WorldWideScience

Sample records for taqman real-time polymerase

  1. TaqMan Real-Time Polymerase Chain Reaction and ...

    African Journals Online (AJOL)

    TaqMan Real-Time Polymerase Chain Reaction and Pyrosequencing using Single Nucleotide Polymorphism Protocol for Rapid Determination of ALDH2 *2 in a Chinese Population. J Li, J Wu, Y Zhang, X Wang, J Jin, Y Wang ...

  2. TaqMan Real-Time Polymerase Chain Reaction and ...

    African Journals Online (AJOL)

    Results: Pyrosequencing and TaqMan real time PCR methods were successfully developed to identify. ALDH2 *2 polymorphisms. The allele ..... than for RFLP analysis [16]. A method using real- time PCR offers an advantage over RFLP in that it can be modified for high-throughput applications, but it does not provide direct.

  3. Real-time TaqMan polymerase chain reaction to quantify the effects ...

    African Journals Online (AJOL)

    TaqMan polymerase chain reaction was developed to quantify the number of Bifidobacterium. We used this assay to detect genomic DNA of Bifidobacterium in the intestinal tract digesta of piglets, including duodenum, jejunum, ileum, cecum and colon. Our results indicated that, developed new real-time quantitative PCR ...

  4. A novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds

    OpenAIRE

    2010-01-01

    Abstract Species-specific real-time polymerase chain reaction (PCR) assays using TaqMan probes have been developed for verifying the labeling of meat and commercial meat products from game birds including quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock and song thrush species. The method combines the use of species-specific primers and TaqMan probes that amplify small fragments (amplicons - 28040 - Madrid - SPAIN (Martin, Rosario) SPAIN

  5. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    Science.gov (United States)

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  6. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide

    Directory of Open Access Journals (Sweden)

    Yuexia Wang

    2015-09-01

    Full Text Available Real-time polymerase chain reaction (PCR allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at −18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 103 CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 100 CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach.

  7. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    Science.gov (United States)

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  8. Quantitative Tetraplex Real-Time Polymerase Chain Reaction Assay with TaqMan Probes Discriminates Cattle, Buffalo, and Porcine Materials in Food Chain.

    Science.gov (United States)

    Hossain, M A Motalib; Ali, Md Eaqub; Sultana, Sharmin; Asing; Bonny, Sharmin Quazi; Kader, Md Abdul; Rahman, M Aminur

    2017-05-17

    Cattle, buffalo, and porcine materials are widely adulterated, and their quantification might safeguard health, religious, economic, and social sanctity. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays have been documented but they are just suitable for identification, cannot quantify adulterations. We described here a quantitative tetraplex real-time PCR assay with TaqMan Probes to quantify contributions from cattle, buffalo, and porcine materials simultaneously. Amplicon-sizes were very short (106-, 90-, and 146-bp for cattle, buffalo, and porcine) because longer targets could be broken down, bringing serious ambiguity in molecular diagnostics. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 27 frankfurters and 27 meatballs reflected 84-115% target recovery at 0.1-10% adulterations. Finally, a test of 36 commercial products revealed 71% beef frankfurters, 100% meatballs, and 85% burgers contained buffalo adulteration, but no porcine was found in beef products.

  9. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease.

    Science.gov (United States)

    Bohuski, Elizabeth; Lorch, Jeffrey M; Griffin, Kathryn M; Blehert, David S

    2015-04-15

    Fungal skin infections associated with Ophidiomyces ophiodiicola, a member of the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) complex, have been linked to an increasing number of cases of snake fungal disease (SFD) in captive snakes around the world and in wild snake populations in eastern North America. The emergence of SFD in both captive and wild situations has led to an increased need for tools to better diagnose and study the disease. We developed two TaqMan real-time polymerase chain reaction (PCR) assays to rapidly detect O. ophiodiicola in clinical samples. One assay targets the internal transcribed spacer region (ITS) of the fungal genome while the other targets the more variable intergenic spacer region (IGS). The PCR assays were qualified using skin samples collected from 50 snakes for which O. ophiodiicola had been previously detected by culture, 20 snakes with gross skin lesions suggestive of SFD but which were culture-negative for O. ophiodiicola, and 16 snakes with no clinical signs of infection. Both assays performed equivalently and proved to be more sensitive than traditional culture methods, detecting O. ophiodiicola in 98% of the culture-positive samples and in 40% of the culture-negative snakes that had clinical signs of SFD. In addition, the assays did not cross-react with a panel of 28 fungal species that are closely related to O. ophiodiicola or that commonly occur on the skin of snakes. The assays did, however, indicate that some asymptomatic snakes (~6%) may harbor low levels of the fungus, and that PCR should be paired with histology when a definitive diagnosis is required. These assays represent the first published methods to detect O. ophiodiicola by real-time PCR. The ITS assay has great utility for assisting with SFD diagnoses whereas the IGS assay offers a valuable tool for research-based applications.

  10. Identification and quantification of genetically modified Moonshade carnation lines using conventional and TaqMan real-time polymerase chain reaction methods.

    Science.gov (United States)

    Li, Peng; Jia, Junwei; Bai, Lan; Pan, Aihu; Tang, Xueming

    2013-07-01

    Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.

  11. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans

    Science.gov (United States)

    Laura K Muller; Jeffrey M. Lorch; Daniel L. Lindner; Michael O' Connor; Andrea Gargas; David S. Blehert

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The...

  12. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructanstructans.

    Science.gov (United States)

    Muller, Laura K.; Lorch, Jeffrey M.; Lindner, Daniel L.; O'Connor, Michael; Gargas, Andrea; Blehert, David S.

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The test is highly sensitive, consistently detecting as little as 3.3 fg of genomic DNA from G. destructans. The real-time PCR test specifically amplified genomic DNA from G. destructans but did not amplify target sequence from 54 closely related fungal isolates (including 43 Geomyces spp. isolates) associated with bats. The test was further qualified by analyzing DNA extracted from 91 bat wing skin samples, and PCR results matched histopathology findings. These data indicate the real-time TaqMan PCR method described herein is a sensitive, specific, and rapid test to detect DNA from G. destructans and provides a valuable tool for WNS diagnostics and research.

  13. Detection of EGFR Gene Mutations in 100 Non-small Cell Lung Cancer Clinical Samples by a Real-time Polymerase Chain Reaction Method Using Amplification Refractory Mutation System Specific Primers and Taqman Fluorescence Probes

    Directory of Open Access Journals (Sweden)

    Jing ZHAO

    2013-01-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR gene mutation is the most important predictor of the efficiency of EGFR-tyrosine kinase inhibitors in the treatment of non-small cell lung cancer (NSCLC. The detection of EGFR gene mutations can guide individual therapies for NSCLC. Numerous methods are used to detect EGFR gene mutation and each method has different features. This study aims to establish a real-time polymerase chain reaction (PCR method for the detection of EGFR gene mutations using amplification refractory mutation system (ARMS specific primers and Taqman fluorescence probes. Methods ARMS specific primers for the two EGFR gene mutations (E746_A750 and L858R and Taqman fluorescence probes for the detection of the target sequence were carefully designed by the Primer Premier 5.0 software. Then, using the recombinants containing E746_A750 and L858R mutations as the study objects, we further analyzed the sensitivity and lower limit of this method, and then determined the cutoff ΔCt value to evaluate specific or non-specific amplification. A total of 100 clinical samples were collected and used to detect the EGFR gene mutations using this method. Results The lower limit of this method for the detection of EGFR gene mutation was 10 copies if no interference of wild-type EGFR gene or background DNA existed. Regarding the method sensitivity, the detection resolution was as high as 1% and 0.1%-0.5% in the background of 500 and 5,000 copies/μL wild-type EGFR gene, respectively. Regarding the method specificity, non-specific amplifications were found when it was used to detect 21 L858R mutations in leukocyte DNA samples from healthy volunteers. However, the minimal ΔCt value was 14.48. Non-specific amplifications were not found when detecting 19 Del mutations. Among the 100 clinical samples, 39 mutations were detected (19 Del and 21 L858R were 21 and 18, respectively using this method. The total mutation rate was 39

  14. Detection of Food Allergens by Taqman Real-Time PCR Methodology.

    Science.gov (United States)

    García, Aina; Madrid, Raquel; García, Teresa; Martín, Rosario; González, Isabel

    2017-01-01

    Real-time PCR (polymerase chain reaction) has shown to be a very effective technology for the detection of food allergens. The protocol described herein consists on a real-time PCR assay targeting the plant ITS (Internal Transcribed Spacer) region, using species-specific primers and hydrolysis probes (Taqman) dual labeled with a reporter fluorophore at the 5' end (6-carboxyfluorescein, FAM) and a quencher fluorophore at the 3' end (Blackberry, BBQ). The species-specific real-time PCR systems (primers/probe) described in this work allowed the detection of different nuts (peanut, hazelnut, pistachio, almond, cashew, macadamia, walnut and pecan), common allergens present in commercial food products, with a detection limit of 0.1 mg/kg.

  15. Real-Time Polymerase Chain Reaction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Real-Time Polymerase Chain Reaction - A Revolution in Diagnostics. Simarjot Singh Pabla Sarabjot Singh Pabla. General Article Volume 13 Issue 4 April 2008 pp 369-377 ...

  16. Development and Validation of TaqMan Real-Time Polymerase Chain Reaction Assays for the Quantitative and Differential Detection of Wild-Type Infectious Laryngotracheitis Viruses from a Glycoprotein G-Deficient Candidate Vaccine Strain.

    Science.gov (United States)

    Shil, Niraj K; Legione, Alistair R; Markham, Philip F; Noormohammadi, Amir H; Devlin, Joanne M

    2015-03-01

    Infectious laryngotracheitis (ILT) is a significant upper respiratory tract disease of chickens with a worldwide distribution. Differentiating between wild-type and vaccine strains of ILT virus (ILTV) would be useful for enhancing disease control, and in the early stages of a disease outbreak molecular diagnostic tools for the detection and differentiation of the circulating virus could be applied. This study developed TaqMan real-time PCR (qPCR) assays to detect and differentiate the glycoprotein G (gG)-deficient (ΔgG) ILTV candidate vaccine strain of ILTV from ILTV strains that contain the gG gene. The gG+ve and gG-ve ILTV TaqMan assays were used in individual and multiplex format to detect, differentiate, and quantitate ILTV DNA in laboratory and clinical samples. The assays were highly sensitive and highly specific, with a detection limit of 10 viral template copies for each assay. Low interassay coefficients of variation were recorded (0.021-0.042 and 0.013-0.039) for gG+ve and gG-ve TaqMan assays, respectively. The multiplex assay was successfully used to examine the replication kinetics of wild-type and ΔgG strains of ILTV in cultured leghorn male hepatoma cells and embryonated hen eggs under coinfection conditions. The results showed that the TaqMan qPCR assay, along with the ΔgG ILTV vaccine, has the potential to be used in a "Differentiating Infected from Vaccinated Animals" strategy for the control and eradication of ILT.

  17. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and

  18. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay

    International Nuclear Information System (INIS)

    Roeder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-01

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg -1 almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg -1 . We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg -1 almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg -1 . Further, between 100 and 100,000 mg kg -1 spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n = 5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and

  19. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Martin; Vieths, Stefan [Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany); Holzhauser, Thomas, E-mail: holth@pei.de [Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany)

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg{sup -1} almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg{sup -1}. We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg{sup -1} almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg{sup -1}. Further, between 100 and 100,000 mg kg{sup -1} spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n = 5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a

  20. Real-Time Polymerase Chain Reaction (PCR) Capability in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is enabling the real-time polymerase chain reaction (real-time PCR) technology in space. In space, the real-time PCR technology can be used...

  1. TaqMan Real-Time Quantification of Epstein-Barr Virus in Severe Early Childhood Caries.

    Science.gov (United States)

    Yildirim, Sibel; Yildiz, Esma; Kubar, Ayhan

    2010-01-01

    Early childhood caries (ECC) has several risk factors and it is important stressful/painful events of childhood and immunosuppression may occur during this unique rampant caries pattern. The changes in the host immune competence by compromised cellular immune system functions can activate Epstein Barr virus (EBV). The objective of this study was to determine whether the supragingival plaque samples of severe-ECC (S-ECC) patients harbor more EBV load than the non-carious healthy children by quantitative TaqMan Real-Time polymerase chain reaction (PCR). Sixty subjects, including 30 S-ECC patients as well as age and gender matched 30 caries-free patients were studied. The supragingival plaque samples were collected from patients by brushing their teeth for 1 minute and the toothbrush was washed in 1 ml of sterile deionized water. After viral DNA extraction, TaqMan real-time PCR assay was used to quantify EBV DNA. Dental treatments were completed for all S-ECC patients and they were called for routine controls. Only 10 treated S-ECC patients were come to the 3(rd) months' control and post-treatment viral sampling was made in the same manner. EBV DNA was detected 16 of 30 S-ECC patients and 6 of the healthy controls (Pstudy suggest that oro-dental hygiene motives of S-ECC patients might be important contributory factor for S-ECC and EBV would not be involved in the etiopathogenesis of ECC.

  2. Rapid Differentiation and Identification of Potential Severe Strains of Citrus tristeza Virus by Real-Time Reverse Transcription Polymerase Chain Reaction Assays

    Science.gov (United States)

    A multiplex Taqman®-based real-time reverse transcription (RT) polymerase chain reaction (PCR) assay was developed to detect all strains of Citrus tristeza virus (CTV) and to identify potentially severe strains of the virus. A CTV TaqMan probe (CTV-CY5) based on the coat protein (CP) gene sequences...

  3. Rapid and sensitive detection of salmonid alphavirus using TaqMan real-time PCR.

    Science.gov (United States)

    Shi, Wen; Song, Aochen; Gao, Shuai; Wang, Yuting; Tang, Lijie; Xu, Yigang; Ren, Tong; Li, Yijing; Liu, Min

    2017-08-01

    Salmonid alphavirus (SAV) infection has led to the spread of salmon pancreas disease (PD) and sleeping disease (SD) to salmonids in several countries in Europe, resulting in tremendous economic losses to the fish farming industry. Recently, with increases in the fish import trade, many countries in which SAV has been unreported, such as China, may be seriously threatened by these diseases. It is therefore necessary to develop efficient detection methods for the prevention and diagnosis of SAV infection. In this study, a rapid and sensitive TaqMan real-time PCR method was established and assessed for this purpose. A specificity assay showed no cross-reactions with other common RNA viruses. Regression analysis and standard curves calculated from the Ct values of 10-fold serial dilutions of the standard plasmid showed that the assay was highly reproducible over a wide range of RNA input concentrations. The real-time PCR assay was able to detect SAV at a concentration as low as 1.5 × 10 1 copies, indicating that it is 10 7 times more sensitive than the approved conventional RT-PCR method (detection limit, 1.5 × 10 7 copies) after use on the same samples. Assessment of infected fish samples showed that this assay has a higher sensitivity than the previously reported Q_nsP1 assay. Thus, this TaqMan real-time PCR assay provides a rapid, sensitive, and specific detection method for SAV, offering improved technical support for the clinical diagnosis and epidemiology of SAV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rapid quantification of semen hepatitis B virus DNA by real-time polymerase chain reaction

    Science.gov (United States)

    Qian, Wei-Ping; Tan, Yue-Qiu; Chen, Ying; Peng, Ying; Li, Zhi; Lu, Guang-Xiu; Lin, Marie C.; Kung, Hsiang-Fu; He, Ming-Ling; Shing, Li-Ka

    2005-01-01

    AIM: To examine the sensitivity and accuracy of real-time polymerase chain reaction (PCR) for the quantification of hepatitis B virus (HBV) DNA in semen. METHODS: Hepatitis B viral DNA was isolated from HBV carriers’ semen and sera using phenol extraction method and QIAamp DNA blood mini kit (Qiagen, Germany). HBV DNA was detected by conventional PCR and quantified by TaqMan technology-based real-time PCR (quantitative polymerase chain reaction (qPCR)). The detection threshold was 200 copies of HBV DNA for conventional PCR and 10 copies of HBV DNA for real time PCR per reaction. RESULTS: Both methods of phenol extraction and QIAamp DNA blood mini kit were suitable for isolating HBV DNA from semen. The value of the detection thresholds was 500 copies of HBV DNA per mL in the semen. The viral loads were 7.5 × 107 and 1.67 × 107 copies of HBV DNA per mL in two HBV infected patients’ sera, while 2.14 × 105 and 3.02 × 105 copies of HBV DNA per mL in the semen. CONCLUSION: Real-time PCR is a more sensitive and accurate method to detect and quantify HBV DNA in the semen. PMID:16149152

  5. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    OpenAIRE

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background : Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conven...

  6. Detection of ovine milk adulteration using taqman real-time pcr assay

    Directory of Open Access Journals (Sweden)

    Marek Šnirc

    2017-01-01

    Full Text Available Food safety, quality and composition have become the subjects of increasing public concern. To prevent fraud and enhance quality assurance, credible analysis of dairy products is crucial. Bovine milk is more widely available and cheaper than milk of sheep and goat. Bovine milk is also processed in large quantities to produce a range of dairy produce. DNA-based methods have proven to be more reliable, because of the stability of DNA under the conditions of high temperature, high pressure, and chemical treatment used during the processing of some food products. The commercial InnuDETECT cheese assay based on the principle TaqMan real-time PCR systems have been tested for the identification and quantification of bovine DNA in ovine milk samples. DNA was extracted using the InnuPREP DNA Mini Kit and quantified by the QuantiFluor dsDNA system. The assay showed good linearity, with correlation coefficient of R2 = 0.983 and efficiency of 86%. The internal control amplified fragment from different mammalian species (cow, sheep and goat, with similar CT values. Detection of bovine DNA in milk mixtures was achieved even in samples containing 0.5% of bovine milk. The InnuDETECT cheese assay has been successfully used to measure bovine DNA in ovine milk, and will prove useful for bovine species identification and quantitative authentication of animal-derived products.

  7. Immunohistochemical and Taqman real-time PCR detection of mycobacterial infections in fish.

    Science.gov (United States)

    Zerihun, M A; Hjortaas, M J; Falk, K; Colquhoun, D J

    2011-03-01

    Real-time PCR and immunohistochemistry (IHC) assays were developed to detect fish mycobacterial infections at the genus level, based on the RNA polymerase β subunit (rpoB) gene and polyclonal anti-Mycobacterium rabbit serum, respectively. The PCR assay positively identified a number of pathogenic mycobacteria including Mycobacterium abscessus, M. avium ssp. avium, M. bohemicum, M. chelonae ssp. chelonae, M. farcinogenes, M. flavescens, M. fortuitum ssp. fortuitum, M. gastri, M. gordonae, M. immunogenicum, M. malmoense, M. marinum, M. montefiorense, M. phlei, M. phocaicum, M. pseudoshottsii, M. salmoniphilum, M. senegalense, M. shottsii, M. smegmatis, M. szulgi and M. wolinskyi. A detection limit equivalent to 10(2)  cfu g(-1) was registered for M. salmoniphilum-infected fish tissue. The IHC precisely localized both free and intracellular mycobacteria in tissues and detected mycobacterial infections down to 10(2) cfu g(-1) tissue. Both assays were found to be more sensitive than Ziehl-Neelsen (ZN) staining, where the detection limit was below 8 × 10(3) cfu g(-1) tissue. Although specificity testing of the real-time PCR against a panel of non-Mycobacterium spp. revealed a degree of cross-reaction against pure DNA extracted from Nocardia seriolae and Rhodococcus erythropolis, no cross-reactions were identified (by either real-time PCR or IHC) on testing of formalin-fixed paraffin-embedded (FFPE) tissues confirmed to be infected with these bacteria. The broad applicability of both assays was confirmed by analysis of FFPE tissues from a range of fish species infected with diverse Mycobacterium spp. The results indicate that both assays, alone or in combination, constitute sensitive tools for initial, rapid diagnosis of mycobacteriosis in fish. This should in turn allow rapid application of more specific studies, i.e. culture based, to identify the specific Mycobacterium sp. involved. © 2011 Blackwell Publishing Ltd.

  8. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus.

    Science.gov (United States)

    Zhou, Xinrong; Zhang, Tiansheng; Song, Deping; Huang, Tao; Peng, Qi; Chen, Yanjun; Li, Anqi; Zhang, Fanfan; Wu, Qiong; Ye, Yu; Tang, Yuxin

    2017-06-01

    Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal disease, resulting in substantial economic losses to the swine industry worldwide. In this study, three assays, namely a conventional reverse transcription-polymerase chain reaction (RT-PCR), a SYBR Green I real-time RT-PCR and a TaqMan real-time RT-PCR targeting the highly conserved M gene of PEDV, were developed and evaluated. Then, the analytical specificity, sensitivity and reproducibility of these assays were determined and compared. The TaqMan real-time RT-PCR was 100-fold and 10,000-fold more sensitive than that of the SYBR Green I real-time RT-PCR and the conventional RT-PCR, respectively. The analytical sensitivity of TaqMan real-time RT-PCR was 10 copies/μl of target gene and no cross amplification with other viruses tested was observed. With the features of high specificity, sensitivity, and reproducibility, the TaqMan real-time RT-PCR established in this study could be a useful tool for clinical diagnosis, epidemiological surveys and outbreak investigations of PED. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Real-Time Polymerase Chain Reaction: Applications in Diagnostic Microbiology

    Directory of Open Access Journals (Sweden)

    Kordo B. A. Saeed

    2013-11-01

    Full Text Available The polymerase chain reaction (PCR has revolutionized the detection of DNA and RNA. Real-Time PCR (RT-PCR is becoming the gold standard test for accurate, sensitive and fast diagnosis for a large range of infectious agents. Benefits of this procedure over conventional methods for measuring RNA include its sensitivity, high throughout and quantification. RT-PCR assays have advanced the diagnostic abilities of clinical laboratories particularly microbiology and infectious diseases. In this review we would like to briefly discuss RT-PCR in diagnostic microbiology laboratory, beginning with a general introduction to RT-PCR and its principles, setting up an RT PCR, including multiplex systems and the avoidance and remediation of contamination issues. A segment of the review would be devoted to the application of RT-PCR in clinical practice concentrating on its role in the diagnosis and treatment of infectious diseases.

  10. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine.

    Science.gov (United States)

    Huang, K S; Lee, S E; Yeh, Y; Shen, G S; Mei, E; Chang, C M

    2010-08-23

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future.

  11. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  12. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus

    Directory of Open Access Journals (Sweden)

    I. Karthika Lakshmi

    2018-04-01

    Full Text Available Aim: The present study was designed to standardize real-time polymerase chain reaction (PCR for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. Materials and Methods: A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 105 ml and RNA was isolated by the Trizol method. Both reverse transcription -PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD. The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect and molecular confirmation (by BTV-NS1 group-specific PCR. The standardized technique was then applied to field samples (blood for detecting BTV. Results: The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269Ex103 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 103 TCID 50/ml and 104 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 102 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Conclusion: Real-time PCR was found to be a very sensitive as well as reliable method

  13. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    Directory of Open Access Journals (Sweden)

    K P Dinoop

    2016-01-01

    Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  14. Problem-Solving Test: Real-Time Polymerase Chain Reaction

    Science.gov (United States)

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: polymerase chain reaction, DNA amplification, electrophoresis, breast cancer, "HER2" gene, genomic DNA, "in vitro" DNA synthesis, template, primer, Taq polymerase, 5[prime][right arrow]3[prime] elongation activity, 5[prime][right arrow]3[prime] exonuclease activity, deoxyribonucleoside…

  15. A TaqMan Real-Time PCR Assay for Detection and Quantification of Sporisorium scitamineum in Sugarcane

    Directory of Open Access Journals (Sweden)

    Yachun Su

    2013-01-01

    Full Text Available Sporisorium scitamineum is a fungal smut pathogen epidemic in sugarcane producing areas. Early detection and proper identification of the smut are an essential requirement in its management practice. In this study, we developed a TaqMan real-time PCR assay using specific primers (bEQ-F/bEQ-R and a TaqMan probe (bEQ-P which were designed based on the bE (b East mating type gene (Genbank Accession no. U61290.1. This method was more sensitive (a detection limit of 10 ag pbE DNA and 0.8 ng sugarcane genomic DNA than that of conventional PCR (10 fg and 100 ng, resp.. Reliability was demonstrated through the positive detection of samples collected from artificially inoculated sugarcane plantlets (FN40. This assay was capable of detecting the smut pathogen at the initial stage (12 h of infection and suitable for inspection of sugarcane pathogen-free seed cane and seedlings. Furthermore, quantification of pathogen was verified in pathogen-challenged buds in different sugarcane genotypes, which suggested its feasibility for evaluation of smut resistance in different sugarcane genotypes. Taken together, this novel assay can be used as a diagnostic tool for sensitive, accurate, fast, and quantitative detection of the smut pathogen especially for asymptomatic seed cane or plants and evaluation of smut resistance of sugarcane genotypes.

  16. High-throughput gender identification of Accipitridae eagles with real-time PCR using TaqMan probes.

    Science.gov (United States)

    Chang, H-W; Gu, D-L; Su, S-H; Chang, C-C; Cheng, C-A; Huang, H-W; Yao, C-T; Chou, T-C; Chuang, L-Y; Cheng, C-C

    2008-07-01

    The objective was to develop high-throughput gender identification of eagles. Based on BLAST and alignment analyses, the CHD-Z and CHD-W sequences of nine species of eagles were highly homologous with Spilornis cheela hoya (S. c. hoya); therefore, TaqMan probes were designed to target their CHD-ZW-common and CHD-W-specific regions. In S. c. hoya, genders were identified using TaqMan-based, real-time PCR (amplified by P2/P8 primers); this method was validated with anatomically confirmed controls (one of each gender). Both genders had high intensities of the HEX-labeled (CHD-ZW-common) probe, whereas only females had high intensity of the FAM-labeled (CHD-W-specific) probe. The sequence of the CHD-W-specific probe designed for S. c. hoya was completely homologous with the CHD-W-specific region in Circaetus gallicus, Gyps indicus, and Gyps bengalensis, and was only one nucleotide different from those of Accipiter nisus, Spizaetus nipalensis, Aquila chrysaetos, Circus spilonotus, and Milvus migrans. For the CHD-ZW-common probe, all species listed were completely conserved. Using real-time PCR software, we established auto-calling of the genders of 15 individuals of S. c. hoya. In conclusion, this method provided accurate, high-throughput gender identification for S. c. hoya, and has considerable potential for identifying the gender of several related species of eagles.

  17. Application and development of a TaqMan real-time PCR for detecting infectious spleen and kidney necrosis virus in Siniperca chuatsi.

    Science.gov (United States)

    Lin, Qiang; Fu, Xiaozhe; Liu, Lihui; Liang, Hongru; Guo, Huizhi; Yin, Shuwen; Kumaresan, Venkatesh; Huang, Zhibin; Li, Ningqiu

    2017-06-01

    Infectious spleen and kidney necrosis virus (ISKNV) is one of the major epidemiological agents that had caused great economic loss in Chinese perch (Siniperca chuatsi). In this study, a specific TaqMan real-time PCR was developed using a pair of primers and a TaqMan probe specific to the ORF007 gene of ISKNV to rapidly detect ISKNV copies in Chinese perch samples. This assay was optimized to produce linearity from 8.75 × 10 8 to 8.75 × 10 1 copies in standard curve with an efficiency of 98% and a R 2 value of 0.9999. Moreover, the minimum detection limit of this assay was 10,000 times more sensitive than that of conventional PCR method. The coefficients of variation of intra- and inter-assay repeatability were less than 2.4% and 3.3%, respectively. The viral distribution in different tissues of diseased Chinese perch was evaluated by TaqMan real-time PCR method and the highest level of viral copies was detected in spleen. Among the 76 diseased Chinese perch clinical samples, 35 and 29 were positive samples based on the TaqMan real-time PCR and conventional PCR methods, respectively, indicating that the TaqMan real-time PCR was more sensitive than conventional PCR. Therefore, the TaqMan real-time PCR should be a useful tool for the early surveillance and quantitation of ISKNV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Taqman real-time PCR detects Avipoxvirus DNA in blood of Hawai'i 'amakihi (Hemignathus virens.

    Directory of Open Access Journals (Sweden)

    Margaret E M Farias

    Full Text Available BACKGROUND: Avipoxvirus sp. is a significant threat to endemic bird populations on several groups of islands worldwide, including Hawai'i, the Galapagos Islands, and the Canary Islands. Accurate identification and genotyping of Avipoxvirus is critical to the study of this disease and how it interacts with other pathogens, but currently available methods rely on invasive sampling of pox-like lesions and may be especially harmful in smaller birds. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present a nested TaqMan Real-Time PCR for the detection of the Avipoxvirus 4b core protein gene in archived blood samples from Hawaiian birds. The method was successful in amplifying Avipoxvirus DNA from packed blood cells of one of seven Hawaiian honeycreepers with confirmed Avipoxvirus infections and 13 of 28 Hawai'i 'amakihi (Hemignathus virens with suspected Avipoxvirus infections based on the presence of pox-like lesions. Mixed genotype infections have not previously been documented in Hawai'i but were observed in two individuals in this study. CONCLUSIONS/SIGNIFICANCE: We anticipate that this method will be applicable to other closely related strains of Avipoxvirus and will become an important and useful tool in global studies of the epidemiology of Avipoxvirus.

  19. Detection of Bordetella avium by TaqMan real-time PCR in tracheal swabs from wildlife birds.

    Science.gov (United States)

    Stenzel, T; Pestka, D; Tykałowski, B; Śmiałek, M; Koncicki, A; Bancerz-Kisiel, A

    2017-03-28

    Bordetella avium, the causing agent of bordetellosis, a highly contagious infection of the respiratory tract in young poultry, causes significant losses in poultry farming throughout the world. Wildlife birds can be a reservoir of various pathogens that infect farm animals. For this reason the studies were conducted to estimate the prevalence of Bordetella avium in wildlife birds in Poland. Tracheal swab samples were collected from 650 birds representing 27 species. The bacterial DNA was isolated directly from the swabs and screened for Bordetella avium by TaqMan real-time PCR. The assay specificity was evaluated by testing DNA isolated from 8 other bacteria that can be present in avian respiratory tract, and there was no amplification from non-Bordetella avium agents. Test sensitivity was determined by preparing standard tenfold serial dilutions of DNA isolated from positive control. The assay revealed to be sensitive, with detection limit of approximately 4.07x10^2 copies of Bordetella avium DNA. The genetic material of Bordetella avium was found in 54.54% of common pheasants, in 9.09% of Eurasian coots, in 3.22% of black-headed gulls and in 2.77% of mallard ducks. The results of this study point to low prevalence of Bordetella avium infections in wildlife birds. The results also show that described molecular assay proved to be suitable for the rapid diagnosis of bordetellosis in the routine diagnostic laboratory.

  20. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan PCR Assay

    Directory of Open Access Journals (Sweden)

    Hua-Ying Fu

    2016-01-01

    Full Text Available Ratoon stunting disease (RSD of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx. A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR and a fluorogenic probe (Pat1-QP targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7% of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174 were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174 were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  1. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Takao Ito

    Full Text Available Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  2. Detection and differentiation of Cryptosporidium by real-time polymerase chain reaction in stool samples from patients in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Roberta Flávia Ribeiro Rolando

    2012-06-01

    Full Text Available This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR. A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species.

  3. The potential of TaqMan Array Cards for detection of multiple biological agents by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Phillip A Rachwal

    Full Text Available The TaqMan Array Card architecture, normally used for gene expression studies, was evaluated for its potential to detect multiple bacterial agents by real-time PCR. Ten PCR assays targeting five biological agents (Bacillus anthracis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis were incorporated onto Array Cards. A comparison of PCR performance of each PCR in Array Card and singleplex format was conducted using DNA extracted from pure bacterial cultures. When 100 fg of agent DNA was added to Array Card channels the following levels of agent detection (where at least one agent PCR replicate returned a positive result were observed: Y. pestis 100%, B. mallei & F. tularensis 93%; B. anthracis 71%; B. pseudomallei 43%. For B. mallei & pseudomallei detection the BPM2 PCR, which detects both species, outperformed PCR assays specific to each organism indicating identification of the respective species would not be reproducible at the 100 fg level. Near 100% levels of detection were observed when 100 fg of DNA was added to each PCR in singleplex format with singleplex PCRs also returning sporadic positives at the 10 fg per PCR level. Before evaluating the use of Array Cards for the testing of environmental and clinical sample types, with potential levels of background DNA and PCR inhibitors, users would therefore have to accept a 10-fold reduction in sensitivity of PCR assays on the Array Card format, in order to benefit for the capacity to test multiple samples for multiple agents. A two PCR per agent strategy would allow the testing of 7 samples for the presence of 11 biological agents or 3 samples for 23 biological agents per card (with negative control channels.

