WorldWideScience

Sample records for target fabrication technology

  1. Inertial Confinement Fusion Target Component Fabrication and Technology Development report

    International Nuclear Information System (INIS)

    Steinman, D.

    1994-03-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities which took place under this contract during the period of October 1, 1992 through September 30, 1993. During this period, GA was assigned 18 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included ''Capabilities Activation'' and ''Capabilities Demonstration'' to enable us to begin production of glass and composite polymer capsules. Capsule delivery tasks included ''Small Glass Shell Deliveries'' and ''Composite Polymer Capsules'' for Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). We also were asked to provide direct ''Onsite Support'' at LLNL and LANL. We continued planning for the transfer of ''Micromachining Equipment from Rocky Flats'' and established ''Target Component Micromachining and Electroplating Facilities'' at GA. We fabricated over 1100 films and filters of 11 types for Sandia National Laboratory and provided full-time onsite engineering support for target fabrication and characterization. We initiated development of methods to make targets for the Naval Research Laboratory. We investigated spherical interferometry, built an automated capsule sorter, and developed an apparatus for calorimetric measurement of fuel fill for LLNL. We assisted LANL in the ''Characterization of Opaque b-Layered Targets.'' We developed deuterated and UV-opaque polymers for use by the University of Rochester's Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process

  2. Fabrication of laser-target components by semiconductor technology

    International Nuclear Information System (INIS)

    Tindall, W.E.

    1979-01-01

    This paper describes the design and fabrication of a unique silicon substrate with which laser-target components can be mass produced. Different sizes and shapes of gold foils from 50 to 3000 microns in diameter and up to 25 microns thick have been produced with this process since 1976

  3. Addressing key science and technology issues for IFE chambers, target fabrication and target injection

    International Nuclear Information System (INIS)

    Meier, W.R.; Goodin, D.T.; Nobile, A.

    2003-01-01

    Significant progress has been made in the development of high repetition rate chambers, target fabrication and injection for inertial fusion energy (IFE) for both heavy ion and laser drivers. Research is being conducted in a coordinated manner by national laboratories, universities and industry. This paper provides an overview of U.S. research activities and discusses how interface considerations (such as beam propagation and target survival during injection) impact design choices. (author)

  4. Fabrication technology for a series of cylindrical thin-wall cavity targets

    CERN Document Server

    Zheng Yong; Sun Zu Oke; Wang Ming Da; Zhou La; Zhou Zhi Yun

    2002-01-01

    Cylindrical thin-wall cavity targets have been fabricated to study the behavior of superthermal electrons and their effects on inertial confinement fusion (ICF). Self-supporting cavity targets having adjustable, uniform wall thickness, and low surface roughness were required. This required production of high-quality mandrels, coating them by sputtering or electroplating, developing techniques for measurement of wall thickness and other cavity parameters, improving the uniformity of rotation of the mandrels, and preventing damage to the targets during removal from the mandrels. Details of the fabrication process are presented. Experimental results from the use of these targets are presented. These results, in good agreement with simulations, indicate that the use of thin-wall cavity targets is an effective method for studying superthermal electrons in ICF.

  5. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    Hoppe, M.

    1997-02-01

    On December 30, 1990, the U.S. Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. In September 1995 this contract ended and a second contract was issued for us to continue this ICF target support work. This report documents the technical activities of the period October 1, 1995 through September 30, 1996. During this period, GA and our partners WJ Schafer Associates (WJSA) and Soane Technologies, Inc. (STI) were assigned 14 formal tasks in support of the Inertial Confinement Fusion program and its five laboratories. A portion of the effort on these tasks included providing direct open-quotes Onsite Supportclose quotes at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). We fabricated and delivered over 800 gold-plated hohlraum mandrels to LLNL, LANL and SNLA. We produced nearly 1,200 glass and plastic target capsules for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). We also delivered over 100 flat foil targets for Naval Research Lab (NRL) and SNLA in FY96. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require capsules containing cryogenic layered D 2 or deuterium-tritium (DT) fuel. We are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Substantial progress has been made on ways to both create and characterize viable layers. During FY96, significant progress was made in the design of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA

  6. An Effort to Improve U Foil Fabrication Technology of Roll-casting for Fission Mo Target

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Woo, Yun Myeong; Kim, Ki Hwan; Oh, Jong Myeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Moon Soo [Chungnam University, Green Energy Technology, Daejeon (Korea, Republic of)

    2010-10-15

    Mo-99 isotope has been produced mainly by extracting fission products of {sup 235}U. The targets for irradiating in reactor have used as stainless tube coated with highly enriched UO{sub 2} at the inside surface and highly enriched UAlx plate cladded with aluminum. In connection with non-proliferation policy the RERTR program developed a new process of Mo-99 using low enriched uranium (LEU) instead of highly enriched uranium (HEU). LEU should be put about five times more quantity than HEU because the {sup 235}U contents of LEU and HEU are 20% and higher than 90%, respectively. Accordingly pure uranium metal foil target was adopted as a promising target material due to high uranium density. ANL and BATAN developed a Cintichem process using uranium metal foil target of 130 {mu}m in thickness jointly and the RERTR program is trying to disseminate the new process world-widely. However, uranium foil is made by lots of times rolling work on uranium plate, which is laborious and tedious. In order to avoid this difficulty KAERI developed a new process of making foil directly from uranium melt by roll casting. This process is very much simple, productive, and cost-effective. But the outside surface of foil is generally very rough. A typical transverse cross section had a minimum thickness of 65 {mu}m and a maximum thickness of 205 {mu}m. This roughness could affect (1) target fabrication, where the U foil, or the Ni foil might be damaged during drawing, and (2) irradiation behavior, where gaps between the target walls and the U metal might affect cooling of the target

  7. Smart Fabrics Technology Development

    Science.gov (United States)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  8. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Hoppe, M.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ''Onsite Support'' at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D 2 or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester's Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks

  9. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, M. [ed.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ``Onsite Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D{sub 2} or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester`s Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  10. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, M. [ed.

    1995-04-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. During the period, GA was assigned 17 tasks in support of the Inertial Confinement Fusion program and its laboratories. This year they achieved full production capabilities for the micromachining, dimensional characterization and gold plating of hohlraums. They fabricated and delivered 726 gold-plated mandrels of 27 different types to LLNL and 48 gold-plated mandrels of two different types to LANL. They achieved full production capabilities in composite capsule production ad delivered in excess of 240 composite capsules. They continuously work to improve performance and capabilities. They were also directed to dismantle, remove, and disposition all equipment at the previous contractor (KMSF) that had radioactive contamination levels low enough that they could be exposed to the general public without radiological constraints. GA was also directed to receive and store the tritium fill equipment. They assisted LANL in the development of techniques for characterization of opaque targets. They developed deuterated and UV-opaque polymers for use by the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process. The ICF program is anticipating experiments at NIF and the Omega Upgrade. Both facilities will require capsules containing layered D{sub 2} or D-T fuel. They continued engineering and assembly of equipment for a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments.

  11. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1993--September 30, 1994

    International Nuclear Information System (INIS)

    Hoppe, M.

    1995-04-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. During the period, GA was assigned 17 tasks in support of the Inertial Confinement Fusion program and its laboratories. This year they achieved full production capabilities for the micromachining, dimensional characterization and gold plating of hohlraums. They fabricated and delivered 726 gold-plated mandrels of 27 different types to LLNL and 48 gold-plated mandrels of two different types to LANL. They achieved full production capabilities in composite capsule production ad delivered in excess of 240 composite capsules. They continuously work to improve performance and capabilities. They were also directed to dismantle, remove, and disposition all equipment at the previous contractor (KMSF) that had radioactive contamination levels low enough that they could be exposed to the general public without radiological constraints. GA was also directed to receive and store the tritium fill equipment. They assisted LANL in the development of techniques for characterization of opaque targets. They developed deuterated and UV-opaque polymers for use by the University of Rochester's Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process. The ICF program is anticipating experiments at NIF and the Omega Upgrade. Both facilities will require capsules containing layered D 2 or D-T fuel. They continued engineering and assembly of equipment for a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments

  12. Fabrication of advanced targets for laser driven nuclear fusion reactions through standard microelectronics technology approaches.

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Crivellari, M.; Bellutti, P.; Barozzi, M.; Kucharik, M.; Krása, Josef; Swidlovsky, A.; Malinowska, A.; Velyhan, Andriy; Ullschmied, Jiří; Margarone, Daniele

    2017-01-01

    Roč. 12, October (2017), č. článku P10001. ISSN 1748-0221 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Nuclear instruments and methods for hot plasma diagnostics * Plasma generation (laserproduced, RF, x ray-produced) * Plasma diagnostics - charged-particle spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: 2.11 Other engineering and technologies; 2.11 Other engineering and technologies (FZU-D) Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/10/P10001/meta

  13. An Effort to Improve Uranium Foil Target Fabrication Technology by Single Roll Method

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Moon Soo; Lee, Jong Hyeon [Chungnam National University, Daejeon (Korea, Republic of); Kim, Chang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Technetium-99({sup 99m}Tc) is the most commonly used radioisotope in nuclear medicine for diagnostic procedures. It is produced from the decay of its parent Mo-99, which is sent to the hospital or clinic in the form of a generator. Recently, all of the major providers of Mo-99 have used high-enrichment uranium (HEU) as a target material in a research and test reactor. As a part of a nonproliferation effort, the RERTR program has investigated the production of the fission isotope Mo-99 using low-enrichment uranium(LEU) instead of HEU since 1993, a parent nuclide of {sup 99m}Tc , which is a major isotope for a medical diagnosis. As uranium foils have been produced by the conventional method on a laboratory scale by a repetitive hot-rolling method with significant problems in foil quality, productivity and economic efficiency, attention has shifted to the planar flow casting(PFC) method. In KAERI, many experiments are performed using depleted uranium(DU).

  14. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997 - September 30, 1998

    International Nuclear Information System (INIS)

    Gibson, J.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ''On-site Support'' at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D 2 or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks

  15. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. [ed.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ``On-site Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks.

  16. LIFE Target Fabrication Research Plan Sept 2008

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  17. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1996 - September 30, 1997

    International Nuclear Information System (INIS)

    Gibson, J.

    1998-03-01

    This report documents the technical activities of the period October 1, 1996 through September 30, 1997. During this period, GA and their partner Schafer Corporation were assigned 13 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct open-quotes Onsite Supportclose quotes at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). Over 700 gold-plated hohlraum mandrels were fabricated and delivered to LLNL, LANL and SNLA. More than 1600 glass and plastic target capsules were produced for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). Nearly 2000 various target foils and films were delivered for Naval Research Lab (NRL) and UR/LLE in FY97. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D 2 or deuterium-tritium (DT) fuel. This project is part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. During FY97, significant progress was made in the design and component testing of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA. This included major design changes, reduction in equipment, and process simplifications. This report summarizes and documents the technical progress made on these tasks

  18. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1996--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. [ed.

    1998-03-01

    This report documents the technical activities of the period October 1, 1996 through September 30, 1997. During this period, GA and their partner Schafer Corporation were assigned 13 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct {open_quotes}Onsite Support{close_quotes} at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). Over 700 gold-plated hohlraum mandrels were fabricated and delivered to LLNL, LANL and SNLA. More than 1600 glass and plastic target capsules were produced for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). Nearly 2000 various target foils and films were delivered for Naval Research Lab (NRL) and UR/LLE in FY97. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. This project is part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. During FY97, significant progress was made in the design and component testing of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA. This included major design changes, reduction in equipment, and process simplifications. This report summarizes and documents the technical progress made on these tasks.

  19. Inertial confinement fusion target component fabrication and technology development support. Annual report 10/1/98 through 9/30/99

    International Nuclear Information System (INIS)

    Gibson, Jane

    1999-01-01

    General Atomics (GA) has served as the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor for the U.S. Department of Energy since December 30, 1990. This report documents the technical activities of the period October 1, 1998 through September 30, 1999. During this period, GA and our partner Schafer Corporation were assigned 17 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct ''Onsite Support'' at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory (SNL). We fabricated and delivered over 1790 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNL. We produced more than 1380 glass and plastic target capsules over a wide range of sizes and designs (plus over 300 near target-quality capsules) for LLNL, LANL, SNL, and University of Rochester/Laboratory for Laser Energetic (UR/LLE). We also delivered various target foils and films for Naval Research Lab (NRL) and UWLLE in FY99. We fabricated a device to polish NIF-sized beryllium shells and prepared a laboratory for the safe operation of beryllium polishing activities. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY99, the GA/Schafer portion of the GA/Schafer-UR/LLE-LANL team effort for design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA was completed. All components of the OCTS were procured, fabricated, assembled, tested, and shipped to UR/LLE. Only minor documentation tasks remain to be done in FY00. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D2 or deuterium

  20. Advanced fabrication technology

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Fuel Cycle Plant is a multipurpose nuclear facility located on the Hanford Nuclear Reservation in eastern Washington state. The facility is part of the Hanford Engineering Development Laboratory which is operated by Westinghouse Hanford Company for the Department of Energy. The Fuel Cycle Plant is currently being prepared to support the Liquid Metal Reactors Program with fuel fabrication services for the Fast Flux Test Facility and other LMR programs. This report describes the technical innovations to be utilized in the operation of this plant

  1. Laser target fabrication, structure and method for its fabrication

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay

    1985-01-01

    The disclosure is directed to a laser target structure and its method of fabrication. The target structure comprises a target plate containing an orifice across which a pair of crosshairs are affixed. A microsphere is affixed to the crosshairs and enclosed by at least one hollow shell comprising two hemispheres attached together and to the crosshairs so that the microsphere is juxtapositioned at the center of the shell.

  2. Tenth target fabrication specialists` meeting: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, L.R.; Stark, J.C. [comp.

    1995-11-01

    This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels.

  3. Tenth target fabrication specialists' meeting: Proceedings

    International Nuclear Information System (INIS)

    Foreman, L.R.; Stark, J.C.

    1995-01-01

    This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels

  4. Advanced laser fusion target fabrication research and development proposal

    International Nuclear Information System (INIS)

    Stupin, D.M.; Fries, R.J.

    1979-05-01

    A research and development program is described that will enable the fabrication of 10 6 targets/day for a laser fusion prototype power reactor in 2007. We give personnel and cost estimates for a generalized laser fusion target that requires the development of several new technologies. The total cost of the program between 1979 and 2007 is $362 million in today's dollars

  5. APT target-blanket fabrication development

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  6. FABRICATION AND CHARACTERIZATION OF FAST IGNITION TARGETS

    International Nuclear Information System (INIS)

    HILL, D.W; CASTILLO, E; CHEN, K.C; GRANT, S.E; GREENWOOD, A.L; KAAE, J.L; NIKROO, A; PAGUIO, S.P; SHEARER, C; SMITH, J.N Jr.; STEPHENS, R.B; STEINMAN, D.A; WALL, J.

    2003-09-01

    OAK-B135 Fast ignition is a novel scheme for achieving laser fusion. A class of these targets involves cone mounted CH shells. The authors have been fabricating such targets with shells with a wide variety of diameters and wall thicknesses for several years at General Atomics. In addition, recently such shells were needed for implosion experiments at Laboratory for Laser Energetics (LLE) that for the first time were required to be gas retentive. Fabrication of these targets requires producing appropriate cones and shells, assembling the targets, and characterization of the assembled targets. The cones are produced using micromachining and plating techniques. The shells are fabricated using the depolymerizable mandrel technique followed by micromachining a hole for the cone. The cone and the shell then need to be assembled properly for gas retention and precisely in order to position the cone tip at the desired position within the shell. Both are critical for the fast ignition experiments. The presence of the cone in the shell creates new challenges in characterization of the assembled targets. Finally, for targets requiring a gas fill, the cone-shell assembly needs to be tested for gas retention and proper strength at the glue joint. This paper presents an overview of the developmental efforts and technical issues addressed during the fabrication of fast ignition targets

  7. Project Plan Remote Target Fabrication Refurbishment Project

    International Nuclear Information System (INIS)

    Bell, Gary L.; Taylor, Robin D.

    2009-01-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of 252 Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The 252 Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of 252 Cf; the average irradiation period is ∼10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of 252 Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work

  8. Fabrication of implanted $^{22}$Na targets

    CERN Multimedia

    2002-01-01

    A knowledge of the $^{22}$Na(p,$\\gamma$)$^{23}$ Mg reaction rate is of significant astrophysical interest. In order to complete previous studies of this reaction, radioactive $^{22}$Na targets of high purity are required. We ask for support to fabricate these targets via the implantation technique at ISOLDE GPS (off—line mode) using $^{22}$Na nuclides in an Al matrix produced in Nov. 1990 at the PSI (Zürich). The $^{22}$Na nuclides are released and ionized in a surface ionisation source, mass-analyzed at ISOLDE GPS, and implanted in a Ni-Ta backing and a C—foil in a special implantation setup.

  9. Fabrication technology for ODS Alloy MA957

    International Nuclear Information System (INIS)

    ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

    2000-01-01

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule

  10. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans Jr., James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parten, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  11. Role of Fabrication on Materials Compatibility in APT Target/Blanket

    International Nuclear Information System (INIS)

    Iyer, N.; Louthan, M.R. Jr.; Dunn, K.; Fisher, D.L.

    1998-09-01

    This paper summarizes several of the options associated with the fabrication of selected target/blanket components. In addition, the materials characterization technologies required to validate these components performance is presented

  12. CMOS MEMS Fabrication Technologies and Devices

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2016-01-01

    Full Text Available This paper reviews CMOS (complementary metal-oxide-semiconductor MEMS (micro-electro-mechanical systems fabrication technologies and enabled micro devices of various sensors and actuators. The technologies are classified based on the sequence of the fabrication of CMOS circuitry and MEMS elements, while SOI (silicon-on-insulator CMOS MEMS are introduced separately. Introduction of associated devices follows the description of the respective CMOS MEMS technologies. Due to the vast array of CMOS MEMS devices, this review focuses only on the most typical MEMS sensors and actuators including pressure sensors, inertial sensors, frequency reference devices and actuators utilizing different physics effects and the fabrication processes introduced. Moreover, the incorporation of MEMS and CMOS is limited to monolithic integration, meaning wafer-bonding-based stacking and other integration approaches, despite their advantages, are excluded from the discussion. Both competitive industrial products and state-of-the-art research results on CMOS MEMS are covered.

  13. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  14. Development of Nuclear Fuel Remote Fabrication Technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Kim, S. S. and others

    2005-04-01

    The aim of this study is to develop the essential technology of dry refabrication using spent fuel materials in a laboratory scale on the basis of proliferation resistance policy. The emphasis is placed on the assessment and the development of the essential technology of dry refabrication using spent fuel materials. In this study, the remote fuel fabrication technology to make a dry refabricated fuel with an enhanced quality was established. And the instrumented fuel pellets and mini-elements were manufactured for the irradiation testing in HANARO. The design and development technology of the remote fabrication equipment and the remote operating and maintenance technology of the equipment in hot cell were also achieved. These achievements will be used in and applied to the future back-end fuel cycle and GEN-IV fuel cycle and be a milestone for Korea to be an advanced nuclear country in the world

  15. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-01-01

    Fabrication of laser fusion targets requires a number of special techniques. We have developed both laser and spark erosion machining to produce minute parts of complex targets. A high repetition rate YAG laser at double frequency is used to etch various materials. For example, marks or patterns are often necessary on structured or advanced targets. The laser is also used to thin down plastic coated stalks. A spark erosion system has proved to be a versatile tool and we describe current fabrication processes like cutting, drilling, and ultra precise machining. Spark erosion has interesting features for target fabrication: it is a highly controllable and reproducible technique as well as relatively inexpensive

  16. Target Glint Suppression Technology.

    Science.gov (United States)

    1980-09-01

    Rayleigh for either horizontal or vertical polarization). 2.1.2 Spatial Characterization. Before the effects of diversity on target detection can be...ncs) dRCS T If the lower intergration limit is taken as zero for the Rayleigh targct model of interest, then this quantity is unbounded. In...port wing, inner section Trailing edge of starboard .:ing, inner section Leading edge of horizontal stabilizer, inner section, port side TLeal, -g

  17. Targets and processes for fabricating same

    Science.gov (United States)

    Adams, Jesse D; Malekos, Steven; Le Galloudec, Nathalie; Korgan, Grant; Cowan, Thomas; Sentoku, Yasuhiko

    2016-05-17

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  18. Targets and processes for fabricating same

    Science.gov (United States)

    Cowan, Thomas [Dresden, DE; Malekos, Steven [Reno, NV; Korgan, Grant [Reno, NV; Adams, Jesse [Reno, NV; Sentoku, Yasuhiko [Reno, NV; Le Galloudec, Nathalie [Reno, NV; Fuchs, Julien [Paris, FR

    2012-07-24

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  19. Laser fusion target fabrication. Status report, 30 April 1974

    International Nuclear Information System (INIS)

    Fries, R.J.; Farnum, E.H.

    1974-11-01

    The laser fusion target fabrication effort at Los Alamos Scientific Laboratory has been successful in producing targets of the general design requested by, and with a range of parameters acceptable to, the theoretical designers and to the laser/target interaction physics experimentalists. Many novel techniques for handling and measuring the properties of various types of hollow microballoons were developed. (U.S.)

  20. Proceedings of the twelfth target fabrication specialists` meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  1. Double-shell target fabrication workshop-2016 report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. Morris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oertel, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Farrell, Michael [General Atomics, San Diego, CA (United States); Baumann, Ted [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huang, Haibo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-10

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activities at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.

  2. Proceedings of the twelfth target fabrication specialists' meeting

    International Nuclear Information System (INIS)

    1999-01-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research

  3. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-01-01

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  4. Dissolvable microneedle fabrication using piezoelectric dispensing technology.

    Science.gov (United States)

    Allen, Evin A; O'Mahony, Conor; Cronin, Michael; O'Mahony, Thomas; Moore, Anne C; Crean, Abina M

    2016-03-16

    Dissolvable microneedle (DMN) patches are novel dosage forms for the percutaneous delivery of vaccines. DMN are routinely fabricated by dispensing liquid formulations into microneedle-shaped moulds. The liquid formulation within the mould is then dried to create dissolvable vaccine-loaded microneedles. The precision of the dispensing process is critical to the control of formulation volume loaded into each dissolvable microneedle structure. The dispensing process employed must maintain vaccine integrity. Wetting of mould surfaces by the dispensed formulation is also an important consideration for the fabrication of sharp-tipped DMN. Sharp-tipped DMN are essential for ease of percutaneous administration. In this paper, we demonstrate the ability of a piezoelectric dispensing system to dispense picolitre formulation volumes into PDMS moulds enabling the fabrication of bilayer DMN. The influence of formulation components (trehalose and polyvinyl alcohol (PVA) content) and piezoelectric actuation parameters (voltage, frequency and back pressure) on drop formation is described. The biological integrity of a seasonal influenza vaccine following dispensing was investigated and maintained voltage settings of 30 V but undermined at higher settings, 50 and 80 V. The results demonstrate the capability of piezoelectric dispensing technology to precisely fabricate bilayer DMN. They also highlight the importance of identifying formulation and actuation parameters to ensure controlled droplet formulation and vaccine stabilisation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Acidic aqueous uranium electrodeposition for target fabrication

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Oliveira, E.T.; Garcia, R.H.L.; Durazzo, M.

    2013-01-01

    Direct irradiation of targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. The electroplating of low enriched uranium over nickel substrate might be a potential alternative to produce targets of 235 U. The electrochemistry of uranium at low temperature might be beneficial for an alternative route to produce 99 Mo irradiation LEU targets. Electrodeposition of uranium can be made using ionic and aqueous solutions producing uranium oxide deposits. The performance of uranium electrodeposition is relatively low because a big competition with H 2 evolution happens inside the window of electrochemical reduction potential. This work explores possibilities of electroplating uranium as UO 2 2+ (Uranium-VI) in order to achieve electroplating uranium in a sufficient amount to be commercially irradiated in the future Brazilian RMB reactor. Electroplated nickel substrate was followed by cathodic current electrodeposition from aqueous UO 2 (NO 3 ) 2 solution. EIS tests and modeling showed that a film formed differently in the three tested cathodic potentials. At the lower level, (-1.8V) there was an indication of a double film formation, one overlaying the other with ionic mass diffusion impaired at the interface with nickel substrate as showed by the relatively lower admittance of Warburg component. (author)

  6. Fabrication issues and technology development for HELEOS

    International Nuclear Information System (INIS)

    Susoeff, A.R.; Hawke, R.S.; Balk, J.K.; Hall, C.A.; McDonald, M.J.

    1989-01-01

    Starfire is a joint railgun of Lawrence Livermore National Laboratory and Sandia National Laboratory-Albuquerque. The goal of Starfire is to develop a Hypervelocity Electromagnetic Launcher for Equation of State (HELEOS) experiments. A two-stage light-gas gun is used as a pre-injector. Each round-bore HELEOS railgun module is 12.7 mm in diameter and 2.4 m long. The muzzle end of the railgun is connected to a vacuum tank. Common materials and fabrication technology are used in the manufacture of all components, and modular design allows for extending the length of the railgun as progress dictates. The launcher uses a ''vee block'' geometry, which is designed to: (1) provide compressive preload, (2) operate with a 300-MPa (3-kbar) internal bore pressure, and (3) easily accommodate interchangeable materials in the bore support structure and rail. The authors have performed full-scale material testing of the railgun and have developed a precision round-bore fabrication process. Air-gage inspection is used to determine bore diameter and straightness. They have also developed a surface mapping system to document the surface topography of the bore before and after an experiment. This paper presents fabrication details, results of tests conducted, and areas for potential improvement

  7. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  8. Developing Fabrication Technologies to Provide On Demand Manufacturing for Exploration of the Moon and Mars

    Science.gov (United States)

    Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.

    2006-01-01

    NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.

  9. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  10. Innovative forming and fabrication technologies : new opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest

  11. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  12. Development of CANFLEX fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. S.; Choi, C. B.; Park, C. H.; Kwon, W. J.; Kim, C. H.; Kim, B. J.; Koo, C. H.; Cho, D. S.; So, D. Y.; Suh, S. W.; Park, C. J.; Chang, D. H.; Yun, S. H. [KEPCO Nuclear Fuel Company, Taejeon (Korea)

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU(CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. One of the improvements in CANDU fuel fabrication technology, and advanced method of Zr-Be brazing was developed. For the formation of Zr-Be alloy, preheating and main heating temperature in the furnace is 700 deg C, 1200 deg C respectively. In order to find an appropriate material for the brazing joints in the CANDU fuel, the composition of Zr based amorphous metals were designed. And, the effect of hydrogen on the mechanical properties of cladding sheath and feasibility of the eddy current test to evaluate quality of end cap weld were also studied for the fundamental research purpose. As a preliminary study to suggest optimal way for the mass production of CANFLEX-NU fuel at KNFC the existing CANDU fuel facilities and fabrication/inspection processes were reviewed. The best way is that the current CANDU facility shall be modified to produce small diametrial CANFLEX elements and a new facility shall be constructed to produce large diametrial CANFLEX fuel elements. 46 refs., 99 figs., 10 tabs. (Author)

  13. COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY

    International Nuclear Information System (INIS)

    GOODIN, D.T; NOBILE, A; SCHROEN, D.G; MAXWELL, J.L; RICKMAN, W.S

    2004-03-01

    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE

  14. Target technologies for laser inertial confinement fusion: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Zhang Lin; Du Kai

    2013-01-01

    Targets are physical base of the laser inertial confinement fusion (ICF) researches. The quality of the targets has extremely important influences on the reliabilities and degree of precision of the ICF experimental results. The characteristics of the ICF targets, such as complexity and microscale, high precision, determine that the target fabrication process must be a system engineering. This paper presents progresses on the fabrication technologies of ICF targets. The existing problem and the future needs of ICF target fabrication technologies are also discussed. (authors)

  15. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  16. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  17. Concepts for fabrication of inertial fusion energy targets

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, A. (Arthur), Jr.; Hoffer, J. K. (James K.); Gobby, P. L. (Peter L.); Steckle, W. P. (Warren P.), Jr.; Goodin, D. T. (Daniel T.); Besenbruch, G. E. (Gottfried E.); Schultz, K. R. (Kenneth R.)

    2001-01-01

    Future inertial fusion energy (IFE) power plants will have a Target Fabrication Facility (TFF) that must produce approximately 500,000 targets per day. To achieve a relatively low cost of electricity, the cost to produce these targets will need to be less than approximately $0.25 per target. In this paper the status on the development of concepts for a TFF to produce targets for a heavy ion fusion (HIF) reactor, such as HYLIFE II, and a laser direct drive fusion reactor such as Sombrero, is discussed. The baseline target that is produced in the HIF TFF is similar to the close-coupled indirect drive target designed by Callahan-Miller and Tabak at Lawrence Livermore Laboratory. This target consists of a cryogenic hohlraum that is made of a metal case and a variety of metal foams and metal-doped organic foams. The target contains a DT-filled CH capsule. The baseline direct drive target is the design developed by Bodner and coworkers at Naval Research Laboratory. HIF targets can be filled with DT before or after assembly of the capsule into the hohlraum. Assembly of targets before filling allows assembly operations to be done at room temperature, but tritium inventories are much larger due to the large volume that the hohlraum occupies in the fill system. Assembly of targets cold after filling allows substantial reduction in tritium inventory, but this requires assembly of targets at cryogenic temperature. A model being developed to evaluate the tritium inventories associated with each of the assembly and fill options indicates that filling targets before assembling the capsule into the hohlraum, filling at temperatures as high as possible, and reducing dead-volumes in the fill system as much as possible offers the potential to reduce tritium inventories to acceptable levels. Use of enhanced DT ice layering techniques, such as infrared layering can reduce tritium inventories significantly by reducing the layering time and therefore the number of capsules being layered

  18. Information management data base for fusion target fabrication processes

    International Nuclear Information System (INIS)

    Reynolds, J.

    1983-01-01

    A computer-based data management system has been developed to handle data associated with target fabrication processes including glass microballoon characterization, gas filling, materials coating, and storage locations. The system provides automatic data storage and computation, flexible data entry procedures, fast access, automated report generation, and secure data transfer. It resides on a CDC CYBER 175 computer and is compatible with the CDC data base language Query Update, but is based on custom fortran software interacting directly with the CYBER's file management system. The described data base maintains detailed, accurate, and readily available records of fusion targets information

  19. Fabrication technology and characteristics of AmO2-MgO cercer materials for transmutation

    International Nuclear Information System (INIS)

    Croixmarie, Y.; Mocellin, A.; Warin, D.

    2000-01-01

    This paper deals with the fabrication technology and the physico-chemical properties of target materials prepared for the ECRIX experiment in the French PHENIX reactor. The ECRIX target materials consist of pellets made of a ceramic-ceramic type composite in which particles of americium oxide are microdispersed in an inert matrix of magnesium oxide

  20. Fabrication and characterization of cryogenic targets for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rieger, H.; Kim, K.

    1979-08-01

    A new technique has been developed which is capable of fabricating uniform cryogenic targets for use in inertial confinement fusion. The essence of the technique is to directly wet a target with a cold helium gas jet, which results in freezing of the DT mixture contained in the target. A controlled amount of current is pulsed through a heater wire surrounding the target, giving rise to fast evaporation and refreezing of the DT-condensate into a uniform layer. Experiments, which have been performed with D 2 -filled glass microshells, successfully produce uniform layers of both liquid and solid D 2 inside the glass shells. A set of data illustrating the technique is presented and analyzed

  1. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  2. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  3. Smart fabric sensors and e-textile technologies: a review

    International Nuclear Information System (INIS)

    Castano, Lina M; Flatau, Alison B

    2014-01-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods. (topical review)

  4. DEEMO: a new technology for the fabrication of microstructures

    NARCIS (Netherlands)

    Elders, J.; Jansen, Henricus V.; Elwenspoek, Michael Curt; Ehrfeld, W.

    1995-01-01

    The recent innovations in dry etching make it a promising technology for the fabrications of micromoulds. The high aspect ratios, directional freedom, low roughness, high etch rates and high selectivity with respect to the mask material allow a versatile fabrication process of micromoulds for

  5. HIP technologies for fusion reactor blankets fabrication

    International Nuclear Information System (INIS)

    Le Marois, G.; Federzoni, L.; Bucci, P.; Revirand, P.

    2000-01-01

    The benefit of HIP techniques applied to the fabrication of fusion internal components for higher performances, reliability and cost savings are emphasized. To demonstrate the potential of the techniques, design of new blankets concepts and mock-ups fabrication are currently performed by CEA. A coiled tube concept that allows cooling arrangement flexibility, strong reduction of the machining and number of welds is proposed for ITER IAM. Medium size mock-ups according to the WCLL breeding blanket concept have been manufactured. The fabrication of a large size mock-up is under progress. These activities are supported by numerical calculations to predict the deformations of the parts during HIP'ing. Finally, several HIP techniques issues have been identified and are discussed

  6. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  7. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  8. Development of fabrication technology for ceramic nuclear fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Sohn, D. S.; Na, S. H.

    2003-05-01

    The purpose of the study is to develop the fabrication technology of MOX fuel. The researches carried out during the last stage(1997. 4.∼2003. 3.) mainly consisted of ; study of MOX pellet fabrication technology for application and development of characterization technology for the aim of confirming the development of powder treatment technology and sintering technology and of the optimization of the above technologies and fabrication of Pu-MOX pellet specimens through an international joint collaboration between KAERI and PSI based on the fundamental technologies developed in KAERI. Based on the studies carried out and the results obtained during the last stage, more extensive studies for the process technologies of the unit processes were performed, in this year, for the purpose of development of indigenous overall MOX pellet fabrication process technology, relating process parameters among the unit processes and integrating these unit process technologies. Furthermore, for the preparation of transfer of relevant technologies to the industries, a feasibility study was performed on the commercialization of the technology developed in KAERI with the relevant industry in close collaboration

  9. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  10. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  11. Advances in target design and fabrication for experiments on NIF

    Directory of Open Access Journals (Sweden)

    Obrey K.

    2013-11-01

    Full Text Available The ability to build target platforms for National Ignition Facility (NIF is a key feature in LANL's (Los Alamos National Laboratory Target Fabrication Program. We recently built and manufactured the first LANL targets to be fielded on NIF in March 2011. Experiments on NIF require precision component manufacturing and accurate knowledge of the materials used in the targets. The characterization of foams and aerogels, the Be ignition capsule, and machining unique components are of main material focus. One important characterization metric the physics' have determined is that the knowledge of density gradients in foams is important. We are making strides in not only locating these density gradients in aerogels and foams as a result of how they are manufactured and machined but also quantifying the density within the foam using 3D confocal micro x-ray fluorescence (μXRF imaging and 3D x-ray computed tomography (CT imaging. In addition, collaborative efforts between General Atomics (GA and LANL in the characterization of the NIF Ignition beryllium capsule have shown that the copper in the capsule migrates radially from the capsule center.

  12. Development of YBCO tape conductor fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G. and others

    2001-08-01

    Superconductor when fabricated into wire shape is applied for developing electric power transmission cable, transformer, generator and SMES. Such superconducting power devices are capable of maximizing the efficiency of electricity and are anticipated to contribute for solving the energy problem of humankind. Furthermore the high temperature oxide superconductor developed in late 1980s is superconducting above boiling temperature of liquid nitrogen temperature has strong potential to realize superconducting power device and a lot of researches are being done in this field. Superconducting wire is the most important core material for developing superconducting power device and thermo-mechanical powder in tube process was developed to fabricated Ag/Bi-2223 conductor in long length having high critical current carrying capacity. Several companies fabricate and sell Ag/Bi-2223 superconducting wire longer than km length and used for developed electrical power device. But because of its inherent property of sharp decrease in current carrying capacity when applying high magnetic field, the application of Bi-2223 sire is limited as low as 20 K when the power device is in operating under high magnetic field. The YBCO tape conductor has the advantages of maintaining high critical current applying high magnetic field and can be used to most of the power device without special limitation. The metal substrate having good crystallographic texture and deposition technique which can deposit the good quality superconducting thin film continuously in large area are need to fabricate coated conductor, and this technique can be applied to develop the superconducting current limiter or magnetic field shielding device. A superconducting wire for using in high magnetic field is play a critical role in developing maglev, MRI, SMES, transformer, generator and motor and the continuous film deposition technique can be applied in other industry very much.

  13. Light emitting fabric technologies for photodynamic therapy.

    Science.gov (United States)

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  15. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    International Nuclear Information System (INIS)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song

    2008-01-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  16. Energy efficiency improvement target for SIC 34 - fabricated metal products. Revised target support document

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-02-15

    In accordance with section 374 of the Energy Policy and Conservation Act (EPCA), Pub. L. 94-163, the Federal Energy Administration (FEA) proposed industrial energy efficiency improvement targets for the ten most energy-consumptive manufacturing industries in the U.S. Following public hearings and a review of the comments made, the final targets for Fabricated Metal Products (SIC 34) were established and are described. Using 1972 data on the energy consumed to produce specific metal products, it was concluded that a 24% reduction in energy consumption for SIC 34 is a viable goal for achievement by 1980. (ERA citation 04:045006)

  17. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  18. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  19. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  20. Printing technologies in fabrication of drug delivery systems

    DEFF Research Database (Denmark)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri

    2013-01-01

    INTRODUCTION: There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way...... for personalized dosing and tailor-made dosage forms.\

  1. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    CERN Document Server

    Kim, C K; Park, H D

    2002-01-01

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

  2. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  3. Pre-series and testing route for the serial fabrication of W7-X target elements

    International Nuclear Information System (INIS)

    Boscary, J.; Greuner, H.; Friedrich, T.; Traxler, H.; Mendelevitch, B.; Boeswirth, B.; Schlosser, J.; Smirnow, M.; Stadler, R.

