 2 diabetes are discussed with a focus on already marketed drugs and drugs in clinical development. It is concluded that the development of novel glucagon receptor...

  7. Therapeutic responses in systematic targeted alpha therapy trial for melanoma

    International Nuclear Information System (INIS)

    Raja, C.; Rizvi, S.M.A.; Song, E.Y.; Graham, P.; Kearsley, J.H.; Goldsmith, H.; Bosserhoff, A.; Morgenstern, A.; Apostolidis, C.; Reisfeld, R.

    2006-01-01

    Full text: The therapeutic response of melanoma patients after systemic alpha therapy has been investigated in an open-labeled Phase 1 dose escalation study to establish the effective dose of alpha-immunoconjugate 2l3 Bi-cDTPA-9.2.27 mAb (AIC). The tools used to investigate the effects were physical examination; the images of the tumours, pathology comparisons over 12 weeks; CT comparisons and changes in tumour marker over 8 weeks. The physical examination indicated varied tumour responses. One patient showed complete response at 12 weeks post-TAT, with 20 of 21 tumours completely regressing, the last reduced by 80%. The tumour beds were biopsied for staining; S l OO was negative and no viable cells were observed. Most patients showed stable disease at 2 weeks. In one patient the CT comparison of 8 weeks with baseline showed marked reduction in three lung lesions. At least 4/21 patients showed partial response at 4 to 8 weeks and the same number showed stable disease. The disease progressed in 7 patients. The tumour marker melanoma inhibitory activity protein (MIA) showed reductions over 8 weeks, and was consistent with observations in most patients. Complete and partial responses were observed in systemic TAT for stage IV melanoma, but there was no dose-response relationship

  8. Intravenous alpha-1 antitrypsin augmentation therapy: systematic review

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C; Johansen, Helle Krogh

    2010-01-01

    We reviewed the benefits and harms of augmentation therapy with alpha-1 antitrypsin in patients with alpha-1 antitrypsin deficiency and lung disease. We searched for randomised trials comparing augmentation therapy with placebo or no treatment in PubMed and ClinicalTrials (7 January 2010). Two...... (difference 1.14 g/l; 95% confidence interval 0.14 to 2.14; p = 0.03) over the total course of the trials. Augmentation therapy with alpha-1 antitrypsin cannot be recommended in view of the lack of evidence of clinical benefit and the cost of treatment....

  9. Report of a Technical Meeting on ''Alpha emitting radionuclides and radiopharmaceuticals for therapy''

    International Nuclear Information System (INIS)

    2013-01-01

    Considering the high potential of α-emitters for future development of radionuclide therapy, the International Atomic Energy Agency (IAEA) organized a Technical Meeting on ‘Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy’, from June 24 to 28, 2013, at IAEA Headquarters in Vienna with the purpose of gathering eminent Experts in the field and discuss with them the status and future perspectives of the field. Sixteen Experts and two External Observers from ten different countries, and four IAEA Technical Officers attended this meeting. Outstanding lectures have been presented covering all relevant aspects of α-therapy, which were followed by extensive discussions and analysis. Selected arguments encompassed production methods and availability of alpha-emitting radionuclides, labelling chemistry of alpha-emittting radioelements, design and development of target-specific radiopharmaceuticals, physical principles of alpha-particle dosimetry and advanced dosimetric models, biological effects of alpha radiation at the cellular level, on-going preclinical and clinical studies with new radiopharmaceuticals, results of clinical trials on the use of radium-223 chloride solutions for the treatment of metastatic bone cancer. The broad scientific background of invited components of the Experts’ panel conferred a strong interdisciplinary trait to the overall discussion and stimulated a critical analysis of this emerging unexplored field. Results of this comprehensive overview on alpha therapy, including recommendations to the Agency on suitable initiatives that may help to promote and spread the knowledge to Members States on this emerging therapeutic modality, are summarized in the present Report

  10. Interleukin-1beta and TNF-alpha: reliable targets for protective therapies in Parkinson´s Disease?

    Directory of Open Access Journals (Sweden)

    María Celeste Leal

    2013-04-01

    Full Text Available Neuroinflammation has received increased attention as a target for putative neuroprotective therapies in Parkinson´s Disease (PD. Two prototypic pro-inflammatory cytokines Interleukin-1beta (IL-1 and Tumor necrosis factor-alpha (TNF have been implicated as main effectors of the functional consequences of neuroinflammation on neurodegeneration in PD models. In this review, we describe that the functional interaction between these cytokines in the brain differs from the periphery (e.g. their expression is not induced by each other and present data showing predominantly a toxic effect of these cytokines when expressed at high doses and for a sustained period of time in the substantia nigra pars compacta (SN. In addition, we highlight opposite evidence showing protective effects of these two main cytokines when conditions of duration, amount of expression or state of activation of the target or neighboring cells are changed. Furthermore, we discuss these results in the frame of previous disappointing results from anti-TNF clinical trials against Multiple Sclerosis, another neurodegenerative disease with a clear neuroinflammatory component. In conclusion, we hypothesize that the available evidence suggests that the duration and dose of IL-1 or TNF expression is crucial to predict their functional effect on the SN. Since these parameters are not amenable for measurement in the SN of PD patients, we call for an in-depth analysis to identify downstream mediators that could be common to the toxic (and not the protective effects of these cytokines in the SN. This strategy could spare the possible neuroprotective effect of these cytokines operative in the patient at the time of treatment, increasing the probability of efficacy in a clinical setting. Alternatively, receptor-specific agonists or antagonists could also provide a way to circumvent undesired effects of general anti-inflammatory or specific anti IL-1 or TNF therapies against PD.

  11. Interaction of C-terminal truncated human alphaA-crystallins with target proteins.

    Directory of Open Access Journals (Sweden)

    Anbarasu Kumarasamy

    2008-09-01

    Full Text Available Significant portion of alphaA-crystallin in human lenses exists as C-terminal residues cleaved at residues 172, 168, and 162. Chaperone activity, determined with alcohol dehydrogenase (ADH and betaL-crystallin as target proteins, was increased in alphaA(1-172 and decreased in alphaA(1-168 and alphaA(1-162. The purpose of this study was to show whether the absence of the C-terminal residues influences protein-protein interactions with target proteins.Our hypothesis is that the chaperone-target protein binding kinetics, otherwise termed subunit exchange rates, are expected to reflect the changes in chaperone activity. To study this, we have relied on fluorescence resonance energy transfer (FRET utilizing amine specific and cysteine specific fluorescent probes. The subunit exchange rate (k for ADH and alphaA(1-172 was nearly the same as that of ADH and alphaA-wt, alphaA(1-168 had lower and alphaA(1-162 had the lowest k values. When betaL-crystallin was used as the target protein, alphaA(1-172 had slightly higher k value than alphaA-wt and alphaA(1-168 and alphaA(1-162 had lower k values. As expected from earlier studies, the chaperone activity of alphaA(1-172 was slightly better than that of alphaA-wt, the chaperone activity of alphaA(1-168 was similar to that of alphaA-wt and alphaA(1-162 had substantially decreased chaperone activity.Cleavage of eleven C-terminal residues including Arg-163 and the C-terminal flexible arm significantly affects the interaction with target proteins. The predominantly hydrophilic flexible arm appears to be needed to keep the chaperone-target protein complex soluble.

  12. Alpha-emitters for medical therapy workshop

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; McClure, J.J.

    1996-01-01

    A workshop on ''Alpha-Emitters for Medical Therapy'' was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference

  13. Alpha-emitters for medical therapy workshop

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  14. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  15. Adverse cutaneous reactions induced by TNF-alpha antagonist therapy.

    Science.gov (United States)

    Borrás-Blasco, Joaquín; Navarro-Ruiz, Andrés; Borrás, Consuelo; Casterá, Elvira

    2009-11-01

    To review adverse cutaneous drug reactions induced by tumor necrosis factor alpha (TNF-alpha) antagonist therapy. A literature search was performed using PubMed (1996-March 2009), EMBASE, and selected MEDLINE Ovid bibliography searches. All language clinical trial data, case reports, letters, and review articles identified from the data sources were used. Since the introduction of TNF-alpha antagonist, the incidence of adverse cutaneous drug reactions has increased significantly. A wide range of different skin lesions might occur during TNF-alpha antagonist treatment. New onset or exacerbation of psoriasis has been reported in patients treated with TNF-alpha antagonists for a variety of rheumatologic conditions. TNF-alpha antagonist therapy has been associated with a lupus-like syndrome; most of these case reports occurred in patients receiving either etanercept or infliximab. Serious skin reactions such as erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely with the use of TNF-alpha antagonists. As the use of TNF-alpha antagonists continues to increase, the diagnosis and management of cutaneous side effects will become an increasingly important challenge. In patients receiving TNF-alpha antagonist treatment, skin disease should be considered, and clinicians need to be aware of the adverse reactions of these drugs.

  16. Why Targeted Therapies are Necessary for Systemic Lupus Erythematosus

    Science.gov (United States)

    Durcan, Laura; Petri, Michelle

    2016-01-01

    Systemic lupus erythematosus (SLE) continues to have important morbidity and accelerated mortality despite therapeutic advances. Targeted therapies offer the possibility of improved efficacy with fewer side-effects. Current management strategies rely heavily on non-specific immunosuppressive agents. Prednisone, in particular, is responsible for a considerable burden of later organ damage. There are a multitude of diverse mechanisms of disease activity, immunogenic abnormalities and clinical manifestations to take into consideration in SLE. Many targeted agents with robust mechanistic pre-clinical data and promising early phase studies have ultimately been disappointing in phase III randomized controlled studies. Recent efforts have focused on B cell therapies, in particular given the success of belimumab in clinical trials, with limited success. We remain optimistic regarding other specific therapies being evaluated including interferon alpha blockade. It is likely that in SLE, given the heterogeneity of the population involved, precision medicine is needed, rather than expecting that any single biologic will be universally effective. PMID:27497251

  17. Calculated /alpha/-induced thick target neutron yields and spectra, with comparison to measured data

    International Nuclear Information System (INIS)

    Wilson, W.B.; Bozoian, M.; Perry, R.T.

    1988-01-01

    One component of the neutron source associated with the decay of actinide nuclides in many environments is due to the interaction of decay /alpha/ particles in (/alpha/,n) reactions on low Z nuclides. Measurements of (/alpha/,n) thick target neutron yields and associated neutron spectra have been made for only a few combinations of /alpha/ energy and target nuclide or mixtures of actinide and target nuclides. Calculations of thick target neutron yields and spectra with the SOURCES code require /alpha/-energy-dependent cross sections for (/alpha/,n) reactions, as well as branching fractions leading to the energetically possible levels of the product nuclides. A library of these data has been accumulated for target nuclides of Z /le/ 15 using that available from measurements and from recent GNASH code calculations. SOURCES, assuming neutrons to be emitted isotopically in the center-of-mass system, uses libraries of /alpha/ stopping cross sections, (/alpha/,n) reaction cross reactions, product nuclide level branching fractions, and actinide decay /alpha/ spectra to calculate thick target (/alpha/,n) yields and neutron spectra for homogeneous combinations of nuclides. The code also calculates the thick target yield and angle intergrated neutron spectrum produced by /alpha/-particle beams on targets of homogeneous mixtures of nuclides. Illustrative calculated results are given and comparisons are made with measured thick target yields and spectra. 50 refs., 1 fig., 2 tabs

  18. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    May, Felicity EB, E-mail: F.E.B.May@ncl.ac.uk [Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)

    2014-05-23

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  19. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  20. Mapping of HNF4alpha target genes in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Boyd, Mette; Bressendorff, Simon; Moller, Jette

    2009-01-01

    ABSTRACT: BACKGROUND: The role of HNF4alpha has been extensively studied in hepatocytes and pancreatic beta-cells, and HNF4alpha is also regarded as key regulator of intestinal epithelial cell differentiation as well. The aim of the present work is to identify novel HNF4alpha target genes....... The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS: 1,541 genes were identified as potential HNF4alpha targets, many of which have...

  1. Manual for target thickness measurement by alpha particle irradiation

    International Nuclear Information System (INIS)

    Dias, J.F.; Martins, M.N.

    1990-04-01

    A system is described for thin-target thickness measurement through the alpha particle energy loss when them traverse the target. It is also described the program used in the analysis of the target thickness. (L.C.) [pt

  2. [Basic and clinical studies of the gene product-targeting therapy based on leukemogenesis--editorial].

    Science.gov (United States)

    Chen, Sai-Juan; Chen, Li-Juan; Zhou, Guang-Biao

    2005-02-01

    In the last twenty years, using all-trans retinoic acid (ATRA) as a differentiation inducer, Shanghai Institute of Hematology has achieved an important breakthrough in the treatment of acute promyelocytic leukemia (APL), which realized the theory of reversing phenotype of cells and provided a successful model of differentiation therapy in cancers. Our group first discovered in the world the variant chromosome translocation t(11;17)(q23;q21) of APL, and cloned the PML-RAR alpha, PLZF-RAR alpha and NPM-RAR alpha fusion genes corresponding to the characterized chromosome translocations t(15;17); t(11;17) and t(5;17) in APL. Moreover, establishment of transgenic mice model of APL proved their effects on leukemogenesis. The ability of ATRA to modify the recruitment of nuclear receptor co-repressor with PML-RAR alpha but not PLZF-RAR alpha caused by the variant chromosome translocation elucidated the therapeutic mechanism of ATRA from the molecular level and provides new insight into transcription-modulating therapy. Since 1994, our group has successfully applied arsenic trioxide (As(2)O(3)) in treating relapsed APL patients, with the complete remission rate of 70% - 80%. The molecular mechanism study revealed that As(2)O(3) exerts a dose-dependent dual effect on APL. Low-dose As(2)O(3) induced partial differentiation of APL cells, while the higher dose induced apoptosis. As(2)O(3) binds ubiquitin like SUMO-1 through the lysine 160 of PML, resulting in the degradation of PML-RAR alpha. Taken together, ATRA and As(2)O(3) target the transcription factor PML-RAR alpha, the former by retinoic acid receptor and the latter by PML sumolization, both induce PML-RAR alpha degradation and APL cells differentiation and apoptosis. Because of the different acting pathways, ATRA and As(2)O(3) have no cross-resistance and can be used as combination therapy. Clinical trial in newly diagnosed APL patients showed that ATRA/As(2)O(3) in combination yields a longer disease-free survival

  3. Alpha particle emitters in cancer therapy: establishing the rationale and overcoming the difficulties

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: Once a tumor has metastasized, the possibility of cure is significantly diminished, if not excluded. Since metastatic spread arises due to the release of single tumor cells or tumor cell clusters, treatment regimens following an overt metastasis must include agents that eradicate individual tumor cells and cell clusters or that prevent their dissemination. Alpha particles may be highly effective in eradicating rapidly accessible disease. The effectiveness of alpha particles arises because the amount of energy deposited per unit distance traveled (linear energy transfer or LET) is approximately 400 times greater than that of beta particles (80 keV/μm vs. 0.2 keV/μm). Each traversal of an alpha particle through a cell nucleus results in a very highly ionizing track. Cell survival studies have shown that alpha-particle killing is independent of oxygenation state or cell-cycle during irradiation and that as few as 1 to 6 tracks across the nucleus may result in cell death. Most studies with alpha-particle emitting radionuclides for therapy have examined either bismuth-212 or astatine-211. Both radionuclides are short-lived with 61 minute and 7.2 hour half-lives, respectively, yielding intermediates with 3-minute and 32 year half-lives, respectively. Both emit alpha particles whose range is 40 to 80 μm. Alpha-particle emitting radionuclides have been attached to antibodies against tumor cell associated antigen. Antibodies have been the most widely used vehicle for delivery of alpha particles due to their specificity. Bismuth-212 has demonstrated a significant curative potential with minimal toxicity. In an ascites tumor mouse model, specific targeting and 80% cure following injection of Bi-212-labeled antibody has been observed (Macklis RM et al, Science, 240:1024-1026, 1988). It is important to define the realm of applicability for alpha particle emitting radionuclides. The short half-life of most currently available radionuclides, limits their use to

  4. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces

    Science.gov (United States)

    2016-01-01

    Inhibition of protein–protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy—that builds on the principles of fragment-based drug discovery (FBDD)—is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein’s Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features—alpha-atom and alpha-space—and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450

  5. Cancer therapy with alpha-emitters labeled peptides.

    Science.gov (United States)

    Dadachova, Ekaterina

    2010-05-01

    Actively targeted alpha-particles offer specific tumor cell killing action with less collateral damage to surrounding normal tissues than beta-emitters. During the last decade, radiolabeled peptides that bind to different receptors on the tumors have been investigated as potential therapeutic agents both in the preclinical and clinical settings. Advantages of radiolabeled peptides over antibodies include relatively straightforward chemical synthesis, versatility, easier radiolabeling, rapid clearance from the circulation, faster penetration and more uniform distribution into tissues, and less immunogenicity. Rapid internalization of the radiolabeled peptides with equally rapid re-expression of the cell surface target is a highly desirable property that enhances the total delivery of these radionuclides into malignant sites. Peptides, such as octreotide, alpha-melanocyte-stimulating hormone analogues, arginine-glycine-aspartic acid-containing peptides, bombesin derivatives, and others may all be feasible for use with alpha-emitters. The on-going preclinical work has primarily concentrated on octreotide and octreotate analogues labeled with Bismuth-213 and Astatine-211. In addition, alpha-melanocyte-stimulating hormone analogue has been labeled with Lead-212/Bismuth-212 in vivo generator and demonstrated the encouraging therapeutic efficacy in treatment of experimental melanoma. Obstacles that continue to obstruct widespread acceptance of alpha-emitter-labeled peptides are primarily the supply of these radionuclides and concerns about potential kidney toxicity. New sources and methods for production of these medically valuable radionuclides and better understanding of mechanisms related to the peptide renal uptake and clearance should speed up the introduction of alpha-emitter-labeled peptides into the clinic. Copyright 2010 Elsevier Inc. All rights reserved.

  6. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience

    International Nuclear Information System (INIS)

    Kratochwil, C.; Giesel, F.L.; Mier, W.; Haberkorn, U.; Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A.; Boll, R.; Murphy, K.

    2014-01-01

    Radiopeptide therapy using a somatostatin analogue labelled with a beta emitter such as 90 Y/ 177 Lu-DOTATOC is a new therapeutic option in neuroendocrine cancer. Alternative treatments for patients with refractory disease are rare. Here we report the first-in-human experience with 213 Bi-DOTATOC targeted alpha therapy (TAT) in patients pretreated with beta emitters. Seven patients with progressive advanced neuroendocrine liver metastases refractory to treatment with 90 Y/ 177 Lu-DOTATOC were treated with an intraarterial infusion of 213 Bi-DOTATOC, and one patient with bone marrow carcinosis was treated with a systemic infusion of 213 Bi-DOTATOC. Haematological, kidney and endocrine toxicities were assessed according to CTCAE criteria. Radiological response was assessed with contrast-enhanced MRI and 68 Ga-DOTATOC-PET/CT. More than 2 years of follow-up were available in seven patients. The biodistribution of 213 Bi-DOTATOC was evaluable with 440 keV gamma emission scans, and demonstrated specific tumour binding. Enduring responses were observed in all treated patients. Chronic kidney toxicity was moderate. Acute haematotoxicity was even less pronounced than with the preceding beta therapies. TAT can induce remission of tumours refractory to beta radiation with favourable acute and mid-term toxicity at therapeutic effective doses. (orig.)

  7. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Gulec, Cagri, E-mail: cagri.gulec@gmail.com; Coban, Neslihan, E-mail: neslic@istanbul.edu.tr; Ozsait-Selcuk, Bilge, E-mail: ozsaitb@istanbul.edu.tr; Sirma-Ekmekci, Sema, E-mail: semasirma@gmail.com; Yildirim, Ozlem, E-mail: ozlm-yildirim@hotmail.com; Erginel-Unaltuna, Nihan, E-mail: nihanerginel@yahoo.com

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.

  8. Alpha-1-antitrypsin augmentation therapy in deficient individuals enrolled in the Alpha-1 Foundation DNA and Tissue Bank

    Directory of Open Access Journals (Sweden)

    Adriano R Tonelli

    2009-12-01

    Full Text Available Adriano R Tonelli1, Farshid Rouhani1, Ning Li2, Pam Schreck1, Mark L Brantly11Alpha-1 Research Program, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, 2Department of Epidemiology and Biostatistics, University of Florida, Gainesville, Florida, USAIntroduction: Intravenous augmentation therapy with purified intravenous alpha-1 antitrypsin replaces the deficient protein and is the only currently approved treatment for alpha-1 antitrypsin deficiency (AATD related lung disease. While augmentation therapy has been available for more than 20 years, there are a limited number of studies evaluating the effect of augmentation on lung function.Material and methods: We examined the decline in forced expiratory volume in one second (FEV1 in patients enrolled in the Alpha-1 Foundation DNA and Tissue Bank in relation to the use or not of alpha-1 antitrypsin augmentation therapy. For the purpose of our analysis we included 164 patients with AATD and PI ZZ genotype.Results: Mean age of the patients was 60 years, 52% were females, 94% were white and 78% ex-smokers. The mean FEV1 at baseline was 1.7 L and the mean FEV1 % of predicted was 51.3%. The mean follow-up time was 41.7 months. A total of 124 (76% patients received augmentation therapy (augmented group while 40 patients (24% did not received it (non-augmented group. When adjusted by age at baseline, sex, smoking status, baseline FEV1 % of predicted, the mean overall change in FEV1 was 47.6 mL/year, favoring the augmented group (?FEV1 10.6 ± 21.4 mL/year in comparison with the non-augmented group (?FEV1 −36.96 ± 12.1 mL/year (P = 0.05. Beneficial ?FEV1 were observed in ex-smokers and the group with initial FEV1 % of predicted of <50%. No differences were observed in mortality.Conclusions: In conclusion, augmentation therapy improves lung function in subjects with AATD when adjusted by age, gender, smoking status and baseline FEV1 % of predicted. The beneficial

  9. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun [Korea Institute of Radiological and Medical and Medical Sciences, Seoul (Korea, Republic of); Chung, June Key [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using {sup 125}I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of {sup 131}I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by {sup 125}I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to {sup 131}I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system.

  10. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    International Nuclear Information System (INIS)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun; Chung, June Key

    2012-01-01

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using 125 I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of 131 I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by 125 I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to 131 I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system

  11. {sup 213}Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience

    Energy Technology Data Exchange (ETDEWEB)

    Kratochwil, C.; Giesel, F.L.; Mier, W.; Haberkorn, U. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. [European Commission, Institute for Transuranium Elements, Karlsruhe (Germany); Boll, R.; Murphy, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2014-11-15

    Radiopeptide therapy using a somatostatin analogue labelled with a beta emitter such as {sup 90}Y/{sup 177}Lu-DOTATOC is a new therapeutic option in neuroendocrine cancer. Alternative treatments for patients with refractory disease are rare. Here we report the first-in-human experience with {sup 213}Bi-DOTATOC targeted alpha therapy (TAT) in patients pretreated with beta emitters. Seven patients with progressive advanced neuroendocrine liver metastases refractory to treatment with {sup 90}Y/{sup 177}Lu-DOTATOC were treated with an intraarterial infusion of {sup 213}Bi-DOTATOC, and one patient with bone marrow carcinosis was treated with a systemic infusion of {sup 213}Bi-DOTATOC. Haematological, kidney and endocrine toxicities were assessed according to CTCAE criteria. Radiological response was assessed with contrast-enhanced MRI and {sup 68}Ga-DOTATOC-PET/CT. More than 2 years of follow-up were available in seven patients. The biodistribution of {sup 213}Bi-DOTATOC was evaluable with 440 keV gamma emission scans, and demonstrated specific tumour binding. Enduring responses were observed in all treated patients. Chronic kidney toxicity was moderate. Acute haematotoxicity was even less pronounced than with the preceding beta therapies. TAT can induce remission of tumours refractory to beta radiation with favourable acute and mid-term toxicity at therapeutic effective doses. (orig.)

  12. Production and separation of terbium-149 and terbium-152 for targeted cancer therapy

    International Nuclear Information System (INIS)

    Sarkar, S.; Leigh, J.

    1997-01-01

    This work reports the production and separation of useful quantities of 149 , 152 Tb from natural neodymium ( nat Nd) and 141 Pr for in vitro studies by bombarding the targets with 12 C projectiles. The physical, chemical and nuclear properties of radionuclides determine their efficacy in therapy and diagnosis. Tb-149 is an alpha-emitter with a half-life of 4.1h and 152 Tb is a positron emitter with a half-life of 17.5 h. Both of the isotopes have suitable gamma emission with good branching ratio suggesting their application to diagnosis apart from therapy. Alpha-emitters are effective in controlling cancer because of their short range and high Relative Biological Effectiveness. Long-lived positron emitters are effective in studying physiological function in positron emission tomography other than therapy. The aim of this work is to optimise the production and carrier free separation of terbium. Because of the presence of other stable isotopes in nat Nd, a number of other lanthanides are produced by secondary reactions during the production of terbium. In order to remove the secondary products, α-hydroxyisobutyric acid of pH 5 was used as eluent. satisfactory separation of terbium was achieved and demonstrate that useful quantities of 144,152 Tb can be produced by Tandem accelerator from 141 Pr and nat Nd targets

  13. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  14. Anti-TNF-alpha therapy for sight threatening uveitis.

    NARCIS (Netherlands)

    E.W. Lindstedt (Eric); G.S. Baarsma (Seerp); R.W.A.M. Kuijpers (Robert); P.M. van Hagen (Martin)

    2005-01-01

    textabstractAIM: To describe the effect of additional treatment with anti-TNF-alpha therapy in a case series of 13 patients with serious sight threatening uveitis. METHODS: 13 patients with serious sight threatening uveitis were included, of whom six had Behcet's disease, five had idiopathic

  15. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2007-05-01

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131 iodine or the 90 yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  16. Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen-Yu; Oborn, Bradley M.; Guatelli, Susanna; Allen, Barry J. [Centre for Experimental Radiation Oncology, St. George Clinical School, University of New South Wales, Kogarah, New South Wales 2217 (Australia); Illawarra Cancer Care Centre, Wollongong, New South Wales 2522, Australia and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Centre for Experimental Radiation Oncology, St. George Clinical School, University of New South Wales, Kogarah, New South Wales 2217 (Australia)

    2012-03-15

    Purpose: Metastatic melanoma lesions experienced marked regression after systemic targeted alpha therapy in a phase 1 clinical trial. This unexpected response was ascribed to tumor antivascular alpha therapy (TAVAT), in which effective tumor regression is achieved by killing endothelial cells (ECs) in tumor capillaries and, thus, depriving cancer cells of nutrition and oxygen. The purpose of this paper is to quantitatively analyze the therapeutic efficacy and safety of TAVAT by building up the testing Monte Carlo microdosimetric models. Methods: Geant4 was adapted to simulate the spatial nonuniform distribution of the alpha emitter {sup 213}Bi. The intraluminal model was designed to simulate the background dose to normal tissue capillary ECs from the nontargeted activity in the blood. The perivascular model calculates the EC dose from the activity bound to the perivascular cancer cells. The key parameters are the probability of an alpha particle traversing an EC nucleus, the energy deposition, the lineal energy transfer, and the specific energy. These results were then applied to interpret the clinical trial. Cell survival rate and therapeutic gain were determined. Results: The specific energy for an alpha particle hitting an EC nucleus in the intraluminal and perivascular models is 0.35 and 0.37 Gy, respectively. As the average probability of traversal in these models is 2.7% and 1.1%, the mean specific energy per decay drops to 1.0 cGy and 0.4 cGy, which demonstrates that the source distribution has a significant impact on the dose. Using the melanoma clinical trial activity of 25 mCi, the dose to tumor EC nucleus is found to be 3.2 Gy and to a normal capillary EC nucleus to be 1.8 cGy. These data give a maximum therapeutic gain of about 180 and validate the TAVAT concept. Conclusions: TAVAT can deliver a cytotoxic dose to tumor capillaries without being toxic to normal tissue capillaries.

  17. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy.

    Science.gov (United States)

    Piotrowska, Agata; Leszczuk, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2013-01-01

    The 223 Ra, 224 Ra, and 225 Ra radioisotopes exhibit very attractive nuclear properties for application in radionuclide therapy. Unfortunately the lack of appropriate bifunctional ligand for radium is the reason why these radionuclides have not found application in receptor-targeted therapy. In the present work, the potential usefulness of the NaA nanozeolite as a carrier for radium radionuclides has been studied. 224 Ra and 225 Ra, α-particle emitting radionuclides, have been absorbed in the nanometer-sized NaA zeolite (30-70 nm) through simple ion exchange. 224,225 Ra-nanozeolites exhibited very high stability in solutions containing physiological salt, EDTA, amino acids, and human serum. To make NaA nanozeolite particles dispersed in water their surface was modified with a silane coupling agent containing poly(ethylene glycol) molecules. This functionalization approach let us covalently attach a biomolecule to the NaA nanozeolite surface.

  18. A randomized clinical trial of alpha(1)-antitrypsin augmentation therapy.

    Science.gov (United States)

    Dirksen, A; Dijkman, J H; Madsen, F; Stoel, B; Hutchison, D C; Ulrik, C S; Skovgaard, L T; Kok-Jensen, A; Rudolphus, A; Seersholm, N; Vrooman, H A; Reiber, J H; Hansen, N C; Heckscher, T; Viskum, K; Stolk, J

    1999-11-01

    We have investigated whether restoration of the balance between neutrophil elastase and its inhibitor, alpha(1)-antitrypsin, can prevent the progression of pulmonary emphysema in patients with alpha(1)-antitrypsin deficiency. Twenty-six Danish and 30 Dutch ex-smokers with alpha(1)-antitrypsin deficiency of PI*ZZ phenotype and moderate emphysema (FEV(1) between 30% and 80% of predicted) participated in a double-blind trial of alpha(1)-antitrypsin augmentation therapy. The patients were randomized to either alpha(1)-antitrypsin (250 mg/kg) or albumin (625 mg/kg) infusions at 4-wk intervals for at least 3 yr. Self-administered spirometry performed every morning and evening at home showed no significant difference in decline of FEV(1) between treatment and placebo. Each year, the degree of emphysema was quantified by the 15th percentile point of the lung density histogram derived from computed tomography (CT). The loss of lung tissue measured by CT (mean +/- SEM) was 2.6 +/- 0.41 g/L/yr for placebo as compared with 1.5 +/- 0.41 g/L/yr for alpha(1)-antitrypsin infusion (p = 0.07). Power analysis showed that this protective effect would be significant in a similar trial with 130 patients. This is in contrast to calculations based on annual decline of FEV(1) showing that 550 patients would be needed to show a 50% reduction of annual decline. We conclude that lung density measurements by CT may facilitate future randomized clinical trials of investigational drugs for a disease in which little progress in therapy has been made in the past 30 yr.

  19. Therapy with high LET Radioisotopes: Can sufficient levels of attractive Auger and alpha emitters be produced to make their use practical?

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Mirzadeh, S.; Stabin, M.; Brill, A.B.

    2005-01-01

    Because of localized energy deposition within a very small volume, cellular targeted therapy with high linear energy transfer (LET) Auger-electron and alpha-particle emitting radioisotopes is of great interest. While the energy deposition from alpha particles usually encompasses several cell diameters, the dose from Auger electrons is confined to a single cell. Two major challenges for broader use of Alpha and Auger emitters are the efficient and cost effective routine production of sufficient levels of these radioisotopes, and the availability of targeting molecules to which the radioisotopes can be attached for cellular delivery of sufficient levels of activity for effective therapy. Examples of several Alpha-and Auger-emitting radioisotopes of current interest are presented. Alpha- and Auger electron-emitting radioisotopes can be produced in accelerators (A) and nuclear reactors (R), and several alpha emitter congeners (i.e. thorium-229) can be obtained from uranium decay products. The challenge for reactor production, is the availability and exploitation of methods - other then the usual radiative (n,γ) production route which will provide no-carrier-added (nca) or the high specific activity radioisotopes of interest. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes High LET radioisotopes of current interest which are in the initial stages of development and/or which demonstrate practical use in clinical trials include several alpha-emitters, in particular bismuth-213 - and also the actinium-225 parent - astatine-211 and bismuth-212. Extensive experimental studies have been reported with Auger iododeoxyuridine (IdUR) radiolabeled with the iodine-125 emitter-labeled. However, development of production

  20. Development of a preclinical 211Rn/211At generator system for targeted alpha therapy research with 211At.

    Science.gov (United States)

    Crawford, Jason R; Yang, Hua; Kunz, Peter; Wilbur, D Scott; Schaffer, Paul; Ruth, Thomas J

    2017-05-01

    The availability of 211 At for targeted alpha therapy research can be increased by the 211 Rn/ 211 At generator system, whereby 211 At is produced by 211 Rn electron capture decay. This study demonstrated the feasibility of using generator-produced 211 At to label monoclonal antibody (BC8, anti-human CD45) for preclinical use, following isolation from the 207 Po contamination also produced by these generators (by 211 Rn α-decay). 211 Rn was produced by 211 Fr electron capture decay following mass separated ion beam implantation and chemically isolated in liquid alkane hydrocarbon (dodecane). 211 At produced by the resulting 211 Rn source was extracted in strong base (2N NaOH) and purified by granular Te columns. BC8-B10 (antibody conjugated with closo-decaborate(2-)) was labeled with generator-produced 211 At and purified by PD-10 columns. Aqueous solutions extracted from the generator were found to contain 211 At and 207 Po, isolated from 211 Rn. High radionuclidic purity was obtained for 211 At eluted from Te columns, from which BC8-B10 monoclonal antibody was successfully labeled. If not removed, 207 Po was found to significantly contaminate the final 211 At-BC8-B10 product. High yield efficiencies (decay-corrected, n=3) were achieved for 211 At extraction from the generator (86%±7%), Te column purification (70%±10%), and antibody labeling (76%±2%). The experimental 211 Rn/ 211 At generator was shown to be well-suited for preclinical 211 At-based research. We believe that these experiments have furthered the knowledge-base for expanding accessibility to 211 At using the 211 Rn/ 211 At generator system. As established by this work, the 211 Rn/ 211 At generator has the capability of facilitating preclinical evaluations of 211 At-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Targeted deficiency of the transcriptional activator Hnf1alpha alters subnuclear positioning of its genomic targets.

    Directory of Open Access Journals (Sweden)

    Reini F Luco

    2008-05-01

    Full Text Available DNA binding transcriptional activators play a central role in gene-selective regulation. In part, this is mediated by targeting local covalent modifications of histone tails. Transcriptional regulation has also been associated with the positioning of genes within the nucleus. We have now examined the role of a transcriptional activator in regulating the positioning of target genes. This was carried out with primary beta-cells and hepatocytes freshly isolated from mice lacking Hnf1alpha, an activator encoded by the most frequently mutated gene in human monogenic diabetes (MODY3. We show that in Hnf1a-/- cells inactive endogenous Hnf1alpha-target genes exhibit increased trimethylated histone H3-Lys27 and reduced methylated H3-Lys4. Inactive Hnf1alpha-targets in Hnf1a-/- cells are also preferentially located in peripheral subnuclear domains enriched in trimethylated H3-Lys27, whereas active targets in wild-type cells are positioned in more central domains enriched in methylated H3-Lys4 and RNA polymerase II. We demonstrate that this differential positioning involves the decondensation of target chromatin, and show that it is spatially restricted rather than a reflection of non-specific changes in the nuclear organization of Hnf1a-deficient cells. This study, therefore, provides genetic evidence that a single transcriptional activator can influence the subnuclear location of its endogenous genomic targets in primary cells, and links activator-dependent changes in local chromatin structure to the spatial organization of the genome. We have also revealed a defect in subnuclear gene positioning in a model of a human transcription factor disease.

  2. Development of a Combination Therapy for Prostate Cancer by Targeting Stat3 and HIF-1alpha

    Science.gov (United States)

    2013-07-01

    inflammation-induced cancer, making it an attractive target (25-27). A3. Innovation 1. TEL03 is a novel anti-cancer agent from Chinese herbal medicine ...agents from Chinese herbal medicine (CHM) that targets HIF-1α /2α for prostate cancer therapy. Hypoxia orchestrated by HIF-1αis crucial for tumor...Stat3 for treatment of prostate and other cancers. TEL03, which is a novel anti-cancer agent derived from Chinese herbal medicine (CHM: Hypocrella

  3. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable in targeted alpha therapy?

    Science.gov (United States)

    Le Du, Alicia; Sabatié-Gogova, Andrea; Morgenstern, Alfred; Montavon, Gilles

    2012-04-01

    The interaction between thorium and human serum components was studied using difference ultraviolet spectroscopy (DUS), ultrafiltration and high-pressure-anion exchange chromatography (HPAEC) with external inductively conducted plasma mass spectrometry (ICP-MS) analysis. Experimental data are compared with modelling results based on the law of mass action. Human serum transferrin (HSTF) interacts strongly with Th(IV), forming a ternary complex including two synergistic carbonate anions. This complex governs Th(IV) speciation under blood serum conditions. Considering the generally used Langmuir-type model, values of 10(33.5) and 10(32.5) were obtained for strong and weak sites, respectively. We showed that trace amounts of diethylene triamine pentaacetic acid (DTPA) cannot complex Th(IV) in the blood serum at equilibrium. Unexpectedly this effect is not related to the competition with HSTF but is due to the strong competition with major divalent metal ions for DTPA. However, Th-DTPA complex was shown to be stable for a few hours when it is formed before addition in the biological medium; this is related to the high kinetic stability of the complex. This makes DTPA a potential chelating agent for synthesis of (226)Th-labelled biomolecules for application in targeted alpha therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Delirium after interleukin-2 and alpha-interferon therapy for renal cell carcinoma

    NARCIS (Netherlands)

    Van Steijn, JHM; Nieboer, P; Hospers, GAP; De Vries, EGE; Mulder, NH

    2001-01-01

    A 55-year-old man receiving alpha-interferon and interieukin-2 therapy for renal cell carcinoma presented with seizures and delirium. A CT-scan of the cerebrum did not reveal any disorder. Both alpha-interferon and interleukin-2 were stopped Treatment with steroids led to complete regression of

  5. Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Kruijtzer, J.A.; Liu, S.; Soede, A.C.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.; Boerman, O.C.

    2007-01-01

    PURPOSE: The integrin alpha(v)beta(3) is expressed on sprouting endothelial cells and on various tumour cell types. Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3) binding

  6. Recombinant enzyme therapy for Fabry disease: Absence of editing of human alpha-galactosidase A mRNA

    NARCIS (Netherlands)

    Blom, Daniël; Speijer, Dave; Linthorst, Gabor E.; Donker-Koopman, Wilma G.; Strijland, Anneke; Aerts, Johannes M. F. G.

    2003-01-01

    For more than a decade, protein-replacement therapy has been employed successfully for the treatment of Gaucher disease. Recently, a comparable therapy has become available for the related lipid-storage disorder Fabry disease. Two differently produced recombinant alpha-galactosidase A (alpha-gal A)

  7. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ( 211 At) and natural bismuth-212 ( 212 Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ( 223 Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  8. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  9. Chemotherapy and molecular target therapy combined with radiation therapy

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo

    2012-01-01

    Combined chemotherapy and radiation therapy has been established as standard treatment approach for locally advanced head and neck cancer, esophageal cancer and so on through randomized clinical trials. However, radiation-related morbidity such as acute toxicity also increased as treatment intensity has increased. In underlining mechanism for enhancement of normal tissue reaction in chemo-radiation therapy, chemotherapy enhanced radiosensitivity of normal tissues in addition to cancer cells. Molecular target-based drugs combined with radiation therapy have been expected as promising approach that makes it possible to achieve cancer-specific enhancement of radiosensitivity, and clinical trials using combined modalities have been performed to evaluate the feasibility and efficacy of this approach. In order to obtain maximum radiotherapeutic gain, a detailed understanding of the mechanism underlying the interaction between radiation and Molecular target-based drugs is indispensable. Among molecular target-based drugs, inhibitors targeting epidermal growth factor receptor (EGFR) and its signal transduction pathways have been vigorously investigated, and mechanisms regarding the radiosensitizing effect have been getting clear. In addition, the results of randomized clinical trials demonstrated that radiation therapy combined with cetuximab resulted in improvement of overall and disease-specific survival rate compared with radiation therapy in locally advanced head and neck cancer. In this review, clinical usefulness of chemo-radiation therapy and potential molecular targets for potentiation of radiation-induced cell killing are summarized. (author)

  10. Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Dirksen, A; Piitulainen, E; Parr, D G

    2009-01-01

    for the assessment of the therapeutic effect of augmentation therapy in subjects with alpha(1)-antitrypsin (alpha(1)-AT) deficiency. In total, 77 subjects (protease inhibitor type Z) were randomised to weekly infusions of 60 mg x kg(-1) human alpha(1)-AT (Prolastin) or placebo for 2-2.5 yrs. The primary end...... was unaltered by treatment, but a reduction in exacerbation severity was observed. In patients with alpha(1)-AT deficiency, CT is a more sensitive outcome measure of emphysema-modifying therapy than physiology and health status, and demonstrates a trend of treatment benefit from alpha(1)-AT augmentation....

  11. Target characterization by PIXE, alpha spectrometry and X-ray absorption

    International Nuclear Information System (INIS)

    Kheswa, N.Y.; Papka, P.; Pineda-Vargas, C.A.; Newman, R.T.

    2011-01-01

    We report on the thickness and homogeneity characterization of thin metallic targets of Zr-96 by means of alpha absorption spectrometry, Particle Induced X-ray Emission (PIXE) and X-ray absorption. The target thicknesses determined by means of the above mentioned methods are critically compared. The thicknesses were determined before and after irradiation with a 70 MeV beam of 14 N ions.

  12. Slower resting alpha frequency is associated with superior localisation of moving targets.

    Science.gov (United States)

    Howard, Christina J; Arnold, Craig P A; Belmonte, Matthew K

    2017-10-01

    We examined the neurophysiological underpinnings of individual differences in the ability to maintain up-to-date representations of the positions of moving objects. In two experiments similar to the multiple object tracking (MOT) task, we asked observers to monitor continuously one or several targets as they moved unpredictably for a semi-random period. After all objects disappeared, observers were immediately prompted to report the perceived final position of one queried target. Precision of these position reports declined with attentional load, and reports tended to best resemble positions occupied by the queried target between 0 and 30ms in the past. Measurement of event-related potentials showed a contralateral delay activity over occipital scalp, maximal in the right hemisphere. The peak power-spectral frequency of observers' eyes-closed resting occipital alpha oscillations reliably predicted performance, such that lower-frequency alpha was associated with superior spatial localisation. Slower resting alpha might be associated with a cognitive style that depends less on memory-related processing and instead emphasises attention to changing stimuli. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  13. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy

    International Nuclear Information System (INIS)

    Safa, Ahmad R.; Pollok, Karen E.

    2011-01-01

    Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP L ), short (c-FLIP S ), and c-FLIP R splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP L and c-FLIP S are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP L in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP L and c-FLIP S splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function

  14. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

    Directory of Open Access Journals (Sweden)

    Edward Coulstock

    Full Text Available Interferon alpha (IFNα is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR. Our results show that the murine IFNα2 homolog (mIFNα2 fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.

  15. [Resistance to target-based therapy and its circumvention].

    Science.gov (United States)

    Nishio, Kazuto

    2004-07-01

    Intrinsic and acquired resistance to molecular target therapy critically limits the outcome of cancer treatments. Target levels including quantitative and gene alteration should be determinants for the resistance. Downstream of the target molecules, drug metabolism, and drug transport influences the tumor sensitivity to molecular target therapy. The mechanisms of resistance to antibody therapy have not been fully clarified. Correlative clinical studies using these biomarkers of resistance are extremely important for circumvention of clinical resistance to target based therapy.

  16. Low dose radiation and ALARA: the potential risks to patients and staff from alpha-therapy

    International Nuclear Information System (INIS)

    Priest, N.D.

    2014-01-01

    This year a new drug containing radium-223, an alpha-emitting radionuclide, was approved for use by the US Food and Drug Administration for the palliative treatment of advanced prostate cancer metastases. Other drugs containing short-lived alpha-emitters are on clinical trial in Europe. Commonly, these employ a radionuclide attached to an antibody that specifically targets tumor cells to produce a highly localized radio-therapeutic dose to the tumor. However, normal tissues within the body will also be irradiated, albeit sometimes at low dose, and the question arises as to whether this presents a significant additional risk to the patient. Similarly, medical staff that handle these radionuclides could receive intakes of the radionuclides. What is the risk to staff? To assess the risk resulting from small tissue alpha-doses the toxicological, both human and animal, database was re-examined. The results of 20 epidemiological and toxicological studies with alpha-emitting radionuclides were analysed. In all cases a polynomial function provided a better fit to the data than a linear, no thresholds function. Also, in 19 cases a threshold dose below which no cancer is seen was indicated. The position of this threshold varied according to cancer type, but was typically in the range 0.1 to 1.0Gy of tissue dose - with a mean of 0.5Gy. It is concluded that alpha-radiation induced tumorogenesis is a threshold response and that as long as tissue doses are kept below these thresholds no additional cancers would be seen in either patients receiving alpha-therapy or in staff exposed to 'spilt' radionuclide. The presence of thresholds questions the appropriateness of current ALARA practices that are mostly used to drive occupational alpha-radiation exposures to as close to zero as possible. (author)

  17. Low dose radiation and ALARA: the potential risks to patients and staff from alpha-therapy

    Energy Technology Data Exchange (ETDEWEB)

    Priest, N.D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This year a new drug containing radium-223, an alpha-emitting radionuclide, was approved for use by the US Food and Drug Administration for the palliative treatment of advanced prostate cancer metastases. Other drugs containing short-lived alpha-emitters are on clinical trial in Europe. Commonly, these employ a radionuclide attached to an antibody that specifically targets tumor cells to produce a highly localized radio-therapeutic dose to the tumor. However, normal tissues within the body will also be irradiated, albeit sometimes at low dose, and the question arises as to whether this presents a significant additional risk to the patient. Similarly, medical staff that handle these radionuclides could receive intakes of the radionuclides. What is the risk to staff? To assess the risk resulting from small tissue alpha-doses the toxicological, both human and animal, database was re-examined. The results of 20 epidemiological and toxicological studies with alpha-emitting radionuclides were analysed. In all cases a polynomial function provided a better fit to the data than a linear, no thresholds function. Also, in 19 cases a threshold dose below which no cancer is seen was indicated. The position of this threshold varied according to cancer type, but was typically in the range 0.1 to 1.0Gy of tissue dose - with a mean of 0.5Gy. It is concluded that alpha-radiation induced tumorogenesis is a threshold response and that as long as tissue doses are kept below these thresholds no additional cancers would be seen in either patients receiving alpha-therapy or in staff exposed to 'spilt' radionuclide. The presence of thresholds questions the appropriateness of current ALARA practices that are mostly used to drive occupational alpha-radiation exposures to as close to zero as possible. (author)

  18. Anti-vascular internal high LET targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J.

    2006-01-01

    Targeted alpha therapy (TAT) is an emerging therapeutic modality, thought to be best suited to cancers such as leukaemia and cancer micrometastases, but not solid tumours. However, several subjects in our phase 1 clinical trial of systemic TAT for melanoma experienced marked regression of subcutaneous and internal tumours. The MCSP receptor is expressed on both tumour capillary pericytes and melanoma cells, and is targeted by the 9.2.27 monoclonal antibody. When this is labelled with the alpha-emitting radioisotope Bi-213, the resulting alpha-immunoconjugate can extravasate through capillary fenestrations and selectively kill these cells, as well as the contiguous endothelial cells in the capillaries, causing capillary closure and subsequent tumour regression. These results suggest that tumours can be regressed by a process called tumour anti-vascular alpha therapy (TAVAT). By analogy, tumour regression in boron neutron capture therapy could be achieved by similar means, where in the alpha and Li-7 ions emitted by boron-10 neutron capture events in cancer cells contiguous to the endothelial cells could shut down tumour capillaries by a process of tumour anti-vascular neutron capture therapy (TAVNCT). (author)

  19. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  20. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  1. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  2. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    Science.gov (United States)

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  3. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  4. Selective targeted delivery of the TNF-alpha receptor p75 and uteroglobin to the vasculature of inflamed tissues: a preliminary report

    Directory of Open Access Journals (Sweden)

    Ventura Elisa

    2011-11-01

    Full Text Available Abstract Background Ligand-targeted approaches have proven successful in improving the therapeutic index of a number of drugs. We hypothesized that the specific targeting of TNF-alpha antagonists to inflamed tissues could increase drug efficacy and reduce side effects. Results Using uteroglobin (UG, a potent anti-inflammatory protein, as a scaffold, we prepared a bispecific tetravalent molecule consisting of the extracellular ligand-binding portion of the human TNF-alpha receptor P75 (TNFRII and the scFv L19. L19 binds to the ED-B containing fibronectin isoform (B-FN, which is expressed only during angiogenesis processes and during tissue remodeling. B-FN has also been demonstrated in the pannus in rheumatoid arthritis. L19-UG-TNFRII is a stable, soluble homodimeric protein that maintains the activities of both moieties: the immuno-reactivity of L19 and the capability of TNFRII to inhibit TNF-alpha. In vivo bio-distribution studies demonstrated that the molecule selectively accumulated on B-FN containing tissues, showing a very fast clearance from the blood but a very long residence time on B-FN containing tissues. Despite the very fast clearance from the blood, this fusion protein was able to significantly improve the severe symptomatology of arthritis in collagen antibody-induced arthritis (CAIA mouse model. Conclusions The recombinant protein described here, able to selectively deliver the TNF-alpha antagonist TNFRII to inflamed tissues, could yield important contributions for the therapy of degenerative inflammatory diseases.