  4. Development of a duplex Taqman real-time PCR assay for rapid identification of Vibrio splendidus-related and V. aestuarianus strains from bacterial cultures.

    Science.gov (United States)

    Saulnier, Denis; De Decker, Sophie; Tourbiez, Delphine; Travers, Marie Agnès

    2017-09-01

    To enable the rapid and accurate identification of Vibrio splendidus-related and V. aestuarianus strains associated with Pacific cupped oyster Crassostrea gigas mortality, we developed a duplex Taqman real-time PCR assay and evaluated its efficacy. This technique proved to be rapid, sensitive, and specific and will be particularly valuable for epidemiologic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    Science.gov (United States)

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  6. Animal DNA identification in food products and animal feed by real time polymerase chain reaction method

    Directory of Open Access Journals (Sweden)

    Людмила Мар’янівна Іщенко

    2016-11-01

    Full Text Available Approbation of diagnostic tests for species identification of beef, pork and chicken by real time polymerase chain reaction method was done. Meat food, including heat treated and animal feed, was used for research. The fact of inconsistencies was revealed for product composition of some meat products that is marked by manufacturer 

  7. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

    NARCIS (Netherlands)

    Ramakers, Christian; Ruijter, Jan M.; Deprez, Ronald H. Lekanne; Moorman, Antoon F. M.

    2003-01-01

    Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR

  8. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of Rose rosette virus using multiple gene targets.

    Science.gov (United States)

    Babu, Binoy; Jeyaprakash, Ayyamperumal; Jones, Debra; Schubert, Timothy S; Baker, Carlye; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L

    2016-09-01

    Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Utility of real-time polymerase chain reaction in diagnosing and treating acanthamoeba keratitis.

    Science.gov (United States)

    Itahashi, Motoki; Higaki, Shiro; Fukuda, Masahiko; Mishima, Hiroshi; Shimomura, Yoshikazu

    2011-11-01

    Using real-time polymerase chain reaction (PCR), we detected Acanthamoeba and monitored the changes in Acanthamoeba DNA copy number over the treatment course in patients suspected of Acanthamoeba keratitis (AK). Subjects were 6 patients (average age, 26.2 years) suspected of AK at the Kinki University Outpatient Clinic. For detection of Acanthamoeba, patients' corneal scrapings were collected for smear analysis, culture, and real-time PCR. After the diagnosis of AK was confirmed, treatment was initiated based on the quantitative result of the real-time PCR. Both the smear and culture were positive for Acanthamoeba in 4 cases and negative in 2 cases (agreement in 3 cases and disagreement in 2 cases). By real-time PCR, all 6 cases were positive for Acanthamoeba with an average DNA copy number of 4.8 ± 9.1 × 10 copies per sample. We further monitored the variation in the Acanthamoeba DNA copy number over the treatment course and successfully treated all the patients. DNA copy number provided a parallel with other clinical features of AK. Real-time PCR can be a useful method for a rapid and precise diagnosis of AK. Moreover, utility of the Acanthamoeba DNA copy number obtained by real-time PCR can help ophthalmologists in making the best treatment decision.

  10. Identification of four squid species by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A comparative evaluation between real time Roche COBas TAQMAN 48 HCV and bDNA Bayer Versant HCV 3.0.

    Science.gov (United States)

    Giraldi, Cristina; Noto, Alessandra; Tenuta, Robert; Greco, Francesca; Perugini, Daniela; Spadafora, Mario; Bianco, Anna Maria Lo; Savino, Olga; Natale, Alfonso

    2006-10-01

    The HCV virus is a common human pathogen made of a single stranded RNA genome with 9600nt. This work compared two different commercial methods used for HCV viral load, the bDNA Bayer Versant HCV 3.0 and the RealTime Roche COBAS TaqMan 48 HCV. We compared the reproducibility and linearity of the two methods. Seventy-five plasma samples with genotypes 1 to 4, which represent the population (45% genotype 1; 24% genotype 2; 13% genotype 3; 18% genotype 4) were directly processed with the Versanto method based upon signal amplification; the same samples were first extracted (COBAS Ampliprep - TNAI) and then amplified using RealTime PCR (COBAS TaqMan 48). The results obtained indicate the same performance for both methods if they have genotype 1, but in samples with genotypes 2, 3 and 4 the RealTime PCR Roche method gave an underestimation in respect to the Bayer bDNA assay.

  12. Rapid identification of aminoglycoside-induced deafness gene mutations using multiplex real-time polymerase chain reaction.

    Science.gov (United States)

    Huang, Shasha; Xiang, Guangxin; Kang, Dongyang; Wang, Chen; Kong, Yanling; Zhang, Xun; Liang, Shujian; Mitchelson, Keith; Xing, Wanli; Dai, Pu

    2015-07-01

    Exposure to aminoglycoside antibiotics can induce ototoxicity in genetically susceptible individuals carrying certain mitochondrial DNA (mtDNA) mutations (C1494T and A1555G), resulting in hearing loss. So, a rapid diagnostic approach is needed to accurately identify subjects carrying such gene mutations. In the present study, we describe a rapid and reliable four-color, real-time quantitative polymerase chain reaction (qPCR) assay for simultaneously detecting two mtDNA 12S rRNA gene variants, A1555G and C1494T, which are prevalent in the Han Chinese population. This multiplex assay incorporates three allele-specific TaqMan probes labeled with different fluorophores in a single reaction, providing high genotyping accuracy for clinical blood samples. Tests with C1494T, A1555G and wild-type DNA exhibited high sensitivity, specificity, reproducibility and accuracy of discriminating mutations from wild-type. This study shows that this simple and inexpensive method can be used for routine molecular diagnostics and potentially for large-scale genetic screening. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    Science.gov (United States)

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  14. Detection of canine adenovirus 1 in red foxes ( Vulpes vulpes) and raccoons ( Procyon lotor) in Germany with a TaqMan real-time PCR assay.

    Science.gov (United States)

    Hechinger, Silke; Scheffold, Svenja; Hamann, Hans-Peter; Zschöck, Michael

    2017-09-01

    We developed a real-time (rt)PCR assay based on TaqMan probe technology for the specific detection of canine adenovirus 1 (CAdV-1). The assay is able to detect three 50% tissue culture infectious dose/mL in CAdV-1-containing cell culture supernatant. Viral genomes were not amplified of canine adenovirus 2 or of several bovine, porcine, and avian adenoviruses. In silico analysis provided no indication of amplification of other heterologous genomes. The sensitivity of the real-time assay exceeded that of a conventional gel-based CAdV-1 PCR by a factor of 100. Following the integration of the novel PCR into the Hessian wildlife-monitoring program, CAdV-1 DNA was detected in none of the tested raccoons ( n = 48) but in 11 of 97 foxes.

  15. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction.

    Science.gov (United States)

    Ha, Y; Fessehaie, A; Ling, K S; Wechter, W P; Keinath, A P; Walcott, R R

    2009-06-01

    To improve the simultaneous detection of two pathogens in cucurbit seed, a combination of magnetic capture hybridization (MCH) and multiplex real-time polymerase chain reaction (PCR) was developed. Single-stranded DNA hybridization capture probes targeting DNA of Acidovorax avenae subsp. citrulli, causal agent of bacterial fruit blotch, and Didymella bryoniae, causal agent of gummy stem blight, were covalently attached to magnetic particles and used to selectively concentrate template DNA from cucurbit seed samples. Sequestered template DNAs were subsequently amplified by multiplex real-time PCR using pathogen-specific TaqMan PCR assays. The MCH multiplex real-time PCR assay displayed a detection threshold of A. avenae subsp. citrulli at 10 CFU/ml and D. bryoniae at 10(5) conidia/ml in mixtures of pure cultures of the two pathogens, which was 10-fold more sensitive than the direct real-time PCR assays for the two pathogens separately. Although the direct real-time PCR assay displayed a detection threshold for A. avenae subsp. citrulli DNA of 100 fg/microl in 25% (1/4 samples) of the samples assayed, MCH real-time PCR demonstrated 100% detection frequency (4/4 samples) at the same DNA concentration. MCH did not improve detection sensitivity for D. bryoniae relative to direct real-time PCR using conidial suspensions or seed washes from D. bryoniae-infested cucurbit seed. However, MCH real-time PCR facilitated detection of both target pathogens in watermelon and melon seed samples (n = 5,000 seeds/sample) in which 0.02% of the seed were infested with A. avenae subsp. citrulli and 0.02% were infested with D. bryoniae.

  16. Exploring possible DNA structures in real-time polymerase kinetics using Pacific Biosciences sequencer data.

    Science.gov (United States)

    Sawaya, Sterling; Boocock, James; Black, Michael A; Gemmell, Neil J

    2015-01-28

    Pausing of DNA polymerase can indicate the presence of a DNA structure that differs from the canonical double-helix. Here we detail a method to investigate how polymerase pausing in the Pacific Biosciences sequencer reads can be related to DNA sequences. The Pacific Biosciences sequencer uses optics to view a polymerase and its interaction with a single DNA molecule in real-time, offering a unique way to detect potential alternative DNA structures. We have developed a new way to examine polymerase kinetics data and relate it to the DNA sequence by using a wavelet transform of read information from the sequencer. We use this method to examine how polymerase kinetics are related to nucleotide base composition. We then examine tandem repeat sequences known for their ability to form different DNA structures: (CGG)n and (CG)n repeats which can, respectively, form G-quadruplex DNA and Z-DNA. We find pausing around the (CGG)n repeat that may indicate the presence of G-quadruplexes in some of the sequencer reads. The (CG)n repeat does not appear to cause polymerase pausing, but its kinetics signature nevertheless suggests the possibility that alternative nucleotide conformations may sometimes be present. We discuss the implications of using our method to discover DNA sequences capable of forming alternative structures. The analyses presented here can be reproduced on any Pacific Biosciences kinetics data for any DNA pattern of interest using an R package that we have made publicly available.

  17. Development and Validation of a TaqMan Real-Time PCR Assay for the Specific Detection and Quantification of Fusarium fujikuroi in Rice Plants and Seeds.

    Science.gov (United States)

    Carneiro, Greice Amaral; Matić, Slavica; Ortu, Giuseppe; Garibaldi, Angelo; Spadaro, Davide; Gullino, Maria Lodovica

    2017-07-01

    Bakanae disease, which is caused by the seedborne pathogen Fusarium fujikuroi, is found throughout the world on rice. A TaqMan real-time PCR has been developed on the TEF 1-α gene to detect F. fujikuroi in different rice tissues. Three primer/probe sets were tested. The selected set produced an amplicon of 84 bp and was specific for F. fujikuroi with respect to eight Fusarium species of rice and six other rice common pathogens. The assay was validated for specificity, selectivity, sensitivity, repeatability, and reproducibility. The detection limit was set at 27.5 fg of DNA, which is approximately equivalent to one haploid genome of F. fujikuroi. The developed TaqMan real-time assay was able to efficiently detect and quantify F. fujikuroi from rice culms, leaves, roots, and seeds. At 1 week post-germination (wpg), the pathogen was more diffused in the green tissues, while at 3 wpg it was uniformly spread also in the roots. The highest concentration of F. fujikuroi was measured in the M6 cultivar, which showed around 1,450 fungal cells/g. The assay was sufficiently sensitive to detect a few genomic equivalents in the rice seeds, corresponding to 9.89 F. fujikuroi cells/g. The assay permitted bakanae disease to be detected in asymptomatic tissues at the early rice development stages.

  18. Simultaneous detection and differentiation of three Potyviridae viruses in sweet potato by a multiplex TaqMan real time RT-PCR assay.

    Science.gov (United States)

    Lan, Pingxiu; Li, Fan; Abad, Jorge; Pu, Lingling; Li, Ruhui

    2018-02-01

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay was compared with a multiplex RT-PCR developed in the initial study for the detection and differentiation of the three viruses and host 18S rRNA. Primers and/or probes of the two assays were designed from conserved regions of each virus. The two assays were optimized for primers/probes and primer concentrations and thermal cycling conditions. Sensitivity and specificity of the assays were compared each other and with other assay. Both assays were evaluated by 74 field samples original from five different provinces of China. showed that the TaqMan real time RT-PCR offered rapid, sensitive, effective and reliable for the simultaneous detection and differentiation of the three viruses in sweet potato plants. The assay will be useful to quarantine and certification programs and virus surveys when large numbers of samples are tested. Copyright © 2017. Published by Elsevier B.V.

  19. Identification of Campylobacter jejuni and determination of point mutations associated with macrolide resistance using a multiplex TaqMan MGB real-time PCR.

    Science.gov (United States)

    Hao, H; Liu, J; Kuang, X; Dai, M; Cheng, G; Wang, X; Peng, D; Huang, L; Ahmad, I; Ren, N; Liu, Z; Wang, Y; Yuan, Z

    2015-06-01

    The aim of the study was to develop a multiplex real-time PCR method to identify Campylobacter jejuni containing mutations commonly associated with macrolide resistance. A multiplex fluorescence real-time PCR assay was developed based on TaqMan minor groove binder (MGB) probes. The VS1-MGB probe was designed based on the VS1 gene and was used to identify Camp. jejuni. The 23S rDNA-MGB probe was designed to distinguish macrolide resistance mutations in 23S rDNA, while 57D-MGB and 74D-MGB were designed to detect resistance mutations in ribosomal protein L4. The specificity and accuracy of our method were identical to the conventional biochemical tests, mapA PCR, minimum inhibitory concentration (MIC) determination and DNA sequencing. The linear detection limit of the method was 0·03 ng genomic DNA and three colony formation unit (CFU) per reaction. In 6 of 18 cases, the nature of Erythromycin resistance could be correctly determined from natural isolates; absence of the tested mutations was demonstrated in the remaining four resistant isolates. A multiplex TaqMan MGB real-time PCR assay with high specificity and accuracy was developed to simultaneously identify Camp. jejuni and detect the gene mutations associated with macrolide resistance. This multiplex method can potentially simplify the identification of Camp. jejuni and determine macrolide resistance due to mutations in 23S rDNA or ribosomal protein L4. This method has a potential for application in different research areas and molecular surveillance. © 2015 The Society for Applied Microbiology.

  20. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    Science.gov (United States)

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens.

    Science.gov (United States)

    Qu, X S; Wanner, L A; Christ, B J

    2011-03-01

    To develop a multiplex real-time PCR assay using TaqMan probes for the simultaneous detection and discrimination of potato powdery scab and common scab, two potato tuber diseases with similar symptoms, and the causal pathogens Spongospora subterranea and plant pathogenic Streptomyces spp. Real-time PCR primers and a probe for S. subterranea were designed based on the DNA sequence of the ribosomal RNA ITS2 region. Primers and a probe for pathogenic Streptomyces were designed based on the DNA sequence of the txtAB genes. The two sets of primer pairs and probes were used in a single real-time PCR assay. The multiplex real-time PCR assay was confirmed to be specific for S. subterranea and pathogenic Streptomyces. The assay detected DNA quantities of 100 fg for each of the two pathogens and linear responses and high correlation coefficients between the amount of DNA and C(t) values for each pathogen were achieved. The presence of two sets of primer pairs and probes and of plant extracts did not alter the sensitivity and efficiency of multiplex PCR amplification. Using the PCR assay, we could discriminate between powdery scab and common scab tubers with similar symptoms. Common scab and powdery scab were detected in some tubers with no visible symptoms. Mixed infections of common scab and powdery scab on single tubers were also revealed. This multiplex real-time PCR assay is a rapid, cost efficient, specific and sensitive tool for the simultaneous detection and discrimination of the two pathogens on infected potato tubers when visual symptoms are inconclusive or not present. Accurate and quick identification and discrimination of the cause of scab diseases on potatoes will provide critical information to potato growers and researchers for disease management. This is important because management strategies for common and powdery scab diseases are very different. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA

    Directory of Open Access Journals (Sweden)

    Ana Lisa do Vale Gomes

    2006-10-01

    Full Text Available This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA. The efficiency was 0.99 and the correlation coefficient (R² was 0.97. When different copy numbers of the target amplicon were used as standards, the assay could detect at least 10 copies of the specific target. The primers used were designed to amplify a 106 bp DNA fragment (Tm 83ºC. The assay was highly specific for S. mansoni, and did not recognize DNA from closely related non-schistosome trematodes. The real time PCR allowed for accurate quantification of S. mansoni DNA and no time-consuming post-PCR detection of amplification products by gel electrophoresis was required. The assay is potentially able to quantify S. mansoni DNA (and indirectly parasite burden in a number of samples, such as snail tissue, serum and feces from patients, and cercaria infested water. Thus, these PCR protocols have potential to be used as tools for monitoring of schistosome transmission and quantitative diagnosis of human infection.

  3. Development of Capillary Loop Convective Polymerase Chain Reaction Platform with Real-Time Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Wen-Pin Chou

    2017-02-01

    Full Text Available Polymerase chain reaction (PCR has been one of the principal techniques of molecular biology and diagnosis for decades. Conventional PCR platforms, which work by rapidly heating and cooling the whole vessel, need complicated hardware designs, and cause energy waste and high cost. On the other hand, partial heating on the various locations of vessels to induce convective solution flows by buoyancy have been used for DNA amplification in recent years. In this research, we develop a new convective PCR platform, capillary loop convective polymerase chain reaction (clcPCR, which can generate one direction flow and make the PCR reaction more stable. The U-shaped loop capillaries with 1.6 mm inner diameter are designed as PCR reagent containers. The clcPCR platform utilizes one isothermal heater for heating the bottom of the loop capillary and a CCD device for detecting real-time amplifying fluorescence signals. The stable flow was generated in the U-shaped container and the amplification process could be finished in 25 min. Our experiments with different initial concentrations of DNA templates demonstrate that clcPCR can be applied for precise quantification. Multiple sample testing and real-time quantification will be achieved in future studies.

  4. Accuracy of real-time polymerase chain reaction for Toxoplasma gondii in amniotic fluid.

    Science.gov (United States)

    Wallon, Martine; Franck, Jacqueline; Thulliez, Philippe; Huissoud, Cyril; Peyron, François; Garcia-Meric, Patricia; Kieffer, François

    2010-04-01

    To provide clinicians with information about the accuracy of real-time polymerase chain reaction (PCR) analysis of amniotic fluid for the prenatal diagnosis of congenital Toxoplasma infection. This was a prospective cohort study of women with Toxoplasma infection identified by prenatal screening in three centers routinely carrying out real-time PCR for the detection of Toxoplasma gondii in amniotic fluid. The data available were gestational age at maternal infection, types and dates of maternal treatment, results of amniocentesis and neonatal work-up and definitive infectious status of the child. We estimated sensitivity, specificity and positive and negative predictive values both overall and per trimester of pregnancy at the time of maternal infection. Polymerase chain reaction analysis was carried out on amniotic fluid for 261 of the 377 patients included (69%). It was accurate with the exception of four negative results in children who were infected. Overall sensitivity and negative predictive value were 92.2% (95% confidence interval [CI] 81-98%) and 98.1% (95% CI 95-99.5%), respectively. There was no significant association with the trimester of pregnancy during which maternal infection occurred. Specificity and positive predictive values of 100% were obtained for all trimesters. Real-time PCR analysis significantly improves the detection of T. gondii on amniotic fluid. It provides an accurate tool to predict fetal infection and to decide on appropriate treatment and surveillance. However, postnatal follow-up remains necessary in the first year of life to fully exclude infection in children for whom PCR results were negative. III.

  5. Quantification of ochratoxin A-producing molds in food products by SYBR Green and TaqMan real-time PCR methods

    DEFF Research Database (Denmark)

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M. Isabel

    2011-01-01

    Ochratoxin A (OTA) is a mycotoxin synthesized by a variety of different fungi, most of them from the genera Penicillium and Aspergillus. Early detection and quantification of OTA producing species is crucial to improve food safety. In the present work, two protocols of real-time qPCR based on SYBR...... 1 and 10 conidia/g for SYBR Green assay and TaqMan. No significant differences were found between the Ct values obtained from pure mold DNA and pure mold DNA mixed with food DNA. The ability of the designed qPCR methods to quantify two known conidial suspensions inoculated on several foods...... was evaluated. The amount of conidia assessed by both qPCR methods was close to the inoculated amount for most foods and indicates that the described procedure holds potential for use for the detection and quantification of OTA producing molds in foods....

  6. A TaqMan real-time PCR assay for detection of Meloidogyne hapla in root galls and in soil

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Skantar, Andrea M.; Nicolaisen, Mogens

    2016-01-01

    . haplaand showed no significant amplification of DNA from non-target nematodes. The assay was able to detect M. haplain a background of plant and soil DNA. A dilution series of M. haplaeggs in soil showed a high correlation ( R 2 = 0 . 95 , P ...Early detection and quantification of Meloidogyne haplain soil is essential for effective disease management. The purpose of this study was to develop a real-time PCR assay for detection of M. haplain soil. Primers and a TaqMan probe were designed for M. hapladetection. The assay detected M......-knot development in carrots by testing soils before planting. The assay could be useful for management decisions in carrot cultivation....

  7. Improved Safety for Molecular Diagnosis of Classical Rabies Viruses by Use of a TaqMan Real-Time Reverse Transcription-PCR "Double Check" Strategy

    DEFF Research Database (Denmark)

    Hoffmann, B.; Freuling, C. M.; Wakeley, P. R.

    2010-01-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus...... sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany......), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome...

  8. Development, optimization, and validation of a Classical swine fever virus real-time reverse transcription polymerase chain reaction assay.

    Science.gov (United States)

    Eberling, August J; Bieker-Stefanelli, Jill; Reising, Monica M; Siev, David; Martin, Barbara M; McIntosh, Michael T; Beckham, Tammy R

    2011-09-01

    Classical swine fever (CSF) is an economically devastating disease of pigs. Instrumental to the control of CSF is a well-characterized assay that can deliver a rapid, accurate diagnosis prior to the onset of clinical signs. A real-time fluorogenic-probe hydrolysis (TaqMan) reverse transcription polymerase chain reaction (RT-PCR) for CSF was developed by the United States Department of Agriculture (USDA) at the Plum Island Animal Disease Center (CSF PIADC assay) and evaluated for analytical and diagnostic sensitivity and specificity. A well-characterized panel including Classical swine fever virus (CSFV), Bovine viral diarrhea virus (BVDV), and Border disease virus (BDV) isolates was utilized in initial feasibility and optimization studies. The assay was initially designed and validated for use on the ABI 7900HT using the Qiagen QuantiTect® Probe RT-PCR chemistry. However, demonstrating equivalency with multiple one-step RT-PCR chemistries and PCR platforms increased the versatility of the assay. Limit of detection experiments indicated that the Qiagen QuantiTect® Multiplex (NoROX) and the Invitrogen SuperScript® III RT-PCR kits were consistently the most sensitive one-step chemistries for use with the CSF PIADC primer/probe set. Analytical sensitivity of the CSF PIADC assay ranged from <1-2.95 log(10) TCID(50)/ml on both the ABI 7900HT and ABI 7500 platforms. The CSF PIADC assay had 100% diagnostic sensitivity and specificity when tested on a panel of 152 clinical samples from the Dominican Republic and Colombia. The ability to perform this newly developed assay in 96-well formats provides an increased level of versatility for use in CSF surveillance programs.

  9. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples.

    Directory of Open Access Journals (Sweden)

    Maria Doroteia Campos

    Full Text Available Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR amplification of target genes belonging to the alternative oxidase (AOX gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.

  10. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples.

    Science.gov (United States)

    Campos, Maria Doroteia; Valadas, Vera; Campos, Catarina; Morello, Laura; Braglia, Luca; Breviario, Diego; Cardoso, Hélia G

    2018-01-01

    Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.

  11. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations.

    Directory of Open Access Journals (Sweden)

    Dawn N Birdsell

    Full Text Available Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis, therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays

  12. New design, development, and optimization of an in-house quantitative TaqMan Real-time PCR assay for HIV-1 viral load measurement.

    Science.gov (United States)

    Noorbazargan, Hassan; Nadji, Seyed Alireza; Samiee, Siamak Mirab; Paryan, Mahdi; Mohammadi-Yeganeh, Samira

    2018-02-23

    Background Viral load measurement is commonly applicable to monitor HIV infection in patients to determine the number of HIV-RNA in serum samples of individuals. The aim of the present study was to set up a highly specific, sensitive, and reproducible home-brewed Real-time PCR assay based on TaqMan chemistry to quantify HIV-1 RNA genome. Methods In this study, three sets of primer pairs and a TaqMan probe were designed for HIV subtypes conserved sequences. An internal control was included in this assay to evaluate the presence of inhibition. Standard curve and threshold cycle values were determined using in vitro transcribed RNA from int region of HIV-1. A serial dilution of RNA standards was generated by in vitro transcription, from 10 to 10 9 copies/ml to find the sensitivity and the limit of detection (LOD) of the assay and to evaluate its performance in a quantitative RT-PCR assay. Results The assay has a low LOD equivalent to 33.13 copies/ml of HIV-1 RNA and a linear range of detection from 10 to 10 9 copies/ml. The coefficient of variation (CV) for Inter and Intra-assay precision of this in-house HIV Real-time RT-PCR ranged from 0.28 to 2.49% and 0.72 to 4.47%, respectively. The analytical and clinical specificity was 100%. Conclusions The results indicate that the developed method has a suitable specificity and sensitivity and is highly reproducible and cost-benefit. Therefore, it will be useful to monitor HIV infection in plasma samples of individuals.

  13. Utility of IgM ELISA, TaqMan real-time PCR, reverse transcription PCR, and RT-LAMP assay for the diagnosis of Chikungunya fever.

    Science.gov (United States)

    Reddy, Vijayalakshmi; Ravi, Vasanthapuram; Desai, Anita; Parida, Manmohan; Powers, Ann M; Johnson, Barbara W

    2012-11-01

    Chikungunya fever a re-emerging infection with expanding geographical boundaries, can mimic symptoms of other infections like dengue, malaria which makes the definitive diagnosis of the infection important. The present study compares the utility of four laboratory diagnostic methods viz. IgM capture ELISA, an in house reverse transcription PCR for the diagnosis of Chikungunya fever, TaqMan real-time PCR, and a one step reverse transcription-loop mediated isothermal amplification assay (RT-LAMP). Out of the 70 serum samples tested, 29 (41%) were positive for Chikungunya IgM antibody by ELISA and 50 (71%) samples were positive by one of the three molecular assays. CHIKV specific nucleic acid was detected in 33/70 (47%) by reverse transcription PCR, 46/70 (66%) by TaqMan real-time PCR, and 43/70 (62%) by RT-LAMP assay. A majority of the samples (62/70; 89%) were positive by at least one of the four assays used in the study. The molecular assays were more sensitive for diagnosis in the early stages of illness (2-5 days post onset) when antibodies were not detectable. In the later stages of illness, the IgM ELISA is a more sensitive diagnostic test. In conclusion we recommend that the IgM ELISA be used as an initial screening test followed one of the molecular assays in samples that are collected in the early phase of illness and negative for CHIKV IgM antibodies. Such as approach would enable rapid confirmation of the diagnosis and implementation of public health measures especially during outbreaks. Copyright © 2012 Wiley Periodicals, Inc.

  14. Development and application of a real-time polymerase chain reaction method for Campylobacter jejuni detection.

    Science.gov (United States)

    Zhang, Mao-Jun; Qiao, Bo; Xu, Xue-Bin; Zhang, Jian-Zhong

    2013-05-28

    To develop a real-time polymerase chain reaction (PCR) method to detect and quantify Campylobacter jejuni (C. jejuni) from stool specimens. Primers and a probe for real-time PCR were designed based on the specific DNA sequence of the hipO gene in C. jejuni. The specificity of the primers and probe were tested against a set of Campylobacter spp. and other enteric pathogens. The optimal PCR conditions were determined by testing a series of conditions with standard a C. jejuni template. The detection limits were obtained using purified DNA from bacterial culture and extracted DNA from the stool specimen. Two hundred and forty-two specimens were analyzed for the presence of C. jejuni by direct bacterial culture and real-time PCR. The optimal PCR system was determined using reference DNA templates, 1 × uracil-DNA glycosylase, 3.5 mmol/L MgCl2, 1.25 U platinum Taq polymerase, 0.4 mmol/L PCR nucleotide mix, 0.48 μmol/L of each primer, 0.2 μmol/L of probe and 2 μL of DNA template in a final volume of 25 μL. The PCR reaction was carried as follows: 95 °C for 4 min, followed by 45 cycles of 10 s at 95 °C and 30 s at 59 °C. The detection limit was 4.3 CFU/mL using purified DNA from bacterial culture and 10(3) CFU/g using DNA from stool specimens. Twenty (8.3%, 20/242) C. jejuni strains were isolated from bacterial culture, while 41 (16.9%, 41/242) samples were found to be positive by real-time PCR. DNA sequencing of the PCR product indicated the presence of C. jejuni in the specimen. One mixed infection of C. jejuni and Salmonella was detected in one specimen and the PCR test for this specimen was positive. The sensitivity of detection of C. jejuni from stool specimens was much higher using this PCR assay than using the direct culture method.

  15. Real-time dynamics of RNA Polymerase II clustering in live human cells

    Science.gov (United States)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  16. Clinical evaluation of a quantitative real time polymerase chain reaction assay for diagnosis of primary Epstein-Barr virus infection in children.

    Science.gov (United States)

    Pitetti, Raymond D; Laus, Stella; Wadowsky, Robert M

    2003-08-01

    Epstein-Barr virus (EBV) infectious mononucleosis is often diagnosed based on characteristic clinical features and either a positive heterophil antibody test or serology, both of which can be unreliable in young children. Real time quantitative PCR assays that measure EBV DNA load in serum or plasma are highly sensitive in young children, but serum and plasma contain inhibitors of PCR which must be removed by DNA extraction techniques. A real time TaqMan PCR assay was designed and evaluated for simultaneously measuring EBV DNA load and validating the removal of PCR inhibitors from serum samples. A serum sample was available from patients classified serologically as primary EBV infection (n = 28), EBV-seronegative (n = 25) and EBV-seropositive (n = 26). Patients were classified as having EBV infectious mononucleosis if they had specified clinical findings and > or =10% atypical lymphocytes in peripheral blood or had a positive Monospot test result. DNA was purified by a spin column method and tested in PCR reactions with primers for EBV DNA polymerase gene and internal control targets. Amplification of the two PCR products was measured in real time with separate TaqMan DNA probes labeled with various fluorescent reporters. The mean age of study patients was 9 years, 4 months. Twenty-one (75%) of the patients in the primary EBV infection group, one (4%) of the seronegatives and none of the seropositives had detectable EBV DNA. Within the primary infection group, those with detectable virus were more likely than those without detectable virus to have evidence of lymphadenopathy (14 of 16 vs.1 of 5; P = 0.011), higher mean atypical (11.7 vs.0.9%; P = 0.002) and absolute atypical (1.5 vs.0.1 x 109/l; P = 0.004) lymphocyte count, higher mean absolute lymphocyte count (4.7 vs.2.3 x 109/l; P = 0.026) and higher mean aspartate aminotransferase value (119.8 vs.37.3 IU/l; P = 0.036). Ten patients, all in the primary infection group, had EBV infectious mononucleosis, and all

  17. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  18. A real-time reverse transcriptase polymerase chain reaction for detection and quantification of Vesiculovirus

    Directory of Open Access Journals (Sweden)

    Aline Lavado Tolardo

    2016-06-01

    Full Text Available Vesiculoviruses (VSV are zoonotic viruses that cause vesicular stomatitis disease in cattle, horses and pigs, as well as sporadic human cases of acute febrile illness. Therefore, diagnosis of VSV infections by reliable laboratory techniques is important to allow a proper case management and implementation of strategies for the containment of virus spread. We show here a sensitive and reproducible real-time reverse transcriptase polymerase chain reaction (RT-PCR for detection and quantification of VSV. The assay was evaluated with arthropods and serum samples obtained from horses, cattle and patients with acute febrile disease. The real-time RT-PCR amplified the Piry, Carajas, Alagoas and Indiana Vesiculovirus at a melting temperature 81.02 ± 0.8ºC, and the sensitivity of assay was estimated in 10 RNA copies/mL to the Piry Vesiculovirus. The viral genome has been detected in samples of horses and cattle, but not detected in human sera or arthropods. Thus, this assay allows a preliminary differential diagnosis of VSV infections.

  19. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    Science.gov (United States)

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  20. Real-Time Polymerase Chain Reaction Quantification of Phytophthora capsici in Different Pepper Genotypes.