    2009-01-01

    The fabrication of the actively cooled high-heat flux divertor of the WENDELSTEIN 7-X stellarator (W7-X) requires the delivery of 890 target elements, which are designed to withstand a stationary heat flux of 10 MW/m 2 . The organization of the manufacturing and testing route for the serial fabrication is the result of the pre-series activities. Flat CFC Sepcarb NB31 tiles are bonded to CuCrZr copper alloy cooling structure in consecutive steps. A copper layer is active metal cast to CFC tiles, and then an OF-copper layer is added by hot isostatic pressing to produce bi-layer tiles. These tiles are bonded by electron beam welding onto the cooling structure, which was manufactured independently. The introduction of the bi-layer technology proved to be a significant improvement of the bond reliability under thermal cycling loading. This result is also the consequence of the improved bond inspections throughout the manufacturing route performed in the ARGUS pulsed thermography facility of PLANSEE. The repairing process by electron beam welding of the bonding was also qualified. The extended pre-series activities related to the qualification of fabrication processes with the relevant non-destructive examinations aim to minimize the risks for the serial manufacturing and to guarantee the steady-state operation of the W7-X divertor.

  4. Practical silicon Light emitting devices fabricated by standard IC technology

    International Nuclear Information System (INIS)

    Aharoni, H.; Monuko du Plessis; Snyman, L.W.

    2004-01-01

    Full Text:Research activities are described with regard to the development of a comprehensive approach for the practical realization of single crystal Silicon Light Emitting Devices (Si-LEDs). Several interesting suggestions for the fabrication of such devices were made in the literature but they were not adopted by the semiconductor industry because they involve non-standard fabrication schemes, requiring special production lines. Our work presents an alternative approach, proposed and realized in practice by us, permitting the fabrication of Si-LEDs using the standard conventional fully industrialized IC technology ''as is'' without any adaptation. It enables their fabrication in the same production lines of the presently existing IC industry. This means that Si-LEDs can now be fabricated simultaneously with other components, such as transistors, on the same silicon chip, using the same masks and processing procedures. The result is that the yield, reliability, and price of the above Si-LEDs are the same as the other Si devices integrated on the same chip. In this work some structural details of several practical Si-LED's designed by us, as well as experimental results describing their performance are presented. These Si-LED's were fabricated to our specifications utilizing standard CMOS/BiCMOS technology, a fact which comprises an achievement by itself. The structure of the Si-LED's, is designed according to specifications such as the required operating voltage, overall light output intensity, its dependence(linear, or non-linear) on the input signal (voltage or current), light generations location (bulk, or near-surface), the emission pattern and uniformity. Such structural design present a problem since the designer can not use any structural parameters (such as doping levels and junction depths for example) but only those which already exist in the production lines. Since the fabrication procedures in these lines are originally designed for processing of

  5. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    Science.gov (United States)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  6. NASA funding opportunities for optical fabrication and testing technology development

    Science.gov (United States)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  7. Development of RI Target Production Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Ko, Kwang Hoon; Kim, Cheol Jung; Kim, Taek Soo; Rho, Si Pyo; Park, Hyun Min; Lim, Gwon; Cha, Yong Ho; Han, Jae Min

    2010-04-01

    This project was accomplished with an aim of productive technical development on the 'enriched target' which is used essentially in radioisotope production. The research was advanced systematically with target production pilot system configuration and core technical development. We composed Yb-176 productive pilot system which equip the chemical purification technique of medical treatment level and proved its capability. Possibilities to separate Zn-67 by the method of using the polarizing light in principle and to separate Zn-70 by the method of using the double optical pumping in theory were also proved. RI target production technologies are recognized excessively with monopolistic techniques of part atomic energy advanced nations such as Russia and US and they are come, but we prepared the opportunity will be able to complete a full cycle of like (RI material production -> RI target production -> RI application) with this project accomplishment. When considering only the direct demand of stable isotope which is used in various industrial, we forecast with the fact that RI target markets will become larger with the approximately 5 billion dollars in 2020 and this technology will contribute in the domestic rising industry creation with high value added

  8. Plastic use in technology of scintillation detector fabrication

    International Nuclear Information System (INIS)

    Mlika, V.

    1977-01-01

    The technique of plastic mandrel fabrication for scintillation detectors is developed. ''Forsan 548'' (thermopolimer of ABS type) and ''Krasten 127'' (polystyrene) are used. The mandrel is fabricated by the casting method under pressure with a subsequent parts adhesion. An adhesive substance is applied on the basis of polymerizing monomer of acrylate rotors and organic polysis cyanates. The developed construction consists totally of 5 components, only one of them being machined (lightquide). Testing under trying conditions (during 300 hours at the temperature from -30 deg to +50 deg C under the silicon oil layer or at the humidity up to 95% have shown high reliability of the construction. It is supposed, that the suggested technology will economize 3, 4 hours of turning lathe work for one mandrel and will reduce for 1-3 hours the scintillation mandrel frlming process

  9. Application of plasma deposition technology for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Jung, I. H.; Moon, J. S.; Park, H. S.; Song, K. C.; Lee, C. Y.; Kang, K. H.; Ryu, H. J.; Kim, H. S.; Yang, M. S.

    2001-01-01

    Yttria-stabilized-zirconia (m.p. 2670.deg. C), was deposited by induction plasma spraying system with a view to develop a new nuclear fuel fabrication technology. To fabricate the dense pellets, the spraying condition was optimized through the process parameters such as, chamber pressure, plasma plate power, powder spraying distance, sheath gas composition, probe position particle size and its morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed 97.11% theoretical density, when the sheath gas flow rate was Ar/H 2 120/20 L/min, probe position 8cm, particle size-75 μm and spraying distance 22cm. The microstructure of YSZ deposit by ICP was lamellae and columnar perpendicular to the spraying direction. In the bottom part near the substrate, small equiaxed grains bounded in a layer. In the middle part, relatively regular size of columnar grains with excellent bonding each other were distinctive

  10. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Science.gov (United States)

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  11. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Science.gov (United States)

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-01-01

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types. PMID:24784036

  12. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Hamid Farahani

    2014-04-01

    Full Text Available Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors, polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types.

  13. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  14. Double-shell inertial confinement fusion target fabrication

    International Nuclear Information System (INIS)

    Hatcher, C.W.; Lorensen, L.E.; Weinstein, B.W.

    1980-01-01

    First generation hemishells, from which spherical shells are constructed, were fabricated by micromachining coated mandrels and by molding. The remachining of coated mandrels are described in detail. Techniques were developed for coating the microsized mandrels with polymeric and metallic materials by methods including conformal coating, vapor deposition, plasma polymerization and thermoforming. Micropositioning equipment and bonding techniques have also been developed to assemble the hemishells about a fuel pellet maintaining a spherical concentricity of better than 2 μm and voids in the hemishell bonding line of a few hundred angstroms or less

  15. A study on fabrication technology of ceramic overpack

    International Nuclear Information System (INIS)

    Teshima, T.; Ishikawa, H.; Sasaki, N.; Karita, Y.; Katsumoto, K.

    1990-03-01

    The conceptual design and fabrication test of a full-scale ceramic overpack were performed from the viewpoint of structural barriers as a part of program to evaluate their potential use as overpack under conditions of deep geological disposal. Materials investigated were porcelain (used for insulators) and Al 2 O 3 with high purity of 99.7 %. The selected design consisted of a cylindrical body with hemispherical heads at each end. The design thickness of overpack is the sum of the structural thickness and corrosion allowance. The thickness required to resist the lithostatic pressure was estimated by the basic cylinder buckling formulas and finite element stress analyses in both case of uniform and non-uniform external pressure conditions. These analyses showed that structural thickness of 119 mm was necessary for overpack of porcelain and 40 mm for Al 2 O 3 under the predicted maximum uniform pressure. In addition, fracture probability of delayed failure, one of significant degradation mode, was estimated for overpack of porcelain. A full-scale overpack of porcelain, of dimensions 800 mm outer diameter x 2200 mm length x 150 mm wall thickness, was fabricated under the ordinary level of fabrication technology. (author)

  16. Rapid fabrication and characterization of sine wave targets

    International Nuclear Information System (INIS)

    Day, R.D.; Armijo, E.; Gobby, P.; Hatch, D.; Rivera, G.; Salzer, L.; Townsend, J.

    1997-01-01

    The effect of surface perturbations on Inertial Confinement Fusion target performance is currently being researched at Los Alamos National Laboratory (LANL). These perturbations can cause hydrodynamic instabilities which in turn reduce the targets' yield. To systematically measure the growth of these instabilities requires targets to be produced which have perturbations of a known amplitude and spatial frequency. The authors have recently assembled hardware onto one of their diamond turning lathes which enables them to machine and measure these sine waves in about 15 minutes. This is a significant reduction in time from the two and one half hours required by the previous method. This paper discusses the hardware, how it works, and how well the system is working for them to produce these targets

  17. Fabrication of 94Zr thin target for RDM lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, Chandan Kumar; Rohilla, Aman; Chamoli, S.K.; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.

    2013-01-01

    The aim of the activity was to make a thin target of isotopically enriched 94 Zr for lifetime measurement experiment to be done with the plunger setup at the Inter University Accelerator Center (IUAC) Delhi

  18. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    India is interested in mixed oxide (MOX) fuel technology for better utilisation of its nuclear fuel resources. In view of this, a programme involving MOX fuel design, fabrication and irradiation in research and power reactors has been taken up. A number of experimental irradiations in research reactors have been carried out and a few MOX assemblies of ''All Pu'' type have been loaded in our commercial BWRs at Tarapur. An island type of MOX fuel design is under study for use in PHWRs which can increase the burn-up of the fuel by more than 30% compared to natural UO 2 fuel. The MOX fuel pellet fabrication technology for the above purpose and R and D efforts in progress for achieving better fuel performance are described in the paper. The standard MOX fuel fabrication route involves mechanical mixing and milling of UO 2 and PuO 2 powders. After detailed investigations with several types of mixing and milling equipments, dry attritor milling has been found to be the most suitable for this operation. Neutron Coincident Counting (NCC) technique was found to be the most convenient and appropriate technique for quick analysis of Pu content in milled MOX powder and to know Pu mixing is homogenous or not. Both mechanical and hydraulic presses have been used for powder compaction for green pellet production although the latter has been preferred for better reproducibility. Low residue admixed lubricants have been used to facilitate easy compaction. The normal sintering temperature used in Nitrogen-Hydrogen atmosphere is between 1600 deg. C to 1700 deg. C. Low temperature sintering (LTS) using oxidative atmospheres such as carbon dioxide, Nitrogen and coarse vacuum have also been investigated on UO 2 and MOX on experimental scale and irradiation behaviour of such MOX pellets is under study. Ceramic fibre lined batch furnaces have been found to be the most suitable for MOX pellet production as they offer very good flexibility in sintering cycle, and ease of maintainability

  19. Technology of combined chemical-mechanical fabrication of durable coatings

    Science.gov (United States)

    Smolentsev, V. P.; Ivanov, V. V.; Portnykh, A. I.

    2018-03-01

    The article presents the scientific fundamentals of methodology for calculating the modes and structuring the technological processes of combined chemical-mechanical fabrication of durable coatings. It is shown that they are based on classical patterns, describing the processes of simultaneous chemical and mechanical impact. The paper demonstrates the possibility of structuring a technological process, taking into account the systematic approach to impact management and strengthening the reciprocal positive influence of each impact upon the combined process. The combined processes have been planned for fabricating the model types of chemical-mechanical coatings of durable products in machine construction. The planning methodology is underpinned by a scientific hypothesis of a single source of impact management through energy potential of process components themselves, or by means of external energy supply through mechanical impact. The control of it is fairly thoroughly studied in the case of pulsed external strikes of hard pellets, similar to processes of vibroimpact hardening, thoroughly studied and mastered in many scientific schools of Russia.

  20. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine , J.P.; Rouillard, R.

    1981-11-01

    Lasers and E.D.M. (electrical discharge machining) are both extremely useful tools for machining the small targets needed in inertial confinement studies. Lasers are currently used in a wide range of target problems and it appears that E.D.M. has a still wider range of applications for plane and spherical targets. The problems of material deformation and tool breaking are practically eliminated as the electrode and the machined part are not in mechanical contact. In comparison with laser micromachining E.D.M. offers: larger versatility with the possibility of new developments and applications; higher production speed for thin conducting materials; lower initial and operating costs; the processes are well controlled, reproducible and can be easily automated; the operation is safe without the dangers associted with lasers

  1. An Overview of the Target Fabrication Operations at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hibbard, R L; Bono, M J

    2005-01-01

    The Target Engineering team at Lawrence Livermore National Laboratory (LLNL) builds precision laser targets for the National Ignition Facility (NIF) and the Omega Laser in Rochester, NY, and other experimental facilities. The physics requirements demand precision in these targets, which creates a constant need for innovative manufacturing processes. As experimental diagnostics improve, there is greater demand for precision in fabrication, assembly, metrology, and documentation of as-built targets. The team specializes in meso-scale fabrication with core competencies in diamond turning, assembly, and metrology. Figure 1 shows a typical diamond turning center. The team builds over 200 laser targets per year in batches of five to fifteen targets. Thus, all are small-lot custom builds, and most are novel designs requiring engineering and process development. Component materials are metals, polymers and low density aerogel foams. Custom fixturing is used to locate parts on the Diamond Turning Machines (DTM) and assembly stations. This ensures parts can be repeatably located during manufacturing operations. Most target builds involve a series of fabricating one surface with features and then relocating the components on another fixture to finish the opposite side of the component. These components are then assembled to complete multiple-component targets. These targets are typically built one at a time. Cost and efficiency are issues with production of targets, and the team is developing batch processing techniques to meet precision target specifications and cost goals. Three example target builds will highlight some of the fabrication and material issues faced at LLNL. A low temperature Rayleigh Taylor target shows how multiple precision targets can be fabricated out of a single large disk. The ignition double shell targets highlight the required manufacturing complexity. A low density aerogel target highlights some material handling and assembly issues. The metrology

  2. Fabrication of cryogenic inertial-confinement-fusion targets using target free-fall technique. Report No. 2-82

    International Nuclear Information System (INIS)

    Kim, K.; Murphy, M.J.

    1982-04-01

    Techniques for fabricating cryogenic inertial confinement fusion targets (i.e., spherical shells containing a uniform layer of DT ice) are investigated using target free-fall concept. Detection and characterization of the moving targets are effected by optoelectronic means, of which the principal is an RF ac-interferometer. This interferometer system demonstrates, for the first time, the speed capabilities of the phase-modulation ac-interferometry. New techiques developed for handling, holding, launching, and transporting targets are also described. Results obtained at both room and cryogenic temperatures are presented

  3. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    International Nuclear Information System (INIS)

    Visca, Eliseo; Roccella, S.; Candura, D.; Palermo, M.; Rossi, P.; Pizzuto, A.; Sanguinetti, G.P.; Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G.

    2015-01-01

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m 2 but the capability to remove up to 20 MW/m 2 during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  4. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  5. Materials processing in space: ICF target fabrication implications

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1982-01-01

    During the last quarter of 1982, the Novette laser will become operational at Lawrence Livermore National Laboratory. The primary characteristics of the Novette laser are shown. In many ways, the new laser will serve as a proving ground and test bed for the Nova laser which is also under construction and should be operational in early 1985. Tables provide the Nova operational characteristics. The advent of the two new lasers, Novette and Nova, will make it possible to study many new and exciting aspects of laser-target interactions and of many implosion physics experiments which have previously not been possible. Some of the most interesting and exciting work will be the exploration of the parameters critical to the ignition of a significant thermonuclear burn in the deuterium-tritium fuel in the targets

  6. Fabrication of a tantalum-clad tungsten target for KENS

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Kikuchi, Kenji; Kurishita, Hiroaki; Li, J.-F.; Furusaka, Michihiro

    2001-01-01

    Since the cold neutron source intensity of KENS (the spallation neutron source at High Energy Accelerator Research Organization) was decreased into about a third of the designed value because a cadmium liner at the cold neutron source deformed and obstructed the neutron beam line, the target-moderator-and-reflector assembly (TMRA) has been replaced by a new one aimed at improving the neutron performance and recovering the cold neutron source. The tantalum target has also been replaced by a tantalum-clad tungsten one. In order to bond the tantalum-clad with the tungsten block, a hot isostatic press (HIP) process was applied and optimized. It was found that gaseous interstitial impurity elements severely attacked tantalum and embrittled, and that the getter materials such as zirconium and tantalum were effective to reduce the embrittlement

  7. A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2017-05-21

    A stretchable electromagnetic absorber fabricated using screen printing technology is proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen printing technique. The reflection coefficient of the absorber was measured using a vector network analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell, wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement. Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the x -direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99% absorption. Furthermore, when stretched along the y -direction, the resonant frequency shifted by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.

  8. Fabricating binary optics: An overview of binary optics process technology

    Science.gov (United States)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  9. Fabrication and Evaluation of Tinidazole Microbeads for Colon Targeting

    Directory of Open Access Journals (Sweden)

    Amit K. Pandey

    2012-05-01

    Full Text Available Objective: The purpose of present investigation was to develop and evaluate multiparticulate system exploiting pH-sensitive property and specific biodegradability of calcium alginate microbeads, for colon- targeted delivery of Tinidazole for the treatment of amoebic colitis. Methods: Calcium alginate beads containing Tinidazole were prepared by ionotropic gelation technique followed by coating with Eudragit S100 using solvent evaporation method to obtain pH sensitive microbeads. Various formulation parameters were optimized which included concentration of sodium alginate (2% w/v, curing time (20 min and concentration of pectin (1% w/ v. All the formulations were evaluated for surface morphology, particle size analysis, entrapment efficiency and in-vitro drug release in conditions simulating colonic fluid in the presence of rat caecal (2% w/v content. Results: The average size of beads of optimized formulation (FT4 was found to be 998.73依5.12 毺 m with entrapment efficiency of 87.28依2.19 %. The invitro release of Eudragit S100 coated beads in presence of rat caecal content was found to be 70.73%依1.91% in 24 hours. Data of in-vitro release was fitted into Higuchi kinetics and Korsmeyer Peppas equation to explain release profile. The optimized formulation (FT4 showed zero order release. Conclusions: It is concluded that calcium alginate microbeads are the potential system for colon delivery of Tinidazole for chemotherapy of amoebic infection.

  10. Complete fabrication of target experimental chamber and implement initial target diagnostics to be used for the first target experiments in NDCX-1

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Bieniosek, F.M.; Dickinson, M.R.; Henestroza, E.; Katayanagi, T.; Jung, J.Y.; Lee, C.W.; Leitner, M.; Ni, P.; Roy, P.; Seidl, P.; Waldron, W.; Welch, D.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has completed the fabrication of a new experimental target chamber facility for future Warm Dense Matter (WDM) experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. This achievement provides to the HIFS-VNL unique and state-of-the-art experimental capabilities in preparation for the planned target heating experiments using intense heavy ion beams

  11. Realizing Technologies for Magnetized Target Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  12. Investigation on fabrication and positioning of cryogenic shell laser fusion targets. Annual report, October 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Kim, K.

    1978-01-01

    The research has been directed toward fabrication and positioning of cryogenic shell laser fusion targets, with particular emphasis on the development of a scheme which would allow for continuous fabrication, inspection, and delivery of the targets. Specifically, progress has been made in each of the following areas: (1) fabrication of a uniform layer of solid DT inside a glass microshell using a combination of helium gas jets and a heater wire; (2) levitation-freezing of a DT-filled glass microshell as a method for fabricating and positioning a cryogenic shell target; (3) a target fabrication system intended for continuous fabrication, inspection, and delivery of cryogenic targets; and (4) development of diagnostics for inspection, recording, and analysis of a solid DT layer inside a glass microshell, and for observing the parameters controlling the target freezing process

  13. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  14. Study on Bleaching Technology of Cotton Fabric with Sodium Percarbonate

    OpenAIRE

    Li Zhi; Wang Yanling; Wang Zhichao

    2016-01-01

    Bleach cotton fabric with sodium percarbonate solution. Analyse of the effect of the concentration of sodium percarbonate solution, bleaching time, bleaching temperature and the light radiation on the bleaching effect of fabric.The result shows that increasing concentrations of percarbonate,increasing the bleaching time , raising the bleaching temperature and the UV irradiation may whiten the cotton fabric.The most suitable conditions for the bleaching process is concentration of sodium perca...

  15. Synthesis of the studies on fuels and transmutation targets (fabrication, design, irradiation damage and dissolution) realized in the framework of the Bataille law

    International Nuclear Information System (INIS)

    Pillon, S.

    2004-12-01

    This document presents the different studied fuels and targets for the transmutation of the minor actinides and of the long life fission products for PWR/EPR and Fast neutron Reactor/EFR of today technology; the results of studies on the behavior under ions irradiation and in experimental nuclear reactor; the knowledge in terms of design, simulation and sizing; the development in terms of fabrication; the knowledge on the dissolution aptitude of these fuels and targets. (A.L.B.)

  16. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  17. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  18. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  19. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  20. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    International Nuclear Information System (INIS)

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J.

    1995-01-01

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of ∼3 keV electron temperature and an electron density of ∼1.0 E + 21 cm -3 . A gas cell target design was chosen to confine as gas of ∼0.01 cm 3 in volume at ∼ 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL

  1. Fabrication and testing of W7-X pre-series target elements

    International Nuclear Information System (INIS)

    Boscary, J; Boeswirth, B; Greuner, H; Grigull, P; Missirlian, M; Plankensteiner, A; Schedler, B; Friedrich, T; Schlosser, J; Streibl, B; Traxler, H

    2007-01-01

    The assembly of the highly-loaded target plates of the WENDELSTEIN 7-X (W7-X) divertor requires the fabrication of 890 target elements (TEs). The plasma facing material is made of CFC NB31 flat tiles bonded to a CuCrZr copper alloy water-cooled heat sink. The elements are designed to remove a stationary heat flux and power up to 10 MW m -2 and 100 kW, respectively. Before launching the serial fabrication, pre-series activities aimed at qualifying the design, the manufacturing route and the non-destructive examinations (NDEs). High heat flux (HHF) tests performed on full-scale pre-series TEs resulted in an improvement of the design of the bond between tiles and heat sink to reduce the stresses during operation. The consequence is the fabrication of additional pre-series TEs to be tested in the HHF facility GLADIS. NDEs of this bond based on thermography methods are developed to define the acceptance criteria suitable for serial fabrication

  2. Information-management data base for fusion-target fabrication processes

    International Nuclear Information System (INIS)

    Reynolds, J.

    1982-01-01

    A computer-based data-management system has been developed to handle data associated with target-fabrication processes including glass microballoon characterization, gas filling, materials coating, and storage locations. The system provides automatic data storage and computation, flexible data-entry procedures, fast access, automated report generation, and secure data transfer. It resides on a CDC CYBER 175 computer and is compatible with the CDC data-base-language Query Update, but is based on custom FORTRAN software interacting directly with the CYBER's file-management system. The described data base maintains detailed, accurate, and readily available records of fusion targets information

  3. Technology development of fabrication NbTi and Nb3 Sn superconducting wires

    International Nuclear Information System (INIS)

    Rodrigues Junior, D.; Bormio, C.; Baldan, C.A.; Ramos, M.J.; Pinatti, D.G.

    1988-01-01

    The technology development of NbTi and Nb 3 Sn superconducting wires are studied, mentioning the use of fluxes capture theory in the sizing of wires fabrication. The fabrication process, the thermal treatment and the experimental datas of critical temperature and current of Nb 3 Sn wires are described. (C.G.C.) [pt

  4. Tipping solutions: emerging 3D nano-fabrication/ -imaging technologies

    Directory of Open Access Journals (Sweden)

    Seniutinas Gediminas

    2017-06-01

    Full Text Available The evolution of optical microscopy from an imaging technique into a tool for materials modification and fabrication is now being repeated with other characterization techniques, including scanning electron microscopy (SEM, focused ion beam (FIB milling/imaging, and atomic force microscopy (AFM. Fabrication and in situ imaging of materials undergoing a three-dimensional (3D nano-structuring within a 1−100 nm resolution window is required for future manufacturing of devices. This level of precision is critically in enabling the cross-over between different device platforms (e.g. from electronics to micro-/nano-fluidics and/or photonics within future devices that will be interfacing with biological and molecular systems in a 3D fashion. Prospective trends in electron, ion, and nano-tip based fabrication techniques are presented.

  5. Development of the fabrication technology of the simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Yang, M. S.; Bae, K. K. and others

    2000-06-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties of the DUPIC fuel is different from the commercial UO 2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, processes on powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using simulated spent fuel are discribed. To fabricate simulated DUPIC fuel, the powder from 3 times OREOX and 5 times attrition milling simulated spent fuel is compacted with 1.3 ton/cm 2 . Pellets are sintered in 100% H 2 atmosphere over 10 h at 1800 deg C. Sintered densities of pellets are 10.2-10.5 g/cm 3

  6. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  7. Coated fuel particles: requirements and status of fabrication technology

    International Nuclear Information System (INIS)

    Huschka, H.; Vygen, P.

    1977-01-01

    Fuel cycle, design, and irradiation performance requirements impose restraints on the fabrication processes. Both kernel and coating fabrication processes are flexible enough to adapt to the needs of the various existing and proposed high-temperature gas-cooled reactors. Extensive experience has demonstrated that fuel kernels with excellent sphericity and uniformity can be produced by wet chemical processes. Similarly experience has shown that the various multilayer coatings can be produced to fully meet design and specification requirements. Quality reliability of coated fuel particles is ensured by quality control and quality assurance programs operated by an aduiting system that includes licensing officials and the customer

  8. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  9. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  10. Extremely Lightweight Segmented Membrane Optical Shell Fabrication Technology for Future IR to Optical Telescope, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Optical Shell Technology (MOST) substrate fabrication approach be extended with a specific focus on advanced off-axis very light weight,...

  11. On-chip multi-wavelength laser sources fabricated using generic photonic integration technology

    NARCIS (Netherlands)

    Latkowski, S.; Williams, K.A.; Bente, E.A.J.M.

    Generic photonic integration technology platforms allow for design and fabrication of large complexity application specific photonic integrated circuits. Monolithic active-passive integration on indium phosphide substrate naturally enables a reliable co-integration of optical gain elements and

  12. Fabrication of silicon condenser microphones using single wafer technology

    NARCIS (Netherlands)

    Scheeper, P.R.; van der Donk, A.G.H.; Olthuis, Wouter; Bergveld, Piet

    1992-01-01

    A condenser microphone design that can be fabricated using the sacrificial layer technique is proposed and tested. The microphone backplate is a 1-¿m plasma-enhanced chemical-vapor-deposited (PECVD) silicon nitride film with a high density of acoustic holes (120-525 holes/mm2), covered with a thin

  13. ICF target technology at the Russian Federal Nuclear Center

    International Nuclear Information System (INIS)

    Veselov, A.V.; Drozhin, V.S.; Druzhinin, A.A.; Izgorodin, V.M.; Iiyushechkin, B.N.; Kirillov, G.A.; Komleva, G.V.; Korochkin, A.M.; Medvedev, E.F.; Nikolaev, G.P.; Pikulin, I.V.; Pinegin, A.V.; Punin, V.T.; Romaev, V.N.; Sumatokhin, V.L.; Tarasova, N.N.; Tachaev, G.V.; Cherkesova, I.N.

    1995-01-01

    The main effort of the ICF target fabrication group is support of the experiments performed on the 'ISKRA-4' and 'ISKRA-5' laser systems. The main types of targets used in these experiments are direct drive, inverted corona, and indirect drive. For production of direct drive targets, manufacturing techniques have been developed for both hollow glass and polystyrene microspheres. Hollow glass microspheres are fabricated by free-fall of liquid glass drops or dry gel in a 4 meter vertical kiln. These methods allow us to manufacture glass microspheres with diameters from 50 μm to 1 mm, wall thicknesses from 0.5 to 10 μm, and aspect ratios (radius/ wall) from 20 to 500. The microspheres have a thickness inhomogeneity less than 5% and non-sphericity less than 1%. Polystyrene microspheres are fabricated from polystyrene particles with a blowing agent in a similar vertical kiln. Polystyrene microspheres are fabricated with diameter up to 800 μm and wall thicknesses from 1 to 10 μm. 15 refs., 8 figs

  14. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  15. Target fabrication and development in the Centre d'Etudes de Limeil

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1983-10-01

    The present state of research in Limeil laboratory for the production of inertial confinement fusion targets is described in this communication. A summary of typical areas, previously investigated, including new developments, is as follows: - production of hollow glass microspheres, having wide outside diameter range and aspect-ratio, using dried-alcogels, - preparation and fabrication of low density foams having plane or hemispherical shape, - deposition of a wide range of conductive materials as well as silicon and organic polymers, - development of laser and spark erosion machining which are useful tools for producing minute parts of complex targets, - characterization and analysis of plastic or coal metal coated targets, are done by using interferometry techniques and X-ray image analysis as well as X-ray absorption measurements

  16. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  17. Complete Dentures Fabricated with CAD/CAM Technology and a Traditional Clinical Recording Method.

    Science.gov (United States)

    Janeva, Nadica; Kovacevska, Gordana; Janev, Edvard

    2017-10-15

    The introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) technology into complete denture (CD) fabrication ushered in a new era in removable prosthodontics. Commercially available CAD/CAM denture systems are expected to improve upon the disadvantages associated with conventional fabrication. The purpose of this report is to present the workflow involved in fabricating a CD with a traditional clinical recording method and CAD/CAM technology and to summarize the advantages to the dental practitioner and the patient.

  18. Fabrication of a First Article Lightweight Composite Technology Demonstrator - Exospine

    Science.gov (United States)

    2014-01-01

    core, (b) 0/90, and (c) ± 45 ply cuts of ACG-MTM 45-1/CF0526 prepreg fabric...Materials, University of Delaware (UD-CCM, Newark, DE) for providing the laminate design and materials used in this work. The authors would also like...onboard diagnostics. 2. Experimental 2.1 Materials Plain woven carbon fiber/epoxy prepreg and a low-density foam core were provided to ARL for the

  19. Fabricating Complete Dentures with CAD/CAM and RP Technologies.

    Science.gov (United States)

    Bilgin, Mehmet Selim; Erdem, Ali; Aglarci, Osman Sami; Dilber, Erhan

    2015-06-01

    Two techological approaches for fabricating dentures; computer-aided design and computer-aided manufacturing (CAD/CAM) and rapid prototyping (RP), are combined with the conventional techniques of impression and jaw relation recording to determine their feasibility and applicability. Maxillary and mandibular edentulous jaw models were produced using silicone molds. After obtaining a gypsum working model, acrylic bases were crafted, and occlusal rims for each model were fabricated with previously determined standard vertical and centric relationships. The maxillary and mandibular relationships were recorded with guides. The occlusal rims were then scanned with a digital scanner. The alignment of the maxillary and mandibular teeth was verified. The teeth in each arch were fabricated in one piece, or set, either by CAM or RP. Conventional waxing and flasking was then performed for both methods. These techniques obviate a practitioner's need for technicians during design and provide the patient with an opportunity to participate in esthetic design with the dentist. In addition, CAD/CAM and RP reduce chair time; however, the materials and techniques need further improvements. Both CAD/CAM and RP techniques seem promising for reducing chair time and allowing the patient to participate in esthetics design. Furthermore, the one-set aligned artificial tooth design may increase the acrylic's durability. © 2015 by the American College of Prosthodontists.

  20. Investigation on cryogenic laser fusion targets: fabrication, characterization, and transport. Annual report, December 1, 1978-November 30, 1979

    International Nuclear Information System (INIS)

    Kim, K.

    1979-01-01

    The research has been directed toward fabrication, characterization, and positioning of cryogenic shell laser fusion targets, with particular emphasis on the development of a scheme which would allow for continuous fabrication, inspection, and delivery of the targets. Specifically, progress has been made in the following areas: (1) Fabrication of a uniform spherical shell of DT-condensate using a cold-wall target-freezing-cell. (2) Fabrication of a uniform spherical shell of liquid DT using a room-temperature wall target-freezing-cell. (3) Support-free cryogenic target fabrication using cold-gas-levitation. (4) Continuous fabrication of cryogenic targets using free-fall method. (5) Automatic characterization of DT-layer uniformity. (6) Sorting of DT-filled glass microshells using an interference microscope. (7) Development of an a-c interference microscope for accurate characterization of moving targets. (8) Development of a machine which is capable of producing a continuous stream of uniform DT spheres of controllable sizes. (9) Theoretical study on the behavior of liquid hydrogen contained in a spherical shell

  1. Impact of fuel fabrication and fuel management technologies on uranium management

    International Nuclear Information System (INIS)

    Arnsberger, P.L.; Stucker, D.L.

    1994-01-01

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modern pressurized water reactors. 10 refs., 3 tabs., 10 figs

  2. Recent Developments in Fabrication of Direct Drive Cylinder Targets for Hydrodynamics Experiments at the OMEGA Laser

    International Nuclear Information System (INIS)

    Nobile, A.; Balkey, M.M.; Bartos, J.J.; Batha, S.H.; Day, R.D.; Elliott, J.E.; Elliott, N.E.; Gomez, V.M.; Hatch, D.J.; Lanier, N.E.; Fincke, J.R.; Manzanares, R.; Pierce, T.H.; Sandoval, D.L.; Schmidt, D.W.; Steckle, W.P.

    2004-01-01

    Experimental campaigns are being conducted at the 60 beam OMEGA laser at the University of Rochester's Laboratory for Laser Energetics to acquire data to validate hydrodynamic models in the high energy-density regime. This paper describes targets that have been developed and constructed for these experimental campaigns. Targets are 860 μm inner diameter by 2.2 mm length cylinders with 70 μm thick polymer ablator. On the ablator inner surface and located halfway along the axis of the cylinder is a 500 μm wide Al marker band. Band thicknesses in the range 8-16 microns are used. CH foam with densities in the range 30-90 mg/cc fills the inside of the cylinder. While these targets have been fabricated for years, several new improvements and features have recently been developed. Improvements include the use of epoxy instead of polystyrene for the ablator, and the use of electrodeposited Al for the marker band. A critical feature of the target is the surface feature that is placed on the marker band. Experiments are aimed at understanding the hydrodynamic behavior of imploding cylinders as a function of this surface feature. Recent development work has focused on production of engineered surface features on the target marker band. Using a fast tool servo on a diamond turning lathe, a wide range of specified surface features have been produced. This paper will address improvements to the cylinder targets as well as current development efforts

  3. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  4. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Xie, Zhiyong [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Du, Ai [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Ye, Junjian [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Zhang, Zhihua; Shen, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Bin, E-mail: zhoubin863@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-04-15

    Highlights: • Sinusoidal perturbed Al foil was prepared by single-point diamond turning. • Perturbed Al foil was measured by surface profiler and white light interferometer. • Perturbed Al foil and CH layer adhered with each other via a hot-press process. • Parameters and cross-section of the CH–Al perturbation target was characterized. - Abstract: A polystyrene (CH)/aluminum (Al) dual-layer perturbation target for hydrodynamic instability experiments in inertial confinement fusion (ICF) was designed and fabricated. The target was composed of a perturbed 40 μm Al foil and a CH layer. The detailed fabrication method consisted of four steps. The 40 μm Al foil was first prepared by roll and polish process; the perturbation patterns were then introduced on the surface of the Al foil by the single-point diamond turning (SPDT) technology; the CH layer was prepared via a simple method which called spin-coating process; finally, the CH layer was directly coated on the perturbation surface of Al foil by a hot-press process to avoid the use of a sticker and to eliminate the gaps between the CH layer and the Al foil. The parameters of the target, such as the perturbation wavelength (T) and perturbation amplitude (A), were characterized by a QC-5000 tool microscope, an alpha-step 500 surface profiler and a NT1100 white light interferometer. The results showed that T and A of the target were about 52 μm and 7.34 μm, respectively. Thickness of the Al foil (H1), thickness of the CH layer (H2), and cross-section of the dual-layer target were characterized by a QC-5000 tool microscope and a scanning electron microscope (SEM). H1 and H2 were about 40 μm and 15 μm, respectively, the cross-sectional photographs of the target showed that the CH layer and the Al foil adhered perfectly with each other.

  5. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    Science.gov (United States)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  6. Technological aspects of cryogenic laser-fusion targets

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Simms, R.J.; Pattinson, T.R.; Jacobs, R.B.