  5. Gene therapy and radionuclides targeting therapy in mammary carcinoma

    International Nuclear Information System (INIS)

    Song Jinhua

    2003-01-01

    Breast carcinoma's gene therapy is a hotspot in study of the tumor's therapy in the recent years. Currently the major therapy methods that in the experimentative and primary clinical application phases include immunological gene therapy, multidrug resistance gene therapy, antisense oligonucleotide therapy and suicide gene therapy. The gene targeting brachytherapy, which is combined with gene therapy and radiotherapy has enhanced the killer effects of the suicide gene and nuclide in tumor cells. That has break a new path in tumor's gene therapy. The further study in this field will step up it's space to the clinical application

  6. Cure of human ovarian carcinoma solid xenografts by fractionated [211At] alpha-radioimmunotherapy

    DEFF Research Database (Denmark)

    Bäck, Tom A; Chouin, Nicolas; Lindegren, Sture

    2017-01-01

    The goal of this study was to investigate if targeted alpha therapy (TAT) could be used to successfully treat also macro tumors, in addition to its established role for treating micrometastatic and minimal disease. We used an intravenous (i.v.) fractionated regimen of alpha-radioimmunotherapy (α-...

  7. [Anti-TNF-alpha therapy in ulcerative colitis].

    Science.gov (United States)

    Lakatos, Péter László; Lakatos, László

    2008-05-18

    The most important factors that determine treatment strategy in ulcerative colitis (UC) are disease extent and severity. Orally-topically administered 5-aminosalicylates (5-ASA) remain the treatment of choice in mild-to-moderate UC. In contrast, the treatment of refractory (to steroids, azathioprine or 5-ASA) and fulminant cases is still demanding. New evidence supports a role for infliximab induction and/or maintenance therapy in these subgroup of patients leading to increased remission and decreased colectomy rates. The aim of this paper is to review the rationale for the use of TNF-alpha inhibitors in the treatment of UC.

  8. Preparation and evaluation of an astatine-211-labeled sigma receptor ligand for alpha radionuclide therapy

    International Nuclear Information System (INIS)

    Ogawa, Kazuma; Mizuno, Yoshiaki; Washiyama, Kohshin; Shiba, Kazuhiro; Takahashi, Naruto; Kozaka, Takashi; Watanabe, Shigeki; Shinohara, Atsushi; Odani, Akira

    2015-01-01

    Introduction: Sigma receptors are overexpressed in a variety of human tumors, making them potential targets for radionuclide receptor therapy. We have previously synthesized and evaluated 131 I-labeled (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[ 131 I]pIV], which has a high affinity for sigma receptors. Therefore, (+)-[ 131 I]pIV significantly inhibited tumor cell proliferation in tumor-bearing mice. In the present study, we report the synthesis and the in vitro and in vivo characterization of (+)-[ 211 At]pAtV, an 211 At-labeled sigma receptor ligand, that has potential use in alpha-radionuclide receptor therapy. Methods: The radiolabeled sigma receptor ligand (+)-[ 211 At]pAtV was prepared using a standard halogenation reaction generating a 91% radiochemical yield with 98% purity after HPLC purification. The partition coefficient of (+)-[ 211 At]pAtV was measured. Cellular uptake experiments and in vivo biodistribution experiments were performed using a mixed solution of (+)-[ 211 At]pAtV and (+)-[ 125 I]pIV; the human prostate cancer cell line DU-145, which expresses high levels of the sigma receptors, and DU-145 tumor-bearing mice. Results: The lipophilicity of (+)-[ 211 At]pAtV was similar to that of (+)-[ 125 I]pIV. DU-145 cellular uptake and the biodistribution patterns in DU-145 tumor-bearing mice at 1 h post-injection were also similar between (+)-[ 211 At]pAtV and (+)-[ 125 I]pIV. Namely, (+)-[ 211 At]pAtV demonstrated high uptake and retention in tumor via binding to sigma receptors. Conclusion: These results indicate that (+)-[ 211 At]pAtV could function as an new agent for alpha-radionuclide receptor therapy.

  9. Preparation and evaluation of an astatine-211-labeled sigma receptor ligand for alpha radionuclide therapy.

    Science.gov (United States)

    Ogawa, Kazuma; Mizuno, Yoshiaki; Washiyama, Kohshin; Shiba, Kazuhiro; Takahashi, Naruto; Kozaka, Takashi; Watanabe, Shigeki; Shinohara, Atsushi; Odani, Akira

    2015-11-01

    Sigma receptors are overexpressed in a variety of human tumors, making them potential targets for radionuclide receptor therapy. We have previously synthesized and evaluated (131)I-labeled (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[(131)I]pIV], which has a high affinity for sigma receptors. Therefore, (+)-[(131)I]pIV significantly inhibited tumor cell proliferation in tumor-bearing mice. In the present study, we report the synthesis and the in vitro and in vivo characterization of (+)-[(211)At]pAtV, an (211)At-labeled sigma receptor ligand, that has potential use in alpha-radionuclide receptor therapy. The radiolabeled sigma receptor ligand (+)-[(211)At]pAtV was prepared using a standard halogenation reaction generating a 91% radiochemical yield with 98% purity after HPLC purification. The partition coefficient of (+)-[(211)At]pAtV was measured. Cellular uptake experiments and in vivo biodistribution experiments were performed using a mixed solution of (+)-[(211)At]pAtV and (+)-[(125)I]pIV; the human prostate cancer cell line DU-145, which expresses high levels of the sigma receptors, and DU-145 tumor-bearing mice. The lipophilicity of (+)-[(211)At]pAtV was similar to that of (+)-[(125)I]pIV. DU-145 cellular uptake and the biodistribution patterns in DU-145 tumor-bearing mice at 1h post-injection were also similar between (+)-[(211)At]pAtV and (+)-[(125)I]pIV. Namely, (+)-[(211)At]pAtV demonstrated high uptake and retention in tumor via binding to sigma receptors. These results indicate that (+)-[(211)At]pAtV could function as an new agent for alpha-radionuclide receptor therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neutrophil superoxide-anion generating capacity in chronic smoking: effect of long-term alpha-tocopherol therapy

    NARCIS (Netherlands)

    Tits, van L.; Waart, de F.; Hak-Lemmers, H.L.M.; Graaf, de J.; Demacker, P.N.; Stalenhoef, A.F.

    2003-01-01

    We investigated whether long-term alpha-tocopherol therapy in chronic smoking affects superoxide generating capacity of neutrophils ex vivo. To this purpose, we randomly assigned 128 male chronic smokers (37 21 pack years of smoking) to treatment with placebo (n = 64) or alpha-tocopherol (400 IU

  11. Identification of the human ApoAV gene as a novel ROR{alpha} target gene

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Ulrika [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Nilsson, Tina [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); McPheat, Jane [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Stroemstedt, Per-Erik [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Bamberg, Krister [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Balendran, Clare [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Kang, Daiwu [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden)

    2005-04-29

    Retinoic acid receptor-related orphan receptor-{alpha} (ROR{alpha}) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that ROR{alpha} regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that ROR{alpha} also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of ROR{alpha} increased the endogenous expression of ApoAV in HepG2 cells and ROR{alpha} also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate ROR{alpha} transactivation, one of which overlaps with a previously identified binding site for PPAR{alpha}. Together, these results suggest a novel mechanism whereby ROR{alpha} modulates lipid metabolism and implies ROR{alpha} as a potential target for the treatment of dyslipidemia and atherosclerosis.

  12. Influences of target geometry on the microdosimetry of alpha particles in water

    International Nuclear Information System (INIS)

    Huston, T.E.

    1992-01-01

    Application of microdosimetric concepts to radiation exposure situations requires knowledge of the single-event density function, f 1 (z) , where z denotes specific energy imparted to target matter. Multiple-event density functions are calculated by taking convolutions of f 1 (z) with itself with the overall specific energy density function is then found by employing a compound Poisson process involving single and multiple-event spectra. The f l (z), depends strongly on the geometric details of a the source, target, and all intermediate matter. While most past applications of microdosimetry have been represented targets as spheres, may be better modeled as prolate or oblate spheroids. Using a ray-tracing technique coupled with a continuous-slowing-down approximation, methods are developed and presented for calculating single-event density functions for spheroidal targets irradiated by alpha-emitting point sources. Computational methods are incorporated into a fortran computer code entitled SEROID (single-event density functions for spheroids), which is listed in this paper. This was used to generate several single-event density functions, along with related means and standard deviations in specific energy, for spheroidal targets irradiated by alpha particles. Targets of varying shapes and orientations are examined. Results for non-spherical targets are compared to spherical targets of equal volume in order to assess influences which target geometry has on single-event quantities. From these comparisons it is found that both target shape and orientation are important in adequately characterizing the quantities examined in this study; over-simplifying the target geometry can lead to substantial error

  13. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  14. Does adjuvant systemic therapy with interferon-alpha for stage II-III melanoma prolong survival?

    NARCIS (Netherlands)

    Eggermont, Alexander M. M.; Punt, Cornelis J. A.

    2003-01-01

    The experience with interferon-alpha in malignant melanoma resembles, to some degree, the experience with various kinds of adjuvant immunotherapeutic agents where 25 years of phase III trials of adjuvant therapy in stage II-IIII melanoma have not defined a standard therapy. Most trials failed to

  15. Sci-Thur AM: YIS – 01: New technologies for astatine-211 targeted alpha therapy research

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Jason; Yang, Hua; Schaffer, Paul; Ruth, Thomas [University of Victoria, Victoria, BC (Canada); TRIUMF, Vancouver, BC (Canada)

    2016-08-15

    Purpose: The short-range, densely ionizing α-particles emitted by {sup 211}At (t{sub 1/2}=7.2h) are well suited for the treatment of diffuse microscopic disease, using cancer targeting biomolecules. {sup 211}At availability is limited by the rarity of α-cyclotrons required for standard production. Image-based dosimetry is also limited for {sup 211}At, which emits low intensity X-rays. Our goal was to leverage state-of-the-art infrastructure at TRIUMF to produce and evaluate two related isotopes, {sup 211}Rn (t{sub 1/2}=14.6h, 73% decay to {sup 211}At) as a generator for {sup 211}At, and {sup 209}At (t{sub 1/2}=5.4h, X-ray/gamma-ray emitter) as a novel 211At surrogate for preclinical imaging studies. Methods: Produced by spallation of uranium with 480 MeV protons, mass separated ion beams of short-lived francium isotopes were implanted into NaCl targets where {sup 211}Rn or {sup 209}At were produced by radioactive decay, in situ. {sup 211}Rn was transferred to dodecane from which {sup 211}At was efficiently extracted and evaluated for clinical applicability. High energy SPECT/CT was evaluated for measuring {sup 209}At activity distributions in mice and phantoms. Results: Our small scale {sup 211}Rn/{sup 211}At generator system provided high purity {sup 211}At samples. The methods are immediately scalable to the level of radioactivity required for in vivo experiments with {sup 211}At. {sup 209}At-based high energy SPECT imaging was determined suitable for pursuing image-based dosimetry in mouse tumour models. In the future, we will utilize quantitative {sup 209}At-SPECT for image-based dose calculations. Conclusion: These early studies provided a foundation for future endeavours with {sup 211}At-based α-therapy. Canada is now significantly closer to clinical targeted α-therapy of cancer.

  16. Targeting Interleukin-4 Receptor Alpha by Hybrid Peptide for Novel Biliary Tract Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Kahori Seto

    2014-01-01

    Full Text Available It is known that the interleukin-4 receptor α (IL-4Rα is highly expressed on the surface of various human solid tumors. We previously designed novel IL-4Rα-lytic hybrid peptide composed of binding peptide to IL-4Rα and cell-lytic peptide and reported that the designed IL-4Rα-lytic hybrid peptide exhibited cytotoxic and antitumor activity both in vitro and in vivo against the human pancreatic cancer cells expressing IL-4Rα. Here, we evaluated the antitumor activity of the IL-4Rα-lytic hybrid peptide as a novel molecular targeted therapy for human biliary tract cancer (BTC. The IL-4Rα-lytic hybrid peptide showed cytotoxic activity in six BTC cell lines with a concentration that killed 50% of all cells (IC50 as low as 5 μM. We also showed that IL-4Rα-lytic hybrid peptide in combination with gemcitabine exhibited synergistic cytotoxic activity in vitro. In addition, intravenous administration of IL-4Rα-lytic hybrid peptide significantly inhibited tumor growth in a xenograft model of human BTC in vivo. Taken together, these results indicated that the IL-4Rα-lytic hybrid peptide is a potent agent that might provide a novel therapy for patients with BTC.

  17. Melanoma Therapy with Rhenium-Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Thomas P Quinn

    2005-11-22

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patients with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with {sup 188}Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, {sup 188}Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The {sup 177}Lu

  18. Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra.

    Directory of Open Access Journals (Sweden)

    Alison L McCormack

    Full Text Available The protein alpha-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal alpha-synuclein burden. Here, feasibility and safety of alpha-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA directed against alpha-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of alpha-synuclein mRNA and protein in the infused (left vs. untreated (right hemisphere and revealed a significant 40-50% suppression of alpha-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in alpha-synuclein. Infusion with alpha-synuclein siRNA, while lowering alpha-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i the number and phenotype of nigral dopaminergic neurons, and (ii the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-alpha-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics.

  19. Heart failure—potential new targets for therapy

    Science.gov (United States)

    Nabeebaccus, Adam; Zheng, Sean; Shah, Ajay M.

    2016-01-01

    Abstract Introduction/background Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. Sources of data A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. Areas of agreement Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. Areas of controversy Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. Growing points Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. Areas timely for developing research Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies. PMID:27365454

  20. Metallothionein bioconjugates as delivery vehicles for bismuth-212 alpha particle therapy

    International Nuclear Information System (INIS)

    Macklis, R.M.; Morris, C.; Humm, J.; Hines, J.; Atcher, R.

    1991-01-01

    Metallothioneins (MTHs) are small cysteine-rich polypeptides that binds cationic metals at physiologic pH ranges through noncovalent -SH ligand interactions. Some leucine-rich renal MTHs have a particular avidity for bismuth. The authors have examined the ability of MTHs to selectively incorporate Bi-212, a short-lived high-energy alpha particle emitter currently under exploration as a potential therapeutic radiolabel for use in molecularly targeted cancer therapy. They find that under physiologic conditions, MTH will selectively incorporate Bi-212 after incubation with an equilibrium mixture of its upstream and downstream parents. The MTH moieties may be linked to tumor-binding macromolecules such as antibodies via thiolation reactions using SPDP, and the resultant Bismuth-avid molecules may be used either as primary delivery vehicles for the Bi-212 or as part of a 2-step release-and-catch isotope localization system in which the MTH-antibody conjugate is pre-localized at the tumor site and the radiometal is then administered and chelated in situ. They present the chemistry, dosimetry and potential clinical applications of this system

  1. Targeted Therapies in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Jurjees Hasan

    2010-02-01

    Full Text Available Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the advantage of long-term therapy with a manageable toxicity profile enabling patients to enjoy a good quality of life. In this review we appraise the emerging data on novel targeted therapies in ovarian cancer. We discuss the role of these compounds in the front-line treatment of ovarian cancer and in relapsed disease; and describe how the development of predictive clinical, molecular and imaging biomarkers will define the role of biological agents in the treatment of ovarian cancer.

  2. Targeted Therapies in Epithelial Ovarian Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Emma; El-Helw, Loaie; Hasan, Jurjees, E-mail: jurjees.hasan@christie.nhs.uk [Christie Hospital NHS Foundation Trust / Wilmslow Road, Manchester, M20 4BX (United Kingdom)

    2010-02-23

    Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the advantage of long-term therapy with a manageable toxicity profile enabling patients to enjoy a good quality of life. In this review we appraise the emerging data on novel targeted therapies in ovarian cancer. We discuss the role of these compounds in the front-line treatment of ovarian cancer and in relapsed disease; and describe how the development of predictive clinical, molecular and imaging biomarkers will define the role of biological agents in the treatment of ovarian cancer.

  3. Alpha radioisotopes Ac-225 and Bi-213: a production and labelling of antibodies and peptides for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: In various preclinical and clinical works the potential of the alpha emitters {sup 225}Ac and {sup 213}Bi as therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases was demonstrated. Both alpha emitters are available with high specific activity from established radionuclide generators. Their favorable chemical and physical properties have led to the conduction of a large number of preclinical studies and several clinical trials, demonstrating the feasibility, safety and therapeutic efficacy of targeted alpha therapy with {sup 225}Ac and {sup 213}Bi. This presentation will give an overview about the methods for the production of {sup 225}Ac and {sup 213}Bi, the {sup 225}Ac/{sup 213}Bi radionuclide generator systems, labelling of peptides and antibodies with {sup 225}Ac and {sup 213}Bi and relevant in vivo and in vitro works. (author)

  4. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy

    Directory of Open Access Journals (Sweden)

    Li Kuiyuan

    2009-04-01

    Full Text Available Abstract Individualized therapies that are tailored to a patient's genetic composition will be of tremendous value for treatment of cancer. Recently, Kirsten ras (KRAS status has emerged as a predictor of response to epidermal growth factor receptor (EGFR targeted therapies. In this article, we will discuss targeted therapies for colorectal cancers (CRC based on EGFR signaling pathway and review published data about the potential usefulness of KRAS as a biological marker for response to these therapies. Results from relevant studies published since 2005 and unpublished results presented at national meetings were retrieved and summarized. These studies reflected response (or lack of response to EGFR-targeted therapies in patients with metastatic CRC as a function of KRAS status. It has become clear that patients with colorectal cancer whose tumor has an activating mutation in KRAS do not respond to monoclonal antibody therapies targeting EGFR. It should now become a standard practice that any patients being considered for EGFR targeted therapies have their tumors tested for KRAS status and only those with wild-type KRAS being offered such therapies.

  5. Influence of tumour size on the efficacy of targeted alpha therapy with (213)Bi-[DOTA(0),Tyr(3)]-octreotate.

    Science.gov (United States)

    Chan, Ho Sze; Konijnenberg, Mark W; de Blois, Erik; Koelewijn, Stuart; Baum, Richard P; Morgenstern, Alfred; Bruchertseifer, Frank; Breeman, Wouter A; de Jong, Marion

    2016-12-01

    Targeted alpha therapy has been postulated to have great potential for the treatment of small clusters of tumour cells as well as small metastases. (213)Bismuth, an α-emitter with a half-life of 46 min, has shown to be effective in preclinical as well as in clinical applications. In this study, we evaluated whether (213)Bi-[DOTA(0), Tyr(3)]-octreotate ((213)Bi-DOTATATE), a (213)Bi-labelled somatostatin analogue with high affinity for somatostatin receptor subtype 2 (SSTR2), is suitable for the treatment of larger neuroendocrine tumours overexpressing SSTR2 in comparison to its effectiveness for smaller tumours. We performed a preclinical targeted radionuclide therapy study with (213)Bi-DOTATATE in animals bearing tumours of different sizes (50 and 200 mm(3)) using two tumour models: H69 (human small cell lung carcinoma) and CA20948 (rat pancreatic tumour). Pharmacokinetics was determined for calculation of dosimetry in organs and tumours. H69- or CA20948-xenografted mice with tumour volumes of approximately 120 mm(3) were euthanized at 10, 30, 60 and 120 min post injection of a single dose of (213)Bi-DOTATATE (1.5-4.8 MBq). To investigate the therapeutic efficacy of (213)Bi-DOTATATE, xenografted H69 and CA20948 tumour-bearing mice with tumour sizes of 50 and 200 mm(3) were administered daily with a therapeutic dose of (213)Bi-DOTATATE (0.3 nmol, 2-4 MBq) for three consecutive days. The animals were followed for 90 days after treatment. At day 90, mice were injected with 25 MBq (99m)Tc-DMSA and imaged by SPECT/CT to investigate possible renal dysfunction due to (213)Bi-DOTATATE treatment. Higher tumour uptakes were found in CA20948 tumour-bearing animals compared to those in H69 tumour-bearing mice with the highest tumour uptake of 19.6 ± 6.6 %IA/g in CA20948 tumour-bearing animals, while for H69 tumour-bearing mice, the highest tumour uptake was found to be 9.8 ± 2.4 %IA/g. Nevertheless, as the anti-tumour effect was more pronounced in H69

  6. Targeted therapies in development for non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Thanyanan Reungwetwattana

    2013-01-01

    Full Text Available The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by "druggable" protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC, the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2], RAS (rat sarcoma gene, BRAF (v-raf murine sarcoma viral oncogene homolog B1, MAPK (mitogen-activated protein kinase c-MET (c-mesenchymal-epithelial transition, FGFR (fibroblast growth factor receptor, DDR2 (discoidin domain receptor 2, PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha, PTEN (phosphatase and tensin homolog, AKT (protein kinase B, ALK (anaplastic lym phoma kinase, RET (rearranged during transfection, ROS1 (reactive oxygen species 1 and EPH (erythropoietin-producing hepatoma are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and

  7. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  8. Research progess on treatment of cancer with targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Luo Jiawen; Zhang Caixia

    2008-01-01

    The new development and situation of targeted radionuclide therapy in oncology is described, which include radioimmunotherapy, peptide receptor radionuclide therapy, gene therapy and radionuclide labled chemotherapeutics therapy. The application research on labled carrier of those therapy is emphasized. Meanwhile, the research progess of indomethacin and its combined with targeted radionuclide therapy is also described. (authors)

  9. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly...

  10. Metastatic gastric cancer – focus on targeted therapies

    Directory of Open Access Journals (Sweden)

    Meza-Junco J

    2012-06-01

    Full Text Available Judith Meza-Junco, Michael B SawyerDepartment of Oncology, Cross Cancer Institute, Edmonton, Alberta, CanadaAbstract: Gastric cancer (GC is currently the second leading cause of cancer death worldwide; unfortunately, most patients will present with locally advanced or metastatic disease. Despite recent progress in diagnosis, surgery, chemotherapy, and radiotherapy, prognosis remains poor. A better understanding of GC biology and signaling pathways is expected to improve GC therapy, and the integration of targeted therapies has recently become possible and appears to be promising. This article focuses on anti-Her-2 therapy, specifically trastuzumab, as well as other epidermal growth factor receptor antagonists such as cetuximab, panitumub, matuzumab, nimotzumab, gefitinib, and erlotinib. Additionally, drugs that target angiogenesis pathways are also under investigation, particulary bevacizumab, ramucirumab, sorafenib, sunitinib, and cediranib. Other targeted agents in preclinical or early clinical development include mTOR inhibitors, anti c-MET, polo-like kinase 1 inhibitors, anti-insulin-like growth factor, anti-heat shock proteins, and small molecules targeting Hedgehog signaling.Keywords: gastric cancer, targeted therapy, antiangiogenesis drugs, anti-EGFR drugs

  11. In vitro cytotoxicity of alpha conjugates for human pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Qu, C.; Li, Y.; Rizvi, M.A.; Allen, B.; Samra, J.; Smith, R.

    2003-01-01

    Targeted Alpha therapy (TAT) can inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The aim of this study is to demonstrate the cytotoxicity of different alpha conjugates in vitro to human metastatic pancreatic cancer cell lines (CAPAN-1, CFPAN-1 and PANC-1). We are labeling the C595 and J591 (non-specific controls) monoclonal antibodies (Mabs) with 213 Bi were performed according to the standard methods in our laboratory. 213 Bi-C595 is specifically cytotoxic to CAPAN-1, CFPAN-1 and PANC-1cell lines in a concentration-dependent fashion. While non-specific alpha conjugates only killed very small fractions of pancreatic cancer cells. These alpha conjugates might be useful agents for the treatment of micro-metastases in pancreatic cancer patients with over-expression of the targeted receptors

  12. Reduction in high blood tumor necrosis factor-alpha levels after manipulative therapy in 2 cervicogenic headache patients.

    Science.gov (United States)

    Ormos, Gábor; Mehrishi, J N; Bakács, Tibor

    2009-09-01

    This case report discusses the treatment of 2 patients with cervicogenic headache (CHA) attending the Outpatient Clinic of the Hungarian National Institute for Rheumatology and Physiotherapy (Budapest, Hungary) and reviews the pathophysiology, therapeutic strategy, and problems associated with the treatment of CHA. Patient 1 was a 27-year-old female who sustained a whiplash injury. A sharp, shooting headache developed, readily induced, and aggravated by just bending the neck backward or by turning her head. Magnetic resonance imaging revealed a disk protrusion at C4-C5 pressing the anterior cerebrospinal space. Patient 2 was a 62-year-old female who sustained a whiplash injury; her cervical movements became restricted, which precipitated headaches. Magnetic resonance imaging revealed a paramedian disk hernia between the C4 and C5 vertebrae that intruded into the right ventral cerebrospinal space. After 4 weeks of manipulative therapy for patient 1, both active and passive range of motion returned to normal, and the high tumor necrosis factor-alpha (TNF-alpha) level (63 pg/mL) was substantially reduced (28 pg/mL). Patient 2 was started on manipulative therapy twice a week for 4 weeks; after 2 months, the patient became symptom-free, and high TNF-alpha level (72 pg/mL) was reduced greatly (35 pg/mL). Two patients with whiplash injury and disk herniation developed CHA associated with very high TNF-alpha levels. After manipulative therapy, these patients became symptom-free, and their TNF-alpha levels decreased substantially.

  13. Targeted Therapies for Lung Cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    Targeted therapies have become standard therapies for patients with non-small cell lung cancer (NSCLC). A phase III trial of carboplatin and paclitaxel with and without bevacizumab in patients with advanced NSCLC with non-squamous histology demonstrated a statistically significant improvement in efficacy. In patients with NSCLC with an activating epidermal growth factor receptor (EGFR) mutation (defined as exon 19 deletion and exon 21 L858R point mutation), phase III trials of EGFR tyrosine kinase inhibitors (TKI) compared to platinum-based chemotherapy have demonstrated superior efficacy in the first-line setting. In patients with NSCLC with anaplastic lymphoma kinase (ALK) rearrangements, phase III trials of crizotinib have demonstrated superior efficacy compared to platinum-pemetrexed in the first-line setting and standard chemotherapy in the second-line setting. A second-generation ALK inhibitor, ceritinib, is available for patients who have progressed after or were intolerant of crizotinib. Crizotinib has also demonstrated activity on patients with ROS1 rearrangements, and BRAF inhibitors (dabrafenib, vemurafenib) have demonstrated activity in patients with NSCLC with BRAF V600E mutation. The oncogenic mutations that are susceptible to targeted therapy are mainly found in non-squamous NSCLC. The development of targeted therapy in patients with squamous NSCLC has been more challenging due to the genomic complexity observed in the squamous histology and the low prevalence of EGFR, ALK, and ROS1 molecular alterations. A phase III trial of cisplatin and gemcitabine with and without necitumumab in patients with advanced NSCLC with squamous histology demonstrated a statistically significant improvement in progression-free and overall survival.

  14. Auger radiation targeted into DNA: a therapy perspective

    International Nuclear Information System (INIS)

    Buchegger, Franz; Perillo-Adamer, Florence; Bischof Delaloye, Angelika; Dupertuis, Yves M.

    2006-01-01

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of α particles. In contrast to α radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided α and β radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  15. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates.

    Science.gov (United States)

    Teze, David; Sergentu, Dumitru-Claudiu; Kalichuk, Valentina; Barbet, Jacques; Deniaud, David; Galland, Nicolas; Maurice, Rémi; Montavon, Gilles

    2017-05-31

    211 At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C-At "organometalloid" bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 10 6 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the "internal" deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.

  16. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hongguang Sun

    2014-01-01

    Full Text Available Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.

  17. Targeted Therapy in Nonmelanoma Skin Cancers

    International Nuclear Information System (INIS)

    Spallone, Giulia; Botti, Elisabetta; Costanzo, Antonio

    2011-01-01

    Nonmelanoma skin cancer (NMSC) is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC), representing around 75% of NMSC and Squamous Cell Carcinomas (SCC). The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC

  18. Targeted Therapy in Nonmelanoma Skin Cancers

    Directory of Open Access Journals (Sweden)

    Giulia Spallone

    2011-05-01

    Full Text Available Nonmelanoma skin cancer (NMSC is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC, representing around 75% of NMSC and Squamous Cell Carcinomas (SCC. The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC.

  19. Combined adjuvant radiation and interferon-alpha 2B therapy in high-risk melanoma patients: the potential for increased radiation toxicity

    International Nuclear Information System (INIS)

    Hazard, Lisa J.; Sause, William T.; Noyes, R. Dirk

    2002-01-01

    Purpose: Surgically resected melanoma patients with high-risk features commonly receive adjuvant therapy with interferon-alpha 2b combined with radiation therapy; the purpose of our study was to evaluate the potential enhancement of radiation toxicity by interferon. Methods and Materials: Patients at LDS Hospital and the University of Utah Medical Center in Salt Lake City treated with interferon during radiotherapy or within 1 month of its completion were retrospectively identified, and their charts were reviewed. If possible, the patients were asked to return to the LDS Hospital radiation therapy department for follow-up. Results: Five of 10 patients receiving interferon-alpha 2b therapy during radiation therapy or within 1 month of its completion experienced severe subacute/late complications of therapy. Severe subacute/late complications included two patients with peripheral neuropathy, one patient with radiation necrosis in the brain, and two patients with radiation necrosis in the s.c. tissue. One patient with peripheral neuropathy and one patient with radiation necrosis also developed lymphedema. Conclusions: In vitro studies have identified a radiosensitizing effect by interferon-alpha on certain cell lines, which suggests the possibility that patients treated with interferon and radiation therapy may experience more severe radiation toxicities. We have observed severe subacute/late complications in five of 10 patients treated with interferon-alpha 2b during radiation therapy or within 1 month of its completion. Although an observational study of 10 patients lacks the statistic power to reach conclusions regarding the safety and complication rates of combined interferon and radiation therapy, it is sufficient to raise concerns and suggest the need for prospective studies

  20. Targeted therapy in the treatment of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Rimas V Lukas

    2009-05-01

    Full Text Available Rimas V Lukas1, Adrienne Boire2, M Kelly Nicholas1,2 1Department of Neurology; 2Department of Medicine, University of Chicago, Chicago, IL, USAAbstract: Malignant gliomas are invasive tumors with the potential to progress through current available therapies. These tumors are characterized by a number of abnormalities in molecular signaling that play roles in tumorigenesis, spread, and survival. These pathways are being actively investigated in both the pre-clinical and clinical settings as potential targets in the treatment of malignant gliomas. We will review many of the therapies that target the cancer cell, including the epidermal growth factor receptor, mammalian target of rapamycin, histone deacetylase, and farnesyl transferase. In addition, we will discuss strategies that target the extracellular matrix in which these cells reside as well as angiogenesis, a process emerging as central to tumor development and growth. Finally, we will briefly touch on the role of neural stem cells as both potential targets as well as delivery vectors for other therapies. Interdependence between these varied pathways, both in maintaining health and in causing disease, is clear. Thus, attempts to easily classify some targeted therapies are problematic.Keywords: glioma, EGFR, mTOR, HDAC, Ras, angiogenesis

  1. Monte Carlo Simulations of Necrotic Cell Targeted Alpha Therapy

    International Nuclear Information System (INIS)

    Penfold, S.N.; Brown, M.P.; Bezak, E.

    2011-01-01

    Full text: Hypoxic tumour cells are radioresistant and are significant contributors to the locoregional recurrences and distant metastases that mark treatment failure. Due to restricted circulatory supply, hypoxic tumor cells frequently become necrotic and thus necrotic areas often lie near hypoxic tumour areas. In this study we investigate the feasibility of binding an alpha-emitting conjugate to necrotic cells located in the proximity of hypoxic, viable tumour cells. Monte Carlo radiation transport simulations were performed to investigate the dose distribution resulting from the thorium 227 (Th227) decay chain in a representative tumour geometry. The Geant4 software toolkit was used to simulate the decay and interactions of the Th227 decay chain. The distribution of Th227 was based on a study by Thomlinson and Gray of human lung cancer histological samples (Thomlinson RH, Gray LH. Br J Cancer 1955; 9:539). The normalized dose distribution obtained with Geant4 from a cylindrical Th227 source in water is illustrated in Fig. I. The relative contribution of the different decay channels is displayed, together with a profile through the centre of the accumulated dose map. The results support the hypothesis that significant α-particle doses will be deposited in the hypoxic tumor tissue immediately surrounding the necrotic core (where the majority of Th227 will be located). As an internal a-particle generator, the Th227-radioimmunoconjugate shows potential as an efficient hypoxic tumour sterilizer.

  2. Novel Targeted Therapies for Inflammatory Breast Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0461 TITLE: Novel Targeted Therapies for Inflammatory Breast Cancer PRINCIPAL INVESTIGATOR: Jose Silva CONTRACTING...CONTRACT NUMBER Novel Targeted Therapies for Inflammatory Breast Cancer 5b. GRANT NUMBER W81XWH-16-1-0461 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) l 5d...NOTES 14. ABSTRACT Inflammatory breast cancer (IBC, ~5% of all breast cancers ) is the most lethal form of breast cancer , presenting a 5- year

  3. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Prossnitz, Eric R; Sklar, Larry A; Miao, Yubin

    2009-11-01

    The purpose of this study was to examine the effect of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) position on melanoma targeting and pharmacokinetics of radiolabeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A novel lactam bridge-cyclized alpha-MSH peptide, Ac-GluGlu-CycMSH[DOTA] {Ac-Glu-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Lys(DOTA)]}, was synthesized using standard 9-fluorenylmethyloxycarbonyl (Fmoc) chemistry. DOTA was directly attached to the alpha-amino group of Lys in the cyclic ring, while the N-terminus of the peptide was acetylated to generate Ac-GluGlu-CycMSH[DOTA]. The MC1 receptor binding affinity of Ac-GluGlu-CycMSH[DOTA] was determined in B16/F1 melanoma cells. Melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In were determined in B16/F1 melanoma-bearing C57 mice and compared to that of 111In-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp] (111In-DOTA-GlyGlu-CycMSH; DOTA was coupled to the N-terminus of the peptide). Ac-GluGlu-CycMSH[DOTA] displayed 0.6 nM MC1 receptor binding affinity in B16/F1 cells. Ac-GluGlu-CycMSH[DOTA]-111In was readily prepared with greater than 95% radiolabeling yield. Ac-GluGlu-CycMSH[DOTA]-111In exhibited high tumor uptake (11.42 +/- 2.20% ID/g 2 h postinjection) and prolonged tumor retention (9.42 +/- 2.41% ID/g 4 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<1.3% ID/g) except for the kidneys 2, 4, and 24 h postinjection. DOTA position exhibited profound effect on melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In, providing a new insight into the design of lactam bridge-cyclized peptide for melanoma imaging and therapy.

  4. Neoadjuvant targeted therapy in patients with renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2015-01-01

    Full Text Available Cytoreductive nephrectomy as an independent option in patients with metastatic renal cell carcinoma (mRCC cannot be considered as the only effective method, with rare exception, of a few patients with solitary metastases. Cytoreductive nephrectomy is now part of a multimodal approach encompassing surgical treatment and systemic drug therapy. Many retrospective and two prospective studies have demonstrated that it is expedient to perform cytoreductive nephrectomy. Immunotherapy should not be used as preoperatively in the era of cytokine therapy for mRCC due to that fact that it has no impact on primary tumor. In the current targeted therapy era, many investigators have concentrated attentionon the role of neoadjuvant targeted therapy for the treatment of patients with both localized and locally advanced mRCC. The potential benefits of neoadjuvant therapy for localized and locally advanced RCC include to make surgery easier and to increase the possibility of organsparing treatment, by decreasing the stage of primary tumor and the size of tumors. The possible potential advantages of neoadjuvant targeted therapy in patients with mRCC include prompt initiation of necessary systemic therapy; identification of patients with primary refractory tumors; and a preoperative reduction in the stage of primary tumor. Numerous retrospective and some prospective phase II studies have shown that neoadjuvant targeted therapy in patients with localized and locally advanced RCC is possible and tolerable and surgical treatment after neoadjuvant targeted therapy is safe and executable with a low incidence of complications. If neoadjuvant therapy is to be performed, it should be done within 2–4 months before surgery. Sorafenib and sunitinib are now most tested and suitable for neoadjuvant targeted therapy. Sorafenib is a more preferred drug due to its shorter half-life and accordingly to the possibility of discontinuing the drug immediately prior to

  5. Traditionally used plants in diabetes therapy: phytotherapeutics as inhibitors of alpha-amylase activity

    Directory of Open Access Journals (Sweden)

    Ingrid Funke

    Full Text Available Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycaemia. There are many and diverse therapeutic strategies in the management of Type 2 diabetes. The inhibition of alpha-amylase activity is only one possibility to lower postprandial blood glucose levels. In our in-vitro studies we could demonstrate that different plants, mostly traditionally used in common diabetic therapy in Africa or Europe, are able to inhibit alpha-amylase, which is responsible for the breakdown of oligosaccharides into monosaccharides which are absorbed. An inhibition of alpha-amylase activity of 90% was seen with the extract of the leaves of Tamarindus indica. To quantify inhibtion rates, acarbose was used (IC50: 23.2 µM. Highest inhibition level of acarbose in our testmodel was about 85%. Additionally tests with pure polyphenolic compounds might explain the biological activity of the selected plants.

  6. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis

    NARCIS (Netherlands)

    Haringman, Jasper J.; Oostendorp, Roos L.; Tak, Paul P.

    2005-01-01

    The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as

  7. Melanome Therapy with Rhenium Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs. Final report

    International Nuclear Information System (INIS)

    Quinn, Thomas P.

    2005-01-01

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patients with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with 188 Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, 188 Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The 177 Lu-DOTA-Re(Arg11)CCMSH and

  8. Gene targeted therapeutics for liver disease in alpha-1 antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Caitriona McLean

    2009-01-01

    Full Text Available Caitriona McLean*, Catherine M Greene*, Noel G McElvaneyRespiratory Research Division, Dept. Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; *Each of these authors contributed equally to this workAbstract: Alpha-1 antitrypsin (A1AT is a 52 kDa serine protease inhibitor that is synthesized in and secreted from the liver. Although it is present in all tissues in the body the present consensus is that its main role is to inhibit neutrophil elastase in the lung. A1AT deficiency occurs due to mutations of the A1AT gene that reduce serum A1AT levels to <35% of normal. The most clinically significant form of A1AT deficiency is caused by the Z mutation (Glu342Lys. ZA1AT polymerizes in the endoplasmic reticulum of liver cells and the resulting accumulation of the mutant protein can lead to liver disease, while the reduction in circulating A1AT can result in lung disease including early onset emphysema. There is currently no available treatment for the liver disease other than transplantation and therapies for the lung manifestations of the disease remain limited. Gene therapy is an evolving field which may be of use as a treatment for A1AT deficiency. As the liver disease associated with A1AT deficiency may represent a gain of function possible gene therapies for this condition include the use of ribozymes, peptide nucleic acids (PNAs and RNA interference (RNAi, which by decreasing the amount of aberrant protein in cells may impact on the pathogenesis of the condition.Keywords: alpha-1 antitrypsin deficiency, siRNA, peptide nucleic acid, ribozymes

  9. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Kang-Jian

    2012-02-01

    Full Text Available Abstract Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.

  10. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor alpha therapy

    NARCIS (Netherlands)

    Cui, Jing; Saevarsdottir, Saedis; Thomson, Brian; Padyukov, Leonid; van der Helm-van Mil, Annette H. M.; Nititham, Joanne; Hughes, Laura B.; de Vries, Niek; Raychaudhuri, Soumya; Alfredsson, Lars; Askling, Johan; Wedrén, Sara; Ding, Bo; Guiducci, Candace; Wolbink, Gert Jan; Crusius, J. Bart A.; van der Horst-Bruinsma, Irene E.; Herenius, Marieke; Weinblatt, Michael E.; Shadick, Nancy A.; Worthington, Jane; Batliwalla, Franak; Kern, Marlena; Morgan, Ann W.; Wilson, Anthony G.; Isaacs, John D.; Hyrich, Kimme; Seldin, Michael F.; Moreland, Larry W.; Behrens, Timothy W.; Allaart, Cornelia F.; Criswell, Lindsey A.; Huizinga, Tom W. J.; Tak, Paul P.; Bridges, S. Louis; Toes, Rene E. M.; Barton, Anne; Klareskog, Lars; Gregersen, Peter K.; Karlson, Elizabeth W.; Plenge, Robert M.

    2010-01-01

    OBJECTIVE: Anti-tumor necrosis factor alpha (anti-TNF) therapy is a mainstay of treatment in rheumatoid arthritis (RA). The aim of the present study was to test established RA genetic risk factors to determine whether the same alleles also influence the response to anti-TNF therapy. METHODS: A total

  11. Radiolabelled RGD peptides for imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, F.C.; Schwaiger, M.; Beer, A.J. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Kessler, H. [Technische Universitaet Muenchen, Institute for Advanced Study and Center of Integrated Protein Science, Department of Chemistry, Garching (Germany); King Abdulaziz University, Chemistry Department, Faculty of Science, Jeddah (Saudi Arabia); Wester, H.-J. [Institute for Pharmaceutical Radiochemistry, Garching (Germany)

    2012-02-15

    Imaging of angiogenesis has become increasingly important with the rising use of targeted antiangiogenic therapies like bevacizumab (Avastin). Non-invasive assessment of angiogenic activity is in this respect interesting, e.g. for response assessment of such targeted antiangiogenic therapies. One promising approach of angiogenesis imaging is imaging of specific molecular markers of the angiogenic cascade like the integrin {alpha}{sub v}{beta}{sub 3}. For molecular imaging of integrin expression, the use of radiolabelled peptides is still the only approach that has been successfully translated into the clinic. In this review we will summarize the current data on imaging of {alpha}{sub v}{beta}{sub 3} expression using radiolabelled RGD peptides with a focus on tracers already in clinical use. A perspective will be presented on the future clinical use of radiolabelled RGD peptides including an outlook on potential applications for radionuclide therapy. (orig.)

  12. A case of reversible dilated cardiomyopathy after alpha-interferon therapy in a patient with renal cell carcinoma.

    Science.gov (United States)

    Kuwata, Akiko; Ohashi, Masuo; Sugiyama, Masaya; Ueda, Ryuzo; Dohi, Yasuaki

    2002-12-01

    A 47-year-old man with renal cell carcinoma underwent nephrectomy, and postoperative chemotherapy was performed with recombinant alpha-interferon. Five years later, he experienced dyspnea during physical exertion. An echocardiogram revealed dilatation and systolic dysfunction of the left ventricle, and thallium-201 myocardial scintigraphy showed diffuse heterogeneous perfusion. We diagnosed congestive heart failure because of cardiomyopathy induced by alpha-interferon therapy. Withdrawal of interferon therapy and the combination of an angiotensin-converting enzyme inhibitor, diuretics, and digitalis improved left ventricular systolic function. Furthermore, myocardial scintigraphy using [123I] beta-methyl-p-iodophenylpentadecanoic acid (123I-BMIPP) or [123 I]metaiodobenzylguanidine (123I-MIBG) revealed normal perfusion after the improvement of congestive heart failure. This is a rare case of interferon-induced cardiomyopathy that resulted in normal myocardial images in 123I-BMIPP and 123I-MIBG scintigrams after withdrawal of interferon therapy.

  13. Target marketing strategies for occupational therapy entrepreneurs.

    Science.gov (United States)

    Kautzmann, L N; Kautzmann, F N; Navarro, F H

    1989-01-01

    Understanding marketing techniques is one of the skills needed by successful entre renews. Target marketing is an effective method for occupational therapy entrepreneurs to use in determining when and where to enter the marketplace. The two components of target marketing, market segmentation and the development of marketing mix strategies for each identified market segment, are described. The Profife of Attitudes Toward Health Care (PATH) method of psychographic market segmentation of health care consumers is presented. Occupational therapy marketing mix strategies for each PATH consumer group are delineated and compatible groupings of market segments are suggested.

  14. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    Science.gov (United States)

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Mutational analysis of target enzyme recognition of the beta-trefoil fold barley alpha-amylase/subtilisin inhibitor

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Nielsen, Per K.; Abou Hachem, Maher

    2005-01-01

    The barley alpha-amylase/subtilisin inhibitor ( BASI) inhibits alpha-amylase 2 (AMY2) with subnanomolar affinity. The contribution of selected side chains of BASI to this high affinity is discerned in this study, and binding to other targets is investigated. Seven BASI residues along the AMY2-BASI...... interface and four residues in the putative protease-binding loop on the opposite side of the inhibitor were mutated. A total of 15 variants were compared with the wild type by monitoring the alpha-amylase and protease inhibitory activities using Blue Starch and azoalbumin, respectively, and the kinetics...

  16. Targeted therapies for bone sarcomas

    International Nuclear Information System (INIS)

    Mudry, P.

    2011-01-01

    Therapy success in bone sarcoma is significantly better compared to history cohorts with 60 - 70 % overall survival to date. Unfortunately, there is yet no shift and movement in better survival of patients with relapsed and refractory bone sarcomas during last twenty years. This article reviews targeted therapeutics for bone sarcomas which are under investigation and which could give chance to patients suffering from relapsed and chemo resistant bone sarcomas. Majority of the targeted drugs are given as part of phase 1 or 2 studies. (author)

  17. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2017-11-01

    AWARD NUMBER: W81XWH-08-2-0174 TITLE: Targeted Radiation Therapy for Cancer Initiative PRINCIPAL INVESTIGATOR: Dusten Macdonald, MD...for Cancer Initiative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dusten Macdonald, MD 5d. PROJECT NUMBER...Cancer Initiative Final Report INTRODUCTION: The full potential of radiation therapy has not been realized due to the inability to locate and

  18. Acetyl-CoA carboxylase-a as a novel target for cancer therapy.

    Science.gov (United States)

    Wang, Chun; Rajput, Sandeep; Watabe, Kounosuke; Liao, Duan-Fang; Cao, Deliang

    2010-01-01

    Acetyl-CoA carboxylases (ACC) are rate-limiting enzymes in de novo fatty acid synthesis, catalyzing ATP-dependent carboxylation of acetyl-CoA to form malonyl-CoA. Malonyl-CoA is a critical bi-functional molecule, i.e., a substrate of fatty acid synthase (FAS) for acyl chain elongation (fatty acid synthesis) and an inhibitor of carnitine palmitoyltransferase I (CPT-I) for fatty acid beta-oxidation. Two ACC isoforms have been identified in mammals, i.e. ACC-alpha (ACCA, also termed ACC1) and ACC-beta (ACCB, also designated ACC2). ACC has long been used as a target for the management of metabolic diseases, such as obesity and metabolic syndrome, and various inhibitors have been developed in clinical trials. Recently, ACCA up-regulation has been recognized in multiple human cancers, promoting lipogenesis to meet the need of cancer cells for rapid growth and proliferation. Therefore, ACCA might be effective as a potent target for cancer intervention, and the inhibitors developed for the treatment of metabolic diseases would be potential therapeutic agents for cancer therapy. This review summarizes our recent findings and updates the current understanding of the ACCA with focus on cancer research.