    Science.gov (United States)

    Silvar, C; Díaz, J; Merino, F

    2005-12-01

    ABSTRACT Reliable and sensitive quantification of Phytophthora capsici in pepper plants is of crucial importance in managing the multiple syndromes caused by this pathogen. A real-time polymerase chain reaction (PCR) assay was developed for the determination of P. capsici in pepper tissues. DNA levels of a highly virulent and a less virulent isolate were measured in different pepper genotypes with varying degrees of resistance. Using SYBR Green and specific primers for P. capsici, the minimal amount of pathogen DNA quantified was 10 pg. Pathogen DNA was recorded as early as 8 h postinoculation. Thereafter, the increase was rapid in susceptible cultivars and slower in resistant ones. The amount of pathogen DNA quantified in each pepper genotype correlated with susceptibility to Phytophthora root rot. Likewise, there was a relationship between the virulence of the pathogen and the degree of colonization. Differences also were found in oomycete amount among pepper tissues, with maximal pathogen biomass occurring in stems. The real-time PCR technique developed in this study was sensitive and robust enough to assess both pathogen development and resistance to Phytophthora root rot in different pepper genotypes.

  1. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    Directory of Open Access Journals (Sweden)

    Meng Shuang

    2010-06-01

    Full Text Available Abstract Background The hepatitis C virus (HCV genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM, at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP/COBAS TaqMan (CTM assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection.

  2. A real time Taqman RT-PCR for the detection of rabbit hemorrhagic disease virus 2 (RHDV2).

    Science.gov (United States)

    Duarte, Margarida Dias; Carvalho, Carina L; Barros, Silvia C; Henriques, Ana M; Ramos, Fernanda; Fagulha, Teresa; Luís, Tiago; Duarte, Elsa L; Fevereiro, Miguel

    2015-07-01

    A specific real time RT-PCR for the detection of RHDV2 was developed and validated using RHDV and RHDV2 RNA preparations from positive field samples. The system was designed to amplify a 127 nucleotide-long RNA region located within the vp60 gene, based on the alignment of six sequences originated in Portugal, obtained in our laboratory, and 11 sequences from France and Italy. The primers and probe target sequences are highly conserved in the vast majority of the RHDV2 sequences presently known. In the sequences showing variability, only one mismatch is found per strain, usually outlying the 3' end of the primer or probe hybridization sequences. The specificity of the method was demonstrated in vitro with a panel of common rabbit pathogens. Standardization was performed with RNA transcripts obtained from a recombinant plasmid harboring the target sequence. The method was able to detected nine RNA molecules with an efficiency of 99.4% and a R(2) value of 1. Repeatability and reproducibility of the method were very high, with coefficients of variation lower than 2.40%. The assay was proven a valuable tool to diagnose most of RDVH2 circulating strains, and may be also useful to monitor viral loads, and consequently, disease progression and vaccination efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Analytical variables influencing the HCV RNA determination by TaqMan real-time PCR in routine clinical laboratory practice.

    Science.gov (United States)

    Raza, Abida; Ali, Zameer; Irfan, Javaid; Murtaza, Shahnaz; Shakeel, Samina

    2012-07-01

    Hepatitis C virus (HCV) quantification is used as a prognostic marker for treatment success. In a routine clinical laboratory some infinitesimal sample handling factors can contribute to variability and loss of precision in HCV quantification. This may include blood collection tubes, blood drawing procedure, sample processing and storage temperatures. In current study blood was collected in tubes with different anticoagulant type (spray vs. liquid), group 1, blood was drawn with possible suck of methylated spirit through needle (experimental group) while avoiding the methylated spirit suck (control group) group 2, plasma separation was delayed from 0 to 60 min for group 3, plasma storage at different temperatures group 4. All samples were analyzed using Corbett research real time PCR system using AJ Roboscreen Kit. Mean viral load difference between spray vs. liquid was found 3.6 × 10(5) IU/ml (p spirit inhibited the viral load quantification with a value of 4.8 × 10(5) IU/ml (p levels (p > 0.05). In conclusion blood collection tubes and procedures can be a key factor in variability of results, that might affect the treatment response decision.

  4. Development and validation of a novel hydrolysis probe real-time polymerase chain reaction for agamid adenovirus 1 in the central bearded dragon (Pogona vitticeps).

    Science.gov (United States)

    Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X

    2015-03-01

    Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. © 2015 The Author(s).

  5. Detection of Typhoidal and Paratyphoidal Salmonella in Blood by Real-time Polymerase Chain Reaction.

    Science.gov (United States)

    Tennant, Sharon M; Toema, Deanna; Qamar, Farah; Iqbal, Najeeha; Boyd, Mary Adetinuke; Marshall, Joanna M; Blackwelder, William C; Wu, Yukun; Quadri, Farheen; Khan, Asia; Aziz, Fatima; Ahmad, Kumail; Kalam, Adil; Asif, Ehtisham; Qureshi, Shahida; Khan, Erum; Zaidi, Anita K; Levine, Myron M

    2015-11-01

    The gold standard for diagnosis of enteric fever caused by Salmonella Typhi or Salmonella Paratyphi A or B is bone marrow culture. However, because bone marrow aspiration is highly invasive, many hospitals and large health centers perform blood culture instead. As blood culture has several limitations, there is a need for novel typhoid diagnostics with improved sensitivity and more rapid time to detection. We developed a clyA-based real-time polymerase chain reaction (qPCR) method to detect Salmonella Typhi and Salmonella Paratyphi A simultaneously in blood. The sensitivity and specificity of this probeset was first evaluated in vitro in the laboratory and then in a typhoid-endemic population, in Karachi, Pakistan, and in healthy US volunteers. We optimized a DNA extraction and real-time PCR-based method that could reliably detect 1 colony-forming unit/mL of Salmonella Typhi. The probe set was able to detect clinical Salmonella Typhi and Salmonella Paratyphi A strains and also diarrheagenic Escherichia coli, but not invasive E. coli or other invasive bacteria. In the field, the clyA qPCR diagnostic was 40% as sensitive as blood culture. However, when qPCR-positive specimens were considered to be true positives, blood culture only exhibited 28.57% sensitivity. Specificity was ≥90% for all comparisons and in the healthy US volunteers. qPCR was significantly faster than blood culture in terms of detection of typhoid and paratyphoid. Based on lessons learned, we recommend that future field trials of this and other novel diagnostics that detect typhoidal and nontyphoidal Salmonella employ multiple methodologies to define a "positive" sample. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Cytogenetic and real-time quantitative reverse-transcriptase polymerase chain reaction analyses in pleomorphic rhabdomyosarcoma.

    Science.gov (United States)

    Li, Guidong; Ogose, Akira; Kawashima, Hiroyuki; Umezu, Hajime; Hotta, Tetsuo; Tohyama, Tsuyoshi; Ariizumi, Takashi; Endo, Naoto

    2009-07-01

    Pleomorphic rhabdomyosarcoma (PRMS) is a rare variant of rhabdomyosarcoma that occurs mostly in adults. A few cytogenetic studies of PRMS have been reported, but no consistent specific chromosome aberrations were detected. We herein report a cytogenetic study of three cases of pleomorphic rhabdomyosarcoma using a conventional G-banded karyotyping analysis. The three cases appeared to exhibit an extremely complex karyotype with numeric and structural rearrangements. Although the three cases displayed several common aberrations, including -2, -4, -9, -13, -14, -15, -19, -21, add(X)(p11), add(1)(q11), add(7)(p11), and add(13)(p11), no recurrent characteristic chromosomal aberrations could be detected. In addition, among these cases and seven other cases of previously reported PRMS, the most frequent chromosomal alterations were -2, -13, -14, -15, -16, and -19. No obviously consistent structural alterations can be found in these 10 PRMS cases, however, thereby suggesting that it is difficult to confirm whether these complex karyotypes correlated with the diagnosis or clinical outcome in PRMS. In this study, we detected MyoD1 and myogenin gene transcripts at the mRNA level in four cases of PRMS together with other soft-tissue sarcomas, including seven cases of malignant fibrous hitiocytoma, five cases of liposacroma, and three cases of leiomyosacroma using a real-time quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis. High-level expressions of MyoD1 and myogenin gene transcripts were determined in all cases of PRMS. In contrast, the other non-PRMS sarcomas showed either no expression or extremely weak expressions for both genes. Our findings suggest that the detections of MyoD1 and myogenin transcripts using real-time quantitative RT-PCR, combined with immunohistochemical stains, are extremely sensitive and useful for the diagnosis of PRMS.

  7. Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification.

    Science.gov (United States)

    Murinda, Shelton E; Ibekwe, A Mark; Zulkaffly, Syaizul; Cruz, Andrew; Park, Stanley; Razak, Nur; Paudzai, Farah Md; Ab Samad, Liana; Baquir, Khairul; Muthaiyah, Kokilah; Santiago, Brenna; Rusli, Amirul; Balkcom, Sean

    2014-07-01

    Shiga toxin-producing Escherichia coli (STEC) are a major family of foodborne pathogens of public health, zoonotic, and economic significance in the United States and worldwide. To date, there are no published reports on use of recombinase polymerase amplification (RPA) for STEC detection. The primary goal of this study was to assess the potential application of RPA in detection of STEC. This study focused on designing and evaluating RPA primers and fluorescent probes for isothermal (39°C) detection of STEC. Compatible sets of candidate primers and probes were designed for detection of Shiga toxin 1 and 2 (Stx1 and 2), respectively. The sets were evaluated for specificity and sensitivity against STEC (n=12) of various stx genotypes (stx1/stx2, stx1, or stx2, respectively), including non-Stx-producing E. coli (n=28) and other genera (n=7). The primers and probes that were designed targeted amplification of the subunit A moiety of stx1 and stx2. The assay detected STEC in real time (within 5-10 min at 39°C) with high sensitivity (93.5% vs. 90%; stx1 vs. stx2), specificity (99.1% vs. 100%; stx1 vs. stx2), and predictive value (97.9% for both stx1 vs. stx2). Limits of detection of ∼ 5-50 colony-forming units/mL were achieved in serially diluted cultures grown in brain heart infusion broth. This study successfully demonstrated for the first time that RPA can be used for isothermal real-time detection of STEC.

  8. Real time polymerase chain reaction in diagnosis of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Tashfeen, S.; Ahmed, S.; Bhatti, F.A.; Ali, N.

    2014-01-01

    Objective: To compare the sensitivity and specificity of Real Time Polymerase Chain Reaction (RT-PCR) with conventional cytogenetics in diagnosis of chronic myeloid leukemia. Study Design: A cross-sectional, analytical study. Place and Duration of Study: The Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2010 to January 2012. Methodology: A total number of 40 patients were studied, in which all were diagnosed as CML on peripheral blood and bone marrow aspiration. The subjects were tested for the presence of Philadelphia (Ph) chromosome by cytogenetics and BCR-ABL fusion gene by RT-PCR. 2-3 ml of venous blood was collected, half in sodium heparin (anti-coagulant) for cytogenetics and half in EDTA for PCR. For cytogenetics, cells were cultured for 72 hours in RPMI 1640 medium and examined by arresting in metaphase using Colchicine to identify Philadelphia chromosome. For PCR, RNA extraction was done by Tri Reagent LS (MRC, USA) and cDNA was synthesized using reverse transcriptase and gene specific primer. RT- PCR was done on ABI-7500. The positive samples were identified when fluorescence exceeded threshold limit. Results of cytogenetics and RT PCR were compared. Results: Out of the 40 patients, PCR showed 37 (92.5%) were positive and 3 (7.5%) were negative for BCR-ABL fusion gene, whereas in cytogenetics 28 (70%) were positive for Ph chromosome and 12 (30%) were negative for Ph chromosome. Sensitivity and specificity of cytogenetics was 75.6% and 100% respectively. Conclusion: Real time PCR as compared to cytogenetics is less tedious, gives quick results, does not require multiple sampling due to culture failure and can be done on peripheral blood. (author)

  9. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples.

    Directory of Open Access Journals (Sweden)

    Tomas Duffy

    Full Text Available BACKGROUND: The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. METHODS/PRINCIPAL FINDINGS: We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD of 0.70 parasite equivalents/mL and a limit of quantification (LOQ of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. CONCLUSIONS/SIGNIFICANCE: The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment.

  10. Utility of Real-Time Quantitative Polymerase Chain Reaction in Detecting Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Zhongquan Lv

    2017-01-01

    Full Text Available This study aimed to assess the value of real-time quantitative polymerase chain reaction (RT-qPCR for the detection of Mycobacterium tuberculosis (MTB. Samples from 192 patients with suspected MTB were examined by RT-qPCR and an improved Löwenstein–Jensen (L-J culture method. To evaluate the diagnostic usefulness of RT-qPCR in detecting MTB, a receiver operating characteristic (ROC curve for RT-qPCR was generated, and the area under the curve (AUC as well as a cutoff value was calculated. Using the L-J culture method as the gold standard, accuracy of the RT-qPCR method for detecting MTB was 92.7%, with sensitivity and specificity of 62.5% and 97.02%, respectively. In comparison with the improved L-J culture method, the AUC of RT-qPCR ROC curve was 0.957, which was statistically significant (p<0.001. The Youden Index reached the maximum value (0.88 for gene copy number of 794.5 IU/mL, which was used as the cutoff value. RT-qPCR detection of MTB yielded results consistent with those of the improved L-J culture method, with high accuracy. RT-qPCR may be used as an auxiliary method for etiological diagnosis of tuberculosis.

  11. Real-time polymerase chain reaction in the diagnosis of acute postoperative endophthalmitis.

    Science.gov (United States)

    Joseph, Cornelia Reena; Lalitha, Prajna; Sivaraman, Kavitha R; Ramasamy, Kim; Behera, Umesh Chandra

    2012-06-01

    To evaluate the efficacy of quantitative real-time polymerase chain reaction (qPCR) in the diagnosis of postoperative bacterial endophthalmitis among patients who underwent cataract surgery at a tertiary care center. Prospective experimental study. This was a single-center study of 64 eyes of 64 patients presenting with clinical signs and symptoms of endophthalmitis within 1 year of cataract surgery. Patients with glaucoma filtering or cornea surgery in the past year, postoperative trauma, fungal endophthalmitis, or preoperative inflammatory conditions were excluded. Vitreous samples were obtained during vitreous tap or vitrectomy and sent for both culture and qPCR with sequencing. Vitreous samples obtained from 50 patients undergoing vitrectomy for noninflammatory indications served as controls. The main outcome measures were the sensitivity of qPCR compared to culture and concordance of results of pathogen identification with sequencing vs phenotypic speciation. qPCR detected 16s bacterial DNA in 37 patients (66%), compared to 19 (34%) with traditional culture. Only 1 patient had a positive result by culture (Nocardia species) but negative result by qPCR. For the 18 samples positive by both qPCR and culture, there was a 100% concordance in pathogen identification between sequencing and phenotypic speciation. In cases of suspected bacterial endophthalmitis, qPCR offers an improved diagnostic yield and may be a useful adjunct to traditional culture. Further large-scale clinical studies are needed to elucidate the full clinical utility of qPCR. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A quantitative real-time polymerase chain reaction assay for the seagrass pathogen Labyrinthula zosterae.

    Science.gov (United States)

    Bergmann, Nina; Fricke, Birgit; Schmidt, Martina C; Tams, Verena; Beining, Katrin; Schwitte, Hildegard; Boettcher, Anne A; Martin, Daniel L; Bockelmann, Anna-Christina; Reusch, Thorsten B H; Rauch, Gisep

    2011-11-01

    The protist Labyrinthula zosterae (Phylum Bigyra, sensu Tsui et al. 2009) has been identified as a causative agent of wasting disease in eelgrass (Zostera marina), of which the most intense outbreak led to the destruction of 90% of eelgrass beds in eastern North America and western Europe in the 1930s. Outbreaks still occur today, albeit at a smaller scale. Traditionally, L. zosterae has been quantified by measuring the necrotic area of Z. marina leaf tissue. This indirect method can however only lead to a very rough estimate of pathogen load. Here, we present a quantitative real-time polymerase chain reaction (qPCR) approach to directly detect and quantify L. zosterae in eelgrass tissue. Based on the internal transcribed spacer (ITS) sequences of rRNA genes, species-specific primers were designed. Using our qPCR, we were able to quantify accurately and specifically L. zosterae load both from culture and eelgrass leaves using material from Europe and North America. Our detection limit was less than one L. zosterae cell. Our results demonstrate the potential of this qPCR assay to provide rapid, accurate and sensitive molecular identification and quantification of L. zosterae. In view of declining seagrass populations worldwide, this method will provide a valuable tool for seagrass ecologists and conservation projects. © 2011 Blackwell Publishing Ltd.

  13. Cost analysis of real-time polymerase chain reaction microbiological diagnosis in patients with septic shock.

    Science.gov (United States)

    Alvarez, J; Mar, J; Varela-Ledo, E; Garea, M; Matinez-Lamas, L; Rodriguez, J; Regueiro, B

    2012-11-01

    Antibiotic treatment for septic shock is generally prescribed on an empirical basis using broad-spectrum antibiotics. Molecular diagnostic techniques can detect the presence of microbial DNA in blood within a few hours and facilitate early, targeted treatment. The aim of this study was to evaluate the economic impact of a real-time polymerase chain reaction technique, LightCycler SeptiFast (LSC), in patients with sepsis. A cost-minimisation study was carried out in patients admitted with a diagnosis of severe sepsis or septic shock to the intensive care unit of a university hospital. The stay in the intensive care unit, hospital admission, 28-day and six-month mortality, and the economic cost of the clinical process were also evaluated. The study involved 48 patients in the LSC group and 54 patients in the control group. The total cost was €42,198 in the control group versus €32,228 in the LCS group with statistically significant differences (P average net saving of €9970 per patient. The mortality rate was similar in both groups. The main finding of this study was the significant economic saving afforded by the use of the LCS technique, due to the shortening of intensive care unit stay and the use of fewer antibiotics.

  14. Trends and advances in food analysis by real-time polymerase chain reaction.

    Science.gov (United States)

    Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin

    2016-05-01

    Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.

  15. Determining major genotypes of hepatitis C virus among transplant recipients by real-time polymerase chain reaction assay.

    Science.gov (United States)

    Feyznezhad, Roya; Behzadi, Mohammad Amin; Yaghobi, Ramin; Ziyaeyan, Mazyar

    2015-02-01

    Hepatitis C virus (HCV) infection still exists as a health concern among the transplant patients. Because of the severity of the disease, different responses to treatment, and side effects resulting from long therapeutic period, determination of genotypes and viral loads can help choose the best treatment protocols. This study aimed to determine the HCV genotypes and its distribution patterns among liver, kidney, and bone marrow recipient candidates across Iran, referred to Namazi Hospital, southern Iran. A total of 101 individuals, including 44 (43.6%) liver, 55 (54.5%) kidney, and 2 (2%) bone marrow recipient candidates, with ages ranging between 5 and 74 years (Mean ±SD: 46.53 ± 13.73 y) participated in this study. From those, whole blood sample were collected and anti-HCV antibodies, RNA detection, and genotyping were performed on plasma using commercial chromatographic immunoassay, TaqMan one-step real-time polymerase chain reaction (RT-PCR), and genotyping RT-PCR kits, respectively. The frequencies of anti-HCV antibodies, RNA, various genotypes, and the viral load were compared with respect to gender, age, and transplant recipient groups. Of 101 individuals, 47 (46.5%) were positive for anti-HCV antibodies and 34 (33.7%) for RNA with a significant difference (P < 0.05). RNA copy number ranged from 4.6 × 103 to 3.11 × 107 copies/mL, median: 2.92 × 106 copies/mL, with no statistical differences in all groups. Analyses revealed no significant differences between the frequencies of anti-HCV antibodies or RNA in different groups. The frequencies of the genotypes 1 (50%) and 3 (35.3%) were higher than those of the genotypes 2 (2.9%), 4 (2.9%), and undetermined one (8.8%). Genotype 1 was significantly more prevalent in liver transplant recipients, those older than 40 years, and male cases (P < 0.05). Considering the high frequency of genotypes 1 and 3 among the studied groups, it is suggested that before and after transplantation programs be improved to manage

  16. Performance evaluation of cobas HBV real-time PCR assay on Roche cobas 4800 System in comparison with COBAS AmpliPrep/COBAS TaqMan HBV Test.

    Science.gov (United States)

    Kim, Hanah; Hur, Mina; Bae, Eunsin; Lee, Kyung-A; Lee, Woo-In

    2018-02-19

    Hepatitis B virus (HBV) nucleic acid amplification testing (NAAT) is important for the diagnosis and management of HBV infection. We evaluated the analytical performance of the cobas HBV NAAT (Roche Diagnostics GmbH, Mannheim, Germany) on the cobas 4800 System in comparison with COBAS AmpliPrep/COBAS TaqMan HBV Test (CAP/CTM HBV). Precision was evaluated using three levels of cobas HBV/HCV/HIV-1 Control Kit, and linearity was evaluated across the anticipated measuring range (10.0-1.0×109 IU/mL) at seven levels using clinical samples. Detection capability, including limit of blank (LOB), limit of detection (LOD) and limit of quantitation (LOQ), was verified using the 4th WHO International Standard for HBV DNA for NAT (NIBSC code: 10/266). Correlation between the two systems was compared using 205 clinical samples (102 sera and 103 EDTA plasma). Repeatability and total imprecision (coefficient of variation) ranged from 0.5% to 3.8% and from 0.5% to 3.5%, respectively. Linearity (coefficient of determination, R2) was 0.999. LOB, LOD and LOQ were all acceptable within the observed proportion rate (85%). Correlation was very high between the two systems in both serum and plasma samples (correlation coefficient [r]=0.995). The new cobas HBV real-time PCR assay on the cobas 4800 System showed reliable analytical performances.

  17. Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food.

    Science.gov (United States)

    Xiao, Guan; Qin, Cai; Wenju, Zhang; Qin, Chen

    2016-03-01

    Here, we report the development of a real-time PCR assay using a TaqMan minor groove binder (MGB, Genecore, NCBI: AF249896.1, 806-820) probe and primer sets designed to recognize the α-lactalbumin gene from the cow (Bos taurus). We evaluated the efficacy of this assay for detecting and quantifying cow α-lactalbumin in commercial foods. Our results demonstrated that the developed method was highly sensitive and showed high specificity for cow milk, with consistent detection of 0.05 ng of bovine DNA. We tested 42 commercial food samples with or without cow milk listed as an ingredient by using the developed assay. Among the 42 samples, 26 products that listed milk as an ingredient and 3 products might contain milk showed positive signals, whereas the other 9 products that did not contain milk and 4 products that might contain milk tested negative. Therefore, this method could be widely used for the detection of cow milk allergens in food. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Development of a Taqman real-time PCR assay for rapid detection and quantification of Vibrio tapetis in extrapallial fluids of clams

    Directory of Open Access Journals (Sweden)

    Adeline Bidault

    2015-12-01

    Full Text Available The Gram-negative bacterium Vibrio tapetis is known as the causative agent of Brown Ring Disease (BRD in the Manila clam Venerupis (=Ruditapes philippinarum. This bivalve is the second most important species produced in aquaculture and has a high commercial value. In spite of the development of several molecular methods, no survey has been yet achieved to rapidly quantify the bacterium in the clam. In this study, we developed a Taqman real-time PCR assay targeting virB4 gene for accurate and quantitative identification of V. tapetis strains pathogenic to clams. Sensitivity and reproducibility of the method were assessed using either filtered sea water or extrapallial fluids of clam injected with the CECT4600T V. tapetis strain. Quantification curves of V. tapetis strain seeded in filtered seawater (FSW or extrapallial fluids (EF samples were equivalent showing reliable qPCR efficacies. With this protocol, we were able to specifically detect V. tapetis strains down to 1.125 101 bacteria per mL of EF or FSW, taking into account the dilution factor used for appropriate template DNA preparation. This qPCR assay allowed us to monitor V. tapetis load both experimentally or naturally infected Manila clams. This technique will be particularly useful for monitoring the kinetics of massive infections by V. tapetis and for designing appropriate control measures for aquaculture purposes.

  19. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event.

    Science.gov (United States)

    Weighardt, Florian; Barbati, Cristina; Paoletti, Claudia; Querci, Maddalena; Kay, Simon; De Beuckeleer, Marc; Van den Eede, Guy

    2004-01-01

    In Europe, a growing interest for reliable techniques for the quantification of genetically modified component(s) of food matrixes is arising from the need to comply with the European legislative framework on novel food products. Real-time polymerase chain reaction (PCR) is currently the most powerful technique for the quantification of specific nucleic acid sequences. Several real-time PCR methodologies based on different molecular principles have been developed for this purpose. The most frequently used approach in the field of genetically modified organism (GMO) quantification in food or feed samples is based on the 5'-3'-exonuclease activity of Taq DNA polymerase on specific degradation probes (TaqMan principle). A novel approach was developed for the establishment of a TaqMan quantification system assessing GMO contents around the 1% threshold stipulated under European Union (EU) legislation for the labeling of food products. The Zea mays T25 elite event was chosen as a model for the development of the novel GMO quantification approach. The most innovative aspect of the system is represented by the use of sequences cloned in plasmids as reference standards. In the field of GMO quantification, plasmids are an easy to use, cheap, and reliable alternative to Certified Reference Materials (CRMs), which are only available for a few of the GMOs authorized in Europe, have a relatively high production cost, and require further processing to be suitable for analysis. Strengths and weaknesses of the use of novel plasmid-based standards are addressed in detail. In addition, the quantification system was designed to avoid the use of a reference gene (e.g., a single copy, species-specific gene) as normalizer, i.e., to perform a GMO quantification based on an absolute instead of a relative measurement. In fact, experimental evidences show that the use of reference genes adds variability to the measurement system because a second independent real-time PCR-based measurement

  20. Quantification of bovine leukemia virus proviral DNA using a low-cost real-time polymerase chain reaction.

    Science.gov (United States)

    Petersen, M I; Alvarez, I; Trono, K G; Jaworski, J P

    2018-04-11

    The detection of bovine leukemia virus (BLV) proviral DNA is an important tool to address whether an animal is infected with BLV. Compared with serological assays, real-time PCR accounts for greater sensitivity and can serve as a confirmatory test for the clarification of inconclusive or discordant serological test results. However, the high cost related to real-time PCR assays has limited their systematic inclusion in BLV surveillance and eradication programs. The aim of the present study was to validate a low-cost quantitative real-time PCR. Interestingly, by using SYBR Green detection dye, we were able to reduce the cost of a single reaction by a factor of 5 compared with most common assays based on the use of fluorogenic probes (i.e., TaqMan technology). This approach allowed a highly sensitive and specific detection and quantification of BLV proviral DNA from purified peripheral blood leukocytes and a milk matrix. Due to its simplicity and low cost, our in-house BLV SYBR quantitative real-time PCR might be used either as a screening or as a confirmatory test in BLV control programs. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Quantitation of RHD by real-time polymerase chain reaction for determination of RHD zygosity and RHD mosaicism/chimerism

    DEFF Research Database (Denmark)

    Krog, Grethe Risum; Clausen, Frederik Banch; Dziegiel, Morten Hanefeld

    2007-01-01

    Determination of RHD zygosity of the spouse is crucial in preconception counseling of families with history of hemolytic disease of the fetus and newborn caused by anti-D. RHD zygosity can be determined by quantitative real-time polymerase chain reaction (PCR) basically by determining RHD dosage...

  2. Diagnosis of ventricular drainage-related bacterial meningitis by broad-range real-time polymerase chain reaction

    DEFF Research Database (Denmark)

    Deutch, Susanna; Dahlberg, Daniel; Hedegaard, Jesper

    2007-01-01

    OBJECTIVE: To compare a broad-range real-time polymerase chain reaction (PCR) diagnostic strategy with culture to evaluate additional effects on the etiological diagnosis and the quantification of the bacterial load during the course of ventricular drainage-related bacterial meningitis (VR-BM). M...

  3. [A real-time polymerase chain reaction-based test system for quantitation of Gumboro disease virus].

    Science.gov (United States)

    Pogoda, A A; Potekhina, M A

    2010-01-01

    A real-time polymerase chain reaction-based test system for quantitation of infectious bursal disease (Gumboro disease) virus was developed. The reaction parameters were analyzed, which affected the linear relationship of a C1 depentanizer to the quantity of cDNA. The use of specific primers for reverse transcription was shown tohave some advantage over that of random hexanucleotides.

  4. Triplex Real-time Polymerase Chain Reaction Optimization for AZF Y-chromosome Microdeletion Analysis.

    Science.gov (United States)

    Torres, Tatiana Puga; Rojas, Xavier Blum; Narváez, Medardo Blum; Montanero, Edith López; Sarasti, Alexandra Narváez

    2015-05-01

    Y chromosome microdeletions at the "Azoospermia Factor" regions (AZFa, AZFb, AZFc) are the second genetic cause of spermatogenic failure in infertile men. Despite its importance for the treatment of infertile patients, no prior investigations have been previously published in Ecuador. . The purpose of this study is to optimize a molecular technique that allows detection of microdeletions in the AZF region. Using a genomic DNA of healthy male with natural conceived offsprings, a multiplex real time polymerase chain reaction (qPCR) was standarized with eigth sequence-tagged site (STS) sY85, G34990, sY133, sY127, sY254, sY255, and using as internal control sex-determine region Y (SRY) and Ameologenin Y (AMELY). With this technique, 35 DNA samples taken from peripheral blood of patients with severe oligozoospermia were analyzed. A triplex qPCR was standardized using EvaGreen DNA-binding dye to obtain melting temperature (Tm) of the STS previously mentioned. Three of the patients evaluated were detected to have partial microdeletion in the AZFa region, with a frequency of 8.8%; being losses in the G34990 section (one patient) and sY85 section (two patients). No cases of microdeletions in other AZF regions were found. The triplex qPCR optimizated allows the identification of microdeletions in AZFa, AZFb and AZFc region in infertile men and a better clinical management of the patient's treatment decision. This first report for Ecuador reveled a higher prevalence of microdeletions in the AZFa region in comparison with those previously described in other populations.

  5. Newborn screening for congenital cytomegalovirus using real-time polymerase chain reaction in umbilical cord blood.

    Science.gov (United States)

    Barkai, Galia; Barzilai, Asher; Mendelson, Ella; Tepperberg-Oikawa, Michal; Roth, Daphne Ari-Even; Kuint, Jacob

    2013-06-01

    Congenital cytomegalovirus (C-CMV) infection affects 0.4-2% of newborn infants in Israel, most of whom are asymptomatic. Of these, 10-20% will subsequently develop hearing impairment and may have benetitted from early detection by neonatal screeing. To retrospectively anaIyze the results of a screening program for C-CMV performed at the Sheba Medical Center, Tel, Hashomer, during a 1 year period, using real-time polymerase chain reaction (rt-PCR) from umbilical cord blood. CMV DNA was detected by rt-PCR performed on infants' cord blood. C-CMV was confirmed by urine culture (Shell-vial). All confirmed cases were further investigated for C-CMV manifestations by head ultrasound, complete blood count, liver enzyme measurement, ophthalmology examination and hearing investigation. During the period 1 June 2009 to 31 May 2010, 11,022 infants were born at the Sheba Medical Center, of whom 8105 (74%) were screened. Twenty-three (0.28%) were positive for CMV and 22 of them (96%) were confirmed by urine culture. Two additional infants, who had not been screened, were detected after clinical suspicion. All 24 infants were further Investigated, and 3 (12.5%) had central nervous system involvement (including hearing impairment) and were offered intravenous ganciclovir for 6 weeks. Eighteen infants (82%) would not otherwise have been diagnosed. The relatively low incidence of C-CMV detected in our screening program probably reflects the low sensitivity of cord blood screening. Nevertheless, this screening program reliably detected a non-negligible number of infants who could benefit from early detection. Other screening methods using saliva should be investigated further.

  6. Detection rates of trichomonas vaginalis, in different age groups, using real-time polymerase chain reaction.

    Science.gov (United States)

    Stemmer, Shlomo M; Adelson, Martin E; Trama, Jason P; Dorak, M Tevfik; Mordechai, Eli

    2012-10-01

    The study aimed to compare the overall detection rate of Trichomonas vaginalis to Chlamydia trachomatis and Neiserria gonorrhea and report detection rates by age groups. Real-time polymerase chain reaction was used to detect the presence of T. vaginalis, C. trachomatis, and N. gonorrhea in cervical samples obtained from patients during gynecological examinations. A total of 78,428, 119,451, and 117,494 samples from women age 12 to 75 years were retrospectively analyzed for the presence of T. vaginalis, C. trachomatis, and N. gonorrhea, respectively. T. vaginalis and C. trachomatis detection rates in Florida, New Jersey, and Texas were calculated in different age groups. The overall detection rate was 4.3% for T. vaginalis, 3.8% for C. trachomatis, and 0.6% for N. gonorrhea. The overall detection rate of T. vaginalis in Florida was 4.7% (n = 22,504), in New Jersey was 3.6% (n = 22,249), and in Texas was 4.5% (n = 33,675). Calculation of infection rates with T. vaginalis revealed differences between selected age groups with the highest detection rates in all 3 states found in age group 46 to 55 years (6.2%), which was higher than the overall detection rates in other age groups (p rate was found in age group 12 to 25 years (7.3%). The overall infection rates of T. vaginalis were higher compared with those of C. trachomatis and N. gonorrhea. Detection rates of T. vaginalis were found to be highest among women age 46 to 55 years and may be due to T. vaginalis infiltrating the subepithelial glands and being detected only during hormone-induced or antibiotic-induced changes in the vaginal flora.