    1980-01-01

    Most current laser-fusion targets consist of hollow spherical glass shells which have been filled with a mixture of gaseous deuterium-tritium fuel. Theoretical considerations suggest that optimum yields can be obtained from these targets if the fuel is condensed as a uniform liquid or solid layer on the inner surface of the glass shell at the time it is irradiated. In principle, this can be accomplished in a straightforward way by cooling the target below the condensation or freezing point of the fuel. In practice, cryogenic targets can appear in routine laser experiments only when the necessary cryogenic technology is reliably integrated into experimental target chambers. Significant progress has been made recently in this field. The authors will discuss the scientific basis and the various technological features of a system which has allowed the successful irradiation of uniform solid-fuel-layer targets

  7. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  8. Nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology

    NARCIS (Netherlands)

    Dijkstra, Marcel; Berenschot, Johan W.; de Boer, Meint J.; van der Linden, H.J.; Hankemeier, T.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2012-01-01

    This article presents nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology. The main advantage of the technology is the ability to position freely suspended nanochannels anywhere on a microfluidic chip, where leak-tight delivery of fluid from a fluid reservoir can be

  9. Development of technology on natural flaw fabrication and precise diagnosis for the major components in NPPs

    International Nuclear Information System (INIS)

    Han, Jung Ho; Choi, Myung Sik; Lee, Doek Hyun; Hur, Do Haeng

    2002-01-01

    The objective of this research is to develop a fabrication technology of natural flaw specimen of major components in NPPs and a technology of precise diagnosis for failure and degradation of components using natural flaw specimen. 1) Successful development of the natural flaw fabrication technology of SG tube 2) Evaluation of ECT signal and development of precise diagnosis using natural flaws. - Determination of length, depth, width, and multiplicity of fabricated natural flaws. - Informations about detectability and accuracy of ECT evaluation on various kinds of defects are collected when the combination of probe and frequency is changed. - An advanced technology for precise ECT evaluation is established. 3) Application of precise ECT diagnosis to failure analysis of SG tube in operation. - Fretting wear of KSNP SG. - ODSCC at tube expanded region of KSNP SG. - Determination of through/non-through wall of axial crack

  10. Future technological developments to fulfill AG2020 targets

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne; Borch, Kristian

    2010-01-01

    This report constitute an analysis of selected technologies that are anticipated to underpin the images described in Giaoutzi et al (2008) and it proposes policy measures to promote these technologies. It builds on Borch et al (2008) where a more detailed description of technologies can be found....... as the threats for development of the technology in the respective images. Finally policies for promoting and spreading technologies are proposed.......This report constitute an analysis of selected technologies that are anticipated to underpin the images described in Giaoutzi et al (2008) and it proposes policy measures to promote these technologies. It builds on Borch et al (2008) where a more detailed description of technologies can be found....... Based on the technological narratives and imperatives, we select a set of present available technologies that are able to support the society in reaching the targets set up by AG2020. For each of these technologies, we evaluate the strengths and weaknesses of the technology to reach the target as well...

  11. The European ITER Test Blanket Modules: Current status of fabrication technologies development and a way forward

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, Milan, E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Galabert, Jose [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Thomas, Noël [ATMOSTAT, F-94815 Villejuif (France); Forest, Laurent [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bucci, Philippe; Cogneau, Laurence [CEA-DRT, 38000 Grenoble (France); Rey, Jörg; Neuberger, Heiko [Karlsruhe Institute of Technology (KIT), Postfach 3640, Karlsruhe (Germany); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain)

    2015-10-15

    Highlights: • Significant progress on development of welding procedures for European TBM achieved. • Fabrication processes feasibility based on diffusion and fusion welding demonstrated. • TBM box assembly welding scenarios investigated and welding scenarios identified. • Future qualification of pF/WPS proposed through realization of a number of QMUs. - Abstract: The paper reviews fabrication technologies and procedures applied for manufacturing of the TBM sub-components, like, HCLL and HCPB cooling plates, HCLL/HCPB stiffening plates, and HCLL/HCPB first wall and side caps. The used technologies are based on fusion and diffusion welding techniques taking into account specificities of the EUROFER-97 steel. Development of a standardized procedure complying with professional codes and standards (RCC-MRx), a preliminary fabrication/welding procedure specification (pF/WPS), is described as well as a fabrication and characterization of feasibility mock-ups (FMU) aimed at assessing the suitability of a fabrication process for fulfilling the design and fabrication specifications. Also, fabrication procedures for the TBM box assembly are presently under development through collaboration between European Fusion Laboratories and Industry for the establishment of an optimized assembly sequence/scenario and development of standardized welding procedure specifications. Selection of optimized assembly scenario takes into accounts not only the design requirements and fabrication possibilities/constraints but also maximum accessibility to the welds for sound non-destructive examination in compliance with welds classification. A future approach towards qualification of the developed fabrication technologies and procedures, through a number of medium to full-size qualification mock-ups according to European standards, is outlined before construction of the first TBMs.

  12. Investigation of SFQ integrated circuits using Nb fabrication technology

    International Nuclear Information System (INIS)

    Numata, H.; Tanaka, M.; Kitagawa, Y.; Tahara, S.

    1999-01-01

    In NEC's standard process, the minimum junction size is 2 μm and the critical current density (J C ) is 2.5 kA cm -2 . In the process, i-line stepper lithography and reactive ion etching with SF 6 gas are used and the standard deviation (σ) of the critical current (I C ) was 0.9% for the 2 μm junctions. This junction uniformity enables integration of more than 10M junctions if an I C variation of ±10% permits correct circuit operation. A 512-bit shift register was designed and fabricated by our standard process. Correct 512-bit delay operation was obtained. These results are promising for the large-scale integration of single flux quantum circuits. (author)

  13. Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials

    International Nuclear Information System (INIS)

    Nagasaka, T.; Muroga, T.; Fukumoto, K.; Watanabe, H.; Grossbeck, M.L.; Chen, J.M.

    2005-01-01

    High purity vanadium alloy products, such as plates, wires and tubes, were fabricated from reference high-purity V-4Cr-4Ti ingots designated as NIFS-HEAT, by using technologies applicable to industrial scale fabrication. Impurity behavior during breakdown, and its effect on mechanical properties were investigated. It was revealed that mechanical properties of the products were significantly improved by the control of Ti-C, N, O precipitation induced during the processes. (author)

  14. Current status of solid state target technologies

    International Nuclear Information System (INIS)

    Schlyer, David J.; Ferrieri, Richard A.

    2000-01-01

    In general radioisotopes fall into two basic groups: those that are neutron rich and those that are neutron deficient. Those that are neutron rich are usually made in a nuclear reactor while those that are neutron deficient are produced by bombarding a suitable target with protons, deuterons or helium particles. Particle accelerators and in particular cyclotrons, were very important in the preparation of radioisotopes during the years of 1935 to the end of World War Two. The amount of radioactive material which could be produced in an accelerator was many times greater than the amount which could be produced using the alpha particles from naturally occurring radioactive elements. After World War Two, reactors were used to produce radioactive elements and the use of accelerators for this purpose became less common. However, as the techniques for using radiotracers became more sophisticated, it became clear that reactor produced radionuclides could not satisfy the growing demands and therefore accelerators were needed to produce new radioisotopes which could be used in new ways. There are three major reasons the accelerator produced radioisotopes are used more widely that reactor produced radionuclides. These are: 1) The radioisotopes produced in a reactor may have unfavorable decay characteristics (particle emission, half-life, gamma rays, etc.) for a particular application. 2) The radioisotope cannot be produced in a reactor with high specific activity. 3) Access to a reactor is limited. The number of reactors available has become many fewer than the number of cyclotrons available to the scientific community, or the radioisotope has too short a half-life to be transported to the site where it is needed. There are a wide variety of nuclear reactions which are used in an accelerator to produce the artificial radioactivity. The bombarding particles are usually protons, deuterons, or helium particles. The energies which are used range from a few MeV to hundreds of Me

  15. Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting

    International Nuclear Information System (INIS)

    Gong Guangming; Zhi Feng; Wang Kaikai; Tang Xiaolei; Yuan Ahu; Zhao Lili; Ding Dawei; Hu Yiqiao

    2011-01-01

    Human serum albumin (HSA) nanoparticles hold great promise as a nanocarrier system for targeted drug delivery. The objective of this study was to explore the possibility of preparing size controllable albumin nanoparticles using the disulfide bond breaking reagent β-mercaptoethanol (β-ME). The results showed that the protein concentration and temperature had positive effects on the sizes of the albumin nanoparticles, while pH had a negative effect on the rate of nanoparticle formation. The addition of β-ME induced changes in HSA secondary structure and exposed the hydrophobic core of HSA, leading to the formation of nanoparticles. Human serum albumin nanoparticles could be internalized by MCF-7 cells and mainly accumulated in cytoplasm. After injection in tumor bearing mice, the HSA nanoparticles accumulated in tumor tissues, demonstrating the targeting ability of the nanoparticles. Therefore, human serum albumin can be fabricated into nanoparticles by breaking the disulfide bonds and these nanoparticles exhibit high tumor targeting ability. Human serum albumin nanoparticles could be ideal for the targeted delivery of pharmacologically active substances.

  16. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    International Nuclear Information System (INIS)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-01-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted 'traditional' fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET

  17. Cost Modeling for Fabrication of Direct Drive Inertial Fusion Energy Targets

    International Nuclear Information System (INIS)

    Rickman, William Samuel; Goodin, Daniel T.

    2003-01-01

    Chemical engineering analyses are underway for a commercial-scale [1000-MW(electric)] divinyl benzene foam-based Inertial Fusion Energy (IFE) Target Fabrication Facility (TFF). This facility is designed to supply 500,000, 4-mm-outer diameter targets per day - coated via interfacial polycondensation, dried with supercritical CO 2 , sputter coated with Au and/or Pd, and filled with deuterium-tritium layered at cryogenic temperatures and injected into the fusion chamber. Such targets would be used in a direct-drive IFE power plant.The work uses manufacturing processes being developed in the laboratory, chemical engineering scaleup principles, and established cost-estimating methods. The plant conceptual design includes a process flow diagram, mass and energy balances, equipment sizing and sketches, storage tanks, and facility views.The cost estimate includes both capital and operating costs. Initial results for a TFF dedicated to one 1000-MW(electric) plant indicate that the costs per target are well within the commercially viable range. Larger TFF plants [3000 MW(electric)] are projected to lead to significantly reduced costs per injected target. Additional cost reductions are possible by producing dried, sputter-coated empty shells at a central facility that services multiple power plants.The results indicate that the installed capital cost is about $100 million and the annual operating costs will be about $20 million, for a cost per target of about $0.17 each. These design and cost projections assume that a significant process development and scaleup program is successfully completed for all of the basic unit operations included in the facility

  18. Ultra-hard AlMgB14 coatings fabricated by RF magnetron sputtering from a stoichiometric target

    Science.gov (United States)

    Grishin, A. M.; Khartsev, S. I.; Böhlmark, J.; Ahlgren, M.

    2015-01-01

    For the first time hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric ceramic AlMgB14 target. Optimized processing conditions (substrate temperature, target sputtering power and target-to-substrate distance) enable fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young's modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 and 275 GPa at 200 nm depth in 2 μm thick film.

  19. Development of CANDU high-burnup fuel fabrication technology

    International Nuclear Information System (INIS)

    Sim, Ki Seob; Suk, H. C.; Kwon, H. I.; Ji, C. G.; Cho, M. S.; Chang, H. I.

    1997-07-01

    This study is focused on the achievement of the fabrication process improvement of CANFLEX-NU and for this purpose, following two areas of basic research were executed this year. 1) development of amorphous alloy for use in brazing of nuclear materials. 2) development of ECT techniques for the end-cap weld inspection. Also, preliminary feasibility analyses on the characteristics and handling techniques of CANFLEX-RU fuel were executed this year. - Selection of optimum conversion process of RU power -Characterization of the composition of RU power - Radiological characterization of RU power and sintered pellets - Compaction and sintering characteristics of RU power - Required special process for the production of CANFLEX-RU fuel - Development of technical specification for RU powder and pellets. In addition, technical support activities were performed for in-pile and out-pile fuel performance tests such as precision measurement of out-pile test fuel dimensions, establishment of quality control technique on fuel bundle by providing bundle kits to AECL for use in-pile irradiation tests in the NRU research reactor. (author). 57 refs., 16 tabs.,40 figs

  20. Induction plasma deposition technology for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Jung, I. H.; Bae, K. K.; Lee, J. W.; Kim, T. K.; Yang, M. S.

    1998-01-01

    A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO 2 -Y 2 O 3 (m.p. 2640 degree C), was conducted with a view of developing a new method for nuclear fuel fabrication. Before making dense pellets of more than 96%T.D., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power, powder spraying distance, sheath gas composition, probe position, particle size and powders of different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H 2 120/20 l/min, probe position 8cm, particle size -75 μm and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology, particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold of wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle

  1. Frontiers in Planar Lightwave Circuit Technology Design, Simulation, and Fabrication

    CERN Document Server

    Janz, Siegfried; Tanev, Stoyan

    2005-01-01

    This book is the result of the NATO Advanced Research Workshop on Frontiers in Planar Lightwave Circuit Technology, which took place in Ottawa, Canada from September 21-25, 2004. Many of the world’s leading experts in integrated photonic design, theory and experiment were invited to give lectures in their fields of expertise, and participate in discussions on current research and applications, as well as the new directions planar lightwave circuit technology is evolving towards. The sum of their contributions to this book constitutes an excellent record of many key issues and scientific problems in planar lightwave circuit research at the time of writing. In this volume the reader will find detailed overviews of experimental and theoretical work in high index contrast waveguide systems, micro-optical resonators, nonlinear optics, and advanced optical simulation methods, as well as articles describing emerging applications of integrated optics for medical and biological applications.

  2. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    Science.gov (United States)

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    International Nuclear Information System (INIS)

    Grattarola, M.; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F.

    2000-01-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components

  4. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Grattarola, M. E-mail: gratta@ari.ansaldo.it; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F

    2000-11-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components.

  5. Micro-fabricated packed gas chromatography column based on laser etching technology.

    Science.gov (United States)

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Reconfiguring global pharmaceutical value networks through targeted technology interventions

    OpenAIRE

    Harrington, Tomas Seosamh; Phillips, MA; Srai, Jagjit Singh

    2016-01-01

    Targeting a series of advanced manufacturing technology (AMT) ‘interventions’ provides the potential for significant step changes across the pharmaceutical value chain, from early stage ‘system discovery’ and clinical trials, through to novel service supply models. This research explores future value network configurations which, when aligned with disruptive shifts in technology (process and digital), may enable alternative routes to medicines production and the delivery of additional value t...

  7. Application of vacuum technology during nuclear fuel fabrication, inspection and characterization

    International Nuclear Information System (INIS)

    Majumdar, S.

    2003-01-01

    Full text: Vacuum technology plays very important role during various stages of fabrication, inspection and characterization of U, Pu based nuclear fuels. Controlled vacuum is needed for melting and casting of U, Pu based alloys, picture framing of the fuel meat for plate type fuel fabrication, carbothermic reduction for synthesis of (U-Pu) mixed carbide powder, dewaxing of green ceramic fuel pellets, degassing of sintered pellets and encapsulation of fuel pellets inside clad tube. Application of vacuum technology is also important during inspection and characterization of fuel materials and fuel pins by way of XRF and XRD analysis, Mass spectrometer Helium leak detection etc. A novel method of low temperature sintering of UO 2 developed at BARC using controlled vacuum as sintering atmosphere has undergone successful irradiation testing in Cirus. The paper will describe various fuel fabrication flow sheets highlighting the stages where vacuum applications are needed

  8. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer and user. This

  9. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer

  10. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  11. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  12. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  13. Development of hi-tech ceramics fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Park, Ji Yeon; Kim, Sun Jai; Hwan, Jung Choong; Oh, Seok Jin

    1997-07-01

    There are some ceramic materials being used in the nuclear energy such as nuclear fuel, coolant pump seals, tritium breeder materials, a high temperature absorber, and the solid electrolyte for recovering tritium. In addition, lots of researches recently have been conducted on the development of highly functional ceramics such as highly efficient shielding materials, functional graded materials and radioactive isotopes-separating materials. Therefore, one of the objectives of this project is to develop ultra-fine and pure powder manufacturing technology. Tritium breeder materials, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} were made with a combustion process of mixed fuels that is developed indigenously in this project. Additionally, this study also focused on the development of promising low temperature electrolytes of ceria. By using the ceria powder made by the combustion process of GNP was investigated their sinterability and the electrolytic characteristics. (author). 167 refs., 74 tabs., 91 figs

  14. Benefits of on-wafer calibration standards fabricated in membrane technology

    Science.gov (United States)

    Rohland, M.; Arz, U.; Büttgenbach, S.

    2011-07-01

    In this work we compare on-wafer calibration standards fabricated in membrane technology with standards built in conventional thin-film technology. We perform this comparison by investigating the propagation of uncertainties in the geometry and material properties to the broadband electrical properties of the standards. For coplanar waveguides used as line standards the analysis based on Monte Carlo simulations demonstrates an up to tenfold reduction in uncertainty depending on the electromagnetic waveguide property we look at.

  15. Development of a fabrication technology for double-sided AC-coupled silicon microstrip detectors

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Rachevskaia, I.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for double-sided, AC-coupled silicon microstrip detectors for tracking applications. Two batches of detectors with good electrical figures and a low defect rate were successfully manufactured at IRST Laboratory. The processing techniques and the experimental results obtained from these detector prototypes are presented and discussed

  16. Integrated optical serializer designed and fabricated in a generic InP based technology

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2012-01-01

    This work presents design and characterization results of an optical pulse serializer, realized as an Application Specific Photonic Integrated Circuit (ASPIC) in a novel, generic InPbased technology and fabricated in a multi-project wafer run. The measurement results show high-speed (32 Gbit/s)

  17. Conception and fabrication of innovative Am-Based targets: the ca mix/Cochix experiment

    International Nuclear Information System (INIS)

    Schmidt, N.; Croixmarie, Y.; Abonneau, E.; Ottaviani, J.P.; Donnet, L.; Desmouliere, F.; Konings, R.J.M.; Fernandez, A.

    2003-01-01

    A large experimental programme has been planned to be carried out in the French PHENIX reactor. The purpose is to evaluate the technical feasibility of minor actinide transmutation in fast reactors. Two major series of experiments have been designed for the heterogeneous transmutation mode. The first one, the MATINA (Matrices for Incineration of Actinides) series, aims at testing both different inert matrices in a fast flux and different concepts. The study is generic and focuses on the material behaviour under representative irradiation conditions. Targets are free of minor actinides to make the fabrication and design steps easier and faster. The second one, ECRIX, CAMIX (Compounds of Americium in PHENIX) and COCHIX (Concept Optimized microstructure in PHENIX), is a further step in the demonstration phase of the ''once-through'' transmutation and deals with Am-bearing targets irradiated in a fast neutron spectrum ''locally'' moderated. The moderator materials tested will be calcium hydride CaH 2-x (cases of ECRIX-H, CAMIX and COCHIX) and boron carbide 11 B 4 C (case of ECRIX-B) in order to accelerate the process of transmutation significantly. (author)

  18. High energy density capacitors fabricated by thin film technology

    International Nuclear Information System (INIS)

    Barbee, T W; Johnson, G W; Wagner, A V.

    1999-01-01

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics

  19. Fabrication Method of the Mo-99 Target with Advanced Planar Flow Casting

    Energy Technology Data Exchange (ETDEWEB)

    Sim, M. S.; Lee, J. H. [Chungnam University, Green Energy Technology, Daejeon (Korea, Republic of); Kim, C. K.; Woo, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Mo-99 is a parent isotope of Tc-99m for medical diagnosis and very significant owing to its large fraction over 80% of the whole demand of medical radioisotopes in the all countries. Mo-99 isotope has been produced mainly by {sup 235}U which is extracting fission products. All the major providers of fission Mo have used HEU as a target material. But RERTR program that is non-proliferation policy encourages using HEU to LEU. KAERI has developed a processing to be able to produce a uranium foil continuously at one go. This processing gave an opportunity for LEU target using uranium foil to be commercialized. It correspond RERTR program. KAERI developed a new process of making foil directly from uranium melt by PFC. This process is simple, productive, and cost-effective. But the foil{center_dot}{center_dot}{center_dot}s air-side surface is generally very rough. A typical transverse cross section had a minimum thickness of 65 {mu}m and a maximum thickness of 205 {mu}m. This roughness could affect target fabrication and irradiation behavior. After issuing this problem KAERI launched a further effort since 2008. A new equipment was designed and manufactured in the industry in 2009. While the new equipment being test-operating, some occurrence of appearing problems appeared. Since 2010, Equipment was moved to KAERI, we performed many experiments using depleted uranium, and go get satisfied some results. We have got interesting results and manufactured uranium foil. A typical transverse cross section had a minimum thickness of 87 {mu}m and a maximum thickness of 194 {mu}m. However, the average thickness is 130 {mu}m as a result of measurement by a micrometer

  20. Fabrication Method of the Mo-99 Target with Advanced Planar Flow Casting

    International Nuclear Information System (INIS)

    Sim, M. S.; Lee, J. H.; Kim, C. K.; Kim, W. J.

    2011-01-01

    Mo-99 is a parent isotope of Tc-99m for medical diagnosis and very significant owing to its large fraction over 80% of the whole demand of medical radioisotopes in the all countries. Mo-99 isotope has been produced mainly by 235 U which is extracting fission products. All the major providers of fission Mo have used HEU as a target material. But RERTR program that is nonproliferation policy encourages using HEU to LEU. KAERI has developed a processing to be able to produce a uranium foil continuously at one go. This processing gave an opportunity for LEU target using uranium foil to be commercialized. It correspond RERTR program. KAERI developed a new process of making foil directly from uranium melt by PFC. This process is simple, productive, and cost-effective. But the foil's air-side surface is generally very rough. A typical transverse cross section had a minimum thickness of 65 μm and a maximum thickness of 205 μm. This roughness could affect target fabrication and irradiation behavior. After issuing this problem KAERI launched a further effort since 2008. A new equipment was designed and manufactured in the industry in 2009. While the new equipment being test-operating, some occurrence of appearing problems appeared. Since 2010, Equipment was moved to KAERI, we performed many experiments using depleted uranium, and go get satisfied some results. We have got interesting results and manufactured uranium foil. A typical transverse cross section had a minimum thickness of 87 μm and a maximum thickness of 194 μm. The average thickness is 120 μm as a result of calculation

  1. The European ITER test blanket modules: Progress in development of fabrication technologies towards standardization

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, Milan, E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Thomas, Noël [ATMOSTAT, F-94815 Villejuif (France); LiPuma, Antonella; Forest, Laurent [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Cogneau, Laurence [CEA-DRT, 38000 Grenoble (France); Rey, Jörg; Neuberger, Heiko [Karlsruhe Institute of Technology (KIT), Postfach 3640, Karlsruhe (Germany); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain)

    2016-11-01

    Highlights: • Significant progress on the development of welding procedures for European TBM achieved. • Fabrication processes feasibility based on diffusion and fusion welding demonstrated. • An optimized welding scenario/sequence for TBM box assembly identified. • Future qualification of pF/WPS proposed through realization of a number of QMUs. - Abstract: The paper reviews progress achieved in development of fabrication technologies and procedures applied for manufacturing of the TBM sub-components, like, HCLL and HCPB cooling plates, HCLL/HCPB stiffening plates, and HCLL/HCPB first wall and side caps. The used technologies are based on fusion and diffusion welding techniques taking into account specificities of the EUROFER97 steel. Development of a standardized procedure complying with professional codes and standards (RCC-MRx), a preliminary fabrication/welding procedure specification (pF/WPS), is described based on fabrication and non-destructive and destructive characterization of feasibility mock-ups (FMU) aimed at assessing the suitability of a fabrication process for fulfilling the design and fabrication specifications. The main FMUs characterization results are reported (e.g. pressure resistance and helium leak tightness tests, mechanical properties and microstructure at the weld joints, geometrical characteristics of the sub-components and internal cooling channels) and the key pF/WPS steps and parameters are outlined. Also, fabrication procedures for the TBM box assembly are presently under development for the establishment of an optimized assembly sequence/scenario and development of standardized welding procedure specifications. In conclusions, further steps towards the pF/WPS qualification are briefly discussed.

  2. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  3. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.

    Science.gov (United States)

    Li, Jia; Rossignol, Fabrice; Macdonald, Joanne

    2015-06-21

    Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.

  4. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  5. Artificial Intelligence In Automatic Target Recognizers: Technology And Timelines

    Science.gov (United States)

    Gilmore, John F.

    1984-12-01

    The recognition of targets in thermal imagery has been a problem exhaustively analyzed in its current localized dimension. This paper discusses the application of artificial intelligence (AI) technology to automatic target recognition, a concept capable of expanding current ATR efforts into a new globalized dimension. Deficiencies of current automatic target recognition systems are reviewed in terms of system shortcomings. Areas of artificial intelligence which show the most promise in improving ATR performance are analyzed, and a timeline is formed in light of how near (as well as far) term artificial intelligence applications may exist. Current research in the area of high level expert vision systems is reviewed and the possible utilization of artificial intelligence architectures to improve low level image processing functions is also discussed. Additional application areas of relevance to solving the problem of automatic target recognition utilizing both high and low level processing are also explored.

  6. A review on the development of the advanced fuel fabrication technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author)

  7. A review on the development of the advanced fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author).

  8. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  9. Development of Hi-Tech ceramics fabrication technologies - Development of advanced nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Thae Kap; Park, Ji Youn; Kim, Sun Jae; Kim, Kyong Ho; Jung, Choong Hwan; Oh, Seok Jin [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-15

    The objective of the present work is to prepare the foundation of hi-tech ceramics fabrication technologies through developing important processes i.e., tape casting, sol-gel, single crystal growing, compacting and sintering, and grinding and machining processes. Tape casting process is essential to manufacture hard and functional thin plates and structural elements for some composite materials. For the fabrication of spherical mono-sized micropowders of oxides, sol-gel process has widely been used. Piezoelectric elements that are the core parts of the sensors of LPMS (loose part monitoring system) and ALMS (acoustic leakage monitoring system) are used in single crystal forms. Compacting and sintering processes are general methods for fabricating structural parts using powders. Grinding and machining processes are important to achieve the final dimensions and surface properties of the parts. (Author).

  10. 2010 national progress report on R and D on LEU fuel and target technology in Argentina

    International Nuclear Information System (INIS)

    Balart, S.; Blaumann, H.; Cristini, P.; Gonzalez, A.G.; Gonzalez, R.; Hermida, J.D.; Lopez, M.; Mirandou, M.; Taboada, H.

    2010-01-01

    Since last RRFM meeting, CNEA has deployed several related tasks. The RA-6 MTR type reactor, converted its core from HEU to a new LEU silicide one is scaling up the power, according to a protocol requested by the national regulatory body, ARN. CNEA is deploying an intense R and D activity to fabricate both dispersed U-Mo (Al-Si matrix and Al cladding) and monolithic (Zry-4 cladding) miniplates to develop possible solutions to VHD dispersed and monolithic fuels technical problems. Some monolithic 58% enrichment U8%Mo and U10%Mo are being delivered to INL-DoE to be irradiated in ATR reactor core. A conscientious study on compound interphase formation in both cases is being carried out. CNEA, a worldwide leader on LEU technology for fission radioisotope production is providing Brazil with these radiopharmaceutical products and Egypt and Australia with the technology through INVAP SE. CNEA is also committed to improve the diffusion of LEU target and radiochemical technology for radioisotope production and target and process optimization. Future plans include: 1) Fabrication of a LEU dispersed U-Mo fuel prototype following the recommendations of the IAEA's Good Practices document, to be irradiated in a high flux reactor in the frame of the ARG/4/092 IAEA's Technical Cooperation project. 2) Development of LEU very high density monolithic and dispersed U-Mo fuel plates with Zry-4 or Al cladding as a part of the RERTR program. 3) Optimization of LEU target and radiochemical techniques for radioisotope production. (author)

  11. Overview of the IFE chamber and target technologies R and D in the U.S

    International Nuclear Information System (INIS)

    Meier, W.R.; Abdou, M.A.; Kulcinski, G.L.; Moir, R.W.; Nobile, A.; Peterson, P.F.; Petti, D.A.; Schultz, K.R.; Tillack, M.; Yoda, M.

    2001-01-01

    The U.S. Department of Energy, Office of Fusion Energy Science (OFES) formed the Virtual Laboratory for Technology (VLT) to develop the technologies needed to support near term fusion experiments and to provide the basis for future magnetic and inertial fusion energy power plants. The scope of the inertial fusion energy (IFE) element of the VLT includes the fusion chamber, driver/chamber interface, target fabrication and injection, and safety and environmental assessment for IFE. Lawrence Livermore National Laboratory, in conjunction with other laboratories, universities and industry, has written an R and D plan to address the critical issues in these areas over the next 5 years in a coordinated manner. This paper provides an overview of the U.S. research activities addressing these critical issues. (author)

  12. From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt

    Science.gov (United States)

    McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.

    2008-01-01

    The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to

  13. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  14. Design consideration for dc SQUIDs fabricated in deep sub-micron technology

    International Nuclear Information System (INIS)

    Ketchen, M.B.

    1991-01-01

    Design rules for scaling dc SQUID junctions to optimize SQUID performance have been well known for over a decade, and verified down to the sub-micron regime. Practical SQUIDs having well coupled input coils of usable inductance have generally been fabricated at the 2-5 μm level of lithography. Other technologies, silicon in particular, are now routinely practiced at the 0.5 μm level of lithography with impressive demonstrations at the 0.1-0.25 μm level not uncommon. In this paper the implications of applying such fabrication capability to advance dc SQUID technology are explored. In particular the issues of scaling practical dc SQUIDs down to the 0.1-0.25 μm regime are examined, using as a prototype design the basic washer SQUID with a spiral input coil

  15. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  16. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    International Nuclear Information System (INIS)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N.

    2000-01-01

    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  17. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    Science.gov (United States)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  18. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  19. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    International Nuclear Information System (INIS)

    Beatty, R.L.; Norman, R.E.; Notz, K.J.

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and 233 U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology

  20. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    Science.gov (United States)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  1. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Park, Choon Hoh; Park, Chul Joo; Kwon, Woo Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO{sub 2}, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author).

  2. Oxide fuel fabrication technology development of the FaCT project (1). Overall review of fuel technology development of the FaCT project

    International Nuclear Information System (INIS)

    Abe, Tomoyuki; Namekawa, Takashi; Tanaka, Kenya

    2011-01-01

    The FaCT project is in progress in Japan for the commercialization of fast reactor cycle system. The development goal of the fuel in the FaCT project is a low-decontaminated TRU homo-recycling in a closed cycle and extension in average discharge burn-up to 150 GWd/t. Research and development on innovative technologies concerning the short process, remote maintenance and cooling system of automatic fuel production equipments, long life cladding material and control of oxygen potential have been conducted in phase I of the FaCT project. As the result of various test including 600 g batch MOX tests, it is concluded that the short process is available to fuel pellet fabrication of the FaCT project. Although cold mock-up tests on test model of some typical process equipments suggest possibilities of remote maintenance of automatic fuel fabrication equipment, it is concluded that it still needs further efforts to judge the operability of the completely remote fabrication for low-decontaminated TRU fuel. A cold mock-up test on fuel pin assembling equipment show that influence of decay heat of MA can be managed by cooling system. Irradiation tests in BOR-60 indicate that 9Cr-ODS possess the satisfactory in-reactor performance as the long life cladding material if homogeneity of alloy element is adequately controlled. Modification of cladding tube fabrication process to ensure homogeneity and further development of measures to control oxygen potential inside the fuel pin are necessary to reach the burn-up target of the FaCT project. (author)

  3. Target support for inertial confinement fusion

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1995-08-01

    General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF)

  4. Screening Technologies for Target Identification in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michl, Patrick, E-mail: michlp@med.uni-marburg.de; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte [Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Baldinger Strasse, D-35043 Marburg (Germany)

    2010-12-29

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments.

  5. Screening Technologies for Target Identification in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Michl, Patrick; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte

    2010-01-01

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments

  6. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    Science.gov (United States)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  7. Design and Characterization of a Fully Differential MEMS Accelerometer Fabricated Using MetalMUMPs Technology

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2013-05-01

    Full Text Available This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and −5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A −0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  8. Design and characterization of a fully differential MEMS accelerometer fabricated using MetalMUMPs technology.

    Science.gov (United States)

    Qu, Peng; Qu, Hongwei

    2013-05-02

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and -5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A -0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  9. Laser ``M'egajoule'' cryogenic target program: from target fabrication to conformation of the deuterium-tritium ice layer

    Science.gov (United States)

    Collier, Rémy; Durut, Frédéric; Reneaume, Benoît; Chicane, Cédric; Théobald, Marc; Breton, Olivier; Martin, Michel; Fleury, Emmanuel; Vincent-Viry, Olivier; Bachelet, Franck; Jeannot, Laurent; Geoffray, Isabelle; Botrel, Ronan; Dauteuil, Christophe; Hermerel, Cyril; Choux, Alexandre; Bednarczyk, Sophie; Legaie, Olivier

    2008-11-01

    For the French inertial confinement fusion (ICF) experiments, cryogenic target assemblies (CTAs) for the LMJ program are manufactured and filled at CEA Valduc (Dijon) in the cryogenic targets filling station (IRCC). They will be moved at about 20 K into a transport cryostat for cryogenic targets and will be driven from CEA/Valduc to CEA/CESTA (Bordeaux). Cryogenic targets will then be transferred by several cryogenic grippers on the cryogenic target positioner before shots. The CTA has to meet severe specifications and involves a lot of challenging tasks for its manufacture. To fill CTAs by permeation with deuterium-tritium (DT), the IRCC need to meet strict thermal, mechanical and dimensional specifications. To obtain a good combustion yield, a very homogenous DT ice layer and very smooth roughness at 1.5 K below the DT triple point are also required. This paper deals with the up to date main issues in the different fields of the LMJ cryogenic target program.

  10. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology

    Directory of Open Access Journals (Sweden)

    Jiawen Chen

    2018-03-01

    Full Text Available A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device.

  11. Technology of fabrication of silicon-lithium detector with superficial junction

    International Nuclear Information System (INIS)

    Cabal Rodriguez, A.E.; Diaz Garcia, A.; Noriega Scull, C.

    1997-01-01

    The Silicon nuclear radiation detectors transform the charge produced within the semiconductor crystal, product of the impinges of particles and X rays, in pulses of voltage at the output of the preamplifier. The planar Silicon-Lithium (Si(Li)) detector with superficial junction is basically a Pin structure diode. By mean of the diffusion and drift of Lithium in the Silicon a compensated or depletion region was created. There the incident radiation interacts with the Silicon, producing an electric signal proportional to the detector's energy deposited in the semiconductor. The technological process of fabrication this kind of detectors comprises several stages, some of them complex and of long duration. They also demand a systematic control. The technological process of Si(Li) detector's fabrication was carried out. The detector's fabrication electric characteristics were measured in some steps. An obtained device was mounted in the holder within a cryostat, in order to work to temperature of the liquid nitrogen. The energy resolution of the detector was measured and the value was 180 eV for the line of 5.9 KeV of an Fe-55 source. This value has allowed to work with the detector in energy disperse X-rays fluorescence. (author) [es

  12. The advanced linked extended reconnaissance and targeting technology demonstration project

    Science.gov (United States)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  13. Design and fabrication of a micro parallel mechanism system using MEMS technologies

    Science.gov (United States)

    Chin, Chi-Te

    A parallel mechanism is seen as an attractive method of fabricating a multi-degree of freedom micro-stage on a chip. The research team at Arizona State University has experience with several potential parallel mechanisms that would be scaled down to micron dimensions and fabricated by using the silicon process. The researcher developed a micro parallel mechanism that allows for planar motion having two translational motions and one rotational motion (e.g., x, y, theta). The mask design shown in Appendix B is an example of a planar parallel mechanism, however, this design would only have a few discrete positions given the nature of the fully extended or fully retracted electrostatic motor. The researcher proposes using a rotary motor (comb-drive actuator with gear chain system) coupled to a rack and pinion for finer increments of linear motion. The rotary motor can behave as a stepper motor by counting drive pulses, which is the basis for a simple open loop control system. This system was manufactured at the Central Regional MEMS Research Center (CMEMS), National Tsing-Hua University, and supported by the National Science Council, Taiwan. After the microstructures had been generated, the proceeding devices were released and an experiment study was performed to demonstrate the feasibility of the proposed micro-stage devices. In this dissertation, the micro electromechanical system (MEMS) fabrication technologies were introduced. The development of this parallel mechanism system will initially focus on development of a planar micro-stage. The design of the micro-stage will build on the parallel mechanism technology, which has been developed for manufacturing, assembly, and flight simulator applications. Parallel mechanism will give the maximum operating envelope with a minimum number of silicon levels. The ideally proposed mechanism should comprise of a user interface, a micro-stage and a non-silicon tool, which is difficult to accomplish by current MEMS technology

  14. Fabrication of a miniaturized cell using microsystem technologies for electrochemical applications

    International Nuclear Information System (INIS)

    Lakard, Boris; Jeannot, Jean-Claude; Spajer, Michel; Herlem, Guillaume; Labachelerie, Michel de; Blind, Pascal; Fahys, Bernard

    2005-01-01

    A new type of electrochemical cell has been developed for use in electrochemical, chemical and biological applications. Using a platinum microelectrode as working electrode, this cell incorporates a silver microelectrode as reference electrode. These microelectrodes, whose area is equal to 1 μm 2 , were fabricated using photolithography, sputtering, and focused ion beam (FIB) technologies since these micro-fabrication techniques allow us to develop miniaturized electrochemical cells useful either for nanoelectrochemistry or biosensors applications. In this study, we show it is possible to coat a surface by chemical or biological compounds by immersing the microelectrodes in a solution, then setting a difference of potential between the two microelectrodes of the cell. For example, we used this miniaturized cell to realize the electrochemical polymerization of aniline into polyaniline to show that this electrochemical cell is efficient to coat a surface with a thin film of polymer

  15. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Science.gov (United States)

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  16. Epitaxy - a new technology for fabrication of advanced silicon radiation detectors

    International Nuclear Information System (INIS)

    Kemmer, J.; Wiest, F.; Pahlke, A.; Boslau, O.; Goldstrass, P.; Eggert, T.; Schindler, M.; Eisele, I.