  19. The alpha2-delta protein: an auxiliary subunit of voltage-dependent calcium channels as a recognized drug target.

    Science.gov (United States)

    Thorpe, Andrew J; Offord, James

    2010-07-01

    Currently, there are two drugs on the market, gabapentin (Neurontin) and pregabalin (Lyrica), that are proposed to exert their therapeutic effect through binding to the alpha2-delta subunit of voltage-sensitive calcium channels. This activity was unexpected, as the alpha2-delta subunit had previously been considered not to be a pharmacological target. In this review, the role of the alpha2-delta subunits is discussed and the mechanism of action of the alpha2-delta ligands in vitro and in vivo is summarized. Finally, new insights into the mechanism of drugs that bind to this protein are discussed.

  20. Role of alpha2C-adrenoceptor subtype in spatial working memory as revealed by mice with targeted disruption of the alpha2C-adrenoceptor gene.

    Science.gov (United States)

    Tanila, H; Mustonen, K; Sallinen, J; Scheinin, M; Riekkinen, P

    1999-02-01

    The role of the alpha2C-adrenoceptor subtype in mediating the beneficial effect of alpha2-adrenoceptor agonists on spatial working memory was studied in adult mice with targeted inactivation of the alpha2C-receptor gene (KO) and their wild-type controls (WT). A delayed alternation task was run in a T-maze with mixed delays varying from 20 s to 120 s. Dexmedetomidine, a specific but subtype nonselective alpha2-adrenoceptor agonist, dose-dependently decreased the total number of errors. The effect was strongest at the dose of 5 microg/kg (s.c.), and was observed similarly in KO and WT mice. KO mice performed inferior to WT mice due to a higher number of perseverative errors. Dexmedetomidine slowed initiation of the motor response in the start phase at lower doses in WT mice than in KO mice but no such difference was observed in the return phase of the task, suggesting involvement of alpha2C-adrenoceptors in the cognitive aspect of response preparation or in response sequence initiation. According to these findings, enhancement of spatial working memory is best achieved with alpha2-adrenoceptor agonists which have neither agonistic nor antagonistic effects at the alpha2C-adrenoceptor subtype.

  1. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  2. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fulda, Simone, E-mail: simone.fulda@kgu.de [Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt (Germany)

    2011-08-29

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  3. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  4. Radiation therapy following targeted therapy in oligometastatic renal cell carcinoma.

    Science.gov (United States)

    Gravis, Gwenaelle; Faure, Marjorie; Rybikowski, Stanislas; Dermeche, Slimane; Tyran, Marguerite; Calderon, Benoit; Thomassin, Jeanne; Walz, Jochen; Salem, Naji

    2015-11-01

    Up to 40% of patients with renal cell carcinoma (RCC) with initially localized disease eventually develop metastasis following nephrectomy. The current standard of care for metastatic RCC (mRCC) is targeted therapy. However, complete response remains rare. A state of oligometastatic disease may exist, in which metastases are present in a limited number of locations; such cases may benefit from metastasis-directed local therapy, based on the evidence supporting resection of limited-volume metastases, allowing for improved disease control. We retrospectively analyzed 7 cases of response of RCC metastases, in patients treated with targeted therapies followed by radiation therapy (RT) of residual metastatic lesions in Paoli-Calmettes Institute (Marseille, France). We analyzed disease response rates, response to sequential strategy, relapse at the irradiated locations and disease evolution. The median follow-up was 34.1 months (range, 19.2-54.5 months). No progression at the irradiated sites was observed. A total of 5 patients had stable disease at the irradiated locations at the last follow-up; 3 remained in complete remission at the assessment, and 2 were stable. Excellent local response and clinical benefit may be achieved without added toxicity. In conclusion, sequential therapeutic strategies with RT following systemic treatment using sunitinib appear to be highly effective in patients with progressive mRCC and prompt the conduction of further confirmatory trials.

  5. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeong Shin; Cho, Yeo Na; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results.

  6. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    International Nuclear Information System (INIS)

    Park, Sang Joon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeong Shin; Cho, Yeo Na; Koom, Woong Sub

    2016-01-01

    To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results

  7. Targeted therapies in the treatment of urothelial cancers.

    Science.gov (United States)

    Aragon-Ching, Jeanny B; Trump, Donald L

    2017-07-01

    Progress has been slow in systemic management of locally advanced and metastatic bladder cancer over the past 20 years. However, the recent approval of immunotherapy with atezolizumab and nivolumab for second-line salvage therapy may usher in an era of more rapid improvement. Systemic treatment is suboptimal and is an area of substantial unmet medical need. The recent findings from The Cancer Genome Atlas project revealed promising pathways that may be amenable to targeted therapies. Promising results with treatment using vascular endothelial growth factor inhibitors such as ramucirumab, sunitinib or bevacizumab, and human epidermal growth factor receptor 2 targeted therapies, epidermal growth factor receptor inhibitors, and fibroblast growth factor receptor inhibitors, are undergoing clinical trials and are discussed later. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Introduction to radiobiology of targeted radionuclide therapy

    Directory of Open Access Journals (Sweden)

    Jean-Pierre ePOUGET

    2015-03-01

    Full Text Available During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRT are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure and low absorbed dose rate differ from those of conventional EBRT (homogeneous irradiation, short exposure and high absorbed dose rate, and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related and non-targeted effects (assumed to be non-dose-related of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main

  9. Cardiotoxicity of novel HER2-targeted therapies.

    Science.gov (United States)

    Sendur, Mehmet A N; Aksoy, Sercan; Altundag, Kadri

    2013-08-01

    Trastuzumab, an anti-HER2 humanized monoclonal antibody, is the standard treatment for both early and metastatic HER2-positive breast cancer. In addition to other chemotherapeutic agents, trastuzumab significantly improves response rate and survival in HER2-positive early and metastatic breast cancer. Although it is well known that trastuzumab therapy is closely associated with both symptomatic and asymptomatic cardiotoxicity, less is known about novel HER2-targeted therapies. The aim of this review is to discuss the cardiac safety data from recent studies of novel anti-HER2 drugs other than trastuzumab. Novel HER2-targeted therapies showed favorable results in HER2 positive metastatic breast cancer patients. Pubmed database, ASCO and San Antonio Breast Cancer Symposium Meeting abstracts were searched until January 2013 using the following search keywords; 'trastuzumab, trastuzumab cardiotoxicity, HER-2 targeted therapies, lapatinib, pertuzumab, trastuzumab emtansine, afatinib and neratinib'; papers which were considered relevant for the aim of this review were selected by the authors. Lapatinib, pertuzumab, T-DM1, neratinib and afatinib molecules are evaluated in the study. In a comprehensive analysis, 3689 lapatinib treated patients enrolled in 49 trials; asymptomatic cardiac events were reported in 53 patients (1.4%) and symptomatic grade III and IV systolic dysfunction was observed only in 7 patients (0.2%) treated with lapatinib. In phase I-III trials of pertuzumab, cardiac dysfunction was seen in 4.5-14.5% of patients with pertuzumab treatment and cardiac dysfunction was usually grade I and II. Cardiotoxicity of pertuzumab was usually reported with the trastuzumab combination and no additive cardiotoxicity was reported with addition of pertuzumab to trastuzumab. T-DM1 had a better safety profile compared to trastuzumab, no significant cardiotoxicity was observed with T-DM1 in heavily pre-treated patients. In the EMILIA study, only in 1.7% of patients in the T

  10. Targeting therapy-resistant cancer stem cells by hyperthermia

    DEFF Research Database (Denmark)

    Oei, A L; Vriend, L E M; Krawczyk, P M

    2017-01-01

    Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells...... are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising...

  11. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    Science.gov (United States)

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  12. α-Fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy.

    Directory of Open Access Journals (Sweden)

    Yuan-Fei Peng

    Full Text Available RNA interference (RNAi has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment.Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1 was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3 and non-HCC cell lines (L-02, Hela and SW1116 were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5 was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo.The AFP-miRNA system could silence target gene (Beclin 1 but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1 in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo.An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA was successfully established. The system provides a usable tool for HCC-specific RNAi

  13. Rapid appearance of transient secondary adrenocortical insufficiency after alpha-particle radiation therapy for Cushing's disease

    International Nuclear Information System (INIS)

    Cook, D.M.; Jordan, R.M.; Kendall, J.W.; Linfoot, J.A.

    1976-01-01

    A 17-year-old woman received 12,000 rads of alpha-particle radiation for the treatment of Cushing's disease. One day after the completion of therapy, the patient developed nausea, vomiting, headache, and postural hypotension. Laboratory evaluation demonstrated a marked fall of the previously elevated urinary 17-hydroxycorticosteroids (17-OHCS) and undetectable plasma cortisols. The urinary 17-OHCS transiently returned to supranormal levels but over a 2 1 / 2 -week period decreased and then remained low. The patient also demonstrated a subnormal urinary aldosterone excretion in relation to plasma renin activity (PRA) during 10 mEq/24 h sodium restriction. The remainder of the endocrine evaluation was normal, suggesting that pituitary function otherwise remained intact. One and one-half years after alpha-particle therapy, the patient's urinary 17-OHCS were normal and responded normally to metyrapone. The relationship between urinary aldosterone excretion and PRA also was normal. It is postulated that there was an infarction of an ACTH secreting pituitary tumor leaving the remainder of the pituitary intact. A chronically elevated circulating level of ACTH with sudden loss of ACTH secretion appeared to have been responsible for the initial low urinary aldosterone as well as the low urinary 17-OHCS. This is the first reported case of a presumed pituitary tumor infarction in association with alpha-particle pituitary radiation

  14. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting {sup 223}Ra-dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Pacilio, Massimiliano [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Medical Physics; Ventroni, Guido; Mango, Lucio [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Nuclear Medicin; De Vincentis, Giuseppe; Di Castro, Elisabetta; Frantellizzi, Viviana; Follacchio, Giulia Anna; Garkavaya, Tatiana [Rome Univ. (Italy). Dept. of Radiological, Oncological and Anatomo Pathological Sciences; Cassano, Bartolomeo; Lorenzon, Leda [Rome Univ. (Italy). Postgraduate School of Medical Physics; Pellegrini, Rosanna; Pani, Roberto [Rome Univ. (Italy). Dept. of Molecular Medicine; Ialongo, Pasquale [Azienda Ospealiera San Camillo Forlianini, Rome (Italy). Dept. of Radiology

    2016-01-15

    Ra-dichloride is an alpha-emitting radiopharmaceutical used in the treatment of bone metastases from castration-resistant prostate cancer. Image-based dosimetric studies remain challenging because the emitted photons are few. The aim of this study was to implement a methodology for in-vivo quantitative planar imaging, and to assess the absorbed dose to lesions using the MIRD approach. The study included nine Caucasian patients with 24 lesions (6 humeral head lesions, 4 iliac wing lesions, 2 scapular lesions, 5 trochanter lesions, 3 vertebral lesions, 3 glenoid lesions, 1 coxofemoral lesion). The treatment consisted of six injections (one every 4 weeks) of 50 kBq per kg body weight. Gamma-camera calibrations for {sup 223}Ra included measurements of sensitivity and transmission curves. Patients were statically imaged for 30 min, using an MEGP collimator, double-peak acquisition, and filtering to improve the image quality. Lesions were delineated on {sup 99m}Tc-MDP whole-body images, and the ROIs superimposed on the {sup 223}Ra images after image coregistration. The activity was quantified with background, attenuation, and scatter correction. Absorbed doses were assessed deriving the S values from the S factors for soft-tissue spheres of OLINDA/EXM, evaluating the lesion volumes by delineation on the CT images. In 12 lesions with a wash-in phase the biokinetics were assumed to be biexponential, and to be monoexponential in the remainder. The optimal timing for serial acquisitions was between 1 and 5 h, between 18 and 24 h, between 48 and 60 h, and between 7 and 15 days. The error in cumulated activity neglecting the wash-in phase was between 2 % and 12 %. The mean effective half-life (T{sub 1/2eff}) of {sup 223}Ra was 8.2 days (range 5.5-11.4 days). The absorbed dose (D) after the first injection was 0.7 Gy (range 0.2-1.9 Gy). Considering the relative biological effectiveness (RBE) of alpha particles (RBE = 5), D{sub RBE} = 899 mGy/MBq (range 340-2,450 mGy/MBq). The

  15. Familial breast cancer - targeted therapy in secondary and tertiary prevention.

    Science.gov (United States)

    Kast, Karin; Rhiem, Kerstin

    2015-02-01

    The introduction of an increasing number of individualized molecular targeted therapies into clinical routine mirrors their importance in modern cancer prevention and treatment. Well-known examples for targeted agents are the monoclonal antibody trastuzumab and the selective estrogen receptor modulator tamoxifen. The identification of an unaltered gene in tumor tissue in colon cancer (KRAS) is a predictor for the patient's response to targeted therapy with a monoclonal antibody (cetuximab). Targeted therapy for hereditary breast and ovarian cancer has become a reality with the approval of olaparib for platin-sensitive late relapsed BRCA-associated ovarian cancer in December 2014. This manuscript reviews the status quo of poly-ADP-ribose polymerase inhibitors (PARPi) in the therapy of breast and ovarian cancer as well as the struggle for carboplatin as a potential standard of care for triple-negative and, in particular, BRCA-associated breast cancer. Details of the mechanism of action with information on tumor development are provided, and an outlook for further relevant research is given. The efficacy of agents against molecular targets together with the identification of an increasing number of cancer-associated genes will open the floodgates to a new era of treatment decision-making based on molecular tumor profiles. Current clinical trials involving patients with BRCA-associated cancer explore the efficacy of the molecular targeted therapeutics platinum and PARPi.

  16. Chromatin-regulating proteins as targets for cancer therapy

    International Nuclear Information System (INIS)

    Oike, Takahiro; Ogiwara, Hideaki; Kohno, Takashi; Amornwichet, Napapat; Nakano, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. (author)

  17. Metastasis Targeted Therapies in Renal Cell Cancer

    OpenAIRE

    K. Fehmi Narter; Bora Özveren

    2018-01-01

    Metastatic renal cell cancer is a malignant disease and its treatment has been not been described clearly yet. These patients are generally symptomatic and resistant to current treatment modalities. Radiotherapy, chemotherapy, and hormonal therapy are not curative in many of these patients. A multimodal approach consisting of cytoreductive nephrectomy, systemic therapy (immunotherapy or targeted molecules), and metastasectomy has been shown to be hopeful in prolonging the survival and improvi...

  18. New perspectives on biological HDL-targeted therapies

    OpenAIRE

    Muthuramu, Ilayaraja; Amin, Md Ruhul; De Geest, Bart

    2017-01-01

    According to a modified high-density lipoprotein (HDL) hypothesis, improving HDL function will lead to a decrease of coronary events. The stringent requirement for proving or refuting this hypothesis is that the causal pathway between the therapeutic intervention and a clinically meaningful endpoint obligatory passes through HDL. Infusion therapy of reconstituted HDL particles and human apolipoprotein A-I gene transfer are biological HDL-targeted therapies that are distinguished by HDL specif...

  19. Human cancers converge at the HIF-2alpha oncogenic axis.

    Science.gov (United States)

    Franovic, Aleksandra; Holterman, Chet E; Payette, Josianne; Lee, Stephen

    2009-12-15

    Cancer development is a multistep process, driven by a series of genetic and environmental alterations, that endows cells with a set of hallmark traits required for tumorigenesis. It is broadly accepted that growth signal autonomy, the first hallmark of malignancies, can be acquired through multiple genetic mutations that activate an array of complex, cancer-specific growth circuits [Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70; Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789-799]. The superfluous nature of these pathways is thought to severely limit therapeutic approaches targeting tumor proliferation, and it has been suggested that this strategy be abandoned in favor of inhibiting more systemic hallmarks, including angiogenesis (Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: Mechanisms of anti-tumor activity. Nat Rev Cancer 8:579-591; Stommel JM, et al. (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287-290; Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727-739; Kaiser J (2008) Cancer genetics: A detailed genetic portrait of the deadliest human cancers. Science 321:1280-1281]. Here, we report the unexpected observation that genetically diverse cancers converge at a common and obligatory growth axis instigated by HIF-2alpha, an element of the oxygen-sensing machinery. Inhibition of HIF-2alpha prevents the in vivo growth and tumorigenesis of highly aggressive glioblastoma, colorectal, and non-small-cell lung carcinomas and the in vitro autonomous proliferation of several others, regardless of their mutational status and tissue of origin. The concomitant deactivation of select receptor tyrosine kinases, including the EGFR and IGF1R, as well as downstream ERK/Akt signaling, suggests that HIF-2alpha exerts its proliferative effects by endorsing these major pathways. Consistently

  20. Palliative chemotherapy and targeted therapies for esophageal and gastroesophageal junction cancer.

    Science.gov (United States)

    Janmaat, Vincent T; Steyerberg, Ewout W; van der Gaast, Ate; Mathijssen, Ron Hj; Bruno, Marco J; Peppelenbosch, Maikel P; Kuipers, Ernst J; Spaander, Manon Cw

    2017-11-28

    Almost half of people with esophageal or gastroesophageal junction cancer have metastatic disease at the time of diagnosis. Chemotherapy and targeted therapies are increasingly used with a palliative intent to control tumor growth, improve quality of life, and prolong survival. To date, and with the exception of ramucirumab, evidence for the efficacy of palliative treatments for esophageal and gastroesophageal cancer is lacking. To assess the effects of cytostatic or targeted therapy for treating esophageal or gastroesophageal junction cancer with palliative intent. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Web of Science, PubMed Publisher, Google Scholar, and trial registries up to 13 May 2015, and we handsearched the reference lists of studies. We did not restrict the search to publications in English. Additional searches were run in September 2017 prior to publication, and they are listed in the 'Studies awaiting assessment' section. We included randomized controlled trials (RCTs) on palliative chemotherapy and/or targeted therapy versus best supportive care or control in people with esophageal or gastroesophageal junction cancer. Two authors independently extracted data. We assessed the quality and risk of bias of eligible studies according to the Cochrane Handbook for Systematic Reviews of Interventions. We calculated pooled estimates of effect using an inverse variance random-effects model for meta-analysis. We identified 41 RCTs with 11,853 participants for inclusion in the review as well as 49 ongoing studies. For the main comparison of adding a cytostatic and/or targeted agent to a control arm, we included 11 studies with 1347 participants. This analysis demonstrated an increase in overall survival in favor of the arm with an additional cytostatic or targeted therapeutic agent with a hazard ratio (HR) of 0.75 (95% confidence interval (CI) 0.68 to 0.84, high-quality evidence). The median increased

  1. Mitochondrial targets of photodynamic therapy and their contribution to cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Usuda, Jitsuo; Xue, Liang-yan; Azizuddin, Kashif; Chiu, Song-mao; Lam, Minh C.; Morris, Rachel L.; Nieminen, Anna-Liisa

    2002-06-01

    In response to photodynamic therapy (PDT), many cells in culture or within experimental tumors are eliminated by apoptosis. PDT with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, causes prompt release of cytochrome c into the cytoplasm and activation of caspases-9 and -3, among other caspases, that are responsible for initiating cell degradation. Some cells appear resistant to apoptosis after PDT; however, if they have sustained sufficient damage, they will die by a necrotic process or through a different apoptotic pathway. In the case of PDT, the distinction between apoptosis and necrosis may be less important than the mechanism that triggers both processes, since critical lethal damage appears to occur during treatment and does not require the major steps in apoptosis to be expressed. We earlier showed, for example, that human breast cancer MCF-7 cells that lack caspase-3 are resistant to the induction of apoptosis by PDT, but are just as sensitive to the loss of clonogenicity as MCF-7 cells stably expressing transfected procaspase-3. Many photosensitizers that target mitochondria specifically attack the anti-apoptotic protein Bcl-2, generating a variety of crosslinked and cleaved photoproducts. Recent evidence suggests that the closely related protein Bcl-xL is also a target of Pc 4-PDT. Transient transfection of an expression vector encoding deletion mutants of Bcl-2 have identified the critical sensitive site in the protein that is required for photodamage. This region contains two alpha helices that form a secondary membrane anchorage site and are thought to be responsible for pore formation by Bcl-2. As specific protein targets are identified, we are becoming better able to model the critical events in PDT-induced cell death.

  2. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis.

    Science.gov (United States)

    Mocellin, Simone; Pasquali, Sandro; Rossi, Carlo R; Nitti, Donato

    2010-04-07

    Based on previous meta-analyses of randomized controlled trials (RCTs), the use of interferon alpha (IFN-alpha) in the adjuvant setting improves disease-free survival (DFS) in patients with high-risk cutaneous melanoma. However, RCTs have yielded conflicting data on the effect of IFN-alpha on overall survival (OS). We conducted a systematic review and meta-analysis to examine the effect of IFN-alpha on DFS and OS in patients with high-risk cutaneous melanoma. The systematic review was performed by searching MEDLINE, EMBASE, Cancerlit, Cochrane, ISI Web of Science, and ASCO databases. The meta-analysis was performed using time-to-event data from which hazard ratios (HRs) and 95% confidence intervals (CIs) of DFS and OS were estimated. Subgroup and meta-regression analyses to investigate the effect of dose and treatment duration were also performed. Statistical tests were two-sided. The meta-analysis included 14 RCTs, published between 1990 and 2008, and involved 8122 patients, of which 4362 patients were allocated to the IFN-alpha arm. IFN-alpha alone was compared with observation in 12 of the 14 trials, and 17 comparisons (IFN-alpha vs comparator) were generated in total. IFN-alpha treatment was associated with a statistically significant improvement in DFS in 10 of the 17 comparisons (HR for disease recurrence = 0.82, 95% CI = 0.77 to 0.87; P < .001) and improved OS in four of the 14 comparisons (HR for death = 0.89, 95% CI = 0.83 to 0.96; P = .002). No between-study heterogeneity in either DFS or OS was observed. No optimal IFN-alpha dose and/or treatment duration or a subset of patients more responsive to adjuvant therapy was identified using subgroup analysis and meta-regression. In patients with high-risk cutaneous melanoma, IFN-alpha adjuvant treatment showed statistically significant improvement in both DFS and OS.

  3. Gene targeted therapeutics for liver disease in alpha-1 antitrypsin deficiency.

    LENUS (Irish Health Repository)

    McLean, Caitriona

    2009-01-01

    Alpha-1 antitrypsin (A1AT) is a 52 kDa serine protease inhibitor that is synthesized in and secreted from the liver. Although it is present in all tissues in the body the present consensus is that its main role is to inhibit neutrophil elastase in the lung. A1AT deficiency occurs due to mutations of the A1AT gene that reduce serum A1AT levels to <35% of normal. The most clinically significant form of A1AT deficiency is caused by the Z mutation (Glu342Lys). ZA1AT polymerizes in the endoplasmic reticulum of liver cells and the resulting accumulation of the mutant protein can lead to liver disease, while the reduction in circulating A1AT can result in lung disease including early onset emphysema. There is currently no available treatment for the liver disease other than transplantation and therapies for the lung manifestations of the disease remain limited. Gene therapy is an evolving field which may be of use as a treatment for A1AT deficiency. As the liver disease associated with A1AT deficiency may represent a gain of function possible gene therapies for this condition include the use of ribozymes, peptide nucleic acids (PNAs) and RNA interference (RNAi), which by decreasing the amount of aberrant protein in cells may impact on the pathogenesis of the condition.

  4. Production of alpha emitters for therapy

    International Nuclear Information System (INIS)

    Vucina, J.; Orlic, M.; Lukic, D.

    2006-01-01

    The basis for the introduction of alpha emitters into nuclear medical practice are their radiobiological properties. High LET values and short ranges in biological tissues are advantageous in comparison with nowadays most often used beta emitters, primarily 90 Y and 131 I. Given are the most important criteria for the introduction of a given radionuclide in the routine use. Shown are the procedures for the production of the most important alpha emitters 211 At, 212 Bi and 213 Bi. (author)

  5. Radiotherapy in combination with vascular-targeted therapies

    International Nuclear Information System (INIS)

    Ciric, Eva; Sersa, Gregor

    2010-01-01

    Given the critical role of tumor vasculature in tumor development, considerable efforts have been spent on developing therapeutic strategies targeting the tumor vascular network. A variety of agents have been developed, with two general approaches being pursued. Antiangiogenic agents (AAs) aim to interfere with the process of angiogenesis, preventing new tumor blood vessel formation. Vascular-disrupting agents (VDAs) target existing tumor vessels causing tumor ischemia and necrosis. Despite their great therapeutic potential, it has become clear that their greatest clinical utility may lie in combination with conventional anticancer therapies. Radiotherapy is a widely used treatment modality for cancer with its distinct therapeutic challenges. Thus, combining the two approaches seems reasonable. Strong biological rationale exist for combining vascular-targeted therapies with radiation. AAs and VDAs were shown to alter the tumor microenvironment in such a way as to enhance responses to radiation. The results of preclinical and early clinical studies have confirmed the therapeutic potential of this new treatment strategy in the clinical setting. However, concerns about increased normal tissue toxicity, have been raised

  6. Palliative nephrectomy until targeted therapy of disseminated kidney cancer patients

    Directory of Open Access Journals (Sweden)

    A. V. Klimov

    2015-01-01

    Full Text Available Objective: to assess the role of palliative nephrectomy in disseminated kidney cancer patients planned to undergo targeted antiangiogenic treatment.Subjects and methods. The investigation included data on 83 patients with T1-4N0 / +M1 disseminated renal cell carcinoma (RCC who had received at least 2 targeted therapy cycles in 2009 to 2011. In 48 (57.8 % patients, the treatment was preceded by palliative nephrectomy that was not carried out in 35 (42.2 %. Before starting targeted therapy, all the cases were confirmed to be diagnosed with clear cell RCC, with a sarcomatoid component being in 7 (8.4 % patients. The median follow-up of all the patients was 21 (12–36 months.Results. The unremoved affected kidney in disseminated kidney cancer patients receiving targeted antiangiogenic therapy is an independent factor for the poor prognosis of progression-free (odds ratio (OR, 2.4; 95 % confidence interval (CI, 1.2–4.7 and overall (OR, 2.8; 95 % CI, 1.3–6.3 survival. Palliative nephrectomy does not improve the prognosis in patients with a low somatic status, the N+ category, and metastases into the bones and nonregional lymph nodes.Conclusion. Palliative nephrectomy in the selected patients with disseminated kidney cancer on targeted antiangiogenic therapy increases progression-free and overall survival.

  7. IFN-alpha antibodies in patients with age-related macular degeneration treated with recombinant human IFN-alpha2a

    DEFF Research Database (Denmark)

    Ross, Christian; Engler, Claus Bødker; Sander, Birgit

    2002-01-01

    We tested for development of binding and neutralizing antibodies to interferon-alpha (IFN-alpha) during IFN-alpha2a therapy of patients with age-related macular degeneration (AMD) of the eyes. Antibodies were investigated retrospectively in sera of 34 patients treated with 3 x 10(6) IU IFN-alpha2...

  8. IFN-alpha antibodies in patients with age-related macular degeneration treated with recombinant human IFN-alpha2a

    DEFF Research Database (Denmark)

    Ross, Christian; Engler, Claus Bødker; Sander, Birgit

    2002-01-01

    We tested for development of binding and neutralizing antibodies to interferon-alpha (IFN-alpha) during IFN-alpha2a therapy of patients with age-related macular degeneration (AMD) of the eyes. Antibodies were investigated retrospectively in sera of 34 patients treated with 3 x 10(6) IU IFN-alpha2a...

  9. Efficacy of lamivudine and thymosin alpha-1 combination therapy in treatment of HBeAg-positive chronic hepatitis B: a meta-analysis

    Directory of Open Access Journals (Sweden)

    QI Youtao

    2014-07-01

    Full Text Available ObjectiveTo evaluate the efficacy of lamivudine and thymosin alpha-1 combination therapy in the treatment of HBeAg-positive chronic hepatitis B (CHB by meta-analysis. MethodsRandomized controlled trials (RCTs of lamivudine and thymosin alpha-1 combination therapy in treatment of HBeAg-positive CHB (follow-up for at least 24 weeks, from January 1998 to date, were identified by searching Cochrane Library, PubMed, EMBASE, EBSCO, CNKI, Wanfang Data, and CQVIP. Lamivudine monotherapy RCTs were searched for in the same way as control tests. Efficacy was measured by odds ratio. Meta-analysis was carried out with RevMan 5.2 software. ResultsNine RCTs involving 600 patients were included, with 320 cases in the combination therapy group and 280 in the control group. At the end of follow-up, the combination therapy group had significantly higher serum ALT recovery rate, HBV-DNA negative conversion rate, HBeAg negative conversion rate, and HBeAg seroconversion rate than the control group (P<0.01 for all, with pooled odds ratios (95% confidence intervals of 4.84 (3.28, 7.16, 2.09 (1.45, 3.01, 5.32 (3.35, 8.46, and 6.22 (3.78, 10.25, respectively. ConclusionLamivudine and thymosin alpha-1 combination therapy is more likely to achieve sustained response rate than lamivudine monotherapy for HBeAg-positive CHB. More RCTs of high quality and large scale are required to verify this conclusion.

  10. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.

    Science.gov (United States)

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-05-05

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  11. Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.

    Science.gov (United States)

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-06-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  12. Gene Therapy Targeting HIV Entry

    Directory of Open Access Journals (Sweden)

    Chuka Didigu

    2014-03-01

    Full Text Available Despite the unquestionable success of antiretroviral therapy (ART in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.

  13. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention.

    LENUS (Irish Health Repository)

    Gasch, Claudia

    2017-01-01

    It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.

  14. Targeted therapies for diarrhea-predominant irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Olden KW

    2012-05-01

    Full Text Available Kevin W OldenDepartment of Medicine, St Joseph's Hospital and Medical Center, Phoenix, AZ, USAAbstract: Irritable bowel syndrome (IBS causes gastrointestinal symptoms such as abdominal pain, bloating, and bowel pattern abnormalities, which compromise patients' daily functioning. Common therapies address one or two IBS symptoms, while others offer wider symptom control, presumably by targeting pathophysiologic mechanisms of IBS. The aim of this targeted literature review was to capture clinical trial reports of agents receiving the highest recommendation (Grade 1 for treatment of IBS from the 2009 American College of Gastroenterology IBS Task Force, with an emphasis on diarrhea-predominant IBS. Literature searches in PubMed captured articles detailing randomized placebo-controlled trials in IBS/diarrhea-predominant IBS for agents receiving Grade I (strong 2009 American College of Gastroenterology IBS Task Force recommendations: tricyclic antidepressants, nonabsorbable antibiotics, and the 5-HT3 receptor antagonist alosetron. Studies specific for constipation-predominant IBS were excluded. Tricyclic antidepressants appear to improve global IBS symptoms but have variable effects on abdominal pain and uncertain tolerability; effects on stool consistency, frequency, and urgency were not adequately assessed. Nonabsorbable antibiotics show positive effects on global symptoms, abdominal pain, bloating, and stool consistency but may be most efficacious in patients with altered intestinal microbiota. Alosetron improves global symptoms and abdominal pain and normalizes bowel irregularities, including stool frequency, consistency, and fecal urgency. Both the nonabsorbable antibiotic rifaximin and the 5-HT3 receptor antagonist alosetron improve quality of life. Targeted therapies provide more complete relief of IBS symptoms than conventional agents. Familiarization with the quantity and quality of evidence of effectiveness can facilitate more individualized

  15. Summary of alpha-neutron sources in GADRAS

    International Nuclear Information System (INIS)

    Mitchell, Dean James; Thoreson, Gregory G.; Harding, Lee T.

    2012-01-01

    A common source of neutrons for calibration and testing is alpha-neutron material, named for the alpha-neutron nuclear reaction that occurs within. This material contains a long-lived alpha-emitter and a lighter target element. When the alpha particle from the emitter is absorbed by the target, neutrons and gamma rays are released. Gamma Detector Response and Analysis Software (GADRAS) includes built-in alpha-neutron source definitions for AcC, AmB, AmBe, AmF, AmLi, CmC, and PuC. In addition, GADRAS users may create their own alpha-neutron sources by placing valid alpha-emitters and target elements in materials within their one-dimensional models (1DModel). GADRAS has the ability to use pre-built alpha-neutron sources for plotting or as trace-sources in 1D models. In addition, if any material (existing or user-defined) specified in a 1D model contains both an alpha emitter in conjunction with a target nuclide, or there is an interface between such materials, then the appropriate neutron-emission rate from the alpha-neutron reaction will be computed. The gamma-emissions from these sources are also computed, but are limited to a subset of nine target nuclides. If a user has experimental data to contribute to the alpha-neutron gamma emission database, it may be added directly or submitted to the GADRAS developers for inclusion. The gadras.exe.config file will be replaced when GADRAS updates are installed, so sending the information to the GADRAS developers is the preferred method for updating the database. This is also preferable because it enables other users to benefit from your efforts.

  16. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy

    Science.gov (United States)

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-01-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy. PMID:25656384

  17. The combination of IL-21 and IFN-alpha boosts STAT3 activation, cytotoxicity and experimental tumor therapy

    DEFF Research Database (Denmark)

    Eriksen, Karsten W; Søndergaard, Henrik; Woetmann, Anders

    2008-01-01

    such as IFN-alpha and IL-2 have multiple and severe side effects. Accordingly, they are generally used at sub-optimal doses, which limit their clinical efficacy. Here we hypothesized that a combination of IFN-alpha and IL-21, a novel cytokine of the IL-2 family with anti-cancer effects, will increase the anti......-cancer efficacy at sub-optimal cytokine doses. We show that the combined stimulation of target-cells with IFN-alpha and IL-21 triggers an increased STAT3 activation whereas the activation of other STATs including STAT1/2 is unaffected. In parallel, the combined stimulation with IFN-alpha and IL-21 triggers...... a selective increase in MHC class I expression and NK- and CD8(+) T-cell-mediated cytotoxicity. In an experimental in vivo model of renal carcinoma, the combined treatment of IFN-alpha and IL-21 also produces a significant anti-cancer effect as judged by an inhibition of tumor growth and an increased survival...

  18. Nanobody-photosensitizer conjugates for targeted photodynamic therapy

    NARCIS (Netherlands)

    Heukers, Raimond; van Bergen en Henegouwen, P; Oliveira, Sabrina

    2014-01-01

    Photodynamic therapy (PDT) induces cell death through light activation of a photosensitizer (PS). Targeted delivery of PS via monoclonal antibodies has improved tumor selectivity. However, these conjugates have long half-lives, leading to relatively long photosensitivity in patients. In an attempt

  19. Targeted Therapy for Medullary Thyroid Cancer: A Review

    Directory of Open Access Journals (Sweden)

    S. R. Priya

    2017-10-01

    Full Text Available Medullary thyroid cancers (MTCs constitute between 2 and 5% of all thyroid cancers. The 10-year overall survival (OS rate of patients with localized disease is around 95% while that of patients with regional stage disease is about 75%. Only 20% of patients with distant metastases at diagnosis survive 10 years which is significantly lower than for differentiated thyroid cancers. Cases with regional metastases at presentation have high recurrence rates. Adjuvant external radiation confers local control but not improved OS. The management of residual, recurrent, or metastatic disease till a few years ago was re-surgery with local measures such as radiation. Chemotherapy was used with marginal benefit. The development of targeted therapy has brought in a major advantage in management of such patients. Two drugs—vandetanib and cabozantinib—have been approved for use in progressive or metastatic MTC. In addition, several drugs acting on other steps of the molecular pathway are being investigated with promising results. Targeted radionuclide therapy also provides an effective treatment option with good quality of life. This review covers the rationale of targeted therapy for MTC, present treatment options, drugs and methods under investigation, as well as an outline of the adverse effects and their management.

  20. Comparison of thick-target (alpha,n yield calculation codes

    Directory of Open Access Journals (Sweden)

    Fernandes Ana C.

    2017-01-01

    Full Text Available Neutron production yields and energy distributions from (α,n reactions in light elements were calculated using three different codes (SOURCES, NEDIS and USD and compared with the existing experimental data in the 3.5-10 MeV alpha energy range. SOURCES and NEDIS display an agreement between calculated and measured yields in the decay series of 235U, 238U and 232Th within ±10% for most materials. The discrepancy increases with alpha energy but still an agreement of ±20% applies to all materials with reliable elemental production yields (the few exceptions are identified. The calculated neutron energy distributions describe the experimental data, with NEDIS retrieving very well the detailed features. USD generally underestimates the measured yields, in particular for compounds with heavy elements and/or at high alpha energies. The energy distributions exhibit sharp peaks that do not match the observations. These findings may be caused by a poor accounting of the alpha particle energy loss by the code. A big variability was found among the calculated neutron production yields for alphas from Sm decay; the lack of yield measurements for low (~2 MeV alphas does not allow to conclude on the codes’ accuracy in this energy region.

  1. Targeted drugs in radiation therapy

    International Nuclear Information System (INIS)

    Favaudon, V.; Hennequin, C.; Hennequin, C.

    2004-01-01

    New drugs aiming at the development of targeted therapies have been assayed in combination with ionizing radiation over the past few years. The rationale of this concept comes from the fact that the cytotoxic potential of targeted drugs is limited, thus requiring concomitant association with a cytotoxic agent for the eradication of tumor cells. Conversely a low level of cumulative toxicity is expected from targeted drugs. Most targeted drugs act through inhibition of post-translational modifications of proteins, such as dimerization of growth factor receptors, prenylation reactions, or phosphorylation of tyrosine or serine-threonine residues. Many systems involving the proteasome, neo-angiogenesis promoters, TGF-β, cyclooxygenase or the transcription factor NF-κB, are currently under investigation in hopes they will allow a control of cell proliferation, apoptosis, cell cycle progression, tumor angiogenesis and inflammation. A few drugs have demonstrated an antitumor potential in particular phenotypes. In most instances, however, radiation-drug interactions proved to be strictly additive in terms of cell growth inhibition or induced cell death. Strong potentiation of the response to radiotherapy is expected to require interaction with DNA repair mechanisms. (authors)

  2. Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy.

    Science.gov (United States)

    Shenoi, Mithun M; Iltis, Isabelle; Choi, Jeunghwan; Koonce, Nathan A; Metzger, Gregory J; Griffin, Robert J; Bischof, John C

    2013-05-06

    Surgery, radiation and chemotherapy remain the mainstay of current cancer therapy. However, treatment failure persists due to the inability to achieve complete local control of the tumor and curtail metastatic spread. Vascular disrupting agents (VDAs) are a class of promising systemic agents that are known to synergistically enhance radiation, chemotherapy or thermal treatments of solid tumors. Unfortunately, there is still an unmet need for VDAs with more favorable safety profiles and fewer side effects. Recent work has demonstrated that conjugating VDAs to other molecules (polyethylene glycol, CNGRCG peptide) or nanoparticles (liposomes, gold) can reduce toxicity of one prominent VDA (tumor necrosis factor alpha, TNF-α). In this report, we show the potential of a gold conjugated TNF-α nanoparticle (NP-TNF) to improve multimodal cancer therapies with VDAs. In a dorsal skin fold and hindlimb murine xenograft model of prostate cancer, we found that NP-TNF disrupts endothelial barrier function and induces a significant increase in vascular permeability within the first 1-2 h followed by a dramatic 80% drop in perfusion 2-6 h after systemic administration. We also demonstrate that the tumor response to the nanoparticle can be verified using dynamic contrast-enhanced magnetic resonance imaging (MRI), a technique in clinical use. Additionally, multimodal treatment with thermal therapies at the perfusion nadir in the sub- and supraphysiological temperature regimes increases tumor volumetric destruction by over 60% and leads to significant tumor growth delays compared to thermal therapy alone. Lastly, NP-TNF was found to enhance thermal therapy in the absence of neutrophil recruitment, suggesting that immune/inflammatory regulation is not central to its power as part of a multimodal approach. Our data demonstrate the potential of nanoparticle-conjugated VDAs to significantly improve cancer therapy by preconditioning tumor vasculature to a secondary insult in a targeted

  3. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Xingxing Kong

    2010-07-01

    Full Text Available Sirtuin 3 (SIRT3 is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1alpha induces several key reactive oxygen species (ROS-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.Here we show that PGC-1alpha strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1alpha led to decreased Sirt3 gene expression. PGC-1alpha activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR binding element (ERRE (-407/-399 mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRalpha bound to the identified ERRE and PGC-1alpha co-localized with ERRalpha in the mSirt3 promoter. Knockdown of ERRalpha reduced the induction of Sirt3 by PGC-1alpha in C(2C(12 myotubes. Furthermore, Sirt3 was essential for PGC-1alpha-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1alpha in C(2C(12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1alpha on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1alpha on mitochondrial biogenesis in C(2C(12 myotubes.Our results indicate that Sirt3 functions as a downstream target gene of PGC-1alpha and mediates the PGC-1alpha effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy

  4. Folate-targeted nanoparticles for rheumatoid arthritis therapy.

    Science.gov (United States)

    Nogueira, Eugénia; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2016-05-01

    Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and showed specifically express a receptor for the vitamin folic acid (FA), folate receptor β (FRβ). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions. Rheumatoid arthritis is a debilitating autoimmune disease of the joints which affects many people worldwide. Up till now, there is a lack of optimal therapy against this disease. In this review article, the authors outlined in depth the current mechanism of disease for rheumatoid arthritis and described the latest research in using folic acid-targeted nanoparticles to target synovial macrophages in the fight against rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Opportunity of interventional radiology: advantages and application of interventional technique in biological target therapy

    International Nuclear Information System (INIS)

    Teng Gaojun; Lu Qin

    2007-01-01

    Interventional techniques not only provide opportunity of treatment for many diseases, but also alter the traditional therapeutic pattern. With the new century of wide application of biological therapies, interventional technique also shows extensive roles. The current biological therapy, including gene therapy, cell transplantation therapy, immunobiologic molecule therapy containing cell factors, tumor antibody or vaccine, recombined proteins, radioactive-particles and targeting materials therapy, can be locally administrated by interventional techniques. The combination of targeting biological therapies and high-targeted interventional technique holds advantages of minimal invasion, accurate delivery, vigorous local effect, and less systemic adverse reactions. Authors believe that the biological therapy may arise a great opportunity for interventional radiology, therefore interventional colleagues should grasp firmly and promptly for the development and extension in this field. (authors)

  6. Augmentation therapy with alpha1-antitrypsin: patterns of use and adverse events.

    Science.gov (United States)

    Stoller, James K; Fallat, Robert; Schluchter, Mark D; O'Brien, Ralph G; Connor, Jason T; Gross, Nicholas; O'Neil, Kevin; Sandhaus, Robert; Crystal, Ronald G

    2003-05-01

    To describe patterns of prescribing augmentation therapy, and types and rates of adverse events in the National Heart, Lung, and Blood Institute Registry for Individuals with Severe Deficiency of Alpha(1)-Antitrypsin. Observational cohort study with follow-up visits every 6 to 12 months for up to 7 years. The rate and dosing frequency with which Registry participants were prescribed to receive augmentation therapy by their managing physicians, and the type and frequency of adverse events, classified in two ways: severity of self-reported symptoms, and actions taken as a consequence of the symptom. Over the course of Registry follow-up, 66% (n = 747) of the participants received augmentation therapy at some time. In keeping with recommendations made in the 1989 American Thoracic Society (ATS) statement, 75% of participants with airflow obstruction at first visit (defined as FEV(1) or = 80% predicted (14%) also received augmentation therapy. Among those with COPD for whom augmentation therapy was not prescribed, financial constraints were the reported cause in 30%. Observed patterns also varied from approved practice, in that dosing frequencies other than the US Food and Drug Administration-approved, once-weekly regimen were frequently prescribed. The overall rate of reported adverse events was 0.02 per patient-month, with 83% of participants reporting no events. This overall rate was composed of 16% considered mild events, 76% moderate events, and 9% severe events. We conclude that augmentation therapy was generally well tolerated and, consistent with ATS guidelines, physicians generally did not prescribe augmentation therapy for subjects with FEV(1) > or = 80% predicted. However, the large percentage of subjects with FEV(1) <80% predicted not receiving augmentation therapy and the frequent use of 2- to 3-week or monthly dosing reflects variation of practice from suggested treatment guidelines.

  7. Expression of hypoxia-inducible factor 1 alpha and its downstream targets in fibroepithelial tumors of the breast

    NARCIS (Netherlands)

    Kuijper, Arno; Groep, P. van der; Wall, E. van der; Diest, P.J. van

    2005-01-01

    INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance

  8. Targeted therapy using nanotechnology: focus on cancer.

    Science.gov (United States)

    Sanna, Vanna; Pala, Nicolino; Sechi, Mario

    2014-01-01

    Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication.

  9. RANKL-Targeted Therapies: The Next Frontier in the Treatment of Male Osteoporosis

    Directory of Open Access Journals (Sweden)

    Alicia K. Morgans

    2011-01-01

    Full Text Available Male osteoporosis is an increasingly recognized problem in aging men. A common cause of male osteoporosis is hypogonadism. Thousands of men with prostate cancer are treated with androgen deprivation therapy, a treatment that dramatically reduces serum testosterone and causes severe hypogonadism. Men treated with androgen deprivation therapy experience a decline in bone mineral density and have an increased rate of fracture. This paper describes prostate cancer survivors as a model of hypogonadal osteoporosis and discusses the use of RANKL-targeted therapies in osteoporosis. Denosumab, the only RANKL-targeted therapy currently available, increases bone mineral density and decreases fracture rate in men with prostate cancer. Denosumab is also associated with delayed time to first skeletal-related event and an increase in bone metastasis-free survival in these men. It is reasonable to investigate the use of RANKL-targeted therapy in male osteoporosis in the general population.

  10. Effectiveness of Alpha-toxin Fab Monoclonal Antibody Therapy in Limiting the Pathology of Staphylococcus aureus Keratitis.

    Science.gov (United States)

    Caballero, Armando R; Foletti, Davide L; Bierdeman, Michael A; Tang, Aihua; Arana, Angela M; Hasa-Moreno, Adela; Sangalang, Emma Ruth B; O'Callaghan, Richard J

    2015-08-01

    To investigate the effectiveness of a high-affinity human monoclonal antibody Fab fragment to Staphylococcus aureus alpha-toxin (LTM14 Fab) as therapy for S. aureus keratitis. A single topical drop of the LTM14 Fab antibody to alpha-toxin alone, or in 0.006% benzalkonium chloride (BAK), was applied every 30 min to S. aureus-infected rabbit corneas from 9 to 14 hours post-infection. Erosions and pathology were measured at 15 h post-infection. LTM14 Fab with BAK limited corneal erosions better than LTM14 Fab alone (p = 0.036), and both limited erosions compared to untreated eyes (p ≤ 0.0001). Overall pathology was similar in all groups (p ≥ 0.070), but iritis and chemosis were reduced by treatment (p ≤ 0.036). The high-affinity human monoclonal Fab fragment antibody (LTM14 Fab) to S. aureus alpha-toxin was effective in reducing corneal damage during S. aureus keratitis.

  11. The roles of pathology in targeted therapy of women with gynecologic cancers.

    Science.gov (United States)

    Murali, Rajmohan; Grisham, Rachel N; Soslow, Robert A

    2018-01-01

    The role of the pathologist in the multidisciplinary management of women with gynecologic cancer has evolved substantially over the past decade. Pathologists' evaluation of parameters such as pathologic stage, histologic subtype, grade and microsatellite instability, and their identification of patients at risk for Lynch syndrome have become essential components of diagnosis, prognostic assessment and determination of optimal treatment of affected women. Despite the use of multimodality treatment and combination cytotoxic chemotherapy, the prognosis of women with advanced-stage gynecologic cancer is often poor. Therefore, expanding the arsenal of available systemic therapies with targeted therapeutic agents is appealing. Anti-angiogenic therapies, immunotherapy and poly ADP ribose polymerase (PARP) inhibitors are now routinely used for the treatment of advanced gynecologic cancer, and many more are under investigation. Pathologists remain important in the clinical management of patients with targeted therapy, by identifying potentially targetable tumors on the basis of their pathologic phenotype, by assessing biomarkers that are predictive of response to targeted therapy (e.g. microsatellite instability, PD1/PDL1 expression), and by monitoring treatment response and resistance. Pathologists are also vital to research efforts exploring novel targeted therapies by identifying homogenous subsets of tumors for more reliable and meaningful analyses, and by confirming expression in tumor tissues of novel targets identified in genomic, epigenetic or other screening studies. In the era of precision gynecologic oncology, the roles of pathologists in the discovery, development and implementation of targeted therapeutic strategies remain as central as they are for traditional (surgery-chemotherapy-radiotherapy) management of women with gynecologic cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Targeting Mitochondrial Dysfunction with L-Alpha Glycerylphosphorylcholine.