  7. Quantitation of transgenic plant DNA in leachate water: real-time polymerase chain reaction analysis.

    Science.gov (United States)

    Gulden, Robert H; Lerat, Sylvain; Hart, Miranda M; Powell, Jeff R; Trevors, Jack T; Pauls, K Peter; Klironomos, John N; Swanton, Clarence J

    2005-07-27

    Roundup Ready (RR) genetically modified (GM) corn and soybean comprise a large portion of the annual planted acreage of GM crops. Plant growth and subsequent plant decomposition introduce the recombinant DNA (rDNA) into the soil environment, where its fate has not been completely researched. Little is known of the temporal and spatial distribution of plant-derived rDNA in the soil environment and in situ transport of plant DNA by leachate water has not been studied before. The objectives of this study were to determine whether sufficient quantities of plant rDNA were released by roots during growth and early decomposition to be detected in water collected after percolating through a soil profile and to determine the influence of temperature on DNA persistence in the leachate water. Individual plants of RR corn and RR soybean were grown in modified cylinders in a growth room, and the cylinders were flushed with rain water weekly. Immediately after collection, the leachate was subjected to DNA purification followed by rDNA quantification using real-time Polymerase Chain Reaction (PCR) analysis. To test the effects of temperature on plant DNA persistence in leachate water, water samples were spiked with known quantities of RR soybean or RR corn genomic DNA and DNA persistence was examined at 5, 15, and 25 degrees C. Differences in the amounts and temporal distributions of root-derived rDNA were observed between corn and soybean plants. The results suggest that rainfall events may distribute plant DNA throughout the soil and into leachate water. Half-lives of plant DNA in leachate water ranged from 1.2 to 26.7 h, and persistence was greater at colder temperatures (5 and 15 degrees C).

  8. Real-time polymerase chain reaction correlates well with clinical diagnosis of Clostridium difficile infection.

    Science.gov (United States)

    Berry, N; Sewell, B; Jafri, S; Puli, C; Vagia, S; Lewis, A M; Davies, D; Rees, E; Ch'ng, C L

    2014-06-01

    To determine the clinical utility of a rapid molecular assay for Clostridium difficile infection (CDI) in an acute hospital setting. From March to September 2011, stool specimens from inpatients in two acute hospitals with suspected CDI were tested prospectively by routine cell culture cytotoxin neutralization assay (CCNA), real-time polymerase chain reaction (PCR) using the GeneXpert (Cepheid Inc., Sunnyvale, CA, USA), and a dual testing algorithm [glutamate dehydrogenase (GDH)/toxin enzyme immuno-assay, Premier, Launch Diagnostics, Longfield, UK]. All patients with positive PCR, CCNA or discrepant results were reviewed by a multi-disciplinary team (treating clinician, gastroenterologist, microbiologist and infection control nurse). C. difficile detection rates were 11.7% (PCR), 6% (CCNA) and 13.8% (GDH). Out of 1034 stool specimens included in the study, 974 (94.1%) had concordant CCNA and PCR results. Eighty-nine percent (886/985) had concordant CCNA, PCR and GDH results, and 94.4% (930/985) had concordant GDH and PCR results. Using clinical diagnosis as the reference, PCR had sensitivity of 99.1%, specificity of 98.9%, positive predictive value (PPV) of 91.9% and negative predictive value (NPV) of 99.9%. CCNA on a single sample had sensitivity of 51%, specificity of 99.4%, PPV of 91.9% and NPV of 94.3%. GDH had sensitivity of 83.8%, specificity of 94.5%, PPV of 64.7% and NPV of 97.9%. Almost twice as many patients were positive by PCR compared with CCNA (121 vs 62); 54/59 of those with discrepant results were clinically confirmed as CDI. Rapid diagnosis of CDI using PCR was timely, accurate and correlated well with clinical diagnosis. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. Frequent detection of Streptococcus tigurinus in the human oral microbial flora by a specific 16S rRNA gene real-time TaqMan PCR

    Science.gov (United States)

    2014-01-01

    Background Many bacteria causing systemic invasive infections originate from the oral cavity by entering the bloodstream. Recently, a novel pathogenic bacterium, Streptococcus tigurinus, was identified as causative agent of infective endocarditis, spondylodiscitis and meningitis. In this study, we sought to determine the prevalence of S. tigurinus in the human oral microbial flora and analyzed its association with periodontal disease or health. Results We developed a diagnostic highly sensitive and specific real-time TaqMan PCR assay for detection of S. tigurinus in clinical samples, based on the 16S rRNA gene. We analyzed saliva samples and subgingival plaque samples of a periodontally healthy control group (n = 26) and a periodontitis group (n = 25). Overall, S. tigurinus was detected in 27 (53%) out of 51 patients. There is no significant difference of the frequency of S. tigurinus detection by RT-PCR in the saliva and dental plaque samples in the two groups: in the control group, 14 (54%) out of 26 individuals had S. tigurinus either in the saliva samples and/or in the plaque samples; and in the periodontitis group, 13 (52%) out of 25 patients had S. tigurinus in the mouth samples, respectively (P = 0.895). The consumption of nicotine was no determining factor. Conclusion Although S. tigurinus was a frequently detected species of the human oral microbial flora, it was not associated with periodontal disease. Further investigations are required to determine whether S. tigurinus is a commensal or an opportunistic oral pathogen with a potential for development of invasive infections. PMID:25170686

  10. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    Science.gov (United States)

    Cura, Carolina I.; Duffy, Tomas; Lucero, Raúl H.; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J.; Valencia Ayala, Edward; Kjos, Sonia A.; Santalla, José; Mahaney, Susan M.; Cayo, Nelly M.; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S.; Acosta Viana, Karla Y.; Brutus, Laurent; Ocampo, Susana B.; Aznar, Christine; Cuba Cuba, Cesar A.; Gürtler, Ricardo E.; Ramsey, Janine M.; Ribeiro, Isabela; VandeBerg, John L.; Yadon, Zaida E.; Osuna, Antonio; Schijman, Alejandro G.

    2015-01-01

    Background Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). Methods/Principal Findings The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Conclusions/Significance Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production. PMID:25993316

  11. [Development of a real-time polymerase chain reaction method for the identification of Candida species].

    Science.gov (United States)

    Ağca, Harun; Dalyan Cilo, Burcu; Özmerdiven, Gülşah Ece; Sağlam, Sezcan; Ener, Beyza

    2015-01-01

    Candida species are one of the major causes of nosocomial infections and are the fourth most common agent involved in bloodstream infections. The impact of non-albicans Candida species is increasing, however C.albicans is still the most common species. Since the antifungal susceptibility pattern among Candida spp. may be different, rapid diagnosis and identification of non-albicans Candida spp. are important for the determination of antifungal agents that will be used for treatment. The aim of the study was to describe a real-time polymerase chain reaction (Rt-PCR) assay that rapidly detects, identifies and quantitates Candida species from blood culture samples. A total of 50 consecutive positive blood culture bottles (BACTEC, Beckton Dickinson, USA) identified at our laboratory between June-November 2013, were included in the study. Reference strains of Candida spp. (C.albicans ATCC 10231, C.glabrata ATCC 90030, C.tropicalis ATCC 1021, C.krusei ATCC 6258, C.parapsilosis ATCC 22019 and C. dubliniensis CD36) grown on Sabouraud dextrose agar were used for quality control. BACTEC bottles that were positive for Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were also studied to search the cross-reactivity. A commercial kit (Zymo Research, USA) was used for DNA extraction. Real-time PCR was performed on LightCycler 480 (Roche, Germany) with primers and probes specific for 18S rRNA of Candida species. Twenty microlitres of the reaction mix contained 2 μl of extracted DNA, 2 μl of LightCycler Fast Start DNA Master Probe (Roche Diagnostics, Germany), 2 μl of MgCl(2) (5 mmol), 2 μl of 10x PCR buffer (Roche Diagnostics, Germany), 0.5 μl of each primer (0.01 nmol/μl) and 1 μl of each probe (0.1 μmol/μl) (TibMolBiol, Germany). Amplification was performed using the following conditions; 95°C for 10 mins and 50 cycles of denaturation at 95°C for 10 secs, annealing at 62°C for 10 secs and polymerisation at 72°C for 20 secs. A melting curve was

  12. Real Time Polymerase Chain Reaction (rt-PCR): A New Patent to Diagnostic Purposes for Paracoccidioidomycosis.

    Science.gov (United States)

    Rocha-Silva, Fabiana; Gomes, Luciana I; Gracielle-Melo, Cidiane; Goes, Alfredo M; Caligiorne, Rachel B

    2017-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by dimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. It is prevalent in Latin American, mainly in Brazil. Therefore, PCM has fundamental impact on the Brazilian global economy, especially in public health system, since it is affecting economical active population in different country regions. The present study aimed to standardize the Real Time-Polymerase Chain Reaction (rt-PCR) for an efficient and safe PCM diagnosis amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. To standardize a methodology of rt-PCR using species-specific primers and probe designed for annealing in this specific region of the fungi´s genome, amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. Followed by design in silico, experiments were performed in vitro to determine rt-PCR specificity, efficiency and genome detection limit. The primers and probe sequences were deposited in Brazilian Coordination of Technological Innovation and Transfer (CTIT), under patent reference number BR1020160078830. The present study demonstrated the rt-PCR applicability for support on diagnosis of paracoccidioidomycosis, presenting low cost, which makes it affordable for public health services in developing countries as Brazil. It is noteworthy that it is necessary to validate this methodology using clinical samples before to use as a safe method of diagnosis. A review of all patents related to this topic was performed and it was shown that, to date, there are no records of patent on kits for paracoccidioidomycosis´s diagnostic. Indeed, there is still a lot to go to reach this goal. The reaction developed was standardized and patented, opening perspectives to molecular diagnosis development for paracoccidioidomycosis, since rt-PCR can be applied to a broad spectrum of infectious diseases. It would need to be tested in biological

  13. Detection of food hazards in foods: comparison of real time polymerase chain reaction and cultural methods

    Directory of Open Access Journals (Sweden)

    Paolo Bonilauri

    2016-01-01

    Full Text Available Foodstuffs should not contain microorganisms or their toxins or metabolites in quantities suggesting an unacceptable risk for human health. The detection of food hazards in foods is performed by several tests that produce results dependent on the analytical method used: an analytical reference method, defined as standard, is associated with each microbiological criterion laid down in Regulation 2073/2005/EC, but, analytical methods other than the reference ones, in particular more rapid methods, could be used. Combined screening methods performed by real time-polymerase chain reaction (RT-PCR are currently validated as alternative methods according to the ISO 16140:2003 and certified by the Association Française de Normalisation. However, the positive results obtained with these alternative methods, the investigated molecular relations that resulted positive have to be confirmed with cultural methods using the same enrichment media in which the molecular screening was performed. Since it is necessary to assess if these testing schemes provide equivalent guarantees of food safety, the aim of this retrospective study is to analyse the data collected, from 2012 to 2014 by Emilia Romagna Region in the field of Piano Regionale Alimenti (Food Regional Plan during official controls monitoring food samples of animal and other than animal origin. Records performed by combined methods of molecular screening of Salmonella spp., Listeria monocytogenes and thermophilic Campylobacter and cultural confirmation results were gathered together and the results were compared in order to assess the sensitivity of the methods. A total of 10,604 food samples were considered in this study: the comparison of the data revealed that the RT-PCR method detected Salmonella, L. monocytogenes, and thermophilic Campylobacter in 2.18, 3.85 and 3.73% of the samples, respectively, whereas by using cultural method these pathogens were isolated in 0.43, 1.57 and 1.57% of samples

  14. Detection of Food Hazards in Foods: Comparison of Real Time Polymerase Chain Reaction and Cultural Methods.

    Science.gov (United States)

    Bonilauri, Paolo; Bardasi, Lia; Leonelli, Roberto; Ramini, Mattia; Luppi, Andrea; Giacometti, Federica; Merialdi, Giuseppe

    2016-01-18

    Foodstuffs should not contain microorganisms or their toxins or metabolites in quantities suggesting an unacceptable risk for human health. The detection of food hazards in foods is performed by several tests that produce results dependent on the analytical method used: an analytical reference method, defined as standard, is associated with each microbiological criterion laid down in Regulation 2073/2005/EC, but, analytical methods other than the reference ones, in particular more rapid methods, could be used. Combined screening methods performed by real time-polymerase chain reaction (RT-PCR) are currently validated as alternative methods according to the ISO 16140:2003 and certified by the Association Française de Normalisatio n. However, the positive results obtained with these alternative methods, the investigated molecular relations that resulted positive have to be confirmed with cultural methods using the same enrichment media in which the molecular screening was performed. Since it is necessary to assess if these testing schemes provide equivalent guarantees of food safety, the aim of this retrospective study is to analyse the data collected, from 2012 to 2014 by Emilia Romagna Region in the field of Piano Regionale Alimenti (Food Regional Plan) during official controls monitoring food samples of animal and other than animal origin. Records performed by combined methods of molecular screening of Salmonella spp., Listeria monocytogenes and thermophilic Campylobacter and cultural confirmation results were gathered together and the results were compared in order to assess the sensitivity of the methods. A total of 10,604 food samples were considered in this study: the comparison of the data revealed that the RT-PCR method detected Salmonella, L. monocytogenes , and thermophilic Campylobacter in 2.18, 3.85 and 3.73% of the samples, respectively, whereas by using cultural method these pathogens were isolated in 0.43, 1.57 and 1.57% of samples, respectively. In

  15. Development of a real-time recombinase polymerase amplification assay for rapid and sensitive detection of porcine circovirus 2.

    Science.gov (United States)

    Wang, Jianchang; Wang, Jinfeng; Liu, Libing; Yuan, Wanzhe

    2017-08-01

    Porcine diseases associated with porcine circovirus 2 (PCV-2) infection have resulted in significant economic losses worldwide. A real-time recombinase polymerase amplification (RPA) assay was developed to detect PCV-2 using primers and an exo probe specific for the ORF2 gene. The reaction process can be completed in 20 min at 38 °C. The assay only detects PCV-2, as there was no cross-reaction with other pathogens important in pigs. Using the PCV-2 genomic DNA as template, the analytical sensitivity of the real-time RPA was 103 copies. The assay performance was evaluated by testing 38 field samples and compared with real-time PCR. The two assays demonstrated a 100% diagnostic agreement, and PCV-2 DNA was detected in 26 samples. The R 2 value of real-time RPA and real-time PCR was 0.954 by linear regression analysis. The real-time RPA assay provides an alternative tool for rapid, simple, and reliable detection of PCV-2, especially in remote and rural areas.

  16. Assessing HER2 amplification by IHC, FISH, and real-time polymerase chain reaction analysis (real-time PCR) following LCM in formalin-fixed paraffin embedded tissue from 40 women with ovarian cancer

    DEFF Research Database (Denmark)

    Hillig, Thore; Thode, Jørgen; Breinholt, Ellen Marie

    2012-01-01

    We compare HER2 receptor amplification analysis by immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and real-time polymerase chain reaction (real-time PCR) DNA copy-number assay following laser capture microdissection (LCM) in formalin-fixed paraffin embedded tissue from 40...

  17. Detection of Listeria monocytogenes in ready-to-eat food by Step One real-time polymerase chain reaction.

    Science.gov (United States)

    Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal

    2012-01-01

    The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.

  18. Molecular detection of the carriage rate of four intestinal protozoa with real-time polymerase chain reaction

    DEFF Research Database (Denmark)

    Efunshile, Michael A; Ngwu, Bethrand A F; Kurtzhals, Jørgen A L

    2015-01-01

    -Saharan countries. To overcome sensitivity issues related to microscopic detection and identification of cysts in stool concentrates, real-time polymerase chain reaction (PCR) was used to analyze genomic DNAs extracted from stool samples from 199 healthy school children for Entamoeba histolytica, E. dispar, Giardia...... rates of E. histolytica and Giardia, respectively. It is also the first study to accurately identify the prevalence of common potentially diarrheagenic protozoa in asymptomatic carriers in sub-Saharan Africa....

  19. Interlaboratory validation data on real-time polymerase chain reaction detection for unauthorized genetically modified papaya line PRSV-YK

    Directory of Open Access Journals (Sweden)

    Kosuke Nakamura

    2016-06-01

    Real-time polymerase chain reaction (PCR detection method for unauthorized genetically modified (GM papaya (Carica papaya L. line PRSV-YK (PRSV-YK detection method was developed using whole genome sequence data (DDBJ Sequenced Read Archive under accession No. PRJDB3976. Interlaboratory validation datasets for PRSV-YK detection method were provided. Data indicating homogeneity of samples prepared for interlaboratory validation were included. Specificity and sensitivity test data for PRSV-YK detection method were also provided.

  20. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine.

    Science.gov (United States)

    Scherrer, Simone; Frei, Daniel; Wittenbrink, Max Michael

    2016-12-01

    Progressive atrophic rhinitis (PAR) in pigs is caused by toxigenic Pasteurella multocida. In Switzerland, PAR is monitored by selective culture of nasal swabs and subsequent polymerase chain reaction (PCR) screening of bacterial colonies for the P. multocida toxA gene. A panel of 203 nasal swabs from a recent PAR outbreak were used to evaluate a novel quantitative real-time PCR for toxigenic P. multocida in porcine nasal swabs. In comparison to the conventional PCR with a limit of detection of 100 genome equivalents per PCR reaction, the real-time PCR had a limit of detection of 10 genome equivalents. The real-time PCR detected toxA-positive P. multocida in 101 samples (49.8%), whereas the conventional PCR was less sensitive with 90 toxA-positive samples (44.3%). In comparison to the real-time PCR, 5.4% of the toxA-positive samples revealed unevaluable results by conventional PCR. The approach of culture-coupled toxA PCR for the monitoring of PAR in pigs is substantially improved by a novel quantitative real-time PCR.

  1. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  2. Real-time polymerase chain reaction detection of asymptomatic Clostridium difficile colonization and rising C. difficile-associated disease rates.

    Science.gov (United States)

    Koo, Hoonmo L; Van, John N; Zhao, Meina; Ye, Xunyan; Revell, Paula A; Jiang, Zhi-Dong; Grimes, Carolyn Z; Koo, Diana C; Lasco, Todd; Kozinetz, Claudia A; Garey, Kevin W; DuPont, Herbert L

    2014-06-01

    To evaluate the accuracy of real-time polymerase chain reaction (PCR) for Clostridium difficile-associated disease (CDAD) detection, after hospital CDAD rates significantly increased following real-time PCR initiation for CDAD diagnosis. Hospital-wide surveillance study following examination of CDAD incidence density rates by interrupted time series design. Large university-based hospital. Hospitalized adult patients. CDAD rates were compared before and after real-time PCR implementation in a university hospital and in the absence of physician and infection control practice changes. After real-time PCR introduction, all hospitalized adult patients were screened for C. difficile by testing a fecal specimen by real-time PCR, toxin enzyme-linked immunosorbent assay, and toxigenic culture. CDAD hospital rates significantly increased after changing from cell culture cytotoxicity assay to a real-time PCR assay. One hundred ninety-nine hospitalized subjects were enrolled, and 101 fecal specimens were collected. C. difficile was detected in 18 subjects (18%), including 5 subjects (28%) with either definite or probable CDAD and 13 patients (72%) with asymptomatic C. difficile colonization. The majority of healthcare-associated diarrhea is not attributable to CDAD, and the prevalence of asymptomatic C. difficile colonization exceeds CDAD rates in healthcare facilities. PCR detection of asymptomatic C. difficile colonization among patients with non-CDAD diarrhea may be contributing to rising CDAD rates and a significant number of CDAD false positives. PCR may be useful for CDAD screening, but further study is needed to guide interpretation of PCR detection of C. difficile and the value of confirmatory tests. A gold standard CDAD diagnostic assay is needed.

  3. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  4. Rapid detection of transmissible gastroenteritis virus in swine small intestine samples using real-time reverse transcription recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jinfeng; Wang, Jianchang; Zhang, Ruoxi; Liu, Libing; Shi, Ruihan; Han, Qingan; Yuan, Wanzhe

    2018-03-14

    A rapid and specific real-time reverse-transcription recombinase polymerase amplification assay (RT-RPA) was developed to detect the transmissible gastroenteritis virus (TGEV) in this study. The primers and exo probe were designed to be specific for a portion of spike (S) gene conserved in TGEV, but absent in the closely related porcine respiratory coronavirus (PRCV). The amplification was performed at 40 °C for 20 min. The assay could only detect the TGEV, and there was no cross-reaction with other pathogens tested. Using the in vitro transcribed TGEV RNA as template, the limit of detection of the developed RT-RPA was 100 copies per reaction. The assay performance was evaluated by testing 76 clinical samples by RT-RPA and a real-time RT-PCR. Fourteen samples were TGEV RNA positive in RT-RPA (18.4%, 14/76), which were also positive in the real-time RT-PCR. The diagnostic agreement between the two assays was 100% (76/76). The R 2 value of RT-RPA and real-time RT-PCR was 0.959 by linear regression analysis. The developed RT-RPA assay provides a useful alternative tool for rapid, simple and reliable detection of TGEV in resource-limited diagnostic laboratories and on-site facilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Early detection of Toxoplasma gondii by real-time polymerase chain reaction methods in patients with recurrent spontaneous abortions

    Directory of Open Access Journals (Sweden)

    Parviz Saleh

    2014-11-01

    Full Text Available Introduction: One of the causes of recurrent spontaneous abortions (RSA is an infection by the toxoplasmosis Protozoa. In comparison, we present detailed results using real-time polymerase chain reaction (PCR methods of detection. In this study, it was tried to detect Toxoplasma gondii (T. gondii by real-time PCR methods in patients with RSA. Methods: Amniotic fluid sampling was performed in the 16-20th weeks of gestation in 50 pregnant women with a history of RSA. The extracted deoxyribonucleic acid (DNA samples were analyzed using quantitative real-time PCR. Results: In all the cases, the detection of T. gondii was negative in the peripheral blood, and amniotic fluid samples by using the molecular methods (real-time PCR. Using the serological detection methods, 6% of patients were diagnosed as positive for the immunoglobulin M (IgM antibody. In addition, the IgG antibody was positive in 46% of the patients. Conclusion: It can be concluded that the serological methods lack specificity.

  6. Comparison of Real Time Polymerase Chain Reaction with Microscopy and Antigen Detection Assay for the Diagnosis of Malaria

    International Nuclear Information System (INIS)

    Khan, S. A.; Ahmed, S.; Khan, F. A.; Shamshad, G. U.; Joyia, Z.; Mushahid, N.; Saeed, S.

    2013-01-01

    Objective: To determine the sensitivity of a real time polymerase chain reaction (PCR) for malaria diagnosis and to compare its accuracy with microscopy and an antigen based rapid diagnostic test (OptiMal). Study Design: Cross-sectional analytical study. Place and Duration of Study: Military Hospital, Armed Forces Institute of Transfusion and Armed Forces Institute of Pathology, Rawalpindi, from July to December 2011. Methodology: Venous blood samples of 300 clinically suspected patients of malaria were tested for malaria parasite by microscopy and OptiMal; and malaria parasite index was calculated for the positive samples. Plasmodium genus specific real time PCR was performed on all specimens, targeting small subunit rRNA gene. Diagnostic accuracy of three tests was compared and cost analysis was done. Results: Out of 300 patients, malaria parasite was detected in 110, 106 and 123 patients by microscopy, OptiMAL and PCR respectively. Real time PCR was 100% sensitive while microscopy and OptiMal had sensitivity of 89.4% and 86.2% respectively. All methods were 100% specific. The cost per test was calculated to be 0.2, 2.75 and 3.30 US dollar by microscopy, OptiMal and PCR respectively, excluding the once capital cost on PCR equipment. Conclusion: Genus specific real time PCR for the diagnosis of malaria was successfully established as a highly sensitive and affordable technology that should be incorporated in the diagnostic algorithm in this country. (author)

  7. The Cobas AmpliPrep/Cobas TaqMan HCV Test, Version 2.0, Real-Time PCR Assay Accurately Quantifies Hepatitis C Virus Genotype 4 RNA

    OpenAIRE

    Chevaliez, Stéphane; Bouvier-Alias, Magali; Rodriguez, Christophe; Soulier, Alexandre; Poveda, Jean-Dominique; Pawlotsky, Jean-Michel

    2013-01-01

    Accurate hepatitis C virus (HCV) RNA quantification is mandatory for the management of chronic hepatitis C therapy. The first-generation Cobas AmpliPrep/Cobas TaqMan HCV test (CAP/CTM HCV) underestimated HCV RNA levels by >1-log10 international units/ml in a number of patients infected with HCV genotype 4 and occasionally failed to detect it. The aim of this study was to evaluate the ability of the Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0 (CAP/CTM HCV v2.0), to accurately quantify H...

  8. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  9. Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments.

    Science.gov (United States)

    Saha, Ratul; Bestervelt, Lorelle L; Donofrio, Robert S

    2012-02-01

    Pseudomonas fluorescens ATCC 13525 is used as the challenge organism to evaluate the efficacy of the clean-in-place (CIP) process of food equipment (automatic ice-maker) as per NSF/ANSI Standard 12. Traditional culturing methodology is presently used to determine the concentration of the challenge organism, which takes 48 h to confirm the cell density. Storage of the challenge preparation in the refrigerator might alter the cell density as P. fluorescens is capable of growing at 4 °C. Also, background organism can grow on the Pseudomonas F agar (PFA) used for the recovery of P. fluorescens thus affecting the results of the test. Real-time TaqMan assay targeting the cpn60 gene was developed for the enumeration and the identification of P. fluorescens because of its specificity, accuracy, and shorter turnaround time. The TaqMan primer-probe pair developed using the Allele ID® 7.0 probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10 colony forming units (CFU)/mL. The assay was also successful in determining the concentration of the challenge preparation within 2 h. Based on these observations, TaqMan assay targeting the cpn60 gene can be efficiently used for strain level identification and enumeration of bacteria. Pseudomonas fluorescens ATCC 13525 is used as a challenge organism in the efficacy testing of clean-in-place process of food equipments. Currently, culturing technique is used for its identification and estimation, which is not only time-consuming but also prone to error. Real-time TaqMan assay is more specific, sensitive, and accurate along with a shorter turnaround time compared to culturing techniques, thereby increasing the overall quality of the testing methodology to evaluate the clean-in-place process critical for the food industry to protect public health and safety. © 2012 Institute of Food Technologists®

  10. Comparison of the Roche COBAS Amplicor Monitor, Roche COBAS Ampliprep/COBAS Taqman and Abbott RealTime Test assays for quantification of hepatitis C virus and HIV RNA.

    Science.gov (United States)

    Wolff, Dietmar; Gerritzen, Andreas

    2007-01-01

    We have evaluated the performance of two newly developed automated real-time PCR assays, the COBAS Ampliprep/COBAS TaqMan (CAP/CTM) and the Abbott RealTime tests, in the quantification of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNA. The widely used semi-automated COBAS Amplicor Monitor (CAM) assay served as the reference test. Several specimens were analyzed, including 102 plasma samples from HCV patients and 109 from HIV patients and 10 samples from negative donors, as well as Quality Control in Molecular Diagnostics (QCMD) and National Institute for Biological Standards and Controls (NIBSC) proficiency program panels. Good correlation was observed among the three assays, with correlation coefficients (R2) of 0.8 (CAM-CAP/CTM), 0.89 (CAM-RealTime) and 0.91 (CAP/CTM-RealTime) for HCV and 0.83 (CAM-RealTime), 0.85 (CAM-CAP/CTM) and 0.89 (CAP/CTM-RealTime) for HIV. The overall concordance for negative/positive results was 100% for HCV and 98% for HIV. All assays were equally able to quantify HCV genotypes 1, 3, 5 and HIV group M (subtypes A-H) and N from QCMD and NIBSC panels. In terms of workflow, the RealTime assay requires more hands-on-time than the CAP/CTM assay. The results indicate that real-time PCR assays can improve the efficiency of end-point PCR tests by better covering viral dynamic ranges and providing higher throughput and automation.

  11. Development of real-time polymerase chain reaction for detection of Borrelia burgdorferi sensu lato in China.

    Science.gov (United States)

    Fu, Yuguang; Liu, Zhijie; Guan, Guiquan; Niu, Qingli; Li, Youquan; Yang, Jifei; Ren, Qiaoyun; Ma, Miling; Liu, Aihong; Peng, Yulv; Luo, Jianxun; Yin, Hong

    2012-05-01

    Universal primers and probes were selected on the basis of the 16S rRNA gene sequence of Borrelia burgdorferi in GenBank®, and a real-time polymerase chain reaction (PCR) method for detection of B. burgdorferi was established. The results showed that this method could specifically detect the B31 strain (Borrelia burgdorferi sensu stricto), the BO23 strain (Borrelia afzelii), and the SZ strain (Borrelia garinii), without cross-reaction with genome DNA of Theileria (T. luwenshuni, T. uilenbergi, T. sinensis, T. annulata, T. sergenti, T. annulata), Babesia (B. bigemina, B. ovate, B. sp. (Xinjiang)), Anaplasma (A. marginale, A. ovis), Mycoplasma mycoides subsp. capri, and Chlamydia psittaci, which are the infective pathogens to yak and/or sheep. The sensitivity of this real-time PCR is 10⁴ times greater than that of a conventional PCR. The real-time PCR was able to amplify 16S rRNA gene from as few as 22.88 fg genomic DNA of B. burgdorferi sensu lato. Tick DNAs from 369 field samples collected from Shangzhi City of Heilongjiang Province were tested, resulting in an infection rate of 42.80%, and a total of 332 genomic DNAs from the blood of 186 yaks and 146 sheep in the Gannan Tibetan Autonomous Prefecture of Gansu Province were tested, resulting in 24.19% positive rate for the yaks and 39.04% positive rate for the sheep.

  12. Detection and Quantification of Methyl tert-Butyl Ether-Degrading Strain PM1 by Real-Time TaqMan PCR

    OpenAIRE

    Hristova, Krassimira R.; Lutenegger, Christian M.; Scow, Kate M.

    2001-01-01

    The fuel oxygenate methyl tert-butyl ether (MTBE), a widely distributed groundwater contaminant, shows potential for treatment by in situ bioremediation. The bacterial strain PM1 rapidly mineralizes and grows on MTBE in laboratory cultures and can degrade the contaminant when inoculated into groundwater or soil microcosms. We applied the TaqMan quantitative PCR method to detect and quantify strain PM1 in laboratory and field samples. Specific primers and probes were designed for the 16S ribos...

  13. Predictive Modeling for the Growth of Salmonella Enteritidis in Chicken Juice by Real-Time Polymerase Chain Reaction.

    Science.gov (United States)

    Noviyanti, Fia; Hosotani, Yukie; Koseki, Shigenobu; Inatsu, Yasuhiro; Kawasaki, Susumu

    2018-04-02

    The goals of this study were to monitor the growth kinetics of Salmonella Enteritidis in chicken juice using real-time polymerase chain reaction (PCR) and to evaluate its efficacy by comparing the results with an experimental database. Salmonella Enteritidis was inoculated in chicken juice samples at an initial inoculum of 10 4 CFU/mL with inoculated samples incubated at six different temperatures (10, 15, 20, 25, 30, and 35°C). Sampling was carried out for 36 h to observe the growth of Salmonella Enteritidis. The total DNA was extracted from the samples, and the copy number of the Salmonella invasion gene (invA) was quantified by real-time PCR and converted to Salmonella Enteritidis cell concentration. Growth kinetics data were analyzed by the Baranyi and Roberts model to obtain growth parameters, whereas the Ratkowsky's square-root model was used to describe the effect of the interactions between growth parameters and temperature on the growth of Salmonella Enteritidis. The growth parameters of Salmonella Enteritidis obtained from an experiment conducted at a constant temperature were validated with growth data from chicken juice samples that were incubated under fluctuating temperature conditions between 5°C and 30°C for 30-min periods. A high correlation was observed between maximum growth rate (μ max ) and storage temperature, indicating that the real-time PCR-monitoring method provides a precise estimation of Salmonella Enteritidis growth in food material with a microbial flora. Moreover, the μ max data reflected data from microbial responses viewer database and ComBase. The results of this study suggested that real-time PCR monitoring provides a precise estimation of Salmonella Enteritidis growth in food materials with a background microbial flora.