    2005-01-01

    Twenty five years after the introduction of the planar process to the fabrication of silicon radiation detectors a new technology, which replaces the ion implantation doping by silicon epitaxy is presented. The power of this new technique is demonstrated by fabrication of silicon drift detectors (SDDs), whereby both the n-type and p-type implants are replaced by n-type and p-type epi-layers. The very first SDDs ever produced with this technique show energy resolutions of 150 eV for 55 Fe at -35 deg C. The area of the detectors is 10 mm 2 and the thickness 300 μm. The high potential of epitaxy for future detectors with integrated complex electronics is described

  17. A review on the development of the MOX fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, See Hyung; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Lee, Jung Won; Kim, Bong Koo; Song, Keun Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Development of the Mixed Oxide(MOX) fuel fabrication technology was reviewed in this study. Firstly, the feasibility of Pu utilization for nuclear fuel was analyzed by comparison of nuclear characteristics between U and Pu. Secondly, the feature and problem of processes developed so far was revealed and analyzed by reviewing each process in terms of technical difficulties and in connection with the pellet characteristics. Also, fabrication facilities currently existing were analyzed to understand particularities and circumstances in view of Pu handling, and finally, in-reactor behaviors of MOX fuel was compared with those of U fuel to understand how the Pu has an effect on fuel was compared with those of U fuel to understand how the Pu has an effect on fuel pellet structure and fuel rod. 73 figs., 15 tabs., 58 refs. (Author).

  18. Technical issues of fabrication technologies of reduced activation ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Tanigawa, Hiroyasu; Sakasegawa, Hideo; Hirose, Takanori

    2013-01-01

    Highlights: • The key technical issues of RAFM steel fabrication are the control of Ta, and deoxidation of the steel with a limited amount of Al addition. • Addition of Ta with poor deoxidation might results in the agglomeration of inclusions at 1/2t position. • ESR was proved to be effective removing Ta oxide inclusions and avoiding agglomeration of inclusions at 1/2t position, and achieving low oxygen concentration. -- Abstract: The key issue for DEMO application is that Reduced activation ferritic/martensitic (RAFM) steels fabrication technologies has to be highly assured, especially with respect to high availability, reliability and reduced activation capability on the DEMO level fabrication, which requires not a few tons but thousand tons RAFM fabrication. One of the key technical issues of RAFM fabrication is the control of Ta, and deoxidation of the steel with a limited amount of Al addition. The series of F82H (Fe–8Cr–2W–V, Ta) melting revealed that Ta have tendency to form oxide on melting process, and this will have large impact on reliability of the steels. Al is also the key elements, as it is commonly used for deoxidation of steels, and achieving lower oxygen level is essential to obtain good mechanical properties, but the maximum concentration of Al is limited in view of reduced activation capability. These tendency and limitation resulted in the Ta oxide agglomeration in the middle of plate, but the remelting process, ESR (electro slag remelting), was found to be successful on removing those Ta oxides

  19. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques.

    Science.gov (United States)

    Papadiochou, Sofia; Pissiotis, Argirios L

    2018-04-01

    The comparative assessment of computer-aided design and computer-aided manufacturing (CAD-CAM) technology and other fabrication techniques pertaining to marginal adaptation should be documented. Limited evidence exists on the effect of restorative material on the performance of a CAD-CAM system relative to marginal adaptation. The purpose of this systematic review was to investigate whether the marginal adaptation of CAD-CAM single crowns, fixed dental prostheses, and implant-retained fixed dental prostheses or their infrastructures differs from that obtained by other fabrication techniques using a similar restorative material and whether it depends on the type of restorative material. An electronic search of English-language literature published between January 1, 2000, and June 30, 2016, was conducted of the Medline/PubMed database. Of the 55 included comparative studies, 28 compared CAD-CAM technology with conventional fabrication techniques, 12 contrasted CAD-CAM technology and copy milling, 4 compared CAD-CAM milling with direct metal laser sintering (DMLS), and 22 investigated the performance of a CAD-CAM system regarding marginal adaptation in restorations/infrastructures produced with different restorative materials. Most of the CAD-CAM restorations/infrastructures were within the clinically acceptable marginal discrepancy (MD) range. The performance of a CAD-CAM system relative to marginal adaptation is influenced by the restorative material. Compared with CAD-CAM, most of the heat-pressed lithium disilicate crowns displayed equal or smaller MD values. Slip-casting crowns exhibited similar or better marginal accuracy than those fabricated with CAD-CAM. Cobalt-chromium and titanium implant infrastructures produced using a CAD-CAM system elicited smaller MD values than zirconia. The majority of cobalt-chromium restorations/infrastructures produced by DMLS displayed better marginal accuracy than those fabricated with the casting technique. Compared with copy

  20. An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2017-01-01

    Full Text Available Current surgical treatments for meniscal tears suffer from subsequent degeneration of knee joints, limited donor organs and inconsistent post-treatment results. Three clinical scaffolds (Menaflex CMI, Actifit® scaffold and NUsurface® Meniscus Implant are available on the market, but additional data are needed to properly evaluate their safety and effectiveness. Thus, many scaffold-based research activities have been done to develop new materials, structures and fabrication technologies to mimic native meniscus for cell attachment and subsequent tissue development, and restore functionalities of injured meniscus for long-term effects. This study begins with a synopsis of relevant structural features of meniscus and goes on to describe the critical considerations. Promising advances made in the field of meniscal scaffolding technology, in terms of biocompatible materials, fabrication methods, structure design and their impact on mechanical and biological properties are discussed in detail. Among all the scaffolding technologies, additive manufacturing (AM is very promising because of its ability to precisely control fiber diameter, orientation, and pore network micro-architecture to mimic the native meniscus microenvironment.

  1. [Design and fabrication of the custom-made titanium condyle by selective laser melting technology].

    Science.gov (United States)

    Chen, Jianyu; Luo, Chongdai; Zhang, Chunyu; Zhang, Gong; Qiu, Weiqian; Zhang, Zhiguang

    2014-10-01

    To design and fabricate the custom-made titanium mandibular condyle by the reverse engineering technology combined with selective laser melting (SLM) technology and to explore the mechanical properties of the SLM-processed samples and the application of the custom-made condyle in the temporomandibular joint (TMJ) reconstruction. The three-dimensional model of the mandibular condyle was obtained from a series of CT databases. The custom-made condyle model was designed by the reverse engineering software. The mandibular condyle was made of titanium powder with a particle size of 20-65 µm as the basic material and the processing was carried out in an argon atmosphere by the SLM machine. The yield strength, ultimate strength, bending strength, hardness, surface morphology and roughness were tested and analyzed. The finite element analysis (FEA) was used to analyze the stress distribution. The complex geometry and the surface of the custom-made condyle can be reproduced precisely by the SLM. The mechanical results showed that the yield strength, ultimate strength, bending strength and hardness were (559±14) MPa, (659±32) MPa, (1 067±42) MPa, and (212±4)HV, respectively. The surface roughness was reduced by sandblast treatment. The custom-made titanium condyle can be fabricated by SLM technology which is time-saving and highly digitized. The mechanical properties of the SLM sample can meet the requirements of surgical implant material in the clinic. The possibility of fabricating custom-made titanium mandibular condyle combined with the FEA opens new interesting perspectives for TMJ reconstruction.

  2. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  3. How to trigger low carbon technologies by EU targets for 2030? An assessment of technology needs

    Energy Technology Data Exchange (ETDEWEB)

    Groenenberg, H.; Van Breevoort, P.; Janeiro, L.; Winkel, T.

    2013-04-15

    The current EU framework for energy and climate policies up to 2020 consists of three headline targets: 20% reduction of GHG emissions compared to 2005, a 20% share of renewable energy in final energy consumption, and 20% primary energy savings compared to baseline developments. While progress on these 2020 targets is mixed, discussions in the EU about climate and energy policies and targets for the period after 2020 have started. Given the long cycles associated to energy and climate investments, agreement on a clear longer-term policy framework is critical to improve visibility for investors and avoid lock-in effects in inefficient or polluting technologies. Therefore, the European Commission published a Communication on 6 June 2012 on the need for a long term policy framework for renewable energy, and a Green Paper on the 2030 climate and energy policy framework on 27 March 2013. Against this background, the Dutch Ministries of Infrastructure and Environment and the Ministry of Economic Affairs requested PBL to create input for the European debate on climate targets and policies until and beyond 2030. Ecofys supported PBL by addressing the following two questions: (1) What steps are needed for selected key technology groups to achieve long term GHG emission reductions and what climate and energy policies are likely to trigger these steps?; and (2) What are the pros and cons of a 2030 policy framework with (a) a GHG reduction target only, and (b) targets for GHG reduction, renewable energy, and energy efficiency? The focus of the first question was on four technology groups, namely (1) energy efficiency in the built environment, notably for heat; (2) solar PV and wind energy; (3) advanced biofuels; (4) CO2 carbon capture and storage (CCS). An analysis of the steps needed for the deployment of the full GHG mitigation potential of the discussed technology groups shows that this will largely depend on the adoption of a wide range of policy instruments by EU Member

  4. Fabrication of interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing

    International Nuclear Information System (INIS)

    Le, Duy Dam; Nguyen, Thi Ngoc Nhien; Doan, Duc Chanh Tin; Dang, Thi My Dung; Dang, Mau Chien

    2016-01-01

    In this paper interdigitated electrodes for gas sensors were fabricated by inkjet printing technology. Silver electrodes were inkjet printed on Si/SiO 2 substrates instead of traditional photolithography method. The inkjet printing parameters to obtain desired dimensions, thickness of the electrodes and distance between the interdigitated electrodes were optimized in this study. The fabricated interdigitated silver electrodes were tested for application in ammonia gas sensors. Conductive polyaniline (PANI) layer was coated on the silver interdigitated electrodes by drop-coating. Ammonia detection of the PANI-coated chips was characterized with a gas measurement system in which humidity and ammonia concentrations were well-controlled. The electrical conductivity of the PANI films coated on the electrodes was measured when the PANI films were exposed to nitrogen and ammonia. The conductivity of the PANI films decreased significantly due to the deprotonation process of PANI upon ammonia expodure. The recovery time was about 15 min by heating up the polymer chip at 60 °C. The results showed that the silver electrodes fabricated by inkjet printing technique could be used as a sensor platform for ammonia detection. (paper)

  5. Marginal Accuracy and Internal Fit of Dental Copings Fabricated by Modern Additive and Subtractive Digital Technologies.

    Science.gov (United States)

    Nelson, Neha; K S, Jyothi; Sunny, Kiran

    2017-03-01

    The margins of copings for crowns and retainers of fixed partial dentures affect the progress of microleakage and dental caries. Failures occur due to altered fit which is also influenced by the method of fabrication. An in-vitro study was conducted to determine among the cast base metal, copy milled zirconia, computer aided designing computer aided machining/manufacturing zirconia and direct metal laser sintered copings which showed best marginal accuracy and internal fit. Forty extracted maxillary premolars were mounted on an acrylic model and reduced occlusally using a milling machine up to a final tooth height of 4 mm from the cementoenamel junction. Axial reduction was accomplished on a surveyor and a chamfer finish line was given. The impressions and dies were made for fabrication of copings which were luted on the prepared teeth under standardized loading, embedded in self-cure acrylic resin, sectioned and observed using scanning electron microscope for internal gap and marginal accuracy. The copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Comparison of mean between the four groups by ANOVA and post-hoc Tukey HSD tests showed a statistically significant difference between all the groups (p⟨0.05). It was concluded that the copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Additive digital technologies such as direct metal laser sintering could be cost-effective for the clinician, minimize failures related to fit and increase longevity of teeth and prostheses. Copyright© 2017 Dennis Barber Ltd.

  6. Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    Directory of Open Access Journals (Sweden)

    Robert Koncki

    2006-04-01

    Full Text Available Various planar technologies are employed for developing solid-state sensorshaving low cost, small size and high reproducibility; thin- and thick-film technologies aremost suitable for such productions. Screen-printing is especially suitable due to itssimplicity, low-cost, high reproducibility and efficiency in large-scale production. Thistechnology enables the deposition of a thick layer and allows precise pattern control.Moreover, this is a highly economic technology, saving large amounts of the used inks. Inthe course of repetitions of the film-deposition procedure there is no waste of material dueto additivity of this thick-film technology. Finally, the thick films can be easily and quicklydeposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodesbased on ionophores as well as crystalline ion-selective materials dedicated forpotentiometric measurements are demonstrated. Analytical parameters of these sensors arecomparable with those reported for conventional potentiometric electrodes. All mentionedthick-film strip electrodes have been totally fabricated in only one, fully automated thick-film technology, without any additional manual, chemical or electrochemical steps. In allcases simple, inexpensive, commercially available materials, i.e. flexible, plastic substratesand easily cured polymer-based pastes were used.

  7. Metal forming technology for the fabrication of seamless Superconducting radiofrequency cavities for particle accelerators

    Directory of Open Access Journals (Sweden)

    Palmieri Vincenzo

    2015-01-01

    Full Text Available The world of Particle accelerators is rather unique, since in a few high-energy Physics great laboratories, such at CERN for example, there have been built the largest technological installations ever conceived by humankind. The Radiofrequency resonant cavities are the pulsing heart of an accelerator. In case of superconducting accelerators, bulk niobium cavities, able to perform accelerating gradients up to 40 MeV/m, are just a jewel of modern technology. The standard fabrication technology foresees the cutting of circular blanks, their deep-drawing into half-cells, and its further joining by electron beam welding under ultra high vacuum environment that takes several hours. However, proposals such as the International Linear Collider, to which more than 900 scientists from all over the world participate, foresee the installation of 20.000 cavities. In numbers, it means the electron beam weld one by one under Ultra High Vacuum of 360,000 hemi-cells. At a cost of 500 €/Kg of high purity Niobium, this will mean a couple of hundreds of millions of Euros only for the bare material. In this panorama it is evident that a cost reducing approach must be considered. In alternative the author has proposed a seamless and low cost fabrication method based on spinning of fully resonators. Preliminary RF tests at low temperatures have proved that high accelerating gradients are achievable and that they are not worse than those obtainable with the standard technology. Nevertheless up to when the next accelerator will be decided to be built there is still room for improvement.

  8. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    Science.gov (United States)

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  9. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  10. Physics and technology of inertial fusion energy targets chambers and drivers. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-09-01

    The third IAEA Technical Meeting on Physics and Technology of Inertial Fusion Energy Targets and Chambers took place 11-13 October 2004 in the Yousung Hotel Daejon, Republic of Korea. The first meeting was held in Madrid, Spain, 7-9 June 2000, and the second one in San Diego, California, 17-19 June 2002. Nuclear fusion has the promise of becoming an abundant energy source with good environmental compatibility. Excellent progress has been made in controlled nuclear fusion research on both magnetic and inertial approaches for plasma confinement. The IAEA plays a pro-active role to catalyze innovation and enhance worldwide commitment to fusion. This is done by creating awareness of the different concepts of magnetic as well as inertial confinement. The International Fusion Research Council (IFRC) supports the IAEA in the development of strategies to enhance fusion research in Member States. As part of the recommendations, a technical meeting on the physics and technology of inertial fusion energy (IFE) was proposed in one of the council meetings. The objective of the technical meeting was to contribute to advancing the understanding of targets and chambers for all proposed inertial fusion energy power plant designs. The topics to be covered were: Target design and physics, chamber design and physics, target fabrication injection and Tritium handling, assessment of safety, environment and economy aspect of IFE. It was recognized by the International Advisory Committee that the scope of the meeting should also include fusion drivers. The presentations of the meeting included target and chamber physics and technology for all proposed IFE plant concepts (laser driven, heavy-ion driven, Z-pinches, etc.). The final Research Coordination Meeting of the Coordinated Research Project on Elements of Power Plant Design for Inertial Fusion Energy, including further new results and achievements, followed the technical meeting. Twenty-nine participants from 12 countries participated

  11. Research on fabrication of aspheres at the Center of Optics Technology (University of Applied Science in Aalen); Techical Digest

    Science.gov (United States)

    Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas

    2005-05-01

    The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics and Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.

  12. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.

    Science.gov (United States)

    McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P

    2017-11-14

    To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from

  13. Fabrication of 121Sb isotopic targets for the study of nuclear high spin features

    Science.gov (United States)

    Devi, K. Rojeeta; Kumar, Suresh; Kumar, Neeraj; Abhilash, S. R.; Kabiraj, D.

    2018-06-01

    Isotopic 121Sb targets with 197Au backing have been prepared by Physical Vapor Deposition (PVD) method using the diffusion pump based coating unit at target laboratory, Inter University Accelerator Centre (IUAC), New Delhi, India. The target thickness was measured by stylus profilo-meter and the purity of the targets was investigated by Energy Dispersive X-ray Analysis (EDXA). One of these targets has been used in an experiment which was performed at IUAC for nuclear structure study through fusion evaporation reaction. The excitation function of the 121Sb(12C, yxnγ) reaction has been performed for energies 58 to 70 MeV in steps of 4 MeV. The experimental results were compared with the calculations of statistical models : PACE4 and CASCADE. The methods adopted to achieve best quality foils and good deposition efficiency are reported in this paper.

  14. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  15. Development of IN-RAFM steel and fabrication technologies for Indian TBM

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K., E-mail: shaju@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102 (India); Laha, K.; Bhaduri, A.K.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102 (India); Rajendrakumar, E. [TBM Division, Institute of Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-11-01

    that processing parameters have a major role in ensuring consistency in the property of the steel. Accordingly, processing map for this steel has been generated from compression tests conducted at various strain rates and temperature. Safe processing zone of temperature and strain rate has been identified from this map. During technology development for electron beam (EB) welding of IN-RAFM steel, it is found that ductile brittle transformation temperature (DBTT) for the weld metal is higher than that of the base metal and this is attributed to high W content in the steel and consequent formation of delta-ferrite in the weld metal. A welding procedure that produces weld metal with DBTT comparable to that of the base metal has been developed. IN-RAFM filler wires with matching composition to that of the base metal have been produced for TIG and NG-TIG (narrow gap-TIG) welds and the qualification of this consumable is in progress. For fabrication of TBM first wall, which is ‘C’ shaped plate with internal channels, hot isostatic pressing (HIP) of grooved plates which are pre-bent and assembled with ceramic core to produce channel is being adopted. Curved ceramic core and procedure to join this with straight core have already been developed and production of channel plate is in progress. Further, fabrication of three mock up ceramic breeder cassettes each using EB, laser and TIG welding techniques respectively has also been initiated. Fabrication of these mock ups is expected to help in finalizing the fabrication procedures for the actual breeder cassettes to be used in Indian TBM. Details of these developments in material, data generation and fabrication of mock ups of different components of TBM towards realization of the Indian TBM are being presented in this paper.

  16. Future of brain stimulation: new targets, new indications, new technology.

    Science.gov (United States)

    Hariz, Marwan; Blomstedt, Patric; Zrinzo, Ludvic

    2013-11-01

    In the last quarter of a century, DBS has become an established neurosurgical treatment for Parkinson's disease (PD), dystonia, and tremors. Improved understanding of brain circuitries and their involvement in various neurological and psychiatric illnesses, coupled with the safety of DBS and its exquisite role as a tool for ethical study of the human brain, have unlocked new opportunities for this technology, both for future therapies and in research. Serendipitous discoveries and advances in structural and functional imaging are providing abundant "new" brain targets for an ever-increasing number of pathologies, leading to investigations of DBS in diverse neurological, psychiatric, behavioral, and cognitive conditions. Trials and "proof of concept" studies of DBS are underway in pain, epilepsy, tinnitus, OCD, depression, and Gilles de la Tourette syndrome, as well as in eating disorders, addiction, cognitive decline, consciousness, and autonomic states. In parallel, ongoing technological development will provide pulse generators with longer battery longevity, segmental electrode designs allowing a current steering, and the possibility to deliver "on-demand" stimulation based on closed-loop concepts. The future of brain stimulation is certainly promising, especially for movement disorders-that will remain the main indication for DBS for the foreseeable future-and probably for some psychiatric disorders. However, brain stimulation as a technique may be at risk of gliding down a slippery slope: Some reports indicate a disturbing trend with suggestions that future DBS may be proposed for enhancement of memory in healthy people, or as a tool for "treatment" of "antisocial behavior" and for improving "morality." © 2013 International Parkinson and Movement Disorder Society.

  17. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Directory of Open Access Journals (Sweden)

    Chih-Ting Lin

    2012-08-01

    Full Text Available A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  18. Fabrication and characterization of tungsten and graphite based PFC for divertor target elements of ITER like tokamak application

    Energy Technology Data Exchange (ETDEWEB)

    Khirwadkar, S.S., E-mail: sameer@ipr.res.in [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Singh, K.P.; Patil, Y.; Khan, M.S.; Buch, J.J.U.; Patel, Alpesh; Tripathi, Sudhir [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Jaman, P.M.; Rangaraj, L.; Divakar, C. [Materials Science Division, National Aerospace Laboratories, CSIR, Bangalore, Karnataka (India)

    2011-10-15

    The development of the fabrication technology of macro-brush configuration of tungsten (W) and carbon (graphite and CFC) plasma facing components (PFCs) for ITER like tokamak application is presented. The fabrication of qualified joint of PFC is a requirement for fusion tokamak. Vacuum brazing method has been employed for joining of W/CuCrZr and C/CuCrZr. Oxygen free high conductivity (OFHC) copper casting on W tiles was performed followed by machining, polishing and ultrasonic cleaning of the samples prior to vacuum brazing. The W/CuCrZr and graphite/CuCrZr based test mockups were vacuum brazed using silver free alloys. The mechanical shear and tensile strengths were evaluated for the W/CuCrZr and graphite/CuCrZr brazed joint samples. The micro-structural examination of the joints showed smooth interface. The details of fabrication and characterization procedure for macro-brush tungsten and carbon based PFC test mockups are presented.

  19. Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T., E-mail: tjk@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Rajendra Kumar, E. [TBM Division, Institute for Plasma Research (IPR), Bhat, Gandhinagar 382428 (India)

    2014-10-15

    Highlights: • Status of technology developments for Indian TBM to be installed in ITER is presented. • Procedure development for EB, laser and laser-hybrid welding of RAFM steel presented. • Filler wires for RAFM steel for TIG, NG-TIG and laser-hybrid welding have been developed. • Feasibility of production of channel plate by HIP technology has been demonstrated. - Abstract: Ever since India decided to install its Lead-Lithium Ceramic Breeder (LLCB) TBM in ITER, various technologies for fabrication of Indian TBM are being pursued by IPR and IGCAR, in collaboration with various research laboratories in India. Welding consumables for joining India specific RAFM steels (IN-RAFMS), procedures for hot isostatic pressing, electron beam welding, laser and laser-hybrid welding have been developed. Considering the complex nature and limited access available for inspection, innovative inspection procedures that involved use of phased array ultrasonic and C-scan imaging are also being pursued. This paper presents the current status of these developments and provides a roadmap for the future activities planned in realizing Indian TBM for testing in ITER.

  20. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold.

    Science.gov (United States)

    Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping

    2017-01-01

    Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fabrication of 32Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology

    International Nuclear Information System (INIS)

    Zhou Dai-Bing; Wang Hui-Tao; Zhang Rui-Kang; Wang Bao-Jun; Bian Jing; An Xin; Lu Dan; Zhao Ling-Juan; Zhu Hong-Liang; Ji Chen; Wang Wei

    2015-01-01

    A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13 mA. The output power exceeds 10 mW at 0 V bias when the injection current of the distributed feedback laser is 100 mA at 25°C. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.5V pp nonreturn-to-zero pseudorandom modulation signal at −2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained. (paper)

  2. Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.

    Science.gov (United States)

    Lin, Lin; Ma, Mingsheng; Zhang, Faqiang; Liu, Feng; Liu, Zhifu; Li, Yongxiang

    2018-01-25

    This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 μm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 μm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.

  3. Novel MEMS-based fabrication technology of micro solenoid-type inductor

    International Nuclear Information System (INIS)

    Uchiyama, S; Yang, Z Q; Takagi, H; Itoh, T; Maeda, R; Zhang, Y; Toda, A; Hayase, M

    2013-01-01

    Solenoid configuration of micro inductor, which has advantages of high quality factor and low loss, is needed in micro energy and power electronics applications but it is difficult to prepare using conventional microfabrication processes. In this work, we present a new microelectromechanical systems-based technology of micro solenoid-type inductor by a newly developed cylindrical projection photolithography method. Direct electroplating process of copper film on coil patterns was also successfully developed for achieving thick windings so that thick photoresist-based electroplating molds are not needed. Micro solenoid-type inductor prototypes of the winding pitch of about 40 µm, the winding number of 20 and 50, and the winding thickness of about 14 µm, were successfully fabricated on a 1 mm diameter glass capillary. The prepared 20-turn and 50-turn micro inductors were of inductance of 69 and 205 nH at 30 MHz, respectively. (paper)

  4. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    Science.gov (United States)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  5. Fabrication technology for lead-alloy Josephson devices for high-density integrated circuits

    International Nuclear Information System (INIS)

    Imamura, T.; Hoko, H.; Tamura, H.; Yoshida, A.; Suzuki, H.; Morohashi, S.; Ohara, S.; Hasuo, S.; Yamaoka, T.

    1986-01-01

    Fabrication technology for lead-alloy Josephson devices was evaluated from the viewpoint of application to large-scale integrated circuits. Metal and insulating layers used in the circuits were evaluated, and optimization of techniques for deposition or formation of these layers was investigated. Metallization of the Pb-In-Au base electrode and the Pb-Bi counterelectrode was studied in terms of optimizing the deposited films, to improve the reliability of junction electrodes. The formation of the oxide barrier was studied by in situ ellipsometry. SiO/sub x/ deposited in oxygen was developed as the insulation layer with less defect density than conventional SiO. A liftoff technique using toluene soaking was developed, and patterns with a minimum line width of 2 μm were consistently reproduced. The characteristics of each element in the circuits were evaluated for test vehicles. For the junction, the following items were evaluated: controllability of the critical current I/sub c/, junction quality, I/sub c/ uniformity, junction yield, and thermal cycling and storage stability. For the peripheral elements, integrity of lines and contacts, and characteristics of resistors were evaluated. 8-kbit memory cell arrays with a full vertical structure were fabricated to evaluate these technologies in combination. The continuity of each metal layer and insulation between metal layers were evaluated with an autoprober at room temperature. For selected chips, cell characteristics have been measured, and their I/sub c/ uniformity and production yields for cells are discussed. Normal operation of the memory cells was confirmed for all of the 24 accessible cells on a chip

  6. Development of a technology for fabricating low-cost parallel optical interconnects

    Science.gov (United States)

    Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Daele, Peter

    2006-04-01

    We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. In the fist part the waveguide fabrication technology is discussed, both photo lithography and laser ablation are proposed. It is shown that a frequency tripled Nd-YAG laser (355 nm) offers a lot of potential for defining single mode interconnections. Emphasis is on multimode waveguides, defined by KrF excimer laser (248 nm) ablation using acrylate polymers. The first conclusion out of loss spectrum measurements is a 'yellowing effect' of laser ablated waveguides, leading to an increased loss at shorter wavelengths. The second important conclusion is a potential low loss at a wavelength of 850 nm, 980 nm and 1310 nm. This is verified at 850 nm by cut-back measurements on 10-cm-long waveguides showing an average propagation loss of 0.13 dB/cm. Photo lithographically defined waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.15 dB/cm at 850 nm. The generation of debris and the presence of microstructures are two main concerns for KrF excimer laser ablation of hybrid polymers. In the second part a process for embedding metal coated 45° micromirrors in optical waveguiding layers is described. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial loss measurements indicate an excess mirror loss of 1.5 dB.

  7. Fabrication of thin-wall, freestanding inertial confinement fusion targets by chemical vapor deposition

    International Nuclear Information System (INIS)

    Carroll, D.W.; McCreary, W.J.

    1982-01-01

    To meet the requirements for plasma physics experiments in the inertial confinement fusion (ICF) program, chemical vapor deposition (CVD) in fluid beds was used to fabricate freestanding tungsten spheres and cylinders with wall thicknesses less than 5.0 μm. Molybdenum and molybdenum alloy (TZM) mandrels of the desired geometry were suspended in a carrier bed of dense microspheres contained in an induction-heated fluid-bed reactor. The mandrels were free to float randomly through the bed, and using the reaction WF 6 +3H 2 →/sub /KW +6HF, very fine-grained tungsten was deposited onto the surface at a rate and in a grain size determined by temperature, gas flow rate, system pressure, and duration of the reaction. After coating, a portion of each mandrel was exposed by hole drilling or grinding. The mandrel was then removed by acid leaching, leaving a freestanding tungsten shape. Experimental procedures, mandrel preparation, and results obtained are discussed

  8. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    Science.gov (United States)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  9. Interaction of a laser beam with a target. Application to the fabrication of granular superconducting films

    International Nuclear Information System (INIS)

    Desserre, Jacques.

    1974-01-01

    The aim was to prepare a superconductor of high T(c). First are given the different simplified theories (BCS, Mac Millan) whereby the critical temperature of a superconductor can be calculated, with a view to its optimization. A material and a preparation technique were chosen on the basis of these theories. The method uses phenomena which occur during the interaction of a coherent pulsed light beam, emitted by a laser, with the surface of a metallic or nonmetallic target. Different theoretical models of this interaction are proposed. Special attention is paid to complex targets (alloys, compounds) and the construction of a model describing the vaporization of a compound is suggested. By a suitable choice of laser, based on the energy emission profile and the value of the energy supplied, congruent vaporization of the target is possible. The technique was applied to the preparation of thin layers by condensation onto a substrate of the vapor and the plasma emitted during the interaction. The deposits generally have the same structure as the bulk compound used as target while the atomic composition of the film may be slightly different. Thin layers of Ni 3 Mn, CdTe, ZnC, HfC were prepared in this way without treatment of the deposits after condensation. Simultaneous vaporization of the compound ReBe 22 in the bulk state gave filaments made up of small grains (20A), identical in composition with the target. The beryllium α phase (compact hexagonal) was identified but the electron diffraction study showed the existence of several other phases of unknown structure. The superconducting properties changed with time [fr

  10. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.

    Science.gov (United States)

    Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng

    2012-07-02

    The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

  11. Accelerator and spallation target technologies for ADS applications

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radio-active waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia. To address the disposal of transuranics, accelerator-driven systems (ADS), i.e. a sub-critical system driven by an accelerator to sustain the chain reaction, seem to have great potential for transuranic transmutation, though much R and D work is still required in order to demonstrate their desired capability as a whole system. This report describes the current status of accelerator and spallation target technologies and suggests technical issues that need to be resolved for ADS applications. It will be of particular interest to nuclear scientists involved in ADS development and in advanced fuel cycles in general. (author)

  12. Fabrication and characterisation of composite targets for the transmutation of actinides

    International Nuclear Information System (INIS)

    Naestren, C.; Haas, D.; Fernandez, A.; Somers, J.

    2006-01-01

    Transmutation of transuranic elements separated from spent fuel is a way to reduce the toxicity of long-lived nuclides in the waste before disposal. Plutonium and the minor actinides (MA) are reintroduced into the fuel cycle for further irradiation and incineration. Currently CERMET fuel forms, in which a ceramic actinide is dispersed in a matrix, are considered for MA transmutation. In a first step, PuO 2 beads are produced by a sol gel method in which a Pu nitrate solution is converted to solid, dust-free, particles. These porous beads are then infiltrated with an americium nitrate solution to the incipient wetness point and calcined to give the (PuAm)O 2 beads, which are blended with a metal matrix and compacted and sintered to form the final fuel pellet. The matrix used is molybdenum due to its high thermal conductivity and low neutron capture cross section, if it is enriched in 92 Mo. In this work, optimization of the bead porosity is investigated to achieve a higher Am content by infiltration. Addition of carbon to the mother solution in the sol gel step increases the bead porosity but it also changes both bead and final fuel pellet microstructure. A surrogate fuel, with cerium simulating the actinides has been fabricated and its mechanical stability and bead characteristics investigated as a function of carbon content and thermal treatment. The characterization of the surrogate fuel by ceramography, density, porosity, bead-quality, etc., is a necessary step in the process optimization, to be transferred to the production of the actinide samples. This process is now at an advanced stage and is being used for the production of fuels for irradiation tests in the Phenix (Futurix) and HFR-Petten (HELIOS) reactors. In parallel, studies on the dissolution of the fuel pellets, with the aim of dissolving the Mo-matrix while keeping the CeO 2 beads intact, have been initiated. Thus, Mo can be recycled for further fuel fabrication either from production scraps or from

  13. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo; Kim, Jong Young

    2011-01-01

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  14. Production and characterization of thin 7Li targets fabricated by ion implantation

    International Nuclear Information System (INIS)

    Cruz, J.; Fonseca, M.; Luis, H.; Mateus, R.; Marques, H.; Jesus, A.P.; Ribeiro, J.P.; Teodoro, O.M.N.D.; Rolfs, C.

    2009-01-01

    Very high fluence implantation of 7 Li + ions was used to promote the formation of a thin and high density 7 Li target in the surface region of Al samples. The implanted volume was characterized by particle induced gamma-ray emission, Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and nuclear reaction analysis, revealing that the implanted surface is a combination of Li 2 CO 3 , metallic lithium, LiOH and C, with almost no Al present. Radiation damage effects by proton beams were studied by observing the evolution of the 7 Li(p, α) 4 He nuclear reaction yield with the accumulated charge, at different proton energies, revealing high stability of the produced Li target.

  15. MicroElectroMechanical devices and fabrication technologies for radio-frequency analog signal processing

    Science.gov (United States)

    Young, Darrin Jun

    The proliferation of wireless services creates a pressing need for compact and low cost RF transceivers. Modern sub-micron technologies provide the active components needed for miniaturization but fail to deliver high quality passives needed in oscillators and filters. This dissertation demonstrates procedures for adding high quality inductors and tunable capacitors to a standard silicon integrated circuits. Several voltage-controlled oscillators operating in the low Giga-Hertz range demonstrate the suitability of these components for high performance RF building blocks. Two low-temperature processes are described to add inductors and capacitors to silicon ICs. A 3-D coil geometry is used for the inductors rather than the conventional planar spiral to substantially reduce substrate loss and hence improve the quality factor and self-resonant frequency. Measured Q-factors at 1 GHz are 30 for a 4.8 nH device, 16 for 8.2 nH and 13.8 nH inductors. Several enhancements are proposed that are expected to result in a further improvement of the achievable Q-factor. This research investigates the design and fabrication of silicon-based IC-compatible high-Q tunable capacitors and inductors. The goal of this investigation is to develop a monolithic low phase noise radio-frequency voltage-controlled oscillator using these high-performance passive components for wireless communication applications. Monolithic VCOs will help the miniaturization of current radio transceivers, which offers a potential solution to achieve a single hand-held wireless phone with multistandard capabilities. IC-compatible micromachining fabrication technologies have been developed to realize on-chip high-Q RF tunable capacitors and 3-D coil inductors. The capacitors achieve a nominal capacitance value of 2 pF and can be tuned over 15% with 3 V. A quality factor over 60 has been measured at 1 GHz. 3-D coil inductors obtain values of 4.8 nH, 8.2 nH and 13.8 nH. At 1 GHz a Q factor of 30 has been achieved

  16. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    Science.gov (United States)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  17. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  18. Remote mixed oxide fabrication facility development. Volume 2. State-of-the-art review of remote maintenance system technology

    International Nuclear Information System (INIS)

    Horgos, R.M.; Masch, M.L.

    1979-06-01

    This report provides a state-of-the-art review of remote systems technology, which includes manipulators, process connectors, vision systems and specialized process systems. A proposed mixed oxide fuel fabrication facility was reviewed and evaluated for identification of major remote maintenance and repair tasks. The technological areas were evaluated on the basis of their suitability or applicability for remote maintenance and repair of a proposed fully remote operating mixed oxide fuel fabrication facility. A technological base exists from which the design criteria for a reliable, remote operating facility can be established. Commercially available systems and components, along with those remote technologies now in development, will require modifications to adapt them to specific plant designs and requirements

  19. Physics and technology of superthin internal targets in storage rings

    International Nuclear Information System (INIS)

    Popov, S.G.

    1989-01-01

    The new generation of accelerators for coincidence electronuclear investigations is discussed. The luminosity and beam parameters are calculated for an electron storage ring with an internal target operating in the superthin regime. The advantages and disadvantages in comparison with conventional operation using an external beam and target are described. The intermediate results for 2 GeV electron scattering on polarized internal deuterium target are given (joint Novosibirsk-Argonne experiment). 32 refs.; 5 figs

  20. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  1. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging

    Science.gov (United States)

    Yang, Jie; Yao, Ming-Hao; Zhao, Dong-Hui; Zhang, Xiao-Shuai; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2017-08-01

    Nanogels have been widely used as multifunctional drug delivery carriers because of high water content, biocompatibility, and high loading capability. We designed and biosynthesized two triblock artificial polypeptides PC10A and PC10ARGD as vehicles for encapsulating hydrophobic materials. These polypeptides can form nanogels by self-assembly when the concentration is below 2% ( w/ v). The physical properties of nanogels, including size, surface potential, and targeting domain, are able to be tuned. Hydrophobic materials from molecular size to nano-size can be loaded into the polypeptide nanogels to form hybrid nanogels. Hydrophobic quantum dots CdSe@ZnS below 10 nM were loaded into the polypeptide nanogels by ultrasonic treatment. Encapsulation endows hydrophobic QDs with good tunability of size, water solubility, stability, targeting, and biocompatibility. PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels showed excellent biocompatibility, which the cellular viabilities of HeLa and MCF-7 cells treated with 1% PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels contained 20 nM QDs were above 90 and 80%, respectively. PC10ARGD@QDs hybrid nanogels with an arginine-glycine-aspartic acid motif present efficient receptor-mediated endocytosis in α v β 3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy. These results demonstrate that such polypeptide nanogels as nanocarriers are expected to have great potential applications in biomedicine.