    Directory of Open Access Journals (Sweden)

    Gerda Strifler

    Full Text Available We hypothesized that L-alpha-glycerylphosphorylcholine (GPC, a deacylatedphosphatidylcholine derivative, can influence the mitochondrial respiratory activity and in this way, may exert tissue protective effects.Rat liver mitochondria were examined with high-resolution respirometry to analyze the effects of GPC on the electron transport chain in normoxic and anoxic conditions. Besides, Sprague-Dawley rats were subjected to sham operation or standardized liver ischemia-reperfusion (IR, with or without GPC administration. The reduced glutathione (GSH and oxidized glutathione disulfide (GSSG, the tissue myeloperoxidase, xanthine oxidoreductase and NADPH oxidases activities were measured. Tissue malondialdehyde and nitrite/nitrate formation, together with blood superoxide and hydrogen-peroxide production were assessed.GPC increased the efficacy of complex I-linked mitochondrial oxygen consumption, with significantly lower in vitro leak respiration. Mechanistically, liver IR injury was accompanied by deteriorated mitochondrial respiration and enhanced ROS production and, as a consequence, by significantly increased inflammatory enzyme activities. GPC administration decreased the inflammatory activation in line with the reduced oxidative and nitrosative stress markers.GPC, by preserving the mitochondrial complex I function respiration, reduced the biochemical signs of oxidative stress after an IR episode. This suggests that GPC is a mitochondria-targeted compound that indirectly suppresses the activity of major intracellular superoxide-generating enzymes.

  13. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  14. Financial relationships in economic analyses of targeted therapies in oncology.

    Science.gov (United States)

    Valachis, Antonis; Polyzos, Nikolaos P; Nearchou, Andreas; Lind, Pehr; Mauri, Davide

    2012-04-20

    A potential financial relationship between investigators and pharmaceutical manufacturers has been associated with an increased likelihood of reporting favorable conclusions about a sponsor's proprietary agent in pharmacoeconomic studies. The purpose of this study is to investigate whether there is an association between financial relationships and outcome in economic analyses of new targeted therapies in oncology. We searched PubMed (last update June 2011) for economic analyses of targeted therapies (including monoclonal antibodies, tyrosine-kinase inhibitors, and mammalian target of rapamycin inhibitors) in oncology. The trials were qualitatively rated regarding the cost assessment as favorable, neutral, or unfavorable on the basis of prespecified criteria. Overall, 81 eligible studies were identified. Economic analyses that were funded by pharmaceutical companies were more likely to report favorable qualitative cost estimates (28 [82%] of 34 v 21 [45%] of 47; P = .003). The presence of an author affiliated with manufacturer was not associated with study outcome. Furthermore, if only studies including a conflict of interest statement were included (66 of 81), studies that reported any financial relationship with manufacturers (author affiliation and/or funding and/or other financial relationship) were more likely to report favorable results of targeted therapies compared with studies without financial relationship (32 [71%] of 45 v nine [43%] of 21; P = .025). Our study reveals a potential threat for industry-related bias in economic analyses of targeted therapies in oncology in favor of analyses with financial relationships between authors and manufacturers. A more balanced funding of economic analyses from other sources may allow greater confidence in the interpretation of their results.

  15. Internal high linear energy transfer (LET) targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J

    2006-01-01

    High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)

  16. A Knock-in Reporter for a Novel AR-Targeted Therapy

    Science.gov (United States)

    2016-05-01

    AWARD NUMBER: W81XWH-15-1-0049 TITLE: A Knock -in Reporter for a Novel AR-Targeted Therapy PRINCIPAL INVESTIGATOR: Chunhong Yan, Ph.D...5a. CONTRACT NUMBER A Knock -in Reporter for a Novel AR-Targeted Therapy 5b. GRANT NUMBER W81XWH-15-1-0049 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...enhancer. While the knock -in reporter is expected to faithfully reproduce chemical responses of the endogenous AR gene, we carried out a pilot screen

  17. Targeted Therapies for Myeloma and Metastatic Bone Cancers

    Science.gov (United States)

    2010-09-01

    Cancer J Clin 2003; 53:5. Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K 2000 Selective drug delivery system to bone: small peptide (Asp)6...page. Bone targeted nanoparticles , bone cancer myeloma, mice studies, PLGA , Biodegradable materials. Targeted Therapies for Myeloma and Metastatic Bone...present results from this program at talk at the Particles 2006 –Medical/Biochemical Diagnostic , Pharmaceutical, and Drug Delivery . 3

  18. Targeted therapies for diarrhea-predominant irritable bowel syndrome

    OpenAIRE

    Olden, Kevin W

    2012-01-01

    Kevin W OldenDepartment of Medicine, St Joseph's Hospital and Medical Center, Phoenix, AZ, USAAbstract: Irritable bowel syndrome (IBS) causes gastrointestinal symptoms such as abdominal pain, bloating, and bowel pattern abnormalities, which compromise patients' daily functioning. Common therapies address one or two IBS symptoms, while others offer wider symptom control, presumably by targeting pathophysiologic mechanisms of IBS. The aim of this targeted literature review was t...

  19. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  20. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Science.gov (United States)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  1. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy

    International Nuclear Information System (INIS)

    Sun Yun; Chen Zhilong; Yang Xiaoxia; Huang Peng; Zhou Xinping; Du Xiaoxia

    2009-01-01

    Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 μM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

  2. Oligoclonal CD8+ T-cell expansion in patients with chronic hepatitis C is associated with liver pathology and poor response to interferon-alpha therapy.

    Science.gov (United States)

    Manfras, Burkhard J; Weidenbach, Hans; Beckh, Karl-Heinz; Kern, Peter; Möller, Peter; Adler, Guido; Mertens, Thomas; Boehm, Bernhard O

    2004-05-01

    The role of CD8(+) T lymphocytes in chronic hepatitis C virus (HCV) infection and in liver injury with subsequent development of fibrosis and cirrhosis is poorly understood. To address this question, we performed a follow-up study including 27 chronically HCV-infected individuals. We determined clonality and phenotypes of circulating CD8(+) T cells employing TCRBV spectratyping. Antigen specificity was tested by rMHC-peptide tetramer staining and stimulation with recombinant HCV antigens. In addition, T-cell clonality and phenotypes were followed during the variable clinical response of interferon- (IFN) alpha treatment. We could demonstrate that CD8(+) T-cell expansions were significantly associated with liver fibrosis and cirrhosis. Likewise, increased oligoclonality of circulating CD8(+) T cells in chronic HCV infection was identified as an indicator for poor clinical response to IFN-alpha therapy. Moreover, we also found that IFN-alpha therapy enhanced the differentiation of CD8(+) T cells towards a late differentiation phenotype (CD28(-) CD57(+)). In cases of virus elimination the disappearance of expanded terminally differentiated CD8(+) cells was observed. Thus, this study identifies an association of clonal expansions of circulating CD8(+) T cells with liver pathology and provides a possible explanation for the fact that response to IFN-alpha therapy diminishes with the duration of infection.

  3. RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Stéphane Mathis

    2018-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal motor disease in adults. Its pathophysiology remains mysterious, but tremendous advances have been made with the discovery of the most frequent mutations of its more common familial form linked to the C9ORF72 gene. Although most cases are still considered sporadic, these genetic mutations have revealed the role of RNA production, processing and transport in ALS, and may be important players in all ALS forms. There are no disease-modifying treatments for adult human neurodegenerative diseases, including ALS. As in spinal muscular atrophy, RNA-targeted therapies have been proposed as potential strategies for treating this neurodegenerative disorder. Successes achieved in various animal models of ALS have proven that RNA therapies are both safe and effective. With careful consideration of the applicability of such therapies in humans, it is possible to anticipate ongoing in vivo research and clinical trial development of RNA therapies for treating ALS.

  4. RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Mathis, Stéphane; Le Masson, Gwendal

    2018-01-15

    Amyotrophic lateral sclerosis (ALS) is a fatal motor disease in adults. Its pathophysiology remains mysterious, but tremendous advances have been made with the discovery of the most frequent mutations of its more common familial form linked to the C9ORF72 gene. Although most cases are still considered sporadic, these genetic mutations have revealed the role of RNA production, processing and transport in ALS, and may be important players in all ALS forms. There are no disease-modifying treatments for adult human neurodegenerative diseases, including ALS. As in spinal muscular atrophy, RNA-targeted therapies have been proposed as potential strategies for treating this neurodegenerative disorder. Successes achieved in various animal models of ALS have proven that RNA therapies are both safe and effective. With careful consideration of the applicability of such therapies in humans, it is possible to anticipate ongoing in vivo research and clinical trial development of RNA therapies for treating ALS.

  5. Impact on estrogen receptor binding and target tissue uptake of [{sup 18}F]fluorine substitution at the 16{alpha}-position of fulvestrant (faslodex; ICI 182,780)

    Energy Technology Data Exchange (ETDEWEB)

    Seimbille, Yann; Benard, Francois E-mail: francois.benard@USherbrooke.ca; Rousseau, Jacques; Pepin, Emilie; Aliaga, Antonio; Tessier, Guillaume; Lier, Johan E. van

    2004-08-01

    Fulvestrant (Faslodex; ICI 182,780) is a pure estrogen receptor (ER) antagonist recently approved for the treatment of hormone-sensitive breast cancer in post-menopausal women with disease progression following antiestrogen therapy. Fulvestrant strongly binds to the ER and its mode of action consists of inhibition of ER dimerization leading to a down regulation of ER protein cellular levels. With the aim to develop a probe for positron emission tomography (PET) imaging capable of predicting the potential therapeutic efficacy of selective ER modulators (SERM), we prepared three new 16{alpha}-[{sup 18}F]fluoro-fulvestrant derivatives. These new radiopharmaceuticals were evaluated for their binding affinity to the human ER{alpha} and for their target tissue uptake in immature female rats. Substitution of one of the side-chain F-atoms of fulvestrant for {sup 18}F would have led to a product of low specific activity; instead we selected the 16{alpha}-position for {sup 18}F-labeling, which at least in the case of estradiol (ES) is well tolerated by the ER. Radiochemical synthesis proceeds by stereoselective introduction of the [{sup 18}F]fluoride at the 16-{sup 18}F-position of fulvestrant via opening of an intermediate O-cyclic sulfate followed by hydrolysis of the protecting methoxymethyl (MOM) ether and sulfate groups. Three analogs with different oxidation states of the side chain sulfur, i.e. sulfide, sulfone or sulfoxide (fulvestrant) were prepared. Introduction of the 16{sup 18}F-fluorine led to a dramatic decrease of the apparent binding affinity for ER, as reported by Wakeling et al. (Cancer Res. 1991;51:3867-73). Likewise, in vivo ER-mediated uterus uptake values in immature female rats were disappointing. Overall, our findings suggest that these new PET radiopharmaceuticals are not suitable as tracers to predict ER(+) breast cancer response to hormonal therapy with selective ER modulators.

  6. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    DEFF Research Database (Denmark)

    Svenson, M; Hansen, M B; Thomsen, Allan Randrup

    2000-01-01

    with IL-1alpha coupled to purified protein derivative of tuberculin (PPD). Both unprimed and primed animals developed IgG aAb to IL-1alpha. These aAb persisted at high levels more than 100 days after vaccination and did not cross-react with murine IL-1beta. The induced anti-IL-1alpha aAb inhibited binding...... in mice by vaccination with recombinant murine IL-1alpha conjugated to PPD. Studies of the effects of IL-1alpha aAb in such animals may help clarify the importance of naturally occurring IL-1alpha aAb in humans and permit the evaluation of future therapies with cytokine aAb in patients...

  7. The alpha-particle irradiator set up at the ISS for radiobiological studies on targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Esposito, G.; Antonelli, F.; Belli, M.; Campa, A.; Simone, G.; Sorrentino, E.; Tabocchini, M.A.

    2008-01-01

    In this paper we describe the alpha-particle irradiator that has been set up at the Istituto Superiore di Sanita (ISS) for controlled exposure of cultured mammalian cells. It can be equipped with two different sources, namely 2'4'4'Cm and 2'4'1'Am, allowing irradiation at different dose-rates (typically 1-100 mGy/min). The irradiator has dimensions small enough to be inserted into a standard cell culture incubator to perform irradiation of cultured cells in physiological conditions. The dose uniformity is such that the variations in the irradiation area are less than ± 12% of the average dose value on different irradiation areas up to ∼ 25 cm'2. Moreover, in the framework of the FP6 Euratom Integrated Project Non-targeted effects of ionizing radiation (NOTE), Petri dishes were realized for housing permeable membrane insert(s) to be used in co-culture experiments. Aluminium shields were also realized for half shield irradiation experiments. The alpha-particle irradiator of the ISS has been successfully used for studying DNA damage, namely double strand breaks (DSB, as measured by the γ-H2AX assay), in directly hit and in bystander primary human fibroblasts [it

  8. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    -amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha...

  9. Emerging hematological targets and therapy for cardiovascular disease: From bench to bedside

    Directory of Open Access Journals (Sweden)

    Ana Villegas

    2008-09-01

    Full Text Available Ana Villegas, Fernando A Gonzalez, Leopoldo Llorente, Santiago RedondoService of Hematology and Hemotherapy, Hospital Clinico Universitario San Carlos, Madrid, SpainAbstract: Atherosclerotic cardiovascular disease is the leading cause of death and a major part of its pathophysiology remains obscure. Some hematological targets have been related to the development and clinical outcome of this disease, especially soluble cytokines, leukocytes, red blood cells, hemostatic factors and platelets, and bone-marrow vascular progenitors. These emerging factors may be modulated by current antiatherosclerotic pharmacotherapy, target-designed novel drugs or progenitor cell therapy. The aim of current review article is to comprehensively review the role of these antiatherosclerotic targets and therapy.Keywords: atherosclerosis, blood, progenitor cells, cytokines, therapy

  10. Discontinuing VEGF-targeted Therapy for Progression Versus Toxicity Affects Outcomes of Second-line Therapies in Metastatic Renal Cell Carcinoma

    DEFF Research Database (Denmark)

    De Velasco, Guillermo; Xie, Wanling; Donskov, Frede

    2017-01-01

    BACKGROUND: A significant subgroup of metastatic renal cell carcinoma (mRCC) patients discontinue vascular endothelial growth factor-targeted therapies (VEGF-TT) because of toxicity. Whether clinical outcomes differ in patients who receive second-line (2L) targeted therapy on the basis of reason ...

  11. Anti-TNF-alpha therapy does not modulate leptin in patients with severe rheumatoid arthritis.

    Science.gov (United States)

    Gonzalez-Gay, M A; Garcia-Unzueta, M T; Berja, A; Gonzalez-Juanatey, C; Miranda-Filloy, J A; Vazquez-Rodriguez, T R; de Matias, J M; Martin, J; Dessein, P H; Llorca, J

    2009-01-01

    The adipocytokine leptin regulates weight centrally and participates in the regulation of the immune and inflammatory responses. Chronic systemic inflammation is of major importance in the development of atherosclerosis in rheumatoid arthritis (RA). In the present study we investigated whether inflammation, obesity or both of these characteristics are potential determinants of circulating leptin concentrations in a group of RA patients on periodical treatment with the TNF-alpha-blocker-infliximab due to severe disease. We also assessed whether the infusion of infliximab may alter circulating leptin concentrations in patients with severe RA. We investigated 33 patients with RA on periodical treatment with infliximab. Serum leptin levels were determined immediately prior to and after infliximab infusion. There was a positive correlation between body mass index of RA patients and baseline serum level of leptin (rho=0.665, pghrelin or the cumulative prednisone dose at the time of the study were found. Leptin levels did not change upon infliximab infusion (p=0.48). In RA patients on TNF-alpha blocker treatment, circulating leptin levels are unrelated to disease activity but constitute a manifestation of adiposity. The beneficial effect of anti-TNF-alpha therapy on cardiovascular mortality in RA does not seem to be mediated by reduction in serum levels of leptin.

  12. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  13. New perspectives on targeted therapy in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Coward JIG

    2015-02-01

    Full Text Available Jermaine IG Coward,1–3 Kathryn Middleton,1 Felicity Murphy1 1Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia; 2Inflammtion and Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia; 3School of Medicine, University of Queensland, Brisbane, QLD, Australia Abstract: Epithelial ovarian cancer remains the most lethal gynecologic malignancy. During the last 15 years, there has been only marginal improvement in 5 year overall survival. These daunting statistics are compounded by the fact that despite all subtypes exhibiting striking heterogeneity, their systemic management remains identical. Although changes to the scheduling and administration of chemotherapy have improved outcomes to a degree, a therapeutic ceiling is being reached with this approach, resulting in a number of trials investigating the efficacy of targeted therapies alongside standard treatment algorithms. Furthermore, there is an urge to develop subtype-specific studies in an attempt to improve outcomes, which currently remain poor. This review summarizes the key studies with antiangiogenic agents, poly(adenosine diphosphate [ADP]-ribose inhibitors, and epidermal growth factor receptor/human epidermal growth factor receptor family targeting, in addition to folate receptor antagonists and insulin growth factor receptor inhibitors. The efficacy of treatment paradigms used in non-ovarian malignancies for type I tumors is also highlighted, in addition to recent advances in appropriate patient stratification for targeted therapies in epithelial ovarian cancer. Keywords: antiangiogenic therapy, high-grade serous, low grade ovarian cancer, PARP inhibition, cancer-related inflammation

  14. WE-FG-BRA-10: Radiodosimetry of a Novel Alpha Particle Therapy Targeted to Uveal Melanoma: Absorbed Dose to Organs in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Tichacek, Christopher J.; Tafreshi, Narges K.; Budzevich, Mikalai M.; Ruiz, Epifanio [Small Animal Imaging Core, Tampa, FL (United States); Wadas, Thaddeus J. [Wake Forest School of Medicine, Departments of Radiology and Cancer Biology, Winston-Salem, NC (United States); McLaughlin, Mark L. [Department of Chemistry, Tampa, FL (United States); H. Lee Moffitt Cancer Center & Research Institute (United States); Modulation Therapeutics, Inc., Tampa, FL (United States); Moros, Eduardo G.; Morse, David L.

    2016-06-15

    Purpose: The melanocortin-1 receptor (MC1R) is expressed in 94% of uveal melanomas and is described as an ideal target for this untreatable disease. MC1RL is a high affinity MC1R specific peptidomimetic ligand that can serve as a scaffold for therapeutic conjugates such as alpha particle emitting isotopes. The purpose of this study was to assess normal tissue distribution and risk as a result of using the DOTA chelator conjugated to MC1RL to deliver {sup 225}Ac: MC1RL-DOTA-{sup 225}Ac. Methods: 17 non-tumor bearing BALB/c mice were intravenously injected with the novel MC1RL-DOTA-{sup 225}Ac radiopharmaceutical with an average initial administered activity of 2.5 µCi. After the injection, three groups of animals (6, 6, and 5 per group) were euthanized at 24, 48, and 96 hour time points. A total of 11 organs of interest were harvested at each time point including kidneys and liver. Since the emitted alpha particles from {sup 225}Ac and its daughter products are not easy to detect directly, the isomeric gamma spectra were measured instead in the tissue samples using a modified Atomlab™ Gamma Counter (Biodex Medical Systems, Inc) and converted using factors for gamma ray abundance per alpha decay. Dosimetry was performed using measured radioactivity distribution in organs and the generalized internal dosimetry schema of MIRD pamphlet #21. Results: Our calculations have shown that the maximum absorbed dose was delivered to the liver with a total of 47 cGy per 96 hour period. The average dose per kidney was calculated to be 21 cGy. Heart, brain, lung, spleen, skin doses ranged from 0.01 to 1 cGy over the same time period. All animals gained weight over the 110 day decay period and no organ damage was observed by pathology. Conclusion: Based on our results, the risk of using the MC1RL-DOTA-{sup 225}Ac compound is relatively small in terms of deterministic radiation effects. Funding Support: NIH/NCI P50CA168536-03 Skin SPORE; NIH/NCI Phase I SBIR Contract #HHSN

  15. Epithelioid Sarcoma: Opportunities for Biology-Driven Targeted Therapy.

    Science.gov (United States)

    Noujaim, Jonathan; Thway, Khin; Bajwa, Zia; Bajwa, Ayeza; Maki, Robert G; Jones, Robin L; Keller, Charles

    2015-01-01

    Epithelioid sarcoma (ES) is a soft tissue sarcoma of children and young adults for which the preferred treatment for localized disease is wide surgical resection. Medical management is to a great extent undefined, and therefore for patients with regional and distal metastases, the development of targeted therapies is greatly desired. In this review, we will summarize clinically relevant biomarkers (e.g., SMARCB1, CA125, dysadherin, and others) with respect to targeted therapeutic opportunities. We will also examine the role of EGFR, mTOR, and polykinase inhibitors (e.g., sunitinib) in the management of local and disseminated disease. Toward building a consortium of pharmaceutical, academic, and non-profit collaborators, we will discuss the state of resources for investigating ES with respect to cell line resources, tissue banks, and registries so that a roadmap can be developed toward effective biology-driven therapies.

  16. Improved safety and efficacy of 213Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine.

    Science.gov (United States)

    Chan, Ho Sze; Konijnenberg, Mark W; Daniels, Tamara; Nysus, Monique; Makvandi, Mehran; de Blois, Erik; Breeman, Wouter A; Atcher, Robert W; de Jong, Marion; Norenberg, Jeffrey P

    2016-12-01

    Targeted alpha therapy (TAT) offers advantages over current β-emitting conjugates for peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors. PRRT with 177 Lu-DOTATATE or 90 Y-DOTATOC has shown dose-limiting nephrotoxicity due to radiopeptide retention in the proximal tubules. Pharmacological protection can reduce renal uptake of radiopeptides, e.g., positively charged amino acids, to saturate in the proximal tubules, thereby enabling higher radioactivity to be safely administered. The aim of this preclinical study was to evaluate the therapeutic effect of 213 Bi-DOTATATE with and without renal protection using L-lysine in mice. Tumor uptake and kinetics as a function of injected mass of peptide (range 0.03-3 nmol) were investigated using 111 In-DOTATATE. These results allowed estimation of the mean radiation absorbed tumor dose for 213 Bi-DOTATATE. Pharmacokinetics and dosimetry of 213 Bi-DOTATATE was determined in mice, in combination with renal protection. A dose escalation study with 213 Bi-DOTATATE was performed to determine the maximum tolerated dose (MTD) with and without pre-administration of L-lysine as for renal protection. Neutrophil gelatinase-associated lipocalin (NGAL) served as renal biomarker to determine kidney injury. The maximum mean radiation absorbed tumor dose occurred at 0.03 nmol and the minimum at 3 nmol. Similar mean radiation absorbed tumor doses were determined for 0.1 and 0.3 nmol with a mean radiation absorbed dose of approximately 0.5 Gy/MBq 213 Bi-DOTATATE. The optimal mass of injected peptide was found to be 0.3 nmol. Tumor uptake was similar for 111 In-DOTATATE and 213 Bi-DOTATATE at 0.3 nmol peptide. Lysine reduced the renal uptake of 213 Bi-DOTATATE by 50% with no effect on the tumor uptake. The MTD was <13.0 ± 1.6 MBq in absence of L-lysine and 21.7 ± 1.9 MBq with L-lysine renal protection, both imparting an LD 50 mean renal radiation absorbed dose of 20 Gy. A correlation was found between the

  17. Advances in the targeted therapy of liposarcoma

    Directory of Open Access Journals (Sweden)

    Guan Z

    2015-01-01

    Full Text Available Zhonghai Guan,1 Xiongfei Yu,1 Haohao Wang,1 Haiyong Wang,1 Jing Zhang,1 Guangliang Li,2 Jiang Cao,3 Lisong Teng1 1Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, 2Department of Medicine Oncology, Zhejiang Cancer Hospital, 3Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China Abstract: Liposarcoma (LPS is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS. Keywords: well-/dedifferentiated, myxoid/round cell, pleomorphic, soft-tissue sarcoma

  18. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  19. Cancer gene therapy with targeted adenoviruses.

    Science.gov (United States)

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  20. Alpha-synuclein in cutaneous small nerve fibers

    Directory of Open Access Journals (Sweden)

    Siepmann T

    2016-10-01

    Full Text Available Timo Siepmann,1 Ben Min-Woo Illigens,2 Kristian Barlinn1 1Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 2Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Abstract: Despite progression in the development of pharmacological therapy, treatment of alpha synucleinopathies, such as Parkinson’s disease (PD and some atypical parkinsonism syndromes, is still challenging. To date, our knowledge of the mechanisms whereby the pathological form of alpha-synuclein causes structural and functional damage to the nervous system is limited and, consequently, there is a lack of specific diagnostic tools to evaluate pathology in these patients and differentiate PD from other neurodegenerative proteinopathies. Recent studies indicated that alpha-synuclein deposition in cutaneous small nerve fibers assessed by skin biopsies might be a valid disease marker of PD and facilitate early differentiation of PD from atypical parkinsonism syndromes. This observation is relevant since early diagnosis may enable timely treatment and improve quality of life. However, challenges include the necessity of standardizing immunohistochemical analysis techniques and the identification of potential distinct patterns of intraneural alpha-synuclein deposition among synucleinopathies. In this perspective, we explore the scientific and clinical opportunities arising from alpha-synuclein assessment using skin biopsies. These include elucidation of the peripheral nervous system pathology of PD and other synucleinopathies, identification of novel targets to study response to neuroprotective treatment, and improvement of clinical management. Furthermore, we discuss future challenges in exploring the diagnostic value of skin biopsy assessment for alpha-synuclein deposition and implementing the technique in clinical practice. Keywords: Parkinson’s disease, diagnosis, skin

  1. DNA repair in cancer: emerging targets for personalized therapy

    International Nuclear Information System (INIS)

    Abbotts, Rachel; Thompson, Nicola; Madhusudan, Srinivasan

    2014-01-01

    Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer

  2. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    International Nuclear Information System (INIS)

    Campos, D; Peeters, W; Nickel, K; Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M

    2015-01-01

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response

  3. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    Energy Technology Data Exchange (ETDEWEB)

    Campos, D [University of Wisconsin Madison, Madison, WI (United States); Peeters, W [Radboud University Medical Center, Nijmegen, GA (United States); Nickel, K [University of Wisconsin, Madison, WI (United States); Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M [University of Wisconsin, Madison, Wisconsin (United States)

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  4. Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2017-12-01

    deprivation therapy (ADT) or androgen receptor (AR) pathway inhibition (ARPI) but eventually develops into lethal castration resistance prostate cancer ...AWARD NUMBER: W81XWH-14-1-0553 TITLE: Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer PRINCIPAL INVESTIGATOR: Martin Gleave...Siah2 as Novel Therapy for Metastatic Prostate Cancer 5b. GRANT NUMBER W81XWH-14-1-0553 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Martin Gleave 5d

  5. Fractionated therapy of HER2-expressing breast and ovarian cancer xenografts in mice with targeted alpha emitting 227Th-DOTA-p-benzyl-trastuzumab.

    Directory of Open Access Journals (Sweden)

    Helen Heyerdahl

    Full Text Available BACKGROUND: The aim of this study was to investigate therapeutic efficacy and normal tissue toxicity of single dosage and fractionated targeted alpha therapy (TAT in mice with HER2-expressing breast and ovarian cancer xenografts using the low dose rate radioimmunoconjugate (227Th-DOTA-p-benzyl-trastuzumab. METHODOLOGY/PRINCIPAL FINDINGS: Nude mice carrying HER2-overexpressing subcutaneous SKOV-3 or SKBR-3 xenografts were treated with 1000 kBq/kg (227Th-trastuzumab as single injection or four injections of 250 kBq/kg with intervals of 4-5 days, 2 weeks, or 4 weeks. Control animals were treated with normal saline or unlabeled trastuzumab. In SKOV-3 xenografts tumor growth to 10-fold size was delayed (p<0.01 and survival with tumor diameter less than 16 mm was prolonged (p<0.05 in all TAT groups compared to the control groups. No statistically significant differences were seen among the treated groups. In SKBR-3 xenografts tumor growth to 10-fold size was delayed in the single injection and 4-5 days interval groups (p<0.001 and all except the 4 weeks interval TAT group showed improved survival to the control groups (p<0.05. Toxicity was assessed by blood cell counts, clinical chemistry measurements and body weight. Transient reduction in white blood cells was seen for the single injection and 4-5 days interval groups (p<0.05. No significant changes were seen in red blood cells, platelets or clinical chemistry parameters. Survival without life threatening loss of body weight was significantly prolonged in 4 weeks interval group compared to single injection group (p<0.05 for SKOV-3 animals and in 2 weeks interval group compared with the 4-5 days interval groups (p<0.05 for SKBR-3 animals. CONCLUSIONS/SIGNIFICANCE: The same concentration of radioactivity split into several fractions may improve toxicity of (227Th-radioimmunotherapy while the therapeutic effect is maintained. Thus, it might be possible to increase the cumulative absorbed radiation dose

  6. Therapeutics: Gene Therapy for Alpha-1 Antitrypsin Deficiency.

    Science.gov (United States)

    Gruntman, Alisha M; Flotte, Terence R

    2017-01-01

    This review seeks to give an overview of alpha-1 antitrypsin deficiency, including the different disease phenotypes that it encompasses. We then describe the different therapeutic endeavors that have been undertaken to address these different phenotypes. Lastly we discuss future potential therapeutics, such as genome editing, and how they may play a role in treating alpha-1 antitrypsin deficiency.

  7. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    Science.gov (United States)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  8. Individualization of anticancer therapy; molecular targets of novel drugs in oncology

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2012-11-01

    Full Text Available Deregulation of cellular signal transduction, caused by gene mutations, has been recognized as a basic factor of cancer initiation, promotion and progression. Thus, the ability to control the activity of overstimulated signal molecules by the use of appropriate inhibitors became the idea of targeted cancer therapy, which has provided an effective tool to normalize the molecular disorders in malignant cells and to treat certain types of cancer. The molecularly targeted drugs are divided into two major pharmaceutical classes: monoclonal antibodies and small-molecule kinase inhibitors. This review presents a summary of their characteristics, analyzing their chemical structures, specified molecular targets, mechanisms of action and indications for use. Also the molecules subjected to preclinical trials or phase I, II and III clinical trials evaluating their efficiency and safety are presented. Moreover, the article discusses further perspectives for development of targeted therapies focusing on three major directions: systematic searching and discovery of new targets that are oncogenic drivers, improving the pharmacological properties of currently known drugs, and developing strategies to overcome drug resistance. Finally, the role of proper pharmacodiagnostics as a key to rational anticancer therapy has been emphasized since the verification of reliable predictive biomarkers is a basis of individualized medicine in oncology. 

  9. Epithelioid Sarcoma: Opportunities for Biology-driven Targeted Therapy

    Directory of Open Access Journals (Sweden)

    Jonathan eNoujaim

    2015-08-01

    Full Text Available Epithelioid sarcoma is a soft tissue sarcoma of children and young adults for which the preferred treatment for localised disease is wide surgical resection. Medical management is to a great extent undefined, and therefore for patients with regional and distal metastases, the development of targeted therapies is greatly desired. In this review we will summarize clinically-relevant biomarkers (e.g., SMARCB1, CA125, dysadherin and others with respect to targeted therapeutic opportunities. We will also examine the role of EGFR, mTOR and polykinase inhibitors (e.g., sunitinib in the management of local and disseminated disease. Towards building a consortium of pharmaceutical, academic and non-profit collaborators, we will discuss the state of resources for investigating epithelioid sarcoma with respect to cell line resources, tissue banks, and registries so that a roadmap can be developed towards effective biology-driven therapies.

  10. Design of a cryogenic deuterium gas target for neutron therapy

    International Nuclear Information System (INIS)

    Kuchnir, F.T.; Waterman, F.M.; Forsthoff, H.; Skaggs, L.S.; Vander Arend, P.C.; Stoy, S.

    1976-01-01

    A cryogenic deuterium gas target operating at 80 0 K and 10 atm pressure has been designed for use with a small cyclotron; the D(d,n) reaction is used to produce a neutron beam suitable for radiation therapy. The target is cooled by circulation of the gas in a closed loop between the target and an external heat exchanger immersed in liquid nitrogen

  11. Ovarian cancer and the immune system - The role of targeted therapies.

    Science.gov (United States)

    Turner, Taylor B; Buchsbaum, Donald J; Straughn, J Michael; Randall, Troy D; Arend, Rebecca C

    2016-08-01

    The majority of patients with epithelial ovarian cancer are diagnosed with advanced disease. While many of these patients will respond initially to chemotherapy, the majority will relapse and die of their disease. Targeted therapies that block or activate specific intracellular signaling pathways have been disappointing. In the past 15years, the role of the immune system in ovarian cancer has been investigated. Patients with a more robust immune response, as documented by the presence of lymphocytes infiltrating within their tumor, have increased survival and better response to chemotherapy. In addition, a strong immunosuppressive environment often accompanies ovarian cancer. Recent research has identified potential therapies that leverage the immune system to identify and destroy tumor cells that previously evaded immunosurveillance mechanisms. In this review, we discuss the role of the immune system in ovarian cancer and focus on specific pathways and molecules that show a potential for targeted therapy. We also review the ongoing clinical trials using targeted immunotherapy in ovarian cancer. The role of targeted immunotherapy in patients with ovarian cancer represents a field of growing research and clinical importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Understanding the molecular target therapy and it's approved synchronous use with radiation therapy in current Indian oncology practice

    International Nuclear Information System (INIS)

    Gupta, Puneet; Dohhen, Umesh Kumar; Romana; Srivastava, Priyanka

    2012-01-01

    The molecular targeted drugs (MTD) are of two types; large and small. The large molecular targeted drugs (LMTD) cannot cross the cancer cell membrane whereas those that cross the cancer cell membrane are nicknamed small molecular target drugs (SMTD). India has availability of almost all MTD originals approved by USA Food and Drug administration. However a few LMTD like inj vectibix, inj Zevalin, Inj Bexar etc.; and SMTD like cap Tipifarnib approved for AML, are not available in India currently although approved and available in USA. The MTD may he used alone as singlet; along with chemotherapy as doublet or triplet; or along with radiation and chemotherapy combo (nicknamed chemo-radiation-bio therapy). The molecular target therapy approved by USA and/or European FDA and currently available in India and used along with radiation therapy with or without chemotherapy, indication wise are; Brain Tumor Inj Nimotuzumab (LMTD) and Inj bevacizumab (LMTD) in Glioblasoma Multiforme; for Carcinoma Head and neck Inj Cetuximab and Inj Nimotuzumab (LMTT), Tab Geftinib (SMTD). (author)

  13. Adverse Renal Effects of Novel Molecular Oncologic Targeted Therapies: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Kenar D. Jhaveri

    2017-01-01

    Full Text Available Novel targeted anti-cancer therapies have resulted in improvement in patient survival compared to standard chemotherapy. Renal toxicities of targeted agents are increasingly being recognized. The incidence, severity, and pattern of renal toxicities may vary according to the respective target of the drug. Here we review the adverse renal effects associated with a selection of currently approved targeted cancer therapies, directed to EGFR, HER2, BRAF, MEK, ALK, PD1/PDL1, CTLA-4, and novel agents targeted to VEGF/R and TKIs. In summary, electrolyte disorders, renal impairment and hypertension are the most commonly reported events. Of the novel targeted agents, ipilumumab and cetuximab have the most nephrotoxic events reported. The early diagnosis and prompt recognition of these renal adverse events are essential for the general nephrologist taking care of these patients.

  14. Relation of estrogen receptor-alpha gene polymorphism and hormone replacement therapy to fall risk and muscle strength in early postmenopausal women.

    Science.gov (United States)

    Salmén, Timo; Heikkinen, Anna-Mari; Mahonen, Anitta; Kröger, Heikki; Komulainen, Marja; Saarikoski, Seppo; Honkanen, Risto; Partanen, Juhani; Mäenpää, Pekka H

    2002-01-01

    Several factors may increase fracture risk, among them reduced bone mineral density (BMD), increased bone resorption, microarchitectural deterioration of bone, increased fall risk, and decreased muscle strength. We have previously reported that PvuII polymorphism of the estrogen receptor-alpha (ER alpha) gene is associated with bone loss rate, fracture risk, and response to hormone replacement therapy (HRT) in early postmenopausal Finnish women. We studied the influence of the ER alpha genotype on fall risk and muscle strength in a 5-year randomized HRT trial of 331 early postmenopausal women (subgroup of the population-based OSTPRE study, Kuopio, Finland). A 5-year postal inquiry in May 1994 included questions on falls during the previous 12 months. Grip strength was measured with dynamometer. The ER alpha gene polymorphism was analysed using PCR and PvuII restriction enzyme digestion. RESULTS. In all, 97 out of the 331 women reported falls. Half of those (56%) were slip falls, mostly during the winter season. In the HRT group, the ER alpha genotype was associated with fall risk (P = 0.002, logistic regression). The risk of falls (RR) was higher in women with the PP genotype than in those with the Pp (RR = 5.26, 95% CI 1.98-13.94, P = 0.001) or the pp (RR = 3.84, 95% CI 1.46-10.12, P = 0.007) genotype. When the falls were divided into slip (environment-related) and non-slip (endogenous) falls, the non-slip falls were associated with the genotype (P = 0.004), but the slip falls were not so clearly (P = 0.061). When all falls and non-slip falls were adjusted to the number of chronic health disorders and the variable time-since-menopause, the difference between the genotypes persisted (P = 0.003 and P = 0.010, respectively). In the non-HRT group, the ER alpha genotype was not associated with fall risk. The baseline or the 5-year grip strength values were not influenced by the ER alpha genotype. In conclusion, ER alpha polymorphism is associated with fall risk

  15. Target Therapies for Uterine Carcinosarcomas: Current Evidence and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni Vitale

    2017-05-01

    Full Text Available Carcinosarcomas (CS in gynecology are very infrequent and represent only 2–5% of uterine cancers. Despite surgical cytoreduction and subsequent chemotherapy being the primary treatment for uterine CS, the overall five-year survival rate is 30 ± 9% and recurrence is extremely common (50–80%. Due to the poor prognosis of CS, new strategies have been developed in the last few decades, targeting known dysfunctional molecular pathways for immunotherapy. In this paper, we aimed to gather the available evidence on the latest therapies for the treatment of CS. We performed a systematic review using the terms “uterine carcinosarcoma”, “uterine Malignant Mixed Müllerian Tumors”, “target therapies”, “angiogenesis therapy”, “cancer stem cell therapy”, “prognostic biomarker”, and “novel antibody-drug”. Based on our results, the differential expression and accessibility of epithelial cell adhesion molecule-1 on metastatic/chemotherapy-resistant CS cells in comparison to normal tissues and Human Epidermal Growth Factor Receptor 2 (HER2 open up new possibilities in the field of target therapy. Nevertheless, future investigations are needed to clarify the impact of these new therapies on survival rate and medium-/long-term outcomes.

  16. Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia.

    Science.gov (United States)

    Burchert, A; Saussele, S; Eigendorff, E; Müller, M C; Sohlbach, K; Inselmann, S; Schütz, C; Metzelder, S K; Ziermann, J; Kostrewa, P; Hoffmann, J; Hehlmann, R; Neubauer, A; Hochhaus, A

    2015-06-01

    A minority of chronic myeloid leukemia (CML) patients is capable of successfully discontinuing imatinib. Treatment modalities to increase this proportion are currently unknown. Here, we assessed the role of interferon alpha 2a (IFN) on therapy discontinuation in a previously reported cohort of 20 chronic phase CML patients who were treated upfront with IFN alpha plus imatinib followed by IFN monotherapy to maintain cytogenetic or molecular remission (MR) after imatinib discontinuation. After a median follow-up of 7.9 years (range, 5.2-12.2), relapse-free survival was 73% (8/11 patients) and 84% (5/6 patients) for patients who discontinued imatinib in major MR (MMR) and MR4/MR4.5, respectively. Ten patients discontinued IFN after a median of 4.5 years (range, 0.24-9.3). After a median of 2.8 years (range, 0.7-5.1), nine of them remain in ongoing treatment-free remission with MR5 (n=6) and MR4.5 (n=3). The four patients who still administer IFN are in stable MR5, MR4.5, MR4, and MMR, respectively. In conclusion, an IFN/imatinib induction treatment followed by a temporary IFN maintenance therapy may enable a high rate of treatment discontinuation in CML patients in at least MMR when stopping imatinib.

  17. Targeted radionuclide therapy for solid tumors: An overview

    International Nuclear Information System (INIS)

    De Nardo, Sally J.; De Nardo, Gerald L.

    2006-01-01

    Although radioimmunotherapy (RIT) has been effective in non-Hodgkin's lymphoma (NHL) as a single agent, solid tumors have shown less clinically significant therapeutic response to RIT alone. The clinical impact of RIT or other forms of targeted radionuclide therapy for solid tumors depends on the development of a high therapeutic index (TI) for the tumor vs. normal tissue effect, and the implementation of RIT as part of synergistic combined modality therapy (CMRIT). Preclinical and clinical studies have provided a wealth of information, and new prototypes or paradigms have shed light on future possibilities in many instances. Evidence suggests that combination and sequencing of RIT in CMRIT appropriately can provide effective treatment for many solid tumors. Vascular targets provide RIT enhancement opportunities and nanoparticles may prove to be effective carriers for RIT combined with intracellular drug delivery or alternating magnetic frequency (AMF) induced thermal tumor necrosis. The sequence and timing of combined modality treatments will be of critical importance to achieve synergy for therapy while minimizing toxicity. Fortunately, the radionuclide used for RIT also provides a signal useful for nondestructive quantitation of the influence of sequence and timing of CMRIT on events in animals and patients. This can be readily accomplished clinically using quantitative high-resolution imaging (e.g., positron emission tomography [PET])

  18. Radionuclide molecular target therapy for lung cancer

    International Nuclear Information System (INIS)

    Zhang Fuhai; Meng Zhaowei; Tan Jian

    2012-01-01

    Lung cancer harms people's health or even lives severely. Currently, the morbidity and mortality of lung cancer are ascending all over the world. Accounting for 38.08% of malignant tumor caused death in male and 16% in female in cities,ranking top in both sex. Especially, the therapy of non-small cell lung cancer has not been obviously improved for many years. Recently, sodium/iodide transporter gene transfection and the therapy of molecular target drugs mediated radionuclide are being taken into account and become the new research directions in treatment of advanced lung cancer patients with the development of technology and theory for medical molecular biology and the new knowledge of lung cancer's pathogenesis. (authors)

  19. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  20. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  1. Expression of HIF-1{alpha} in irradiated tissue is altered by topical negative-pressure therapy

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, A.; Stange, S.; Labanaris, A.; Horch, R.E. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Plastic and Hand Surgery; Dimmler, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Pathology; Sauer, R.; Grabenbauer, G. [Erlangen-Nuernberg Univ. (Germany). Dept. of Radiation Oncology

    2007-03-15

    Background and Purpose: Despite the enormous therapeutic potential of modern radiotherapy, common side effects such as radiation-induced wound healing disorders remain a well-known clinical phenomenon. Topical negative pressure therapy (TNP) is a novel tool to alleviate intraoperative, percutaneous irradiation or brachytherapy. Since TNP has been shown to positively influence the perfusion of chronic, poorly vascularized wounds, the authors applied this therapeutic method to irradiated wounds and investigated the effect on tissue oxygenation in irradiated tissue in five patients. Material and Methods: With informed patients' consent, samples prior to and 4 and 8 days after continuous TNP with -125 mmHg were obtained during routine wound debridements. Granulation tissue was stained with hematoxylin-eosin, and additionally with CD31, HIF-1{alpha} (hypoxia-inducible factor-1{alpha}), and D2-40 to detect blood vessels, measure indirect signs of hypoxia, and lymph vessel distribution within the pre- and post-TNP samples. Results: In this first series of experiments, a positive influence of TNP onto tissue oxygenation in radiation-induced wounds could be demonstrated. TNP led to a significant decrease of 53% HIF-1{alpha}-positive cell nuclei. At the same time, a slight reduction of CD31-stained capillaries was seen in comparison to samples before TNP. Immunostaining with D2-40 revealed an increased number of lymphatic vessels with distended lumina and an alteration of the parallel orientation within the post-TNP samples. Conclusion: This study is, to the authors' knowledge, the first report on a novel previously not described histological marker to demonstrate the effects of TNP on HIF-1{alpha} expression as an indirect marker of tissue oxygenation in irradiated wounds, as demonstrated by a reduction of HIF-1{alpha} concentration after TNP. Since this observation may be of significant value to develop possible new strategies to treat radiation-induced tissue

  2. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.

    Science.gov (United States)

    Abbass, Jad; Nebel, Jean-Christophe

    2017-01-01

    Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Recent advances in targeted drug therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    FAN Yongqiang

    2018-02-01

    Full Text Available More and more clinical trials have proved the efficacy of targeted drugs in the treatment of hepatocellular carcinoma (HCC. With the development of science and technology, more and more targeted drugs have appeared. In recent years, targeted drugs such as regorafenib and ramucirumab have shown great potential in related clinical trials. In addition, there are ongoing clinical trials for second-line candidate drugs, such as c-Met inhibitors tivantinib and cabozantinib and a VEGFR-2 inhibitor ramucirumab. This article summarizes the advances in targeted drug therapy for HCC and related trial data, which provides a reference for further clinical trials and treatment.

  4. The Alpha Stem Cell Clinic: a model for evaluating and delivering stem cell-based therapies.

    Science.gov (United States)

    Trounson, Alan; DeWitt, Natalie D; Feigal, Ellen G

    2012-01-01

    Cellular therapies require the careful preparation, expansion, characterization, and delivery of cells in a clinical environment. There are major challenges associated with the delivery of cell therapies and high costs that will limit the companies available to fully evaluate their merit in clinical trials, and will handicap their application at the present financial environment. Cells will be manufactured in good manufacturing practice or near-equivalent facilities with prerequisite safety practices in place, and cell delivery systems will be specialized and require well-trained medical and nursing staff, technicians or nurses trained to handle cells once delivered, patient counselors, as well as statisticians and database managers who will oversee the monitoring of patients in relatively long-term follow-up studies. The model proposed for Alpha Stem Cell Clinics will initially use the capacities and infrastructure that exist in the most advanced tertiary medical clinics for delivery of established bone marrow stem cell therapies. As the research evolves, they will incorporate improved procedures and cell preparations. This model enables commercialization of medical devices, reagents, and other products required for cell therapies. A carefully constructed cell therapy clinical infrastructure with the requisite scientific, technical, and medical expertise and operational efficiencies will have the capabilities to address three fundamental and critical functions: 1) fostering clinical trials; 2) evaluating and establishing safe and effective therapies, and 3) developing and maintaining the delivery of therapies approved by the Food and Drug Administration, or other regulatory agencies.

  5. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    Science.gov (United States)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  6. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    Science.gov (United States)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  7. Non-small cell lung cancer: the era of targeted therapy

    Directory of Open Access Journals (Sweden)

    Antonoff MB

    2012-07-01

    Full Text Available Mara B Antonoff, Jonathan D'CunhaDivision of Thoracic and Foregut Surgery, Department of Surgery, University of Minnesota, Minneapolis, MN, USAAbstract: In this review, the authors aim to provide an overview of current molecular targeted therapies for NSCLC, to propose an algorithm for clinical application of presently available treatment strategies, and to identify future directions for this important area of research. Historically, choice of treatment algorithm for the management of non-small cell lung cancer (NSCLC has relied heavily upon histology and clinical staging information, typically assigning patients to surgery, chemotherapy, radiation, or a combination thereof. However, previous treatment strategies have been fraught with disappointing response rates and significant systemic toxicities. The concept of personalized therapy for NSCLC involves characterization of each individual patient's tumor, in terms of genetic aberrations and expected biologic behavior, and using this information to tailor subsequent clinical management. Several driver mutations have been identified to date in subsets of patients with NSCLC, and, by focusing on specific molecular targets, new agents have been developed with the intent of treating the cancer cells while causing minimal toxicity to benign, healthy cells. In particular, current strategies exist to identify patients with epidermal growth factor receptor gene mutations and anaplastic lymphoma kinase rearrangements, with promising results upon clinical application of agents targeting these abnormalities. Moving forward, attempts are being made to determine comprehensive genetic and biologic characterization of individuals' NSCLC tumors and to incorporate these findings into everyday practice. The era of targeted therapy is upon us. As we seek to expand our knowledge of the specific molecular and cellular derangements leading to growth and proliferation of NSCLC tumors, our efforts bring us closer to

  8. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  9. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  10. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    Science.gov (United States)

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  11. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Directory of Open Access Journals (Sweden)

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  12. Micromegas detector for $^{33}$S(n,$\\alpha$) cross section measurement at n_TOF

    CERN Multimedia

    The present proposal is a consequence of the successful tests performed in 2011 related to the Letter of Intent CERN-INTC-2010-023/I-092. The main goal of this proposal is a first (n,$\\alpha$) cross section measurement with the Micromegas detector presently running at n_TOF for monitoring purposes and fission cross section measurements. The $^{33}$S(n,$\\alpha$) cross section is of interest in astrophysics mainly due to the origin of $^{36}$S which is still an open question. $^{33}$S is also of interest in medical physics since it has been proposed as a possible/alternative cooperating target to boron neutron capture therapy. Important discrepancies between previous measurements of $^{33}$S(n,$\\alpha$) cross section and especially between the resonance parameters are found in the literature. We propose to measure the (n,$\\alpha$) cross section of the stable isotope $^{33}$S in the energy range up to 300 keV covering the astrophysical range of interest. The possibility of increasing this energy range will be st...