  14. Real-time LightCycler polymerase chain reaction and melting temperature analysis for identification of clinically important Candida spp.

    Science.gov (United States)

    Khan, Ziauddin; Mustafa, Abu Salim; Alam, Fasahat Fakhar

    2009-08-01

    Invasive candidiasis is a major fungal infection occurring in patients who have prolonged hospital admissions. The rapid detection and confirmation of Candida spp. in clinical specimens is essential for efficient management and improved prognosis of these patients. The purpose of this study was to develop a real-time LightCycler polymerase chain reaction (PCR) assay for the identification of Candida spp. commonly associated with invasive infections. Using the LightCycler PCR System, the targets of genomic DNA isolated from the reference strains of 6 Candida spp. were amplified using genus- and species-specific primers, and detected in real-time employing SYBR Green fluorescent dye. The identity of Candida spp. was established by melting curve analysis. A similar analysis was performed with clinical isolates (n = 72) previously identified by conventional methods. The melting curve analysis of amplified DNA from the reference strains could differentiate between Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Candida krusei, and Candida dubliniensis. The specificity of the real-time PCR assay was validated by testing 72 clinical isolates of Candida spp. with 100% concordance, as compared with conventional identification methods. The notable findings of the study were differentiation of C. krusei from all other Candida spp. tested and of C. dubliniensis from C. albicans by melting temperature analysis; the latter 2 species share common phenotypic characteristics of germ-tube formation and chlamydospore production, so are often misidentified. Real-time PCR using LightCycler and melting curve analysis are reliable methods for rapid identification of 6 Candida spp. frequently associated with candidemia and invasive candidiasis.

  15. Quantitative Analysis of Periodontal Pathogens Using Real-Time Polymerase Chain Reaction (PCR).

    Science.gov (United States)

    Marin, Mª José; Figuero, Elena; Herrera, David; Sanz, Mariano

    2017-01-01

    The quantitative polymerase chain reaction (qPCR) is a variant of PCR aimed to detect and quantify a targeted DNA molecule through the addition of probes labeled with fluorescent molecules that emit fluorescence within each amplification cycle, what results in fluorescence values proportional to the amount of accumulated PCR product. This chapter presents the detailed procedures for quantification of different periodontal pathogens (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Campylobacter rectus, and Fusobacterium spp.) using qPCR. It also includes the description of the most frequent problems encountered and how to solve them. In addition, a detailed protocol for multiplex qPCR to detect and quantify P. gingivalis and A. actinomycetemcomitans is included.

  16. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    Science.gov (United States)

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  17. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.

    Science.gov (United States)

    Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa

    2005-01-01

    Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.

  18. Molecular evaluation of colistin-resistant gene expression changes in Acinetobacter baumannii with real-time polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Sepahvand S

    2017-11-01

    Full Text Available Shahriar Sepahvand,1 Mohammad Ali Davarpanah,2 Amir Roudgari,3 Abbas Bahador,4 Vajihe Karbasizade,5 Zahra Kargar Jahromi6 1Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran; 2Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; 3Shiraz Trauma Center, Shiraz University of Medical Sciences, Shiraz, Iran; 4Department of Microbiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; 5Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; 6Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran Background: Acinetobacter baumannii is an important human pathogen which has recently gained increased attention due to the occurrence of drug-resistant nosocomial infections in patients suffering from immune system disorders, and those in hospital intensive care units. The aim of this research was to identify and isolate A. baumannii strains resistant to colistin, determine antibiotic resistance pattern of this bacteria, investigate the presence of colistin-resistant genes, and finally assess the effect of expression changes in pmrA and pmrB genes resistant to A. baumannii against colistin via real-time polymerase chain reaction.Methods: The samples were initially purified and isolated using biochemical tests and Microgen kit. Later, the resistance pattern evaluation of validated samples to different antibiotics and colistin was carried out using two methods viz., disc diffusion and E-test. This was followed by the assessment of genes resistant to colistin via polymerase chain reaction besides gene expression changes via real-time polymerase chain reaction. Results: The results of this study indicated that eleven strains of A. baumannii isolated from Shahid Rajaee Trauma Hospital were resistant to colistin. However, in the resistance pattern evaluation of A. baumannii isolated

  19. Screening of invasive fungal infections by a real-time panfungal (pan-ACF polymerase chain reaction assay in patients with haematological malignancy

    Directory of Open Access Journals (Sweden)

    Malini Rajinder Capoor

    2017-01-01

    Full Text Available Background: Invasive fungal infection (IFI is a fatal infection in haematology patients. There is an urgent need for reliable screening methods facilitating timely diagnosis and treatment. A real-time panfungal polymerase chain reaction (PCR assay based on TaqMan technology targeting 18S ribosomal RNA gene was used to screen whole blood specimen obtained from series of Haematology malignancy patients for IFIs. Materials and Methods: The panfungal (Pan-ACF assay was employed to investigate specimen from 133 patients in duplicate with suspected IFI. In addition twenty healthy subjects and twenty patients with bacterial infections were taken as control. The patients with suspected IFI were also diagnosed by conventional methods including direct microscopy, culture techniques and antigen detection (galactomannan antigen ELISA and latex agglutination for cryptococcal antigen. The results of molecular testing were evaluated in relation to the criteria proposed by the European Organization for Research and Treatment of Cancer and patients were classified as having proven and probable IFD. Results: Of 133 patients, 89 had proven, 18 had probable and 26 had possible IFI. One hundred four samples were reverse transcription-PCR positive. Of 89 proven cases, 84 were panfungal PCR positive. These 84 cases included 82 cases which revealed growth on fungal blood culture and two cases were negative on fungal blood culture. Of the 82 cases which revealed growth on culture: 74 grew Candida in culture, 3 grew Fusarium solani, 5 grew Aspergillus species on blood culture. The later five were also galactomannan antigen positive. The five specimen which were negative on panfungal PCR, two grew Trichosporon asahii, one grew Candida rugosa and two grew as Cryptococcus neoformans var. neoformans. Of the 18 probable cases, 18 were panfungal PCR positive. These were also galactomannan antigen positive. The sensitivity and specificity of panfungal PCR in proven cases were

  20. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71.

    Science.gov (United States)

    Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung

    2013-07-01

    Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.

  1. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    Science.gov (United States)

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  2. Assessment of real-time polymerase chain reaction detection of Acanthamoeba and prognosis determinants of Acanthamoeba keratitis.

    Science.gov (United States)

    Ikeda, Yoshifumi; Miyazaki, Dai; Yakura, Keiko; Kawaguchi, Asako; Ishikura, Ryoko; Inoue, Yoshitsugu; Mito, Tsuyoshi; Shiraishi, Atsushi; Ohashi, Yuichi; Higaki, Shiro; Itahashi, Motoki; Fukuda, Masahiko; Shimomura, Yoshikazu; Yagita, Kenji

    2012-06-01

    To evaluate the diagnostic value of real-time polymerase chain reaction (PCR) for detecting Acanthamoeba in eyes diagnosed with Acanthamoeba keratitis (AK) by conventional tests. In addition, to determine the preoperative prognosis-determining factors in eyes with AK. Retrospective, cross-sectional study. A total of 104 eyes of 103 patients who were diagnosed with AK or with bacterial or bacteria-associated keratitis (BK) by conventional tests. Twenty-nine eyes with AK and 75 eyes with BK were evaluated for Acanthamoeba and bacterial DNA by real-time PCR. The Acanthamoeba copy numbers, bacterial load, and clinical parameters in the patients with AK were assessed for those significantly associated with poor outcome, that is, final visual acuity of Acanthamoeba DNA copy number, bacterial DNA copy number, and odds ratio (OR) for poor prognosis. The detection of amoebic DNA was 50 times more sensitive by real-time PCR than by conventional cyst counting. The Acanthamoeba copy numbers at the first visit (mean: 4.7×10(5)±3.2×10(5) copies) were significantly correlated with the AK stage, and both were significant risk factors for a poor outcome. The Acanthamoeba DNA copy numbers at the first visit and AK stage had a significantly high risk for poor outcome (OR of Acanthamoeba DNA copy per logarithm of copy numbers: 3.48, 95% confidence interval [CI], 1.04-111.63, PAcanthamoeba copy number and AK stage at the first visit were significantly associated with poor outcome. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Real-time polymerase chain reaction monitoring of recombinant DNA entry into soil from decomposing roundup ready leaf biomass.

    Science.gov (United States)

    Levy-Booth, David J; Campbell, Rachel G; Gulden, Robert H; Hart, Miranda M; Powell, Jeff R; Klironomos, John N; Pauls, K Peter; Swanton, Clarence J; Trevors, Jack T; Dunfield, Kari E

    2008-08-13

    Glyphosate-tolerant, Roundup Ready (RR) soybeans account for about 57% of all genetically modified (GM) crops grown worldwide. The entry of recombinant DNA into soil from GM crops has been identified as an environmental concern due to the possibility of their horizontal transfer to soil microorganisms. RR soybeans contain recombinant gene sequences that can be differentiated from wild-type plant and microbial genes in soil by using a sequence-specific molecular beacon and real-time polymerase chain reaction (PCR). A molecular beacon-based real-time PCR system to quantify a wild-type soybean lectin ( le1) gene was designed to compare amounts of endogenous soybean genes to recombinant DNA in soil. Microcosm studies were carried out to develop methodologies for the detection of recombinant DNA from RR soybeans in soil. RR soybean leaf litterbags were imbedded in the soil under controlled environmental conditions (60% water holding capacity, 10/15 degrees C, and 8/16 h day/night) for 30 days. The soybean biomass decomposition was described using a single-phase exponential equation, and the DNA concentration in planta and in soil was quantified using real-time PCR using sequence-specific molecular beacons for the recombinant cp4 epsps and endogenous soybean lectin ( le1) genes. The biomass of RR soybean leaves was 8.6% less than nontransgenic (NT) soybean leaves after 30 days. The pooled half-disappearance time for cp4 epsps and le1 in RR and of le1 in NT soybean leaves was 1.4 days. All genes from leaves were detected in soil after 30 days. This study provides a methodology for monitoring the entry of RR and NT soybean DNA into soil from decomposing plant residues.

  4. Detection of Haemophilus influenzae in respiratory secretions from pneumonia patients by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn

    2009-08-01

    A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.

  5. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens.

    Science.gov (United States)

    Saponari, Maria; Loconsole, Giuliana; Liao, Hui-Hong; Jiang, Bo; Savino, Vito; Yokomi, Raymond K

    2013-11-01

    A number of important citrus pathogens are spread by graft propagation, arthropod vector transmission and inadvertent import and dissemination of infected plants. For these reasons, citrus disease management and clean stock programs require pathogen detection systems which are economical and sensitive to maintain a healthy industry. To this end, multiplex quantitative real-time PCR (qPCR) assays were developed allowing high-throughput and simultaneous detection of some major invasive citrus pathogens. Automated high-throughput extraction comparing several bead-based commercial extraction kits were tested and compared with tissue print and manual extraction to obtain nucleic acids from healthy and pathogen-infected citrus trees from greenhouse in planta collections and field. Total nucleic acids were used as templates for pathogen detection. Multiplex reverse transcription-qPCR (RT-qPCR) assays were developed for simultaneous detection of six targets including a virus, two viroids, a bacterium associated with huanglongbing and a citrus RNA internal control. Specifically, two one-step TaqMan-based multiplex RT-qPCR assays were developed and tested with target templates to determine sensitivity and detection efficiency. The first assay included primers and probes for 'Candidatus Liberibacter asiaticus' (CLas) and Citrus tristeza virus (CTV) broad spectrum detection and genotype differentiation (VT- and T3-like genotypes). The second assay contained primers and probes for Hop stunt viroid (HSVd), Citrus exocortis viroid (CEVd) and the mitochondrial NADH dehydrogenase (nad5) mRNA as an internal citrus host control. Primers and TaqMan probes for the viroids were designed in this work; whereas those for the other pathogens were from reports of others. Based on quantitation cycle values, automated high-throughput extraction of samples proved to be as suitable as manual extraction. The multiplex RT-qPCR assays detected both RNA and DNA pathogens in the same dilution series

  6. Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR.

    Science.gov (United States)

    Blaya, Josefa; Lacasa, Carmen; Lacasa, Alfredo; Martínez, Victoriano; Santísima-Trinidad, Ana B; Pascual, Jose A; Ros, Margarita

    2015-04-01

    The soil-borne pathogens Phytophthora nicotianae and P. capsici are the causal agents of root and stem rot of many plant species. Although P. capsici was considered the causal agent in one of the main pepper production areas of Spain to date, evidence of the presence of P. nicotianae was found. We aimed to survey the presence of P. nicotianae and study the variability in its populations in this area in order to improve the management of Tristeza disease. A new specific primer and a TaqMan probe were designed based on the internal transcribed spacer regions of ribosomal DNA to detect and quantify P. nicotianae. Both morphological and molecular analysis showed its presence and confirmed it to be the causal agent of the Phytophthora disease symptoms in the studied area. The genetic characterization among P. nicotianae populations showed a low variability of genetic diversity among the isolates. Only isolates of the A2 mating type were detected. Not only is a specific and early detection of P. nicotianae essential but also the study of genetic variability among isolates for the appropriate management of the disease, above all, in producing areas with favorable conditions for the advance of the disease. © 2014 Society of Chemical Industry.

  7. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics

    Directory of Open Access Journals (Sweden)

    Miriam Ribas Zambenedetti

    Full Text Available BACKGROUND Real-time reverse transcription polymerase chain reaction (RT-PCR is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV, hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. OBJECTIVES The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. METHODS The MS2 genome was cloned into the pET47b(+ plasmid, generating pET47b(+-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. FINDINGS We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.

  8. Development and validation of a fallow deer (Dama dama)-specific TaqMan real-time PCR assay for the detection of food adulteration.

    Science.gov (United States)

    Kaltenbrunner, Maria; Hochegger, Rupert; Cichna-Markl, Margit

    2018-03-15

    The aim of the present study was to develop a real-time PCR assay for the identification and quantification of fallow deer (Dama dama) in food to detect food adulteration. Despite high sequence homology among different deer species, a fallow deer-specific primer/probe system targeting a fragment of the nuclear MC1-R gene was designed. This primer/probe system did not amplify DNA from 19 other animals and 50 edible plant species. Moderate cross-reactivity was observed for sika deer, red deer, roe deer, reindeer and wild boar. The LOD and LOQ of the real-time PCR assay were 0.1% and 0.4%, respectively. To validate the assay, DNA mixtures, meat extract mixtures, meat mixtures and model game sausages were analyzed. Satisfactory quantitative results were obtained when the calibration mixture was similar to the analyzed sample in both the composition and concentration of the animal species of interest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Abbott RealTime hepatitis C virus (HCV) and Roche Cobas AmpliPrep/Cobas TaqMan HCV assays for prediction of sustained virological response to pegylated interferon and ribavirin in chronic hepatitis C patients.

    Science.gov (United States)

    Matsuura, Kentaro; Tanaka, Yasuhito; Hasegawa, Izumi; Ohno, Tomoyoshi; Tokuda, Hiroshi; Kurbanov, Fuat; Sugauchi, Fuminaka; Nojiri, Shunsuke; Joh, Takashi; Mizokami, Masashi

    2009-02-01

    Two commercial real-time PCR assays are currently available for sensitive hepatitis C virus (HCV) RNA quantification: the Abbott RealTime HCV assay (ART) and Roche Cobas AmpliPrep/Cobas TaqMan HCV assay (CAP/CTM). We assessed whether the two real-time PCR assays were more effective than Roche Cobas Amplicor HCV Monitor test, v.2.0 (CAM) for prediction of the sustained virological response (SVR) to pegylated interferon (PEG-IFN) plus ribavirin (RBV) in chronic hepatitis C. Sixty patients chronically infected with HCV genotype 1b (37 males and 23 females, 53 +/- 12 years of age) were treated with PEG-IFNalpha2b plus RBV for 48 weeks. Stored specimens at nine time points for each patient (at baseline, on treatment, and 24 weeks after treatment) were tested by the two real-time PCR assays and CAM. Twenty-six (43.3%) patients reached SVR. The positive predictive values (PPVs) for SVR of undetectable HCV RNA at week 12 by CAM, ART, and CAP/CTM were 74.3%, 88.0%, and 95.2%, respectively. An undetectable HCV RNA level by CAM, ART, and CAP/CTM correctly predicted SVR at week 4 in 100%, 100%, and 100% of patients, at weeks 5 to 8 in 91.7%, 100%, and 100% of patients, at weeks 9 to 12 in 55.6%, 75%, and 87.5% of patients, and at weeks 13 to 24 in 0%, 26.7%, and 40% of patients, respectively. Of 16 patients who relapsed after treatment, HCV RNA was detectable in 2 patients at the end of treatment by CAP/CTM but undetectable by ART and CAM. HCV RNA tests using ART and CAP/CTM are considered to be more effective at predicting SVR than CAM, and the PPV for SVR was slightly higher in CAP/CTM than in ART.

  10. Real-time quantitative isothermal detection of Ostreid herpesvirus-1 DNA in Scapharca subcrenata using recombinase polymerase amplification.

    Science.gov (United States)

    Gao, Fang; Jiang, Jing-Zhe; Wang, Jiang-Yong; Wei, Hong-Ying

    2018-05-01

    Ostreid herpesvirus-1 (OsHV-1) is a well-known pathogen associated with high mortality rates in hatchery-reared larvae and juveniles of different bivalve species worldwide. Early, rapid and accurate diagnosis plays a fundamental role in disease prevention and control in aquaculture. Recombinase polymerase amplification (RPA) is a novel isothermal amplification method, which can amplify detectable amount of DNA at 37 °C-39 °C within 20 min. In the present study, two sets of specific primers and probes were designed for the real-time quantitative RPA (qRPA) detection of OsHV-1 DNA. The sensitivity and specificity of detection were evaluated by comparison with quantitative polymerase chain reaction (qPCR). The detection limit for qRPA assays was shown to be 5 copies DNA/reaction for the primer set ORF95, which was lower than the 100 copies required for the qPCR test. The optimal reaction temperature and time were 37 °C for 20 min, making this approach faster than qPCR. This is the first study to apply qPCR and qRPA methods to detect OsHV-1 in Scapharca subcrenata. The percentage of viral load sample detected by the two methods was 22% and the correlation of the two virus quantitative results was 0.8. Therefore, qRPA assays is sensitive, fast, and high-temperature independent relative to qPCR and is suitable for critical clinical diagnostics use and rapid field analysis in resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Reference genes for gene expression analysis by real-time reverse transcription polymerase chain reaction of renal cell carcinoma.

    Science.gov (United States)

    Bjerregaard, Henriette; Pedersen, Shona; Kristensen, Søren Risom; Marcussen, Niels

    2011-12-01

    Differentiation between malignant renal cell carcinoma and benign oncocytoma is of great importance to choose the optimal treatment. Accurate preoperative diagnosis of renal tumor is therefore crucial; however, existing imaging techniques and histologic examinations are incapable of providing an optimal differentiation profile. Analysis of gene expression of molecular markers is a new possibility but relies on appropriate standardization to compare different samples. The aim of this study was to identify stably expressed reference genes suitable for the normalization of results extracted from gene expression analysis of renal tumors. Expression levels of 8 potential reference genes (ATP5J, HMBS, HPRT1, PPIA, TBP, 18S, GAPDH, and POLR2A) were examined by real-time reverse transcription polymerase chain reaction in tumor and normal tissue from removed kidneys from 13 patients with renal cell carcinoma and 5 patients with oncocytoma. The expression levels of genes were compared by gene stability value M, average gene stability M, pairwise variation V, and coefficient of variation CV. More candidates were not suitable for the purpose, but a combination of HMBS, PPIA, ATP5J, and TBP was found to be the best combination with an average gene stability value M of 0.9 and a CV of 0.4 in the 18 tumors and normal tissues. A combination of 4 genes, HMBS, PPIA, ATP5J, and TBP, is a possible reference in renal tumor gene expression analysis by reverse transcription polymerase chain reaction. A combination of four genes, HMBS, PPIA, ATP5J and TBP, being stably expressed in tissues from RCC is possible reference genes for gene expression analysis.

  12. Real-time quantitative PCR assay with Taqman® probe for rapid detection of MCR-1 plasmid-mediated colistin resistance

    Directory of Open Access Journals (Sweden)

    S. Chabou

    2016-09-01

    Full Text Available Here we report the development of two rapid real-time quantitative PCR assays with TaqMan® probes to detect the MCR-1 plasmid-mediated colistin resistance gene from bacterial isolates and faecal samples from chickens. Specificity and sensitivity of the assay were 100% on bacterial isolates including 18 colistin-resistant isolates carrying the mcr-1 gene (six Klebsiella pneumoniae and 12 Escherichia coli with a calibration curve that was linear from 101 to 108 DNA copies. Five out of 833 faecal samples from chickens from Algeria were positive, from which three E. coli strains were isolated and confirmed to harbour the mcr-1 gene by standard PCR and sequencing.

  13. Diagnostic application of H3N8-specific equine influenza real-time reverse transcription polymerase chain reaction assays for the detection of Canine influenza virus in clinical specimens.

    Science.gov (United States)

    Lu, Zhengchun; Dubovi, Edward J; Zylich, Nancy C; Crawford, P Cynda; Sells, Stephen; Go, Yun Young; Loynachan, Alan T; Timoney, Peter J; Chambers, Thomas M; Balasuriya, Udeni B R

    2010-11-01

    The objective of the current study was to determine the capability of 3 recently described one-step TaqMan real-time reverse transcription polymerase chain reaction (real-time RT-PCR) assays targeting the nucleoprotein (NP), matrix (M), and hemagglutinin (HA) genes of H3N8 Equine influenza virus (EIV NP, EIV M, and EIV HA3 assays, respectively) to detect Canine influenza virus (CIV). The assays were initially evaluated with nucleic acid extracted from tissue culture fluid (TCF) containing the A/canine/FL/43/04 strain of Influenza A virus associated with the 2004 canine influenza outbreak in Florida. The EIV NP, EIV M, and EIV HA3 assays could detect CIV nucleic acid at threshold cycle (Ct) values of 16.31, 23.71, and 15.28, respectively. Three assays using TCF or allantoic fluid (AF) samples containing CIV (n  =  13) and archived canine nasal swab samples (n  =  20) originally submitted for laboratory diagnosis of CIV were further evaluated. All TCF and AF samples, together with 10 nasal swab samples that previously tested positive for virus by attempted isolation in embryonated hens' eggs or Madin-Darby canine kidney cells, were positive in all 3 real-time RT-PCR assays. None of the 3 assays detected the H1N1 Swine influenza virus strain in current circulation. These findings demonstrate that previously described real-time RT-PCR assays targeting NP, M, and H3 HA gene segments of H3N8 EIV are also valuable for the diagnosis of CIV infection in dogs. The assays could expedite the detection and identification of CIV.

  14. A quantitative real time polymerase chain reaction approach for estimating processed animal proteins in feed: preliminary data

    Directory of Open Access Journals (Sweden)

    Maria Cesarina Abete

    2013-04-01

    Full Text Available Lifting of the ban on the use of processed animal proteins (PAPs from non-ruminants in non-ruminant feed is in the wind, avoiding intraspecies recycling. Discrimination of species will be performed through polymerase chain reaction (PCR, which is at a moment a merely qualitative method. Nevertheless, quantification of PAPs in feed is needed. The aim of this study was to approach the quantitative determination of PAPs in feed through Real Time (RT-PCR technique; three different protocols picked up from the literature were tested. Three different kind of matrices were examined: pure animal meals (bovine, chicken and pork; one feed sample certified by the European reference laboratory on animal proteins (EURL AP in feed spiked with 0.1% bovine meal; and genomic DNAs from bovine, chicken and pork muscles. The limit of detection (LOD of the three protocols was set up. All the results obtained from the three protocols considered failed in the quantification process, most likely due to the uncertain copy numbers of the analytical targets chosen. This preliminary study will allow us to address further investigations, with the purpose of developing a RT-PCR quantitative method.

  15. Development of real-time quantitative polymerase chain reaction assays to track treatment response in retinoid resistant acute promyelocytic leukemia

    Directory of Open Access Journals (Sweden)

    Jelena V Jovanovic

    2011-10-01

    Full Text Available Molecular detection of minimal residual disease (MRD has become established to assess remission status and guide therapy in patients with PML-RARA+ acute promyelocytic leukemia (APL. However, there are few data on tracking disease response in patients with rarer retinoid resistant subtypes of APL, characterized by PLZF-RARA and STAT5b-RARA. Despite their relative rarity (<1% of APL we identified 6 cases (PLZF-RARA, n=5; STAT5b-RARA, n=1, established the respective breakpoint junction regions and designed real-time quantitative polymerase chain reaction (RQ-PCR assays to detect leukemic transcripts. The relative level of fusion gene expression in diagnostic samples was comparable to that observed in t(15;17-associated APL, affording assay sensitivities of ~1 in 104-105. Serial samples were available from 2 PLZF-RARA APL patients. One showed persistent PCR positivity, predicting subsequent relapse, and remains in CR2, ~11 years post-autograft. The other, achieved molecular remission (CRm with combination chemotherapy, remaining in CR1 at 6 years. The STAT5b-RARA patient failed to achieve CRm following frontline combination chemotherapy and ultimately proceeded to allogeneic transplant on the basis of a steadily rising fusion transcript level. These data highlight the potential of RQ-PCR detection of MRD to facilitate development of more individualized approaches to the management of rarer molecularly-defined subsets of acute leukemia.

  16. Validation of housekeeping genes for gene expression analysis in glioblastoma using quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Aithal, Madhuri G S; Rajeswari, Narayanappa

    2015-04-01

    Quantitative real-time polymerase chain reaction (qPCR) is the most reliable tool for gene expression studies. Selection of housekeeping genes (HKGs) that are having most stable expression is critical to carry out accurate gene expression profiling. There is no 'universal' HKG having stable expression in all kinds of tissues under all experimental conditions. The present study aims to identify most appropriate HKGs for gene expression analysis in glioblastoma (GBM) samples. Based on literature survey, six most commonly used HKGs that are invariant in GBM were chosen. We performed qPCR using RNA from formalin fixed paraffin embedded GBM samples and normal brain samples to investigate the expression pattern of HPRT, GAPDH, TBP, B2M, B2M, RPL13A, and RN18S1 with different abundance. A simple Δcycle threshold approach was employed to calculate the fold change. Our study shows that the expression of RPL13A and TBP were found to be most stable across all the samples and are thus suitable for gene expression analysis in human GBM. Except for TBP, none of the other conventionally used HKGs in GBM studies e.g., HPRT and GAPDH were found to be suitable as they showed variation in RNA expression. Validation of HKGs is therefore immensely specific for a particular experimental setup and is crucial in assessing any new setup.

  17. Detection of Congenital Cytomegalovirus Infection by Real-Time Polymerase Chain Reaction Analysis of Saliva or Urine Specimens

    Science.gov (United States)

    Ross, Shannon A.; Ahmed, Amina; Palmer, April L.; Michaels, Marian G.; Sánchez, Pablo J.; Bernstein, David I.; Tolan, Robert W.; Novak, Zdenek; Chowdhury, Nazma; Fowler, Karen B.; Boppana, Suresh B.

    2014-01-01

    Viral culture of urine or saliva has been the gold standard technique for the diagnosis of congenital cytomegalovirus (CMV) infection. Results of rapid culture and polymerase chain reaction (PCR) analysis of urine and saliva specimens from 80 children were compared to determine the clinical utility of a real-time PCR assay for diagnosis of congenital CMV infection. Results of urine PCR were positive in 98.8% of specimens. Three PCR-positive urine samples were culture negative. Results of saliva PCR and culture were concordant in 78 specimens (97.5%). Two PCR-positive saliva samples were culture negative. These findings demonstrate that PCR performs as well as rapid culture of urine or saliva specimens for diagnosing congenital CMV infection and saliva specimens are easier to collect. Because PCR also offers more rapid turnaround, is unlikely to be affected by storage and transport conditions, has lower cost, and may be adapted to high-throughput situations, it is well suited for targeted testing and large-scale screening for CMV. PMID:24799600

  18. Development and use of a real-time polymerase chain reaction assay for the detection of Ophidiomyces ophiodiicola in snakes.

    Science.gov (United States)

    Allender, Matthew C; Bunick, David; Dzhaman, Elena; Burrus, Lucienne; Maddox, Carol

    2015-03-01

    Fungal pathogens threatening the conservation of wildlife are becoming increasingly common. Since 2008, free-ranging snakes across North America have been experiencing a marked increase in the prevalence of snake fungal disease associated with Ophidiomyces ophiodiicola. Diagnosis has historically relied on histology, microbiology, and conventional polymerase chain reaction (PCR). More sensitive methods are needed to adequately characterize the epidemiology. The current study describes the development of a real-time PCR (qPCR) assay for detecting a segment of the internal transcribed spacer 1 region between the 18S and 5.8S ribosomal RNA gene. The assay was able to detect as few as 1.05 × 10(1) gene copies per reaction. An additional 4 positive cases were detected when comparing a conventional PCR (n = 3) and the qPCR (n = 7) when used on swab samples from 47 eastern massasauga rattlesnakes. The newly developed assay is a sensitive and specific tool for surveillance and monitoring in the conservation of free-ranging snakes. © 2015 The Author(s).

  19. Rapid detection of Salmonella from poultry by real-time polymerase chain reaction with fluorescent hybridization probes.

    Science.gov (United States)

    Eyigor, Aysegul; Carli, K Tayfun

    2003-01-01

    Detection of Salmonella by bacteriologic methods is known to be time consuming. Therefore, we have developed a real-time probe-specific polymerase chain reaction (PCR) to rapidly detect Salmonella invA gene-based PCR products from chicken feces and carcasses by a fluorescence resonance energy transfer assay. The sensitivity and the specificity of this system were determined as 3 colony-forming units ml(-1) and 100%, respectively. Overnight tetrathionate broth enrichment cultures of chicken feces and carcass samples were used in template preparation for PCR. Also, a standard bacteriology was performed (National Poultry Improvement Plan-U.S. Department of Agriculture, Bacteriological Analytical Manual-Food and Drug Administration Center for Food Safety and Applied Nutrition) for confirmation. Seventy-two cloacal swab, 147 intestine, and 50 carcass (neck) samples were examined. Thirteen (8.8%) and 25 (17%) of the intestinal samples were found to harbor Salmonella by bacteriology and PCR, respectively. Forty-five of 50 (90%) carcass samples were Salmonella positive by both methods. Salmonella was not detected from cloacal swab samples. Results indicate that this assay has the potential for use in routine monitoring and detection of Salmonella in infected flocks and carcasses.

  20. Detection and quantification of roundup ready soy in foods by conventional and real-time polymerase chain reaction.

    Science.gov (United States)

    Rott, Michael E; Lawrence, Tracy S; Wall, Erika M; Green, Margaret J

    2004-08-11

    Transgenic soybean line GTS-40-3-2, marketed under the trade name Roundup Ready (RR) soy, was developed by Monsanto (USA) to allow for the use of glyphosate, the active ingredient of the herbicide Roundup, as a weed control agent. RR soy was first approved in Canada for environmental release and for feed products in 1995 and later for food products in 1996 and is widely grown in Canada. Consumer concern issues have resulted in proposed labeling regulations in Canada for foods derived from genetically engineered crops. One requirement for labeling is the ability to detect and accurately quantify the amount of transgenic material present in foods. Two assays were evaluated. A conventional qualitative Polymerase Chain Reaction (PCR) assay to detect the presence of soy and RR soy and a real-time PCR to quantify the amount of RR soy present in samples that tested positive in the first assay. PCR controls consisted of certified RR soy reference material, single transgenic soybeans, and a processed food sample containing a known amount of RR soy. To test real-world applicability, a number of common grocery store food items that contain soy-based products were tested. For some samples, significant differences in amplification efficiencies during the quantitative PCR assays were observed compared to the controls, resulting in potentially large errors in quantification. A correction factor was used to try to compensate for these differences.

  1. Comparison of real-time and quantitative polymerase chain reaction assays in detection of cytomegalovirus DNA in clinical specimens

    International Nuclear Information System (INIS)

    Gokahmetoglu, S.; Deniz, E.