  2. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.

    Science.gov (United States)

    Huang, Haitao; Yue, Tao; Xu, Ke; Golzarian, Jafar; Yu, Jiahui; Huang, Jin

    2015-07-01

    Gd(III) chelate is currently used as positive magnetic resonance imaging (MRI) contrast agent in clinical diagnosis, but generally induces the risk of nephrogenic systemic fibrosis (NSF) due to the dissociated Gd(3+) from Gd(III) chelates. To develop a novel positive MRI contrast agent with low toxicity and high sensitivity, ultrasmall MnO nanoparticles were PEGylated via catechol-Mn chelation and conjugated with cRGD as active targeting function to tumor. Particularly, the MnO nanoparticles with a size of ca. 5nm were modified by α,β-poly(aspartic acid)-based graft polymer containing PEG and DOPA moieties and, meanwhile, conjugated with cRGD to produce the contrast agent with a size of ca. 100nm and a longitudinal relaxivity (r1) of 10.2mM(-1)S(-1). Such nanoscaled contrast agent integrated passive- and active-targeting function to tumor, and its efficient accumulation behavior in tumor was verified by in vivo distribution study. At the same time, the PEG moiety played a role of hydrophilic coating to improve the biocompatibility and stability under storing and physiological conditions, and especially might guarantee enough circulation time in blood. Moreover, in vivo MRI revealed a good and long-term effect of enhancing MRI signal for as-fabricated contrast agent while cell viability assay proved its acceptable cytotoxicity for MRI application. On the whole, the as-fabricated PEGylated and cRGD-functionalized contrast agent based on ultrasmall MnO nanoparticles showed a great potential to the T1-weighted MRI diagnosis of tumor. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  3. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Han, Qiming [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); and others

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  4. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong

    2016-01-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  5. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  6. Theoretical and numerical analysis of auxiliary heating for cryogenic target fabrication

    International Nuclear Information System (INIS)

    Yang Xiaohu; Tian Chenglin; Yin Yan; Xu Han; Zhuo Hongbin

    2008-01-01

    In order to compensate for the nonspherical-symmetric heat flux in the hohlraum, auxiliary heating is usually applied to the outside wall of the hohlraum during the cooling process. A one-dimensional heat exchange theoretical model has been proposed in the indirect-drive target, to analyze the required auxiliary heat flux. With a two dimensional axisymmetric model, the auxiliary heating mechanism has been simulated by FLUENT code. The optimum heat flux which is 635 W/m 2 has been obtained as the heaters around the outside of the hohlraum about 1.3 mm above and below the mid-plane. The result is in good agreement with the theoretical model. (authors)

  7. Fabrication of self supporting metallic rare earth targets using a piezo-electric quartz as substrate

    International Nuclear Information System (INIS)

    Bonetti, C.P.

    1975-01-01

    Metallic self-supporting targets of cerium and praseodymium of 1 to 2.5mg/cm 2 on a diameter of 18mm were made using the process of evaporation by electron bombardment. Materials are placed on a piezo-electric quartz which permits the direct and precise measurement of the mass of the deposit. Then, such a deposit must be removed and placed on a frame in an environment of argon gas. This method is important because it can be used for small quantities of materials (case of separated isotopes). These high purity foils are used for the study of (d,n) reactions with the Tandem Van de Graaff Accelerator [fr

  8. Fabrication of a Micromachined Capacitive Switch Using the CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2015-11-01

    Full Text Available The study investigates the design and fabrication of a micromachined radio frequency (RF capacitive switch using the complementary metal oxide semiconductor-microelectromechanical system (CMOS-MEMS technology. The structure of the micromachined switch is composed of a membrane, eight springs, four inductors, and coplanar waveguide (CPW lines. In order to reduce the actuation voltage of the switch, the springs are designed as low stiffness. The finite element method (FEM software CoventorWare is used to simulate the actuation voltage and displacement of the switch. The micromachined switch needs a post-CMOS process to release the springs and membrane. A wet etching is employed to etch the sacrificial silicon dioxide layer, and to release the membrane and springs of the switch. Experiments show that the pull-in voltage of the switch is 12 V. The switch has an insertion loss of 0.8 dB at 36 GHz and an isolation of 19 dB at 36 GHz.

  9. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  10. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  11. U.S. technology for mechanized/automated fabrication of fast reactor fuel

    International Nuclear Information System (INIS)

    Nyman, D.H.; Bennett, D.W.; Claudson, T.T.; Dahl, R.E.; Graham, R.A.; Keating, J.J.; Yatabe, J.M.

    1978-01-01

    The status of the U.S. fast reactor Fuel Fabrication Development Program is discussed. The objectives of the program are to develop and evaluate a high throughput pilot fuel fabrication line including close-coupled chemistry and wet scrap recycle operations. The goals of the program are to demonstrate by mechanized/automated and remote processes: reduced personnel exposure, enhanced safegurads/accountability, improved fuel performance, representative fabrication rates and reduced fuel costs

  12. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    International Nuclear Information System (INIS)

    Hong, Bong Guen; In, S. R.; Bae, Y. D.

    2006-02-01

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  13. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; In, S. R.; Bae, Y. D. (and others)

    2006-02-15

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  14. Energy technologies for post Kyoto targets in the medium term

    International Nuclear Information System (INIS)

    Soenderberg Petersen, L.; Larsen, H.

    2003-09-01

    The Risoe International Energy Conference took place 19 - 21 May 2003 and the aim was to present and discuss new developments and trends in energy technologies which may become main contributors to the energy scene in 15 to 20 years. The conference addressed R and D related to the individual technologies as well as system integration. The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 25 June 2003. (au)

  15. Energy technologies for post Kyoto targets in the medium term

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L; Larsen, H [eds.

    2003-09-01

    The Risoe International Energy Conference took place 19 - 21 May 2003 and the aim was to present and discuss new developments and trends in energy technologies which may become main contributors to the energy scene in 15 to 20 years. The conference addressed R&D related to the individual technologies as well as system integration. The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 25 June 2003. (au)

  16. Development of a Novel Targeted RNAi Delivery Technology inTherapies for Metabolic Diseases

    Science.gov (United States)

    2017-10-01

    report Impact on other disciplines: Nothing to report Impact on technology transfer: Nothing to report Impact on society : Nothing to report 5. CHANGES...AWARD NUMBER: W81XWH-15-1-0569 TITLE: Development of a Novel Targeted RNAi Delivery Technology in Therapies for Metabolic Diseases PRINCIPAL...COVERED 30Sep2016 - 29Sep2017 4. TITLE AND SUBTITLE Development of a Novel Targeted RNAi Delivery Technology in Therapies for Metabolic Diseases 5a

  17. Development of advanced fabrication technology for high-temperature gas-cooled reactor fuel. Reduction of coating failure fraction

    International Nuclear Information System (INIS)

    Minato, Kazuo; Kikuchi, Hironobu; Fukuda, Kousaku; Tobita, Tsutomu; Yoshimuta, Sigeharu; Suzuki, Nobuyuki; Tomimoto, Hiroshi; Nishimura, Kazuhisa; Oda, Takafumi

    1998-11-01

    The advanced fabrication technology for high-temperature gas-cooled reactor fuel has been developed to reduce the coating failure fraction of the fuel particles, which leads to an improvement of the reactor safety. The present report reviews the results of the relevant work. The mechanisms of the coating failure of the fuel particles during coating and compaction processes of the fuel fabrication were studied to determine a way to reduce the coating failure fraction of the fuel. The coating process was improved by optimizing the mode of the particle fluidization and by developing the process without unloading and loading of the particles at intermediate coating process. The compaction process was improved by optimizing the combination of the pressing temperature and the pressing speed of the overcoated particles. Through these modifications of the fabrication process, the quality of the fuel was improved outstandingly. (author)

  18. Residual Strength Characterization of Unitized Structures Fabricated Using Different Manufacturing Technologies

    Science.gov (United States)

    Seshadri, B. R.; Smith, S. W.; Johnston, W. M.

    2008-01-01

    This viewgraph presentation describes residual strength analysis of integral structures fabricated using different manufacturing procedures. The topics include: 1) Built-up and Integral Structures; 2) Development of Prediction Methodology for Integral Structures Fabricated using different Manufacturing Procedures; 3) Testing Facility; 4) Fracture Parameters Definition; 5) Crack Branching in Integral Structures; 6) Results and Discussion; and 7) Concluding Remarks.

  19. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology

    Energy Technology Data Exchange (ETDEWEB)

    Haji, Aminoddin, E-mail: Ahaji@iaubir.ac.ir [Department of Textile Engineering, Birjand Branch, Islamic Azad University, Birjand (Iran, Islamic Republic of); Semnani Rahbar, Ruhollah [Department of Textile and Leather, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute, Karaj (Iran, Islamic Republic of); Mousavi Shoushtari, Ahmad [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-30

    Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH{sub 2}-MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH{sub 2}-MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2–12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH{sub 2}-MWCNT. The SEM images showed that the NH{sub 2}-MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH{sub 2}-MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH{sub 2}-MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼−18.2 dB about 11 GHz. Proper attachments of NH{sub 2}-MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability.

  20. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology

    International Nuclear Information System (INIS)

    Haji, Aminoddin; Semnani Rahbar, Ruhollah; Mousavi Shoushtari, Ahmad

    2014-01-01

    Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH 2 -MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH 2 -MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2–12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH 2 -MWCNT. The SEM images showed that the NH 2 -MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH 2 -MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH 2 -MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼−18.2 dB about 11 GHz. Proper attachments of NH 2 -MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability

  1. Digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education

    Science.gov (United States)

    Tillman, Daniel

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital

  2. Infrared small target detection technology based on OpenCV

    Science.gov (United States)

    Liu, Lei; Huang, Zhijian

    2013-09-01

    Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detection are described. These algorithms are traditional two-frame difference method, improved three-frame difference method, background estimate and frame difference fusion method, and building background with neighborhood mean method. On the foundation of above works, an infrared target detection software platform which is developed by OpenCV and MFC is introduced. Three kinds of tracking algorithms are integrated in this software. In order to explain the software clearly, the framework and the function are described in this paper. At last, the experiments are performed for some real-life IR images. The whole algorithm implementing processes and results are analyzed, and those algorithms for detection targets are evaluated from the two aspects of subjective and objective. The results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.

  3. Targeted killing with drones? Old arguments, new technologies

    Directory of Open Access Journals (Sweden)

    Meisels Tamar

    2018-01-01

    Full Text Available The question of how to contend with terrorism in keeping with our preexisting moral and legal commitments now challenges Europe as well as Israel and the United States: how do we apply Just War Theory and International Law to asymmetrical warfare, specifically to our counter terrorism measures? What can the classic moral argument in Just and Unjust Wars teach us about contemporary targeted killings with drones? I begin with a defense of targeted killing, arguing for the advantages of pin pointed attacks over any alternative measure available for combatting terrorism. Assuming the legitimacy of killing combatants in wartime, I argue, there is nothing wrong, and in fact much that is right, with targeting particular terrorists selected by name, as long as their assassinations can be reasonably expected to reduce terrorist hostilities rather than increase it. Subsequently, I offer some further thoughts and comments on the use of remotely piloted aircrafts to carry out targeted killings, and address the various sources for discomfort with this practice identified by Michael Walzer and others.

  4. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  5. Application of new technology to the fabrication and installation of stainless steel pipework

    International Nuclear Information System (INIS)

    Halford, P.; Carrick, L.

    1989-01-01

    BNFL has been constructing new reprocessing plant on a continuous basis since the late seventies. Initially the productivity achieved when fabricating and welding stainless steel to nuclear standards was poor. In order to complete projects to programme and cost BNFL developed a Total Fabrication System that is now applied to all of their construction projects and has resulted in overall productivity increases by a factor of 2.4 with major quality and cost benefits. The development of the Total Fabrication System is described

  6. Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches

    International Nuclear Information System (INIS)

    Sanden, B.A.; Azar, Christian

    2005-01-01

    The aim of this paper is to offer suggestions when it comes to near-term technology policies for long-term climate targets based on some insights into the nature of technical change. We make a distinction between economy wide and technology specific policy instruments and put forward two key hypotheses: (i) Near-term carbon targets such as the Kyoto protocol can be met by economy wide price instruments (carbon taxes, or a cap-and-trade system) changing the technologies we pick from the shelf (higher energy efficiency in cars, buildings and industry, wind, biomass for heat and electricity, natural gas instead of coal, solar thermal, etc.). (ii) Technology specific policies are needed to bring new technologies to the shelf. Without these new technologies, stricter emission reduction targets may be considered impossible to meet by the government, industry and the general public, and therefore not adopted. The policies required to bring these more advanced technologies to the shelf are more complex and include increased public research and development, demonstration, niche market creation, support for networks within the new industries, standard settings and infrastructure policies (e.g., when it comes to hydrogen distribution). There is a risk that the society in its quest for cost-efficiency in meeting near-term emissions targets, becomes blindfolded when it comes to the more difficult, but equally important issue of bringing more advanced technologies to the shelf. The paper presents mechanisms that cause technology look in, how these very mechanisms can be used to get out of the current 'carbon lock-in' and the risk with premature lock-ins into new technologies that do not deliver what they currently promise. We then review certain climate policy proposals with regards to their expected technology impact, and finally we present a let-a-hundred-flowers-bloom strategy for the next couple of decades

  7. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    Science.gov (United States)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  8. Development of fabrication technology for copper canisters with cast inserts. Status report in August 2001

    International Nuclear Information System (INIS)

    Andersson, Claes-Goeran

    2002-04-01

    This report contains an account of the results of trial fabrication of copper canisters with cast inserts carried out during the period 1998 - 2001. The work of testing of fabrication methods is being focused on a copper thickness of 50 mm. Occasional canisters with 30 mm copper thickness are being fabricated for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. For the fabrication of copper tubes, SKB has concentrated its efforts on seamless tubes made by extrusion and pierce and draw processing. Five tubes have been extruded and two have been pierced and drawn during the period. Materials testing has shown that the resultant structure and mechanical properties of these tubes are good. Despite certain problems with dimensional accuracy, it can be concluded that both of these methods can be developed for use in the serial production of SKB' copper tubes. No new trial fabrication with roll forming of copper plate and longitudinal welding has been done. This method is nevertheless regarded as a potential alternative. Copper lids and bottoms are made by forging of continuous-cast bars. The forged blanks are machined to the desired dimensions. Due to the Canister Laboratory's need for lids to develop the technique for sealing welding, a relatively large number of forged blanks have been fabricated. It is noted in the report that the grain size obtained in lids and bottoms is much coarser than in fabricated copper tubes. Development work has been commenced for the purpose of optimizing the forging process. Nine cast inserts have been cast during the three-year period. The results of completed material testing of test pieces taken at different places along the length of the inserts have in several cases shown an unacceptable range of variation in strength properties and structure. In the continued work, insert fabrication will be developed in terms of both casting technique and iron composition. Development work on

  9. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    International Nuclear Information System (INIS)

    Dehzangi, Arash; Larki, Farhad; Naseri, Mahmud G.; Navasery, Manizheh; Majlis, Burhanuddin Y.; Razip Wee, Mohd F.; Halimah, M.K.; Islam, Md. Shabiul; Md Ali, Sawal H.; Saion, Elias

    2015-01-01

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated

  10. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  11. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology.

    Science.gov (United States)

    Huang, Zhuoli; Zhang, Lu; Zhu, Jingwei; Zhang, Xiuyin

    2015-06-01

    Selective laser melting (SLM) technology has been introduced to fabricate dental restorations. However, the fit of these restorations still needs further study. The purpose of this in vivo investigation was to compare the marginal and internal fit of SLM metal ceramic crowns with 2 lost-wax cast metal ceramic crowns and to evaluate the influence of tooth type on the marginal and internal fit of these crowns. A total of 330 metal ceramic crowns were evaluated. The metal copings were fabricated with SLM Co-Cr, cast Au-Pt, and cast Co-Cr alloy (n=110). The marginal and internal gaps of crowns were recorded by using a replica technique. The anterior and premolar replicas were sectioned 2 times, and molar replicas were sectioned 4 times. The marginal and internal gap width of each cross section was examined by stereomicroscope at ×30 magnification. Two-way analysis of variance was performed to identify the statistical difference among the groups. The marginal fit of the SLM Co-Cr group (75.6 ±32.6 μm) was not different from the cast Au-Pt group (76.8 ±32.1 μm) (P>.05) but was better than the cast Co-Cr group (91.0 ±36.3 μm) (P.05). The mean occlusal gap width of the SLM Co-Cr group (309.8 ±106.6 μm) was significantly higher than that of the cast Au-Pt group (254.6 ±109.6 μm) and the cast Co-Cr group (249.6 ±110.4 μm) (P.05). Also, no significant difference was found in the axial fit among the anterior group (138.3 ±52.5 μm), the premolar group (132.9 ±50.4 μm), and the molar group (134.4 ±52.5 μm) (P>.05). The anterior group (267.6 ±110.2 μm) did not differ from the premolar group (270.2 ±112.8 μm) and the molar group (268.6 ±110.5 μm) in occlusal fit (P>.05). The marginal fit of SLM Co-Cr metal ceramic crowns was similar to that of the cast Au-Pt metal ceramic crowns and was better than that of the cast Co-Cr metal ceramic crowns. The SLM Co-Cr metal ceramic crowns were not significantly different from the 2 cast metal ceramic crowns in axial

  12. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  13. Coping with Atmospheric Turbulence in the Selection of Laser Hardening Technology for FCS Targeting Systems

    National Research Council Canada - National Science Library

    Pritchett, Timothy M

    2004-01-01

    ... by frequency-agile battlefield lasers at both long and short range. Evidently, the selection of sensor protection technologies for incorporation into the final targeting system will be based on their optical limiting performance under field conditions...

  14. Report of the consultants' meeting on target and processing technologies for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    1999-11-01

    Cyclotron produced radionuclides are used routinely for the diagnosis of a wide variety of diseases. Recently a number of radionuclides available from cyclotrons have been proposed for use in radiotherapy. In fact Pd-103 has become routinely available in some parts of the world for incorporation into brachytherapy seeds for treating prostate cancer. The consultants meeting reviewed the status of target and processing technologies associated with cyclotron production of radionuclides. The main topics of discussion included the basic nuclear data that is crucial to the production of the desired radionuclides, gas and solid target systems, the automated chemical processing units, the Good Manufacturing Practices (GMP) required in order to use these radionuclides in human patients in a safe and efficacious manner and a review of possible candidate nuclides that show promise for use in Nuclear Medicine in the near future. Advances in the preparation of solid targets using electroplating technology has created the possibility of preparing targets capable of operating at very high beam currents which would make the production of large quantities of SPECT agents possible at cyclotron facilities throughout the world. Recognising the needs of the developing countries which have established cyclotron facilities, the consultants focussed on how to provide the technology for preparing solid targets that could be used in the existing facilities. While solid target technology can be used for many radionuclides the report concentrated on several key radionuclides, which are of current importance or show potential for use in the near future. Tl-201 is currently used for cardiac profusion studies throughout the world. New target preparation techniques could potentially make many of the member states self sufficient in the production of this nuclide. I-123 has tremendous potential because of the near ideal photon energy for SPECT cameras and its well-understood chemistry. However, it

  15. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    Science.gov (United States)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  16. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  17. Development of the continuous casting technology for fabrication of the tubular fuels

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, Y. S.; Kim, C. K.; Lee, D. B.; Oh, S. J.

    2003-01-01

    In the irradiation test of the U-Mo dispersed nuclear fuel that is used as nuclear fuels for research reactors, it was recognized that the swelling due to reaction between U-Mo particle and Al matrix caused some failures of the fuel claddings. The development of new style nuclear fuel that could minimize the reaction between U-Mo particles and Al matrix was needed. Tube style nuclear fuel was judged to be suitable as new style nuclear fuel. We targeted to make U-Mo tube of diameter 10mm, thinner than 1mm thick, because temperature distribution of tube style nuclear fuel will be expected to have a good performance. We used continuous casting technology to make tube style nuclear fuel. In this research, we have tried to make tube using copper before we make U-Mo tube style nuclear fuel by continuous casting method. As a result of the experiment, we succeeded to make copper tube of diameter 10mm, thickness 1mm

  18. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    Science.gov (United States)

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  19. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    Science.gov (United States)

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  20. Technologies for ITER divertor vertical target plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Fouquet, S.; Bayetti, P.; Cordier, J.J.; Grosman, A.; Missirlian, M.; Tivey, R.; Roedig, M.

    2005-01-01

    The ITER divertor vertical target has to sustain heat fluxes up to 20 MW m -2 . The concept developed for this plasma facing component working at steady state is based on carbon fibre composite armour for the lower straight part and tungsten for the curved upper part. The main challenges involved in the use of such components include the removal of the high heat fluxes deposited and mechanically and thermally joining the armour to the metallic heat sink, despite the mismatch in the thermal expansions. Two solutions based on the use of a CuCrZr hardened copper alloy and an active metal casting (AMC (registered) ) process were investigated during the ITER EDA phase: the first one called 'flat tile geometry' was mainly developed for the Tore Supra pumped limiter, the second one called 'monoblock geometry' was developed by the EU Participating Team for the ITER project. This paper presents a review of these two solutions and analyses their assets and drawbacks: pressure drop, critical heat flux, surface temperature and expected behaviour during operation, risks during the manufacture, control of the armour defects during the manufacture and at the reception, and the possibility of repairing defective tiles

  1. Evolution of Emergent Technologies for Producing Nonwoven Fabrics for Air Filtration

    Science.gov (United States)

    Ou, Yingjie

    2016-01-01

    Nonwovens is a fast growing industry driven by technological research and development (R&D), and one of the major application areas for nonwovens is air filtration. Research on nonwovens technologies has mainly focused on the science and technology areas, but there is very little published research on technology management issues within the…

  2. Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies

    Science.gov (United States)

    Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.

    2011-01-01

    Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.

  3. Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies

    OpenAIRE

    Gonçalves, L. M.; Rocha, J. G.; Couto, Carlos; Alpuim, P.; Min, Gao; Rowe, D. M.; Correia, J. H.

    2007-01-01

    The present work reports on the fabrication and characterization of a planar Peltier cooler on a flexible substrate. The device was fabricated on a 12 νm thick Kapton(c) polyimide substrate using Bi2Te3 and Sb2Te3 thermoelectric elements deposited by thermal co-evaporation. The cold area of the device is cooled with four thermoelectric junctions, connected in series using metal contacts. Plastic substrates add uncommon mechanical properties to the composite film-substrate and enable integrati...

  4. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  5. Fabrication and Characterization of Targets for Shock Propagation and Radiation Burnthrough Measurements on Be-0.9 AT. % Cu Alloy

    International Nuclear Information System (INIS)

    Nobile, A.; Dropinski, S.C.; Edwards, J.M.; Rivera, G.; Margevicius, R.W.; Sebring, R.J.; Olson, R. E.; Tanner, D.L.

    2004-01-01

    Beryllium-copper alloy (Be0.9%Cu) ICF capsules are being developed for the pursuit of thermonuclear ignition at the National Ignition Facility (NIF). Success of this capsule material requires that its shock propagation and radiation burnthrough characteristics be accurately understood. To this end, experiments are being conducted to measure the shock propagation and radiation burnthrough properties of Be0.9%Cu alloy. These experiments involve measurements on small Be0.9%Cu wedge, step and flat samples. Samples are mounted on 1.6-mm-diameter x 1.2-mm-length hohlraums that are illuminated by the OMEGA laser at the University of Rochester. X-rays produced by the hohlraum drive the sample. A streaked optical pyrometer detects breakout of the shock produced by the X-ray pulse. In this paper we describe synthesis of the alloy material, fabrication and characterization of samples, and assembly of the targets. Samples were produced from Be0.9%Cu alloy that was synthesized by hot isostatic pressing of Be powder and copper flake. Samples were 850 μm diameter disks with varying thickness in the case of wedge and step samples, and uniform thickness in the case of flat samples. Sample thickness varied in the range 10-90 μm. Samples were prepared by precision lathe machining and electric discharge machining. The samples were characterized by a Veeco white light interferometer and an optical thickness measurement device that simultaneously measured the upper and lower surface contours of samples using two confocal laser probes. Several campaigns with these samples have been conducted over the past two years

  6. Development of fabrication technology for copper canisters with cast inserts. Status report in August 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Claes-Goeran

    2002-04-01

    This report contains an account of the results of trial fabrication of copper canisters with cast inserts carried out during the period 1998 - 2001. The work of testing of fabrication methods is being focused on a copper thickness of 50 mm. Occasional canisters with 30 mm copper thickness are being fabricated for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. For the fabrication of copper tubes, SKB has concentrated its efforts on seamless tubes made by extrusion and pierce and draw processing. Five tubes have been extruded and two have been pierced and drawn during the period. Materials testing has shown that the resultant structure and mechanical properties of these tubes are good. Despite certain problems with dimensional accuracy, it can be concluded that both of these methods can be developed for use in the serial production of SKB' copper tubes. No new trial fabrication with roll forming of copper plate and longitudinal welding has been done. This method is nevertheless regarded as a potential alternative. Copper lids and bottoms are made by forging of continuous-cast bars. The forged blanks are machined to the desired dimensions. Due to the Canister Laboratory's need for lids to develop the technique for sealing welding, a relatively large number of forged blanks have been fabricated. It is noted in the report that the grain size obtained in lids and bottoms is much coarser than in fabricated copper tubes. Development work has been commenced for the purpose of optimizing the forging process. Nine cast inserts have been cast during the three-year period. The results of completed material testing of test pieces taken at different places along the length of the inserts have in several cases shown an unacceptable range of variation in strength properties and structure. In the continued work, insert fabrication will be developed in terms of both casting technique and iron composition. Development

  7. Fabricating Optical Fiber Imaging Sensors Using Inkjet Printing Technology: a pH Sensor Proof-of-Concept

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J C; Alvis, R M; Brown, S B; Langry, K C; Wilson, T S; McBride, M T; Myrick, M L; Cox, W R; Grove, M E; Colston, B W

    2005-03-01

    We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photopolymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micron-sized polymer) sensor diameter (92.2 {+-} 2.2 microns), height (35.0 {+-} 1.0 microns), and roundness (0.00072 {+-} 0.00023). pH sensors were evaluated in terms of pH sensing ability ({le}2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail.

  8. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Are we There Yet? ... Developing In-Situ Fabrication and Repair (ISFR) Technologies to Explore and Live on the Moon and Mars

    Science.gov (United States)

    Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.

  10. Recent developments in bio-inspired sensors fabricated by additive manufacturing technologies

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Sanders, Remco G.P.

    2017-01-01

    In our work on micro-fabricated hair-sensors, inspired by the flow-sensitive sensors found on crickets, we have made great progress. Initially delivering mediocre performance compared to their natural counter parts they have evolved into capable sensors with thresholds roughly a factor of 30 larger

  11. High performance bidirectional electrostatic inchworm motor fabricated by trench isolation technology

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Tas, Niels Roelof; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    We report on an electrostatic linear micromotor, which employs built-in mechanical leverage to convert normal deflection of a flexible plate into a small in-plane step and two clamps to enable bidirectional inchworm motion. The motor, measuring 412 /spl mu/m /spl times/ 286 /spl mu/m, is fabricated

  12. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  13. Microplasma fabrication: from semiconductor technology for 2D-chips and microfluidic channels to rapid prototyping and 3D-printing of microplasma devices

    Science.gov (United States)

    Shatford, R.; Karanassios, Vassili

    2014-05-01

    Microplasmas are receiving attention in recent conferences and current scientific literature. In our laboratory, microplasmas-on-chips proved to be particularly attractive. The 2D- and 3D-chips we developed became hybrid because they were fitted with a quartz plate (quartz was used due to its transparency to UV). Fabrication of 2D- and 3D-chips for microplasma research is described. The fabrication methods described ranged from semiconductor fabrication technology, to Computer Numerical Control (CNC) machining, to 3D-printing. These methods may prove to be useful for those contemplating in entering microplasma research but have no access to expensive semiconductor fabrication equipment.

  14. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies

    Directory of Open Access Journals (Sweden)

    Nicolas G. N. Constantino

    2018-06-01

    Full Text Available Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20–250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  15. Preliminary investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

    1986-11-01

    This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99 Mo. Issues that were addressed are: (1) purity and yield of the 99 Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99 Mo production. 37 refs., 1 fig., 5 tabs

  16. Reactive ion beam etching for microcavity surface emitting laser fabrication: technology and damage characterization

    International Nuclear Information System (INIS)

    Matsutani, A.; Tadokoro, T.; Koyama, F.; Iga, K.

    1993-01-01

    Reactive ion beam etching (RIBE) is an effective dry etching technique for the fabrication of micro-sized surface emitting (SE) lasers and optoelectronic devices. In this chapter, some etching characteristics for GaAs, InP and GaInAsP with a Cl 2 gas using an RIBE system are discussed. Micro-sized circular mesas including GaInAsP/InP multilayers with vertical sidewalls were fabricated. RIBE-induced damage in InP substrates was estimated by C-V and PL measurement. In addition, the removal of the induced damage by the second RIBE with different conditions for the InP wafer was proposed. The sidewall damage is characterized by photoluminescence emitted from the etched sidewall of a GaInAsP/InP DH wafer. (orig.)

  17. Fabrication of three-dimensional freestanding metal micropipes for microfluidics and microreaction technology

    International Nuclear Information System (INIS)

    Lang, P; Neiß, S; Woias, P

    2011-01-01

    In this paper, we describe a simple and novel fabrication process to produce three-dimensional freestanding metal micropipes. This process is based on conventional micromachining and electroless nickel plating inside a microfluidic channel of structured and stacked silicon substrates. The nickel micropipe resists an etching with KOH, which facilitates to fabricate freestanding, functional micropipes. The in-channel electroless plating achieves a continuous and homogeneous deposition of nickel and shows an accurate coating of small microstructures down to 20 µm. Furthermore, the deposited nickel layers possess a high tensile strength for bonding (>200–300 N mm −2 ), are chemically inert against fluorine gas and withstand pressures up to 6 bar. Thermal measurements have shown that released micropipes show better heat flux densities than embedded micropipes with 86% at a cooling flow rate of 16 ml h −1 . Hence, released micropipes feature accurate control of the temperature in the micropipe via a variance of the cooling fluid flow rate.

  18. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Feng Fu; Chong Chen; Sai Zhang; Ming-liang Zhao; Xiao-hong Li; Zhe Qin; Chao Xu; Xu-yi Chen; Rui-xin Li; Li-na Wang; Ding-wei Peng; Hong-tao Sun; Yue Tu

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.

  19. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.

    Science.gov (United States)

    Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao

    2018-04-17

    MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.

  20. Overview on the welding technologies of CLAM steel and the DFLL TBM fabrication

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    2016-12-01

    Full Text Available Dual Functional Lithium Lead (DFLL blanket was proposed for its advantages of high energy exchange efficiency and on-line tritium extraction, and it was selected as the candidate test blanket module (TBM for China Fusion Engineering Test Reactor (CFETR and the blanket for Fusion Design Study (FDS series fusion reactors. Considering the influence of high energy fusion neutron irradiation and high heat flux thermal load on the blanket, China Low Activation Martensitic (CLAM steel was selected as the structural material for DFLL blanket. The structure of the blanket and the cooling internal components were pretty complicated. Meanwhile, high precision and reliability were required in the blanket fabrication. Therefore, several welding techniques, such as hot isostatic pressing diffusion bonding, tungsten inner gas welding, electron beam welding and laser beam welding were developed for the fabrication of cooling internals and the assembly of the blanket. In this work, the weldability on CLAM steel by different welding methods and the properties of as-welded and post-weld heat-treated joints were investigated. Meanwhile, the welding schemes and the assembly strategy for TBM fabrication were raised. Many tests and research efforts on scheme feasibility, process standardization, component qualification and blanket assembly were reviewed.

  1. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  2. Evaluation of a novel ultra small target technology supporting on-product overlay measurements

    Science.gov (United States)

    Smilde, Henk-Jan H.; den Boef, Arie; Kubis, Michael; Jak, Martin; van Schijndel, Mark; Fuchs, Andreas; van der Schaar, Maurits; Meyer, Steffen; Morgan, Stephen; Wu, Jon; Tsai, Vincent; Wang, Cathy; Bhattacharyya, Kaustuve; Chen, Kai-Hsiung; Huang, Guo-Tsai; Ke, Chih-Ming; Huang, Jacky

    2012-03-01

    Reducing the size of metrology targets is essential for in-die overlay metrology in advanced semiconductor manufacturing. In this paper, μ-diffraction-based overlay (μDBO) measurements with a YieldStar metrology tool are presented for target-sizes down to 10 × 10 μm2. The μDBO technology enables selection of only the diffraction efficiency information from the grating by efficiently separating it from product structure reflections. Therefore, μDBO targets -even when located adjacent to product environment- give excellent correlation with 40 × 160 μm2 reference targets. Although significantly smaller than standard scribe-line targets, they can achieve total-measurement-uncertainty values of below 0.5 nm on a wide range of product layers. This shows that the new μDBO technique allows for accurate metrology on ultra small in-die targets, while retaining the excellent TMU performance of diffraction-based overlay metrology.

  3. Effect of positively charged particles on sputtering damage of organic electro-luminescent diodes with Mg:Ag alloy electrodes fabricated by facing target sputtering

    Directory of Open Access Journals (Sweden)

    Kouji Suemori

    2017-04-01

    Full Text Available We investigated the influence of the positively charged particles generated during sputtering on the performances of organic light-emitting diodes (OLEDs with Mg:Ag alloy electrodes fabricated by sputtering. The number of positively charged particles increased by several orders of magnitude when the target current was increased from 0.1 A to 2.5 A. When a high target current was used, many positively charged particles with energies higher than the bond energy of single C–C bonds, which are typically found in organic molecules, were generated. In this situation, we observed serious OLED performance degradation. On the other hand, when a low target current was used, OLED performance degradation was not observed when the number of positively charged particles colliding with the organic underlayer increased. We concluded that sputtering damage caused by positively charged particles can be avoided by using a low target current.

  4. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  5. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (development of fabrication technology of thin film polycrystalline Si solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (usumaku takessho silicon kei taiyo denchi seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of thin film polycrystalline Si solar cells in fiscal 1994. (1) On the fabrication technology of high-quality Si thin films, the new equipment was studied which allows uniform stable melting recrystallization over a large area. The new equipment adopted a heating method based on RTP system, and is now under adjustment. (2) On the fabrication technology of light/carrier confinement structure, degradation of hydrogen-treated thin film Si solar cells by light irradiation was examined. As a result, since any characteristic degradation was not found even by long time light irradiation, the high quality of the cells was confirmed regardless of hydrogen-treatment. Fabrication of stable reproducible fine texture structure became possible by using fabrication technology of light confinement structure by texture treatment of cell surfaces. (3) On low-cost process technology, design by VEST process, estimation of cell characteristics by simulation, and characteristics of prototype cells were reported. 33 figs., 1 tab.

  6. The value of advanced technology in meeting 2050 greenhouse gas emissions targets in the United States

    International Nuclear Information System (INIS)

    Kyle, Page; Clarke, Leon; Pugh, Graham; Wise, Marshall; Calvin, Kate; Edmonds, James; Kim, Son

    2009-01-01

    This paper, a contribution to the EMF 22 subgroup on Transition Scenarios, examines the relationship between technology evolution over the next 40 years and the cost, energy, and greenhouse gas emissions consequences of possible U.S. mitigation goals. The paper explores these issues within the context of cumulative emissions targets based on linear reductions in CO 2 -e emissions of 50% and 80% below 1990 levels by 2050. Six technology futures were constructed within the MiniCAM integrated assessment model and then applied to the emissions targets. The paper explores the influence of technology availability and expectations of future technology availability on the economic consequences of emissions mitigation, on the time path of emissions mitigation, and on the evolution of the U.S. energy system over time. One of the strongest themes to emerge from the scenarios in this study is that near-term decision-making depends on the availability of technology decades into the future, when deep emissions reductions are required to meet the cumulative emissions goals. In the scenarios in this paper, it is the expectations about future technology that have the most dramatic effect on greenhouse gas emissions prices and emissions reductions in 2020, as opposed to near-term technology availability. Moreover, it is the nature of technology 20, 30, and 40 years out, rather than availability and deployment of technology in the next decade, that will largely determine the character of the mid-century energy system.