  13. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  14. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  15. Translational research: precision medicine, personalized medicine, targeted therapies: marketing or science?

    Science.gov (United States)

    Marquet, Pierre; Longeray, Pierre-Henry; Barlesi, Fabrice; Ameye, Véronique; Augé, Pascale; Cazeneuve, Béatrice; Chatelut, Etienne; Diaz, Isabelle; Diviné, Marine; Froguel, Philippe; Goni, Sylvia; Gueyffier, François; Hoog-Labouret, Natalie; Mourah, Samia; Morin-Surroca, Michèle; Perche, Olivier; Perin-Dureau, Florent; Pigeon, Martine; Tisseau, Anne; Verstuyft, Céline

    2015-01-01

    Personalized medicine is based on: 1) improved clinical or non-clinical methods (including biomarkers) for a more discriminating and precise diagnosis of diseases; 2) targeted therapies of the choice or the best drug for each patient among those available; 3) dose adjustment methods to optimize the benefit-risk ratio of the drugs chosen; 4) biomarkers of efficacy, toxicity, treatment discontinuation, relapse, etc. Unfortunately, it is still too often a theoretical concept because of the lack of convenient diagnostic methods or treatments, particularly of drugs corresponding to each subtype of pathology, hence to each patient. Stratified medicine is a component of personalized medicine employing biomarkers and companion diagnostics to target the patients likely to present the best benefit-risk balance for a given active compound. The concept of targeted therapy, mostly used in cancer treatment, relies on the existence of a defined molecular target, involved or not in the pathological process, and/or on the existence of a biomarker able to identify the target population, which should logically be small as compared to the population presenting the disease considered. Targeted therapies and biomarkers represent important stakes for the pharmaceutical industry, in terms of market access, of return on investment and of image among the prescribers. At the same time, they probably represent only the first generation of products resulting from the combination of clinical, pathophysiological and molecular research, i.e. of translational research. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  16. Targeted therapy in lung and breast cancer: a big deal

    OpenAIRE

    Caffarra, Cristina

    2015-01-01

    Great strides have been done in treating cancer. For decades, the hallmark of medical treatment for cancer has been intravenous cytotoxic chemotherapy which targets all dividing cells. In the last ten years the identification of different driver oncogenic mutations has allowed the development of targeted drugs. Targeted cancer therapies are based on the use of drugs that block the growth and spread of cancer by interfering with specific molecules involved in tumor growth and progression. The ...

  17. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    Science.gov (United States)

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  18. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes

    NARCIS (Netherlands)

    Linnekamp, Janneke F.; Wang, Xin; Medema, Jan Paul; Vermeulen, Louis

    2015-01-01

    Personalized cancer medicine is becoming increasingly important in colorectal cancer treatment. Especially for targeted therapies, large variations between individual treatment responses exist. Predicting therapy response is of utmost significance, as it prevents overtreatment and adverse effects in

  19. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities

    Directory of Open Access Journals (Sweden)

    Malini Olivo

    2010-05-01

    Full Text Available Photodynamic therapy (PDT has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS, which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS, that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

  20. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Science.gov (United States)

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  1. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  2. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy.

    Science.gov (United States)

    Distler, Oliver; Cozzio, Antonio

    2016-01-01

    Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.

  3. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  4. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    Science.gov (United States)

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  5. From Single Target to Multitarget/Network Therapeutics in Alzheimer’s Therapy

    Directory of Open Access Journals (Sweden)

    Hailin Zheng

    2014-01-01

    Full Text Available Brain network dysfunction in Alzheimer’s disease (AD involves many proteins (enzymes, processes and pathways, which overlap and influence one another in AD pathogenesis. This complexity challenges the dominant paradigm in drug discovery or a single-target drug for a single mechanism. Although this paradigm has achieved considerable success in some particular diseases, it has failed to provide effective approaches to AD therapy. Network medicines may offer alternative hope for effective treatment of AD and other complex diseases. In contrast to the single-target drug approach, network medicines employ a holistic approach to restore network dysfunction by simultaneously targeting key components in disease networks. In this paper, we explore several drugs either in the clinic or under development for AD therapy in term of their design strategies, diverse mechanisms of action and disease-modifying potential. These drugs act as multi-target ligands and may serve as leads for further development as network medicines.

  6. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    Science.gov (United States)

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. BRD4-targeted therapy induces Myc-independent cytotoxicity in Gnaq/11-mutatant uveal melanoma cells.

    Science.gov (United States)

    Ambrosini, Grazia; Sawle, Ashley D; Musi, Elgilda; Schwartz, Gary K

    2015-10-20

    Uveal melanoma (UM) is an aggressive intraocular malignancy with limited therapeutic options. Both primary and metastatic UM are characterized by oncogenic mutations in the G-protein alpha subunit q and 11. Furthermore, nearly 40% of UM has amplification of the chromosomal arm 8q and monosomy of chromosome 3, with consequent anomalies of MYC copy number. Chromatin regulators have become attractive targets for cancer therapy. In particular, the bromodomain and extra-terminal (BET) inhibitor JQ1 has shown selective inhibition of c-Myc expression with antiproliferative activity in hematopoietic and solid tumors. Here we provide evidence that JQ1 had cytotoxic activity in UM cell lines carrying Gnaq/11 mutations, while in cells without the mutations had little effects. Using microarray analysis, we identified a large subset of genes modulated by JQ1 involved in the regulation of cell cycle, apoptosis and DNA repair. Further analysis of selected genes determined that the concomitant silencing of Bcl-xL and Rad51 represented the minimal requirement to mimic the apoptotic effects of JQ1 in the mutant cells, independently of c-Myc. In addition, administration of JQ1 to mouse xenograft models of Gnaq-mutant UM resulted in significant inhibition of tumor growth.Collectively, our results define BRD4 targeting as a novel therapeutic intervention against UM with Gnaq/Gna11 mutations.

  8. Evaluation of Fibroblast Activation Protein-Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer

    Science.gov (United States)

    2009-12-01

    low molecular weight recombinant human gelatin: development of a substitute for animal- derived gelatin with superior features, Protein Expr. Purif...by the honey - bee , could be modified to a form that was no longer hydro- lyzed by the native activator protease DPP4 but, instead, was hydrolyzed by...TITLE: Evaluation of Fibroblast Activation Protein -Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer PRINCIPAL

  9. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  10. MAIN MOLECULAR TARGETS FOR PROSTATE CANCER THERAPY

    Directory of Open Access Journals (Sweden)

    G. S. Krasnov

    2014-01-01

    Full Text Available Androgenic pathway plays a pivotal role in the development of benign and malignant prostate tumors. Most of the prostate neoplasms are hormone-dependent at the time of diagnosis. Therapeutic interventions aimed at reducing the level of testosterone in the blood allow to stop progression of the disease. But over time, the tumor almost inevitably starts to progress, moving in the castration-resistant state (CRPC, representing a serious problem of oncourology. In recent years, the possibility of CRRPC therapy increased significantly – there was developed a number of new drugs that effectively inhibit the development of castration-resistant tumors and significantly push back the start of chemotherapy. This review describes the major drug targets and mechanisms of action of abiraterone, enzalutamide, galeterone, VT-464 and other approved and promising CRPC therapies.

  11. Current Molecular Targeted Therapies for Bone and Soft Tissue Sarcomas

    Directory of Open Access Journals (Sweden)

    Kenji Nakano

    2018-03-01

    Full Text Available Systemic treatment options for bone and soft tissue sarcomas remained unchanged until the 2000s. These cancers presented challenges in new drug development partly because of their rarity and heterogeneity. Many new molecular targeting drugs have been tried in the 2010s, and some were approved for bone and soft tissue sarcoma. As one of the first molecular targeted drugs approved for solid malignant tumors, imatinib’s approval as a treatment for gastrointestinal stromal tumors (GISTs has been a great achievement. Following imatinib, other tyrosine kinase inhibitors (TKIs have been approved for GISTs such as sunitinib and regorafenib, and pazopanib was approved for non-GIST soft tissue sarcomas. Olaratumab, the monoclonal antibody that targets platelet-derived growth factor receptor (PDGFR-α, was shown to extend the overall survival of soft tissue sarcoma patients and was approved in 2016 in the U.S. as a breakthrough therapy. For bone tumors, new drugs are limited to denosumab, a receptor activator of nuclear factor κB ligand (RANKL inhibitor, for treating giant cell tumors of bone. In this review, we explain and summarize the current molecular targeting therapies approved and in development for bone and soft tissue sarcomas.

  12. The Role of High Dose Interleukin-2 in the Era of Targeted Therapy.

    Science.gov (United States)

    Gills, Jessie; Parker, William P; Pate, Scott; Niu, Sida; Van Veldhuizen, Peter; Mirza, Moben; Holzbeierlein, Jeffery M; Lee, Eugene K

    2017-09-01

    We assessed survival outcomes following high dose interleukin-2 in a contemporary cohort of patients during the era of targeted agents. We retrospectively reviewed the records of patients with metastatic renal cell carcinoma treated with high dose interleukin-2 between July 2007 and September 2014. Clinicopathological data were abstracted and patient response to therapy was based on RECIST (Response Evaluation Criteria In Solid Tumors), version 1.1 criteria. The Kaplan-Meier method was used to estimate progression-free and overall survival in the entire cohort, the response to high dose interleukin-2 in regard to previous targeted agent therapy and the response to the targeted agent in relation to the response to high dose interleukin-2. We identified 92 patients, of whom 87 had documentation of a response to high dose interleukin-2. Median overall survival was 34.4 months from the initiation of high dose interleukin-2 therapy in the entire cohort. Patients who received targeted therapy before high dose interleukin-2 had overall survival (median 34.4 and 30.0 months, p = 0.88) and progression-free survival (median 1.5 and 1.7 months, p = 0.8) similar to those in patients who received no prior therapy, respectively. Additionally, patients with a complete or partial response to high dose interleukin-2 had similar outcomes for subsequent targeted agents compared to patients whose best response was stable or progressive disease (median overall survival 30.1 vs 25.4 months, p = 0.4). Our data demonstrate that patient responses to high dose interleukin-2 and to targeted agents before and after receiving high dose interleukin-2 are independent. As such, carefully selected patients should be offered high dose interleukin-2 for the possibility of a complete and durable response without the fear of limiting the treatment benefit of targeted agents. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  14. Direct-acting antiviral-based triple therapy on alpha-fetoprotein level in chronic hepatitis C patients.

    Science.gov (United States)

    Takayama, Koji; Furusyo, Norihiro; Ogawa, Eiichi; Ikezaki, Hiroaki; Shimizu, Motohiro; Murata, Masayuki; Hayashi, Jun

    2015-04-21

    To investigate the impact of telaprevir-based triple therapy on the serum alpha-fetoprotein (AFP) level of chronic hepatitis C patients. A total of 210 patients with chronic hepatitis C genotype 1 of high viral load (baseline serum hepatitis C virus RNA > 5.0 log10 IU/mL) were divided into two groups by type of treatment: triple therapy with telaprevir, pegylated-interferon-α (PEG-IFNα), and ribavirin (RBV) for 24 wk (n = 88), or dual therapy with PEG-IFNα and RBV for 48 wk (n = 122). The relationship between virological response and the change in the serum AFP level from baseline to 24 wk after the end of treatment was examined. No significant difference in mean baseline AFP level was found between the triple and dual therapy groups (8.8 ng/mL vs 7.8 ng/mL). Triple therapy produced significant declines in the AFP level in sustained virological response (SVR) and non-SVR patients (7.8 ng/mL at baseline to 3.5 ng/mL at 24 wk after the end of treatment, P < 0.001 and 14.3 ng/mL to 9.5 ng/mL, P = 0.004, respectively). In contrast, dual therapy resulted in a significant decline in AFP level only in SVR patients (4.7 ng/mL to 2.8 ng/mL, P < 0.001), but not in non-SVR patients (10.2 ng/mL to 10.1 ng/mL). Among patients with a high-baseline AFP level (≥ 10 ng/mL), the decline in the AFP level was significantly higher in the triple therapy than in the dual therapy group (15.9 ng/mL vs 1.6 ng/mL, P = 0.037). Regardless of virological response, telaprevir-based triple therapy reduced the serum AFP level.

  15. Cutaneous Adverse Events of Targeted Therapies for Hematolymphoid Malignancies.

    Science.gov (United States)

    Ransohoff, Julia D; Kwong, Bernice Y

    2017-12-01

    The identification of oncogenic drivers of liquid tumors has led to the rapid development of targeted agents with distinct cutaneous adverse event (AE) profiles. The diagnosis and management of these skin toxicities has motivated a novel partnership between dermatologists and oncologists in developing supportive oncodermatology clinics. In this article we review the current state of knowledge of clinical presentation, mechanisms, and management of the most common and significant cutaneous AEs observed during treatment with targeted therapies for hematologic and lymphoid malignancies. We systematically review according to drug-targeting pathway the cutaneous AE profiles of these drugs, and offer insight when possible into whether pharmacologic target versus immunologic modulation primarily underlie presentation. We include discussion of tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, bosutinib, ponatinib), blinatumomab, ibrutinib, idelalisib, anti-B cell antibodies (rituximab, ibritumomab, obinutuzumab, ofatumumab, tositumomab), immune checkpoint inhibitors (nivolumab, pembrolizumab), alemtuzumab, brentuximab, and proteasome inhibitors (bortezomib, carfilzomib, ixazomib). We highlight skin reactions seen with antiliquid but not solid tumor agents, draw attention to serious cutaneous AEs that might require therapy modification or cessation, and offer management strategies to permit treatment tolerability. We emphasize the importance of early diagnosis and treatment to minimize disruptions to care, optimize prognosis and quality of life, and promptly address life-threatening skin or infectious events. This evolving partnership between oncologists and dermatologists in the iterative characterization and management of skin toxicities will contribute to a better understanding of these drugs' cutaneous targets and improved patient care. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Assessing the Response to Targeted Therapies in Renal Cell Carcinoma: Technical Insights and Practical Considerations

    NARCIS (Netherlands)

    Bex, A.; Fournier, L.; Lassau, N.; Mulders, P.F.A.; Nathan, P.; Oyen, W.J.G.; Powles, T.

    2014-01-01

    CONTEXT: The introduction of targeted agents for the treatment of renal cell carcinoma (RCC) has resulted in new challenges for assessing response to therapy, and conventional response criteria using computed tomography (CT) are limited. It is widely recognised that targeted therapies may lead to

  17. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K-K; Chen, P-Y; Lee, Tony J F; Chao, J-I [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China); Chen, M-F [Neuro-Medical Scientific Center, Tzu Chi General Hospital, Hualien 970, Taiwan (China); Cheng, C-L [Department of Physics, National Dong Hwa University, Hualien 974, Taiwan (China); Chang, C-C [Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Ho, Y-P [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China)], E-mail: chaoji@mail.tcu.edu.tw

    2008-05-21

    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin ({alpha}-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor ({alpha}7-nAChR). The electrostatic binding of cND-{alpha}-BTX was mediated by the negative charge of the cND and the positive charge of the {alpha}-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that {alpha}-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled {alpha}-BTX presented a yellow color at the same location, which indicated that {alpha}-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human {alpha}7-nAChR proteins by microinjection with {alpha}7-nAChR mRNA. The cND-{alpha}-BTX complexes were bound to {alpha}7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked {alpha}7-nAChR-mediated inward currents of the oocytes were blocked by cND-{alpha}-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-{alpha}-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated {alpha}-BTX still preserves its biological activity in blocking the function of {alpha}7-nAChR, and provide a visual

  18. The Role of Pharmacology in Ureteral Physiology and Expulsive Therapy

    Science.gov (United States)

    Jerde, Travis J.; Nakada, Stephen Y.

    2007-04-01

    Research in the field of ureteral physiology and pharmacology has traditionally been directed toward relaxation of ureteral spasm as a mechanism of analgesia during painful ureteral obstruction, most often stone-induced episodes. However, interest in this field has expanded greatly in recent years with the expanded use of alpha-blocker therapy for inducing stone passage, a usage now termed "medical expulsive therapy". While most clinical reports involving expulsive therapy have focused on alpha receptor or calcium channel blockade, there are diverse studies investigating pharmacological ureteral relaxation with novel agents including cyclooxygenase inhibitors, small molecule beta receptor agonists, neurokinin antagonists, and phosphodiesterase inhibitors. In addition, cutting edge molecular biology research is revealing promising potential therapeutic targets aimed at specific molecular changes that occur during the acute obstruction that accompanies stone disease. The purpose of this report is to review the use of pharmacological agents as ureteral smooth muscle relaxants clinically, and to look into the future of expulsive therapy by reviewing the available literature of ureteral physiology and pharmacology research.

  19. Development of a Novel Targeted RNAi Delivery Technology inTherapies for Metabolic Diseases

    Science.gov (United States)

    2017-10-01

    report Impact on other disciplines: Nothing to report Impact on technology transfer: Nothing to report Impact on society : Nothing to report 5. CHANGES...AWARD NUMBER: W81XWH-15-1-0569 TITLE: Development of a Novel Targeted RNAi Delivery Technology in Therapies for Metabolic Diseases PRINCIPAL...COVERED 30Sep2016 - 29Sep2017 4. TITLE AND SUBTITLE Development of a Novel Targeted RNAi Delivery Technology in Therapies for Metabolic Diseases 5a

  20. Variation in use of targeted therapies for metastatic renal cell carcinoma: Results from a Dutch population-based registry

    International Nuclear Information System (INIS)

    De Groot, S.; Sleijfer, S.; Redekop, W. K.; Oosterwijk, E.; Haanen, J. B. A. G.; Kiemeney, L. A. L. M.; Uyl-de Groot, C. A.

    2016-01-01

    For patients with metastatic renal cell carcinoma (mRCC), targeted therapies have entered the market since 2006. The aims of this study were to evaluate the uptake and use of targeted therapies for mRCC in The Netherlands, examine factors associated with the prescription of targeted therapies in daily clinical practice and study their effectiveness in terms of overall survival (OS). Two cohorts from PERCEPTION, a population-based registry of mRCC patients, were used: a 2008–2010 Cohort (n = 645) and a 2011–2013 Cohort (n = 233). Chi-squared tests for trend were used to study time trends in the use of targeted therapy. Patients were grouped based on the eligibility criteria of the SUTENT trial, the trial that led to sunitinib becoming standard of care, to investigate the use of targeted therapies amongst patients fulfilling those criteria. Multi-level logistic regression was used to identify patient subgroups that are less likely to receive targeted therapies. Approximately one-third of patients fulfilling SUTENT trial eligibility criteria did not receive any targeted therapy (29 % in the 2008–2010 Cohort; 35 % in the 2011–2013 Cohort). Patients aged 65+ years were less likely to receive targeted therapy in both cohorts and different risk groups (odds ratios range between 0.84–0.92); other factors like number of metastatic sites were of influence in some subgroups. Amongst treated patients, there was a decreasing trend in sunitinib use over time (p = 0.0061), and an increasing trend in pazopanib use (p = 0.0005). Targeted therapies have largely replaced interferon-alfa as first-line standard of care. Nevertheless, many eligible patients in Dutch daily practice did not receive targeted therapies despite their ability to improve survival. Reasons for their apparent underutilisation should be examined more carefully. The online version of this article (doi:10.1186/s12885-016-2395-x) contains supplementary material, which is available to authorized users

  1. Targeted therapies and radiation for the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Kim, Gwi Eon

    2004-01-01

    The purpose of this review is to provide an update on novel radiation treatments for head and neck cancer. Despite the remarkable advances in chemotherapy and radiotherapy techniques, the management of advanced head and neck cancer remains challenging. Epidermal growth factor receptor (EGFR) is an appealing target for novel therapies in head and neck cancer because not only EGFR activation stimulates many important signaling pathways associated with cancer development and progression, and importantly, resistance to radiation. Furthermore, EGFR overexpression is known to be portended for a worse outcome in patients with advanced head and neck cancer. Two categories of compounds designed to abrogate EGFR signaling, such as monoclonal antibodies (Cetuximab) and tyrosine kinase inhibitors (ZD1839 and OSI-774) have been assessed and have been most extensively studied in preclinical models and clinical trials. Additional TKIs in clinical trials include a reversible agent, Cl-1033, which blocks activation of all erbB receptors. Encouraging preclinical data for head and neck cancers resulted in rapid translation into the clinic. Results from initial clinical trials show rather surprisingly that only minority of patients benefited from EGFR inhibition as monotherapy or in combination with chemotherapy. In this review, we begin with a brief summary of erbB-mediated signal transduction. Subsequently, we present data on prognostic-predictive value of erbB receptor expression in HNC followed by preclinical and clinical data on the role of EGFR antagonists alone or in combination with radiation in the treatment of HNC. Finally, we discuss the emerging thoughts on resistance to EGFR blockade and efforts in the development of multiple-targeted therapy for combination with chemotherapy or radiation. Current challenges for investigators are to determine (1) who will benefit from targeted agents and which agents are most appropriate to combine with radiation and/or chemotherapy, (2

  2. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy.

    Science.gov (United States)

    Chen, Branson; Lee, Jong Bok; Kang, Hyeonjeong; Minden, Mark D; Zhang, Li

    2018-04-24

    While conventional chemotherapy is effective at eliminating the bulk of leukemic cells, chemotherapy resistance in acute myeloid leukemia (AML) is a prevalent problem that hinders conventional therapies and contributes to disease relapse, and ultimately patient death. We have recently shown that allogeneic double negative T cells (DNTs) are able to target the majority of primary AML blasts in vitro and in patient-derived xenograft models. However, some primary AML blast samples are resistant to DNT cell therapy. Given the differences in the modes of action of DNTs and chemotherapy, we hypothesize that DNT therapy can be used in combination with conventional chemotherapy to further improve their anti-leukemic effects and to target chemotherapy-resistant disease. Drug titration assays and flow-based cytotoxicity assays using ex vivo expanded allogeneic DNTs were performed on multiple AML cell lines to identify therapy-resistance. Primary AML samples were also tested to validate our in vitro findings. Further, a xenograft model was employed to demonstrate the feasibility of combining conventional chemotherapy and adoptive DNT therapy to target therapy-resistant AML. Lastly, blocking assays with neutralizing antibodies were employed to determine the mechanism by which chemotherapy increases the susceptibility of AML to DNT-mediated cytotoxicity. Here, we demonstrate that KG1a, a stem-like AML cell line that is resistant to DNTs and chemotherapy, and chemotherapy-resistant primary AML samples both became more susceptible to DNT-mediated cytotoxicity in vitro following pre-treatment with daunorubicin. Moreover, chemotherapy treatment followed by adoptive DNT cell therapy significantly decreased bone marrow engraftment of KG1a in a xenograft model. Mechanistically, daunorubicin increased the expression of NKG2D and DNAM-1 ligands on KG1a; blocking of these pathways attenuated DNT-mediated cytotoxicity. Our results demonstrate the feasibility and benefit of using DNTs as

  3. Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin ?5?1 and Fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J; Park, Catherine C

    2010-04-07

    Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that {beta}1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific {alpha} heterodimer of {beta}1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare {alpha}-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of {alpha}5{beta}1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of {alpha}5{beta}1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of {alpha}5{beta}1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of {alpha}5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and {alpha}5{beta}1-integrin as targets for breast cancer therapy.

  4. Targeting the EGFR pathway for cancer therapy

    DEFF Research Database (Denmark)

    Johnston, JB; Navaratnam, S; Pitz, MW

    2006-01-01

    .g.: Trastuzumab/Herceptin, Pertuzumab/Omnitarg/rhuMab-2C4, Cetuximab/Erbitux/IMC-C225, Panitumumab/Abenix/ABX-EGF, and also ZD6474). In addition, we summarize, both current therapy development driven by antibody-based targeting of the EGFR-dependent signaling pathways, and furthermore, we provide a background...

  5. Chemoradiotherapy in head and neck squamous cell carcinoma: focus on targeted therapies

    International Nuclear Information System (INIS)

    Bozec, A.; Thariat, J.; Bensadoun, R.J.; Milano, G.

    2008-01-01

    Radiotherapy is an essential treatment for many patients with head and neck squamous cell carcinoma. Its association with molecular targeted therapies represents a real progress. Among the recent advances in the molecular targeted therapy of cancer, the applications centred on E.G.F.R. are currently the most promising and the most advanced at clinical level. Considering the set of therapeutic tools targeting E.G.F.R., there are at present two well-identified emerging categories of drugs with monoclonal antibodies, on the one hand, and tyrosine kinase inhibitors, on the other. In many preclinical studies, the combination of anti-E.G.F.R. drugs with irradiation has led to additive or supra-additive cytotoxic effects. Furthermore, anti-angiogenic agents have shown promising results in association with anti-E.G.F.R. drugs and radiotherapy. This research effort has recently produced encouraging clinical results in advanced head and neck cancer with combination of cetuximab (an anti-E.G.F.R. monoclonal antibody) with irradiation with a significant impact on patient survival. Active and efficient clinical research is currently ongoing to determine the place of molecular targeted therapies in the treatment of head and neck cancer, particularly in association with radiotherapy. (authors)

  6. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  7. Targeted Therapy for Biliary Tract Cancer

    International Nuclear Information System (INIS)

    Furuse, Junji; Okusaka, Takuji

    2011-01-01

    It is necessary to establish effective chemotherapy to improve the survival of patients with biliary tract cancer, because most of these patients are unsuitable candidates for surgery, and even patients undergoing curative surgery often have recurrence. Recently, the combination of cisplatin plus gemcitabine was reported to show survival benefits over gemcitabine alone in randomized clinical trials conducted in the United Kingdom and Japan. Thus, the combination of cisplatin plus gemcitabine is now recognized as the standard therapy for unresectable biliary tract cancer. One of the next issues that need to be addressed is whether molecular targeted agents might also be effective against biliary tract cancer. Although some targeted agents have been investigated as monotherapy for first-line chemotherapy, none were found to exert satisfactory efficacy. On the other hand, monoclonal antibodies such as bevacizumab and cetuximab have also been investigated in combination with a gemcitabine-based regimen and have been demonstrated to show promising activity. Furthermore, clinical trials using new targeted agents for biliary tract cancer are also proposed. This cancer is a relatively rare and heterogeneous tumor consisting of cholangiocarcinoma and gallbladder carcinoma. Therefore, a large randomized clinical trial is necessary to confirm the efficacy of chemotherapy, and international collaboration is important

  8. Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Huamani, Jessica; Fu, Allie; Hallahan, Dennis E.

    2006-01-01

    The tumor microenvironment, in particular, the tumor vasculature, as an important target for the cytotoxic effects of radiation therapy is an established paradigm for cancer therapy. We review the evidence that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated in endothelial cells exposed to ionizing radiation (IR) and is a molecular target for the development of novel radiation sensitizing agents. On the basis of this premise, several promising preclinical studies that targeted the inhibition of the PI3K/Akt activation as a potential method of sensitizing the tumor vasculature to the cytotoxic effects of IR have been conducted. An innovative strategy to guide cytotoxic therapy in tumors treated with radiation and PI3K/Akt inhibitors is presented. The evidence supports a need for further investigation of combined-modality therapy that involves radiation therapy and inhibitors of PI3K/Akt pathway as a promising strategy for improving the treatment of patients with cancer

  9. Reimbursement of targeted cancer therapies within 3 different European health care systems

    NARCIS (Netherlands)

    Mihajlović, Jovan; Dolk, Christiaan; Tolley, Keith; Simoens, Steven; Postma, Maarten J.

    2015-01-01

    PURPOSE: Targeted cancer therapies (TCTs) are drugs that specifically act on molecular targets within the cancer cell, causing its regression and/or destruction. Although TCTs offer clinically important gains in survival in one of the most challenging therapeutic areas, these gains are followed by

  10. 5alphaDH-DOC (5alpha-dihydro-deoxycorticosterone) activates androgen receptor in castration-resistant prostate cancer.

    Science.gov (United States)

    Uemura, Motohide; Honma, Seijiro; Chung, Suyoun; Takata, Ryo; Furihata, Mutsuo; Nishimura, Kazuo; Nonomura, Norio; Nasu, Yasutomo; Miki, Tsuneharu; Shuin, Taro; Fujioka, Tomoaki; Okuyama, Akihiko; Nakamura, Yusuke; Nakagawa, Hidewaki

    2010-08-01

    Prostate cancer often relapses during androgen-depletion therapy, even under the castration condition in which circulating androgens are drastically reduced. High expressions of androgen receptor (AR) and genes involved in androgen metabolism indicate a continued role for AR in castration-resistant prostate cancers (CRPCs). There is increasing evidence that some amounts of 5alpha-dihydrotestosterone (DHT) and other androgens are present sufficiently to activate AR within CRPC tissues, and enzymes involved in the androgen and steroid metabolism, such as 5alpha-steroid reductases, are activated in CRPCs. In this report, we screened eight natural 5alphaDH-steroids to search for novel products of 5alpha-steroid reductases, and identified 11-deoxycorticosterone (DOC) as a novel substrate for 5alpha-steroid reductases in CRPCs. 11-Deoxycorticosterone (DOC) and 5alpha-dihydro-deoxycorticosterone (5alphaDH-DOC) could promote prostate cancer cell proliferation through AR activation, and type 1 5alpha-steroid reductase (SRD5A1) could convert from DOC to 5alphaDH-DOC. Sensitive liquid chromatography-tandem mass spectrometric analysis detected 5alphaDH-DOC in some clinical CRPC tissues. These findings implicated that under an extremely low level of DHT, 5alphaDH-DOC and other products of 5alpha-steroid reductases within CRPC tissues might activate the AR pathway for prostate cancer cell proliferation and survival under castration.

  11. Molecular targeted therapy for advanced gastric cancer.

    Science.gov (United States)

    Kim, Jong Gwang

    2013-03-01

    Although medical treatment has been shown to improve quality of life and prolong survival, no significant progress has been made in the treatment of advanced gastric cancer (AGC) within the last two decades. Thus, the optimum standard first-line chemotherapy regimen for AGC remains debatable, and most responses to chemotherapy are partial and of short duration; the median survival is approximately 7 to 11 months, and survival at 2 years is exceptionally > 10%. Recently, remarkable progress in tumor biology has led to the development of new agents that target critical aspects of oncogenic pathways. For AGC, many molecular targeting agents have been evaluated in international randomized studies, and trastuzumab, an anti-HER-2 monoclonal antibody, has shown antitumor activity against HER-2-positive AGC. However, this benefit is limited to only ~20% of patients with AGC (patients with HER-2-positive AGC). Therefore, there remains a critical need for both the development of more effective agents and the identification of molecular predictive and prognostic markers to select those patients who will benefit most from specific chemotherapeutic regimens and targeted therapies.

  12. Choline kinase-alpha by regulating cell aggressiveness and drug sensitivity is a potential druggable target for ovarian cancer.

    Science.gov (United States)

    Granata, A; Nicoletti, R; Tinaglia, V; De Cecco, L; Pisanu, M E; Ricci, A; Podo, F; Canevari, S; Iorio, E; Bagnoli, M; Mezzanzanica, D

    2014-01-21

    Aberrant choline metabolism has been proposed as a novel cancer hallmark. We recently showed that epithelial ovarian cancer (EOC) possesses an altered MRS-choline profile, characterised by increased phosphocholine (PCho) content to which mainly contribute over-expression and activation of choline kinase-alpha (ChoK-alpha). To assess its biological relevance, ChoK-alpha expression was downmodulated by transient RNA interference in EOC in vitro models. Gene expression profiling by microarray analysis and functional analysis was performed to identify the pathway/functions perturbed in ChoK-alpha-silenced cells, then validated by in vitro experiments. In silenced cells, compared with control, we observed: (I) a significant reduction of both CHKA transcript and ChoK-alpha protein expression; (II) a dramatic, proportional drop in PCho content ranging from 60 to 71%, as revealed by (1)H-magnetic spectroscopy analysis; (III) a 35-36% of cell growth inhibition, with no evidences of apoptosis or modification of the main cellular survival signalling pathways; (IV) 476 differentially expressed genes, including genes related to lipid metabolism. Ingenuity pathway analysis identified cellular functions related to cell death and cellular proliferation and movement as the most perturbed. Accordingly, CHKA-silenced cells displayed a significant delay in wound repair, a reduced migration and invasion capability were also observed. Furthermore, although CHKA silencing did not directly induce cell death, a significant increase of sensitivity to platinum, paclitaxel and doxorubicin was observed even in a drug-resistant context. We showed for the first time in EOC that CHKA downregulation significantly decreased the aggressive EOC cell behaviour also affecting cells' sensitivity to drug treatment. These observations open the way to further analysis for ChoK-alpha validation as a new EOC therapeutic target to be used alone or in combination with conventional drugs.

  13. Spontaneous local alpha oscillations predict motion-induced blindness.

    Science.gov (United States)

    Händel, Barbara F; Jensen, Ole

    2014-11-01

    Bistable visual illusions are well suited for exploring the neuronal states of the brain underlying changes in perception. In this study, we investigated oscillatory activity associated with 'motion-induced blindness' (MIB), which denotes the perceptual disappearance of salient target stimuli when a moving pattern is superimposed on them (Bonneh et al., ). We applied an MIB paradigm in which illusory target disappearances would occur independently in the left and right hemifields. Both illusory and real target disappearance were followed by an alpha lateralization with weaker contralateral than ipsilateral alpha activity (~10 Hz). However, only the illusion showed early alpha lateralization in the opposite direction, which preceded the alpha effect present for both conditions and coincided with the estimated onset of the illusion. The duration of the illusory disappearance was further predicted by the magnitude of this early lateralization when considered over subjects. In the gamma band (60-80 Hz), we found an increase in activity contralateral relative to ipsilateral only after a real disappearance. Whereas early alpha activity was predictive of onset and length of the illusory percept, gamma activity showed no modulation in relation to the illusion. Our study demonstrates that the spontaneous changes in visual alpha activity have perceptual consequences. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host. PMID:22530882

  15. Targeted Therapy for Breast Cancer Prevention

    Science.gov (United States)

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  16. Targeting embryonic signaling pathways in cancer therapy.

    Science.gov (United States)

    Harris, Pamela Jo; Speranza, Giovanna; Dansky Ullmann, Claudio

    2012-01-01

    The embryonic signaling pathways (ESP), Hedgehog, Notch and Wnt, are critical for the regulation of normal stem cells and cellular development processes. They are also activated in the majority of cancers. ESP are operational in putative cancer stem cells (CSC), which drive initial tumorigenesis and sustain cancer progression and recurrence in non-CSC bulk subpopulations. ESP represent novel therapeutic targets. A variety of inhibitors and targeting strategies are being developed. This review discusses the rationale for targeting ESP for cancer treatment, as well as specific inhibitors under development; mainly focusing on those approaching clinical use and the challenges that lie ahead. The data sources utilized are several database search engines (PubMed, Google, Clinicaltrials.gov), and the authors' involvement in the field. CSC research is rapidly evolving. Expectations regarding their therapeutic targeting are rising quickly. Further definition of what constitutes a true CSC, proper validation of CSC markers, a better understanding of cross-talk among ESP and other pathways, and interactions with tumor non-CSC and the tumor microenvironment are needed. The appropriate patient population, the right clinical setting and combination strategies to test these therapies, as well as the proper pharmacodynamic markers to measure, need to be further established.

  17. MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha.

    Science.gov (United States)

    Bai, R; Zhao, A-Q; Zhao, Z-Q; Liu, W-L; Jian, D-M

    2015-02-01

    The chondrocytes, the resident cells of cartilage, are maintained and take effects in the whole life upon chronic hypoxic exposure, which hypoxia-inducible factor 1 alpha (HIF-1α) play pivotal roles in response to. Dysregulation of some microRNA (miRNAs) have also been identified to be involved in hypoxia-related physiologic and pathophysiologic responses in some tissues or cell lines. However, the mechanism of miRNAs reponse to hypoxia remain largely unknown in chondrocytes, including the microRNA-195 (miR-195). AIM To investigate the effects of microRNAs (miRNAs) and hypoxia-inducible factor 1 alpha (HIF-1α) on chondrocytes in physiologic environment. We compared the expression of miR-195 and HIF-1α mRNA on hypoxia with that on normoxia in ATDC 5 cells by qRT-PCR. Further experiments was performed to confirmed the relationships of miR-195 and HIF-1α by bioinformatics analysis and dual reporter gene assay. we also assessed the effect of miR-195 on apoptosis in hypoxic ATDC 5 cells by transfect with miR-195 mimics. It was found the downregulated miR-195 and upregulated HIF-1α were present in hypoxic ATDC 5 cells. miR-195 negatively regulated HIF-1α by targeting its 3'-untranslated region. Moreover, the founding indicated miR-195 greatly increased apoptosis and downregulated HIF-1α mRNA occurred simultaneously in hypoxic chondrocytes. We concluded that miR-195 induced apoptosis in hypoxic chondrocytes by directly targeting HIF-1α.

  18. Characterization of Hepatitis C Virus genotype 3a Hypervariable region 1 in patients achieved rapid virological response to alpha interferon and Ribavirin Combination therapy

    Directory of Open Access Journals (Sweden)

    Badar Sadaf

    2011-05-01

    Full Text Available Abstract Background Hepatitis C virus roots a chronic liver disease. Currently approved treatment strategy includes administration of alpha interferon and ribavirin combined therapy for 24-48 weeks. One of the predictor of sustained virological response is an early virological response to treatment characterized as rapid response. Hyper variable region 1 (HVR1 of E2 protein is responsible for viral entry and acts as a target for neutralizing antibodies. Any mutation in this region would effect virus interaction with target cell and viral persistence. Methods Thirty one clones of six pre-treatment samples subjected to combination therapy were investigated. Three of the patients were rapid responders (R1, R2 and R3 and two were breakthrough responders (BT1 and BT2. Envelope 2 gene was amplified, cloned and sequenced. Amino acid substitution, frequency, composition and antigenic properties of HVR 1 of E2 protein were studied. Results In both rapid responders (R.R (14 amino acid sites and breakthrough responders (BT.R (13 amino acid sites half of the amino acid sites were either conserved or resistant to any physiochemical change due to amino acid substitution. It also indicated that average composition of hydrophilic and basic amino acids were comparatively lower in rapid responders than other samples affecting probable interaction of virus with target cells. A central non antigenic region was constant among the breakthrough responders but differed in length significantly among rapid responders reflecting the adaptive nature of HVR1 to the immune response. Conclusions We observed that although HVR1is quite variable region in HCV 3a patients responding differently to treatment it still maintains its physiochemical properties for its proper functioning and viability.

  19. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy.

    Science.gov (United States)

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Majidi, Jafar

    2018-09-01

    Over the recent decades, the use of antibody-drug conjugates (ADCs) has led to a paradigm shift in cancer chemotherapy. Antibody-based treatment of various human tumors has presented dramatic efficacy and is now one of the most promising strategies used for targeted therapy of patients with a variety of malignancies, including hematological cancers and solid tumors. Monoclonal antibodies (mAbs) are able to selectively deliver cytotoxic drugs to tumor cells, which express specific antigens on their surface, and has been suggested as a novel category of agents for use in the development of anticancer targeted therapies. In contrast to conventional treatments that cause damage to healthy tissues, ADCs use mAbs to specifically attach to antigens on the surface of target cells and deliver their cytotoxic payloads. The therapeutic success of future ADCs depends on closely choosing the target antigen, increasing the potency of the cytotoxic cargo, improving the properties of the linker, and reducing drug resistance. If appropriate solutions are presented to address these issues, ADCs will play a more important role in the development of targeted therapeutics against cancer in the next years. We review the design of ADCs, and focus on how ADCs can be exploited to overcome multiple drug resistance (MDR). © 2018 Wiley Periodicals, Inc.

  20. Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: Emerging opportunities challenges

    Energy Technology Data Exchange (ETDEWEB)

    Bakht, Martin K.; Oh, So Won; Youn, Hye Won; Cheon, Gi Jeong; Kwak, Cheol; Kang, Keon Wook [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-09-15

    Prostate-specific membrane antigen (PSMA) is an attractive target for both diagnosis and therapy because of its high expression in the vast majority of prostate cancers. Development of small molecules for targeting PSMA is important for molecular imaging and radionuclide therapy of prostate cancer. Recent evidence implies that androgen-deprivation therapy increase PSMA-ligand uptake in some cases. The reported upregulations in PSMA-ligand uptake after exposure to second-generation antiandrogens such as enzalutamide and abiraterone might disturb PSMA-targeted imaging for staging and response monitoring of patients undergoing treatment with antiandrogen-based drugs. On the other hand, second-generation antiandrogens are emerging as potential endoradio-/chemosensitizers. Therefore, the enhancement of the therapeutic efficiency of PSMA-targeted theranostic methods can be listed as a new capability of antiandrogens. In this manuscript, we will present what is currently known about the mechanism of increasing PSMA uptake following exposure to antiandrogens. In addition, we will discuss whether these above-mentioned antiandrogens could play the role of endoradio-/chemosensitizers in combination with the well-established PSMA-targeted methods for pre-targeting of prostate cancer.

  1. Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: Emerging opportunities challenges

    International Nuclear Information System (INIS)

    Bakht, Martin K.; Oh, So Won; Youn, Hye Won; Cheon, Gi Jeong; Kwak, Cheol; Kang, Keon Wook

    2017-01-01

    Prostate-specific membrane antigen (PSMA) is an attractive target for both diagnosis and therapy because of its high expression in the vast majority of prostate cancers. Development of small molecules for targeting PSMA is important for molecular imaging and radionuclide therapy of prostate cancer. Recent evidence implies that androgen-deprivation therapy increase PSMA-ligand uptake in some cases. The reported upregulations in PSMA-ligand uptake after exposure to second-generation antiandrogens such as enzalutamide and abiraterone might disturb PSMA-targeted imaging for staging and response monitoring of patients undergoing treatment with antiandrogen-based drugs. On the other hand, second-generation antiandrogens are emerging as potential endoradio-/chemosensitizers. Therefore, the enhancement of the therapeutic efficiency of PSMA-targeted theranostic methods can be listed as a new capability of antiandrogens. In this manuscript, we will present what is currently known about the mechanism of increasing PSMA uptake following exposure to antiandrogens. In addition, we will discuss whether these above-mentioned antiandrogens could play the role of endoradio-/chemosensitizers in combination with the well-established PSMA-targeted methods for pre-targeting of prostate cancer

  2. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially...... interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...... lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes....

  3. Evaluation of pGL1-TNF-alpha therapy in combination with radiation

    Science.gov (United States)

    Li, J.; Andres, M. L.; Fodor, I.; Nelson, G. A.; Gridley, D. S.

    1998-01-01

    Long-term control of high-grade brain tumors is rarely achieved with current therapeutic regimens. In this study a new plasmid-based human tumor necrosis factor-alpha (TNF-alpha) expression vector was synthesized (pGL1-TNF-alpha) and evaluated together with radiation in the aggressive, rapidly growing C6 rat glioma model. pGL1-TNF-alpha was successfully transfected into C6 cells in vitro using a cationic polyamine method. Expression was detected up to 7 days and averaged 0.4 ng of TNF-alpha in the culture medium from 1x10(5) cells. The expressed protein was biologically functional, as evidenced by growth inhibition of L929, a TNF-alpha-susceptible cell line. Using fluorescence-labeled monoclonal antibodies and laser scanning cytometry, we confirmed that both the P55 and P75 receptors for TNF-alpha were present on the C6 cell membrane. However, the receptors were present at low density and P55 was expressed more than the P75 receptor. These findings were in contrast to results obtained with TNF-alpha-susceptible L929 cells. Tests in athymic mice showed that pGL1-TNF-alpha administered intratumorally 16-18 h before radiation (each modality given three times) significantly inhibited C6 tumor progression (Palpha alone did not slow tumor growth and radiation alone had little effect on tumor growth. These results indicate that pGL1-TNF-alpha has potential to augment the antitumor effects of radiation against a tumor type that is virtually incurable.

  4. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    Science.gov (United States)

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  5. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; Chen Yiru; He Wenjie; Hong Poda; Yu, Dah-Shyong; Domb, Abraham J.

    2013-01-01

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe 2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  6. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@yahoo.com [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Chen Yiru [National Yang-Ming University, Department of Biomedical Engineering (China); He Wenjie; Hong Poda [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem (Israel)

    2013-01-15

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe{sup 2+} solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  7. Targeted therapies for diarrhea-predominant irritable bowel syndrome

    Science.gov (United States)

    Olden, Kevin W

    2012-01-01

    Irritable bowel syndrome (IBS) causes gastrointestinal symptoms such as abdominal pain, bloating, and bowel pattern abnormalities, which compromise patients’ daily functioning. Common therapies address one or two IBS symptoms, while others offer wider symptom control, presumably by targeting pathophysiologic mechanisms of IBS. The aim of this targeted literature review was to capture clinical trial reports of agents receiving the highest recommendation (Grade 1) for treatment of IBS from the 2009 American College of Gastroenterology IBS Task Force, with an emphasis on diarrhea-predominant IBS. Literature searches in PubMed captured articles detailing randomized placebo-controlled trials in IBS/diarrhea-predominant IBS for agents receiving Grade I (strong) 2009 American College of Gastroenterology IBS Task Force recommendations: tricyclic antidepressants, nonabsorbable antibiotics, and the 5-HT3 receptor antagonist alosetron. Studies specific for constipation-predominant IBS were excluded. Tricyclic antidepressants appear to improve global IBS symptoms but have variable effects on abdominal pain and uncertain tolerability; effects on stool consistency, frequency, and urgency were not adequately assessed. Nonabsorbable antibiotics show positive effects on global symptoms, abdominal pain, bloating, and stool consistency but may be most efficacious in patients with altered intestinal microbiota. Alosetron improves global symptoms and abdominal pain and normalizes bowel irregularities, including stool frequency, consistency, and fecal urgency. Both the nonabsorbable antibiotic rifaximin and the 5-HT3 receptor antagonist alosetron improve quality of life. Targeted therapies provide more complete relief of IBS symptoms than conventional agents. Familiarization with the quantity and quality of evidence of effectiveness can facilitate more individualized treatment plans for patients with this heterogeneous disorder. PMID:22754282

  8. Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behçet's disease.

    Science.gov (United States)

    Lee, Kwang Hoon; Chung, Hae-Shin; Kim, Hyoung Sup; Oh, Sang-Ho; Ha, Moon-Kyung; Baik, Ja-Hyun; Lee, Sungnack; Bang, Dongsik

    2003-07-01

    To identify and recombine a protein of the human dermal microvascular endothelial cell (HDMEC) that specifically reacts with anti-endothelial cell antibody (AECA) in the serum of patients with Behçet's disease (BD), and to evaluate the usefulness of this protein in BD. The proteomics technique, with 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry, was used to identify and recombine HDMEC antigen. Western blotting and enzyme-linked immunosorbent assay (ELISA) of recombinant protein isolated by gene cloning were performed on serum from healthy controls, patients with BD, and patients with other rheumatic diseases (rheumatoid arthritis, systemic lupus erythematosus, and Wegener's granulomatosis). Eighteen of 40 BD patients had serum IgM antibody to HDMEC antigen. The purified protein that reacted with AECA in BD patient sera was found to be alpha-enolase by 2-dimensional gel electrophoresis followed by immunoblotting and MALDI-TOF mass spectrometry. Recombinant alpha-enolase protein was isolated and refined by gene cloning. On Western blots, AECA-positive IgM from the sera of patients with active BD reacted strongly with recombinant human alpha-enolase. BD patient sera positive for anti-alpha-enolase did not react with human gamma-enolase. On dot-blotting, reactivity to human alpha-enolase was detected only in the IgM-positive group. Fifteen of the 18 AECA-positive sera that were positive for the HDMEC antigen showed reactivity to recombinant alpha-enolase IgM antibody by ELISA. The alpha-enolase protein is the target protein of serum AECA in BD patients. This is the first report of the presence of IgM antibodies to alpha-enolase in endothelial cells from the serum of BD patients. Although further studies relating this protein to the pathogenesis of BD will be necessary, alpha-enolase and its antibody may prove useful in the development of new diagnostic and treatment modalities in BD.