    2007-01-01

    To compare the real-time (RT) and qualitative (Q) polymerase chain reaction (PCR) assays for detection of Cytomegalovirus (CMV) DNA. The study took place in the Department of Microbiology, Erciyes University, Kayseri and in Iontek Laboratory, Istanbul, Turkey, from August to December 2006. One hundred and seven clinical specimens from 67 patients were included in the study. Cytomegalovirus DNA was investigated using RT-PCR kit (Fluorion Iontek, Turkey) and Q-PCR kit (Fluorion Iontek, Turkey). Deoxyribonucleic acid sequencing was applied to the samples that yielded discrepant results in both assays. Mac Nema's Chi Square test was used for statistical analysis. Of the specimens, 27 were found positive with both assays: 9 with only RT-PCR, and 11 with only Q-PCR assay. Both assays were found negative in 60 of the specimens. There was a good agreement between the 2 assays in 87(81.3%) of the specimens. There was no statistical significant difference between the assays (p>0.05). Two of the 11 samples that RT-PCR negative Q-PCR positive, and 3 of 9 samples that RT-PCR positive Q-PCR negative were found to be CMV DNA positive by DNA sequencing. A good level of concordance between RT-PCR and Q-PCR assays for CMV DNA detection has been found. (author)

  2. Detection and Enumeration of Streptococcus agalactiae from Bovine Milk Samples by Real-Time Polymerase Chain Reaction.

    Science.gov (United States)

    de Carvalho, Nara Ladeira; Gonçalves, Juliano Leonel; Botaro, Bruno Garcia; Silva, Luis Felipe de Prada E; dos Santos, Marcos Veiga

    2015-09-01

    The aim of this study was to evaluate the use of real-time polymerase chain reaction (qPCR) combined with DNA extraction directly from composite milk and bulk tank samples for detection and enumeration of Streptococcus agalactiae (SAG) causing subclinical mastitis. Dilutions of sterile reconstituted skim milk inoculated with SAG ATCC 13813 were used to establish a standard curve (cfu/mL) for the qPCR assay targeting SAG. The analytical sensitivity and repeatability of the qPCR assay were determined. Bulk tank (BTM; n = 38) and composite milk samples (CM; n = 26) collected from lactating cows with positive isolation of SAG were submitted to the qPCR protocol and SAG plate counting, with results from both methods compared. Amplification of DNA was not possible in two out of 64 samples, indicating that qPCR was able to detect SAG in 96 and 97% of BTM and CM samples, respectively. The inter-assay coefficient of variation was qPCR protocol can be a high-throughput and rapid diagnostic assay to accurately detect SAG from BTM and CM samples compared with conventional microbiological culture method. However, the evaluated qPCR protocol is not accurate for enumerating SAG in milk samples, probably due to quantification of DNA of non-viable cells.

  3. Development and validation of a TaqMan real-time PCR assay for the identification and quantification of roe deer (Capreolus capreolus) in food to detect food adulteration.

    Science.gov (United States)

    Druml, Barbara; Mayer, Walter; Cichna-Markl, Margit; Hochegger, Rupert

    2015-07-01

    In order to protect the consumer from meat adulteration it is necessary to identify and quantify the meat content in foodstuffs. Game meat is particularly susceptible for fraudulent labeling since it is more valuable than meat from domestic animals. The paper presents a TaqMan real-time PCR assay for the quantitative determination of roe deer in meat products. The assay developed does not show cross-reactivity with 23 animal and 43 plant species tested and is therefore specific for roe deer. The amplification efficiency determined by analyzing serially diluted roe deer DNA extracts was found to be 93.9%. For quantifying the roe deer content in % (w/w), a reference system based on the myostatin gene was used. The quantification strategy was validated by determining the roe deer content in model meat mixtures and a model sausage. In addition, the real-time PCR assay was applied to the analysis of commercially available meat products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A duplex real-time PCR assay based on TaqMan technology for simultaneous detection and differentiation of canine adenovirus types 1 and 2.

    Science.gov (United States)

    Dowgier, Giulia; Mari, Viviana; Losurdo, Michele; Larocca, Vittorio; Colaianni, Maria Loredana; Cirone, Francesco; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio; Decaro, Nicola

    2016-08-01

    Canine adenoviruses are a major cause of disease in dogs, coyotes, red foxes and wolves, as well as in other carnivores and marine mammals. Canine adenovirus type 1 (CAdV-1) and canine adenovirus type 2 (CAdV-2) cause infectious canine hepatitis (ICH) and infectious tracheobronchitis (ITB), respectively. In this study, a duplex real-time PCR assay for simultaneous detection and characterisation of CAdV-1 and CAdV-2 was developed by using a single primer pair and virus-specific probes. The assay was validated testing standard DNAs produced on purpose and clinical samples of various matrices known to be positive for CAdV-1, CAdV-2 or both viruses. Precise calculation of DNA loads in samples containing a wide range of viral amounts was allowed by generating a standard curve for absolute quantification. The assay was proven to be highly specific, since no cross-reactions with the different CAdV type was observed, and sensitive, being able to detect less than 10 copies of CAdV-1/CAdV-2 DNA. The low intra-assay and interassay coefficient of variations demonstrated a high repeatability, thus confirming the potential use of this assay for quantitative detection of CAdV-1 and CAdV-2 for rapid diagnosis and epidemiological investigations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Real-time polymerase chain reaction as a tool for evaluation of magnetic poly(glycidyl methacrylate)-based microspheres in molecular diagnostics

    Czech Academy of Sciences Publication Activity Database

    Trachtová, S.; Španová, A.; Horák, Daniel; Kozáková, Hana; Rittich, B.

    2016-01-01

    Roč. 22, č. 5 (2016), s. 639-646 ISSN 1381-6128 R&D Projects: GA ČR GA15-07268S Institutional support: RVO:61389013 ; RVO:61388971 Keywords : magnetic microspheres * inhibitory effect * real-time polymerase chain Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (MBU-M) Impact factor: 2.611, year: 2016

  6. Detection of bacteria in platelet concentrates: comparison of broad-range real-time 16S rDNA polymerase chain reaction and automated culturing

    NARCIS (Netherlands)

    Mohammadi, Tamimount; Pietersz, Ruby N. I.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.; Reesink, Henk W.

    2005-01-01

    BACKGROUND: Based on real-time polymerase chain reaction (PCR) technology, a broad-range 16S rDNA assay was validated and its performance was compared to that of an automated culture system to determine its usefulness for rapid routine screening of platelet concentrates (PCs). STUDY DESIGN AND

  7. Quantification of Staphylococcus aureus and Staphylococcus epidermidis on the hands of health-care workers using a real-time polymerase chain reaction method

    DEFF Research Database (Denmark)

    Horn, P; Schouenborg, P Øland; Brandslund, I

    2007-01-01

    OBJECTIVE: The objective of this study was to test a polymerase chain reaction (PCR) assay intended as a tool for monitoring hand hygiene in hospital wards. METHODS: The hands of 20 health-care workers were sampled for 10 days using real-time PCR for quantification of Staphylococcus aureus and S...

  8. Porcine reproductive and respiratory syndrome virus: Interlaboratory ring trial to evaluate real-time reverse transcription polymerase chain reaction detection methods

    DEFF Research Database (Denmark)

    Wernike, Kerstin; Bonilauri, Paolo; Dauber, Malte

    2012-01-01

    To compare the real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays used for the diagnosis of Porcine reproductive and respiratory syndrome virus (PRRSV), a Europe-wide interlaboratory ring trial was conducted. A variety of PRRSV strains including North American...

  9. Real-time reverse-transcriptase polymerase chain reaction for the rapid detection of Salmonella using invA primers.

    Science.gov (United States)

    D'Souza, Doris H; Critzer, Faith J; Golden, David A

    2009-11-01

    Recent outbreaks of Salmonella linked to fresh produce emphasize the need for rapid detection methods to help control the spread of disease. Reverse-transcriptase polymerase chain reaction (RT-PCR) can detect the presence of mRNA (shorter half-life than DNA) with greater potential for detecting viable pathogens. The chromosomally located invA gene required for host invasion by Salmonella is widely used for detection of this pathogen by PCR. Detection of Salmonella was undertaken by real-time RT-PCR (rt-RT-PCR) using newly designed invA gene primers to develop a sensitive and specific assay. Salmonella serovars Typhimurium and Enteritidis were grown (7.68 log(10) CFU/mL) in Luria-Bertani broth overnight at 37 degrees C, and RNA was extracted, followed by rt-RT-PCR with and without SYBR green I and agarose gel electrophoresis. All experiments were replicated at least thrice. Detection for both serovars using traditional RT-PCR was lower ( approximately 10(5) CFU/mL) than rt-RT-PCR (10(3) CFU/mL) by gel electrophoresis. Melt curve analysis showed melt temperatures at 87.5 degrees C with Ct values from 12 to 15 for up to 10(3) CFU/mL and improved to 10(2) CFU/mL after further optimization. Further, addition of RNA internal amplification control constructed using in vitro transcription with a T7 RNA polymerase promoter, to the RT-PCR assay also gave detection limits of 10(2) CFU/mL. Cross-reactivity was not observed against a panel of 21 non-Salmonella bacteria. Heat-inactivated (autoclaved) Salmonella showed faint or no detection by rt-RT-PCR or gel electrophoresis. This method has potential to be applied for the detection of Salmonella serovars in fresh produce and the simultaneous detection of foodborne viral (RNA viruses) and bacterial pathogens in a multiplex format.

  10. Miltenberger blood group typing by real-time polymerase chain reaction (qPCR) melting curve analysis in Thai population.

    Science.gov (United States)

    Vongsakulyanon, A; Kitpoka, P; Kunakorn, M; Srikhirin, T

    2015-12-01

    To develop reliable and convenient methods for Miltenberger (Mi(a) ) blood group typing. To apply real-time polymerase chain reaction (qPCR) melting curve analysis to Mi(a) blood group typing. The Mi(a) blood group is the collective set of glycophorin hybrids in the MNS blood group system. Mi(a+) blood is common among East Asians and is also found in the Thai population. Incompatible Mi(a) blood transfusions pose the risk of life-threatening haemolysis; therefore, Mi(a) blood group typing is necessary in ethnicities where the Mi(a) blood group is prevalent. One hundred and forty-three blood samples from Thai blood donors were used in the study. The samples included 50 Mi(a+) samples and 93 Mi(a-) samples, which were defined by serology. The samples were typed by Mi(a) typing qPCR, and 50 Mi(a+) samples were sequenced to identify the Mi(a) subtypes. Mi(a) subtyping qPCR was performed to define GP.Mur. Both Mi(a) typing and Mi(a) subtyping were tested on a conventional PCR platform. The results of Mi(a) typing qPCR were all concordant with serology. Sequencing of the 50 Mi(a+) samples revealed 47 GP.Mur samples and 3 GP.Hop or Bun samples. Mi(a) subtyping qPCR was the supplementary test used to further define GP.Mur from other Mi(a) subtypes. Both Mi(a) typing and Mi(a) subtyping performed well using a conventional PCR platform. Mi(a) typing qPCR correctly identified Mi(a) blood groups in a Thai population with the feasibility of Mi(a) subtype discrimination, and Mi(a) subtyping qPCR was able to further define GP.Mur from other Mi(a) subtypes. © 2015 British Blood Transfusion Society.

  11. Optimization and Validation of a Real Time Reverse Transcriptase Polymerase Chain Reaction with RNA Internal Control to Detect Rubella RNA

    Directory of Open Access Journals (Sweden)

    Winny Xie

    2013-12-01

    Full Text Available BACKGROUND: According to a report from WHO, cases of rubella infection in Indonesia has increased up to 10-fold from 2007 to 2011. Despite no data of congenital rubella syndrome in the report, there are approximately 45,000 cases of babies born with heart failure and 0.1-0.3% live births with congenital deafness in Indonesia. Allegedly, rubella infection during pregnancy may play a role in this condition. This study aimed to optimize and validate a real-time reverse transcriptase polymerase chain reaction (RT-qPCR method to detect rubella virus RNA as an aid for the diagnosis of congenital rubella infection. METHODS: Method optimization was conducted using nucleic acids extracted from Trimovax Merieux vaccine with the High Pure Viral Nucleic Acid Kit. One step RT-qPCR was performed with Quantifast Multiplex RTPCR+R Kit. Target synthetic DNA was designed and used to determine the sensitivity of the method. RNA internal control was synthesized to control the process of extraction and amplification. RESULTS: The analytical sensitivity of this method was as low as 5 copies target synthetic DNA/μl. The mean Coefficient of Variation (CV % of the critical threshold (Ct obtained were 2.71%, 1.20%, 1.62%, and 1.59% for within run, between run, between kit lots, and between operators, respectively. Recovery of the target synthetic DNA from amniotic fluid was 100.51% (by the log copies/μl at the concentration of 1,000,000 copies/μl. CONCLUSIONS: RT-qPCR is successfully used for the detection of rubella virus RNA in vaccine and synthetic nucleic acid. With its high sensitivity, good precision and recovery, this method offers a means to improve the diagnosis of congenital rubella infection in developing countries like Indonesia. KEYWORDS: congenital rubella, RT-qPCR, prenatal diagnosis, amniotic fluid.

  12. Quantitative Real-time Polymerase Chain Reaction for Enteropathogenic Escherichia coli: A Tool for Investigation of Asymptomatic Versus Symptomatic Infections

    Science.gov (United States)

    Barletta, Francesca; Mercado, Erik; Ruiz, Joaquim; Ecker, Lucie; Lopez, Giovanni; Mispireta, Monica; Gil, Ana I.; Lanata, Claudio F.; Cleary, Thomas G.

    2011-01-01

    Background. Enteropathogenic Escherichia coli (EPEC) strains are pediatric pathogens commonly isolated from both healthy and sick children with diarrhea in areas of endemicity. The aim of this study was to compare the bacterial load of EPEC isolated from stool samples from children with and without diarrhea to determine whether bacterial load might be a useful tool for further study of this phenomenon. Methods. EPEC was detected by polymerase chain reaction (PCR) of colonies isolated on MacConkey plates from 53 diarrheal and 90 healthy children aged <2 years. DNA was isolated from stool samples by cetyltrimethylammonium bromide extraction. To standardize quantification by quantitative real-time PCR (qRT-PCR), the correlation between fluorescence threshold cycle and copy number of the intimin gene of EPEC E2348/69 was determined. Results. The detection limit of qRT-PCR was 5 bacteria/mg stool. The geometric mean load in diarrhea was 299 bacteria/mg (95% confidence interval [CI], 77–1164 bacteria/mg), compared with 29 bacteria/mg (95% CI, 10–87 bacteria/mg) in control subjects (P = .016). Bacterial load was significantly higher in children with diarrhea than in control subjects among children <12 months of age (178 vs 5 bacteria/mg; P = .006) and among children with EPEC as the sole pathogen (463 vs 24 bacteria/mg; P = .006). Conclusions. EPEC load measured by qRT-PCR is higher in diarrheal than in healthy children. qRT-PCR may be useful to study the relationship between disease and colonization in settings of endemicity. PMID:22028433

  13. A rapid, real-time quantitative polymerase chain reaction test for the identification of pathogens in bronchoalveolar lavage samples.

    Science.gov (United States)

    Orlando, Alessandro; Thoma, Gregory; Slone, Denetta S; Mains, Charles W; Bar-Or, David

    2014-03-01

    Standard bacteriologic culture techniques offer results within 2 days to 3 days, precluding a focused and timely antibiotic therapy in ventilated trauma patients. Our laboratory developed a real-time quantitative polymerase chain reaction (qPCR) test that can detect 25 different bacteria and fungi and methicillin resistance and offers results within 3 hours. The objective of this study was to compare the qPCR method to standard culture techniques. This was a prospective observational cohort study at a Level I trauma center from 2009 to 2012. Adult trauma patients on ventilation, receiving at least one bronchoalveolar lavage (BAL) with culture results were eligible for inclusion. DNA was isolated from the BAL samples and analyzed in 96-well plates using qPCR. Student's t tests were used to examine differences in mean qPCR cycle counts. Sensitivities, specificities, negative predictive values, and positive predictive values were calculated for the qPCR primer sets. There were 28 BALs in the study. The qPCR method detected a total of 165 organisms, and culture methods found 54. The qPCR test had an overall sensitivity of 85%, specificity of 74%, negative predictive value of 98%, and positive predictive value of 27%. Those organisms that were only identified through qPCR had significantly less DNA than those identified through both qPCR and quantitative culture (28.8 vs. 23.3, p qPCR specificity in some primer sets, and methicillin resistance was only found in BAL samples that were concurrent with antibiotics. The qPCR method shows promising initial diagnostic value. Many of the organisms not identified by quantitative culture had late cycle calls, suggesting that they might have been in quantities too low to result in culture identification. Once refined, our qPCR method has the potential to identify pathogens faster and earlier than standard quantitative culture methods, allowing for targeted antibiotic therapy within 3 hours. Diagnostic test, level II.

  14. Detection of pathogenic Yersinia enterocolitica in slaughtered pigs by cultural methods and real-time polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Rina Mazzette

    2015-05-01

    Full Text Available Healthy pigs carrying pathogenic to human Yersinia enterocolitica strains are the main source of entry into slaughterhouse, where cross-contamination of carcasses can happen. The aim of this work was to determine Y. enterocolitica prevalence in slaughtered pigs, investigating the presence of carriers in relation to carcass contamination. A total of 132 pig samples (tonsils, mesenteric lymph nodes, colon content, carcass surface were collected from 4 Sardinian slaughterhouses. All the samples were examined by the ISO 10273:2003 method, and the prevalence was also determined by direct plating on CIN Agar. Moreover, to detect the ail positive Y. enterocolitica strains in enrichment broths and isolates a real-time polymerase chain reaction (PCR was applied. Y. enterocolitica prevalence was 19% with direct plating and 12% with enrichment methods. Carcass surfaces and tonsils prevalence was 5.30% by direct plating, and 5.3% and 2.2%, respectively, by enrichment method. Tonsil samples showed an average contamination level of 3.2×103 CFU/g, while the mean value on carcass was 8.7×102 CFU/g. An overall prevalence of 9.8% of ail positive Y. enterocolitica broths was detected by RT-PCR, that found a higher prevalence in tonsils (7.5% with respect to cultural methods, confirming the greater sensitivity of this technique when applied for tonsils and faeces samples. The results show a relatively low pathogenic Y. enterocolitica prevalence in pigs slaughtered in Sardinia. Good hygiene measures should be applied at slaughterhouse in order to prevent the entry of carriers and control carcass contamination.

  15. An Internal Reference Control Duplex Real-Time Polymerase Chain Reaction Assay for Detecting Bacterial Contamination in Blood Products.

    Directory of Open Access Journals (Sweden)

    Jin-Ju Zhang

    Full Text Available Real-time polymerase chain reaction (RT-PCR enables effective and sensitive screening for infectious risk in the field of blood safety. However, when using RT-PCR to detect bacterial contamination, several intractable points must be considered, one of which is the lack of appropriate quality control. In this study, we developed a simplified RT-PCR assay in which the same primer set and two distinct probes were used to detect both, an internal reference control and the target in a reaction. The copy number of the internal reference control represents the positive detection limit of the assay; therefore, when the threshold-cycle value of the target is less than or equal to that of the internal reference control, the result obtained for the target can be considered to be a true positive. When human gDNA was spiked with Escherichia coli gDNA and the detection limit for the internal reference control was set to five copies, the measured detection limit for E. coli gDNA was two copies. The internal reference control duplex RT-PCR assay showed high efficiency (0.91-1.02, high linearity (R2 > 0.99, and good reproducibility in intra- and inter-assay comparisons. Lastly, when human platelet-rich plasma samples were spiked with E. coli or other bacterial species, all species were detected efficiently, and the results of a two-sample pooled t test showed that the limit of detection for E. coli was 1 cfu/mL. Here, we present a synthetic internal reference control molecule and a new statistical method for improving the reliability of RT-PCR assays when screening for bacterial contamination in blood products.

  16. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    Science.gov (United States)

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  17. Detection of Aspergillus flavus and A. fumigatus in Bronchoalveolar Lavage Specimens of Hematopoietic Stem Cell Transplants and Hematological Malignancies Patients by Real-Time Polymerase Chain Reaction, Nested PCR and Mycological Assays

    Science.gov (United States)

    Zarrinfar, Hossein; Mirhendi, Hossein; Fata, Abdolmajid; Khodadadi, Hossein; Kordbacheh, Parivash

    2015-01-01

    Background: Pulmonary aspergillosis (PA) is one of the most serious complications in immunocompromised patients, in particular among hematopoietic stem cell transplants (HSCT) and patients with hematological malignancies. Objectives: The current study aimed to evaluate the incidence of PA and utility of molecular methods in HSCT and patients with hematological malignancies, four methods including direct examination, culture, nested polymerase chain reaction (PCR) and real-time PCR were performed on bronchoalveolar lavage (BAL) specimens in Tehran, Iran. Patients and Methods: During 16 months, 46 BAL specimens were obtained from individuals with allogeneic HSCT (n = 18) and patients with hematological malignancies (n = 28). Direct wet mounts with 20% potassium hydroxide (KOH) and culture on mycological media were performed. The molecular detection of Aspergillus fumigatus and A. flavus was done by amplifying the conserved sequences of internal transcribed spacer 1 (ITS1) ribosomal DNA by nested-PCR and the β-tubulin gene by TaqMan real-time PCR. Results: Seven (15.2%) out of 46 specimens were positive in direct examination and showed branched septate hyphae; 11 (23.9%) had positive culture including eight (72.7%) A. flavus and three (27.3%) A. fumigatus; 22 (47.8%) had positive nested-PCR and eight (17.4%) had positive real-time PCR. The incidence of invasive pulmonary aspergillosis (IPA) in these patients included proven IPA in 1 (2.2%), probable IPA in 10 (21.7%), possible IPA in 19 (41.3%) and not IPA in 16 cases (34.8%). Conclusions: The incidence of IPA in allogeneic HSCT and patients with hematological malignancies was relatively high and A. flavus was the most common cause of PA. As molecular methods had higher sensitivity, it may be useful as screening methods in HSCT and patients with hematological malignancies, or to determine when empirical antifungal therapy can be withheld. PMID:25763133

  18. Performance characteristics of the COBAS Ampliprep/COBAS TaqMan v2.0 and the Abbott RealTime hepatitis C assays - implications for response-guided therapy in genotype 1 infections.

    Science.gov (United States)

    Taylor, Ninon; Haschke-Becher, Elisabeth; Greil, Richard; Strasser, Michael; Oberkofler, Hannes

    2014-01-01

    With the advent of the protease inhibitors boceprevir and telaprevir a novel therapy approach for HCV genotype 1 infected subjects has become standard of care. Quantification of HCV viral load (VL) represents an important predictor of treatment response. Two different real-time PCR platforms, the COBAS Ampliprep/COBAS TaqMan v2.0 (CAP-CTM v2.0) and the Abbott RealTime (ART) HCV assay are most widely used. We performed a comparative evaluation of both systems focusing on genotype 1 HCV quantification using clinical specimens, the fourth WHO International Standard for HCV and the Paul Ehrlich National Standard, respectively. The HCV VL assays showed an excellent overall agreement in the clinical specimens studied (R(2)=0.912). Discrepant results were obtained at the low VL end. Four samples tested negative with CAP-CTM v2.0 but were detectable with ART and two samples were undetectable with ART but tested positive with CAP-CTM v2.0. The coefficient of variation in replicate measurements of both reference materials was higher for CAP-CTM v2.0 as compared with ART at the clinical decision point for boceprevir (≥100 IU/ml), but was similar for the two assays at the clinical decision point for telaprevir (≥1,000 IU/ml). The tendency for underestimation of the diluted standards was higher for ART than for CAP-CTM v2.0. Although both assays allowed accurate determination of VL levels in clinical samples, careful interpretation of results at the low VL end is essential. Furthermore, discontinuation of therapy based on single HCV RNA measurement should be carefully reconciled, unless the issue of assay variability has been addressed adequately.

  19. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters.

    Science.gov (United States)

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna M Y; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease.

  20. Improvement and optimization of a multiplex real-time reverse transcription polymerase chain reaction assay for the detection and typing of Vesicular stomatitis virus.

    Science.gov (United States)

    Hole, Kate; Velazquez-Salinas, Lauro; Velazques-Salinas, Lauro; Clavijo, Alfonso

    2010-05-01

    An improvement to a previously reported real-time reverse transcription polymerase chain reaction (real-time RT-PCR) assay for the detection of Vesicular stomatitis virus (VSV) is described. Results indicate that the new assay is capable of detecting a panel of genetically representative strains of VSV present in North, Central, and South America. The assay is specific for VSV and allows for simultaneous differentiation between Vesicular stomatitis Indiana virus and Vesicular stomatitis New Jersey virus. This real-time RT-PCR is able to detect current circulating strains of VSV and can be used for rapid diagnosis of VSV and differentiation of VSV from other vesicular diseases, such as foot-and-mouth disease.

  1. [DNA extraction and identification of Trichophyton rubrum by real-time polymerase chain reaction from direct nail scraping specimens of patients with onycomycosis].

    Science.gov (United States)

    Berk, Elife; Kuştimur, Semra; Kalkancı, Ayşe; Oztaş, O Murat

    2011-01-01

    Trichophyton rubrum is the most frequently encountered dermatophyte species causing onichomycosis. The routine diagnosis of dermatophytes depends on the direct microscopic examination (DME) and culture methods, however due to the phenotypic identification problems related to those agents, the molecular methods come into question. The aim of this study was to evaluate the diagnostic performance of real-time polymerase chain reaction (RT-PCR) for the identification of T.rubrum by comparing to DME and culture methods, from nail samples of patients with the complaints of onychomycosis. A total of 90 patients of whom 58 were male who were admitted to the dermatology outpatients clinics of our hospital with the complaints of color/shape changes in the nails and thickening of the nail, were included in the study, together with the 20 healthy volunteer subjects as controls. The nail scraping samples obtained from the patients and controls were examined with direct microscopy using 15% potassium hydroxide, dimethyl sulphoxide and chlorazole black mixture and cultivated onto Sabouraud dextrose agar with and without cycloheximide. For DNA isolation, after the disruption of nail samples with a steel tool, phenol-chloroform-isoamyl alcohol purification method were used. The amplification and demonstration of the T.rubrum DNA have been performed by using specific primers and probes following TaqMan protocol of RT-PCR (LightCycler-Roche, USA) method. Seventy-two of the patients yielded positive and 18 yielded negative results with DME. Growth of molds was detected in the cultures of 20 (27.8%) of the 72 DME positive patients and all of the isolates were identified as T.rubrum. No fungal growth was seen in the samples of 18 patients who were DME negative. In DME positive group, 67 (93%) patients were found to be positive in RT-PCR, while 8 (44.4%) patients were RT-PCR positive in DME negative group. All of the culture positive samples (n= 20) were also found positive in RT

  2. International Ring Trial for the Validation of an Event-Specific Golden Rice 2 Quantitative Real-Time Polymerase Chain Reaction Method

    OpenAIRE

    JACCHIA SARA; NARDINI ELENA; BASSANI NICCOLO; SAVINI Cristian; SHIM Jung-Hyun; TRIJATMIKO Kurniawan; KREYSA JOACHIM; MAZZARA Marco

    2014-01-01

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3′ junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in...

  3. Real-time polymerase chain reaction optimised for hepatitis C virus detection in dried blood spots from HIV-exposed infants, KwaZulu-Natal, South Africa

    OpenAIRE

    Anneta Naidoo; Raveen Parboosing; Pravi Moodley

    2016-01-01

    Background: There is a paucity of data on the prevalence of hepatitis C virus (HCV) in children, particularly in sub-Saharan Africa. A major obstacle in resource-limited settings for polymerase chain reaction (PCR) testing is the necessity for specimen transportation and storage at low temperatures. There are numerous recent studies of using real-time HCV PCR for diagnosis and screening of plasma and serum, but few have looked at using dried blood spot (DBS) specimens. Objectives: The aim ...

  4. Real-time polymerase chain reaction for quantitative assessment of common pathogens associated with healthcare-acquired infections on hospital textiles

    OpenAIRE

    Mlakar, Vid; Rabuza, Urška; Fijan, Sabina; Šostar-Turk, Sonja

    2015-01-01

    A hospital environment may act as a significant reservoir for potential pathogens that can be transmitted with hospital textiles, which could represent a source of healthcare-acquired infections. Quantitative assessment of nosocomial pathogens with real time polymerase chain reaction (qPCR) on textiles can serve to verify the achievement of standards for textile hygiene of hospital laundry that assess the risk for acquiring hospital infection frominappropriately disinfected textiles. The aim ...

  5. Classical swine fever virus detection: results of a real-time reverse transcription polymerase chain reaction ring trial conducted in the framework of the European network of excellence for epizootic disease diagnosis and control.

    NARCIS (Netherlands)

    Hoffmann, B.; Blome, S.; Bonulauri, P.; Fernández-Pinero, J.; Greiser-Wilke, I.; Haegeman, A.; Isaksson, M.; Koenen, F.; Leblanc, N.; Leifer, I.; Potier, Le M.F.; Loeffen, W.; Rasmussen, T.B.; Stadejek, T.; Stahl, K.; Tignon, M.; Uttenthal, A.; Poel, van der W.H.M.

    2011-01-01

    The current study reports on a real-time reverse transcription polymerase chain reaction (real-time RT-PCR) ring trial for the detection of Classical swine fever virus (CSFV) genomic RNA undertaken by 10 European laboratories. All laboratories were asked to use their routine in-house real-time

  6. Cost-effective optimization of real-time PCR-based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases.

    Science.gov (United States)

    Fachmann, M S R; Josefsen, M H; Hoorfar, J; Nielsen, M T; Löfström, C

    2015-11-01

    The aim of this study was to cost-effectively improve detection of foodborne pathogens in PCR inhibitory samples through the use of alternative DNA polymerases. Commercially available polymerases (n = 16) and PCR master mixes (n = 4) were screened on DNA purified from bacterial cells in two validated real-time PCR assays for Campylobacter and Salmonella. The five best performing (based on: limit of detection (LOD), maximum fluorescence, shape of amplification curves and amplification efficiency) were subsequently applied to meat and faecal samples. The VeriQuest qPCR master mix performed best for both meat and faecal samples (LODs of 10(2) and 10(4) CFU ml(-1) in the purest and crudest DNA extractions respectively) compared with Tth (LOD = 10(2)-10(3) and 10(5)-10(6) CFU ml(-1)). AmpliTaqGold and HotMasterTaq both performed well (LOD = 10(2)-10(4) CFU ml(-1)) with meat samples and poorly (LOD = 10(3)-10(6) CFU ml(-1)/not detected) with faecal samples. Applying the VeriQuest qPCR master mix in the two tested real-time PCR assays could allow for simpler sample preparation and thus a reduction in cost. This work exemplifies a cost-effective strategy for optimizing real-time PCR-based assays. However, a DNA polymerase suitable for one assay and sample type is not necessarily optimal for other assays or sample types. © 2015 The Society for Applied Microbiology.

  7. Cost-effective optimization of real-time PCR based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases

    DEFF Research Database (Denmark)

    Fachmann, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Hoorfar, Jeffrey

    2015-01-01

    bacterial cells in two validated real-time PCR assays for Campylobacter and Salmonella. The five best performing (based on: limit of detection (LOD), maximum fluorescence, shape of amplification curves, and amplification efficiency) were subsequently applied to meat and fecal samples. The VeriQuest q...... (LOD=103 -106 CFU ml-1 /not detected) with fecal samples. CONCLUSIONS: Applying the VeriQuest qPCR master mix in the two tested real-time PCR assays could allow for simpler sample preparation and thus a reduction in cost. SIGNIFICANCE AND IMPACT OF STUDY: This work exemplifies a cost-effective strategy...

  8. Detection of Brucella spp. in milk from seronegative cows by real-time polymerase chain reaction in the region of Batna, Algeria.

    Science.gov (United States)

    Sabrina, Rabehi; Mossadak, Hamdi Taha; Bakir, Mamache; Asma, Meghezzi; Khaoula, Boushaba

    2018-03-01

    The aim of this study was to detect Brucella spp. DNA in milk samples collected from seronegative cows using the real-time polymerase chain reaction (PCR) assay for diagnosis of brucellosis in seronegative dairy cows to prevent transmission of disease to humans and to reduce economic losses in animal production. In this study, 65 milk samples were investigated for the detection of Brucella spp. The detection of the IS711 gene in all samples was done by real-time PCR assay by comparative cycle threshold method. The results show that of the 65 DNA samples tested, 2 (3.08%) were positive for Brucella infection. The mean cyclic threshold values of IS711 real-time PCR test were 37.97 and 40.48, indicating a positive reaction. The results of the present study indicated that the real-time PCR appears to offer several advantages over serological tests. For this reason, the real-time PCR should be validated on representative numbers of Brucella -infected and free samples before being implemented in routine diagnosis in human and animal brucellosis for controlling this disease.