  7. Biofuels development in China: Technology options and policies needed to meet the 2020 target

    International Nuclear Information System (INIS)

    Chang, Shiyan; Zhao, Lili; Timilsina, Govinda R.; Zhang, Xiliang

    2012-01-01

    China promulgated the Medium and Long-Term Development Plan for Renewable Energy in 2007, which included sub-targets of 2010 and 2020 for various renewable energy technologies. Almost all the 2010 sub-targets have been met and even surpassed except non-grain fuel ethanol. There is debate surrounding the questions of whether and how the country will be able to meet the 2020 biofuels target. This paper provides the assessment of potential technology pathways to achieve the 2020 target regarding their respective resource potential and supply cost. Barriers and policy options are identified based on broad literatures review. And an overview of biofuels projections is presented to provide insight into the comparison of various policy scenarios. The study shows that China can potentially satisfy non-grain fuel ethanol target by 2020 from technology perspective. But she will probably fall far short of this target if current situations continue. Additional policy efforts are needed. Meanwhile, the target of biodiesel production has high probability to be achieved. However, if given support policies, it will develop better. - Highlights: ► I. Non-grain feedstocks such as cassava, sweet sorghum and sweet potato grown in low productive arable lands or unutilized lands have enough potential to meet ethanol targets in 2020. ► II. If current situations continue, China will fall far short of the 2020 target. ► III. The target of biodiesel production has high probability to be achieved, while, if given support policies, it will develop better. ► IV. Supply cost is one of the major barriers faced by all biofuels pathways. ► V. Various policy measures would be necessary to overcome the costs barriers to biofuels in China.

  8. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    Science.gov (United States)

    Riahi, Mohammadreza

    2016-06-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  9. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched Uranium] targets

    International Nuclear Information System (INIS)

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of 99 Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved

  10. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Weigang; Zheng Qixin; Guo Xiaodong; Sun Jianhua; Liu Yudong, E-mail: Zheng-qx@163.co [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2009-12-15

    In the world, bone tuberculosis is still very difficult to treat and presents a challenge to clinicians. In this study, we utilized 3D printing technology to fabricate a programmed release multi-drug implant for bone tuberculosis therapy. The construction of the drug implant was a multi-layered concentric cylinder divided into four layers from the center to the periphery. Isoniazid and rifampicin were distributed individually into the different layers in a specific sequence of isoniazid-rifampicin-isoniazid-rifampicin. The drug release assays in vitro and in vivo showed that isoniazid and rifampicin were released orderly from the outside to the center to form the multi-drug therapeutic alliance, and the peak concentrations of drugs were detected in sequence at 8 to 12 day intervals. In addition, no negative effect on the proliferation of rabbit bone marrow mesenchymal stem cells was detected during the cytocompatibility assay. Due to its ideal pharmacologic action and cytocompatibility, the programmed release multi-drug implant with a complex construction fabricated by 3D printing technology could be of interest in prevention and treatment of bone tuberculosis.

  11. Assessment of the fit of removable partial denture fabricated by computer-aided designing/computer aided manufacturing technology.

    Science.gov (United States)

    Arafa, Khalid A O

    2018-01-01

    To assess the level of evidence that supports the quality of fit for removable partial denture (RPD) fabricated by computer-aided designing/computer aided manufacturing (CAD/CAM) and rapid prototyping (RP) technology. Methods: An electronic search was performed in Google Scholar, PubMed, and Cochrane library search engines, using Boolean operators. All articles published in English and published in the period from 1950 until April 2017 were eligible to be included in this review. The total number of articles contained the search terms in any part of the article (including titles, abstracts, or article texts) were screened, which resulted in 214 articles. After exclusion of irrelevant and duplicated articles, 12 papers were included in this systematic review.  Results: All the included studies were case reports, except one study, which was a case series that recruited 10 study participants. The visual and tactile examination in the cast or clinically in the patient's mouth was the most-used method for assessment of the fit of RPDs. From all included studies, only one has assessed the internal fit between RPDs and oral tissues using silicone registration material. The vast majority of included studies found that the fit of RPDs ranged from satisfactory to excellent fit. Conclusion: Despite the lack of clinical trials that provide strong evidence, the available evidence supported the claim of good fit of RPDs fabricated by new technologies using CAD/CAM.

  12. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy

    International Nuclear Information System (INIS)

    Wu Weigang; Zheng Qixin; Guo Xiaodong; Sun Jianhua; Liu Yudong

    2009-01-01

    In the world, bone tuberculosis is still very difficult to treat and presents a challenge to clinicians. In this study, we utilized 3D printing technology to fabricate a programmed release multi-drug implant for bone tuberculosis therapy. The construction of the drug implant was a multi-layered concentric cylinder divided into four layers from the center to the periphery. Isoniazid and rifampicin were distributed individually into the different layers in a specific sequence of isoniazid-rifampicin-isoniazid-rifampicin. The drug release assays in vitro and in vivo showed that isoniazid and rifampicin were released orderly from the outside to the center to form the multi-drug therapeutic alliance, and the peak concentrations of drugs were detected in sequence at 8 to 12 day intervals. In addition, no negative effect on the proliferation of rabbit bone marrow mesenchymal stem cells was detected during the cytocompatibility assay. Due to its ideal pharmacologic action and cytocompatibility, the programmed release multi-drug implant with a complex construction fabricated by 3D printing technology could be of interest in prevention and treatment of bone tuberculosis.

  13. Design and fabrication process of silicon micro-calorimeters on simple SOI technology for X-ray spectral imaging

    International Nuclear Information System (INIS)

    Aliane, A.; Agnese, P.; Pigot, C.; Sauvageot, J.-L.; Moro, F. de; Ribot, H.; Gasse, A.; Szeflinski, V.; Gobil, Y.

    2008-01-01

    Several successful development programs have been conducted on infra-red bolometer arrays at the 'Commissariat a l'Energie Atomique' (CEA-LETI Grenoble) in collaboration with the CEA-SAp (Saclay); taking advantage of this background, we are now developing an X-ray spectro-imaging camera for next generation space astronomy missions, using silicon only technology. We have developed monolithic silicon micro-calorimeters based on implanted thermistors in an improved array that could be used for future space missions. The 8x8 array consists of a grid of 64 suspended pixels fabricated on a silicon on insulator (SOI) wafer. Each pixel of this detector array is made of a tantalum (Ta) absorber, which is bound by means of indium bump hybridization, to a silicon thermistor. The absorber array is bound to the thermistor array in a collective process. The fabrication process of our detector involves a combination of standard technologies and silicon bulk micro-machining techniques, based on deposition, photolithography and plasma etching steps. Finally, we present the results of measurements performed on these four primary building blocks that are required to create a detector array up to 32x32 pixels in size

  14. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    International Nuclear Information System (INIS)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-01-01

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, αprime precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9 at

  15. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  16. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  17. Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies

    Directory of Open Access Journals (Sweden)

    Michel Challier

    2018-03-01

    Full Text Available Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an approach to conveniently fabricate such thin membranes with up to about one millimeter in size. We use commercially available diamond plates (thickness 50 μ m in an inductively coupled reactive ion etching process which is based on argon, oxygen and SF 6 . We thus avoid using toxic, corrosive feed gases and add an alternative to previously presented recipes involving chlorine-based etching steps. Our membranes are smooth (RMS roughness <1 nm and show moderate thickness variation (central part: <1 μ m over ≈200 × 200 μ m 2 . Due to an improved etch mask geometry, our membranes stay reliably attached to the diamond plate in our chlorine-based as well as SF 6 -based processes. Our results thus open the route towards higher reliability in diamond device fabrication and up-scaling.

  18. Cost update: Technology, safety, and costs of decommissioning a reference uranium fuel fabrication plant

    International Nuclear Information System (INIS)

    Miles, T.L.; Liu, Y.

    1994-06-01

    The cost estimates originally developed in NUREG/CR-1266 for commissioning a reference low-enrichment uranium fuel fabrication plant are updated from 1978 to early 1993 dollars. During this time, the costs for labor and materials increased approximately at the rate of inflation, the cost of energy increased more slowly than the rate of inflation, and the cost of low-level radioactive waste disposal increased much more rapidly than the rate of inflation. The results of the analysis indicate that the estimated costs for the immediate dismantlement and decontamination for unrestricted facility release (DECON) of the reference plant have increased from the mid-1978 value of $3.57 million to $8.08 million in 1993 with in-compact low-level radioactive waste disposal at the US Ecoloay facility near Richland, Washington. The cost estimate rises to $19.62 million with out-of-compact radioactive waste disposal at the Chem-Nuclear facility near Barnwell, South Carolina. A methodology and a formula are presented for estimating the cost of decommissioning the reference uranium fuel fabrication plant at some future time, based on these early 1993 cost estimates. The formula contains essentially the same elements as the formula given in 10 CFR 50.75 for escalating the decommissioning costs for nuclear power reactors to some future time

  19. Elucidating antimalarial drug targets/mode-of-action by application of system biology technologies

    CSIR Research Space (South Africa)

    Becker, J

    2008-11-01

    Full Text Available targets/mode-of-action by application of systems biology technologies J BECKER, L MTWISHA, B CRAMPTON AND D MANCAMA CSIR Biosciences, PO Box 395, Pretoria, 0001, South Africa Email: JBecker@csir.co.za – www.csir.co.za INTRODUCTION Malaria is one... The objective of this study was to use systems biology tools to unravel the drug target/mode-of-action (MoA) of an antimalarial drug (cyclohexylamine) with a known drug target/MoA, by analysing differential expression profiles of drug treated vs untreated...

  20. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential

    International Nuclear Information System (INIS)

    Santos, A; Deen, M J; Marsal, L F

    2015-01-01

    In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine. (topical review)

  1. Fabrication Technology for X-Ray Optics and Mandrels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a cross-project need for large format aspheric x-ray optics, which, demonstrate exceptionally low periodic surface errors. Available technologies to both...

  2. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential

    Science.gov (United States)

    Santos, A.; Deen, M. J.; Marsal, L. F.

    2015-01-01

    In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine.

  3. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  4. Micro-fabrication technology for piezoelectric film formation and its application to MEMS

    OpenAIRE

    一木, 正聡; 曹, 俊杰; 張, 麓〓; 王, 占杰; 前田, 龍太郎; Masaaki, ICHIKI; Jiunn Jye, TSAUR; Lulu, ZHANG; Zhang Jie, WANG; Ryutaro, MAEDA; 産業技術総合研究所; 産業技術総合研究所; 産業技術総合研究所; 東北大学; 産業技術総合研究所

    2005-01-01

    Technological problems for realization of Micro Electro-mechanical System (MEMS) are discussed and an introduction of smart materials (PZT) is encouraged. The film formation and micromaching technology are discussed in integration of PZT thin films into MEMS. Further developments are proposed on PZT micro sensors and actuators with special emphasis laid on exploration of new application fields of MEMS, such as scanning mirror. Internal stress is estimated and analyzed for the improvement of d...

  5. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    Science.gov (United States)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  6. Investigation on non-glass laser fusion targets: their fabrication, characterization, and transport. Charged Particle Research Laboratory report No. 2-81, progress report, June 1, 1980-January 31, 1981

    International Nuclear Information System (INIS)

    Kim, K.

    1981-01-01

    A summary is presented of the research progress made under LLNL Subcontract 8320003 for the period of June 1, 1980 through January 31, 1981. The main theme of the research has continued to be the development of techniques for fabricating, characterizing, and transporting laser fusion targets on a continuous basis. The target fabrication techniques are intended mainly for non-glass spherical shell targets, both cryogenic and non-cryogenic. Specifically, progress has been made in each of the following categories. (1) Investigation of liquid hydrogen behavior inside a spherical laser fusion target. (2) Development of automated target characterization scheme. (3) Study of cryogenic target fabrication scheme utilizing cold-gas-levitation and electric field positioning. (4) Development of a cryogenic target fabrication system based on target free-fall method. (5) Generation of hydrogen powder using electro-hydrodynamic spraying. (6) Study of target-charging techniques for application to contactless cryogenic target fabrication. (7) Development of hollow metal sphere production technique. A brief summary of the research progress made in each category is presented

  7. The development of SiC whisker fabrication technology for nuclear applications

    International Nuclear Information System (INIS)

    Kang, Thae Khapp; Kuk, Il Hiun; Kim, Chang Kyu; Lee, Jae Chun; Lee, Ho Jin; Park, Soon Dong; Im, Gyeong Soo

    1991-02-01

    Some important experiments for whisker growth reactions, fabrication processes, and experiments for fabricarion of whisker reinforced composites have been performed. In order to investigate growth reaction of SiC whiskers, a conventional carbothermic reaction was tested. Based on the results of carbothermic process, a new process called silicothermic reaction was planned and some basic experiments were performed. Reaction characteristics of silicon monoxide, core material for SiC whisker growth in both of the reactions were investigated for basic data. Additionally, a hydrofluoric acid leaching process was tested for developing SiC whisker recovery process, and powder metallurgy process and melt sqeeze process were tried to develop aluminum-SiC whisker composites. (Author)

  8. Evaluation of environmental control technologies for commercial uranium nuclear fuel fabrication facilities

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1983-01-01

    At present in the United States, there are seven commercial light-water reactor uranium fuel fabrication facilities. Effluent wastes from these facilities include uranium, nitrogen, fluorine, and organic-containing compounds. These effluents may be either discharged to the ambient environment, treated and recycled internally, stored or disposed of on-site, sent off-site for treatment and/or recovery, or sent off-site for disposal (including disposal in low-level waste burial sites). Quantities of waste generated and treatment techniques vary greatly depending on the facility and circuits used internally at the facility, though in general all the fluorine entering the facility as UF 6 is discharged as waste. Further studies to determine techniques and procedures that might minimize dose (ALARA) and to give data on possible long-term effects of effluent discharge and waste disposal are needed

  9. Novel materials for electronic device fabrication using ink-jet printing technology

    International Nuclear Information System (INIS)

    Kumashiro, Yasushi; Nakako, Hideo; Inada, Maki; Yamamoto, Kazunori; Izumi, Akira; Ishihara, Masamichi

    2009-01-01

    Novel materials and a metallization technique for the printed electronics were studied. Insulator inks and conductive inks were investigated. For the conductive ink, the nano-sized copper particles were used as metallic sources. These particles were prepared from a copper complex by a laser irradiation process in the liquid phase. Nano-sized copper particles were consisted of a thin copper oxide layer and a metal copper core wrapped by the layer. The conductive ink showed good ink-jettability. In order to metallize the printed trace of the conductive ink on a substrate, the atomic hydrogen treatment was carried out. Atomic hydrogen was generated on a heated tungsten wire and carried on the substrate. The temperature of the substrate was up to 60 deg. C during the treatment. After the treatment, the conductivity of a copper trace was 3 μΩ cm. It was considered that printed wiring boards can be easily fabricated by employing the above materials.

  10. Microactuator production via high aspect ratio, high edge acuity metal fabrication technology

    Science.gov (United States)

    Guckel, H.; Christenson, T. R.

    1993-01-01

    LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.

  11. A novel technology to target adenovirus vectors : application in cells involved in atherosclerosis

    NARCIS (Netherlands)

    Gras, Jan Cornelis Emile

    2007-01-01

    In this thesis a novel technology is described to target adenovirus vectors. Adenovirus vectors are powerful tools to modulate gene expression. The use of these vectors however, is hampered by the fact that many for gene therapy interesting cell types do not, or only at low levels express the CAR

  12. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  13. Some problems on domestic technology development from a point of fabricator of nuclear power plant. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watamori, T [Hitachi Ltd., Tokyo (Japan)

    1976-06-01

    During past 20 years, the nuclear power industry in Japan has introduced foreign technology, digested it in a short period, and continued to research and develop domestic technology. Now, 95% of the machinery and equipments for nuclear power generation with light water reactors can be produced domestically, and some technologies are going to be exported. However, the nuclear power industry is still in a severe environment. The progress of the development of nuclear power plants passed the periods of organizational preparation, the construction of research reactors, the import of foreign technologies and reactors for practical use, and the construction of domestically produced reactors for practical use. The supplying capacity of the nuclear power industry in Japan reached 6 units of 1,000 MW yearly, but in order to meet the long term plan of nuclear power generation, this capacity must be further enhanced. The problems in the promotion of domestic production are the establishment of independent technologies, the promotion of standardization, the strengthening of business basis, the upbringing of relating enterprises, and the acceleration of national projects. Since the energy crisis, the trend of filling up energy demand with nuclear power generation became conspicuous, but for the expansion of export, the problems of safety guarantee, nuclear fuel cycle, and financial measures must be solved with government aid.

  14. Some problems on domestic technology development from a point of fabricator of nuclear power plant

    International Nuclear Information System (INIS)

    Watamori, Tsutomu

    1976-01-01

    During past 20 years, the nuclear power industry in Japan has introduced foreign technology, digested them in short period, and continued to research and develop domestic technology. Now, 95% of the machinery and equipments for nuclear power generation with light water reactors can be produced domestically, and some technologies are going to be exported. However, the nuclear power industry is still in severe environment. The progress of the development of nuclear power plants passed the periods of organizational preparation, the construction of research reactors, the import of foreign technologies and reactors for practical use, and the construction of domestically produced reactors for practical use. The supplying capacity of the nuclear power industry in Japan reached 6 units of 1,000 MW yearly, but in order to meet the long term plan of nuclear power generation, this capacity must be further enhanced. The problems in the promotion of domestic production are the establishment of independent technologies, the promotion of standardization, the strengthening of business basis, the upbringing of relating enterprises, and the acceleration of national projects. Since the energy crisis, the trend of filling up energy demand with nuclear power generation became conspicuous, but for the expansion of export, the problems of safety guarantee, nuclear fuel cycle, and financial measures must be solved with government aid. (Kako, I.)

  15. Three-dimensional simulations in optimal performance trial between two types of Hall sensors fabrication technologies

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Maria-Alexandra, E-mail: map65@cam.ac.uk

    2015-10-01

    The main objective of the present work is to make a comparison between Hall devices integrated in regular bulk and Silicon-on-Insulator (SOI) CMOS technology. A three-dimensional model based on numerical estimation is provided for a particular XL Hall structure in two different technologies (the first one is XFAB XH 0.35 µm regular bulk CMOS and the second one is XFAB SOI XI10 1 µm non-fully depleted). In assessing the performance of the Hall Effect sensors included in the comparison, both three-dimensional physical simulations and measurements results will be used. In order to discriminate which category of sensors has the highest performance, their main characteristic parameters, including input resistance, Hall voltage, absolute sensitivity and their temperature drift, will be extracted and compared. Electrostatic potential and current density distribution are important aspects that are also investigated. The particular technology offering the highest sensor performance is identified. - Highlights: • A comparison between Hall devices integrated in regular bulk and SOI CMOS technologies is made. • A three-dimensional model for the XL Hall structure, in the two technologies, is provided. • The main characteristic parameters and the temperature drift are investigated. • The sensors performance is evaluated using 3D physical simulations and measurements data.

  16. Targeted Research and Technology Within NASA's Living With a Star Program

    Science.gov (United States)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  17. Target and (Astro-)WISE technologies Data federations and its applications

    Science.gov (United States)

    Valentijn, E. A.; Begeman, K.; Belikov, A.; Boxhoorn, D. R.; Brinchmann, J.; McFarland, J.; Holties, H.; Kuijken, K. H.; Kleijn, G. Verdoes; Vriend, W.-J.; Williams, O. R.; Roerdink, J. B. T. M.; Schomaker, L. R. B.; Swertz, M. A.; Tsyganov, A.; van Dijk, G. J. W.

    2017-06-01

    After its first implementation in 2003 the Astro-WISE technology has been rolled out in several European countries and is used for the production of the KiDS survey data. In the multi-disciplinary Target initiative this technology, nicknamed WISE technology, has been further applied to a large number of projects. Here, we highlight the data handling of other astronomical applications, such as VLT-MUSE and LOFAR, together with some non-astronomical applications such as the medical projects Lifelines and GLIMPS; the MONK handwritten text recognition system; and business applications, by amongst others, the Target Holding. We describe some of the most important lessons learned and describe the application of the data-centric WISE type of approach to the Science Ground Segment of the Euclid satellite.

  18. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  19. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels

  20. Fabrication of targets for transmutation of americium : synthesis of inertial matrix by sol-gel method. Procedure study on the infiltration of a radioactive solutions

    International Nuclear Information System (INIS)

    Fernandez Carretero, A.

    2002-01-01

    Transmutation and incineration are innovative options in the management and disposal of fission products and actinides. nevertheless, the fabrication of targets for transmutation and incineration of actinides and fission products require a reconsideration of conventional processes (mechanical blending) and the development of new procedures compatible with the high activity of these materials. This work presents th R and D of a new fabrication method called INRAM (Infiltration of Radioactive Materials) based on the infiltration of an actinide solution in a porous non radiotoxic material in the form of a pellet (up to 12% An), or beads (up to 40% An) produced by sol-gel. The first method have been used for the fabrication of spinel (MgAl 2 O 4 ) targets containing 11% Am, which have been irradiated in HFR-Petten (358.4 full power days). Post-test burn-up calculations showed that at the end of the irradiation the initial Am-241 concentration was reduced to 4%. The fraction of the initial americum atoms that have been fissioned is 28%. The main advantage of the INRAM method is that matrices with low or zero activity can be fabricated and formed into the required shape in an unshielded facility. This method offers other advantages over conventional ones, such as the active wastes are reduced, is easy to automate, adoptable to telemanipulation and dust free, which facilitate operator intervention and minimise radiation exposure to the personal. In addition, the infiltrant needs only be present in liquid form, i. e. it could be transferred directly from the reprocessing plant for fabrication into targets without conversion into-solid form. In order to optimise the infiltration process in depth investigations of all important process parameters, e. g. infiltration kinetics and metal (pu, Am) concentration in the feed solution, and also on extensive study or powder metallurgy parameters for the preparation of high quality fuel pellets with a high density, have been made. In

  1. Synthesis of ITO Powder by Dry Process and Lifetime Characteristics of the ITO Target Fabricated with its Powder

    Science.gov (United States)

    Takahashi, Seiichiro; Itoh, Hironori; Komatsu, Ryuichi

    Lifetime of an indium tin oxide (ITO) target is an important characteristic in the production of liquid crystal displays (LCDs). Increasing the sintering density of the ITO target is assumed to lead to an increased lifetime. So far, it has been clarified that the carbon concentration in In2O3 powder, the raw material of ITO targets, influences remarkably the target lifetime. In this study, with the aim of reducing the concentration of carbon in In2O3 powder, the synthesis of In2O3 powder containing dissolved Sn by a dry process was performed.

  2. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    International Nuclear Information System (INIS)

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Geum-Taek Jin

    2002-01-01

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies

  3. Fabrication of nano structures in thin membranes with focused ion beam technology

    NARCIS (Netherlands)

    Gadgil, V.J.; Tong, D.H.; Cesa, Y.; Bennink, Martin L.

    2009-01-01

    In recent years, Focused Ion Beam (FIB) technology has emerged as an important tool for nanotechnology [V.J. Gadgil, F. Morrissey, Encyclopaedia of Nanoscience and Nanotechnology, vol. 1, American Science Publishers, ISBN: 1-58883-057-8, 2004, p101.]. In this paper, applications of focused ion beam

  4. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    DiNunzio, Camillo A. [Framatome ANP DE& S, Marlborough, MA (United States); Gupta, Abhinav [Univ. of North Carolina, Raleigh, NC (United States); Golay, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Luk, Vincent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turk, Rich [Westinghouse Electric Company Nuclear Systems, Windsor, CT (United States); Morrow, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jin, Geum-Taek [Korea Power Engineering Company Inc., Yongin-si, Gyeonggi-do (Korea, Republic of)

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  5. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-01-01

    . The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro

  6. Smart DNA Fabrication Using Sound Waves: Applying Acoustic Dispensing Technologies to Synthetic Biology.

    Science.gov (United States)

    Kanigowska, Paulina; Shen, Yue; Zheng, Yijing; Rosser, Susan; Cai, Yizhi

    2016-02-01

    Acoustic droplet ejection (ADE) technology uses focused acoustic energy to transfer nanoliter-scale liquid droplets with high precision and accuracy. This noncontact, tipless, low-volume dispensing technology minimizes the possibility of cross-contamination and potentially reduces the costs of reagents and consumables. To date, acoustic dispensers have mainly been used in screening libraries of compounds. In this paper, we describe the first application of this powerful technology to the rapidly developing field of synthetic biology, for DNA synthesis and assembly at the nanoliter scale using a Labcyte Echo 550 acoustic dispenser. We were able to successfully downscale PCRs and the popular one-pot DNA assembly methods, Golden Gate and Gibson assemblies, from the microliter to the nanoliter scale with high assembly efficiency, which effectively cut the reagent cost by 20- to 100-fold. We envision that acoustic dispensing will become an instrumental technology in synthetic biology, in particular in the era of DNA foundries. © 2015 Society for Laboratory Automation and Screening.

  7. Technology Strategy for 'Environmental Technology for the Future'; Technology Target Areas; TTA1 - environmental technology for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The OG21 Technology Target Area 1 (TTA 1) group has produced a strategy for 'Environmental Technology for the Future'. A key aim of this work is to ensure that the operators on the Norwegian Continental Shelf (NCS) remain in a leading position with respect to environmental performance, while contributing to optimised resource recovery and value creation. This strategy focuses on environmental technology, which includes hardware, methods, software and knowledge. The TTA 1 group has agreed on a common vision: 'Norwegian oil and gas activities shall be leading in environmental performance, and Norway shall have the world leading knowledge and technology cluster within environmental technologies to support the zero harmful impact goals of the oil and gas industry.' Priorities have been made with emphasis on gaps that are considered most important to close and that will benefit from public research and development funding either for initialisation (primarily via the Petromaks and Climit programs) or acceleration (via Petromaks / Climit and particularly Demo 2000 where demonstration or piloting is required). The priorities aim to avoid technology gaps that are expected to be closed adequately through existing projects / programs or which are covered in other TTA strategies. The priority areas as identified are: Environmental impact and risk identification / quantification for new areas: Make quality assured environmental baseline data available on the web. Develop competence necessary to quantify and monitor the risks and risk reductions to the marine environment in new area ecosystems; Carbon capture and storage: Quantify environmental risks and waste management issues associated with bi-products from carbon capture processes and storage solutions. Develop and demonstrate effective carbon storage risk management, monitoring and mitigation technologies. Develop more cost and energy efficient power-from-shore solutions to reduce / eliminate CO{sub 2

  8. Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment

    International Nuclear Information System (INIS)

    Mazzoli, Alida; Germani, Michele; Raffaeli, Roberto

    2009-01-01

    Repairing critical human skull injuries requires the production and use of customized cranial implants and involves the integration of computer aided design and manufacturing (CAD and CAM). The main causes for large cranial defects are trauma, cranial tumors, infected craniotomy bone flaps and external neurosurgical decompression. The success of reconstructive cranial surgery depends upon: the preoperative evaluation of the defect, the design and manufacturing of the implant, and the skill of the operating surgeon. Cranial implant design is usually carried out manually using CAD although this process is very time-consuming and the quality of the end product depends wholly upon the skill of the operator. This paper presents an alternative automated method for the design of custom-made cranial plates in a PHANToM ® -based haptic environment, and their direct fabrication in biocompatible metal using electron beam melting (EBM) technology.

  9. Fabrication of a high-density MCM-D for a pixel detector system using a BCB/Cu technology

    CERN Document Server

    Topper, M; Engelmann, G; Fehlberg, S; Gerlach, P; Wolf, J; Ehrmann, O; Becks, K H; Reichl, H

    1999-01-01

    The MCM-D which is described here is a prototype for a pixel detector system for the planned Large Hadron Collider (LHC) at CERN, Geneva. The project is within the ATLAS experiment. The module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 readout chips, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution buses. The extremely high wiring density which is necessary to interconnect the readout chips was achieved using a thin film copper/photo-BCB process above the pixel array. The bumping of the readout chips was done by PbSn electroplating. All dice are then attached by flip-chip assembly to the sensor diodes and the local buses. The focus of this paper is a detailed description of the technologies for the fabrication of this advanced MCM-D. (10 refs).

  10. Research on infrared small-target tracking technology under complex background

    Science.gov (United States)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  11. Tensile strength changeability of multilayered composites, fabricated through optimized VARTM Technology, an experimental

    International Nuclear Information System (INIS)

    Nasir, M.A.; Khan, Z.M.

    2016-01-01

    Life span estimation up to tensile fracture of different fiber reinforced composites, Kevlar Fiber Reinforced Polymer (KFRP) and Glass Fiber Reinforced Polymer (GFRP) along with the strain rate effects on dynamic properties is mainly viewed on experimental basis in this paper. Lab-scale Vacuum Assisted Resin Transfer Molding (VARTM) technique is used to fabricate flawless dog bone specimens considering ASTM standard D638-03 and by using LY5052 resin and HY 5052 hardener. In this research, it is tried to maintain 65% of fiber participation in whole specimen composition matrix. Detail design description of VARTM is also discussed and optimized up to maximum scale to acquire compact, uniformly strengthen and porosity banned standard specimens. A conventional stress-strain curve is established to compare the tensile validity of above mentioned competitive composites. Crack Opening Displacement (COD) of research materials after equal intervals of time is observed; results depict the shear stability and reinforcement perfection of these materials. The crack penetration behavior is examined transversely and longitudinally in this research. (author)

  12. Fabrication of Li{sub 4}SiO{sub 4} pebbles by gel-precipitation technology

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.; Wu, X.; Gu, Z. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China)

    2007-07-01

    Full text of publication follows: Lithium orthosilicate (Li{sub 4}SiO{sub 4}) is considered as a promising candidate as breeder material for fusion reactors due to its high lithium content, high stability and favorable tritium release behavior. The shape the breeder materials adopted was determined by many factors, such as the tritium breeding ratio, the ease of diffusion of tritium, the release of thermal stress and irradiation cracking etc. At present pebble configuration has been recognized as the preferred option in most blanket designs for tritium breeders. In the fabrication of spheres of a ceramic material, there are several methods available: the agglomeration of powders, melt-spraying method, sol-gel process and gel-precipitation process. Li{sub 4}SiO{sub 4} pebbles with satisfying quality have been fabricated by melt-spraying method. But expensive experimental equipment and high temperature restrict the extensive application of the method. Gel-precipitation can be operated at room temperature and no special equipment is needed. The technique has been successfully used to produce lithium aluminate ceramic spheres. In this work, fabrication of Li{sub 4}SiO{sub 4} pebbles by gel-precipitation technology was first time investigated systematically. LiOH, citric acid and SiO{sub 2} (aerosil) were used as raw materials. SiO{sub 2} (aerosil) was dispersed in the gel formed by LiOH and citric acid, milky suspension was then obtained and Li{sub 4}SiO{sub 4} pebbles were produced from the milky suspension. The pebbles obtained displayed pure Li{sub 4}SiO{sub 4} phase, exhibited high sphericity, uniform distribution in size, small amount of pores and cracks. Phase transformation with the molar ratio of SiO{sub 2}/LiOH was investigated. The effect of sintering temperature on microstructure was discussed. The water-based gel-precipitation method for fabrication of Li{sub 4}SiO{sub 4} spheres was simple and convenient to realize mass production. (authors)

  13. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    Science.gov (United States)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  14. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    International Nuclear Information System (INIS)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-01-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8–12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed–fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than −25 dB and an insertion loss of around 0.1 dB at 8–12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW −1 at 8, 10 and 12 GHz, respectively. (paper)

  15. An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology

    International Nuclear Information System (INIS)

    Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki

    2009-01-01

    We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/−26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence

  16. An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology

    Science.gov (United States)

    Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki

    2009-07-01

    We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/-26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence. This work was presented in part at the 19th MicroMechanics Europe Workshop (MME), 28-30 September 2008, Aachen, Germany.

  17. Technological features of Lima fabrics associated with funerary contexts in Huaca Pucllana

    OpenAIRE

    Chuchón Ayala, Hilda

    2017-01-01

    A detailed description of the technological features of the textiles found in funerary contexts and architectural hills of the latest occupational phases of the Lima Culture is presented. These materials were found as part of the Huaca Pucllana research project established by the Municipality of Miraflores and the Ministry of Culture. Preliminary results indicate that in funerary contexts one or two simple plain weave cotton textiles were used to bundle the bodies. In some cases complete fabr...

  18. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    Science.gov (United States)

    Shimizu, Katsuhiko

    2018-05-15

    Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk, resulting in the development of sericulture and the textile industry. Silk is generally white, so dyeing is required to obtain colored fiber. However, the dyeing process involves harsh conditions and generates a large volume of waste water, which have environmentally and economically negative impacts. Although some strains produce cocoons that contain pigments derived from the mulberry leaves that they eat, the pigments are distributed in the sericin layer and are lost during gumming. In trials for production of colored silk by feeding silkworms on diets containing dyes, only limited species of dye molecules were incorporated into the silk threads. A method for the generation of transgenic silkworm was established in conjunction with the discovery of green fluorescent protein (GFP), and silkworms carrying the GFP gene spun silk threads that formed cocoons that glowed bright green and still retained the original properties of silk. A wide range of color variation of silk threads has been obtained by replacing the GFP gene with the genes of other fluorescent proteins chosen from the fluorescent protein palette. The genetically modified silk with photonic properties can be processed to form various products including linear threads, 2D fabrics, and 3D materials. The transgenic colored silk could be economically advantageous due to addition of a new value to silk and reduction of cost for water waste, and environmentally preferable for saving water. Here, I review the literature regarding the production methods of fluorescent silk from transgenic silkworms and present examples of genetically modified color silk.

  19. Polymer X-ray refractive nano-lenses fabricated by additive technology.

    Science.gov (United States)

    Petrov, A K; Bessonov, V O; Abrashitova, K A; Kokareva, N G; Safronov, K R; Barannikov, A A; Ershov, P A; Klimova, N B; Lyatun, I I; Yunkin, V A; Polikarpov, M; Snigireva, I; Fedyanin, A A; Snigirev, A

    2017-06-26

    The present work demonstrates the potential applicability of additive manufacturing to X-Ray refractive nano-lenses. A compound refractive lens with a radius of 5 µm was produced by the two-photon polymerization induced lithography. It was successfully tested at the X-ray microfocus laboratory source and a focal spot of 5 μm was measured. An amorphous nature of polymer material combined with the potential of additive technologies may result in a significantly enhanced focusing performance compared to the best examples of modern X-ray compound refractive lenses.

  20. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology

    Science.gov (United States)

    Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk

    2015-09-01

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer.

  1. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

  2. Technology strategy for enhanced recovery; Technology Target Areas; TTA3 - enhanced recovery

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Norwegian Continental Shelf (NCS) is facing new challenges in reserve replacement and improved recovery in order to maintain the overall oil production rate from the area. A new target for an increase in oil reserves of 800 million Sm3 of oil (5 billion barrels) by year 2015 has been set by NPD. This is an ambitious goal considering several of the large fields are on a steep decline, and most of the recent discoveries are relatively small. A significant part of these increased reserves will have to come from fields currently on production, from reservoir areas that have been partly or fully swept, and it is therefore evident that Enhanced Oil Recovery (EOR) methods have to play a key role in achieving this target. EOR methods can be divided into gas based EOR methods and water based EOR methods. Thermal methods are not considered applicable on the NCS due to the relatively light oils present, and the depth of the reservoirs. Gas Based EOR; Water Based EOR; CO{sub 2} injection; Surfactants; Air injection; Polymer; Nitrogen injection; Alkaline; Flue gas injection; Polymer gels; WAG; MEOR; FAWAG. The former OG21 strategy document gave high priority to Water Alternating Gas (WAG) methods and CO{sub 2} injection for enhanced recovery. A lot of research and development and evaluation projects on CO{sub 2} injection were launched and are on-going, most of these are being CO{sub 2} WAG studies. The main challenge now in order to realize CO{sub 2} injection on the NCS is on CO{sub 2} availability and transport. It is also believed that increasing gas prices will limit the availability of hydrocarbon gas for injection purposes in the future. There is, however, a clear need for developing alternative cost efficient EOR methods that can improve the sweep efficiency significantly. Since a majority of the fields on the NCS are being produced under water flooding (or WAG), methods that can improve the water flooding efficiency by chemical additives are of special interest and

  3. Knitting Technologies And Tensile Properties Of A Novel Curved Flat-Knitted Three-Dimensional Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Li Xiaoying

    2015-09-01

    Full Text Available This paper introduces a knitting technique for making innovative curved three-dimensional (3D spacer fabrics by the computer flat-knitting machine. During manufacturing, a number of reinforcement yarns made of aramid fibres are inserted into 3D spacer fabrics along the weft direction to enhance the fabric tensile properties. Curved, flat-knitted 3D spacer fabrics with different angles (in the warp direction were also developed. Tensile tests were carried out in the weft and warp directions for the two spacer fabrics (with and without reinforcement yarns, and their stress–strain curves were compared. The results showed that the reinforcement yarns can reduce the fabric deformation and improve tensile stress and dimensional stability of 3D spacer fabrics. This research can help the further study of 3D spacer fabric when applied to composites.

  4. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    Science.gov (United States)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  5. Development of advanced pump impeller fabrication technology using direct nano- ceramic dispersion casting for long time erosion durability

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2008-09-01

    Many components of pump impeller of nuclear power plants is generally made of stainless steel and Al-bronze with superior corrosion resistance to sea water. However, they should be replaced by one- to five-year period because of material damage by a very big cavitation impact load, even though their designed durability is twenty years. Especially, in case of Young-Gwang nuclear power plant located at the west sea, damage of components of pump impeller is so critical due to the additional damage by solid particle erosion and hence their replacement period is very short as several months compared to other nuclear power plants. In addition, it is very difficult to maintain and repair the components of pump impeller since there is no database on the exact durability and damage mechanism. Therefore, in this study, fabrication technology of new advanced materials modified by dispersion of nano-carbide and -oxide ceramics into the matrix is developed first. Secondly, technology to estimate the dynamic damage by solid particle erosion is established and hence applied to the prediction of the service life of the components of pump impeller

  6. Solar Europe industry initiative: research technology development and demonstration in support of 2020 and long-term targets

    NARCIS (Netherlands)

    Sinke, W.C.; Fraile Montoro, D.; Despotou, E.; Nowak, S.; Perezagua, E.