  9. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    International Nuclear Information System (INIS)

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young; Chun, Sung Hak; Han, Jeong Yun; Kim, Sung Dae; Lee, Janet; Lee, Chang-Woo; Yang, Kwangmo; Lee, Chang Geun

    2013-01-01

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24 − /CD44 + ) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer

  10. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Yaozhong Hu

    2017-11-01

    Full Text Available The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs. The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs. Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as

  11. Anti-tumor necrosis factor-alpha therapies attenuate adaptive arteriogenesis in the rabbit

    NARCIS (Netherlands)

    Grundmann, Sebastian; Hoefer, Imo; Ulusans, Susann; van Royen, Niels; Schirmer, Stephan H.; Ozaki, C. Keith; Bode, Christoph; Piek, Jan J.; Buschmann, Ivo

    2005-01-01

    The specific antagonists of tumor necrosis factor-alpha (TNF-alpha), infliximab and etanercept, are established therapeutic agents for inflammatory diseases such as rheumatoid arthritis and Crohn's disease. Although the importance of TNF-alpha in chronic inflammatory diseases is well established,

  12. Combined analgesics in (headache pain therapy: shotgun approach or precise multi-target therapeutics?

    Directory of Open Access Journals (Sweden)

    Fiebich Bernd L

    2011-03-01

    Full Text Available Abstract Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix" are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA, paracetamol (acetaminophen and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden

  13. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    Science.gov (United States)

    2011-01-01

    Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden the array of therapeutic

  14. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    Science.gov (United States)

    Straube, Andreas; Aicher, Bernhard; Fiebich, Bernd L; Haag, Gunther

    2011-03-31

    Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.As an example the fixed-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness

  15. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  16. TARGETED NANOPARTICLES FOR PEDIATRIC LEUKEMIA THERAPY

    Directory of Open Access Journals (Sweden)

    Riyaz eBasha

    2014-05-01

    Full Text Available The two major forms of leukemia, acute lymphoblastic leukemia (ALL and acute myeloid leukemia (AML account for about one third of the malignancies diagnosed in children. Despite the marked successes in ALL and AML treatment, concerns remain regarding the occurrence of resistant disease in subsets of patients the residual effects of therapy that often persist for decades beyond the cessation of treatment. Therefore, new approaches are needed to reduce or to avoid off target toxicities, associated with chemotherapy and their long term residual effects. Recently, nanotechnology has been employed to enhance cancer therapy, via improving the bioavailability and therapeutic efficacy of anti-cancer agents. While in the last several years, numerous review articles appeared detailing the size, composition, assembly and performance evaluation of different types of drug carrying nanoparticles, the description and evaluation of lipoprotein based drug carriers have been conspicuously absent from most of these major reviews. The current review focuses on such information regarding nanoparticles with an emphasis on high density lipoprotein (HDL-based drug delivery systems to examine their potential role(s in the enhanced treatment of children with leukemia.

  17. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    Science.gov (United States)

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  19. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A

    2011-02-01

    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  20. Targeted therapy for localized non-small-cell lung cancer: a review

    Directory of Open Access Journals (Sweden)

    Paleiron N

    2016-07-01

    Full Text Available Nicolas Paleiron,1 Olivier Bylicki,2 Michel André,1 Emilie Rivière,1 Frederic Grassin,1 Gilles Robinet,3 Christos Chouaïd4 On behalf of the GFPC Group 1Chest Department, HIA Clermont Tonnerre, Brest, 2Chest Department, HIA Percy, Clamart, 3Chest Department, CHU de Brest, Brest, 4GRC OncoEst, Université Paris XII, Paris, France Abstract: Targeted therapies have markedly improved the management of patients with advanced non-small-cell lung cancer (NSCLC, but their efficacy in localized NSCLC is less well established. The aim of this review is to analyze trials of targeted therapies in localized NSCLC. In patients with wild-type EGFR, tyrosine kinase inhibitors have shown no efficacy in Phase III trials. Few data are available for EGFR-mutated localized NSCLC, as routine biological profiling is not recommended. Available studies are small, often retrospectives, and/or conducted in a single-center making it difficult to draw firm conclusions. Ongoing prospective Phase III trials are comparing adjuvant tyrosine kinase inhibitor administration versus adjuvant chemotherapy. By analogy with the indication of bevacizumab in advanced NSCLC, use of antiangiogenic agents in the perioperative setting is currently restricted to nonsquamous NSCLC. Several trials of adjuvant or neoadjuvant bevacizumab are planned or ongoing, but for the moment there is no evidence of efficacy. Data on perioperative use of biomarkers in early-stage NSCLC come mainly from small, retrospective, uncontrolled studies. Assessment of customized adjuvant or neoadjuvant therapy in localized NSCLC (with or without oncogenic driver mutations is a major challenge. Keywords: targeted therapy, non-small-cell lung cancer, adjuvant, neo-adjuvant, surgery 

  1. The development of molecularly targeted anticancer therapies: an Eli Lilly and Company perspective.

    Science.gov (United States)

    Perry, William L; Weitzman, Aaron

    2005-03-01

    The ability to identify activated pathways that drive the growth and progression of cancer and to develop specific and potent inhibitors of key proteins in these pathways promises to dramatically change the treatment of cancer: A patient's cancer could be characterized at the molecular level and the information used to select the best treatment options. The development of successful therapies not only requires extensive target validation, but also new approaches to evaluating drug efficacy in animal models and in the clinic compared to the development of traditional cytotoxic agents. This article highlights Eli Lilly and Company's approach to developing targeted therapies, from target identification and validation through evaluation in the clinic. A selection of drugs in the Lilly Oncology pipeline is also discussed.

  2. Oncolytic viral therapy: targeting cancer stem cells

    Directory of Open Access Journals (Sweden)

    Smith TT

    2014-02-01

    Full Text Available Tyrel T Smith,1 Justin C Roth,1 Gregory K Friedman,1 G Yancey Gillespie2 1Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA Abstract: Cancer stem cells (CSCs are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression. Keywords: oncolytic virotherapy, cancer stem cell niche

  3. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hanna-Riikka Teppo

    2017-01-01

    Full Text Available Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.

  4. A Surgical Perspective on Targeted Therapy of Hepatocellular Carcinoma

    Science.gov (United States)

    Faltermeier, Claire; Busuttil, Ronald W.; Zarrinpar, Ali

    2015-01-01

    Hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide, is difficult to treat and highly lethal. Since HCC is predominantly diagnosed in patients with cirrhosis, treatment planning must consider both the severity of liver disease and tumor burden. To minimize the impact to the patient while treating the tumor, techniques have been developed to target HCC. Anatomical targeting by surgical resection or locoregional therapies is generally reserved for patients with preserved liver function and minimal to moderate tumor burden. Patients with decompensated cirrhosis and small tumors are optimal candidates for liver transplantation, which offers the best chance of long-term survival. Yet, only 20%–30% of patients have disease amenable to anatomical targeting. For the majority of patients with advanced HCC, chemotherapy is used to target the tumor biology. Despite these treatment options, the five-year survival of patients in the United States with HCC is only 16%. In this review we provide a comprehensive overview of current approaches to target HCC. We also discuss emerging diagnostic and prognostic biomarkers, novel therapeutic targets identified by recent genomic profiling studies, and potential applications of immunotherapy in the treatment of HCC. PMID:28943622

  5. A Surgical Perspective on Targeted Therapy of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Claire Faltermeier

    2015-09-01

    Full Text Available Hepatocellular carcinoma (HCC, the second leading cause of cancer deaths worldwide, is difficult to treat and highly lethal. Since HCC is predominantly diagnosed in patients with cirrhosis, treatment planning must consider both the severity of liver disease and tumor burden. To minimize the impact to the patient while treating the tumor, techniques have been developed to target HCC. Anatomical targeting by surgical resection or locoregional therapies is generally reserved for patients with preserved liver function and minimal to moderate tumor burden. Patients with decompensated cirrhosis and small tumors are optimal candidates for liver transplantation, which offers the best chance of long-term survival. Yet, only 20%–30% of patients have disease amenable to anatomical targeting. For the majority of patients with advanced HCC, chemotherapy is used to target the tumor biology. Despite these treatment options, the five-year survival of patients in the United States with HCC is only 16%. In this review we provide a comprehensive overview of current approaches to target HCC. We also discuss emerging diagnostic and prognostic biomarkers, novel therapeutic targets identified by recent genomic profiling studies, and potential applications of immunotherapy in the treatment of HCC.

  6. Targeted therapy of multiple myeloma.

    Science.gov (United States)

    Dolloff, Nathan G; Talamo, Giampaolo

    2013-01-01

    Multiple myeloma (MM) is a plasma cell malignancy and the second most common hematologic cancer. MM is characterized by the accumulation of malignant plasma cells within the bone marrow, and presents clinically with a broad range of symptoms, including hypercalcemia, renal insufficiency, anemia, and lytic bone lesions. MM is a heterogeneous disease associated with genomic instability, where patients may express multiple genetic abnormalities that affect several oncogenic pathways. Commonly detected genetic aberrations are translocations involving immunoglobulin heavy chain (IgH) switch regions (chromosome 14q32) and oncogenes such as c-maf [t(14:16)], cyclin D1 [t(11:14)], and FGFR3/MMSET [t(4:14)]. Advances in the basic understanding of MM and the development of novel agents, such as the immunomodulatory drugs (IMiDs) thalidomide and lenalidomide and the proteasome inhibitor bortezomib, have increased therapeutic response rates and prolonged patient survival. Despite these advances MM remains incurable in the majority of patients, and it is therefore critical to identify additional therapeutic strategies and targets for its treatment. In this chapter, we review the underlying genetic components of MM and discuss the results of recent clinical trials that demonstrate the effectiveness of targeted agents in the management of MM. In addition, we discuss experimental therapies that are currently in clinical development along with their molecular rationale in the treatment of MM.

  7. alpha-Ketoglutarate application in hemodialysis patients improves amino acid metabolism.

    Science.gov (United States)

    Riedel, E; Nündel, M; Hampl, H

    1996-01-01

    In hemodialysis patients, free amino acids and alpha-ketoacids in plasma were determined by fluorescence HPLC to assess the effect of alpha-ketoglutarate administration in combination with the phosphate binder calcium carbonate on the amino acid metabolism. During 1 year of therapy in parallel to inorganic phosphate, urea in plasma decreased significantly, histidine, arginine and proline as well as branched chain alpha-ketoacids, in particular alpha-ketoisocaproate, a regulator of protein metabolism, increased. Thus, administration of alpha-ketoglutarate with calcium carbonate effectively improves amino acid metabolism in hemodialysis patients as it decreases hyperphosphatemia.

  8. Molecular targeted therapy in ovarian cancer: what is on the horizon?

    LENUS (Irish Health Repository)

    Kalachand, Roshni

    2012-02-01

    Over the past two decades, empirical optimization of cytotoxic chemotherapy combinations and surgical debulking procedures have improved outcomes and survival in epithelial ovarian cancer. Yet, this disease remains the fifth leading cause of cancer-related deaths in the US, as cure rates seem to have reached a plateau at approximately 20% with conventional chemotherapy. Novel high-throughput genomic and proteomic analyses have improved the molecular understanding of ovarian carcinogenesis, thereby providing a vast array of new potential drug targets with complex signalling interactions. In order to yield the most significant impact on disease outcome, it is necessary to carefully select, and subsequently target, the driving molecular pathway(s) within a tumour or tumour subtype, which are most likely to correspond to high-frequency mutations and genomic aberrations. The identification of biomarkers predictive of response to targeted therapy is essential to avoid poor responses to potentially useful drugs in unselected trial populations. With some promising, albeit early, phase III data on the angiogenesis inhibitor bevacizumab, exciting new opportunities lie ahead with the ultimate goal of personalizing therapies to individual tumour profiles.

  9. Molecular Targeted Therapy in Ovarian Cancer: What is on the Horizon?

    LENUS (Irish Health Repository)

    Kalachand, Roshni

    2011-05-28

    Over the past two decades, empirical optimization of cytotoxic chemotherapy combinations and surgical debulking procedures have improved outcomes and survival in epithelial ovarian cancer. Yet, this disease remains the fifth leading cause of cancer-related deaths in the US, as cure rates seem to have reached a plateau at approximately 20% with conventional chemotherapy. Novel high-throughput genomic and proteomic analyses have improved the molecular understanding of ovarian carcinogenesis, thereby providing a vast array of new potential drug targets with complex signalling interactions. In order to yield the most significant impact on disease outcome, it is necessary to carefully select, and subsequently target, the driving molecular pathway(s) within a tumour or tumour subtype, which are most likely to correspond to high-frequency mutations and genomic aberrations. The identification of biomarkers predictive of response to targeted therapy is essential to avoid poor responses to potentially useful drugs in unselected trial populations. With some promising, albeit early, phase III data on the angiogenesis inhibitor bevacizumab, exciting new opportunities lie ahead with the ultimate goal of personalizing therapies to individual tumour profiles.

  10. Neutrophils, a candidate biomarker and target for radiation therapy?

    Science.gov (United States)

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-11-01

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  11. ATP Synthase, a Target for Dementia and Aging?

    Science.gov (United States)

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2018-02-01

    Advancing age is the biggest risk factor for development for the major life-threatening diseases in industrialized nations accounting for >90% of deaths. Alzheimer's dementia (AD) is among the most devastating. Currently approved therapies fail to slow progression of the disease, providing only modest improvements in memory. Recently reported work describes mechanistic studies of J147, a promising therapeutic molecule previously shown to rescue the severe cognitive deficits exhibited by aged, transgenic AD mice. Apparently, J147 targets the mitochondrial alpha-F1-ATP synthase (ATP5A). Modest inhibition of the ATP synthase modulates intracellular calcium to activate AMP-activated protein kinase to inhibit mammalian target of rapamycin, a known mechanism of lifespan extension from worms to mammals.

  12. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    Science.gov (United States)

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Internal and External Triggering Mechanism of "Smart" Nanoparticle-Based DDSs in Targeted Tumor Therapy.

    Science.gov (United States)

    Qiana, Xian-Ling; Li, Jun; Wei, Ran; Lin, Hui; Xiong, Li-Xia

    2018-05-09

    Anticancer chemotherapeutics have a lot of problems via conventional drug delivery systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: "passive", "active", and "smart" targeting. To summarize the mechanisms of various internal and external "smart" stimulating factors on the basis of findings from in vivo and in vitro studies. A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), "smart" DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. In this review article, we summarize and classify the internal and external triggering mechanism of "smart" nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy.

    Science.gov (United States)

    Das, Manasi; Duan, Wei; Sahoo, Sanjeeb K

    2015-02-01

    The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy. This study investigated the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. It was concluded that the studied multifunctional targeted nanoparticle may become a viable and efficient approach in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Intermittent targeted therapies and stochastic evolution in patients affected by chronic myeloid leukemia

    Science.gov (United States)

    Pizzolato, N.; Persano Adorno, D.; Valenti, D.; Spagnolo, B.

    2016-05-01

    Front line therapy for the treatment of patients affected by chronic myeloid leukemia (CML) is based on the administration of tyrosine kinase inhibitors, namely imatinib or, more recently, axitinib. Although imatinib is highly effective and represents an example of a successful molecular targeted therapy, the appearance of resistance is observed in a proportion of patients, especially those in advanced stages. In this work, we investigate the appearance of resistance in patients affected by CML, by modeling the evolutionary dynamics of cancerous cell populations in a simulated patient treated by an intermittent targeted therapy. We simulate, with the Monte Carlo method, the stochastic evolution of initially healthy cells to leukemic clones, due to genetic mutations and changes in their reproductive behavior. We first present the model and its validation with experimental data by considering a continuous therapy. Then, we investigate how fluctuations in the number of leukemic cells affect patient response to the therapy when the drug is administered with an intermittent time scheduling. Here we show that an intermittent therapy (IT) represents a valid choice in patients with high risk of toxicity, despite an associated delay to the complete restoration of healthy cells. Moreover, a suitably tuned IT can reduce the probability of developing resistance.

  16. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  17. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  18. Targeted radionuclide therapy for neuroendocrine tumours: principles and application.

    Science.gov (United States)

    Druce, Maralyn R; Lewington, Val; Grossman, Ashley B

    2010-01-01

    Neuroendocrine tumours comprise a group of neoplasms with variable clinical behaviour. Their growth and spread is often very slow and initially asymptomatic, and thus they are often metastatic at the time of diagnosis and incurable by surgery. An exciting therapeutic strategy for cytoreduction, both for stabilisation of tumour growth and inhibition of hormone production, is the use of targeted radionuclide therapy. Evidence from large-scale, randomised, placebo-controlled trials is very difficult to obtain in these rare diseases, but current data appear promising. It is timely to review the principles underlying the use of these therapies, together with the clinical outcomes to date and potential directions for future research. Copyright 2009 S. Karger AG, Basel.

  19. Pemetrexed With Platinum Combination as a Backbone for Targeted Therapy in Non-Small-Cell Lung Cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E; Borghaei, Hossein; Barker, Scott S; Treat, Joseph Anthony; Obasaju, Coleman

    2016-01-01

    Standard platinum-based chemotherapy combinations for advanced non-small-cell lung cancer (NSCLC) have reached a plateau in terms of the survival benefit they offer for patients. In addition, the emerging clinical trend of tailored treatment based on patient characteristics has led to the development of therapeutic strategies that target specific cancer-related molecular pathways, including epidermal growth factor receptor (EGFR), angiogenesis, and anaplastic lymphoma kinase inhibitors. Current research is focused on combining targeted therapy with platinum-based chemotherapy in an endeavor to achieve an additional benefit in specific patient populations. Currently, pemetrexed is indicated for use in the first-line, maintenance, and second-line settings for the treatment of nonsquamous NSCLC. The combination of pemetrexed and cisplatin is well tolerated and is the approved standard first-line therapy. Thus, the pemetrexed-platinum backbone provides an attractive option for combination with targeted therapies. This review aims to summarize the current knowledge and future prospects of the use of pemetrexed-platinum as a backbone for combination with targeted therapies for NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Drug design with Cdc7 kinase: a potential novel cancer therapy target

    Directory of Open Access Journals (Sweden)

    Masaaki Sawa

    2008-11-01

    Full Text Available Masaaki Sawa1, Hisao Masai21Carna Biosciences, Inc., Kobe, Japan; 2Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, JapanAbstract: Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 of less than 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.Keywords: Cdc7 kinase, cell cycle, replication fork, genome stability, DNA damages, ATP-binding pocket, kinase inhibitor

  1. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies

    Directory of Open Access Journals (Sweden)

    Ander Abarrategi

    2016-01-01

    Full Text Available Osteosarcoma (OS is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.

  2. Tabletted guar gum microspheres of piroxicam for targeted adjuvant therapy for colonic adenocarcinomas.

    Science.gov (United States)

    Vats, Anima; Pathak, Kamla

    2012-11-01

    In recent years, nonsteroidal anti-inflammatory drugs have been found to be cogent as an adjuvant therapeutic agent in mitigating colorectal cancer. Thus, this present investigation was aimed to formulate an oral, targeted tablet of piroxicam microspheres for sustained and targeted adjuvant therapy for colonic adenocarcinomas. Crosslinked guar gum microspheres of piroxicam were directly compressed into matrix tablet and coated with Eudragit S100. The optimized tablet that displayed 0% release in simulated gastric fluid, 15% in simulated intestinal fluid and 97.1% in simulated colonic fluid underwent roentgenographic study in rabbits to check its safe transit to the colon. x-ray images revealed intactness of the tablet until it reached the colon where the tablet matrix eroded. The designed, conceptual formulation emerged as potential carrier for targeted adjuvant therapy of piroxicam.

  3. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including

  4. New Targets for End-Stage Chronic Kidney Disease Therapy

    Directory of Open Access Journals (Sweden)

    Prakoura Niki

    2015-05-01

    Full Text Available Severe forms of chronic kidney disease can lead to a critical, end-stage condition, requiring renal replacement therapy, which may involve a form of dialysis or renal transplantation. Identification and characterization of novel markers and/or targets of therapy that could be applied in these critically ill patients remains the focus of the current research in the field of critical care medicine and has been the objective of our studies for some years past. To this end, we used models of renal vascular disease, Ang II, L-NAME or mice overexpressing renin, treated with AT1 antagonists at different stages of progression, to create cohorts of animals during progression, reversal or escape from therapy. Transcriptomic analysis and comparisons were performed and genes were selected according to the following criteria: a not previously described in the kidney, b highly upregulated during progression and returning to the normal levels during reversal, and c producing proteins that are either circulating or membrane receptors.

  5. Low-Cost alpha Alane for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Tibor [Ardica Technologies, San Francisco, CA (United States); Petrie, Mark [SRI International, Menlo Park, CA (United States); Crouch-Baker, Steven [SRI International, Menlo Park, CA (United States); Fong, Henry [SRI International, Menlo Park, CA (United States)

    2017-10-10

    This project was directed towards the further development of the Savannah River National Laboratory (SRNL) lab-scale electrochemical synthesis of the hydrogen storage material alpha-alane and Ardica Technologies-SRI International (SRI) chemical downstream processes that are necessary to meet DoE cost metrics and transition alpha-alane synthesis to an industrial scale. Ardica has demonstrated the use of alpha-alane in a fuel-cell system for the U.S. Army WFC20 20W soldier power system that has successfully passed initial field trials with individual soldiers. While alpha-alane has been clearly identified as a desirable hydrogen storage material, cost-effective means for its production and regeneration on a scale of use applicable to the industry have yet to be established. We focused on three, principal development areas: 1. The construction of a comprehensive engineering techno-economic model to establish the production costs of alpha-alane by both electrochemical and chemical routes at scale. 2. The identification of critical, cost-saving design elements of the electrochemical cell and the quantification of the product yields of the primary electrochemical process. A moving particle-bed reactor design was constructed and operated. 3. The experimental quantification of the product yields of candidate downstream chemical processes necessary to produce alpha-alane to complete the most cost-effective overall manufacturing process. Our techno-economic model shows that under key assumptions most 2015 and 2020 DOE hydrogen storage system cost targets for low and medium power can be achieved using the electrochemical alane synthesis process. To meet the most aggressive 2020 storage system cost target, $1/g, our model indicates that 420 metric tons per year (MT/y) production of alpha-alane is required. Laboratory-scale experimental work demonstrated that the yields of two of the three critical component steps within the overall “electrochemical process” were

  6. Emerging Glycolysis Targeting and Drug Discovery from Chinese Medicine in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Zhiyu Wang

    2012-01-01

    Full Text Available Molecular-targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells have different metabolic properties from normal cells. Normal cells mostly rely upon the process of mitochondrial oxidative phosphorylation to produce energy whereas cancer cells have developed an altered metabolism that allows them to sustain higher proliferation rates. Cancer cells could predominantly produce energy by glycolysis even in the presence of oxygen. This alternative metabolic characteristic is known as the “Warburg Effect.” Although the exact mechanisms underlying the Warburg effect are unclear, recent progress indicates that glycolytic pathway of cancer cells could be a critical target for drug discovery. With a long history in cancer treatment, traditional Chinese medicine (TCM is recognized as a valuable source for seeking bioactive anticancer compounds. A great progress has been made to identify active compounds from herbal medicine targeting on glycolysis for cancer treatment. Herein, we provide an overall picture of the current understanding of the molecular targets in the cancer glycolytic pathway and reviewed active compounds from Chinese herbal medicine with the potentials to inhibit the metabolic targets for cancer treatment. Combination of TCM with conventional therapies will provide an attractive strategy for improving clinical outcome in cancer treatment.

  7. HER3 signaling and targeted therapy in cancer

    Directory of Open Access Journals (Sweden)

    Rosalin Mishra

    2018-05-01

    Full Text Available ERBB family members including epidermal growth factor receptor (EGFR also known as HER1, ERBB2/HER2/Neu, ERBB3/HER3 and ERBB4/HER4 are aberrantly activated in multiple cancers and hence serve as drug targets and biomarkers in modern precision therapy. The therapeutic potential of HER3 has long been underappreciated, due to impaired kinase activity and relatively low expression in tumors. However, HER3 has received attention in recent years as it is a crucial heterodimeric partner for other EGFR family members and has the potential to regulate EGFR/HER2-mediated resistance. Upregulation of HER3 is associated with several malignancies where it fosters tumor progression via interaction with different receptor tyrosine kinases (RTKs. Studies also implicate HER3 contributing significantly to treatment failure, mostly through the activation of PI3K/AKT, MAPK/ERK and JAK/STAT pathways. Moreover, activating mutations in HER3 have highlighted the role of HER3 as a direct therapeutic target. Therapeutic targeting of HER3 includes abrogating its dimerization partners’ kinase activity using small molecule inhibitors (lapatinib, erlotinib, gefitinib, afatinib, neratinib or direct targeting of its extracellular domain. In this review, we focus on HER3-mediated signaling, its role in drug resistance and discuss the latest advances to overcome resistance by targeting HER3 using mono- and bispecific antibodies and small molecule inhibitors.

  8. Rational Design of Iron Oxide Nanoparticles as Targeted Nanomedicines for Cancer Therapy

    Science.gov (United States)

    Kievit, Forrest M.

    2011-07-01

    Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables non-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. This dissertation is aimed at development of SPION-based nanomedicines to overcome the current limitations in cancer therapy. These limitations include non-specificity of therapy which can harm healthy tissue, the difficulty in delivering nucleic acids for gene therapy, the formation of drug resistance, and the inability to detect and treat micrometastases. First, a SPION-based non-viral gene delivery vehicle was developed through functionalization of the SPION core with a co-polymer designed to provide stable binding of DNA and low toxicity which showed excellent gene delivery in vitro and in vivo. This SPION-based non-viral gene delivery vehicle was then activated with a targeting agent to improve gene delivery throughout a xenograft tumor of brain cancer. It was found that targeting did not promote the accumulation of SPIONs at the tumor site, but rather improved the distribution of SPIONs throughout the tumor so a higher proportion of cells received treatment. Next, the high surface area of SPIONs was utilized for loading large amounts of drug which was shown to overcome the multidrug resistance acquired by many cancer cells. Drug bound to SPIONs showed significantly higher multidrug resistant cell uptake as compared to free drug which translated into improved cell kill. Also, an antibody activated SPION was developed and was shown to be able to target micrometastases in a transgenic animal model of metastatic breast cancer. These SPION-based nanomedicines

  9. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  10. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    AChR binding sites in several brain regions, particularly in the prefrontal cortex. The alpha7 nAChR agonists SSR180711 and PNU-282987 also increase [(125)I]-BTX binding, suggesting that this is a general consequence of alpha7 nAChR agonism. Interestingly, the alpha7 nAChR positive allosteric modulators PNU......The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target....... Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 n...

  11. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  12. Targeted therapy of advanced non-small cell lung cancer: the role of bevacizumab.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2007-09-01

    Lung cancer is the leading cause of cancer death in the United States. The majority of patients present with advanced stage disease, and treatment with standard cytotoxic chemotherapy agents have been shown to provide a modest improvement in survival, reduce disease-related symptoms, and improve quality of life. However, with standard chemotherapy treatments the prognosis is poor with the majority of patients dying in less than a year from diagnosis. Treatment with standard chemotherapy agents has reached a therapeutic plateau, and recent investigations have focused on therapies that target a specific pathway within the malignant cell or related to angiogenesis. The most promising of the targeted therapies are agents that target the process of angiogenesis. Bevacizuamab is a monoclonal antibody that binds to circulating vascular endothelial growth factor (VEGF)-A, and prevents binding of VEGF to vascular endothelial growth factor receptors, thus inhibiting activation of the VEGF pathway and angiogenesis. A recent phase III trial of first-line treatment of advanced non-small cell lung cancer revealed a statistically significant improvement in response, progression-free survival, and overall survival with the combination of bevacizumab and standard chemotherapy in comparison to standard chemotherapy alone. Bevacizumab is the only targeted therapy that has been shown to improve survival when combined with standard chemotherapy in the first-line setting.

  13. Outcomes of Patients with Renal Cell Carcinoma and Sarcomatoid Dedifferentiation Treated with Nephrectomy and Systemic Therapies: Comparison between the Cytokine and Targeted Therapy Eras.

    Science.gov (United States)

    Keskin, Sarp K; Msaouel, Pavlos; Hess, Kenneth R; Yu, Kai-Jie; Matin, Surena F; Sircar, Kanishka; Tamboli, Pheroze; Jonasch, Eric; Wood, Christopher G; Karam, Jose A; Tannir, Nizar M

    2017-09-01

    We studied overall survival and prognostic factors in patients with sarcomatoid renal cell carcinoma treated with nephrectomy and systemic therapy in the cytokine and targeted therapy eras. This is a retrospective study of patients with sarcomatoid renal cell carcinoma who underwent nephrectomy and received systemic therapy at our center in the cytokine era (1987 to 2005) or the targeted therapy era (2006 to 2015). Multivariate regression models were used to determine the association of covariables with survival. Of the 199 patients with sarcomatoid renal cell carcinoma 167 (83.9%) died (median overall survival 16.5 months, 95% CI 15.2-20.9). Survival of patients with clear cell histology was significantly longer vs those with nonclear cell histology (p = 0.034). Patients with synchronous metastatic disease had significantly shorter survival than patients with metachronous metastatic disease (median 12.1 vs 23.3 months, p = 0.0064). Biopsy of the primary tumor or a metastatic site could detect the presence of sarcomatoid features in only 7.5% of cases. Although a significant improvement in survival rate was observed in the first year in patients treated in the targeted therapy era (p = 0.011), this effect was attenuated at year 2, disappeared at years 3 to 5 after diagnosis and was not evident in patients with poor risk features. Patients with sarcomatoid renal cell carcinoma still have poor prognosis with no clear long-term benefit of targeted therapy. This underscores the need to develop more effective systemic therapies for these patients. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Twelve-week, prospective, open-label, randomized trial on the effects of an anticholinergic agent or antidiuretic agent as add-on therapy to an alpha-blocker for lower urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Shin YS

    2014-07-01

    Full Text Available Yu Seob Shin,1 Li Tao Zhang,1 Chen Zhao,2 Young Gon Kim,1 Jong Kwan Park1 1Department of Urology, Chonbuk National University Medical School, and Institute for Medical Sciences, Chonbuk National University and Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, South Korea; 2Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and Shanghai Institute of Andrology, Shanghai, People’s Republic of China Purpose: The effects of an anticholinergic or antidiuretic agent as add-on therapy to an ­alpha-blocker for lower urinary tract symptoms (LUTS according to a voiding diary in 3 days are unknown. We prospectively investigated the efficacy of an anticholinergic or antidiuretic agent as add-on therapy for nocturia in men previously treated with an alpha-blocker for LUTS.Subjects and methods: Patients were randomly subdivided into two groups. All patients had a 4-week washout. Group A had alpha-blocker for 4 weeks, then an alpha-blocker plus an anticholinergic agent for 4 weeks, and, finally, 4 weeks of an alpha-blocker plus an antidiuretic agent. Group B had an alpha-blocker for 4 weeks, then an alpha-blocker plus an antidiuretic agent for 4 weeks, and, finally, 4 weeks of an alpha-blocker plus an anticholinergic agent. In both groups, patients were subdivided into nocturnal polyuria, decreased nocturnal bladder capacity (NBC, or nocturia by both causes subgroups. A 3-day voiding diary, total International Prostate Symptom Score (IPSS, IPSS sub-scores, Overactive Bladder Symptom Score, uroflowmetry, and post-void residual urine volume, were assessed at baseline, and at 4, 8, and 12 weeks.Results: A total of 405 patients completed the study. During treatment, the changes from baseline in total IPSS and IPSS sub-scores were significantly decreased at 4 weeks and were maintained for 12 weeks. In the nocturnal polyuria subgroup of Groups A and B

  15. Targeting SR-BI for cancer diagnostics, imaging and therapy

    Directory of Open Access Journals (Sweden)

    Maneesha Amrita Rajora

    2016-09-01

    Full Text Available Scavenger receptor class B type I (SR-BI plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumours and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents.

  16. [50 years of hepatology - from therapeutic nihilism to targeted therapies].

    Science.gov (United States)

    Manns, Michael P

    2013-04-01

    Over the past 50 years significant progress has been made in the whole field of hepatology. Part of this is translation of basic research (biochemistry, immunology, virology, molecular biology and others) into clinical hepatology. This enabled us to understand more about the pathogenesis of liver diseases and led to the discovery of the five major hepatotropic viruses, the identification of hepatocellular autoantigens, and to the development of specific therapies for chronic hepatitis B, C and D. In addition, the molecular basis of most genetic liver diseases has been identified. Significant progress was made in the development of medical therapies for various liver diseases with different underlying etiologies. Surgery significantly contributed to the progress in the management of liver diseases; examples are laparoscopic cholecystectomy and the development of liver transplantation. A multimodal therapeutic algorithm has been established for the therapy of hepatocelluar carcinoma (HCC); with Sorafenib "targeted therapy" has entered the area of HCC. The progress made over the last 50 years not only led to an aetiological differentiation of acute and chronic liver diseases but also to specific therapies based on the identification and understanding of the underlying etiology. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Negative feedback and adaptive resistance to the targeted therapy of cancer.

    Science.gov (United States)

    Chandarlapaty, Sarat

    2012-04-01

    Mutational activation of growth factor signaling pathways is commonly observed and often necessary for oncogenic transformation. Under physiologic conditions, these pathways are subject to tight regulation through negative feedback, which limits the extent and duration of signaling events after physiologic stimulation. Until recently, the role of these negative feedback pathways in oncogene-driven cancers has been poorly understood. In this review, I discuss the evidence for the existence and relevance of negative feedback pathways within oncogenic signaling networks, the selective advantages such feedback pathways may confer, and the effects such feedback might have on therapies aimed at inhibiting oncogenic signaling. Negative feedback pathways are ubiquitous features of growth factor signaling networks. Because growth factor signaling networks play essential roles in the majority of cancers, their therapeutic targeting has become a major emphasis of clinical oncology. Drugs targeting these networks are predicted to inhibit the pathway but also to relieve the negative feedback. This loss of negative feedback can itself promote oncogenic signals and cancer cell survival. Drug-induced relief of feedback may be viewed as one of the major consequences of targeted therapy and a key contributor to therapeutic resistance.

  18. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aushev, A A; Barinov, S P; Vasin, M G; Drozdov, Yu M; Ignat' ev, Yu V; Izgorodin, V M; Kovshov, D K; Lakhtikov, A E; Lukovkina, D D; Markelov, V V; Morovov, A P; Shishlov, V V [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2015-06-30

    We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied by alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)

  19. Adoptive T cell therapy targeting CD1 and MR1

    Directory of Open Access Journals (Sweden)

    Tingxi eGuo

    2015-05-01

    Full Text Available Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential.

  20. Symptomatic benign prostatic hyperplasia: the role of 5-alpha-reductase inhibitors in the prevention of acute urinary retention and surgical therapy

    Directory of Open Access Journals (Sweden)

    Norma Marigliano

    2012-01-01

    Full Text Available Benign prostatic hyperplasia (BPH is a disease that affects over 50% of males aged 50 years or older. In men aged >80 years, the incidence is 90%. BPH occurs in 9-25% of males aged 40 to 79 years. Fifty percent of patients with BPH are symptomatic. The symptoms include reduced urinary flow, nocturia, defective bladder emptying, urinary hesitancy, and dysuria. Disease progression can be associated with acute urinary retention (AUR. Prostatic obstruction includes mechanical and dynamic components, the latter mediated by alpha-muscarinic receptors. Treatment with alpha-1-blockers (alfuzosin, doxazosin, tamsulosin, and terazosin leads to rapid amelioration of symptoms and urinary flow, usually within one or two weeks. The 5-alpha reductase inhibitors (5-ARIs are “disease-modifying drugs.” They control the growth of the prostate by blocking the conversion of testosterone into dihydrotestosterone (DHT. Finasteride is a 5–ARI that is selective for type 2 receptors. Dutasteride is a powerful inhibitor of both 5- alpha reductase isoforms (type 1 and 2 and produces more complete suppression of DHT synthesis than finasteride. Dutasteride also has a much longer half-life than finasteride (five weeks versus five to six hours. The authors review the results of clinical trials involving finasteride and dutasteride, with and without alpha-1-blockers, highlighting the important role of dutasteride in improving acute urinary retention and eliminating the need for surgical therapy.

  1. Trojan horses and guided missiles: targeted therapies in the war on arthritis.

    Science.gov (United States)

    Ferrari, Mathieu; Onuoha, Shimobi C; Pitzalis, Costantino

    2015-06-01

    Despite major advances in the treatment of rheumatoid arthritis (RA) led by the success of biologic therapies, the lack of response to therapy in a proportion of patients, as well as therapy discontinuation owing to systemic toxicity, are still unsolved issues. Unchecked RA might develop into progressive structural joint damage, loss of function and long-term disability, disorders which are associated with a considerable health-economic burden. Therefore, new strategies are required to actively target and deliver therapeutic agents to disease sites in order to promote in situ activity and decrease systemic toxicity. Polymer-drug conjugates can improve the pharmacokinetics of therapeutic agents, conferring desirable properties such as increased solubility and tissue penetration at sites of active disease. Additionally, nanotechnology is an exciting modality in which drugs are encapsulated to protect them from degradation or early activation in the circulation, as well as to reduce systemic toxicity. Together with the targeting capacity of antibodies and site-specific peptides, these approaches will facilitate selective accumulation of therapeutic agents in the inflamed synovium, potentially improving drug efficacy at disease sites without affecting healthy tissues. This Review aims to summarize key developments in the past 5 years in polymer conjugation, nanoparticulate drug delivery and antibody or peptide-based targeting--strategies that might constitute the platform for the next generation of RA therapeutics.

  2. Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity: Comparison between two model systems.

    Science.gov (United States)

    Backman, L J; Andersson, G; Fong, G; Alfredson, H; Scott, A; Danielson, P

    2013-12-01

    The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α2A AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α2A AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α2A AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research. © 2013 The Authors. Scand J Med Sci Sports published by John Wiley & Sons Ltd.

  3. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Deng L

    2012-09-01

    Full Text Available Li Deng,1,# Xingfa Ke,4,# Zhiying He,3,# Daoqiu Yang,5 Hai Gong,6 Yingying Zhang,1 Xiaolong Jing,4 Jianzhong Yao,2 Jianming Chen11Department of Pharmaceutics, 2Department of Medicinal Chemistry, School of Pharmacy, 3Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China; 5Department of Dermatology, 107th Hospital of PLA, Yantai, People's Republic of China; 6Department of Radiation Oncology, General Hospital of Jinan Military Region, Jinan, People’s Republic of China#These authors contributed equally to this workAbstract: Pancreatic cancer is a highly lethal disease with a 5-year survival rate less than 5% due to the lack of an early diagnosis method and effective therapy. To provide a novel early diagnostic method and targeted therapy for pancreatic cancer, a multifunctional nanoimmunoliposome with high loading of ultrasmall superparamagnetic iron oxides (USPIOs and doxorubicin (DOX was prepared by transient binding and reverse-phase evaporation method, and was conjugated with anti-mesothelin monoclonal antibody by post-insertion method to target anti-mesothelin-overexpressed pancreatic cancer cells. The in vitro and in vivo properties of this anti-mesothelin antibody-conjugated PEGlyated liposomal DOX and USPIOs (M-PLDU; and PEGlyated nanoimmunoliposome without antibody conjugation [PLDU] were evaluated both in human pancreatic cancer cell line Panc-1 cell and in a pancreatic cancer xenograft animal model. Results showed that M-PLDUs were spherical and uniform with a diameter about ~180 nm, with a zeta potential of about −28~−30 mV, and had good efficacy encapsulating DOX and USPIOs. The in vitro study demonstrated that M-PLDUs possessed good magnetic resonance imaging (MRI capability with a transverse relaxivity (r2 of about 58.5 mM–1 • s–1. Confocal microscopy showed more

  4. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  5. [Management of side effects of targeted therapies in renal cancer: stomatological side effects (mucositis, epistaxis)].

    Science.gov (United States)

    Agbo-Godeau, Scarlette; Nicolas-Virelizier, Emmanuelle; Scotté, Florian

    2011-01-01

    The advent of targeted therapies in the treatment of renal cancer has shown different types of lesions of the oral cavity, which appear to be specific to the drug classes used (mTOR inhibitors, anti-angiogenic agents and conventional cytotoxic drugs). Before starting treatment with targeted therapy, it is essential to have an oral and a dental examination. The treatment of mucositis induced by targeted therapies is based on bicarbonate-based mouthwash, with the optional addition of an antifungal or a local antiseptic. It is possible to use topical or systemic analgesics for the pain. Dietary advice for patients is also useful. Most cases of epistaxis caused by anti-angiogenics stop spontaneously and require no medical intervention. Regular application of an emollient can be used to prevent the formation of scabs. Copyright © 2011 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. Pannus growth regulators as potential targets for biological therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A. S. Mikhaylova

    2018-01-01

    Full Text Available The main goal of treatment for rheumatoid arthritis (RA is to suppress inflammation using basic and symptomatic therapies. At the same time, the above strategy does not significantly stop joint  destruction that leads to disability in patients. The review analyzes  publications dealing with a search for intercellular interaction  regulators among the main effector cells in the pannus – fibroblast- like synoviocytes (FLSs. It assesses the influence of FLS aggression  factors on invasive pannus behavior, the possibility of their targeted deactivation during biological therapy, and the preliminary  results of similar treatment by the examples of animal models. It is  shown that the most promising targets for biological therapy may be FLS adhesion molecules, such as transmembrane receptor cadherin  11, integrins α5/β1, and VCAM1, ICAM1, which actively participate in the attachment of FLSs to the cartilage surface and activate their production of cytokines, growth factors and aggression factors.

  7. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  8. Identifying The Target Market For a New Floatation Therapy Service, Flowtion

    OpenAIRE

    Varpomaa, Jerry

    2016-01-01

    The purpose of this thesis was to probe and identify the most potential target market for a new kind of wellness-service for Flowtion, a state-of-the-art floatation therapy center, focusing on floatation tanks. To accomplish the main goal for this thesis, a survey was conducted using “Google Forms”. The survey was spread through social media (Facebook), and as a result 41 people answered. The survey helps Flowtion to define their most potential target segment, their behaviour and profile vari...

  9. Beyond typing and grading: target analysis in individualized therapy as a new challenge for tumour pathology.

    Science.gov (United States)

    Kreipe, Hans H; von Wasielewski, Reinhard

    2007-01-01

    In order to bring about its beneficial effects in oncology, targeted therapy depends on accurate target analysis. Whether cells of a tumour will be sensitive to a specific treatment is predicted by the detection of appropriate targets in cancer tissue by immunohistochemistry or molecular methods. In most instances this is performed by histopathologists. Reliability and reproducibility of tissue-based target analysis in histopathology require novel measures of quality assurance by internal and external controls. As a model for external quality assurance in targeted therapy an annual inter-laboratory trial has been set up in Germany applying tissue arrays with up to 60 mammary cancer samples which are tested by participants for expression of HER2/neu and steroid hormone receptors.

  10. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  11. Therapies targeting inflammation after stent implantation.

    Science.gov (United States)

    Okura, Hiroyuki; Takagi, Tsutomu; Yoshida, Kiyoshi

    2013-07-01

    Since the introduction of coronary vessel scaffold by metallic stent, percutaneous coronary intervention has become widely performed all over the world. Although drug-eluting stent technology has further decrease the incidence of in-stent restenosis, there still remaining issues related to stent implantation. Vessel inflammation is one of the causes that may be related to stent restenosis as well as stent thrombosis. Therefore, systemic therapies targeting inflammation emerged as adjunctive pharmacological intervention to improve outcome. Statins, corticosteroids, antiplatelets, and immunosuppresive or anti-cancer drugs are reported to favorably impact outcome after bare-metal stent implantation. In type 2 diabetic patients, pioglitazone may be the most promising drug that can lower neointimal proliferation and, as a result, lower incidence of restenosis and target lesion revascularization. On the other hand, several new stent platforms that might decrease inflammatory response after drug-eluting stent implantation have been introduced. Because durable polymer used in the first generation drug-eluting stents are recognized to be responsible for unfavorable vessel response, biocompatible or bioabsorbable polymer has been introduce and already used clinically. Furthermore, polymer-free drug-eluting stent and bioresorbable scaffold are under investigation. Although vessel inflammation may be reduced by using these new drug-eluting stents or scaffold, long-term impact needs to be investigated further.

  12. Use of Neoadjuvant Chemotherapy Plus Molecular Targeted Therapy in Colorectal Liver Metastases: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Sabanathan, Dhanusha; Eslick, Guy D; Shannon, Jenny

    2016-12-01

    Surgery remains the standard of care for patients with colorectal liver metastases (CLMs), with a 5-year survival rate approaching 35%. Perioperative chemotherapy confers a survival benefit in selected patients with CLMs. The use of molecular targeted therapy combined with neoadjuvant chemotherapy for CLMs, however, remains controversial. We reviewed the published data on combination neoadjuvant chemotherapy and molecular targeted therapy for resectable and initially unresectable CLMs. A literature search of the Medline and PubMed databases was conducted to identify studies of neoadjuvant chemotherapy plus molecular targeted therapy in the management of resectable or initially unresectable CLMs. We calculated the pooled proportion and 95% confidence intervals using a random effects model for the relationship of the combination neoadjuvant treatment on the overall response rate and performed a systematic review of all identified studies. The analysis was stratified according to the study design. The data from 11 studies of 908 patients who had undergone systemic chemotherapy plus targeted therapy for CLM were analyzed. The use of combination neoadjuvant therapy was associated with an overall response rate of 68% (95% confidence interval, 63%-73%), with significant heterogeneity observed in the studies (I 2  = 89.35; P chemotherapy plus molecular targeted agents for CLM confers high overall response rates. Combination treatment might also increase the resectability rates in initially unresectable CLM. Further studies are needed to examine the survival outcomes, with a focus on the differential role of molecular targeted therapy in the neoadjuvant versus adjuvant setting. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. Immune checkpoint inhibitors and targeted therapies for metastatic melanoma: A network meta-analysis.

    Science.gov (United States)

    Pasquali, Sandro; Chiarion-Sileni, Vanna; Rossi, Carlo Riccardo; Mocellin, Simone

    2017-03-01

    Immune checkpoint inhibitors and targeted therapies, two new class of drugs for treatment of metastatic melanoma, have not been compared in randomized controlled trials (RCT). We quantitatively summarized the evidence and compared immune and targeted therapies in terms of both efficacy and toxicity. A comprehensive search for RCTs of immune checkpoint inhibitors and targeted therapies was conducted to August 2016. Using a network meta-analysis approach, treatments were compared with each other and ranked based on their effectiveness (as measured by the impact on progression-free survival [PFS]) and acceptability (the inverse of high grade toxicity). Twelve RCTs enrolling 6207 patients were included. Network meta-analysis generated 15 comparisons. Combined BRAF and MEK inhibitors were associated with longer PFS as compared to anti-CTLA4 (HR: 0.22; 95% confidence interval [CI]: 0.12-0.41) and anti-PD1 antibodies alone (HR: 0.38; CI: 0.20-0.72). However, anti-PD1 monoclonal antibodies were less toxic than anti-CTLA4 monoclonal antibodies (RR: 0.65; CI: 0.40-0.78) and their combination significantly increased toxicity compared to either single agent anti-CTLA4 (RR: 2.06; CI: 1.45-2.93) or anti-PD1 monoclonal antibodies (RR: 3.67; CI: 2.27-5.96). Consistently, ranking analysis suggested that the combination of targeted therapies is the most effective strategy, whereas single agent anti-PD1 antibodies have the best acceptability. The GRADE level of evidence quality for these findings was moderate to low. The simultaneous inhibition of BRAF and MEK appears the most effective treatment for melanomas harboring BRAF V600 mutation, although anti-PD1 antibodies appear to be less toxic. Further research is needed to increase the quality of evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment

    Directory of Open Access Journals (Sweden)

    Clare eScott

    2013-12-01

    Full Text Available Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDX are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy.PDX models have been applied to preclinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial ovarian cancer PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues

  15. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  16. Prediction of therapy response to interferon-alpha in chronic viral hepatitis-B by liver and hepatobiliary scintigraphy

    International Nuclear Information System (INIS)

    Caglar, M.; Sari, O.; Akcan, Y.