  9. Detection of Brucella spp. in milk from seronegative cows by real-time polymerase chain reaction in the region of Batna, Algeria

    Directory of Open Access Journals (Sweden)

    Rabehi Sabrina

    2018-03-01

    Full Text Available Aim: The aim of this study was to detect Brucella spp. DNA in milk samples collected from seronegative cows using the real-time polymerase chain reaction (PCR assay for diagnosis of brucellosis in seronegative dairy cows to prevent transmission of disease to humans and to reduce economic losses in animal production. Materials and Methods: In this study, 65 milk samples were investigated for the detection of Brucella spp. The detection of the IS711 gene in all samples was done by real-time PCR assay by comparative cycle threshold method. Results: The results show that of the 65 DNA samples tested, 2 (3.08% were positive for Brucella infection. The mean cyclic threshold values of IS711 real-time PCR test were 37.97 and 40.48, indicating a positive reaction. Conclusion: The results of the present study indicated that the real-time PCR appears to offer several advantages over serological tests. For this reason, the real-time PCR should be validated on representative numbers of Brucella-infected and free samples before being implemented in routine diagnosis in human and animal brucellosis for controlling this disease.

  10. Use of reverse transcription-real time polymerase chain reaction (real time RT-PCR) assays with Universal Probe Library (UPL) probes for the detection and genotyping of infectious pancreatic necrosis virus strains isolated in Chile.

    Science.gov (United States)

    Calleja, Felipe; Godoy, Marcos G; Cárcamo, Juan G; Bandín, Isabel; Yáñez, Alejandro J; Dopazo, Carlos P; Kibenge, Fred S; Avendaño-Herrera, Ruben

    2012-07-01

    Reverse transcription-real time polymerase chain reaction (real time RT-PCR) assay with Universal Probe Library (UPL) probes has been developed for the detection and genotyping of Chilean infectious pancreatic necrosis virus (IPNV) isolates from infected cell culture. Partial nucleotide sequences (1175 bp) of the VP2 coding region from a selection of 7 Chilean IPNV isolates showed that they clustered into two main groups strongly correlated with Genogroups 1 and 5 proposed by Blake et al. (2001), corresponding to types West Buxton (WB) and Spajarup (Sp), respectively. Based on the VP2 gene sequences of those 7 Chilean isolates and different reference IPNV strains, 2 sets of candidate primer/UPL probes (# 8 and # 117) were designed and evaluated with a total of 32 field isolates isolated from Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss) and Pacific salmon (Oncorhynchus kisutch) farms from 2006 to 2010 in Chile. The UPL probes clearly differentiated the same two major Genogroups that those recognized by sequencing analysis. Among the Chilean isolates examined, 18 yielded amplification with UPL probe # 8, and 14 with probe # 117, respectively corresponding to types Sp and WB, as demonstrated by typing by sequencing. Based on the findings reported below, it has been demonstrated that the combined real time RT-PCR protocol with UPLs approach was efficient in discriminating distinct Genogroups of IPNV cultured in fish cell lines and, therefore, recommended its use for detection and typing of IPN viruses. The study also confirmed the existence of two IPNV type strains in Chilean salmonid aquaculture. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Differences between two real-time PCR-based hepatitis C virus (HCV) assays (RealTime HCV and Cobas AmpliPrep/Cobas TaqMan) and one signal amplification assay (Versant HCV RNA 3.0) for RNA detection and quantification.

    Science.gov (United States)

    Vermehren, Johannes; Kau, Annika; Gärtner, Barbara C; Göbel, Reinhild; Zeuzem, Stefan; Sarrazin, Christoph

    2008-12-01

    Hepatitis C virus (HCV) RNA detection and quantification are the key diagnostic tools for the management of hepatitis C. Commercially available HCV RNA assays are calibrated to the HCV genotype 1 (gt1)-based WHO standard. Significant differences between assays have been reported. However, it is unknown which assay matches the WHO standard best, and little is known about the sensitivity and linear quantification of the assays for non-gt1 specimens. Two real-time reverse transcriptase PCR-based assays (RealTime HCV and Cobas Ampliprep/Cobas TaqMan HCV [CAP/CTM]) and one signal amplification-based assay (the Versant HCV RNA, version 3.0, branched DNA [bDNA] assay) were compared for their abilities to quantify HCV RNA in clinical specimens (n = 65) harboring HCV isolates of gt1 to g5. The mean differences in the amounts detected by RealTime HCV in comparison to those detected by the bDNA assay and CAP/CTM were -0.02 and 0.72 log(10) IU/ml HCV RNA, respectively, for gt1; -0.22 and 0.03 log(10) IU/ml HCV RNA, respectively, for gt2; -0.27 and -0.22 log(10) IU/ml HCV RNA, respectively, for gt3; -0.19 and -1.27 log(10) IU/ml HCV RNA, respectively, for gt4; and -0.03 and 0.09 log(10) IU/ml HCV RNA, respectively, for gt5. The lower limits of detection for RealTime HCV and CAP/CTM were 16.8 and 10.3 IU/ml, respectively, for the WHO standard and in the range of 4.7 to 9.0 and 3.4 to 44.4 IU/ml, respectively, for clinical specimens harboring gt1 to gt6. Direct comparison of the two assays with samples of the WHO standard (code 96/798) with high titers yielded slightly smaller amounts by RealTime HCV (-0.2 log(10) at 1,500 IU/ml and -0.3 log(10) at 25,000 IU/ml) and larger amounts by CAP/CTM (0.3 log(10) at 1,500 IU/ml and 0.2 log(10) at 25,000 IU/ml). Finally, all three tests were linear between 4.0 x 10(3) and 1.0 x 10(6) IU/ml (correlation coefficient, >or=0.99). In conclusion, the real-time PCR based assays sensitively detected all genotypes and showed comparable linearities

  12. Differences between Two Real-Time PCR-Based Hepatitis C Virus (HCV) Assays (RealTime HCV and Cobas AmpliPrep/Cobas TaqMan) and One Signal Amplification Assay (Versant HCV RNA 3.0) for RNA Detection and Quantification▿

    Science.gov (United States)

    Vermehren, Johannes; Kau, Annika; Gärtner, Barbara C.; Göbel, Reinhild; Zeuzem, Stefan; Sarrazin, Christoph

    2008-01-01

    Hepatitis C virus (HCV) RNA detection and quantification are the key diagnostic tools for the management of hepatitis C. Commercially available HCV RNA assays are calibrated to the HCV genotype 1 (gt1)-based WHO standard. Significant differences between assays have been reported. However, it is unknown which assay matches the WHO standard best, and little is known about the sensitivity and linear quantification of the assays for non-gt1 specimens. Two real-time reverse transcriptase PCR-based assays (RealTime HCV and Cobas Ampliprep/Cobas TaqMan HCV [CAP/CTM]) and one signal amplification-based assay (the Versant HCV RNA, version 3.0, branched DNA [bDNA] assay) were compared for their abilities to quantify HCV RNA in clinical specimens (n = 65) harboring HCV isolates of gt1 to g5. The mean differences in the amounts detected by RealTime HCV in comparison to those detected by the bDNA assay and CAP/CTM were −0.02 and 0.72 log10 IU/ml HCV RNA, respectively, for gt1; −0.22 and 0.03 log10 IU/ml HCV RNA, respectively, for gt2; −0.27 and −0.22 log10 IU/ml HCV RNA, respectively, for gt3; −0.19 and −1.27 log10 IU/ml HCV RNA, respectively, for gt4; and −0.03 and 0.09 log10 IU/ml HCV RNA, respectively, for gt5. The lower limits of detection for RealTime HCV and CAP/CTM were 16.8 and 10.3 IU/ml, respectively, for the WHO standard and in the range of 4.7 to 9.0 and 3.4 to 44.4 IU/ml, respectively, for clinical specimens harboring gt1 to gt6. Direct comparison of the two assays with samples of the WHO standard (code 96/798) with high titers yielded slightly smaller amounts by RealTime HCV (−0.2 log10 at 1,500 IU/ml and −0.3 log10 at 25,000 IU/ml) and larger amounts by CAP/CTM (0.3 log10 at 1,500 IU/ml and 0.2 log10 at 25,000 IU/ml). Finally, all three tests were linear between 4.0 × 103 and 1.0 × 106 IU/ml (correlation coefficient, ≥0.99). In conclusion, the real-time PCR based assays sensitively detected all genotypes and showed comparable linearities for

  13. Real-time polymerase chain reaction assay for endogenous reference gene for specific detection and quantification of common wheat-derived DNA (Triticum aestivum L.).

    Science.gov (United States)

    Vautrin, Sonia; Zhang, David

    2007-01-01

    A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.

  14. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    Science.gov (United States)

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  15. Detection of Campylobacter jejuni in dairy farm environmental samples using SYBR Green real-time polymerase chain reaction.

    Science.gov (United States)

    Nam, H M; Srinivasan, V; Murinda, S E; Oliver, S P

    2005-01-01

    The aim of this study was to evaluate a SYBR Green based real-time PCR assay using well-characterized primers to detect Campylobacter jejuni in naturally contaminated dairy farm environmental samples. Specificity of the assay was determined with 62 C. jejuni strains and 120 non-C. jejuni strains. Peak melting temperature obtained with melting curves specific for C. jejuni was 77.5 degrees C. Standard curves were constructed using mean threshold cycle (C(T)) and various concentrations of C. jejuni ranging from 10(0) to 10(8) colony forming units (CFU)/mL, which resulted in a linear relationship between C(T) and log input DNA. Correlation coefficients of standard curves based on pure culture of C. jejuni in broth and spiked cells in lagoon water were R(2) = 0.995 (slope = 3.21) and R(2) = 0.988 (slope = 3.22), respectively, and sensitivity limits were 10(3) CFU/mL, respectively. After 24-h enrichment, total C. jejuni counts of all samples spiked with 10(0) CFU/mL reached >10(5) CFU/mL, and the detection limit was improved from >10(3) CFU/mL to PCR assay detected C. jejuni in 25 (30.4%) of 82 samples, with 17 (68%) of these samples being culture positive for C. jejuni. All samples that were positive by standard culture methods were also positive by the real-time PCR method. Mean C( T ) values of 48-h enriched cultures for 17 PCR-positive/culture-positive samples and eight PCR-positive/culture-negative samples were 21.4 +/- 3.6, and 34.6 +/- 1.5 (p 38.0. These results indicate that the SYBR Green real-time PCR assay provides a specific, reproducible, and simple method for detecting C. jejuni in dairy farm environmental samples.

  16. Linear-after-the-exponential polymerase chain reaction and allied technologies. Real-time detection strategies for rapid, reliable diagnosis from single cells.

    Science.gov (United States)

    Pierce, Kenneth E; Wangh, Lawrence J

    2007-01-01

    Accurate detection of gene sequences in single cells is the ultimate challenge to polymerase chain reaction (PCR) sensitivity. Unfortunately, commonly used conventional and real-time PCR techniques are often too unreliable at that level to provide the accuracy needed for clinical diagnosis. Here we provide details of linear-after-the-exponential-PCR (LATE-PCR), a method similar to asymmetric PCR in the use of primers at different concentrations, but with novel design criteria to ensure high efficiency and specificity. Compared with conventional PCR, LATE-PCR increases the signal strength and allele discrimination capability of oligonucleotide probes such as molecular beacons and reduces variability among replicate samples. The analysis of real-time kinetics of LATE-PCR signals provides a means for improving the accuracy of single cell genetic diagnosis.

  17. Evaluation of Amplification Targets for the Specific Detection of Bordetella pertussis Using Real-Time Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Mohammad Rubayet Hasan

    2014-01-01

    Full Text Available BACKGROUND: Bordetella pertussis infections continue to be a major public health challenge in Canada. Polymerase chain reaction (PCR assays to detect B pertussis are typically based on the multicopy insertion sequence IS481, which offers high sensitivity but lacks species specificity.

  18. Differential Diagnosis of Entamoeba spp. in Clinical Stool Samples Using SYBR Green Real-Time Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Thiago dos Santos Gomes

    2014-01-01

    Full Text Available Amoebiasis, a disease caused by Entamoeba histolytica, is usually diagnosed by microscopic examination, which does not differentiate the morphologically identical species of the E. histolytica/E. dispar complex. Furthermore, morphologically similar species such as Entamoeba hartmanni contribute to misidentification. Therefore, there is a need for more sensitive and specific methods. This study standardized a multiplex real-time PCR system for E. histolytica and E. dispar and a single real-time PCR for E. hartmanni. The multiplex protocol detected up to 0.0143 pg of E. histolytica DNA and 0.5156 pg of E. dispar DNA, and the average melting temperature (Tm was 73°C and 70°C, respectively. For E. hartmanni, the Tm was 73°C and the amplification was successful down to 0.03 fg of plasmid DNA. Negative controls and other intestinal parasites presented no amplification. Among the 48 samples tested, E. dispar DNA was detected in 37; none exhibited E. histolytica DNA and 11 were negative in the multiplex protocol. In 4 of these 11 samples, however, E. hartmanni DNA was amplified. SYBR Green is demonstrated to be an interesting option and these combined PCR reactions can improve laboratory diagnosis of amoebiasis in developing countries.

  19. Differential diagnosis of Entamoeba spp. in clinical stool samples using SYBR green real-time polymerase chain reaction.

    Science.gov (United States)

    Gomes, Thiago Dos Santos; Garcia, Mariana Coimbra; de Souza Cunha, Flavia; Werneck de Macedo, Heloisa; Peralta, José Mauro; Peralta, Regina Helena Saramago

    2014-01-01

    Amoebiasis, a disease caused by Entamoeba histolytica, is usually diagnosed by microscopic examination, which does not differentiate the morphologically identical species of the E. histolytica/E. dispar complex. Furthermore, morphologically similar species such as Entamoeba hartmanni contribute to misidentification. Therefore, there is a need for more sensitive and specific methods. This study standardized a multiplex real-time PCR system for E. histolytica and E. dispar and a single real-time PCR for E. hartmanni. The multiplex protocol detected up to 0.0143 pg of E. histolytica DNA and 0.5156 pg of E. dispar DNA, and the average melting temperature (T(m)) was 73 °C and 70 °C, respectively. For E. hartmanni, the T(m) was 73 °C and the amplification was successful down to 0.03 fg of plasmid DNA. Negative controls and other intestinal parasites presented no amplification. Among the 48 samples tested, E. dispar DNA was detected in 37; none exhibited E. histolytica DNA and 11 were negative in the multiplex protocol. In 4 of these 11 samples, however, E. hartmanni DNA was amplified. SYBR Green is demonstrated to be an interesting option and these combined PCR reactions can improve laboratory diagnosis of amoebiasis in developing countries.

  20. Differential Diagnosis of Entamoeba spp. in Clinical Stool Samples Using SYBR Green Real-Time Polymerase Chain Reaction

    Science.gov (United States)

    Gomes, Thiago dos Santos; Garcia, Mariana Coimbra; de Souza Cunha, Flavia; Peralta, José Mauro; Peralta, Regina Helena Saramago

    2014-01-01

    Amoebiasis, a disease caused by Entamoeba histolytica, is usually diagnosed by microscopic examination, which does not differentiate the morphologically identical species of the E. histolytica/E. dispar complex. Furthermore, morphologically similar species such as Entamoeba hartmanni contribute to misidentification. Therefore, there is a need for more sensitive and specific methods. This study standardized a multiplex real-time PCR system for E. histolytica and E. dispar and a single real-time PCR for E. hartmanni. The multiplex protocol detected up to 0.0143 pg of E. histolytica DNA and 0.5156 pg of E. dispar DNA, and the average melting temperature (T m) was 73°C and 70°C, respectively. For E. hartmanni, the T m was 73°C and the amplification was successful down to 0.03 fg of plasmid DNA. Negative controls and other intestinal parasites presented no amplification. Among the 48 samples tested, E. dispar DNA was detected in 37; none exhibited E. histolytica DNA and 11 were negative in the multiplex protocol. In 4 of these 11 samples, however, E. hartmanni DNA was amplified. SYBR Green is demonstrated to be an interesting option and these combined PCR reactions can improve laboratory diagnosis of amoebiasis in developing countries. PMID:24693242

  1. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    Science.gov (United States)

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  2. Diagnosis of human herpes virus 1 and 2 (HHV-1 and HHV-2): use of a synthetic standard curve for absolute quantification by real time polymerase chain reaction.

    Science.gov (United States)

    Lima, Lyana Rodrigues Pinto; Silva, Amanda Perse da; Schmidt-Chanasit, Jonas; Paula, Vanessa Salete de

    2017-03-01

    The use of quantitative real time polymerase chain reaction (qPCR) for herpesvirus detection has improved the sensitivity and specificity of diagnosis, as it is able to detect shedding episodes in the absence of clinical lesions and diagnose clinical specimens that have low viral loads. With an aim to improve the detection and quantification of herpesvirus by qPCR, synthetic standard curves for human herpesvirus 1 and 2 (HHV-1 and HHV-2) targeting regions gD and gG, respectively, were designed and evaluated. The results show that synthetic curves can replace DNA standard curves in diagnostic herpes qPCR.

  3. Diagnosis of human herpes virus 1 and 2 (HHV-1 and HHV-2: use of a synthetic standard curve for absolute quantification by real time polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Lyana Rodrigues Pinto Lima

    Full Text Available The use of quantitative real time polymerase chain reaction (qPCR for herpesvirus detection has improved the sensitivity and specificity of diagnosis, as it is able to detect shedding episodes in the absence of clinical lesions and diagnose clinical specimens that have low viral loads. With an aim to improve the detection and quantification of herpesvirus by qPCR, synthetic standard curves for human herpesvirus 1 and 2 (HHV-1 and HHV-2 targeting regions gD and gG, respectively, were designed and evaluated. The results show that synthetic curves can replace DNA standard curves in diagnostic herpes qPCR.

  4. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction

    DEFF Research Database (Denmark)

    Zornhagen, K. W.; Kristensen, A. T.; Hansen, Anders Elias

    2015-01-01

    was used to analyse the most suitable reference genes. Eight potential reference genes were excluded from this final analysis because of their dissociation curves. β-Glucuronidase (GUSB) and proteasome subunit, beta type, 6 (PSMB6) were most stably expressed with an M value of 0.154 and a CV of 0......Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours...

  5. Real-time PCR-based genotyping from whole blood using Taq DNA polymerase and a buffer supplemented with 1,2-propanediol and trehalose

    Czech Academy of Sciences Publication Activity Database

    Utekal, Pavol; Kocanda, Lukáš; Matoušek, P.; Wagner, P.; Bugajev, Viktor; Dráber, Petr

    2015-01-01

    Roč. 416, January (2015), s. 178-182 ISSN 0022-1759 R&D Projects: GA ČR(CZ) GBP302/12/G101; GA MPO FR-TI3/067; GA ČR(CZ) GA14-09807S; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : 1,2-Propanediol * real-time PCR * SYBR Green I * Taq DNA polymerase * trehalose * Unseparated blood Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.858, year: 2015

  6. Progesterone receptor isoform analysis by quantitative real-time polymerase chain reaction in formalin-fixed, paraffin-embedded canine mammary dysplasias and tumors

    DEFF Research Database (Denmark)

    Guil-Luna, S.; Stenvang, Jan; Brünner, Nils

    2014-01-01

    and its isoforms in formalin-fixed, paraffin-embedded tissue samples from canine mammary lesions (4 dysplasias, 10 benign tumors, and 46 carcinomas) using 1-step SYBR Green quantitative real-time polymerase chain reaction (RT-qPCR). Progesterone receptor was expressed in 75% of dysplasias, all benign...... in the expression of isoform A versus B. Analysis of progesterone receptor mRNA isoforms by RT-qPCR was successful in routinely formalin-fixed, paraffin-embedded tissue samples and enabled the distribution of isoforms A and B to be identified for the first time in dysplasias, benign tumors, and malignant tumors...

  7. Quantitative analysis of waterfowl parvoviruses in geese and Muscovy ducks by real-time polymerase chain reaction: correlation between age, clinical symptoms and DNA copy number of waterfowl parvoviruses

    Directory of Open Access Journals (Sweden)

    Woźniakowski Grzegorz

    2012-03-01

    Full Text Available Abstract Background Waterfowl parvoviruses cause serious loss in geese and ducks production. Goose parvovirus (GPV is infectious for geese and ducks while Muscovy duck parvovirus (MDPV infects Muscovy ducks only. So far, for these viruses' sensitive detection polymerase chain reaction (PCR and loop-mediated isothermal amplification (LAMP were applied. However, there was no molecular biology method for both waterfowl parvoviruses detection and quantification which could unify the laboratory procedures. The level of GPV and MDPV replication and distribution plays a significant role in the parvoviral infection progress and is strictly correlated to clinical symptoms. Meanwhile, experiments conducted previously on GPV distribution in geese, performed as animal trial, did not involve epidemiological data from the disease field cases. The study on the correlation between age, clinical symptoms and viral DNA copy number may be benefitable in understanding the GPV and MDPV infection. Such data may also aid in determination of the stage and severity of the infection with parvoviruses. Therefore the aim of this study was to develop quantitative real-time PCR for parallel detection of GPV and MDPV in geese and Muscovy ducks and to determine the correlation between the age of the infected birds, clinical symptoms and DNA copy number for the estimation of the disease stage or severity. Results In order to develop quantitative real-time PCR the viral material was collected from 13 farms of geese and 3 farms of Muscovy ducks. The designed primers and Taqman probe for real-time PCR were complementary to GPV and MDPV inverted terminal repeats region. The pITR plasmid was constructed, purified and used to prepare dilutions for standard curve preparation and DNA quantification. The applied method detected both GPV and MDPV in all the examined samples extracted from the heart and liver of the infected birds. The conducted correlation tests have shown relationship

  8. A real-time polymerase chain reaction method for the identification of four commercially important salmon and trout species.

    Science.gov (United States)

    Feng, Junli; Wu, Zhigang; Xie, Xiao; Dai, Zhiyuan; Liu, Shasha

    2017-01-01

    A duplex quantitative real-time PCR (qPCR) assay was developed for rapid and accurate identification of four commercially important salmon and trout species (Oncorhynchus keta, Oncorhynchus nerka, Oncorhynchus mykiss, and Salmo salar) commonly used for production process of fish in China. The assays targeting the mitochondrial control region (CR) and 16S rRNA gene were able to simultaneously discriminate four target species and the family Salmonidae from processed as well as fresh fish. The qPCR efficiency of each reaction was calculated according to the standard curve, and the method was validated by amplification DNA extracted from single or artificial mixtures prepared with the reference salmon and trout species. Testing of 11 commercial salmon and trout products by the established qPCR assay demonstrated that it was really a useful and academic technique to identify four commercially important salmon and trout species.

  9. Evaluation of the efficacy of real-time polymerase chain reaction for the routine early detection of Pseudomonas aeruginosa in cystic fibrosis sputum and throat swab specimens.

    LENUS (Irish Health Repository)

    Logan, Catriona

    2012-02-01

    A longitudinal study of 2099 sputa and throat swabs received from 183 pediatric cystic fibrosis patients over a 29-month period was used to evaluate the efficacy of real-time polymerase chain reaction (PCR) for the early detection of Pseudomonas aeruginosa as compared to microbiologic culture. Real-time PCR resulted in an increased number of specimens identified as P. aeruginosa positive. The sensitivity of culture was 82% (373\\/453) and of PCR was 93% (420\\/453) when considering both positive culture and PCR results as true positives. Of the 80 specimens identified as PCR positive\\/culture negative for P. aeruginosa, the subsequent patient sample in 32.5% (26\\/80) of specimens concerned was identified as P. aeruginosa culture positive, suggesting that PCR has the potential to detect P. aeruginosa earlier than the microbiologic culture. Real-time PCR analysis found no evidence of the Liverpool and Manchester epidemic P. aeruginosa strains in the cohort examined. The findings of this study highlight the importance of specimen collection protocols to ensure that adequate samples are received at the laboratory for testing, thereby minimizing the potential for reporting of false-negative P. aeruginosa culture results.

  10. The diagnosis of microorganism involved in infective endocarditis (IE by polymerase chain reaction (PCR and real-time PCR: A systematic review

    Directory of Open Access Journals (Sweden)

    Reza Faraji

    2018-02-01

    Full Text Available Broad-range bacterial rDNA polymerase chain reaction (PCR followed by sequencing may be identified as the etiology of infective endocarditis (IE from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery.

  11. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    Science.gov (United States)

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  12. Evaluation and optimization of SYBR Green real-time reverse transcription polymerase chain reaction as a tool for diagnosis of the Flavivirus genus in Brazil.

    Science.gov (United States)

    Romeiro, Marilia Farignoli; Souza, William Marciel de; Tolardo, Aline Lavado; Vieira, Luiz Carlos; Colombo, Tatiana Elias; Aquino, Victor Hugo; Nogueira, Maurício Lacerda; Figueiredo, Luiz Tadeu Moraes

    2016-01-01

    The genus Flavivirus includes several pathogenic species that cause severe illness in humans. Therefore, a rapid and accurate molecular method for diagnosis and surveillance of these viruses would be of great importance. Here, we evaluate and optimize a quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) method for the diagnosis of the Flavivirus genus. We evaluated different commercial kits that use the SYBR Green system for real-time RT-PCR with a primer set that amplifies a fragment of the NS5 flavivirus gene. The specificity and sensitivity of the assay were tested using twelve flaviviruses and ribonucleic acid (RNA) transcribed from the yellow fever virus. Additionally, this assay was evaluated using the sera of 410 patients from different regions of Brazil with acute febrile illness and a negative diagnosis for the dengue virus. The real-time RT-PCR amplified all flaviviruses tested at a melting temperature of 79.92 to 83.49°C. A detection limit of 100 copies per ml was determined for this assay. Surprisingly, we detected dengue virus in 4.1% (17/410) of samples from patients with febrile illness and a supposedly negative dengue infection diagnosis. The viral load in patients ranged from 2.1×107to 3.4×103copies per ml. The real-time RT-PCR method may be very useful for preliminary diagnoses in screenings, outbreaks, and other surveillance studies. Moreover, this assay can be easily applied to monitor viral activity and to measure viral load in pathogenesis studies.

  13. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Detection and enumeration of Staphylococcus aureus from bovine milk samples by real-time polymerase chain reaction.

    Science.gov (United States)

    Botaro, B G; Cortinhas, C S; Março, L V; Moreno, J F G; Silva, L F P; Benites, N R; Santos, M V

    2013-01-01

    The aim of this study was to develop and evaluate a real-time quantitative PCR (qPCR)-based method to detect and quantify Staphylococcus aureus in bronopol-preserved milk samples from subclinical intramammary infections (IMI). Serial dilutions of milk artificially inoculated with Staph. aureus ATCC 29213 were used to establish a standard curve (cfu/mL) of the qPCR assay targeting the Staph. aureus thermonuclease-encoding gene nuc according to the strain plate count. The analytical sensitivity, specificity, and repeatability of the qPCR assay were determined. A total of 60 milk samples, collected from mammary quarters without abnormal appearance and with positive isolation of Staph. aureus, were submitted to both the qPCR protocol and Staph. aureus plate counting and results from both methods were compared. Staphylococcus aureus from bronopol-preserved, subclinical IMI milk samples were not accurately enumerated by qPCR compared with plate counting of the nonpreserved, raw milk sample. The detection limit of the qPCR protocol of inoculated Staph. aureus ATCC 29213 in bronopol-preserved milk samples was 1.04 × 10(1) cfu/mL. The qPCR protocol can be a high-throughput and rapid diagnostic assay to accurately detect Staph. aureus IMI from bronopol-preserved milk samples compared with a traditional culturing method. However, the proposed qPCR protocol is not accurate for counting of Staph. aureus in bronopol-preserved milk samples from naturally infected mammary glands. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer

    DNA extractions and intermediate or bad with the crude extractions, while TaKaRa ExTaq HS only performed well with the purest extractions of fecal samples and intermediate with semi-automated magnetic beads based extracted fecal samples. In conclusion, our data shows that exchanging the DNA polymerase...... on sample matrices known to contain PCR inhibitors (i.e. minced meat samples for Salmonella and chicken fecal samples for Campylobacter). The samples were prepared for PCR by three methods: No DNA extraction, lysis by boiling and semi-automated DNA extraction for Salmonella and lysis by boiling and two...... different DNA extraction methods for Campylobacter. Results show that VeriQuest qPCR master mix have the best general performance, while the AmpliTaq Gold and HotMasterTaq DNA polymerases performed well with meat samples and poorly with fecal samples. Tth DNA polymerase performed well only with the purest...

  16. Detection of Echinoderm Microtubule Associated Protein Like 4-Anaplastic Lymphoma Kinase Fusion Genes in Non-small Cell Lung Cancer Clinical Samples by a Real-time Quantitative Reverse Transcription Polymerase Chain Reaction Method.

    Science.gov (United States)

    Zhao, Jing; Zhao, Jin-Yin; Chen, Zhi-Xia; Zhong, Wei; Li, Long-Yun; Liu, Li-Cheng; Hu, Xiao-Xu; Chen, Wei-Jun; Wang, Meng-Zhao

    2016-12-20

    Objective To establish a real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) for the rapid, sensitive, and specific detection of echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion genes in non-small cell lung cancer. Methods The specific primers for the four variants of EML4-ALK fusion genes (V1, V2, V3a, and V3b) and Taqman fluorescence probes for the detection of the target sequences were carefully designed by the Primer Premier 5.0 software. Then, using pseudovirus containing EML4-ALK fusion genes variants (V1, V2, V3a, and V3b) as the study objects, we further analyzed the lower limit, sensitivity, and specificity of this method. Finally, 50 clinical samples, including 3 ALK-fluorescence in situ hybridization (FISH) positive specimens, were collected and used to detect EML4-ALK fusion genes using this method. Results The lower limit of this method for the detection of EML4-ALK fusion genes was 10 copies/μl if no interference of background RNA existed. Regarding the method's sensitivity, the detection resolution was as high as 1% and 0.5% in the background of 500 and 5000 copies/μl wild-type ALK gene, respectively. Regarding the method's specificity, no non-specific amplification was found when it was used to detect EML4-ALK fusion genes in leukocyte and plasma RNA samples from healthy volunteers. Among the 50 clinical samples, 47 ALK-FISH negative samples were also negative. Among 3 ALK-FISH positive samples, 2 cases were detected positive using this method, but another was not detected because of the failure of RNA extraction. Conclusion The proposed qRT-PCR assay for the detection of EML4-ALK fusion genes is rapid, simple, sensitive, and specific, which is deserved to be validated and widely used in clinical settings.

  17. Evaluation of an ethidium monoazide-enhanced 16S rDNA real-time polymerase chain reaction assay for bacterial screening of platelet concentrates and comparison with automated culture.

    Science.gov (United States)

    Garson, Jeremy A; Patel, Poorvi; McDonald, Carl; Ball, Joanne; Rosenberg, Gillian; Tettmar, Kate I; Brailsford, Susan R; Pitt, Tyrone; Tedder, Richard S

    2014-03-01

    Culture-based systems are currently the preferred means for bacterial screening of platelet (PLT) concentrates. Alternative bacterial detection techniques based on nucleic acid amplification have also been developed but these have yet to be fully evaluated. In this study we evaluate a novel 16S rDNA polymerase chain reaction (PCR) assay and compare its performance with automated culture. A total of 2050 time-expired, 176 fresh, and 400 initial-reactive PLT packs were tested by real-time PCR using broadly reactive 16S primers and a "universal" probe (TaqMan, Invitrogen). PLTs were also tested using a microbial detection system (BacT/ALERT, bioMérieux) under aerobic and anaerobic conditions. Seven of 2050 (0.34%) time-expired PLTs were found repeat reactive by PCR on the initial nucleic acid extract but none of these was confirmed positive on testing frozen second aliquots. BacT/ALERT testing also failed to confirm any time-expired PLTs positive on repeat testing, although 0.24% were reactive on the first test. Three of the 400 "initial-reactive" PLT packs were found by both PCR and BacT/ALERT to be contaminated (Escherichia coli, Listeria monocytogenes, and Streptococcus vestibularis identified) and 14 additional packs were confirmed positive by BacT/ALERT only. In 13 of these cases the contaminating organisms were identified as anaerobic skin or oral commensals and the remaining pack was contaminated with Streptococcus pneumoniae. These results demonstrate that the 16S PCR assay is less sensitive than BacT/ALERT and inappropriate for early testing of concentrates. However, rapid PCR assays such as this may be suitable for a strategy of late or prerelease testing. © 2013 American Association of Blood Banks.