    2010-01-01

    The European Union has set an ambitious target for the implementation of renewable energy technologies by 2020, i.e. a share of 20% of the total energy consumption. In support of these targets the Strategic Energy Technology (SET) Plan has been initiated by the European Commission. One of the key

  7. Technology strategy for cost-effective drilling and intervention; Technology Target Areas; TTA4 - Cost effective drilling and intervention

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The main goals of the OG21 initiative are to (1) develop new technology and knowledge to increase the value creation of Norwegian oil and gas resources and (2) enhance the export of Norwegian oil and gas technology. The OG21 Cost-effective Drilling and Intervention (CEDI) Technology Target Area (TTA) has identified some key strategic drilling and well intervention needs to help meet the goals of OG21. These key strategic drilling and well intervention needs are based on a review of present and anticipated future offshore-Norway drilling and well intervention conditions and the Norwegian drilling and well intervention industry. A gap analysis has been performed to assess the extent to which current drilling and well intervention research and development and other activities will meet the key strategic needs. Based on the identified strategic drilling and well intervention needs and the current industry res each and development and other activities, the most important technology areas for meeting the OG21 goals are: environment-friendly and low-cost exploration wells; low-cost methods for well intervention/sidetracks; faster and extended-reach drilling; deep water drilling, completion and intervention; offshore automated drilling; subsea and sub-ice drilling; drilling through basalt and tight carbonates; drilling and completion in salt formation. More specific goals for each area: reduce cost of exploration wells by 50%; reduce cost for well intervention/sidetracks by 50%; increase drilling efficiency by 40%; reduce drilling cost in deep water by 40 %; enable offshore automated drilling before 2012; enable automated drilling from seabed in 2020. Particular focus should be placed on developing new technology for low-cost exploration wells to stem the downward trends in the number of exploration wells drilled and the volume of discovered resources. The CEDI TTA has the following additional recommendations: The perceived gaps in addressing the key strategic drilling and

  8. Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology

    Science.gov (United States)

    Fiegl, G. F.; Bonora, A. C.

    1980-01-01

    The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.

  9. Point-of-care solution for osteoporosis management design, fabrication, and validation of new technology

    CERN Document Server

    Khashayar, Patricia

    2017-01-01

    This book addresses the important clinical problem of accurately diagnosing osteoporosis, and analyzes how Bone Turnover Markers (BTMs) can improve osteoporosis detection. In her research, the author integrated microfluidic technology with electrochemical sensing to embody a reaction/detection chamber to measure serum levels of different biomarkers, creating a microfluidic proteomic platform that can easily be translated into a biomarker diagnostic. The Osteokit System, a result of the integration of electrochemical system and microfluidic chips, is a unique design that offers the potential for greater sensitivity. The implementation, feasibility, and specificity of the Osteokit platform is demonstrated in this book, which is appropriate for researchers working on bone biology and mechanics, as well as clinicians.

  10. Untrimmed Low-Power Thermal Sensor for SoC in 22 nm Digital Fabrication Technology

    Directory of Open Access Journals (Sweden)

    Ro'ee Eitan

    2014-12-01

    Full Text Available Thermal sensors (TS are essential for achieving optimized performance and reliability in the era of nanoscale microprocessor and system on chip (SoC. Compiling with the low-power and small die area of the mobile computing, the presented TS supports a wide range of sampling frequencies with an optimized power envelope. The TS supports up to 45 K samples/s, low average power consumption, as low as 20 μW, and small core Si area of 0.013 mm2. Advanced circuit techniques are used in order to overcome process variability, ensuring inaccuracy lower than ±2 °C without any calibration. All this makes the presented thermal sensor a cost-effective, low-power solution for 22 nm nanoscale digital process technology.

  11. Development of manufacturing technology and fabrication of prototype for main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Koon Seok; Han, C.K.; Chei, J.M.; Chung, K.S.; Youn, M.H.; Shin, S.A.; Choi, D.J.; Kim, H.C. [HALLA Industrial Co., Ltd., Pusan (Korea)

    1999-03-01

    This study presents the development of the manufacturing technology for the Main Coolant Pump of the SMART. This report contains the followings; (1) Select axial type pump for the MCP (2) MCP is drived by squirrel-cage induction motor that consisted canned motor type. (3) MCP shaft has three horizontal and one vertical support bearings. (4) Design of several part of the MCP (5) Manufacturing of the performance test motor (6) Design and manufacturing of the speed sensor (7) Procedures for three-axial and five-axial M.C.T., Tig welding and Electron Beam Welding were developed. (8) Conceptional design of the MCP test facility for the performance test under operating conditions. (9) Results of standard weld test specimens according to the ASME section IX. (author). 21 refs., 35 figs., 10 tabs.

  12. Mineralogical and technology characterization of raw materials of clay used for ceramic blocks fabrication

    International Nuclear Information System (INIS)

    Campos, N.Q.; Tapajos, N.S.

    2012-01-01

    In the state of Para, the red ceramic industry has several segments highly generators of jobs and a strong social appeal. With so many companies focused on this productive sector emerge, but many without any administration quality. Therefore, this study focused the technological and mineralogical characterization of the raw material used in the manufacture of ceramic blocks, by Ceramica Vermelha Company, located in the district of Inhangapi-PA. The raw material was obtained by the techniques of X-ray diffraction (XRD) to determine the present crystalline phases through an accurate and efficient procedure, where it was possible to identify the peaks relating to montmorillonite, illite and kaolinite clay in the sample, and kaolinite and quartz in the sample laterite. Another important result was the absorption of water, with average satisfactory according to the standards. According to a sieve analysis, the laterite the sand fraction showed a greater extent compared to the other, while the clay silt exceeding 80% was found to be too plastic material. The resistance to compression, the results were below the required by the standard, suggesting more accurate test methods. (author)

  13. Fabrication of TBMs cooling structures demonstrators using additive manufacturing (AM) technology and HIP

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, Nerea, E-mail: nordas@ceit.es [CEIT-IK4 and Tecnun (University of Navarra), Donostia-San Sebastián (Spain); Ardila, Luis Carlos [IK4-LORTEK Joining Research Institute, Ordizia (Spain); Iturriza, Iñigo [CEIT-IK4 and Tecnun (University of Navarra), Donostia-San Sebastián (Spain); Garcianda, Fermín; Álvarez, Pedro [IK4-LORTEK Joining Research Institute, Ordizia (Spain); García-Rosales, Carmen [CEIT-IK4 and Tecnun (University of Navarra), Donostia-San Sebastián (Spain)

    2015-10-15

    Highlights: • TBM geometrically relevant component components were obtained by addtive manufacturing. • P91, a ferritic–martensitic steel metallurgically similar to EUROFER was used. • Dense core walls were obtained by SLM, though contour of cooling channel walls are slightly porous. • HIP after SLM is effective in removing the porosity and homogenizing the microstructure. • After HIP + normalizing + tempering mechanical behavior is similar to P91 as received. - Abstract: Several mock-ups, each of them consisting of six rectangular channels with dimensions according to the EU Test Blanket Modules (TBMs) specifications, were manufactured by selective laser melting (SLM) technology using P91, a ferritic–martensitic 9%Cr–1%Mo–V steel with a metallurgical behavior similar to EUROFER, the reference structural material for DEMO blanket concepts. SLM parameters led to an as-built density of 99.35% Theoretical Density (TD) that increased up to 99.74% after hot isostatic pressing (HIP). Dimensional control showed that the differences between the original design and the component are below 100 μm. By the appropriate selection of normalization and tempering parameters it was possible to obtain a material fulfilling P91 specification. The microstructure was investigated after SLM, HIP and normalizing and tempering treatments. In all cases, it consisted of thin martensitic laths. Subsize tensile samples were extracted from the mock-ups to measure the mechanical tensile properties after each step of the manufacturing process. The effect of thermal treatments on hardness was also evaluated.

  14. The Fabrication Technology Development of Uniform U and U-Mo Foil by Twin Roll Casting

    International Nuclear Information System (INIS)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Woo, Y. M.; Kim, J. D.; Oh, J. M.; Sim, M. S.

    2012-01-01

    Uranium foil samples, of which the technology was developed by KAERI around 2000, were distributed to 6 countries including USA in connection with CRP of IAEA. A problem of thickness irregularity was issued so that cold work was done on it. Due to the pin hole and preferred orientation occurrence an additional development project was raised. It was presumed that the irregularity would be influenced by the eddy flow of the melt. So the melt feeding system was changed from pressurized melt flow to gravity-forced flow for more stable melt flow. And then It was tried that the bulgies on the foil surface were eliminated by deforming with a pressing roll. To save the production cost the expensive quartz crucible was replaced with a common graphite plugging crucible system with repeatable use. The loss of very expensive LEU material from melt leak of open nozzle in quartz crucible could be excluded. A new foil collection winding system was adopted so that the quickly coming-out foil could be taken without rumpling. The equipment was test-run with Cu as surrogate. Some drawbacks found during test-running were solved by modifying several parts. Cu foils could be produced with optimized conditions successfully. DU metal was also used for test-running the modified equipment and then some related modifications were done. Finally DU foils meeting the requesting specification could be produced. The length was longer than 10 m. The foil thickness ranged from 140 μm to 300 μm. On observation and measurement the thickness homogeneity was evaluated to be improved a little

  15. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  16. Surface-enhanced Raman scattering detection of ammonium nitrate samples fabricated using drop-on-demand inkjet technology.

    Science.gov (United States)

    Farrell, Mikella E; Holthoff, Ellen L; Pellegrino, Paul M

    2014-01-01

    The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.

  17. Final report on production of Pu-238 in commercial power reactors: target fabrication, postirradiation examination, and plutonium and neptunium recovery

    International Nuclear Information System (INIS)

    Pobereskin, M.; Langendorfer, W.; Lowry, L.; Farmelo, D.; Scotti, V.; Kruger, O.

    1975-01-01

    Considerable interest has been generated in more extensive applications of radioisotope thermoelectric generator (RTG) systems. This raises questions concerning the availability of 238 Pu to supply an expanding demand. The development of much of this demand will depend upon a considerable reduction in cost of 238 Pu. Two neptunia--zirconia--fuel target rods, containing four sections each of different NpO 2 concentrations, were irradiated in the Connecticut Yankee Reactor for approximately one year. Following irradiation both target rods were subjected to nondestructive examination. One rod was chosen for destructive testing and analysis. Post-irradiation chemical analyses included total Pu and Np, ppM 236 Pu/ 238 Pu, and Pu isotopic abundance. The results of these analyses and of electron microprobe analysis which provided the relative Pu concentration across the pellet diameters are tabulated. It was concluded that the feasibility of all operations involved in the production of 238 Pu by irradiation of 237 NpO 2 targets in commercial nuclear power reactors was demonstrated and that the demonstration should be extended to a pilot-scale leading to installation of a full production capacity. (U.S.)

  18. Decision Analysis and Policy Formulation for Technology-Specific Renewable Energy Targets

    Science.gov (United States)

    Okioga, Irene Teshamulwa

    This study establishes a decision making procedure using Analytic Hierarchy Process (AHP) for a U.S. national renewable portfolio standard, and proposes technology-specific targets for renewable electricity generation for the country. The study prioritizes renewable energy alternatives based on a multi-perspective view: from the public, policy makers, and investors' points-of-view, and uses multiple criteria for ranking the alternatives to generate a unified prioritization scheme. During this process, it considers a 'quadruple bottom-line' approach (4P), i.e. reflecting technical "progress", social "people", economic 'profits", and environmental "planet" factors. The AHP results indicated that electricity generation from solar PV ranked highest, and biomass energy ranked lowest. A "Benefits/Cost Incentives/Mandates" (BCIM) model was developed to identify where mandates are needed, and where incentives would instead be required to bring down costs for technologies that have potential for profitable deployment. The BCIM model balances the development of less mature renewable energy technologies, without the potential for rising near-term electricity rates for consumers. It also ensures that recommended policies do not lead to growth of just one type of technology--the "highest-benefit, least-cost" technology. The model indicated that mandates would be suited for solar PV, and incentives generally for geothermal and concentrated solar power. Development for biomass energy, as a "low-cost, low-benefits" alternative was recommended at a local rather than national level, mainly due to its low resource potential values. Further, biomass energy generated from wastewater treatment plants (WWTPs) had the least resource potential compared to other biomass sources. The research developed methodologies and recommendations for biogas electricity targets at WWTPs, to take advantage of the waste-to-energy opportunities.

  19. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing.

    Science.gov (United States)

    Quétier, Francis

    2016-01-01

    The first period of plant genome editing was based on Agrobacterium; chemical mutagenesis by EMS (ethyl methanesulfonate) and ionizing radiations; each of these technologies led to randomly distributed genome modifications. The second period is associated with the discoveries of homing and meganuclease enzymes during the 80s and 90s, which were then engineered to provide efficient tools for targeted editing. From 2006 to 2012, a few crop plants were successfully and precisely modified using zinc-finger nucleases. A third wave of improvement in genome editing, which led to a dramatic decrease in off-target events, was achieved in 2009-2011 with the TALEN technology. The latest revolution surfaced in 2013 with the CRISPR-Cas9 system, whose high efficiency and technical ease of use is really impressive; scientists can use in-house kits or commercially available kits; the only two requirements are to carefully choose the location of the DNA double strand breaks to be induced and then to order an oligonucleotide. While this close-to- ultimate toolkit for targeted editing of genomes represents dramatic scientific progress which allows the development of more complex useful agronomic traits through synthetic biology, the social acceptance of genome editing remains regularly questioned by anti-GMO citizens and organizations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Cheol; Kim, Hyun Kyu [Div. of Vascular Surgery, Dept. of Surgery, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Song, Ryun Geun; Kim, Sun Ho; Lee, Jin Kee [School of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Seung Hyun [School of Engineering, Brown University, Providence (United States)

    2016-12-15

    Radio-cephalic arteriovenous fistula (RC-AVF) is an operation performed to achieve vascular access for hemodialysis. Although RC-AVF is a reliable and well-known method, this technique presents high rates of early failure depending on the vessel condition. These failures are due to blood shear stress around the anastomosis site and the vascular access failure caused by thrombosis secondary to stenosis formation, as well as vascular access reocclusion after percutaneous interventions. In this work, we fabricate in vitro 3D RC-AVF by using polydimethylsiloxane and 3D printing technology to understand the underlying mechanism and predict AVF failure. Micro- Particle image velocimetry (μ-PIV) focusing on the cardiac pulse cycle is used to measure the velocity field within the artificial blood vessel. Results are confirmed by numerical simulation. Accordingly, the in vitro AVF model agrees well with the simulations. Overall, this research would provide the future possibility of using the proposed method to reduce in vivo AVF failure for various conditions.

  1. Novel strategy for immunomodulation: Dissolving microneedle array encapsulating thymopentin fabricated by modified two-step molding technology.

    Science.gov (United States)

    Lin, Shiqi; Cai, Bingzhen; Quan, Guilan; Peng, Tingting; Yao, Gangtao; Zhu, Chune; Wu, Qiaoli; Ran, Hao; Pan, Xin; Wu, Chuanbin

    2018-01-01

    Thymopentin (TP5) is commonly used in the treatment for autoimmune diseases, with a short plasma half-life (30s) and a long treatment period (7 days to 6 months). It is usually administrated by syringe injection, resulting in compromised patient compliance. Dissolving microneedle array (DMNA) offers a superior approach for transdermal delivery of biological macromolecules, as it allows painless penetration through the stratum corneum and generates minimal biohazardous waste after dissolving in the skin. Despite recent advances in DMNA as a novel approach for transdermal drug delivery, problem of insufficient mechanical strength remains to be solved. In this study, TP5-loaded DMNA (TP5-DMNA) was uniquely developed using a modified two-step molding technology. The higher mechanical strength was furnished by employing bovine serum albumin (BSA) as a co-material to fabricate the needles. The obtained TP5-DMNA containing BSA displayed better skin penetration and higher drug loading efficiency than that without BSA. The in vivo pharmacodynamics study demonstrated that TP5-DMNA had comparative effect on immunomodulation to intravenous injection of TP5, in terms of ameliorating the CD4+/CD8+ ratio, SOD activity and MDA value to the basal level. Only mild irritation was observed at the site of administration. These results suggest that the novel TP5-DMNA utilizing BSA provides an alternative approach for convenient and safe transdermal delivery of TP5, which is a promising administration strategy for future clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cellular Energy Absorbing TRIP-Steel/Mg-PSZ Composite: Honeycomb Structures Fabricated by a New Extrusion Powder Technology

    Directory of Open Access Journals (Sweden)

    Ulrich Martin

    2010-01-01

    Full Text Available Lightweight linear cellular composite materials on basis of austenite stainless TRIP- (TRansformation Induced Plasticity- steel as matrix with reinforcements of MgO partially stabilized zirconia (Mg-PSZ are described. Two-dimensional cellular materials for structural applications are conventionally produced by sheet expansion or corrugation processes. The presented composites are fabricated by a modified ceramic extrusion powder technology. Characterization of the microstructure in as-received and deformed conditions was carried out by optical and scanning electron microscopy. Magnetic balance measurements and electron backscatter diffraction (EBSD were used to identify the deformation-induced martensite evolution in the cell wall material. The honeycomb composite samples exhibit an increased strain hardening up to a certain engineering compressive strain and an extraordinary high specific energy absorption per unit mass and unit volume, respectively. Based on improved property-to-weight ratio such linear cellular structures will be of interest as crash absorbers or stiffened core materials for aerospace, railway, or automotive applications.

  3. Microcontact printing technology as a method of fabrication of patterned self-assembled monolayers for application in nanometrology

    Science.gov (United States)

    Pałetko, Piotr; Moczała, Magdalena; Janus, Paweł; Grabiec, Piotr; Gotszalk, Teodor

    2013-07-01

    This paper is focused on manufacture technology of molecular self-assembled monolayers (SAM) using microcontact printing (μCP) techniqe. This technique, due to its low-cost and simplicity, is a very attractive one for further development of molecular electronics and nanotechnology. The SAM can be produced on gold or silicon oxide using thiol and silane based chemistry respectively[1]. The μCP techniques allow the imposition of molecular structures in specific areas. The chemical properties of the fabricated layers depend on the functional groups of tail molecules. Such structures can be used as chemical receptors or as interface between the substrate and the biosensor receptors [2]. Architecture of the tail molecule determines the chemical reactivity and hydrophilic or hydrophobic properties. In addition it modifies the tribological properties [4] and electrical structure parameters, such as contact potential diference (CPD) [5]. The height of the SAM structure containing carbon chain is highly dependent on the length and type of binding molecules to the substrate, which enables application of the μCP SAM structures in height metrology. The results of these studies will be presented in the work.

  4. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, A.V., E-mail: avshulga@mephi.ru [Moscow Engineering Physics Institute, State University, 31 Kashirskoe Sh., Moscow 115409 (Russian Federation)

    2013-03-15

    Highlights: ► The ring tensile test method was optimized and successfully used. ► The cladding tubes fabricated by PM HIP and traditional technologies were tested. ► Improvement of the cladding tubes properties fabricated by PM HIP was found. ► Correlation of the homogeneity of carbon, boron with the properties was revealed. -- Abstract: The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic–martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic–martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology.

  5. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety.

    Science.gov (United States)

    Kim, Sungwon; Park, Kyong Mi; Ko, Jin Young; Kwon, Ick Chan; Cho, Hyeon Geun; Kang, Dongmin; Yu, In Tag; Kim, Kwangmeyung; Na, Kun

    2008-05-01

    Recent researches to develop nano-carrier systems in anti-cancer drug delivery have focused on more complicated design to improve therapeutic efficacy and to reduce side effects. Although such efforts have great impact to biomedical science and engineering, the complexity has been a huddle because of clinical and economic problems. In order to overcome the problems, a simplest strategy to fabricate nano-carriers to deliver doxorubicin (DOX) was proposed in the present study. Two significant subjects (i) formation of nanoparticles loading and releasing DOX and (ii) binding specificity of them to cells, were examined. Folic acid (FA) was directly coupled with pullulan (Pul) backbone by ester linkage (FA/Pul conjugate) and the degree of substitution (DS) was varied, which were confirmed by 1H NMR and UV spectrophotometry. Light scattering results revealed that the nanogels possessed two major size distributions around 70 and 270 nm in an aqueous solution. Their critical aggregation concentrations (CACs) were less than 10 microg/mL, which are lower than general critical micelle concentrations (CMCs) of low-molecular-weight surfactants. Transmission electron microscopy (TEM) images showed well-dispersed nanogel morphology in a dried state. Depending on the DS, the nanogels showed different DOX-loading and releasing profiles. The DOX release rate from FA8/Pul (with the highest DS) for 24h was slower than that from FA4/or FA6/Pul, indicating that the FA worked as a hydrophobic moiety for drug holding. Cellular uptake of the nanogels (KB cells) was also monitored by confocal microscopy. All nanogels were internalized regardless of the DS of FA. Based on the results, the objectives of this study, to suggest a new method overcoming the complications in the drug carrier design, were successfully verified.

  6. Target validation for FCV technology development in Japan from energy competition point of view

    International Nuclear Information System (INIS)

    ENDO Eiichi

    2006-01-01

    The objective of this work is to validate the technical targets in the governmental hydrogen energy road-map of Japan by analyzing market penetration of fuel cell vehicle(FCV)s and effects of fuel price and carbon tax on it from technology competition point of view. In this analysis, an energy system model of Japan based on MARKAL is used. The results of the analysis show that hydrogen FCVs could not have cost-competitiveness until 2030 without carbon tax, including the governmental actual plan of carbon tax. However, as the carbon tax rate increases, instead of conventional vehicles including gasoline hybrid electric vehicle, hydrogen FCVs penetrate to the market earlier and more. By assuming higher fuel price and severer carbon tax rate, market share of hydrogen FCVs approaches to the governmental goal. This suggests that cheaper vehicle cost and/or hydrogen price than those targeted in the road-map is required. At the same time, achievement of the technical targets in the road-map also allows to attain the market penetration target of hydrogen FCVs in some possible conditions. (authors)

  7. Targeted Prostate Biopsy: Lessons Learned Midst the Evolution of a Disruptive Technology.

    Science.gov (United States)

    Nassiri, Nima; Natarajan, Shyam; Margolis, Daniel J; Marks, Leonard S

    2015-09-01

    Lessons learned during a 6-year experience with more than 1200 patients undergoing targeted prostate biopsy via MRI/ultrasound fusion are reported: (1) the procedure is safe and efficient, requiring some 15-20 minutes in an office setting; (2) MRI is best performed by a radiologist with specialized training, using a transabdominal multiparametric approach and preferably a 3T magnet; (3) grade of MRI suspicion is the most powerful predictor of biopsy results, eg, Grade 5 usually represents cancer; (4) some potentially important cancers (15%-30%) are MRI-invisible; (5) Targeted biopsies provide >80% concordance with whole-organ pathology. Early enthusiasm notwithstanding, cost-effectiveness is yet to be resolved, and the technologies remain in evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Intrinsic ZnO films fabricated by DC sputtering from oxygen-deficient targets for Cu(In,Ga)Se2 solar cell application

    Institute of Scientific and Technical Information of China (English)

    Chongyin Yang; DongyunWan; Zhou Wang; Fuqiang Huang

    2011-01-01

    Intrinsic zinc oxide films, normally deposited by radio frequency (RF) sputtering, are fabricated by direct current (DC) sputtering. The oxygen-deficient targets are prepared via a newly developed double crucible method. The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film. This is achieved by the widely used RF sputtering, which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells. The optimal ZnO film is used in a Cu (In, Ga) Se2 (CIGS) solar cell with a high efficiency of 11.57%. This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.%Intrinsic zinc oxide films,normally deposited by radio frequency (RF) sputtering,are fabricated by direct current (DC) sputtering.The oxygen-deficient targets are prepared via a newly developed double crucible method.The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film.This is achieved by the widely used RF sputtering,which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells.The optimal ZnO film is used in a Cu (In,Ga) Se2 (C1GS) solar cell with a high efficiency of 11.57%.This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.High resistance transparent intrinsic zinc oxide (i-ZnO)thin film has been widely nsed as the front electrode in transparent electronics and photovoltaic devices because of its low cost and nontoxicity.Owing to its unique characteristics of high transparency and adjustable resistivity in a certain range,the use of i-ZnO thin films as diffusion barrier layers of a-Si/μc-Si,CdTe,and CIGS thin-film solar cells has been advantageous

  9. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment.

    Science.gov (United States)

    Murugan, Kadarkarai; Anitha, Jaganathan; Dinesh, Devakumar; Suresh, Udaiyan; Rajaganesh, Rajapandian; Chandramohan, Balamurugan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chitravel; Amuthavalli, Pandiyan; Wang, Lan; Hwang, Jiang-Shiou; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Kumar, Suresh; Pugazhendy, Kannaiyan; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-10-01

    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. [Overview of patents on targeted genome editing technologies and their implications for innovation and entrepreneurship education in universities].

    Science.gov (United States)

    Fan, Xiang-yu; Lin, Yan-ping; Liao, Guo-jian; Xie, Jian-ping

    2015-12-01

    Zinc finger nuclease, transcription activator-like effector nuclease, and clustered regularly interspaced short palindromic repeats/Cas9 nuclease are important targeted genome editing technologies. They have great significance in scientific research and applications on aspects of functional genomics research, species improvement, disease prevention and gene therapy. There are past or ongoing disputes over ownership of the intellectual property behind every technology. In this review, we summarize the patents on these three targeted genome editing technologies in order to provide some reference for developing genome editing technologies with self-owned intellectual property rights and some implications for current innovation and entrepreneurship education in universities.

  11. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.

    Science.gov (United States)

    Xia, Chun-Fang; Zhang, Yufeng; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2007-12-01

    The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood-brain barrier in vivo. siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin-biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin. Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 microg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin-streptavidin linker. The intravenous administration of the siRNA caused a 69-81% decrease in luciferase gene expression in the intracranial brain cancer in vivo. Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin-biotin technology.

  12. Effect of dopants and thermal treatment on properties of Ga-Al-ZnO thin films fabricated by hetero targets sputtering system

    International Nuclear Information System (INIS)

    Hong, JeongSoo; Matsushita, Nobuhiro; Kim, KyungHwan

    2013-01-01

    In this study, we fabricated Ga and Al doped ZnO (Ga-Al-ZnO; GAZO) thin films by using the facing targets sputtering system under various conditions such as input current and thermal treatment temperature. The properties of the as-deposited GAZO thin films were examined by four-point, UV/Vis spectrometry, X-ray diffraction, atomic force microscopy and field-emission scanning electron microscopy. The result showed that the lowest sheet resistance of the films was 59.3 ohm/sq and transmittance was about 85%. After thermal treatment, the properties of GAZO thin films were improved. The lowest sheet resistance (47.3 ohm/sq) of the GAZO thin films were obtained at thermal treatment temperature of 300 °C, considered to be the result of continuous substitutions by dopants and improved crystallinity by the thermal treatment. - Highlights: ► Ga and Al doped ZnO thin films were prepared by hetero targets sputtering system. ► Free electrons were increased due to the continuous substitutions of Ga and Al. ► Crystallinity was improved by recombination of particles with increasing of temperature

  13. Fabrication and application of a magnetic-targeting and controlled-release system using ST68-based microbubbles

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Wang Jinrui; Zhao Bo; Qu Enze; Yue Xiuli; Dai Zhifei

    2013-01-01

    Objective: To manufacture magnetic microbubbles with dual-response to ultrasound and magnetic fields. Methods: Microbubbles of ultrasound contrast agent (ST68) based on a surfactant were prepared by the acoustic cavitation method. Fe 3 O 4 magnetic nanoparticles with negative charge were synthesized using the polyol procedure. Magnetic microbubbles were generated by depositing polyethylenimine and Fe 3 O 4 magnetic nanoparticles alternately onto the microbubbles using the layer-by-layer self-assembly. In vitro ultrasonography was performed on a silicone tube with/without magnetic microbubbles (3 × 10 8 /ml) by a self-made device to observe the movement of magnetic microbubbles under the effects of magnetic field. In vivo imaging was performed on the kidney of New Zealand rabbits before and after the injection of magnetic microbubbles. Results: The Fe 3 O 4 nanoparticles carried a stable negative charge of (-24.6 ± 6.7) mV and more than 98% of the particles were less than 8 μm in diameter, meeting the size requirement of an ultrasound contrast agent for intravenous administration. There was no echoic signal in the silicone tube before injection of magnetic microbubbles, but there were strong echoic signals after injection. After applying a magnetic field, the magnetic microbubbles moved along the direction of the magnetic flux. In vivo ultrasound imaging could not visualize the kidney before injection of magnetic microbubbles, but could remarkably visualize the kidney after injection. Conclusions: The magnetic microbubbles exhibit favorable magnetic targeting and ultrasound contrast enhancement characteristics. Such properties may serve as the foundation to study their potential for simultaneous diagnosis and treatment in the future. (authors)

  14. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    Science.gov (United States)

    Shulga, A. V.

    2013-03-01

    The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic-martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic-martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology.

  15. Frontier of nanometer devices. Part 2. Trends in nanostructure fabrication technology. Nanometa debaisu kenkyu saizensen. 2. Nanometa bisai kako gijutsu no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S [NEC Corp., Tokyo (Japan)

    1994-06-20

    Nanometer fabrication technology shows a remarkable progress. Conventional electric beam enables 10 nm lithography and the scanning transmission electron microscopy (STEM) and the scanning tunneling microscopy (STM) enable fabrication below 10 nm even to the level of atom and molecule manipulation. This paper describes the recent trends in nanotechnology (nanolithography and nano dry etching) by the use of electron and ion beams. In the atom technology by the use of STM, studies are in progress on processing with atomic force, electric field evaporation and chemical reaction. Moreover, this paper describes recent development in nano natural lithography, self-formation lithography, atomic layer lithography and nanolithography using electron beam holography. The present state and future prospects are discussed. 31 refs., 10 figs., 1 tab.

  16. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  17. Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.

    Science.gov (United States)

    Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W

    2012-06-01

    The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.

  18. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K. J.

    1979-01-01

    Volume 2 contains appendixes on small MOX fuel fabrication facility description, site description, residual radionuclide inventory estimates, decommissioning, financing, radiation dose methodology, general considerations, packaging and shipping of radioactive materials, cost assessment, and safety (JRD)

  19. Effect of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with different CAD-CAM technologies.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Albayrak, Haydar; Kilinc, Halil Ibrahim; Gümüs, Hasan Önder

    2017-11-01

    The use of computer-aided design and computer-aided manufacturing (CAD-CAM) for metal-ceramic restorations has increased with advances in the technology. However, little is known about the marginal and internal adaptation of restorations fabricated using laser sintering (LS) and soft milling (SM). Moreover, the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with LS and SM is also unknown. The purpose of this in vitro study was to investigate the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic copings fabricated using the lost wax (LW), LS, and SM techniques. Ten LW, 10 LS, and 10 SM cobalt-chromium (Co-Cr) copings were fabricated for an artificial tooth (Frasaco GmbH). After the application of veneering ceramic (VITA VMK Master; VITA Zahnfabrik), the marginal and internal discrepancies of these copings were measured with a silicone indicator paste and a stereomicroscope at ×100 magnification after the first, second, and third clinical simulated ceramic firing cycles. Repeated measures 2-way ANOVA and the Fisher LSD post hoc test were used to evaluate differences in marginal and internal discrepancies (α=.05). Neither fabrication protocol nor repeated ceramic firings had any statistically significant effect on internal discrepancy values (P>.05). Marginal discrepancy values were also statistically unaffected by repeated ceramic firings (P>.05); however, the fabrication protocol had a significant effect on marginal discrepancy values (Pmarginal discrepancy values than LS or SM (PMarginal discrepancy values did not vary between LS and SM (P>.05). All groups demonstrated clinically acceptable marginal adaptation after repeated ceramic firing cycles; however, the LS and SM groups demonstrated better marginal adaptation than that of LW group and may be appropriate clinical alternatives to LW. Copyright © 2017 Editorial Council for the Journal of

  20. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (Over-layered TCO on tempered glass for solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (kyoka class fukugo tomei doden kiban seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of over-layered TCO on tempered glass in fiscal 1994. (1) On the fabrication technology of heat-resistant over-layered TCO, thermal deformation of TCO substrates was studied by both experiment and numerical computation. The thermal deformation increased with carrier concentration. As the observation result on change in lattice strain of heated TCO films by high-temperature X-ray diffraction, lattice strain was largely affected by thermal expansion. (2) On development of the low-temperature heat treatment method of TCO films, a technological prospect was obtained for fabrication of low-resistance TCO films by heat treatment without strength deterioration of tempered TCO substrates. (3) On development of cost reduction technology, the large-area CVD equipment was devised on the basis of the inline tempering method which tempers substrate glass by air cooling after formation of SnO2 film as fabrication method of tempered TCO. The TCO substrate tempered by air cooling could endure the drop test of 227g and 1.5m. 5 figs., 1 tab.

  1. Technology of micro- and macroshells and the problem of reactor targets

    International Nuclear Information System (INIS)

    Akunets, A.A.; Dorogotovtsev, V.M.; Merkul'ev, Yu.A.

    1987-01-01

    Technological principles, permitting to produce laser targets of 4.0 - 10 mm diameter are suggested. According to the given technique a particle of initial substance (drop or shell) with additions of a gas-forming agent under conditions similar to free fall, flies in the atmosphere of rarefied heat-exchange gas through a hot area. The process of its heating under conditions of a weak forced convective heat exchange is the main process taking much time. Starting heat treatment of a shell 4.0 mm in diameter with aspect ratio A = 200, i.e. thickness of 10 μm, the treatment can be finished with 10.0 mm diameter at A = 1300, i.e. with wall thickness 1.6 μm. Experimental testing has confirmed the evaluations. Shells of 4.0 mm diameter with A = 2500 are produced

  2. Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery

    Science.gov (United States)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2012-10-01

    In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.

  3. Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets

    International Nuclear Information System (INIS)

    Kannan, R.

    2009-01-01

    The UK government's economy-wide 60% carbon dioxide reduction target by 2050 requires a paradigm shift in the whole energy system. Numerous analytical studies have concluded that the power sector is a critical contributor to a low carbon energy system, and electricity generation has dominated the policy discussion on UK decarbonisation scenarios. However, range of technical, social and market challenges, combined with alternate market investment strategies mean that large scale deployment of key classes of low carbon electricity technologies is fraught with uncertainty. The UK MARKAL energy systems model has been used to investigate these long-term uncertainties in key electricity generation options. A range of power sector specific parametric sensitivities have been performed under a 'what-if' framework to provide a systematic exploration of least-cost energy system configurations under a broad, integrated set of input assumptions. In this paper results of six sensitivities, via restricted investments in key low carbon technologies to reflect their technical and political uncertainties, and an alternate investment strategies from perceived risk and other barriers, have been presented. (author)

  4. Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species.

    Science.gov (United States)

    Zhang, Huairong; Li, Binxiao; Sun, Zhaomei; Zhou, Hong; Zhang, Shusheng

    2017-12-01

    Cancer therapies based on reactive oxygen species (ROS) have emerged as promising clinical treatments. Electrochemiluminescence (ECL) technology has also attracted considerable attention in the field of clinical diagnosis. However, studies about the integration of ECL diagnosis and ROS cancer therapy are very rare. Here we introduce a novel strategy that employs ECL technology and ROS to fill the above vacancy. Briefly, an ITO electrode was electrodeposited with polyluminol-Pt NPs composite films and modified with aptamer DNA to capture HL-60 cancer cells with high specificity. After that, mesoporous silica nanoparticles (MSNs) filled with phorbol 12-myristate 13-acetate (PMA) were closed by the telomerase primer DNA (T-primer DNA) and aptamer. After aptamer on MSN@PMA recognized and combined with the HL-60 cancer cells with high specificity, T-primer DNA on MSN@PMA could be moved away from the MSN@PMA surface after extension by telomerase in the HL-60 cancer cells and PMA was released to induce the production of ROS by the HL-60 cancer cells. After that, the polyluminol-Pt NPs composite films could react with hydrogen peroxide (a major ROS) and generate an ECL signal. Thus the intracellular telomerase activity of the HL-60 cancer cells could be detected in situ . Besides, ROS could induce apoptosis in the HL-60 cancer cells with high efficacy by causing oxidative damage to the lipids, protein, and DNA. Above all, the designed platform could not only detect intracellular telomerase activity instead of that of extracted telomerase, but could also kill targeted tumors by ECL technology and ROS.

  5. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (production technology for amorphous silicon solar cell modules); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (amorphous taiyo denchi module seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of amorphous Si solar cell modules in fiscal 1994. (1) On process technology for prototype film substrate solar cells, an advanced preprocessing equipment for film substrates, stepping roll type film forming technology, and prototype submodules were studied. A conversion efficiency of 7.2% was achieved by use of the submodule formed in an effective region of 40 {times} 40cm{sup 2}. (2) On efficiency improvement technology for film substrate solar cells, p/i and n/i interfaces, forming condition for Ag film electrodes, film thickness of transparent electrode ITO, and optimum transmissivity were studied. (3) On technology for advanced solar cells, high-quality a-SiGe: H film, ion control in plasma CVD, and a-Si film formation by plasma CVD using SiH2Cl2 were studied as production technology of narrow gap materials. (4) On advanced two-layer tandem solar cells, the defect density in optical degradation of a-Si cells by reverse bias dark current was evaluated, and outdoor exposure data were analyzed. 4 figs., 1 tab.