    2002-01-01

    Interferon (IFN) provides effective treatment in some patients with chronic hepatitis. The clarification of factors predictive of therapy response would be helpful in identifying patients who would benefit from treatment. In this study, we evaluated the potential utility of Tc-99m sulfur colloid liver/spleen and Tc-99m-disofenin hepatobiliary scintigraphy to predict therapy response to IFN in patients with chronic active hepatitis. The study group consisted of ten patients with chronic viral hepatitis B who were treated with 4.5 units of interferon alpha for 12 months. Prior to the start of the therapy, sulfur colloid scintigraphy was obtained by which the liver/spleen ratios were derived. Hepatobiliary scintigraphy was performed on a separate day and time-activity curves were generated from regions of interest drawn over the liver, heart and gall-bladder. The index of blood and liver clearance time was calculated. Histological grading and laboratory values were obtained for clinical correlation. Responders (n=6) to IFN were defined as those who improved clinically with normalized transaminase levels and had hepatitis B envelope antigen (HBeAg) seroconversion. On sulfur colloid (SC) scintigraphy, the liver/spleen ratio of non-responders was significantly lower than responders (median values: 0.69 vs. 1.16, p=0.01) but on hepatobiliary scintigraphy no statistically significant parameters were found to predict response to interferon therapy. (author)

  17. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  18. Review of the Interaction Between Body Composition and Clinical Outcomes in Metastatic Renal Cell Cancer Treated With Targeted Therapies

    Directory of Open Access Journals (Sweden)

    Steven M Yip

    2016-03-01

    Full Text Available Treatment of metastatic renal cell cancer (mRCC currently focuses on inhibition of the vascular endothelial growth factor pathway and the mammalian target of rapamycin (mTOR pathway. Obesity confers a higher risk of RCC. However, the influence of obesity on clinical outcomes in mRCC in the era of targeted therapy is less clear. This review focuses on the impact of body composition on targeted therapy outcomes in mRCC. The International Metastatic Renal Cell Carcinoma Database Consortium database has the largest series of patients evaluating the impact of body mass index (BMI on outcomes in mRCC patients treated with targeted therapy. Overall survival was significantly improved in overweight patients (BMI ≥ 25 kg/m2, and this observation was externally validated in patients who participated in Pfizer trials. In contrast, sarcopenia is consistently associated with increased toxicity to inhibitors of angiogenesis and mTOR. Strengthening patients with mRCC and sarcopenia, through a structured exercise program and dietary intervention, may improve outcomes in mRCC treated with targeted therapies. At the same time, the paradox of obesity being a risk factor for RCC while offering a better overall survival in response to targeted therapy needs to be further evaluated.

  19. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations.

    Science.gov (United States)

    Ito, Mikako; Ohno, Kinji

    2018-02-20

    Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression

  20. Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Georg Melmer

    2013-01-01

    Full Text Available Conventional cancer treatments lack specificity and often cause severe side effects. Targeted therapeutic approaches are therefore preferred, including the use of immunotoxins (ITs that comprise cell-binding and cell death-inducing components to allow the direct and specific delivery of pro-apoptotic agents into malignant cells. The first generation of ITs consisted of toxins derived from bacteria or plants, making them immunogenic in humans. The recent development of human cytolytic fusion proteins (hCFP consisting of human effector enzymes offers the prospect of highly-effective targeted therapies with minimal side effects. One of the most promising candidates is granzyme B (GrB and this enzyme has already demonstrated its potential for targeted cancer therapy. However, the clinical application of GrB may be limited because it is inactivated by the overexpression in tumors of its specific inhibitor serpin B9 (PI-9. It is also highly charged, which means it can bind non-specifically to the surface of non-target cells. Furthermore, human enzymes generally lack an endogenous translocation domain, thus the endosomal release of GrB following receptor-mediated endocytosis can be inefficient. In this review we provide a detailed overview of these challenges and introduce promising solutions to increase the cytotoxic potency of GrB for clinical applications.

  1. Target volume delineation and treatment planning for particle therapy a practical guide

    CERN Document Server

    Leeman, Jonathan E; Cahlon, Oren; Sine, Kevin; Jiang, Guoliang; Lu, Jiade J; Both, Stefan

    2018-01-01

    This handbook is designed to enable radiation oncologists to treat patients appropriately and confidently by means of particle therapy. The orientation and purpose are entirely practical, in that the focus is on the physics essentials of delivery and treatment planning , illustration of the clinical target volume (CTV) and associated treatment planning for each major malignancy when using particle therapy, proton therapy in particular. Disease-specific chapters provide guidelines and concise knowledge on CTV selection and delineation and identify aspects that require the exercise of caution during treatment planning. The treatment planning techniques unique to proton therapy for each disease site are clearly described, covering beam orientation, matching/patching field techniques, robustness planning, robustness plan evaluation, etc. The published data on the use of particle therapy for a given disease site are also concisely reported. In addition to fully meeting the needs of radiation oncologists, this "kn...

  2. Effectiveness of Targeted Musical Therapy on Sleep Quality and Overcoming Insomnia in Seniors

    Directory of Open Access Journals (Sweden)

    Reza Mottaghi

    2016-07-01

    Conclusion: The present study showed that targeted music therapy can lead to the improvement in the overall sleep quality, daily functioning, and subjective sleep quality thereby resulting in a sharp decline in the number of sleep drugs in seniors with primary insomnia disorder. Therefore, it is highly recommended by the music therapy and mental health experts for overcoming the sleep problems in older adults.

  3. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer.

    Science.gov (United States)

    Fathi, Marziyeh; Majidi, Sima; Zangabad, Parham Sahandi; Barar, Jaleh; Erfan-Niya, Hamid; Omidi, Yadollah

    2018-05-30

    Nanotechnology as an emerging field has established inevitable impacts on nano-biomedicine and treatment of formidable diseases, inflammations, and malignancies. In this regard, substantial advances in the design of systems for delivery of therapeutic agents have emerged magnificent and innovative pathways in biomedical applications. Chitosan (CS) is derived via deacetylation of chitin as the second most abundant polysaccharide. Owing to the unique properties of CS (e.g., biocompatibility, biodegradability, bioactivity, mucoadhesion, cationic nature and functional groups), it is an excellent candidate for diverse biomedical and pharmaceutical applications such as drug/gene delivery, transplantation of encapsulated cells, tissue engineering, wound healing, antimicrobial purposes, etc. In this review, we will document, discuss, and provide some key insights toward design and application of miscellaneous nanoplatforms based on CS. The CS-based nanosystems (NSs) can be employed as advanced drug delivery systems (DDSs) in large part due to their remarkable physicochemical and biological characteristics. The abundant functional groups of CS allow the facile functionalization in order to engineer multifunctional NSs, which can simultaneously incorporate therapeutic agents, molecular targeting, and diagnostic/imaging capabilities in particular against malignancies. These multimodal NSs can be literally translated into clinical applications such as targeted diagnosis and therapy of cancer because they offer minimal systemic toxicity and maximal cytotoxicity against cancer cells and tumors. The recent developments in the CS-based NSs functionalized with targeting and imaging agents prove CS as a versatile polymer in targeted imaging and therapy. © 2018 Wiley Periodicals, Inc.

  4. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Department of Neurology, Sichuan Medical Science Institute and Sichuan Provincial Hospital, Chengdu 610072 (China); Li, Hongling [Department of Radiotherapy, Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Sun, Yong, E-mail: sunfanqi2010@163.com [Department of Burn and Plastic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an 223300 (China)

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  5. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  6. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    Science.gov (United States)

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  7. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    International Nuclear Information System (INIS)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael; Leamon, Christopher P.; Low, Philip S.

    2008-01-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm 3 before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm 3 subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon α) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm 3 . More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice

  8. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy.

    Science.gov (United States)

    Landau, Dan A; Sun, Clare; Rosebrock, Daniel; Herman, Sarah E M; Fein, Joshua; Sivina, Mariela; Underbayev, Chingiz; Liu, Delong; Hoellenriegel, Julia; Ravichandran, Sarangan; Farooqui, Mohammed Z H; Zhang, Wandi; Cibulskis, Carrie; Zviran, Asaf; Neuberg, Donna S; Livitz, Dimitri; Bozic, Ivana; Leshchiner, Ignaty; Getz, Gad; Burger, Jan A; Wiestner, Adrian; Wu, Catherine J

    2017-12-19

    Treatment of chronic lymphocytic leukemia (CLL) has shifted from chemo-immunotherapy to targeted agents. To define the evolutionary dynamics induced by targeted therapy in CLL, we perform serial exome and transcriptome sequencing for 61 ibrutinib-treated CLLs. Here, we report clonal shifts (change >0.1 in clonal cancer cell fraction, Q < 0.1) in 31% of patients during the first year of therapy, associated with adverse outcome. We also observe transcriptional downregulation of pathways mediating energy metabolism, cell cycle, and B cell receptor signaling. Known and previously undescribed mutations in BTK and PLCG2, or uncommonly, other candidate alterations are present in seventeen subjects at the time of progression. Thus, the frequently observed clonal shifts during the early treatment period and its potential association with adverse outcome may reflect greater evolutionary capacity, heralding the emergence of drug-resistant clones.

  9. Molecular mechanisms underlying radio-induced fibro-genic differentiation and fibrosis targeted therapies

    International Nuclear Information System (INIS)

    Bourgier, C.

    2008-01-01

    Intestinal complications after radiotherapy are caused by transmural fibrosis (RIF) that impaired the quality of life of cancer patient survivors and considered permanent and irreversible until recently but recent molecular characterization of RIF offered new targeted opportunities for the development of anti-fibrotic therapies. In this thesis work, we identified activation of the Rho/ROCK pathway which is involved in the persistence of fibro-genic signals. In addition, among the new anti-fibrotic targeted therapies, we asked whether specific inhibition of Rho pathway, by Pravastatin could elicit anti-fibrotic action. Therefore, the therapeutic relevance of pravastatin as anti-fibrotic strategy was validated using two different models of intestinal and lung fibrosis. As statins are safe and well tolerated compounds, phase II clinical trial is envisioned within the next months to reverse established fibrosis after radiotherapy. (author)

  10. Development of lithium target for accelerator based neutron capture therapy

    International Nuclear Information System (INIS)

    Taskaev, Sergey; Bayanov, Boris; Belov, Victor; Zhoorov, Eugene

    2006-01-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is now of the threshold of its operation at the BINP, Russia. One of the main elements of the facility is lithium target producing neutrons via threshold 7 Li(p,n) 7 Be reaction at 25 kW proton beam with energies 1.915 MeV or 2.5 MeV. The main problems of lithium target were determined to be: 7 Be radioactive isotope activation keeping lithium layer solid, presence of photons due to proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal test of target prototype were presented as previous NCT Congress. It becomes clear that water is preferable for cooling the target, and that lithium target 10 cm in diameter is able to run before melting. In the present report, the conception of optimal target is proposed: thin metal disk 10 cm in diameter easy for detaching, with evaporated thin layer of pure lithium from the side of proton beam exposure, its back being intensively cooled with turbulent water flow to maintain lithium layer solid. Design of the target for the neutron source constructed at BINP is shown. The results of investigation of radiation blistering and lithium layer are presented. Target unit of facility is under construction now, and obtaining neutrons is expected in nearest future. (author)

  11. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  12. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly & Cushing Disease Paradigms

    Directory of Open Access Journals (Sweden)

    Michael Anthony Mooney

    2016-07-01

    Full Text Available The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  13. Targeted Therapy of Ewing's Sarcoma

    Directory of Open Access Journals (Sweden)

    Vivek Subbiah

    2011-01-01

    Full Text Available Refractory and/or recurrent Ewing's sarcoma (EWS remains a clinical challenge because the disease's resistance to therapy makes it difficult to achieve durable results with standard treatments that include chemotherapy, radiation, and surgery. Recently, insulin-like-growth-factor-1-receptor (IGF1R antibodies have been shown to have a modest single-agent activity in EWS. Patient selection using biomarkers and understanding response and resistance mechanisms in relation to IGF1R and mammalian target of rapamycin pathways are areas of active research. Since EWS has a unique tumor-specific EWS-FLI1 t(11;22 translocation and oncogenic fusion protein, inhibition of EWS-FLI1 transcription, translation, and/or protein function may be key to eradicating EWS at the stem-cell level. Recently, a small molecule that blocks the protein-protein interaction of EWS-FLI1 with RNA helicase A has been shown in preclinical models to inhibit EWS growth. The successful application of this first-in-class protein-protein inhibitor in the clinic could become a model system for translocation-associated cancers such as EWS.

  14. Target cells in internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Goessner, W

    2003-07-01

    Data related to radium induced bone sarcomas in humans are used as a model for defining target cells on bone surfaces and in the bone marrow. The differential distribution of radiation induced bone sarcoma types with a high ratio of non-bone producing, mainly fibroblastic tumours, challenges the ICRP concept that the bone lining cells are target cells. Multipotential mesenchymal stem cells are located within the range of alpha particles, and are the most likely target cells for the fibroblastic type of bone sarcoma. The histogenesis of bone sarcomas after irradiation with alpha emitters shows that their final histopathology is not dependent on a single target cell. Each target cell has a microenvironment, which has to be regarded as a synergistic morpho-functional tissue unit. For this the concept of 'histion', a term used in general pathology, is proposed. Interactions between target cells that have been hit by alpha-particles, leading to lethal, mutational or transformation events with all components of a 'histion', will prove critical to understanding the pathogenesis of both deterministic and stochastic late effects. (author)

  15. Target cells in internal dosimetry

    International Nuclear Information System (INIS)

    Goessner, W.

    2003-01-01

    Data related to radium induced bone sarcomas in humans are used as a model for defining target cells on bone surfaces and in the bone marrow. The differential distribution of radiation induced bone sarcoma types with a high ratio of non-bone producing, mainly fibroblastic tumours, challenges the ICRP concept that the bone lining cells are target cells. Multipotential mesenchymal stem cells are located within the range of alpha particles, and are the most likely target cells for the fibroblastic type of bone sarcoma. The histogenesis of bone sarcomas after irradiation with alpha emitters shows that their final histopathology is not dependent on a single target cell. Each target cell has a microenvironment, which has to be regarded as a synergistic morpho-functional tissue unit. For this the concept of 'histion', a term used in general pathology, is proposed. Interactions between target cells that have been hit by alpha-particles, leading to lethal, mutational or transformation events with all components of a 'histion', will prove critical to understanding the pathogenesis of both deterministic and stochastic late effects. (author)

  16. Uterine sarcoma part III—Targeted therapy: The Taiwan Association of Gynecology (TAG systematic review

    Directory of Open Access Journals (Sweden)

    Ming-Shyen Yen

    2016-10-01

    Full Text Available Uterine sarcoma is a very aggressive and highly lethal disease. Even after a comprehensive staging surgery or en block cytoreduction surgery followed by multimodality therapy (often chemotherapy and/or radiation therapy, many patients relapse or present with distant metastases, and finally die of diseases. The worst outcome of uterine sarcomas is partly because of their rarity, unknown etiology, and highly divergent genetic aberration. Uterine sarcomas are often classified into four distinct subtypes, including uterine leiomyosarcoma, low-grade uterine endometrial stromal sarcoma, high-grade uterine endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Currently, evidence from tumor biology found that these tumors showed alternation and/or mutation of genomes and the intracellular signal pathway. In addition, some preclinical studies showed promising results for targeting receptor tyrosine kinase signaling, phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway, various kinds of growth factor pathways, Wnt/beta-catenin signaling pathway, transforming growth factor β/bone morphogenetic protein signal pathway, aurora kinase A, MDM2 proto-oncogene, histone deacetylases, sex hormone receptors, certain types of oncoproteins, and/or loss of tumor suppressor genes. The current review is attempted to summarize the recurrent advance of targeted therapy for uterine sarcomas.

  17. Lyme neuroborreliosis in a patient treated with TNF-alpha inhibitor.

    Science.gov (United States)

    Merkac, Maja Ivartnik; Tomazic, Janez; Strle, Franc

    2015-12-01

    A 57-year-old woman, receiving TNF-alpha inhibitor adalimumab for psoriasis, presented with early Lyme neuroborreliosis (Bannwarth's syndrome). Discontinuation of adalimumab and 14-day therapy with ceftriaxone resulted in a smooth course and favorable outcome of Lyme borreliosis. This is the first report on Lyme neuroborreliosis in a patient treated with TNF-alpha inhibitor.

  18. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  19. Novel drugs targeting Toll-like receptors for antiviral therapy.

    Science.gov (United States)

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge Cg

    2014-09-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.

  20. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  1. Alpha interferon therapy in Danish haemophiliac patients with chronic hepatitis C

    DEFF Research Database (Denmark)

    Laursen, A L; Scheibel, E; Ingerslev, Jørgen

    1998-01-01

    Following a survey among all Danish haemophiliac patients 49 HIV-negative patients with chronic hepatitis C were offered enrollment in a randomized controlled open label study comparing two different maintenance regimens following standard interferon-alpha-2b treatment. Dose modifications...... and biochemical response after 6 months of follow up. Overall, the individualized treatment regimen did not seem to offer any advantage over the fixed dose regimen. The response to alpha interferon treatment in Danish haemophiliac patients with chronic hepatitis C immediately after treatment is comparable...... and treatment discontinuation were based upon changes in transaminase levels. Forty-seven patients enrolled received 3 MU of alpha interferon thrice weekly (TIW) for 3 months. Twenty-six nonresponders had their dose increased to 6 MU TIW for an additional 3 months, while 21 responding patients continued on 3 MU...

  2. Targeted Therapy Database (TTD: a model to match patient's molecular profile with current knowledge on cancer biology.

    Directory of Open Access Journals (Sweden)

    Simone Mocellin

    Full Text Available BACKGROUND: The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. OBJECTIVE: To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. METHODS: To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. RESULTS AND CONCLUSIONS: We created a manually annotated database (Targeted Therapy Database, TTD where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method

  3. Targeted Therapy Database (TTD): a model to match patient's molecular profile with current knowledge on cancer biology.

    Science.gov (United States)

    Mocellin, Simone; Shrager, Jeff; Scolyer, Richard; Pasquali, Sandro; Verdi, Daunia; Marincola, Francesco M; Briarava, Marta; Gobbel, Randy; Rossi, Carlo; Nitti, Donato

    2010-08-10

    The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method developed to fully exploit the available knowledge on cancer biology with the

  4. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  5. Novel epigenetic target therapy for prostate cancer: a preclinical study.

    Directory of Open Access Journals (Sweden)

    Ilaria Naldi

    Full Text Available Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine, hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap and hormone refractory (DU145 prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs drug delivery system (DDS carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.

  6. Novel epigenetic target therapy for prostate cancer: a preclinical study.

    Science.gov (United States)

    Naldi, Ilaria; Taranta, Monia; Gherardini, Lisa; Pelosi, Gualtiero; Viglione, Federica; Grimaldi, Settimio; Pani, Luca; Cinti, Caterina

    2014-01-01

    Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.

  7. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang Deshan; Li, H. Harold [Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States); Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States)

    2010-12-15

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  8. uPAR Targeted Radionuclide Therapy with 177Lu-DOTA-AE105 Inhibits Dissemination of Metastatic Prostate Cancer

    DEFF Research Database (Denmark)

    Persson, Morten; Juhl, Karina; Rasmussen, Palle

    2014-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is implicated in cancer invasion and metastatic development in prostate cancer and provides therefore an attractive molecular target for both imaging and therapy. In this study, we provide the first in vivo data on an antimetastatic effect...... of uPAR radionuclide targeted therapy in such lesions and show the potential of uPAR positron emission tomography (PET) imaging for identifying small foci of metastatic cells in a mouse model of disseminating human prostate cancer. Two radiolabeled ligands were generated in high purity and specific...... value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted 177Lu groups (p

  9. Interleukin-1 beta targeted therapy for type 2 diabetes

    DEFF Research Database (Denmark)

    Maedler, K.; Dharmadhikari, G.; Schumann, D.M.

    2009-01-01

    Since having been cloned in 1984, IL-1beta has been the subject of over 22,000 citations in Pubmed, among them over 800 reviews. This is because of its numerous effects. IL-1beta is a regulator of the body's inflammatory response and is produced after infection, injury, and antigenic challenge. I....... We highlight recent clinical studies and experiments in animals and isolated islets using IL-1beta as a potential target for the therapy of type 2 diabetes Udgivelsesdato: 2009/9...

  10. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer.

    Science.gov (United States)

    Nagasaka, Misako; Gadgeel, Shirish M

    2018-01-01

    Adjuvant platinum based chemotherapy is accepted as standard of care in stage II and III non-small cell lung cancer (NSCLC) patients and is often considered in patients with stage IB disease who have tumors ≥ 4 cm. The survival advantage is modest with approximately 5% at 5 years. Areas covered: This review article presents relevant data regarding chemotherapy use in the perioperative setting for early stage NSCLC. A literature search was performed utilizing PubMed as well as clinical trial.gov. Randomized phase III studies in this setting including adjuvant and neoadjuvant use of chemotherapy as well as ongoing trials on targeted therapy and immunotherapy are also discussed. Expert commentary: With increasing utilization of screening computed tomography scans, it is possible that the percentage of early stage NSCLC patients will increase in the coming years. Benefits of adjuvant chemotherapy in early stage NSCLC patients remain modest. There is a need to better define patients most likely to derive survival benefit from adjuvant therapy and spare patients who do not need adjuvant chemotherapy due to the toxicity of such therapy. Trials for adjuvant targeted therapy, including adjuvant EGFR-TKI trials and trials of immunotherapy drugs are ongoing and will define the role of these agents as adjuvant therapy.

  11. Targeted therapies for locally advanced or metastatic squamous cell carcinoma of the lung.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2013-12-01

    Most patients with squamous cell carcinoma (SCC) present with advanced or metastatic disease at the time of diagnosis. Given the low prevalence of oncogenic driver mutations in SCC, I do not routinely perform molecular testing. The times that I perform molecular testing in SCC are for patients with SCC and a light or never smoking history, adenosquamous histology, or when the histological diagnosis is not definitive. For patients with a good performance status and adequate organ function, a platinum doublet is the standard therapy, and I generally use carboplatin and gemcitabine or carboplatin and paclitaxel. In the second-line setting for patients who are chemotherapy candidates, I will use docetaxel on a weekly or every three week schedule. Erlotinib is a treatment option in the third-line setting. My preference is for patients to participate in clinical trials because the development of novel therapies for patients with SCC has been slow compared with nonsquamous non-small cell lung cancer. Ongoing investigations into the genomics of SCC will hopefully identify driver mutations or alterations in pathways essential for oncogenesis and tumor growth and will lead to the development of targeted therapies. The complexity of the genomics of SCC will make the development of targeted therapies challenging.

  12. Reimbursement of targeted cancer therapies within three different European health care systems

    NARCIS (Netherlands)

    Mihajlovic, Jovan; Dolk, C.; Postma, Maarten

    2014-01-01

    Objectives: To identify differences in the recommendations for targeted cancer therapies (TCT) in three distinctive European health care systems: Serbian, Scottish and Dutch, and to examine the role of cost effectiveness analyses (CEA) in such recommendations. Methods: A list of currently approved

  13. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    Science.gov (United States)

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  14. Assessing the response to targeted therapies in renal cell carcinoma: technical insights and practical considerations.

    Science.gov (United States)

    Bex, Axel; Fournier, Laure; Lassau, Nathalie; Mulders, Peter; Nathan, Paul; Oyen, Wim J G; Powles, Thomas

    2014-04-01

    The introduction of targeted agents for the treatment of renal cell carcinoma (RCC) has resulted in new challenges for assessing response to therapy, and conventional response criteria using computed tomography (CT) are limited. It is widely recognised that targeted therapies may lead to significant necrosis without significant reduction in tumour size. In addition, the vascular effects of antiangiogenic therapy may occur long before there is any reduction in tumour size. To perform a systematic review of conventional and novel imaging methods for the assessment of response to targeted agents in RCC and to discuss their use from a clinical perspective. Relevant databases covering the period January 2006 to April 2013 were searched for studies reporting on the use of anatomic and functional imaging techniques to predict response to targeted therapy in RCC. Inclusion criteria were randomised trials, nonrandomised controlled studies, retrospective case series, and cohort studies. Reviews, animal and preclinical studies, case reports, and commentaries were excluded. A narrative synthesis of the evidence is presented. A total of 331 abstracts and 76 full-text articles were assessed; 34 studies met the inclusion criteria. Current methods of response assessment in RCC include anatomic methods--based on various criteria including Choi, size and attenuation CT, and morphology, attenuation, size, and structure--and functional techniques including dynamic contrast-enhanced (DCE) CT, DCE-magnetic resonance imaging, DCE-ultrasonography, positron emission tomography, and approaches utilising radiolabelled monoclonal antibodies. Functional imaging techniques are promising surrogate biomarkers of response in RCC and may be more appropriate than anatomic CT-based methods. By enabling quantification of tumour vascularisation, functional techniques can directly and rapidly detect the biologic effects of antiangiogenic therapies compared with the indirect detection of belated effects

  15. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  16. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  17. Cytosolic phospholipase A2-alpha expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2012-02-01

    BACKGROUND: The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)alpha expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines. METHODS: The importance of differential cPLA(2)alpha activity in clinical breast cancer was established by relating the expression of cPLA(2)alpha in tissue samples from breast cancer patients, and two microarray-based gene expression datasets to different clinicopathological and therapeutic parameters. RESULTS: High cPLA(2)alpha mRNA expression correlated with clinical parameters of poor prognosis, which are characteristic of highly invasive tumours of the HER2-positive and basal-like subtype, including low oestrogen receptor expression and high EGFR expression. High cPLA(2)alpha expression decreased overall survival in patients with luminal cancers, and correlated with a reduced effect of tamoxifen treatment. The cPLA(2)alpha expression was an independent predictive parameter of poor response to endocrine therapy in the first 5 years of follow-up. CONCLUSION: This study shows a role of cPLA(2)alpha in luminal breast cancer progression, in which the enzyme could represent a novel therapeutic target and a predictive marker.

  18. Potential efficacy of therapies targeting intrahepatic lesions after sorafenib treatment of patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Terashima, Takeshi; Yamashita, Tatsuya; Horii, Rika; Arai, Kuniaki; Kawaguchi, Kazunori; Kitamura, Kazuya; Yamashita, Taro; Sakai, Yoshio; Mizukoshi, Eishiro; Honda, Masao; Kaneko, Shuichi

    2016-01-01

    We investigated the contribution of subsequent therapy for advanced hepatocellular carcinoma refractory or intolerant to sorafenib. Further, we investigated the impact of sorafenib on overall survival using individual data. We reviewed the medical records of patients with advanced hepatocellular carcinoma treated with sorafenib. Survival after sorafenib treatment and overall survival were defined as the time when we discovered that patients were either refractory or intolerant to sorafenib and the period from the start of sorafenib treatment, respectively, until death during the study. We compared patients’ prognoses according to their subsequent treatment as follows: group A, therapies targeting intrahepatic lesions; group B, systemic therapies alone; group C, no subsequent therapy. We used linear regression analysis to determine whether there was an association with survival after sorafenib treatment and with overall survival. Of 79 patients, 63 (79.7 %) received one or more subsequent therapies (44 and 19 patients in groups A and B, respectively). The five patients who survived more than two years after sorafenib treatment was discontinued responded to therapies targeting intrahepatic lesions. The median survival times of groups A, B, and C were 11.9 months, 5.8 months, and 3.6 months, respectively. Multivariate analysis revealed that group A, Child-Pugh score, serum α-fetoprotein level, and cause of failure of sorafenib treatment were independent prognostic factors for survival after sorafenib treatment. Individual survival after sorafenib treatment correlated highly with overall survival. Targeting intrahepatic lesions may be useful for treating patients with advanced hepatocellular carcinoma patients after sorafenib treatment is discontinued. The online version of this article (doi:10.1186/s12885-016-2380-4) contains supplementary material, which is available to authorized users

  19. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D., E-mail: sakthi@toyo.jp

    2013-10-15

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering

  20. Interferon alpha therapy for hepatitis C: treatment completion and response rates among patients with substance use disorders

    Directory of Open Access Journals (Sweden)

    Loftis Jennifer M

    2007-01-01

    Full Text Available Abstract Background Individuals with substance use disorders (SUDs are at increased risk for hepatitis C viral infection (HCV, and few studies have explored their treatment responses empirically. The objective of this study was to assess interferon alpha therapy (IFN completion and response rates among patients with HCV who had a history of comorbid SUDs. More data is needed to inform treatment strategies and guidelines for these patients. Using a medical record database, information was retrospectively collected on 307,437 veterans seen in the Veterans Integrated Service Network 20 (VISN 20 of the Veterans Healthcare Administration (VHA between 1998 and 2003. For patients treated with any type of IFN (including regular or pegylated IFN or combination therapy (IFN and ribavirin who had a known HCV genotype, IFN completion and response rates were compared among patients with a history of SUD (SUD+ Group and patients without a history of SUD (SUD- Group. Results Odds ratio analyses revealed that compared with the SUD- Group, the SUD+ Group was equally likely to complete IFN therapy if they had genotypes 2 and 3 (73.1% vs. 68.0%, and if they had genotypes 1 and 4 (39.5% vs. 39.9%. Within the sample of all patients who began IFN therapy, the SUD- and SUD+ groups were similarly likely to achieve an end of treatment response (genotypes 2 and 3, 52.8% vs. 54.3%; genotypes 1 and 4, 24.5% vs. 24.8% and a sustained viral response (genotypes 2 and 3, 42.6% vs. 41.1%; genotypes 1 and 4: 16.0% vs. 22.3%. Conclusion Individuals with and without a history of SUD responded to antiviral therapy for HCV at similar rates. Collectively, these findings suggest that patients who have co-morbid SUD and HCV diagnoses can successfully complete a course of antiviral therapy.

  1. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  2. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    Science.gov (United States)

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  3. Targeting Signaling to YAP for the Therapy of NF2

    Science.gov (United States)

    2015-10-01

    which encodes the FERM domain-containing protein Merlin. Children and young adults, who inherit an NF2 mutation, develop Schwannomas, usually of the...targeted therapy in the same way Chronic Myelogenous Leukemia is cured by Gleevec. The prospect of resistance is minimal, as Schwannoma cells do not seem to... treatment with Verteporfin, suggesting that this reporter system is not sensitive enough in physiopathologically relevant cell types. In parallel, it

  4. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.

    Science.gov (United States)

    Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo

    2017-09-01

    In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC 50 : 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Targeted radionuclide therapy

    African Journals Online (AJOL)

    target for which a speci c treatment/drug is intended (Fig. 1). eranostics .... Using an anti-CD20 antibody as a delivery device to target the follicular ... systems combine diagnostic imaging (Ga-68-DOTATATE PET/CT) .... Intra-articular injected ...

  6. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma.

    Science.gov (United States)

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-07-21

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene's expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.

  7. Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy.

    Science.gov (United States)

    Jung, Yeonjoo; Park, Jinah; Kim, Tai Young; Park, Jung-Hyun; Jong, Hyun-Soon; Im, Seock-Ah; Robertson, Keith D; Bang, Yung-Jue; Kim, Tae-You

    2007-10-01

    The deoxyribonucleic acid (DNA) methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) has been used as a drug in a part of cancer therapy. However, because of its incorporation into DNA during DNA synthesis, 5-aza-dC can cause DNA damage, mutagenesis, and cytotoxicity. In view of the adverse effects of 5-aza-dC, DNMT-targeted inhibition may be a more effective approach than treatment with 5-aza-dC. To address the possibility of DNMT-targeted cancer therapy, we compared the effects of treatment with small interfering ribonucleic acids (siRNAs) specific for DNMT1 or DNMT3b and treatment with 5-aza-dC on transcription, cell growth, and DNA damage in gastric cancer cells. We found that DNMT1-targeted inhibition induced the re-expression and reversed DNA methylation of five (CDKN2A, RASSF1A, HTLF, RUNX3, and AKAP12B) out of seven genes examined, and 5-aza-dC reactivated and demethylated all seven genes. In contrast, DNMT3b siRNAs did not show any effect. Furthermore, the double knockdown of DNMT1 and DNMT3b did not show a synergistic effect on gene re-expression and demethylation. In addition, DNMT1 siRNAs showed an inhibitory effect of cell proliferation in the cancer cells and the induction of cell death without evidence of DNA damage, whereas treatment with 5-aza-dC caused DNA damage as demonstrated by the comet assay. These results provide a rationale for the development of a DNMT1-targeted strategy as an effective epigenetic cancer therapy.

  8. Specific role of targeted molecular therapy in treatment of oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2017-12-01

    Full Text Available Oral cancer is a potentially fatal disease that constitutes an important portion of tumors that occur in the head and neck region. Oral cancer can affect overall and mental health, appearance, employment, social life, and family living. The disease can cause serious changes in the functioning of the upper aero digestive tract that affects the quality of life in patients. The use of conventional treatment modalities (surgery, radiation, and/or chemotherapy depends on tumor respectability and location as well as whether an organ preservation approach is feasible. However, their role in oral cancer treatment is nonselective and can cause damage to normal tissue. In particular, chemo radiotherapy is associated with systemic toxicities that often reduce patient compliance and prevent timely completion of therapy. The development of targeted therapies to target select pathways involved in carcinogenesis, potentially decrease systemic toxicities and morbidities associated with cancer burden and hence improve the prognosis in cancer patients. In the present article, the role of various targeted molecules in the treatment of oral cancer is discussed.

  9. Interactive session: alpha emitters, fashion or reality? radionuclides and molecules availability

    International Nuclear Information System (INIS)

    Zimmermann, R.

    2015-01-01

    Full text of publication follows. This introduction to the interactive session will simply be based on statements related to the future of therapy in nuclear medicine with some emphasis on the use of alpha-emitters. Some hypotheses will be developed on topics such as 'How will look nuclear medicine in 2025?', 'Do we have enough information to support the use of alpha in therapy?' 'Does it make sense to develop alpha-labelled molecules without long term financial commitment?', 'Will sufficient amounts of radionuclides available when the drugs will be ready for marketing?', 'Do we know enough about alpha emitters toxicity?', 'Is personalized medicine really the solution of the future of health care?', 'How can we convince authorities about the advantages of alpha labelled molecules?', 'Is the development of alpha RIT more expensive or more difficult than beta RIT?', 'Where are all the beta-emitter under development gone?', 'With alpha-emitters, are we speaking about 2025 or 2050?', 'Will Xofigo be a success?', 'What will be the real role of pharmaceutical companies in radiotherapy?', 'Who are the most afraid about radioactivity, the patients or the authorities?'. The speaker will provide his own opinion about each topic. Will you agree or not with him? What is your opinion? (author)

  10. Off-label use of TNF-alpha inhibitors in a dermatological university department

    DEFF Research Database (Denmark)

    Sand, Freja Lærke; Thomsen, Simon Francis

    2015-01-01

    (four), Sweet's syndrome (four), Well's syndrome (one), benign familial pemphigus (one), lichen planus (one), and folliculitis decalvans (one). A significant number of these patients went into remission during therapy with TNF-alpha inhibitors. A total of 11 patients (9%) experienced severe adverse......-alpha inhibitors for these conditions....

  11. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  12. Targeting the NFκB signaling pathways for breast cancer prevention and therapy.

    Science.gov (United States)

    Wang, Wei; Nag, Subhasree A; Zhang, Ruiwen

    2015-01-01

    The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.

  13. Coincidence study of alpha particle fragmentation at E/sub alpha/ = 140 MeV

    International Nuclear Information System (INIS)

    Koontz, R.W.

    1980-01-01

    Results of an experimental study of the interaction of 140 MeV alpha particles with 90 Zr nuclei resulting in fragmentation of the alpha particle are reported. The experimental observations of the study are analyzed and are found to show that alpha particle breakup reactions leading to at least 4-body final states, composed of two charged alpha particle fragments, contribute significantly to the singles yield of charged fragments observed at a fixed forward angle. The conclusions are based on coincidence measurements where one charged fragment is detected at a small forward angle which remains fixed, while the second charged fragment is detected at a series of coplanar secondary angles. The largest coincidence charged particle yield for the multiparticle final state events results from 90 Zr(α,pp)X reactions, where both of the measured protons have energy distributions similar to the proton singles energy distributions. The second largest observed coincidence yield involving two charged fragments arises from 90 Zr(α,pd)X reactions, where the p and d fragments, as in the 90 Zr(α,pp)X reactions also have energy distribution similar to the singles energy distributions. Analysis of additional measurements, where alpha particle fragments at the fixed angle are detected in coincidence with evaporation and nonequilibrium particles at many coplanar angles, show that the alpha particle fragmentation reactions are also generally associated with large energy transfer to the target nucleus. A multiple scattering model of the fragmentation reaction is employed, in conjunction with the experimental observations, to estimate the cross sections for alpha particle fragmentation into multi-particle final states resulting in n, 2n, p, pp, d, dn, dp, t and 3 He fragments. The estimated total cross section for all fragmentation reactions is 755 mb or approximately 38% of the total reaction cross section for 140 MeV alpha particle interactions with 90 Zr

  14. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  15. Radial-velocity variations in Alpha Ori, Alpha Sco, and Alpha Her

    International Nuclear Information System (INIS)

    Smith, M.A.; Patten, B.M.; Goldberg, L.

    1989-01-01

    Radial-velocity observations of Alpha Ori, Alpha Sco A, and Alpha Her A are used to study radial-velocity periodicities in M supergiants. The data refer to several metallic lines in the H-alpha region and to H-alpha itself. It is shown that Alpha Ori and Alpha Sco A have cycle lengths of about 1 yr and semiamplitudes of 2 km/s. It is suggested that many semiregular red supergiant varibles such as Alpha Ori may be heading toward chaos. All three stars show short-term stochastic flucutations with an amplitude of 1-2 km/s. It is found that the long-term variability of H-alpha velocities may be a consequence of intermittent failed ejections. 58 refs

  16. The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy.

    Science.gov (United States)

    Oh, Keun Sang; Lee, Hwanbum; Kim, Jae Yeon; Koo, Eun Jin; Lee, Eun Hee; Park, Jae Hyung; Kim, Sang Yoon; Kim, Kwangmeyung; Kwon, Ick Chan; Yuk, Soon Hong

    2013-01-10

    The multilayer nanoparticles (NPs) were prepared for cancer-targeting therapy using the layer by layer approach. When drug-loaded Pluronic NPs were mixed with vesicles (liposomes) in the aqueous medium, Pluronic NPs were incorporated into the vesicles to form the vesicle NPs. Then, the multilayer NPs were formed by freeze-drying the vesicle NPs in a Pluronic aqueous solution. The morphology and size distribution of the multilayer NPs were observed using a TEM and a particle size analyzer. In order to apply the multilayer NPs as a delivery system for docetaxel (DTX), which is a model anticancer drug, the release pattern of the DTX was observed and the tumor growth was monitored by injecting the multilayer NPs into the tail veins of tumor (squamous cell carcinoma)-bearing mice. The cytotoxicity of free DTX (commercial DTX formulation (Taxotere®)) and the multilayer NPs was evaluated using MTT assay. We also evaluated the tumor targeting ability of the multilayer NPs using magnetic resonance imaging. The multilayer NPs showed excellent tumor targetability and antitumor efficacy in tumor-bearing mice, caused by the enhanced permeation and retention (EPR) effect. These results suggest that the multilayer NPs could be a potential drug delivery system for cancer-targeting therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Serial Changes in Alpha-Fetoprotein Levels During Therapy for Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Altug Senol

    2014-12-01

    Full Text Available Aim: Alpha-fetoprotein (AFP has been widely used as a diagnostic marker for hepatocellular carcinoma. Some patients with hepatitis C show high AFP values, but no evidence of hepatocellular carcinoma. The aim of this study is to assess the influence of antiviral treatment on the serum AFP in patients with chronic hepatitis C without hepatocellular carcinoma. Material and Method: Thirty seven chronic hepatitis C patients (20 females and 17 males were included in the study. All patients were given a combined treatment of pegylated or conventional interferon (IFN and ribavirin. Serum AFP was measured at baseline and on months 3-6-12 of the therapy. Results: Compared to the pretreatment levels of ALT (88,59 ± 57,22 IU, those at 3, 6 and 12 months were statistically lower (p0,05, to 4,34 ± 4,64 (p>0,05 and to 2,63 ± 2,17 (p10 ng/ml. In these patients, mean serum AFP levels were decreased from pretreatment level of 15,09 ± 5,92 ng/ml to 11,39±3,30, to 6,97±2,53 (p

  18. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    Science.gov (United States)

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  19. Experimental investigation of the reactions {sup 25}Mg({alpha},n){sup 28}Si, {sup 26}Mg({alpha},n){sup 29}Si, {sup 18}O({alpha},n){sup 21}Ne and their impact on stellar nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Falahat, Sascha

    2010-06-10

    In the present dissertation, the nuclear reactions {sup 25}Mg({alpha},n){sup 28}Si, {sup 26}Mg({alpha},n){sup 29}Si, {sup 18}O({alpha},n){sup 21}Ne are investigated in the astrophysically interesting energy region from E{sub {alpha}}=1000 keV to E{sub {alpha}}=2450 keV. The experiments were performed at the Nuclear Structure Laboratory of the University of Notre Dame (USA) with the Van-de-Graaff accelerator KN. Solid state targets with evaporated magnesium or anodized oxygen were bombarded with {alpha}-particles and the released neutrons detected. For the detection of the released neutrons, computational simulations were used to construct a neutron detector based on {sup 3}He counters. Because of the strong occurrence of background reactions, different methods of data analysis were employed. Finally, the impact of the reactions {sup 25}Mg({alpha},n){sup 28}Si, {sup 26}Mg({alpha},n){sup 29}Si, {sup 18}O({alpha},n){sup 21}Ne on stellar nucleosynthesis is investigated by means of network calculations. (orig.)

  20. Can the Growth/Differentiation Factor-15 Be a Surrogate Target in Chronic Heart Failure Biomarker-Guided Therapy?

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2017-03-01

    Full Text Available Heart failure (HF biomarker-guided therapy is a promising method, which directs to the improvement of clinical status, attenuation of admission/readmission to the hospital and reduction in mortality rate. Many biological markers, like inflammatory cytokines, are under consideration as a surrogate target for HF treatment, while there are known biomarkers with established predictive value, such as natriuretic peptides. However, discovery of new biomarkers reflecting various underlying mechanisms of HF and appearing to be surrogate targets for biomarker-guided therapy is fairly promising. Nowadays, growth/differentiation factor 15 (GDF-15 is suggested a target biomarker for HF treatment. Although elevated level of GDF-15 is associated with HF development, progression, and prognosis, there is no represented evidence regarding the direct comparison of this biomarker with other clinical risk predictors and biomarkers. Moreover, GDF-15 might serve as a contributor to endothelial progenitor cells (EPC dysfunction by inducing EPC death/autophagy and limiting their response to angiopoetic and reparative effects. The short communication was discussed whether GDF-15 is good molecular target for HF biomarker-guided therapy.

  1. The 'robustness' of vocabulary intervention in the public schools: targets and techniques employed in speech-language therapy.

    Science.gov (United States)

    Justice, Laura M; Schmitt, Mary Beth; Murphy, Kimberly A; Pratt, Amy; Biancone, Tricia

    2014-01-01

    This study examined vocabulary intervention-in terms of targets and techniques-for children with language impairment receiving speech-language therapy in public schools (i.e., non-fee-paying schools) in the United States. Vocabulary treatments and targets were examined with respect to their alignment with the empirically validated practice of rich vocabulary intervention. Participants were forty-eight 5-7-year-old children participating in kindergarten or the first-grade year of school, all of whom had vocabulary-specific goals on their individualized education programmes. Two therapy sessions per child were coded to determine what vocabulary words were being directly targeted and what techniques were used for each. Study findings showed that the majority of words directly targeted during therapy were lower-level basic vocabulary words (87%) and very few (1%) were academically relevant. On average, three techniques were used per word to promote deep understanding. Interpreting findings against empirical descriptions of rich vocabulary intervention indicates that children were exposed to some but not all aspects of this empirically supported practice. © 2013 Royal College of Speech and Language Therapists.

  2. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    Science.gov (United States)

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  3. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells.

    Science.gov (United States)

    Escribá, Pablo V

    2017-09-01

    Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  4. Reversible, PET-positive, generalized lymphadenopathy and splenomegaly during high-dose interferon-alpha-2b adjuvant therapy for melanoma.

    Science.gov (United States)

    Ridolfi, Laura; Cangini, Delia; Galassi, Riccardo; Passardi, Alessandro; Marzullo, Annamaria; Moretti, Andrea; Framarini, Massimo; Tauceri, Francesca; Serra, Luigi; Chiarion-Sileni, Vanna; Ridolfi, Ruggero

    2008-09-01

    A patient with resected stage III nodular melanoma treated with high-dose interferon-alpha-b2 adjuvant therapy went on to develop generalized lymphadenopathy and splenomegaly. The total body positron emission tomography showed a high F-fluorodeoxyglucose uptake (standardized uptake values >9), indicating possible lymph node and spleen malignancies. Histologic examinations of an axillary lymph node biopsy and an osteomedullar biopsy were negative, excluding both melanoma metastases and hematopoietic tumors. The symptoms completely regressed after suspension of treatment and a follow-up positron emission tomography was negative. It remains to be seen whether this unusual event can be ascribed to an autoimmune phenomenon linked to potential treatment efficacy and survival.

  5. Monte Carlo treatment planning and high-resolution alpha-track autoradiography for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zamenhof, R.G.; Lin, K.; Ziegelmiller, D.; Clement, S.; Lui, C.; Harling, O.K.

    Monte Carlo simulations of thermal neutron flux distributions in a mathematical head model have been compared to experimental measurements in a corresponding anthropomorphic gelatin-based head phantom irradiated by a thermal neutron beam as presently available at the MITR-II Research Reactor. Excellent agreement between Monte Carlo and experimental measurements has encouraged us to employ the Monte Carlo simulation technique to approach treatment planning problems in neutron capture therapy. We have also implemented a high-resolution alpha-track autoradiography technique originally developed in our laboratory at MIT. Initial autoradiograms produced by this technique meet our expectations in terms of the high resolution available and the ability to etch tracks without concommitant destruction of stained tissue. Our preliminary results with computer-aided track distribution analysis indicate that this approach is very promising in being able to quantify boron distributions in tissue at the subcellular level with a minimum amount of operator effort necessary.

  6. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  7. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Narsireddy A

    2015-11-01

    Full Text Available Amreddy Narsireddy,1 Kurra Vijayashree,2 Mahesh G Adimoolam,1 Sunkara V Manorama,1 Nalam M Rao21CSIR – Indian Institute of Chemical Technology, 2CSIR – Centre for Cellular and Molecular Biology, Hyderabad, IndiaAbstract: Challenges in photodynamic therapy (PDT include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphine [PS] and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine dendrimer (G4 was conjugated with a PS and a nitrilotriacetic acid (NTA group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.Keywords: photodynamic therapy, dendrimers, nanoparticle, targeted delivery, Affibody, xenograft animal model

  8. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron.