  6. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting.

    Science.gov (United States)

    Koike, Mari; Greer, Preston; Owen, Kelly; Lilly, Guo; Murr, Lawrence E; Gaytan, Sara M; Martinez, Edwin; Okabe, Toru

    2011-10-10

    This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB Ò ) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  7. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  8. Development of the fabrication technology of the simulated fuel-I, 15,000MWd/tU

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, D. J.; Kim, H. S.; Lee, J. W.; Yang, M. S

    2001-04-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties, fission gas release, grain growth and et al. of the DUPIC fuel is different from the commercial UO2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, the sintering characterization of wet milled powder for 24 hours to fabricate 15,000MWd/tU equivalent burnup simulated fuel.

  9. Proposal to negotiate a collaboration agreement related to the application of novel cavity fabrication techniques and Nb/Cu sputter coating technology in the field of superconducting RF for the Future Circular Collider (FCC) study

    CERN Document Server

    2015-01-01

    Proposal to negotiate a collaboration agreement related to the application of novel cavity fabrication techniques and Nb/Cu sputter coating technology in the field of superconducting RF for the Future Circular Collider (FCC) study

  10. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications particularly for

  11. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications

  12. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Sisse B Ditlev

    Full Text Available Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA. Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i the large size of VAR2CSA and (ii the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.

  13. Fabricated Elastin.

    Science.gov (United States)

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Optimization study on extraction technology of the seed of Ziziphus jujuba var. spinosa by orthogonal design with multi-targets].

    Science.gov (United States)

    Wang, Xiao-liang; Zhang, Yu-jie; Chen, Ming-xia; Wang, Ze-feng

    2005-05-01

    To optimize extraction technology of the seed of Ziziphus jujuba var. spinosa with the targets of the total saponin, total jujuboside A and B and total flavonoids. In the method of one-way and orthogonal tests, ethanol concentration, amount of ethanol, extraction time and extraction times were the factors in orthogonal test, and each factor with three levels. Ethanol concentration and extraction times had significant effect on all the targets, other factors should be selected in accordance with production practice. The best extraction technology is to extract for three times with 8 fold ethanol solution (60%), and 1.5 h each time.

  15. Shielding Efficiency of a Fabric Based on Amorphous Glass-Covered Magnetic Microwires to Radiation Emitted by a Mobile Phone in 2G and 3G Communication Technologies

    Directory of Open Access Journals (Sweden)

    Miclăuş Simona

    2017-12-01

    Full Text Available A dual band mobile phone model was used to check the shielding properties of an amorphous ferromagnetic textile against the radiation emitted by the handset. Two frequencies belonging to the 2nd and 3rd generation of mobile emission technologies were used, 897 MHz and 1950 MHz. The specific absorption rate (SAR of energy deposition in a human head phantom was measured in standardized conditions. The textile contained micrometric-diameter wires of a ferromagnetic mixture embedded in a thin glass coat and weaved in a specific way. A set of fabric orientations and configurations (layering were provided in the experiment in order to achieve a better shielding to the phone’s radiation. Compared with the non-shielded handset, SAR deposited in the head while using the fabric-covered phone could be decreased up to 30 % of its initial value – in case of 2G technology and up to 24 % – in case of 3G technology. This type of material shows one of the highest shielding efficiencies of the electric-field component in near-field exposure conditions reported until now. A cubic curve of SAR decrease in depth of the head was revealed in both uncovered and covered handset, the effect of shielding being larger at the higher frequency.

  16. Research on the development of space target detecting system and three-dimensional reconstruction technology

    Science.gov (United States)

    Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan

    2016-11-01

    With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.

  17. Specialist committee V.3 entitled "Materials and Fabrication Technology" of the 18th International Ship and Offshore Structure Congress

    OpenAIRE

    Caprace, Jean-David; Schipperen, I.; Andric, J.; Brennan, D.; Chou, C.; Gordo, J.; Lee, J.; Li, S.; Liu, S.; Okada, T.; Pires, F.; Yu, M.

    2012-01-01

    After years of growth the global economic crisis has deeply affected the shipping industry. There are however clear signs of recovery in the last year. The shipbuilding industry has realised that, due to the crisis, new innovative designs and design and production methods are necessary to decrease operational costs, production costs and emissions, whilst meeting the changing rules and regulations. In this report ISSC committee V.3 discusses recent development in materials and fabrication tech...

  18. Deep lithography with protons Modelling and predicting the performances of a novel fabrication technology for micro-optical components

    CERN Document Server

    Volckaerts, B; Veretennicoff, I; Thienpont, H

    2002-01-01

    We developed a simulation package that predicts 3D-dose distributions in proton irradiated poly(methylmetacrylate) samples considering primary energy transfer and scattering phenomena. In this paper, we apply this code to predict the surface flatness and maximum thickness of micro-optical and mechanical structures fabricated with deep lithography with protons (DLP). We compare these simulation results with experimental data and highlight the fundamental differences between DLP and deep X-ray lithography.

  19. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.

    Science.gov (United States)

    Lee, Hyungseok; Cho, Dong-Woo

    2016-07-05

    Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bioprinting method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process. Furthermore, protein absorption on the printed platform was very low, which will lead to accurate measurement of metabolism and drug sensitivity. Moreover, heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of the natural conditions of the organs. The liver organ was selected for the evaluation of the developed method, and liver function was shown to be significantly enhanced on the liver-on-a-chip, which was prepared by 3D bioprinting. Consequently, the results demonstrate that the suggested 3D bioprinting method is easier and more versatile for production of organs-on-chips.

  20. Technology strategy for deepwater and subsea production systems 2008 update; Technology Target Areas; TTA7 - Deep water and subsea prodution technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Executive summary 'Deepwater and Subsea Production Systems' has been identified as one of the eight new Technology Target Areas (TTAs) in Norway's technology strategy for the Oil and Gas sector. This TTA covers deepwater floating production systems, subsea systems (except subsea processing technologies which are addressed by TTA6) and arctic development systems (in both shallow and deepwater). The total hydrocarbon reserves worldwide, which are enabled by the technologies under this TTA exceed 400 billion boe which, itself exceeds the proven reserves of Saudi Arabia. For deepwater developments the long term technical challenge is to develop flexible and adaptive systems which are better able to cope with subsurface uncertainties e.g. compartmentalisation and provide required access to the reservoir to enable successful recovery. More specific medium term challenges relate to developing solutions for harsh environmental conditions such as those offshore Norway and to develop cost effective methods of installing subsea hardware in deep and ultra deep water without requiring expensive crane vessels. For subsea systems the challenge is to develop solutions for ultra deepwater without increasing costs, so that Norway's leading export position in this area can be maintained and strengthened. Considering developments in the arctic, Norwegian industry is already well placed through its familiarity with arctic climate, close relationship with Russia and involvement in Sakhalin II. As we move to water depth beyond about 150m use of Gravity Base Structures (GBS) becomes very expensive or non-feasible and we need to consider other solutions. Subsea-to-beach could be an attractive solution but we need to resolve challenges related to long distance tie backs, flow assurance, uneven terrain, etc. There is also a specific need to develop floating systems capable of drilling and production in an arctic environment. To address the above technical challenges the

  1. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners.

    Science.gov (United States)

    Abdel-Azim, Tamer; Rogers, Kelly; Elathamna, Eiad; Zandinejad, Amirali; Metz, Michael; Morton, Dean

    2015-10-01

    Conventional impression materials and techniques have been used successfully to fabricate fixed restorations. Recently, digital pathways have been developed, but insufficient data are available regarding their marginal accuracy. The purpose of this in vitro study was to compare the marginal gap discrepancy of lithium disilicate single crowns fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) technology by using both conventional and 2 digital impression techniques. One typodont maxillary right central incisor was prepared for a ceramic crown. Ten impressions were made by using each method: conventional with polyvinyl siloxane impression material, Lava COS (3M ESPE), and iTero (Cadent) intraoral scanning devices. Lithium disilicate (e.max CAD) crowns were fabricated with CAD/CAM technology, and the marginal gap was measured for each specimen at 4 points under magnification with a stereomicroscope. The mean measurement for each location and overall mean gap size by group were calculated. Statistically significant differences among the impression techniques were tested with F and t tests (α=.05). The average (±SD) gap for the conventional impression group was 112.3 (±35.3) μm. The digital impression groups had similar average gap sizes; the Lava group was 89.8 (±25.4) μm, and the iTero group was 89.6 (±30.1) μm. No statistically significant difference was found in the effects among impression techniques (P=.185) CONCLUSIONS: Within the limitations of this study, digital and conventional impressions were found to produce crowns with similar marginal accuracy. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. A novel fabrication technology of in situ TiB2/6063Al composites: High energy ball milling and melt in situ reaction

    International Nuclear Information System (INIS)

    Zhang, S.-L.; Yang, J.; Zhang, B.-R.; Zhao, Y.-T.; Chen, G.; Shi, X.-X.; Liang, Z.-P.

    2015-01-01

    Highlights: • This paper presents a novel technology to fabricate the TiB 2 /6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB 2 /6063Al matrix composites are fabricated from Al–TiO 2 –B 2 O 3 system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO 2 –B 2 O 3 system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB 2 particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB 2 particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB 2 /6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character

  3. A novel fabrication technology of in situ TiB{sub 2}/6063Al composites: High energy ball milling and melt in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.-L.; Yang, J. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, B.-R. [School of Mechanical Engineering, Qilu University of Technology, Jinan, Shandong 250022 (China); Zhao, Y.-T., E-mail: 278075525@qq.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, G.; Shi, X.-X.; Liang, Z.-P. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-08-05

    Highlights: • This paper presents a novel technology to fabricate the TiB{sub 2}/6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB{sub 2}/6063Al matrix composites are fabricated from Al–TiO{sub 2}–B{sub 2}O{sub 3} system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO{sub 2}–B{sub 2}O{sub 3} system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB{sub 2} particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB{sub 2} particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB{sub 2}/6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character.

  4. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.

    1997-01-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  5. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  6. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  7. Development and evaluation of a targeted orchard sprayer using machine vision technology

    Directory of Open Access Journals (Sweden)

    H Asaei

    2016-09-01

    Full Text Available Introduction In conventional methods of spraying in orchards, the amount of pesticide sprayed, is not targeted. The pesticide consumption data indicates that the application rate of pesticide in greenhouses and orchards is more than required. Less than 30% of pesticide sprayed actually reaches nursery canopies while the rest are lost and wasted. Nowadays, variable rate spray applicators using intelligent control systems can greatly reduce pesticide use and off-target contamination of environment in nurseries and orchards. In this research a prototype orchard sprayer based on machine vision technology was developed and evaluated. This sprayer performs real-time spraying based on the tree canopy structure and its greenness extent which improves the efficiency of spraying operation in orchards. Materials and Methods The equipment used in this study comprised of three main parts generally: 1- Mechanical Equipment 2- Data collection and image processing system 3- Electronic control system Two booms were designed to support the spray nozzles and to provide flexibility in directing the spray nozzles to the target. The boom comprised two parts, the vertical part and inclined part. The vertical part of the boom was used to spray one side of the trees during forward movement of the tractor and inclined part of the boom was designed to spray the upper half of the tree canopy. Three nozzles were considered on each boom. On the vertical part of the boom, two nozzles were placed, whereas one other nozzle was mounted on the inclined part of the boom. To achieve different tree heights, the vertical part of the boom was able to slide up and down. Labview (version 2011 was used for real time image processing. Images were captured through RGB cameras mounted on a horizontal bar attached on top of the tractor to take images separately for each side of the sprayer. Images were captured from the top of the canopies looking downward. The triggering signal for

  8. Optics fabrication technical challenges

    International Nuclear Information System (INIS)

    Chabassier, G.; Ferriou, N.; Lavastre, E.; Maunier, C.; Neauport, J.; Taroux, D.; Balla, D.; Fornerod, J.C.

    2004-01-01

    Before the production of all the LMJ (MEGAJOULE laser) optics, the CEA had to proceed with the fabrication of about 300 large optics for the LIL (laser integration line) laser. Thanks to a fruitful collaboration with high-tech optics companies in Europe, this challenge has been successfully hit. In order to achieve the very tight requirements for cleanliness, laser damage threshold and all the other high demanding fabrication specifications, it has been necessary to develop and to set completely new fabrication process going and to build special outsize fabrication equipment. Through a couple of examples, this paper gives an overview of the work which has been done and shows some of the results which have been obtained: continuous laser glass melting, fabrication of the laser slabs, rapid-growth KDP (potassium dihydrogen phosphate) technology, large diffractive transmission gratings engraving and characterization. (authors)

  9. Technology of solid-fuel-layer targets for laser-fusion experiments

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Pattinson, T.R.; Tarvin, J.A.

    1979-01-01

    An apparatus which produces uniform solid-fuel layers in glass-shell targets for laser irradiation is described. A low-power cw laser pulse is used to vaporize the fuel within a previously frozen target which is maintained in a cold-helium environment by a cryogenic shroud. The rapid refreezing that follows the pulse forms a uniform fuel layer on the inner surface of the glass shell. This apparatus and technique meet the restrictions imposed by the experimental target chamber. The method does not perturb the target position; nor does it preclude the usual diagnostic experimets since the shroud is retracted before the main laser pulse arrives. Successful laser irradiation and implosion of solid-fuel-layer targets at KMSF have confirmed the effectiveness and reliability of this system and extended the range of laser-target-interaction studies in the cryogenic regime

  10. Advanced research technology for discovery of new effective compounds from Chinese herbal medicine and their molecular targets.

    Science.gov (United States)

    Wong, Vincent Kam-Wai; Law, Betty Yuen-Kwan; Yao, Xiao-Jun; Chen, Xi; Xu, Su Wei; Liu, Liang; Leung, Elaine Lai-Han

    2016-09-01

    Traditional biotechnology has been utilized by human civilization for long in wide aspects of our daily life, such as wine and vinegar production, which can generate new phytochemicals from natural products using micro-organism. Today, with advanced biotechnology, diverse applications and advantages have been exhibited not only in bringing benefits to increase the diversity and composition of herbal phytochemicals, but also helping to elucidate the treatment mechanism and accelerate new drug discovery from Chinese herbal medicine (CHM). Applications on phytochemical biotechnologies and microbial biotechnologies have been promoted to enhance phytochemical diversity. Cell labeling and imaging technology and -omics technology have been utilized to elucidate CHM treatment mechanism. Application of computational methods, such as chemoinformatics and bioinformatics provide new insights on direct target of CHM. Overall, these technologies provide efficient ways to overcome the bottleneck of CHM, such as helping to increase the phytochemical diversity, match their molecular targets and elucidate the treatment mechanism. Potentially, new oriented herbal phytochemicals and their corresponding drug targets can be identified. In perspective, tighter integration of multi-disciplinary biotechnology and computational technology will be the cornerstone to accelerate new arena formation, advancement and revolution in the fields of CHM and world pharmaceutical industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of plasma targets for interaction experiments at Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hosokai, T.; Miyamoto, S.; Ogawa, M.

    1996-01-01

    A plasma target of z-pinch discharge is developed to obtain a hydrogen plasma of density approaching 10 18 cm -3 . The target plasma has a duration of about 1 μs for an initial gas pressure of 80 Pa. Prior to the gas flow type of target, the z-pinch process of a gas-filled discharge tube was studied by comparison with a computer simulation. The behavior of the z pinch is understood in terms of the dynamics of a shock wave and a current boundary sheet. A laser-induced plasma is also examined as an alternative plasma target free from the plasma lens effect. (orig.)

  12. FPGA fabric specific optimization for RLT design

    International Nuclear Information System (INIS)

    Perwaiz, A.; Khan, S.A.

    2010-01-01

    This paper proposes a technique custom to the optimization requirements suited for a particular family of Field Programmable Gate Arrays (FPGAs). As FPGAs have introduced re configurable black boxes there is a need to perform optimization across FPGAs slice fabric in order to achieve optimum performance. Though the Register Transfer Level (RTL) Hardware Descriptive Language (HDL) code should be technology independent but in many design instances it is imperative to understand the target technology especially once the target device embeds dedicated arithmetic blocks. No matter what the degree of optimization of the algorithm is, the configuration of target device plays an important role as far as the device utilization and path delays are concerned Index Terms: Field Programmable Gate Arrays (FPGA), Compression Tree, Bit Width Reduction, Look Ahead Pipelining. (author)

  13. Marginal discrepancy of noble metal-ceramic fixed dental prosthesis frameworks fabricated by conventional and digital technologies.

    Science.gov (United States)

    Afify, Ahmed; Haney, Stephan; Verrett, Ronald; Mansueto, Michael; Cray, James; Johnson, Russell

    2018-02-01

    Studies evaluating the marginal adaptation of available computer-aided design and computer-aided manufacturing (CAD-CAM) noble alloys for metal-ceramic prostheses are lacking. The purpose of this in vitro study was to evaluate the vertical marginal adaptation of cast, milled, and direct metal laser sintered (DMLS) noble metal-ceramic 3-unit fixed partial denture (FDP) frameworks before and after fit adjustments. Two typodont teeth were prepared for metal-ceramic FDP abutments. An acrylic resin pattern of the prepared teeth was fabricated and cast in nickel-chromium (Ni-Cr) alloy. Each specimen group (cast, milled, DMLS) was composed of 12 casts made from 12 impressions (n=12). A single design for the FDP substructure was created on a laboratory scanner and used for designing the specimens in the 3 groups. Each specimen was fitted to its corresponding cast by using up to 5 adjustment cycles, and marginal discrepancies were measured on the master Ni-Cr model before and after laboratory fit adjustments. The milled and DMLS groups had smaller marginal discrepancy measurements than those of the cast group (PDMLS and cast groups (F=30.643, P<.001). Metal-ceramic noble alloy frameworks fabricated by using a CAD-CAM workflow had significantly smaller marginal discrepancies compared with those with a traditional cast workflow, with the milled group demonstrating the best marginal fit among the 3 test groups. Manual refining significantly enhanced the marginal fit of all groups. All 3 groups demonstrated marginal discrepancies within the range of clinical acceptability. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies.

    Science.gov (United States)

    Homsy, Foudda R; Özcan, Mutlu; Khoury, Marwan; Majzoub, Zeina A K

    2017-09-29

    The subtractive and additive computer-aided design and computer-aided manufacturing (CAD-CAM) of lithium disilicate partial coverage restorations is poorly documented. The purpose of this in vitro study was to compare the marginal and internal fit accuracy of lithium disilicate glass-ceramic inlays fabricated with conventional, milled, and 3-dimensional (3D) printed wax patterns. A dentoform mandibular first molar was prepared for a mesio-occlusal ceramic inlay. Five groups of 15 inlays were obtained through conventional impression and manual wax pattern (group CICW); conventional impression, laboratory scanning of the stone die, CAD-CAM milled wax blanks (group CIDW) or 3D printed wax patterns (group CI3DW); and scanning of the master preparation with intraoral scanner and CAD-CAM milled (group DIDW) or 3D printed wax patterns (group DI3DW). The same design was used to produce the wax patterns in the last 4 groups. The replica technique was used to measure marginal and internal adaptation by using stereomicroscopy. Mixed-model ANOVA was used to assess differences according to the groups and discrepancy location (α=.05). Group DIDW showed the smallest marginal discrepancy (24.3 μm) compared with those of groups CICW (45.1 μm), CIDW (33.7 μm), CI3DW (39.8 μm), and DI3DW (39.7 μm) (Pimpressions and subtractive milling of wax patterns resulted in better marginal and internal fit accuracy than either conventional impression/fabrication or additive 3D manufacturing. Three-dimensional printed wax patterns yielded fit values similar to those of the conventionally waxed inlays. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy.

    Science.gov (United States)

    Chang, Wen-Chung; Chen, Chin-Sheng; Tai, Hung-Chi; Liu, Chia-Yuan; Chen, Yu-Jen

    2014-01-01

    The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV) in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US) and computed tomography (CT) scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy.

  16. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (CdS/CdTe solar cell modules); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (CdTe taiyo denchi module seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of CdS/CdTe solar cell modules in fiscal 1994. (1) On the fabrication technology for high-efficiency large-area solar cells, high-quality CdTe active layer was studied. S content taken in the active layer at sintering of CdTe decreased with an increase in formed CdTe, resulting in improvement of Voc of cells. (2) On the window layer with wide band gap, the solar cell superior in collection efficiency and photoelectric characteristics could be obtained using the newly developed mixed crystal film of Cd(1-x)Zn(x)S. (3) On the forming technology of large-area coating/sintering films, improvement of CdS film quality was studied by pressurized processing of printed CdS films. As a result, improvement of film density and light transmissivity was confirmed. (4) On the leveling process technology of CdTe films, smooth surface films were obtained by experiment using an equipment simultaneously exciting samples in all directions as one of uniform coating methods of films. 7 figs.

  17. Proceedings of the 4th KEK mechanical engineering workshop. Research and development on the technology of the X-band accelerator fabrication

    International Nuclear Information System (INIS)

    Ueno, Kenji

    2003-10-01

    The fourth KEK Mechanical Engineering Workshop was held on April 17, 2003. The main subject was ''The Research and Development on the Technology of the X-band Accelerator Fabrication'', which is a part of the collaboration work of Accelerator Laboratory, ACC and Mechanical Engineering Center, MEC based on the joint X-band accelerator research of KEK and SLAC. The main topic of study in FY 2002 was the problem analysis, and seeking its counter-measures about pitting generated over the inner-surface of the accelerator cavities through high field tests. Therefore, to analyze and develop counter-measures for these pittings, manufacturing of several kinds of test accelerators and conducting analytical tests for the surface of cells have been mainly undertaken by ACC and MEC. On the other hand, basic studies of the cutting and bonding processes have shown effective results for the future production process through corroboration work with academic and industrial fields. Related scientists and engineers from various fields participated in this workshop and presented their works. As a keynote speech, Prof. Hitoshi Yamamoto, belonging to Tohoku University, presented ''The physics on linear collider'', and Assistant Prof. Nobukazu Toge, belonging to ACC of KEK, presented ''The Linear Collider Accelerator''. Also, as an invitation speech, former Prof. Nobuteru Hitomi, former Head of MEC, who was the originator of this workshop, and one of the leaders in X-band accelerator fabrication, presented ''The promotion and survey of fabrication technology on X-band accelerator''. These speeches were very instructive, and presented a chance to think about the direction of R and D in our project. Twenty-four papers, ten from KEK, including the keynote speech, seven from universities and seven from industrial companies, were presented and discussed ardently. Among the discussion, there was an opinion that a fast pace to establish mass-production technology is a major requirement for the

  18. Effect of performance of Zr-Y alloy target on thin film deposition technology

    International Nuclear Information System (INIS)

    Pan Qianfu; Liu Chaohong; Jiang Mingzhong; Yin Changgeng

    2011-01-01

    Yttria-stabilized zirconia (YSZ) films are synthesized on corrosion resistant plates by pulsed bias arc ion plating. The arc starting performance and the stability of thin film deposition is explored by improving the uniformity and compactibility of Zr-Y alloy target. The property of Zr-Y alloy target and depositional thin films were measured with the optical microscope, scanning electron microscope, X-ray diffractometer. The result shows that the target with hot rolling and annealing has a good arc starting performance and stability of thin film deposition, and the depositional thin films made of Yttria and amorphous zirconia are homogeneous and compact. (authors)

  19. Technology Issues and Benefits of a Fast Ignition Power Plant with Cone Targets

    International Nuclear Information System (INIS)

    Hogan, W J; Meier, W R

    2003-01-01

    The use of cone focus, fast ignition targets, either for direct or indirect drive, promises to lower the required driver size and relax the symmetry requirements in IFE power plants. It may also allow use of chamber concepts previously thought infeasible with a laser driver. These benefits will lower the COE and make IFE plants more competitive at smaller size. Their use also raises unique issues that will impact the design and development of power plant subsystems. Cone targets have a significant mass of high Z material whether or not they have a hohlraum and they are not spherically symmetric. This has implications for target injection, tracking and chamber background gas allowable

  20. Biosocial Spaces and Neurocomputational Governance: Brain-Based and Brain-Targeted Technologies in Education

    Science.gov (United States)

    Williamson, Ben; Pykett, Jessica; Nemorin, Selena

    2018-01-01

    Recently, technologies based on neuroscientific insights into brain function and structure have been promoted for application in education. The novel practices and environments produced by these technologies require new forms of "biosocial" analysis to unpack their implications for education, learning and governance. This article…

  1. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    Science.gov (United States)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  2. Technological study of ring and compact spinning systems for the manufacturing of slub fancy yarn under multiple slub variations and its effect on woven fabric

    International Nuclear Information System (INIS)

    Mahmood, N.; Iftikhar, M.; Mahmood, T.; Arshad, M.

    2009-01-01

    Textile technologies are continuously evolving with the objects both of increasing productivity and reducing processing costs, and of creating new products or variants of existing ones. Fashion, in the widest sense of the word mean fulfillment of consumer demands, through the ages constitutes a fundamental and conditional element for the whole textile industry. Fancy yarns present deliberate, decorative continuous or programmed effects of colour and/or form they are used to create some variation in the aesthetic appearance of a fabric. The drafting process is deliberately interrupted through the effect yarn device to produce slubs in the final yarn. The present research study was aimed to evaluate the quality characteristics of slub fancy yarn by changing slub length, inter slub distance, slub thickness and twist multiplier (T.M) at ring and compact spinning systems. (author)

  3. Readout electronics for low dark count pixel detectors based on Geiger mode avalanche photodiodes fabricated in conventional CMOS technologies for future linear colliders

    International Nuclear Information System (INIS)

    Vilella, E.; Arbat, A.; Comerma, A.; Trenado, J.; Alonso, O.; Gascon, D.; Vila, A.; Garrido, L.; Dieguez, A.

    2011-01-01

    High sensitivity and excellent timing accuracy of the Geiger mode avalanche photodiodes make them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase in the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 μm and a high integration 0.13 μm commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.

  4. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  5. Next-generation fabrication technologies for optical pickup devices in high-density optical disk storage systems

    Science.gov (United States)

    Hosoe, Shigeru

    1999-05-01

    This paper shows a direction of friction technologies to make aspherical plastic objective lens with higher optical performance for high density optical disk storage systems. Specifically, a low birefringence and low water absorption (less than 0.1%) optical resin, low tool abrasion mold material, high circularity diamond tool which nose circularity is less than 30 nm, and 1 nm axis resolution precision lathe which tool position is stabilized against drift by environmental change are referred. Cut optical surface of a mold sample was constantly attained in less than 5 nmRtm surface roughness. Using these new technologies, aspherical plastic objective lens (NA0.6) for DVD which wave aberration is less than 35 m (lambda) rms was realized.

  6. Elemental Technologies for Lead-Bismuth Spallation Target System in J-PARC

    International Nuclear Information System (INIS)

    Obayashi, H.; Yamaguchi, K.; Saito, S.; Sugawara, T.; Takei, H.; Sasa, T.

    2015-01-01

    Japan Atomic Energy Agency (JAEA) has been researching and developing an Accelerator-Driven System (ADS) as a dedicated system for the transmutation of long-lived radioactive nuclides. The ADS proposed by JAEA uses the lead-bismuth eutectic (LBE) alloy as a spallation target material and a coolant. In the various R and D for ADS, construction of the Transmutation Experimental Facility (TEF) is planned under the framework of the J-PARC project as a preceding step before the construction of demonstrative ADS. In this R and D, TEF is considered for the experimental investigation of the feasibility of the beam window, the structural materials, and to investigate the operation properties of the target system by using 400 MeV-250 kW proton beam. This target system is consisted of various elements and must be able to operate without troubles during an operation period of TEF facility. Furthermore, in the maintenance period after the operation, because the inside of a hot cell storing a target is exposed to strong radiations, all elements must be designed as remote control devices. In this study, the present conditions of the design and the result of performance test of each important elements were confirmed in the realisation of the LBE target system, such as the monitoring system of flow rate by using the ultrasonic method, the heater system with the metallic heat insulator joined to a flow channel of LBE, and the operability of remote handing. (authors)

  7. Design and implement of infrared small target real-time detection system based on pipeline technology

    Science.gov (United States)

    Sun, Lihui; Wang, Yongzhong; He, Yongqiang

    2007-01-01

    The detection for motive small target in infrared image sequence has become a hot topic nowadays. Background suppress algorithm based on minim gradient median filter and temporal recursion target detection algorithm are introduced. On the basis of contents previously mentioned, a four stages pipeline structure infrared small target detection process system, which aims at characters of algorithm complexity, large amounts of data to process, high frame frequency and exigent real-time character in this kind of application, is designed and implemented. The logical structure of the system was introduced and the function and signals flows are programmed. The system is composed of two FPGA chips and two DSP chips of TI. According to the function of each part, the system is divided into image preprocess stage, target detection stage, track relation stage and image output stage. The experiment of running algorithms on the system presented in this paper proved that the system could meet acquisition and process of 50Hz 240x320 digital image and the system could real time detect small target with a signal-noise ratio more than 3 reliably. The system achieves the characters of large amount of memory, high real-time processing, excellent extension and favorable interactive interface.

  8. Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as anti-arthritis agents, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

  9. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  10. Technology of preparation for low density 6Li(H,D) solid micro-target

    International Nuclear Information System (INIS)

    Wang Xisheng; Zeng Jiaquan; Li Qiang

    2002-01-01

    Low density 6 Li(H,D) micro-targets are prepared by loose sintering 6 LiH or 6 LiD powder in a tiny gold cylinder and soaking for 30 min up to 430 degree C at the rate of 10 degree C/h in argon. The dimension of the micro-targets is as tiny as 0.6-1.0 mm for diameter and 1-2 mm for length. Densities of 6 LiH and 6 LiD without Parylene C is (0.283 +- 0.009) g/cm 3 and (0.369 +- 0.009) g/cm 3 , respectively while 6 LiD targets with Parylene C is only (0.301 +- 0.010) g/cm 3 . The Parylene C has no effect on purity, deuterium abundance and 6 Li abundance of the sintered micro-targets. It's effective to keep 6 Li(H,D) purity by strict control of argon atmosphere

  11. Digital technologies to support planning, treatment, and fabrication processes and outcome assessments in implant dentistry. Summary and consensus statements. The 4th EAO consensus conference 2015

    DEFF Research Database (Denmark)

    Hämmerle, Christoph H F; Cordaro, Luca; van Assche, Nele

    2015-01-01

    OBJECTIVE: The task of this working group was to assess the existing knowledge in computer-assisted implant planning and placement, fabrication of reconstructions applying computers compared to traditional fabrication, and assessments of treatment outcomes using novel imaging techniques. MATERIAL...

  12. FY 1999 research and development of technologies for commercialization of photovoltaic power generation systems. Development of technologies for fabrication of thin-film solar cells/materials and substrates (Development of technologies for fabrication of high-quality amorphous materials and substrates); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / zairyo kiban seizo gijutsu kaihatsu (kohinshitsu amorphous kei zairyo kiban no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for the amorphous/microcrystalline solar cells with the thin microcrystalline silicon film as the i layer, and the FY 1999 results are reported. The fabrication technologies are investigated for the microcrystalline silicon solar cells of pin or nip structure by RF or VHF plasma CVD using SiH{sub 4} and H{sub 2} as the stock gases. The tests are conducted for evaluating characteristics of the thin microcrystalline silicon film, to investigate the effects of film-making pressure, power and hydrogen dilution rate on the characteristics at a constant film-making temperature of 180 degrees C. The researches on the fabrication technologies for the microcrystalline solar cell of pin structure confirm that use of VHF plasma CVD improves crystallinity, electrical and optical characteristics of the p-type thin microcrystalline silicon film. The researches on the fabrication technologies for the microcrystalline solar cell of nip structure covers transparent substrates, film-making speed of the p layer, power and substrates, and a conversion efficiency of 7.5% is realized by the solar cell formed on a texture substrate. (NEDO)

  13. Increased sensitivity of 3D-Well enzyme-linked immunosorbent assay (ELISA) for infectious disease detection using 3D-printing fabrication technology.

    Science.gov (United States)

    Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines.

  14. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    Science.gov (United States)

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method

    Science.gov (United States)

    Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.

    2015-04-01

    The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.

  16. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery.

    Science.gov (United States)

    Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang

    2018-03-20

    The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).

  17. Precise focusing and diagnosis technology for laser beams in ICF target chamber

    International Nuclear Information System (INIS)

    Zhu Qixiang

    1999-01-01

    The precise focusing and diagnosis experimental system for laser beams in ICF target chamber is introduced. The system is controlled by computer. In process of focusing a series data of displacement in axial direction and relative area of focus spots are acquired. According to the functional curvature the accurate position of focal plane is determined. The construction of the system is simple, the system is controlled conveniently and runs quickly

  18. Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins.

    Science.gov (United States)

    Banfi, Cristina; Baetta, Roberta; Gianazza, Erica; Tremoli, Elena

    2017-06-01

    Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fabrication of a nano-structured PbO2 electrode by using printing technology: surface characterization and application

    International Nuclear Information System (INIS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-01-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO 2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO 2 preparation demonstrated that nano-PbO 2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO 2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO 2 particles. Gravure printing of nano-PbO 2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO 2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO 2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO 2 should pave the way to promising applications in electrochemical and sensor fields.

  20. Fabrication of a nano-structured PbO{sub 2} electrode by using printing technology: surface characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S. [Sunchon National University, Suncheon (Korea, Republic of)

    2014-08-15

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO{sub 2} electrode and its application to a cerium redox transfer process. The new method of nano-size PbO{sub 2} preparation demonstrated that nano-PbO{sub 2} could be obtained in less time and at less cost at room temperature. The prepared nano-PbO{sub 2} screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO{sub 2} particles. Gravure printing of nano-PbO{sub 2} on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO{sub 2} powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO{sub 2} electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO{sub 2} should pave the way to promising applications in electrochemical and sensor fields.

  1. Advanced Processing and Characterization Technologies. Fabrication and Characterization of Semiconductor Optoelectronic Devices and Integrated Circuits Held in Clearwater, Florida on 8-10 May 1991. American Vacuum Society Series 10

    Science.gov (United States)

    1992-07-01

    ichi Gonda, Osaka University, Co-Chair Yasuhiko Arakawa, University of Tokyo Hiroyoshi Matsumura, Hitachi Alan Miller, University of Central Florida...M.H.Meynadier, et al. Phys. Rev. Lett. 29(12), (1984), 7042. 84 Mesoscopic Size Fabrication Technology Yasuhiko Arakawa Research Center for Advanced

  2. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.

    Science.gov (United States)

    Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan

    2018-06-01

    Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.

  3. The study of metal-alloy targets and excimer laser deposition technology

    International Nuclear Information System (INIS)

    Xu Hua; Wu Weidong; Tang Xiaohong; Zhang Jicheng; Tang Yongjian

    2002-01-01

    Pulsed Laser Deposition (PLD) technology is described. Design and manufacture of the PLD installation is illustrated in detail. The Cu films and Cu/Fe multi-layers are produced by PLD method. The production of the Mg/Si films using magnetron sputtering method is investigated in detail. The percent of Si on Mg/Si film surface is measured by using conductivity method

  4. Polymeric particulate technologies for oral drug delivery and targeting: A pathophysiological perspective

    DEFF Research Database (Denmark)

    Hunter, A. Christy; Elsom, Jacqueline; Wibroe, Peter Popp

    2012-01-01

    Publication year: 2012 Source:Maturitas, Volume 73, Issue 1 A. Christy Hunter, Jacqueline Elsom, Peter P. Wibroe, S. Moein Moghimi The oral route for delivery of pharmaceuticals is the most widely used and accepted. Nanoparticles and microparticles are increasingly being applied within this arena....... It is the purpose of this review to describe these cutting edge technologies and specifically focus on the interaction and fate of these polymers within the gastrointestinal system....

  5. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.

    Science.gov (United States)

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.

  6. Targeting non-coding RNAs in Plants with the CRISPR-Cas technology is a challenge yet worth accepting

    Directory of Open Access Journals (Sweden)

    Jolly eBasak

    2015-11-01

    Full Text Available Non-coding RNAs (ncRNAs have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.

  7. CW RFQ fabrication and engineering

    International Nuclear Information System (INIS)

    Schrage, D.; Young, L.; Roybal, P.

    1998-01-01

    The design and fabrication of a four-vane RFQ to deliver a 100 mA CW proton beam at 6.7 MeV is described. This linac is an Oxygen-Free Electrolytic (OFE) copper structure 8 m in length and was fabricated using hydrogen furnace brazing as the joining technology

  8. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Science.gov (United States)

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  9. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  10. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  11. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.

    Science.gov (United States)

    Xu, Rongfang; Wei, Pengcheng; Yang, Jianbo

    2017-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system is a newly emerging mutagenesis (gene-editing) tool in genetic engineering. Among the agriculturally important crops, several genes have been successfully mutated by the system, and some agronomic important traits have been rapidly generated, which indicates the potential applications in both scientific research and plant breeding. In this chapter, we describe a standard gene-editing procedure to effectively target rice genes and to make specific rice mutants using the CRISPR/Cas9 system mediated by Agrobacterium transformation.

  12. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA

    DEFF Research Database (Denmark)