    Science.gov (United States)

    Park, Sung-Soo; Bae, Insoo; Lee, Yong J

    2008-04-15

    Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1 that is the key regulator of cellular response to low oxygen tension. Under normoxic conditions, HIF-1alpha is continuously degraded by the ubiquitin-proteasome pathway through pVHL (von Hippel-Lindau tumor suppressor protein). Under hypoxic conditions, HIF-1alpha is stabilized and induces the transcription of HIF-1 target genes. Quercetin, a flavonoid with anti-oxidant, anti-inflammatory, and kinase modulating properties, has been found to induce HIF-1alpha accumulation and VEGF secretion in normoxia. In this study, the molecular mechanisms of quercetin-mediated HIF-1alpha accumulation were investigated. Previous studies have shown that, in addition to being induced by hypoxia, HIF-1alpha can be induced through the phosphatidylinositol 3-kinase (PI3K)/Akt and p53 signaling pathways. But our study revealed, through p53 mutant-type as well as p53 null cell lines, that neither the PI3K/Akt nor the p53 signaling pathway is required for quercetin-induced HIF-1alpha accumulation. And we observed that HIF-1alpha accumulated by quercetin is not ubiquitinated and the interaction of HIF-1alpha with pVHL is reduced, compared with HIF-1alpha accumulated by the proteasome inhibitor MG132. The use of quercetin's analogues showed that only quercetin and galangin induce HIF-1/2alpha accumulation and this effect is completely reversed by additional iron ions. This is because quercetin and galangin are able to chelate cellular iron ions that are cofactors of HIF-1/2alpha proline hydroxylase (PHD). These data suggest that quercetin inhibits the ubiquitination of HIF-1/2alpha in normoxia by hindering PHD through chelating iron ions.

  9. Phenotype switching : tumor cell plasticity as a resistance mechanism and target for therapy

    NARCIS (Netherlands)

    Kemper, K.; de Goeje, P.L.; Peeper, D.S.; van Amerongen, R.

    2014-01-01

    Mutations in BRAF are present in the majority of patients with melanoma, rendering these tumors sensitive to targeted therapy with BRAF and MEK inhibitors. Unfortunately, resistance almost invariably develops. Recently, a phenomenon called "phenotype switching" has been identified as an escape

  10. Resolution of G(s)alpha and G(q)alpha/G(11)alpha proteins in membrane domains by two-dimensional electrophoresis: the effect of long-term agonist stimulation.

    Science.gov (United States)

    Matousek, P; Novotný, J; Svoboda, P

    2004-01-01

    Low-density membrane-domain fractions were prepared from S49 lymphoma cells and clone e2m11 of HEK293 cells expressing a large number of thyrotropin-releasing hormone receptor (TRH-R) and G(11)alpha by flotation on sucrose density gradients. The intact cell structure was broken by detergent-extraction, alkaline-treatment or drastic homogenization. Three types of low-density membranes were resolved by two-dimensional electrophoresis and analyzed for G(s)alpha (S49) or G(q)alpha/G11) (e2m11) content. Four individual immunoblot signals of Gsalpha protein were identified in S49 lymphoma cells indicating complete resolution of the long G(s)alpha L+/-ser and short G(s)alpha S+/-ser variants of G(s)alpha. All these were diminished by prolonged agonist (isoprenaline) stimulation. In e2m11-HEK cells, five different immunoblot signals were detected indicating post-translational modification of G proteins of G(q)alpha/G(11)alpha family. The two major spots corresponding to exogenously (over)expressed G(11)alpha and endogenous G(q)alpha were reduced; the minor spots diminished by hormonal stimulation. Parallel analysis by silver staining of the total protein content indicated that no major changes in protein composition occurred under these conditions. Our data thus indicate that agonist-stimulation of target cells results in down-regulation of all different members of G(s) and G(q)/G(11) families. This agonist-specific effect may be demonstrated in crude membrane as well as domain/raft preparations and it is not accompanied by changes in overall protein composition.

  11. Study of transfer reactions ({alpha},t), ({alpha},{sup 3}He) in the f-p shell: mechanism and spectroscopic use; Etude des reactions de transfert ({alpha},t), ({alpha},{sup 3}He) dans la couche f-p mecanisme et utilisation spectroscopique

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-05-01

    We describe an experimental study of ({alpha},t), ({alpha},{sup 3}He) reactions at 44 MeV using a solid-state identifier, on the target-nuclei {sup 54}Fe and {sup 58,60,62,64}Ni. A critical study of optical model and of disturbed wave analysis has been performed. We show the complementarity of different transfer-reactions, the ambiguity of spectroscopic factors, the importance of the problem of the reaction mechanism. (author) [French] On decrit une etude experimentale des reactions ({alpha},t), ({alpha},{sup 3}He) a 44 MeV utilisant un systeme identificateur de particules sur les noyaux-cibles {sup 54}Fe et {sup 58,60,62,64}Ni. Une etude critique de modele optique et d'analyse en ondes deformees (D.W.B.A.) a ete entreprise. On montre la complementarite des differentes reactions de transfert, l'ambiguite des facteurs spectroscopiques, l'importance du probleme du mecanisme. (auteur)

  12. Dose Dependent Survival Response in Chronic Myeloid Leukemia under Continuous and Pulsed Targeted Therapy

    International Nuclear Information System (INIS)

    Pizzolato, N.; Valenti, D.; Spagnolo, B.; Persano Adorno, D.

    2010-01-01

    A simulative study of cancer growth dynamics in patients affected by Chronic Myeloid Leukemia (CML), under the effect of a targeted dose dependent continuous or pulsed therapy, is presented. We have developed a model for the dynamics of CML in which the stochastic evolution of white blood cell populations are simulated by adopting a Monte Carlo approach. Several scenarios in the evolutionary dynamics of white blood cells, as a consequence of the efficacy of the different modelled therapies, pulsed or continuous, are described. The best results, in terms of a permanent disappearance of the leukemic phenotype, are achieved with a continuous therapy and higher dosage. However, our findings demonstrate that an intermittent therapy could represent a valid choice in patients with high risk of toxicity, when a long-term therapy is considered. A suitably tuned pulsed therapy can enhance the treatment efficacy and reduce the percentage of patients developing resistance. (authors)

  13. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    CERN Document Server

    Müller, Cristina; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters rev...

  14. EVALUATING THE TARGET, EFFECT, ACTION INTERACTION (TEA MODEL OF SPINAL MANIPULATION THERAPY ON SACROILIAC JOINT DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    Muhammad Salman Bashir

    2017-08-01

    Full Text Available Background: In physical therapy, usually the effects of treatment on any condition will be evaluated based on the mode of action on the target tissue. Some treatments will have direct and indirect effects. Due to indirect effects, there may be changes in other tissues or systems in and around the target tissue. The interaction between target, effect, and action was studied under TEA model. In sacroiliac joint dysfunction, Muscle Energy Technique (MET and Spinal Manipulation Therapy (SMT were proved as useful treatment approaches but one is targeted on muscles (MET the other targets on joint (SMT. The indirect effects of both the approaches can’t be neglected. This study focused on evaluating indirect effects of SMT. Methods: A pilot study was conducted to see the effect of Spinal Manipulation Therapy on muscles (Transverse Abdominus, Internal Oblique when applied in patients with sacroiliac joint dysfunction. 44 subjects diagnosed with sacroiliac joint dysfunction were recruited in the study. Resting thickness was measured by ultrasound before and after Spinal Manipulation Therapy. SPSS version 17 was used for statistical analysis. Paired t-test compared pre and post test results. Results: After conducting Pilot study revealed that Pre resting thickness of Transverse Abdominus and Internal Oblique is (3.5±0.10 and (5.47± 0.15 Post resting Thickness of TrA (Transverse Abdominus and Internal Oblique (IO is (3.90±0.12 and (7.63±0.80 Results are significant as P-Value 0.000 that is <0.05. Conclusion: Here is concluded that SMT is a useful method to treat muscles through its direct action is on the Sacroiliac joint in Sacroiliac joint dysfunction. So we can use it for treating muscles by applying on joints (Indirect method.

  15. Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature

    NARCIS (Netherlands)

    Posthuma de Boer, J.; Witlox, M.A.; Kaspers, G.J.L.; van Royen, B.J.

    2011-01-01

    Treating metastatic osteosarcoma (OS) remains a challenge in oncology. Current treatment strategies target the primary tumour rather than metastases and have a limited efficacy in the treatment of metastatic disease. Metastatic cells have specific features that render them less sensitive to therapy

  16. Drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy.

    Science.gov (United States)

    Gheorghe, Liana; Cotruta, Bogdan; Trifu, Viorel; Cotruta, Cristina; Becheanu, Gabriel; Gheorghe, Cristian

    2008-09-01

    Pegylated interferon-alpha in combination with ribavirin currently represents the therapeutic standard for the hepatitis C virus infection. Interferon based therapy may be responsible for many cutaneous side effects. We report a case of drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy. To our knowledge, this is the first reported case of Sweet's syndrome in association with pegylated interferon-alpha therapy.

  17. Alpha-V Integrin Targeted PET Imagining of Breast Cancer Angiogenesis and Lose-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    Science.gov (United States)

    2005-08-01

    therapies would 03 ibe of great significance. Integrin receptors are implicated 0 n mw--in many pathological processes, such as osteoporosis , 30 min 1... Massager , L. F.; 2003, 9, 685-693. Frielink, C.; Edwards, 1). S.; Rakjopadhye, M.; Boonstra, H.; (8) Malemia,G. Tuniorvasculature directed drug targeting

  18. Molecular Profiling to Optimize Treatment in Non-Small Cell Lung Cancer: A Review of Potential Molecular Targets for Radiation Therapy by the Translational Research Program of the Radiation Therapy Oncology Group

    International Nuclear Information System (INIS)

    Ausborn, Natalie L.; Le, Quynh Thu; Bradley, Jeffrey D.; Choy, Hak; Dicker, Adam P.; Saha, Debabrata; Simko, Jeff; Story, Michael D.; Torossian, Artour; Lu, Bo

    2012-01-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) have been mainly based on disease stage, performance status, and co-morbidities, and rarely on histological or molecular classification. Rather than applying broad treatments to unselected patients that may result in survival increase of only weeks to months, research efforts should be, and are being, focused on identifying predictive markers for molecularly targeted therapy and determining genomic signatures that predict survival and response to specific therapies. The availability of such targeted biologics requires their use to be matched to tumors of corresponding molecular vulnerability for maximum efficacy. Molecular markers such as epidermal growth factor receptor (EGFR), K-ras, vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), and anaplastic lymphoma kinase (ALK) represent potential parameters guide treatment decisions. Ultimately, identifying patients who will respond to specific therapies will allow optimal efficacy with minimal toxicity, which will result in more judicious and effective application of expensive targeted therapy as the new paradigm of personalized medicine develops.

  19. Target volumes in radiation therapy of childhood brain tumours

    International Nuclear Information System (INIS)

    Habrand, J.L.; Abdulkarim, B.; Beaudre, A.; El Khouri, M.; Kalifa, C.

    2001-01-01

    Pediatric tumors have enjoyed considerable improvements for the past 30 years. This is mainly due to the extensive use of combined therapeutical modalities in which chemotherapy plays a prominent role. In many children, local treatment including radiotherapy, can nowadays be adapted in terms of target volume and dose to the 'response' to an initial course of chemotherapy almost on a case by case basis. This makes precise recommendation on local therapy highly difficult in this age group. We will concentrate in this paper on brain tumors in which chemotherapy is of limited value and radiotherapy still plays a key-role. (authors)

  20. Chemotherapy and targeted therapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials.

    Science.gov (United States)

    Eckel, Florian; Schmid, Roland M

    2014-01-01

    In biliary tract cancer, gemcitabine platinum (GP) doublet palliative chemotherapy is the current standard treatment. The aim of this study was to analyze recent trials, even those small and nonrandomized, and identify superior new regimens. Trials published in English between January 2000 and January 2014 were analyzed, as well as ASCO abstracts from 2010 to 2013. In total, 161 trials comprising 6,337 patients were analyzed. The pooled results of standard therapy GP (no fluoropyrimidine, F, or other drug) were as follows: the median response rate (RR), tumor control rate (TCR), time to tumor progression (TTP) and overall survival (OS) were 25.9 and 63.5%, and 5.3 and 9.5 months, respectively. GFP triplets as well as G-based chemotherapy plus targeted therapy were significantly superior to GP concerning tumor control (TCR, TTP) and OS, with no difference in RR. Triplet combinations of GFP as well as G-based chemotherapy with (predominantly EGFR) targeted therapy are most effective concerning tumor control and survival.

  1. Nitric oxide production and monoamine oxidase activity in cancer patients during interferon-alpha therapy.

    Science.gov (United States)

    Fekkes, Durk; Van Gool, Arthur R; Bannink, Marjolein; Sleijfer, Stefan; Kruit, Wim H J; van der Holt, Bronno; Eggermont, Alexander M M; Hengeveld, Michiel W; Stoter, Gerrit

    2009-10-01

    Both increased and decreased nitric oxide (NO) synthesis have been reported in patients treated with interferon-alpha (IFN-alpha). Animal studies showed that IFN-alpha administration results in increased levels of biogenic amines, subsequent activation of monoamine oxidases (MAOs), and finally in a change in NO production due to the H(2)O(2) generated by MAOs. We examined the potential relationship between NO production in plasma and MAO-B activity in platelets of 43 cancer patients during 8 weeks of treatment with IFN-alpha. NO synthesis was quantitated by measuring both the ratio of citrulline and arginine (CIT/ARG-ratio) and total nitrite/nitrate (NOx) levels. Compared to baseline, MAO activity and NOx increased, while the CIT/ARG-ratio decreased. No associations were found between NOx, MAO and CIT/ARG-ratio. Only few associations were observed between changes in the biochemical parameters and changes in psychopathology induced by IFN-alpha, of which the association between changes in CIT and lassitude was the most consistent. The results suggest that peripheral NO production and MAO activity are unrelated to each other, and that peripheral changes in these biochemical parameters induced by IFN-alpha are unlikely to contribute to definite psychiatric disturbance.

  2. Update in Systemic and Targeted Therapies in Gastrointestinal Oncology

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2018-03-01

    Full Text Available Progress has been made in the treatment of gastrointestinal cancers through advances in systemic therapies, surgical interventions, and radiation therapy. At the Multi-Disciplinary Patient Care in Gastrointestinal Oncology conference, the faculty members of the Penn State Health Milton S. Hershey Medical Center presented a variety of topics that focused on this sub-specialty. This conference paper highlights the new development in systemic treatment of various malignant diseases in the digestive system. Results of the recent clinical trials that investigated the clinical efficacy of pegylated hyaluronidase, napabucasin, and L-asparaginase in pancreatic carcinoma are presented. The use of peri-operative chemotherapy comprised of 5-fluorouracil or capecitabine, leucovorin, oxaliplatin, and docetaxel (FLOT, and immunotherapy including pembrolizumab, nivolumab, and ipilimumab in gastroesophageal carcinoma are discussed. Data from clinical trials that investigated the targeted therapeutics including nivolumab, ramucirumab, lenvatinib, and BLU-554 are reported. The role of adjuvant capecitabine in resected biliary tract carcinoma (BTC and nab-paclitaxel in combination with gemcitabine and cisplatin in advanced BTC are presented. In colorectal carcinoma, the efficacy of nivolumab, adjuvant FOLFOX or CAPOX, irinotecan/cetuximab/vemurafenib, and trifluridine/tipiracil/bevacizumab, is examined. In summary, some of the above systemic therapies have become or are expected to become new standard of care, while the others demonstrate the potential of becoming new treatment options.

  3. IMMUNOMODULATING THERAPY BY RECOMBINANT ALPHA-2B INTERFERON AMONG CHILDREN WITH TIMOMEGALIA

    Directory of Open Access Journals (Sweden)

    L.A. Nikulin

    2007-01-01

    Full Text Available The study of the enlarged thymus gland syndrome is extremely important for understanding of the immune system formation and functioning mechanisms. the purpose of this study is to conduct clinical and immunological analysis of the children, suffering from the syndrome of the enlarged thymus gland II and III degrees, who received recombinant alpha2b interferon (in suppositories. The revealed changes in the immune sys tem during timomegalia are complex and conducive to the development of the infectious and inflammatory diseases among infants, thus, determining the necessity for the adequate immune correction. The application of the recombinant alpha 2b interferon among such children allows one to uncover the immunomodulating effects, normalizing the imbalances in the immune system of children with timomegalia.Key words: timomegalia, alpha 2b interferon, immunity, immune correction, children.

  4. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.

    Science.gov (United States)

    D'Huyvetter, Matthias; Vincke, Cécile; Xavier, Catarina; Aerts, An; Impens, Nathalie; Baatout, Sarah; De Raeve, Hendrik; Muyldermans, Serge; Caveliers, Vicky; Devoogdt, Nick; Lahoutte, Tony

    2014-01-01

    RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MWnanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70% drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90%. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88% when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95% with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy in mice bearing small estiblashed HER2pos tumors led to an almost complete blockade of tumor growth and a significant difference in event-free survival

  5. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5 impedes corneal neovascularization (CNV in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12 vg/ml application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05, 66% (p<0.001, and 63% (p<0.01 reduction at early (day 5, mid (day 10, and late (day 14 stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5, and CD31 immunoblotting (62-67%, p<0.05 supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic and up-regulated PEDF (anti-angiogenic genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.

  6. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    International Nuclear Information System (INIS)

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-01-01

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). γH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  7. Alpha decay of {sup 181}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Henderson, D.J.; Hermann, R. [and others

    1995-08-01

    The {alpha}-decay energy of {sup 181}Pb was measured as 7211(10) keV and 7044(15). In the first study the isotope was produced in {sup 90}Zr bombardments of {sup 94}Mo and, after traversing a velocity filter, implanted in a position-sensitive Si detector; no half life for {sup 181}Pb was reported. In the second study the isotope was produced in {sup 40}Ca bombardments of {sup 144}Sm and transported to a position in front of a Si(Au) surface barrier detector with a fast He-gas-jet capillary system; an estimate of 50 ms was determined for the {sup 181}Pb half life. Recently we investigated {sup 181}Pb {alpha} decay at ATLAS as part of a survey experiment in which a l-pnA beam of 400-MeV {sup 92}Mo was used to irradiate targets of {sup 89}Y, {sup 90,92,94}Zr, and {sup 92}Mo to examine yields for one- and two-nucleon evaporation products from symmetric cold-fusion reactions. Recoiling nuclei of interest were passed through the Fragment Mass Analyzer and implanted in a double-sided silicon strip detector for {alpha}-particle assay. With the {sup 90}Zr target we observed a group at 7065(20) keV which was correlated with A = 181 recoils and had a half life of 45(20) ms. Our new results for {sup 181}Pb therefore agreed with those of the second study. There was no indication in the {sup 90}Zr + {sup 92}Mo data of the 7211(10)-keV {alpha} particles seen by Keller et al. The interested reader is referred to the 1993 atomic mass evaluation wherein the input {alpha}-decay energies and resultant masses of the light Pb isotopes (including {sup 181}Pb) are discussed.

  8. HIV-derived vectors for gene therapy targeting dendritic cells.

    Science.gov (United States)

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  9. Denosumab for bone diseases: translating bone biology into targeted therapy.

    Science.gov (United States)

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  10. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    Science.gov (United States)

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  11. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  12. TARGETED RADIOFREQUENCY THERAPY FOR TRAINING INDUCED MUSCLE FATIGUE EFFECTIVE OR NOT

    Directory of Open Access Journals (Sweden)

    Ondrej Prouza

    2016-12-01

    Full Text Available Background: Training induced muscle fatigue (hereinafter also referred as TIMF is leading to unwanted consequences among sportsmen and actively sporting people such as decreased muscle strength and additional painful discomfort and mobility issues. The knowledge about the mechanisms of influencing the fatigue induced processes in muscle tissue is not comprehensive. The conventional manual techniques, cold patches and conventional physiotherapy have some effect in improving these conditions, however, finding effective methods to influence these consequences appears beneficial in sports medicine. Such method could be Radiofrequency therapy up to 0.5 MHz, known as Targeted Radiofrequency Therapy (hereinafter also referred as TR-Therapy. Aim of this self-controlled study is to evaluate the effect of the TR-Therapy for over-exertion management including the effect on decreased muscle strength, limited range of motion and possible painful discomfort. Materials: 7 healthy and actively sporting participants underwent through 2 stages (Active stage – including overexertion of the forearm flexors and subsequent TR-Therapy session; and Control stage - including overexertion of the forearm flexors and subsequent resting period. Data for muscle strength in kg, active Range of Motion (ROM in (º and Pain and discomfort perception by 10 point Visual Analog Scale (VAS were obtained and evaluated. Results: 31% increase in the muscle strength during the active stage was observed and respectively 12% during the control stage, with level of significance p0.05. Conclusions: The results of this study suggest TR-Therapy as effective solution for muscle strength restoration after TIMF.

  13. Compact alpha-excited sources of low energy x-rays

    International Nuclear Information System (INIS)

    Amlauer, K.; Tuohy, I.

    1976-01-01

    A discussion is given of the use of alpha emitting isotopes, such as 210 Po and 244 Cm, for the production of low energy x-rays (less than 5.9 keV). The design of currently available sources is described, and x-ray fluxes observed from various target materials are presented. Commercial applications of the alpha excitation technique are briefly discussed

  14. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    Science.gov (United States)

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  15. Excitation functions for alpha-particle-induced reactions with natural antimony

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. L.; Shah, D. J.; Mukherjee, S.; Chintalapudi, S. N. [Vadodara, M. S. Univ. of Baroda (India). Fac. of Science. Dept. of Physics

    1997-07-01

    Stacked-foil activation technique and {gamma} - rays spectroscopy were used for the determination of the excitation functions of the {sup 121}Sb [({alpha}, n); ({alpha}, 2n); ({alpha},4 n); ({alpha}, p3n); ({alpha}, {alpha}n)]; and Sb [({alpha}, 3n); ({alpha}, 4n); ({alpha}, {alpha}3n)] reactions. The excitation functions for the production of {sup 124}I, {sup 123}I, {sup 121}I, {sup 121}Te and {sup 120}Sb were reported up to 50 MeV. The reactions {sup 121} Sb ({alpha}, {alpha}n) + {sup 123} Sb ({alpha}, {alpha}3n) are measured for the first time. Since natural antimony used as the target has two odd mass stable isotopes of abundances 57.3 % ({sup 121}Sb), their activation in some cases gives the same product nucleus through different reaction channels but with very different Q-values. In such cases, the individual reaction cross-sections are separated with the help of theoretical cross-sections. The experimental cross-sections were compared with the predictions based on hybrid model of Blann. The high-energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism and the initial exciton number n{sub 0} = 4 (4 p 0 h) gives fairly good agreement with presently measured results.

  16. [Autoimmunity in children with chronic hepatitis C treated with interferon alpha and ribavirin].

    Science.gov (United States)

    Gora-Gebka, Magdalena; Liberek, Anna; Bako, Wanda; Raczkowska-Kozak, Janina; Sikorska-Wisniewska, Grazyna; Korzon, Maria

    2004-01-01

    The role of interferon alpha or the virus itself in the pathogenesis and the risk of autoimmunological disorders in patients infected with HCV, still remain unknown, especially in children. The aim of the study was to evaluate the incidence of autoantibodies and the risk of autoimmunological disorders in children with chronic hepatitis C, treated with interferon alpha and ribavirin in the Department of Paediatrics, Paediatric Gastroenterology and Oncology in Gdansk. In the studied group of 12 patients, in 4 cases autoantibodies were present in low titers prior to the treatment and they had no prognostic value for the response to the therapy or the risk of autoimmunological disorders. Positive response for the treatment was achieved in 4 cases; in 3 cases indications for discontinuation of the therapy were established. During the therapy with interferon alpha and ribavirin, in 2 children elevation of serum titers of antibodies to liver-kidney microsome type 1 (anti-LKM1) (> 1:640) with normal gammaglobulin levels was noted. In none of the children autoimmunological disorders were observed.

  17. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy.

    Science.gov (United States)

    Li, Lin; Di, Xingsheng; Wu, Mingrui; Sun, Zhisu; Zhong, Lu; Wang, Yongjun; Fu, Qiang; Kan, Qiming; Sun, Jin; He, Zhonggui

    2017-04-01

    Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    Science.gov (United States)

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  19. Pegylated interferon alpha-2a and ribavirin combination therapy in HCV liver transplant recipients. Experience of 7 cases.

    Science.gov (United States)

    Iacob, Speranta; Gheorghe, Liana; Hrehoret, Doina; Becheanu, Gabriel; Herlea, Vlad; Popescu, Irinel

    2008-06-01

    Hepatitis C virus (HCV) related cirrhosis represents the leading indication for liver transplantation (LT) worldwide and HCV reinfection is the rule among transplant recipients. Combination therapy with interferon and ribavirin is the treatment of choice for established recurrent hepatitis C. To evaluate the efficacy and safety of the combination of pegylated interferon alpha-2a and ribavirin in LT recipients with histological recurrence of hepatitis C. Seven LT recipients with chronic hepatitis C recurrence were treated with peginterferon alpha-2a with an initial intended dose of 180 microg/week and an intended dose of ribavirin 800-1000 mg/day for at least 12 months and followed-up for at least 24 weeks. Early virological response rate was 57.1%. Three patients (42.8%) had end of treatment virological response and all had also sustained viral response (SVR). Five patients had end of treatment biological response, out of which 4 had also sustained biochemical response. Three patients had both SVR and sustained biochemical response. Four patients had end of treatment histological response, out of which 3 patients had also SVR. Cytopenia was the most common adverse event: anemia (57.1%), leucopenia/neutropenia (71.4%), thrombocytopenia (42.8%). Combination of pegylated interferon and ribavirin can be safely and successfully used in liver transplant recipients.

  20. Application of C-arm CT-guided targeted puncturing technique in performing non-vascular interventional biopsy or interventional therapy

    International Nuclear Information System (INIS)

    Li Zhen; Han Xinwei; Jiao Dechao; Ren Jianzhuang; Su Yu; Ye Hui

    2011-01-01

    Objective: to investigate the clinical value of C-arm CT-guided targeted puncturing technique in performing non, vascular interventional biopsy or interventional therapy. Methods: Thirty, one patients, who were encountered in authors' hospital during the period from July 2010 to September 2010, were involved in this study. C-arm CT-guided percutaneous targeted puncturing biopsy or interventional therapy was performed in all 31 patients. All patients had complete clinical data. The complications and positive rate of biopsy were recorded and analyzed. Results: Under C-arm CT-guidance, percutaneous interventional therapy was carried out in 13 patients. The interventional procedures included radiofrequency ablation therapy for hepatic cellular carcinoma (n=2), pelvic abscess draining (n=1), hepatic abscess draining (n=1), ethanol injection for liver cancer (n=4), sclerotic therapy with ethanol injection for renal cyst (n=2), sclerotic therapy with ethanol injection for liver cyst (n=2) and catheter-indwelling drainage for pancreatic pseudocyst (n=1). percutaneous interventional biopsy was performed in the remaining 18 cases, including liver (n=4), lung (n=7), mediastinum (n=2), bone and soft tissue (n=4) and neck mass (n=1). All the procedures were successfully accomplished, no technique, related complications occurred during the operation. For biopsy examination in 18 cases, the positive rate was 94.4% (17/18) and false, negative results was seen in one case with lung lesion. Conclusion: The percutaneous targeted puncturing technique with C, arm CT-guidance combines the advantages of both CT scanning and fluoroscopy. The use of real, time road, mapping function can effectively guide the puncturing and therapeutic management, which can not only optimize the workflow, save the operation time, but also improve the success rate and technical safety. Therefore, it is of great value to popularize this targeted puncturing technique. (authors)

  1. Does targeting manual therapy and/or exercise improve patient outcomes in nonspecific low back pain? A systematic review

    Directory of Open Access Journals (Sweden)

    Mjøsund Hanne L

    2010-04-01

    Full Text Available Abstract Background A central element in the current debate about best practice management of non-specific low back pain (NSLBP is the efficacy of targeted versus generic (non-targeted treatment. Many clinicians and researchers believe that tailoring treatment to NSLBP subgroups positively impacts on patient outcomes. Despite this, there are no systematic reviews comparing the efficacy of targeted versus non-targeted manual therapy and/or exercise. This systematic review was undertaken in order to determine the efficacy of such targeted treatment in adults with NSLBP. Method MEDLINE, EMBASE, Current Contents, AMED and the Cochrane Central Register of Controlled Trials were electronically searched, reference lists were examined and citation tracking performed. Inclusion criteria were randomized controlled trials of targeted manual therapy and/or exercise for NSLPB that used trial designs capable of providing robust information on targeted treatment (treatment effect modification for the outcomes of activity limitation and pain. Included trials needed to be hypothesis-testing studies published in English, Danish or Norwegian. Method quality was assessed using the criteria recommended by the Cochrane Back Review Group. Results Four high-quality randomized controlled trials of targeted manual therapy and/or exercise for NSLBP met the inclusion criteria. One study showed statistically significant effects for short-term outcomes using McKenzie directional preference-based exercise. Research into subgroups requires much larger sample sizes than traditional two-group trials and other included studies showed effects that might be clinically important in size but were not statistically significant with their samples sizes. Conclusions The clinical implications of these results are that they provide very cautious evidence supporting the notion that treatment targeted to subgroups of patients with NSLBP may improve patient outcomes. The results of the

  2. Proposal of a weight factor for alpha radiation aiming biota radioprotection

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Kelecom, Alphonse; Goncalves, Simone

    2009-01-01

    Several proposals based on the environmental radioprotection of calculating the absorbed dose in biota have been suggested. The absorbed dose expresses the deposition of energy per mass unit. The differences in biological effects of the absorbed dose can be quantified by applying a correction factor to the absorbed dose. The correction factor for radiation is easier to establish, because radiations exist in smaller number (alpha, beta, neutrons and photons) and can be set for groups of organisms. This work aims to propose a correction factor for radiation, in order to adequate the concept of absorbed dose currently used to the concept of equivalent dose. A survey of the literature on correction factors proposed for alpha radiation was carried out and, when possible, the biological endpoint was identified, as well as the radionuclide and the biological target. A variation of the weight factor for alpha radiation from 1 to 377 was observed and a number of biological endpoints, biological target and alpha emitter radionuclide were identified. Finally we propose a weight value for alpha radiation of 40, and we propose also the name of correction factor for radiation alpha as being ecological radiation weighting factor (WRE) the name 'equivalent dose for flora and fauna' (HTFF) to name of the new dose. (author)

  3. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  4. Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma

    International Nuclear Information System (INIS)

    Beltran, Chris; Naik, Mihir; Merchant, Thomas E.

    2010-01-01

    Purpose: Investigate the effect of tumor change and setup uncertainties on target coverage for pediatric craniopharyngioma during RT. Methods and materials: Fifteen pediatric patients with craniopharyngioma (mean 5.1 years) were included in this study. MRI was performed before and a median of six times during RT to monitor changes in the tumor volume. IMRT plans were created and compared to the CRT plan used for treatment. The role of adaptive therapy based on GTV changes was investigated. Dosimetric effects of interfraction and intrafraction motion were examined. Results: The mean of the maximal change in the GTV was 28.5% [-20.7% to 82.0%]. For the standard margin IMRT plans, the mean D 95 of the base plan on the base target was 53.6 Gy [53.1-54.1]. The mean D 95 of the base plans on the adaptive targets was 52.1 Gy [47.9-54.1]. The D 95 for the adaptive plan on the adaptive target was 53.8 Gy [53.4-54.3]. A linear regression equation of y=-0.12x , r 2 = 0.70, was found for the percent change in D 95 of the PTV (y) vs. the percent change in the GTV (x). Inter and intrafraction motion did not affect the target coverage for standard and reduced margin plans. Conclusions: The GTV of pediatric craniopharyngioma patients change size during therapy and adaptive planning is critical for conformal plans; therefore early and regular surveillance imaging is required.

  5. Efficacy of targeted therapy for advanced renal cell carcinoma: A systematic review and meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Chao Wei

    Full Text Available ABSTRACT We conducted a systematic review and meta-analysis of the literature on the efficacy of the targeted therapies in the treatment of advanced RCC and, via an indirect comparison, to provide an optimal treatment among these agents. A systematic search of Medline, Scopus, Cochrane Library and Clinical Trials unpublished was performed up to Jan 1, 2015 to identify eligible randomized trials. Outcomes of interest assessing a targeted agent included progression free survival (PFS, overall survival (OS and objective response rate (ORR. Thirty eligible randomized controlled studies, total twentyfourth trails (5110 cases and 4626 controls were identified. Compared with placebo and IFN-α, single vascular epithelial growth factor (receptor tyrosine kinase inhibitor and mammalian target of rapamycin agent (VEGF(r-TKI & mTOR inhibitor were associated with improved PFS, improved OS and higher ORR, respectively. Comparing sorafenib combination vs sorafenib, there was no significant difference with regard to PFS and OS, but with a higher ORR. Comparing single or combination VEGF(r-TKI & mTOR inhibitor vs BEV + IFN-α, there was no significant difference with regard to PFS, OS, or ORR. Our network ITC meta-analysis also indicated a superior PFS of axitinib and everolimus compared to sorafenib. Our data suggest that targeted therapy with VEGF(r-TKI & mTOR inhibitor is associated with superior efficacy for treating advanced RCC with improved PFS, OS and higher ORR compared to placebo and IFN-α. In summary, here we give a comprehensive overview of current targeted therapies of advanced RCC that may provide evidence for the adequate targeted therapy selecting.

  6. Screening and Identifying a Novel ssDNA Aptamer against Alpha-fetoprotein Using CE-SELEX

    Science.gov (United States)

    Dong, Lili; Tan, Qiwen; Ye, Wei; Liu, Dongli; Chen, Haifeng; Hu, Hongwei; Wen, Duo; Liu, Yang; Cao, Ya; Kang, Jingwu; Fan, Jia; Guo, Wei; Wu, Weizhong

    2015-01-01

    Alpha-fetoprotein (AFP) is a liver cancer associated protein and has long been utilized as a serum tumor biomarker of disease progression. AFP is usually detected in HCC patients by an antibody based system. Recently, however, aptamers generated from systematic evolution of ligands by exponential enrichment (SELEX) were reported to have an alternative potential in targeted imaging, diagnosis and therapy. In this study, AFP-bound ssDNA aptamers were screened and identified using capillary electrophoresis (CE) SELEX technology. After cloning, sequencing and motif analysis, we successfully confirmed an aptamer, named AP273, specifically targeting AFP. The aptamer could be used as a probe in AFP immunofluorescence imaging in HepG2, one AFP positive cancer cell line, but not in A549, an AFP negative cancer cell line. More interesting, the aptamer efficiently inhibited the migration and invasion of HCC cells after in vivo transfection. Motif analysis revealed that AP273 had several stable secondary motifs in its structure. Our results indicate that CE-SELEX technology is an efficient method to screen specific protein-bound ssDNA, and AP273 could be used as an agent in AFP-based staining, diagnosis and therapy, although more works are still needed. PMID:26497223

  7. Pediatric Anaplastic Embryonal Rhabdomyosarcoma: Targeted Therapy Guided by Genetic Analysis and a Patient-Derived Xenograft Study

    Directory of Open Access Journals (Sweden)

    Stuart L. Cramer

    2018-01-01

    Full Text Available Therapy for rhabdomyosarcoma (RMS has generally been limited to combinations of conventional cytotoxic agents similar to regimens originally developed in the late 1960s. Recently, identification of molecular alterations through next-generation sequencing of individual tumor specimens has facilitated the use of more targeted therapeutic approaches for various malignancies. Such targeted therapies have revolutionized treatment for some cancer types. However, malignancies common in children, thus far, have been less amenable to such targeted therapies. This report describes the clinical course of an 8-year-old female with embryonal RMS having anaplastic features. This patient experienced multiple relapses after receiving various established and experimental therapies. Genomic testing of this RMS subtype revealed mutations in BCOR, ARID1A, and SETD2 genes, each of which contributes to epigenetic regulation and interacts with or modifies the activity of histone deacetylases (HDAC. Based on these findings, the patient was treated with the HDAC inhibitor vorinostat as a single agent. The tumor responded transiently followed by subsequent disease progression. We also examined the efficacy of vorinostat in a patient-derived xenograft (PDX model developed using tumor tissue obtained from the patient’s most recent tumor resection. The antitumor activity of vorinostat observed with the PDX model reflected clinical observations in that obvious areas of tumor necrosis were evident following exposure to vorinostat. Histologic sections of tumors harvested from PDX tumor-bearing mice treated with vorinostat demonstrated induction of necrosis by this agent. We propose that the evaluation of clinical efficacy in this type of preclinical model merits further evaluation to determine if PDX models predict tumor sensitivity to specific agents and/or combination therapies.

  8. Most Trial Eligibility Criteria and Patient Baseline Characteristics Do Not Modify Treatment Effect in Trials Using Targeted Therapies for Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Christensen, Anton Wulf; Tarp, Simon; Furst, Daniel E

    2015-01-01

    OBJECTIVE: To determine if variations in trial eligibility criteria and patient baseline characteristics could be considered effect modifiers of the treatment response when testing targeted therapies (biological agents and targeted synthetic disease modifying antirheumatic drugs (DMARDs....... Odds ratios (ORs) were calculated from the response rates and compared among the trial eligibility criteria/patient baseline characteristics of interest. Comparisons are presented as the Ratio of Odds Ratios (ROR). RESULTS: Sixty-two trials (19,923 RA patients) were included in the primary analyses...... using ACR20 response. Overall, targeted therapies constituted an effective treatment (OR 3.96 95% confidence interval (CI) 3.41 to 4.60). The majority of the trial eligibility criteria and patient baseline characteristics did not modify treatment effect. The added benefit of targeted therapies was lower...

  9. Maintenance Therapy in Ovarian Cancer with Targeted Agents Improves PFS and OS: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Xinyu Qian

    Full Text Available Maintenance therapy with targeted agents for prolonging remission for ovarian cancer patients remains controversial. As a result, a meta-analysis was conducted to assess the effectiveness and safety of using maintenance therapy with targeted agents for the treatment of ovarian cancer.From inception to January 2015, we searched for randomized, controlled trials (RCTs using the following databases: PubMed, ScienceDirect, the Cochrane Library, Clinicaltrials.gov and EBSCO. Eligible trials included RCTs that evaluated standard chemotherapy which was either followed or not followed by targeted maintenance in patients with ovarian cancer who had been previously receiving adjunctive treatments, such as cytoreductive surgery and standard chemotherapy. The outcome measures included progression-free survival (PFS, overall survival (OS and incidence of adverse events.A total of 13 RCTs, which were published between 2006 and 2014, were found to be in accordance with our inclusion criteria. The primary meta-analysis indicated that both PFS and OS were statistically and significantly improved in the targeted maintenance therapy group as compared to the control group (PFS: HR = 0.84, 95%CI: 0.75 to 0.95, p = 0.001; OS: HR = 0.91, 95%CI: 0.84 to 0.98, p = 0.02. When taking safety into consideration, the use of targeted agents was significantly correlated with increased risks of fatigue, diarrhea, nausea, vomiting, and hypertension. However, no significant differences were found in incidence rates of abdominal pain, constipation or joint pain.Our results indicate that targeted maintenance therapy clearly improves the survival of ovarian cancer patients but may also increase the incidence of adverse events. Additional randomized, double-blind, placebo-controlled, multicenter investigations will be required on a larger cohort of patients to verify our findings.

  10. Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD.

    Science.gov (United States)

    Wallace, Lindsay M; Saad, Nizar Y; Pyne, Nettie K; Fowler, Allison M; Eidahl, Jocelyn O; Domire, Jacqueline S; Griffin, Danielle A; Herman, Adam C; Sahenk, Zarife; Rodino-Klapac, Louise R; Harper, Scott Q

    2018-03-16

    RNAi emerged as a prospective molecular therapy nearly 15 years ago. Since then, two major RNAi platforms have been under development: oligonucleotides and gene therapy. Oligonucleotide-based approaches have seen more advancement, with some promising therapies that may soon reach market. In contrast, vector-based approaches for RNAi therapy have remained largely in the pre-clinical realm, with limited clinical safety and efficacy data to date. We are developing a gene therapy approach to treat the autosomal-dominant disorder facioscapulohumeral muscular dystrophy. Our strategy involves silencing the myotoxic gene DUX4 using adeno-associated viral vectors to deliver targeted microRNA expression cassettes (miDUX4s). We previously demonstrated proof of concept for this approach in mice, and we are now taking additional steps here to assess safety issues related to miDUX4 overexpression and sequence-specific off-target silencing. In this study, we describe improvements in vector design and expansion of our miDUX4 sequence repertoire and report differential toxicity elicited by two miDUX4 sequences, of which one was toxic and the other was not. This study provides important data to help advance our goal of translating RNAi gene therapy for facioscapulohumeral muscular dystrophy.

  11. Epidermal to Mesenchymal Transition and Failure of EGFR-Targeted Therapy in Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Pala, Andrej; Karpel-Massler, Georg [Department of Neurosurgery, University of Ulm School of Medicine, Steinhövelstrasse 9, Ulm D-89077 (Germany); Kast, Richard Eric [Department of Psychiatry, University of Vermont, 22 Church Street, Burlington, VT 05401 (United States); Wirtz, Christian Rainer; Halatsch, Marc-Eric, E-mail: marc-eric.halatsch@uniklinik-ulm.de [Department of Neurosurgery, University of Ulm School of Medicine, Steinhövelstrasse 9, Ulm D-89077 (Germany)

    2012-05-08

    Glioblastoma multiforme (GBM), the most common primary brain tumor in adults, is almost never curable with the current standard treatment consisting of surgical resection, irradiation and temozolomide. The prognosis remains poor despite undisputable advances in the understanding of this tumor’s molecular biology and pathophysiology, which unfortunately has so far failed to translate into a meaningful clinical benefit. Dysregulation and a resulting prominent pathophysiological role of the epidermal growth factor receptor (EGFR) have been identified in several different malignant tumor entities, GBM among them. The EGFR is overexpressed in about 40% of GBM cases, and half of these coexpress a mutant, constitutively activated subtype, EGFRvIII. Unfortunately, recent trials studying with therapeutic approaches targeted against the EGFR and EGFRvIII have failed to meet expectations, with only a minority of patients responding despite evidence of good in vitro and rodent model activity. Having potentially high relevance within this context, epithelial to mesenchymal transition (EMT) is a phenomenon associated with early stages of carcinogenesis, cancer invasion and recurrence. During EMT, epithelial cells lose many of their epithelial characteristics, prominently E-cadherin expression, and acquire properties that are typical for mesenchymal cells such as the expression of vimentin. Epithelial to mesenchymal transition has been specifically demonstrated in GBM. In this review, we summarize the evidence that EMT may precipitate GBM resistance to EGFR-targeted therapy, and may thus be among the principal factors contributing to the clinical failure of targeted therapy against EGFR and EGFRvIII.

  12. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin

    Directory of Open Access Journals (Sweden)

    Debora Lucia Seguro Danilovic

    2011-01-01

    Full Text Available OBJECTIVE: To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. INTRODUCTION: Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. METHODS: We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. RESULTS: Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. DISCUSSION: Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. CONCLUSION: Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels, which occur despite stable free T4 and TSH levels. A thyroid

  13. Prognostic role of prostate-specific antigen and prostate volume for the risk of invasive therapy in patients with benign prostatic hyperplasia initially managed with alpha(1)-blockers and watchful waiting

    NARCIS (Netherlands)

    Mochtar, C. A.; Kiemeney, L. A. L. M.; Laguna, M. P.; van Riemsdijk, M. M.; Barnett, G. S.; Debruyne, F. M. J.; de la Rosette, J. J. M. C. H.

    2005-01-01

    Objectives. To investigate the prognostic role of prostate-specific antigen (PSA) level and prostate volume (PV) for the need for benign prostatic hyperplasia (BPH)-related invasive therapy among patients initially treated with an alpha(1)-blocker or watchful waiting (WW) in real-life clinical

  14. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    Science.gov (United States)

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. RLIP76 Targeted Therapy for Kidney Cancer.

    Science.gov (United States)

    Singhal, Sharad S; Singhal, Jyotsana; Figarola, James; Horne, David; Awasthi, Sanjay

    2015-10-01

    Despite recent improvements in chemotherapeutic approaches to treating kidney cancer, this malignancy remains deadly if not found and removed at an early stage of the disease. Kidney cancer is highly drug-resistant, which may at least partially result from high expression of transporter proteins in the cell membranes of kidney cells. Although these transporter proteins can contribute to drug-resistance, targeting proteins from the ATP-binding cassette transporter family has not been effective in reversing drug-resistance in kidney cancer. Recent studies have identified RLIP76 as a key stress-defense protein that protects normal cells from damage caused by stress conditions, including heat, ultra-violet light, X-irradiation, and oxidant/electrophilic toxic chemicals, and is crucial for protecting cancer cells from apoptosis. RLIP76 is the predominant glutathione-electrophile-conjugate (GS-E) transporter in cells, and inhibiting it with antibodies or through siRNA or antisense causes apoptosis in many cancer cell types. To date, blocking of RLIP76, either alone or in combination with chemotherapeutic drugs, as a therapeutic strategy for kidney cancer has not yet been evaluated in human clinical trials, although there is considerable potential for RLIP76 to be developed as a therapeutic agent for kidney cancer. In the present review, we discuss the mechanisms underlying apoptosis caused by RLIP76 depletion, the role of RLIP76 in clathrin-dependent endocytosis deficiency, and the feasibility of RLIP76-targeted therapy for kidney cancer.

  16. Molecular-targeted therapy for chemotherapy-refractory gastric cancer: a case report and literature review.

    Science.gov (United States)

    Kuo, Hung-Yang; Yeh, Kun-Huei

    2014-07-01

    The prognosis of advanced gastric cancer (AGC) remains poor despite therapeutic advances in recent decades. Several recent positive phase III trials established the efficacy of second-line chemotherapy for metastatic gastric cancer in prolonging overall survival. However, malnutrition and poor performance of AGC in late stages usually preclude such patients from intensive treatment. Many targeted-therapies failed to show a significant survival benefit in AGC, but have regained attention after the positive result of ramucirumab was announced last year. Among all targeted agents, only trastuzumab, a monoclonal antibody against Human epidermal growth factor receptor-2 (HER2) protein, has been proven as having survival benefit by addition to first-line chemotherapy. Herein we reported a patient who benefited from adding trastuzumab to the same second-line combination chemotherapy (paclitaxel, 5-fluorouracil, and leucovorin) upon progression of bulky liver metastases. At least five months of progression-free survival were achieved without any additional toxicity. We also reviewed literature of molecularly-targeted therapy for chemotherapy-refractory gastric cancer, including several large phase III trials (REGARD, GRANITE-1, EXPAND, and REAL-3) published in 2013-2014. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Analysis of alpha-synuclein in malignant melanoma - development of a SRM quantification assay.

    Directory of Open Access Journals (Sweden)

    Charlotte Welinder

    Full Text Available Globally, malignant melanoma shows a steady increase in the incidence among cancer diseases. Malignant melanoma represents a cancer type where currently no biomarker or diagnostics is available to identify disease stage, progression of disease or personalized medicine treatment. The aim of this study was to assess the tissue expression of alpha-synuclein, a protein implicated in several disease processes, in metastatic tissues from malignant melanoma patients. A targeted Selected Reaction Monitoring (SRM assay was developed and utilized together with stable isotope labeling for the relative quantification of two target peptides of alpha-synuclein. Analysis of alpha-synuclein protein was then performed in ten metastatic tissue samples from the Lund Melanoma Biobank. The calibration curve using peak area ratio (heavy/light versus concentration ratios showed linear regression over three orders of magnitude, for both of the selected target peptide sequences. In support of the measurements of specific protein expression levels, we also observed significant correlation between the protein and mRNA levels of alpha-synuclein in these tissues. Investigating levels of tissue alpha-synuclein may add novel aspect to biomarker development in melanoma, help to understand disease mechanisms and ultimately contribute to discriminate melanoma patients with different prognosis.

  18. HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang

    2014-05-01

    The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.

  19. Trial Characteristics as Contextual Factors when Evaluating Targeted Therapies in Patients with Psoriatic Disease

    DEFF Research Database (Denmark)

    Ballegaard, Christine; Jørgensen, Tanja S; Skougaard, Marie

    2018-01-01

    (PsA) and psoriasis (8 biologics and apremilast). The effect of targeted therapies was analyzed in the two psoriatic conditions combined by using drug retention as common outcome, and separately by using ACR20 for PsA and PASI75 for psoriasis. We explored potential effect modification of trial...... characteristics in stratified and meta-regression analyses. Odds ratios (OR) were calculated and compared among the trial eligibility criteria via the Ratio of Odds Ratios (ROR). RESULTS: Forty-eight PsA and psoriasis trials (51 comparisons, 17,737 patients) were eligible. Overall retention was OR 2.16 (1.70 to 2.......75) with higher odds for PsA trials compared with psoriasis trials (ROR = 2.55 [1.64 to 3.97]). The eligibility criteria "targeted therapy history", "minimum required disease duration", "required negative rheumatoid factor", and "required CASPAR criteria" were of importance for achieving ACR20 in PsA...

  20. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)