  18. Quantification ofPorphyromonas gingivalisin chronic periodontitis patients associated with diabetes mellitus using real-time polymerase chain reaction.

    Science.gov (United States)

    Padmalatha, G V; Bavle, Radhika M; Satyakiran, Gadavalli Vera Venkata; Paremala, K; Sudhakara, M; Makarla, Soumya

    2016-01-01

    Periodontal diseases, if left untreated, can lead to tooth loss and affect at least one tooth in 80% of adults worldwide, with the main cause being a bacterial plaque. Among subgingival plaque bacterial species, Porphyromonas gingivalis has been implicated as a major etiological agent causing tooth loss. Diabetics and smokers are two patient groups at high risk for periodontal disease. The increase in the number of this organism with the coexistence of other pathogenic microbes leads to rapid destruction of the periodontium, premature loss of teeth and also because of its virulence has implications in systemic pathology. Our aim was to observe the involvement of P. gingivalis in diabetes mellitus (DM) patients associated with periodontitis with and without tobacco-associated habits and to compare them with periodontitis patients having no other systemic pathologies. Subgingival plaque samples from a total of seventy subjects were included in the study. DNA was isolated from the collected sample and was quantified using spectrophotometer for standardizing the polymerase chain reaction. The quantity of the isolated DNA was checked in a ultraviolet-visible spectrophotomer. One-way ANOVA and Tukey's multiple post hoc procedures were carried out. The maximum score of P. gingivalis was seen in periodontitis patients having DM, whereas the least score was seen in periodontitis patients having DM with tobacco smoking habit compared to the other groups. P. gingivalis count is significantly reduced in periodontitis patients having DM with smoking habit; it is concluded that P. gingivalis might not be a key causative organism responsible for the periodontal destruction in case of smokers despite the DM condition. The decrease in counts may be attributed to change in the local environment like chemical (tobacco nitrosamines) and physical changes preventing the growth of P. gingivalis .

  19. [Accuracy of a real-time polymerase-chain-reaction assay for a quantitative estimation of genetically modified sources in food products].

    Science.gov (United States)

    Abramov, D D; Trofimov, D Iu; Rebrikov, D V

    2006-01-01

    The accuracy of a real-time polymerase-chain-reaction assay for genetically modified sources in food products was determined using two official test systems (kits) of primers and samples. These kits were recommended by the Federal Center of State Sanitary and Epidemiological Surveillance (Russian Ministry of Health) and the European Commission. We used the following three models of thermocyclers: iCycler iQ (BioRad, United States), Rotor-Gene 3000 (Corbett Research, Australia), and DT-322 (DNA-Technology, Russia). Studies of samples that contained 1% genetically modified sources showed that the error of a quantitative assay for genetically modified sources in food products corresponds to 20-30% and does not depend on the kit type and the thermocycler model used.

  20. Real-time reverse transcription polymerase chain reaction detection and quantification of t(1;19) (E2A-PBX1) fusion genes associated with leukaemia.

    Science.gov (United States)

    Curry, J D; Glaser, M C; Smith, M T

    2001-12-01

    A real-time reverse transcription polymerase chain reaction (RT-PCR) method is described that enabled the detection and quantification of E2A-PBX1 fusion gene transcripts associated with t(1;19). The method was highly reproducible and offered exceptional sensitivity at 5 fg of fusion transcript per reaction, without the need for a nested PCR primer design. To illustrate the usefulness of this new technology the E2A-PBX1 fusion gene transcript expression level for several human leukaemia cell lines that are positive and negative for cytogenetically detectable t(1;19) was determined. The RCH-ACV had a threefold higher expression of E2A-PBX1 transcripts (600 transcripts per cell) than the other t(1;19) positive 697 (150 transcripts per cell). The only other cell line with detectable E2A-PBX1 was CEM, but the level of expression was < 1 transcript per cell.

  1. International ring trial for the validation of an event-specific Golden Rice 2 quantitative real-time polymerase chain reaction method.

    Science.gov (United States)

    Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-05-27

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.

  2. Real-time polymerase chain reaction with melting analysis of positive blood culture specimens in bloodstream infections: diagnostic value and turnaround time.

    Science.gov (United States)

    Angeletti, Silvia; Gherardi, Giovanni; De Florio, Lucia; Avola, Alessandra; Crea, Francesca; Riva, Elisabetta; Vitali, Massimiliano Andrea; Galluzzo, Sara; Dicuonzo, Giordano

    2013-01-01

    A Real-time polymerase chain reaction (PCR) with melting analysis was devised to target bacterial and fungal genes together with the most prevalent antimicrobial resistance genes in 250 positive blood culture broths. This method allowed the blood culture cultivated pathogens to be classified into clinically relevant groups such as Enterobacteriaceae, oxidase-positive bacilli, oxidase-positive coccobacilli, S. aureus and yeast. Enterococci and streptococci could be distinguished from CoNS only by the Gram stain. Gram-positive bacilli were discriminated from Gram-positive cocci by Gram stain. Furthermore, the most important antimicrobial resistant genes such as mecA, vanA, bla TEM , bla SHV and bla CTX-M could be identified. All results were obtained with a turnaround time of three hours from the moment of blood culture positivity compared to 24-72 hours for phenotypic methods. In conclusion, the proposed approach can allow the clinician to implement proper early management of sepsis patients.

  3. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    Science.gov (United States)

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction-Based Threshold Cycle Value and Virus Isolation From Human Plasma.

    Science.gov (United States)

    Spengler, Jessica R; McElroy, Anita K; Harmon, Jessica R; Ströher, Ute; Nichol, Stuart T; Spiropoulou, Christina F

    2015-10-01

    We performed a longitudinal analysis of plasma samples obtained from 4 patients with Ebola virus (EBOV) disease (EVD) to determine the relationship between the real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based threshold cycle (Ct) value and the presence of infectious EBOV. EBOV was not isolated from plasma samples with a Ct value of >35.5 or >12 days after onset of symptoms. EBOV was not isolated from plasma samples in which anti-EBOV nucleoprotein immunoglobulin G was detected. These data demonstrate the utility of interpreting qRT-PCR results in the context of the course of EBOV infection and associated serological responses for patient-management decisions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Use of sodC versus ctrA for real-time polymerase chain reaction-based detection of Neisseria meningitidis in sterile body fluids

    Directory of Open Access Journals (Sweden)

    Fábio Takenori Higa

    2013-04-01

    Full Text Available We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.

  6. Development of real-time polymerase chain reaction assay for specific detection of Tsukamurella by targeting the 16S rRNA gene.

    Science.gov (United States)

    Yassin, Atteyet F; Müller, Jens

    2012-03-01

    Recently, members of the genus Tsukamurella have been implicated as important etiologic pathogens contributing to bloodstream and pulmonary infections in immunocompromised patients. Tsukamurella species share many features with other mycolic acid-containing genera of the order Actinomycetales and might therefore be misidentified as belonging to one of these genera. We developed a TaqMan-based real-time polymerase chain reaction assay for the rapid and specific detection of infections due to Tsukamurella species. The assay amplifies and detects a 157-bp segment of the 16S rRNA gene of Tsukamurella. The specificity of the assay was confirmed using a panel of DNAs from 12 Tsukamurella strains and 11 strains belonging to 8 phylogenetic closely related genera. The sensitive and specific nature of the assay provides a valuable tool for the early and precise diagnosis of Tsukamurella infections in clinical diagnostic laboratories. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Development of multiplex real-time polymerase chain reaction for detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in clinical specimens.

    Science.gov (United States)

    Hamzah, Zulhainan; Petmitr, Songsak; Mungthin, Mathirut; Leelayoova, Saovanee; Chavalitshewinkoon-Petmitr, Porntip

    2010-10-01

    Multiplex real-time polymerase chain reaction (PCR) was developed for differential detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii. Specific primers were designed for all three species, and then differentiation of E. histolytica and E. dispar was achieved simultaneously using a hybridization probe and melting curve analysis, whereas E. moshkovskii was detected with a separate probe under the same condition. This assay detected as little as 0.2 pg of E. histolytica DNA and 2 pg each for E. dispar and E. moshkovskii DNA. Thirty-five clinical samples suspected to be E. histolytica infection by microscopy were tested. The results showed 32 positive samples; four samples were E. histolytica and 28 samples were E. dispar. Interestingly, one E. dispar positive sample showed a mixed infection with E. moshkovskii. This is the first report of E. moshkovskii infection from Thailand and this assay is currently the most rapid and sensitive method to differentiate these human amoebas.

  8. Probe-free real-time reverse transcription polymerase chain reaction assays for the detection and typing of porcine reproductive and respiratory syndrome virus in Canada

    Science.gov (United States)

    Eschbaumer, Michael; Li, Wansi (May); Wernike, Kerstin; Marshall, Frank; Czub, Markus

    2015-01-01

    Porcine reproductive and respiratory syndrome (PRRS) has tremendous impact on the pork industry in North America. The molecular diagnosis of infection with PRRS virus (PRRSV) is hampered by its considerable strain diversity. In this study, 43 previously published or newly developed primers for probe-free real-time reverse transcription polymerase chain reaction (RT-PCR) were evaluated on their sensitivity, specificity, reproducibility, and repeatability, using a diverse panel of 36 PRRSV strains as well as other arteriviruses and unrelated porcine viruses. Three primer pairs had excellent diagnostic and analytical sensitivity on par with a probe-based reference assay, absolute specificity to virus genotype and species, as well as over 95% reproducibility and repeatability across a wide dynamic range. PMID:26130848

  9. [The implementation of polymerase chain reaction technique: the real time to reveal and differentiate the viruses of human papilloma of high carcinogenic risk].

    Science.gov (United States)

    Andosova, L D; Kontorshchikova, K N; Blatova, O L; Kudel'kina, S Iu; Kuznetsova, I A; Belov, A V; Baĭkova, R A

    2011-07-01

    The polymerase chain reaction technique was applied in "real time" format to evaluate the occurrence rate and infection ratio of various genotypes of human papilloma of high carcinogenic risk in virus-positive women and contact persons. The examination sampling consisted of 738 women aged of 17-50 years. The examination results permitted to establish high percentage of infection of 546 patients (74%) by carcinogenic papilloma viruses. The analysis of detection rate of various genotypes of human papilloma of high carcinogenic risk established that the 56th and 16th types of high carcinogenic risk are revealed more often than others--in 33% and 15.4% correspondingly. In males, first place in occurrence rate is for those types of virus of human papilloma: the 56th n = 10 (33.3%), 16th n = 3 (10%), 45th n = 3 (10%), 51th n = 3 (10%). The rest of genotypes are detected in 3-7% cases.

  10. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species

    Directory of Open Access Journals (Sweden)

    P Das

    2017-01-01

    Full Text Available Purpose: Standardization of Aspergillus polymerase chain reaction (PCR poses two technical challenges (a standardization of DNA extraction, (b optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Materials and Methods: Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR, the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, gene and calmodulin gene (for Aspergillus niger. Results: Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. Conclusion: The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  11. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    Science.gov (United States)

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  12. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  13. Optimization of one-step real-time reverse transcription-polymerase chain reaction assays for norovirus detection and molecular epidemiology of noroviruses in Thailand.

    Science.gov (United States)

    Neesanant, Pimmnapar; Sirinarumitr, Theerapol; Chantakru, Siriruk; Boonyaprakob, Ukadaj; Chuwongkomon, Kaittawee; Bodhidatta, Ladaporn; Sethabutr, Orntipa; Abente, Eugenio J; Supawat, Krongkaew; Mason, Carl J

    2013-12-01

    Noroviruses (NoVs) are an important human pathogen associated with acute viral gastroenteritis worldwide. NoVs display a significant amount of genetic heterogeneity, making it difficult to develop comprehensive detection assays. In this study, primer sets and probes were designed for a TaqMan(®)-based real-time reverse transcription-polymerase chain reaction (RT-PCR) for norovirus detection purposes. The assay was optimized and utilized as a multiplex real-time RT-PCR assay for genogroup I (GI) detection, and a singleplex real-time RT-PCR assay for genogroup II (GII) detection. The assays showed high specificity for NoV detection and no cross-reactivity was observed between GI and GII. The detection limit of the assay was as low as 10 and 50 RNA copies per reaction for GI and GII, respectively. The optimized protocol was employed to assess the presence of NoV strains in clinical samples collected throughout Thailand during December 2005 to November 2006. The percentage of NoV infections among children with acute gastroenteritis (case) was 23.8% (119/500) and for children without acute gastroenteritis (control) it was 6.8% (30/441). The frequency of NoV infections varied geographically, with the highest frequency observed in the central region and the lowest frequency in the northern region (P>0.0001). Of the 149 positive case and control specimens, GII was found to be the predominant genogroup (98.6%). Partial capsid sequences were successfully obtained from 67 NoV-positive specimens and a phylogenetic analysis was performed to genotype the viral strains. GII.4 was the most common genotype detected. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Comparison of the Diagnostic Value Between Real-Time Reverse Transcription-Polymerase Chain Reaction Assay and Histopathologic Examination in Sentinel Lymph Nodes for Patients With Gastric Carcinoma.

    Science.gov (United States)

    Kwak, Yoonjin; Nam, Soo Kyung; Shin, Eun; Ahn, Sang-Hoon; Lee, Hee Eun; Park, Do Joong; Kim, Woo Ho; Kim, Hyung-Ho; Lee, Hye Seung

    2016-05-01

    Sentinel lymph node (SLN)-based diagnosis in gastric cancers has shown varied sensitivities and false-negative rates in several studies. Application of the reverse transcription-polymerase chain reaction (RT-PCR) in SLN diagnosis has recently been proposed. A total of 155 SLNs from 65 patients with cT1-2, N0 gastric cancer were examined. The histopathologic results were compared with results obtained by real-time RT-PCR for detecting molecular RNA (mRNA) of cytokeratin (CK)19, carcinoembryonic antigen (CEA), and CK20. The sensitivity and specificity of the multiple marker RT-PCR assay standardized against the results of the postoperative histological examination were 0.778 (95% confidence interval [CI], 0.577-0.914) and 0.781 (95% CI, 0.700-0.850), respectively. In comparison, the sensitivity and specificity of intraoperative diagnosis were 0.819 (95% CI, 0.619-0.937) and 1.000 (95% CI, 0.972-1.000), respectively. The positive predictive value of the multiple-marker RT-PCR assay was 0.355 (95% CI, 0.192-0.546) for predicting non-SLN metastasis, which was lower than that of intraoperative diagnosis (0.813, 95% CI, 0.544-0.960). The real-time RT-PCR assay could detect SLN metastasis in gastric cancer. However, the predictive value of the real-time RT-PCR assay was lower than that of precise histopathologic examination and did not outweigh that of our intraoperative SLN diagnosis. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Continuous monitoring of restriction endonuclease cleavage activity by universal molecular beacon light quenching coupled with real-time polymerase chain reaction.

    Science.gov (United States)

    Li, Xiaomin; Song, Chen; Zhao, Meiping; Li, Yuanzong

    2008-10-01

    We describe a method for sensitive monitoring of restriction endonuclease kinetics and activity by use of a universal molecular beacon (U-MB) coupled with real-time polymerase chain reaction (PCR). The method is used to monitor the progress of DNA cleavage in a sealed reaction tube and offers more accurate and high-throughput detection. The template has a universal tail hybridized with the U-MB and the remaining sequence is complementary to one of the restriction endonuclease digestion products. The U-MB is replaced by the extension of digested product and the fluorescence quenches. With this concept, one universal fluorescence probe can be used in different enzyme analytical systems. In the work described here, homogenous assays were performed with the restriction endonucleases AluI, EcoRI, XhoI, and SacI at smoothly controlled temperature. Cleavage efficiencies were determined, and the potential applications of this method were discussed. Furthermore, the AluI and EcoRI cleavage reactions were monitored online at varying substrate concentrations at the molecular level, and K(m), V(max), and K(cat) values were calculated. The results suggest that U-MB monitoring of restriction endonuclease assays based on real-time PCR will be very useful for high-throughput, sensitive, and precise assays for enzyme activity screening and evolutionary biotechnology analysis.

  16. A duplex Neisseria gonorrhoeae real-time polymerase chain reaction assay targeting the gonococcal porA pseudogene and multicopy opa genes.

    Science.gov (United States)

    Goire, Namraj; Nissen, Michael D; LeCornec, Genevera M; Sloots, Theo P; Whiley, David M

    2008-05-01

    Cross-reactions of gonococcal nucleic acid amplification tests (NAATs) with commensal Neisseria strains are well documented. Recent data now indicate that sequence-related false-negative results can occur in gonococcal NAATs, whereby target sequences either are absent or contain several mutations. In this study, a duplex Neisseria gonorrhoeae real-time polymerase chain reaction (PCR) (NGduplex) assay targeting the gonococcal porA pseudogene and multicopy opa genes was developed. The NGduplex was evaluated by testing 596 clinical specimens, including 292 urogenital specimens and 304 throat swab specimens. The results were compared with those obtained using a consensus reference standard comprising 3 monoplex real-time PCR assays. The results show that the NGduplex assay is highly suitable for routine screening for gonorrhea, providing an overall clinical sensitivity and specificity of 100% and 99.3%, respectively, for both urogenital and throat swab specimens. In addition, the 2-target system of the NGduplex assay decreases the potential for sequence-related false-negative results and can provide simultaneous confirmation of positive results.

  17. Molecular Detection of the Carriage Rate of Four Intestinal Protozoa with Real-Time Polymerase Chain Reaction: Possible Overdiagnosis of Entamoeba histolytica in Nigeria.

    Science.gov (United States)

    Efunshile, Michael A; Ngwu, Bethrand A F; Kurtzhals, Jørgen A L; Sahar, Sumrin; König, Brigitte; Stensvold, Christen R

    2015-08-01

    Diarrhea remains the second largest killer of children worldwide, and Nigeria ranks number two on the list of global deaths attributable to diarrhea. Meanwhile, prevalence studies on potentially diarrheagenic protozoa in asymptomatic carriers using molecular detection methods remain scarce in sub-Saharan countries. To overcome sensitivity issues related to microscopic detection and identification of cysts in stool concentrates, real-time polymerase chain reaction (PCR) was used to analyze genomic DNAs extracted from stool samples from 199 healthy school children for Entamoeba histolytica, E. dispar, Giardia intestinalis, and Cryptosporidium. Questionnaires were administered for epidemiological data collection. E. histolytica was not detected in any of the samples, whereas Giardia (37.2%), E. dispar (18.6%), and Cryptosporidium (1%) were found. Most of the children sourced their drinking water from community wells (91%), while the majority disposed of feces in the bush (81.9%). Our study is the first to use real-time PCR to evaluate the epidemiology of E. histolytica, Giardia, and Cryptosporidium in Nigeria where previous studies using traditional diagnostic techniques have suggested higher and lower carriage rates of E. histolytica and Giardia, respectively. It is also the first study to accurately identify the prevalence of common potentially diarrheagenic protozoa in asymptomatic carriers in sub-Saharan Africa. © The American Society of Tropical Medicine and Hygiene.

  18. Natural Leishmania infection of Lutzomyia auraensis in Madre de Dios, Peru, detected by a fluorescence resonance energy transfer-based real-time polymerase chain reaction.

    Science.gov (United States)

    Valdivia, Hugo O; De Los Santos, Maxy B; Fernandez, Roberto; Baldeviano, G Christian; Zorrilla, Victor O; Vera, Hubert; Lucas, Carmen M; Edgel, Kimberly A; Lescano, Andrés G; Mundal, Kirk D; Graf, Paul C F

    2012-09-01

    Leishmania species of the Viannia subgenus are responsible for most cases of New World tegumentary leishmaniasis. However, little is known about the vectors involved in disease transmission in the Amazon regions of Peru. We used a novel real-time polymerase chain reaction (PCR) to assess Leishmania infections in phlebotomines collected in rural areas of Madre de Dios, Peru. A total of 1,299 non-blood fed female sand flies from 33 species were captured by using miniature CDC light traps. Lutzomyia auraensis was the most abundant species (63%) in this area. Seven of 164 pools were positive by PCR for Leishmania by kinetoplast DNA. The real-time PCR identified four Lu. auraensis pools as positive for L. (Viannia) lainsoni and L. (V.) braziliensis. The minimum infection prevalence for Lu. auraensis was estimated to be 0.6% (95% confidence interval = 0.20-1.42%). Further studies are needed to assess the importance of Lu. auraensis in the transmission of New World tegumentary leishmaniasis in hyperendemic areas of Peru.

  19. Natural Leishmania Infection of Lutzomyia auraensis in Madre de Dios, Peru, Detected by a Fluorescence Resonance Energy Transfer–Based Real-Time Polymerase Chain Reaction

    Science.gov (United States)

    Valdivia, Hugo O.; De Los Santos, Maxy B.; Fernandez, Roberto; Baldeviano, G. Christian; Zorrilla, Victor O.; Vera, Hubert; Lucas, Carmen M.; Edgel, Kimberly A.; Lescano, Andrés G.; Mundal, Kirk D.; Graf, Paul C. F.

    2012-01-01

    Leishmania species of the Viannia subgenus are responsible for most cases of New World tegumentary leishmaniasis. However, little is known about the vectors involved in disease transmission in the Amazon regions of Peru. We used a novel real-time polymerase chain reaction (PCR) to assess Leishmania infections in phlebotomines collected in rural areas of Madre de Dios, Peru. A total of 1,299 non-blood fed female sand flies from 33 species were captured by using miniature CDC light traps. Lutzomyia auraensis was the most abundant species (63%) in this area. Seven of 164 pools were positive by PCR for Leishmania by kinetoplast DNA. The real-time PCR identified four Lu. auraensis pools as positive for L. (Viannia) lainsoni and L. (V.) braziliensis. The minimum infection prevalence for Lu. auraensis was estimated to be 0.6% (95% confidence interval = 0.20–1.42%). Further studies are needed to assess the importance of Lu. auraensis in the transmission of New World tegumentary leishmaniasis in hyperendemic areas of Peru. PMID:22802444

  20. Detection of Herpes Simplex Virus Infection in Patients With Ongoing Miscarriage Using Serological Tests and Real-Time Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Conde-Ferraez

    2016-08-01

    Full Text Available Background Herpes simplex virus (HSV is one of the most frequent viruses affecting females’ sexual and reproductive health. Objectives The current study aimed to determine the HSV serostatus and viral shedding in patients with ongoing miscarriage. Methods Two hundred and eight females were included in the study; IgM antibodies against HSV1/2 were detected in serum samples; the real-time polymerase chain reaction (PCR quantification of viral DNA was performed on cervicovaginal samples. Positive females were tested for IgG anti-HSV-2. Results The results indicated 12.5% IgM-positive and 2.9% real-time PCR positive samples. None of the patients was positive for the both analyses, simultaneously. Among IgM-positives cases, 16.6% were also IgG-positive; whilst in PCR-positives samples, 20% were also IgG-positive. The presence of viral DNA without detectable IgM or IgG antibodies could indicate a recent infection or a reactivation with low copy numbers. Conclusions IgM alone is not a marker for viral shedding in genital tract. Molecular testing in conjunction of IgG test should be evaluated as an option to determine HSV status, and applied for research on HSV genital infections records.

  1. Evaluating viral interference between Influenza virus and Newcastle disease virus using real-time reverse transcription–polymerase chain reaction in chicken eggs

    Directory of Open Access Journals (Sweden)

    Ge Shengqiang

    2012-07-01

    Full Text Available Abstract Background Simultaneous and sequential allantoic cavity inoculations of Specific-pathogen-free (SPF chicken eggs with Influenza virus (AIV and Newcastle disease virus (NDV demonstrated that the interaction of AIV and NDV during co-infection was variable. Our research revisited the replication interference potential of AIV and NDV using real-time reverse transcription–polymerase chain reaction (real-time RT-PCR for AIV and NDV to specifically detect the viral genomes in mixed infections. Results Data from this survey showed that when different doses of NDV (Lasota or F48E8 and AIV (F98 or H5N1 were simultaneously inoculated into embryonating chicken eggs (ECE, interference with the growth of NDV occurred, while interference with the growth of AIV did not occur. When equal amount of the two viruses were sequentially employed, the degree of interference was dependent upon the time of superinfection and the virulence of virus. Conclusion AIV have a negative impact on NDV growth if they are inoculated simultaneously or sequentially and that the degree of interference depended upon the quantity and relative virulence of the virus strains used; however, interference with AIV was not observed. Only if NDV were inoculated at an earlier time will NDV able to interfere with the growth of AIV.

  2. Accuracy of a rapid real-time polymerase chain reaction assay for diagnosis of group B Streptococcus colonization in a cohort of HIV-infected pregnant women.

    Science.gov (United States)

    Gouvea, Maria Isabel S; Joao, Esau C; Teixeira, Maria de Lourdes B; Read, Jennifer S; Fracalanzza, Sergio E L; Souza, Claudia T V; Souza, Maria José de; Torres Filho, Helio M; Leite, Cassiana C F; do Brasil, Pedro E A A

    2017-05-01

    There are limited data regarding Xpert performance to detect Group B Streptococcus (GBS) in HIV-infected pregnant women. We evaluated the accuracy of a rapid real-time polymerase chain reaction (PCR) test in a cohort of HIV-infected women. At 35-37 weeks of pregnancy, a pair of combined rectovaginal swabs were collected for two GBS assays in a cohort of sequentially included HIV-infected women in Rio de Janeiro: (1) culture; and (2) real-time PCR assay [GeneXpert GBS (Cepheid, Sunnyvale, CA)]. Using culture as the reference, sensitivity, specificity, positive and negative-likelihood ratios were estimated. From June 2012 to February 2015, 337 pregnant women met inclusion criteria. One woman was later excluded, due to failure to obtain a result in the index test; 336 were included in the analyses. The GBS colonization rate was 19.04%. Sensitivity and specificity of the GeneXpert GBS assay were 85.94% (95% CI: 75.38-92.42) and 94.85% (95% CI: 91.55-96.91), respectively. Positive and negative predictive values were 79.71% (95% CI: 68.78-87.51) and 96.63% (95% CI: 93.72-98.22), respectively. GeneXpert GBS is an acceptable test for the identification of GBS colonization in HIV-infected pregnant women and represents a reasonable option to detect GBS colonization in settings where culture is not feasible.

  3. Lanthanide chelate complementation and hydrolysis enhanced luminescent chelate in real-time reverse transcription polymerase chain reaction assays for KLK3 transcripts.

    Science.gov (United States)

    Alinezhad, Saeid; Väänänen, Riina-Minna; Lehmusvuori, Ari; Karhunen, Ulla; Soukka, Tero; Kähkönen, Esa; Taimen, Pekka; Alanen, Kalle; Pettersson, Kim

    2014-01-01

    The requirement for high-performance reporter probes in real-time detection of polymerase chain reaction (PCR) has led to the use of time-resolved fluorometry of lanthanide chelates. The aim of this study was to investigate the applicability of the principle of lanthanide chelate complementation (LCC) in comparison with a method based on hydrolysis enhancement and quenching of intact probes. A real-time reverse transcription (RT) PCR assay for kallikrein-related peptidase 3 (KLK3, model analyte) was developed by using the LCC detection method. Both detection methods were tested with a standard series of purified PCR products, 20 prostatic tissues, 20 healthy and prostate cancer patient blood samples, and female blood samples spiked with LNCaP cells. The same limit of detection was obtained with both methods, and two cycles earlier detection with the LCC method was observed. KLK3 messenger RNA (mRNA) was detected in all tissue samples and in 1 of 20 blood samples identically with both methods. The background was 30 times lower, and the signal-to-background (S/B) ratio was 3 times higher, when compared with the reference method. Use of the new reporter method provided similar sensitivity and specificity as the reference method. The lower background, the improved S/B ratio, and the possibility of melting curve analysis and single nucleotide polymorphism (SNP) detection could be advantages for this new reporter probe. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Genetic traits of avascular necrosis of the femoral head analyzed by array comparative genomic hybridization and real-time polymerase chain reaction.

    Science.gov (United States)

    Hwang, Jung-Taek; Baik, Seung-Ho; Choi, Jin-Soo; Lee, Kweon-Haeng; Rhee, Seung-Koo

    2011-01-03

    In an attempt to observe the genetic traits of avascular necrosis of the femoral head, we analyzed the genomic alterations in blood samples of 18 patients with avascular necrosis of the femoral head (9 idiopathic and 9 alcoholic cases) using the array comparative genomic hybridization method and real-time polymerase chain reaction. Several candidate genes were identified that may induce avascular necrosis of the femoral head, and we investigated their role in the pathomechanism of osteonecrosis of bone. The frequency of each candidate gene over all the categories of avascular necrosis of the femoral head was also calculated by real-time polymerase chain reaction. The highest frequency specific genes in each category were FLJ40296, CYP27C1, and CTDP1. FLJ40296 and CYP27C1 had the highest frequency (55.6%) in the idiopathic category. FLJ40296 had a high frequency (44.4%) in the alcoholic category, but CYP27C1 had a relatively low frequency (33.3%) in the alcoholic category. However, CTDP1 showed a significantly high frequency (55.6%) in the alcoholic category and a low frequency (22.2%) in the idiopathic category. Although we statistically analyzed the frequency of each gene with Fisher's exact test, we could not prove statistical significance due to the small number of samples. Further studies are needed with larger sample numbers. If the causal genes of avascular necrosis of the femoral head are found, they may be used for early detection, prognosis prediction, and genomic treatment of avascular necrosis of the femoral head in the future. Copyright 2011, SLACK Incorporated.

  5. Recombinase Polymerase Amplification Compared to Real-Time Polymerase Chain Reaction Test for the Detection of Fasciola hepatica in Human Stool

    Science.gov (United States)

    Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton

    2017-01-01

    Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691

  6. Enhanced Determination of Streptococcus pneumoniae Serotypes Associated with Invasive Disease in Laos by Using a Real-Time Polymerase Chain Reaction Serotyping Assay with Cerebrospinal Fluid

    Science.gov (United States)

    Moore, Catrin E.; Sengduangphachanh, Amphone; Thaojaikong, Thaksinaporn; Sirisouk, Joy; Foster, Dona; Phetsouvanh, Rattanaphone; McGee, Lesley; Crook, Derrick W.; Newton, Paul N.; Peacock, Sharon J.

    2010-01-01

    A prospective hospital-based study was undertaken to define the incidence of invasive pneumococcal disease (IPD) and circulating serotypes in Laos. Of 10,799 patients with hemocultures and 353 patients with cerebrospinal fluid samples, 0.21% and 5.4%, respectively, were positive for Streptococcus pneumoniae, giving a total of 35 IPD patients. We developed a real-time polymerase chain reaction to detect serotypes represented in the 13-valent pneumococcal vaccine. A blinded evaluation comparing serotype as defined by the Quellung reaction versus the polymerase chain reaction demonstrated 100% concordance. The most frequent serotype (n = 33 patients) was 1 (n = 6), followed by serotypes 5, 6A/B/C, 14, and 23F. Serotypes represented in the 7-valent polysaccharide-protein conjugate vaccine (PCV-7) infected 39% of patients, with 73% coverage for the PCV-10 and PCV-13 vaccines. Although the sample size is small, these data suggest that the PCV-7 vaccine may have relatively low efficacy in Laos. Further studies are urgently needed to guide pneumococcal vaccine policy in Laos. PMID:20810803

  7. Detailed polymorphism study on cytomegalovirus DNA polymerase gene to reveal the most suitable genomic targets for quantitative Real-time PCR

    Science.gov (United States)

    Bilenoğlu, Onur; Altındiş, Mustafa; Öz, Ersoy; Yücel-Öz, Yeliz; İrigül-Sönmez, Öykü; Ünal, Can Bora

    2015-01-01

    The human cytomegalovirus (HCMV) is an important human pathogen primarily affecting immunocompromised patients, like transplant recipients or HIV-infected individuals. Early diagnosis of cytomegalovirus (CMV) infection in high-risk patients is essential in order to start preemptive treatments. pol (UL54) gene encoding for HCMV viral DNA polymerase is a well-defined target for HCMV detection in clinical samples and identifying most highly conserved regions for primer design remains crucial. Though real-time polymerase chain reaction (qPCR) is a rapid and sensitive method for HCMV detection, failure to detect some HCMV strains due to primer and target mismatches have led the researchers to explore more sensitive and reliable methods. Hence, to understand the broader diversity of the pol mutations in HCMV and to specify the most suitable region for primer-probe design to be used in qPCR assay, we studied both nucleotide and amino acid heterogeneities in 60 HCMV positive samples that were collected to represent national mutational prevalence of pol gene of HCMV in Turkey. The test was designed with a new set of primers-probe for HCMV detection and quantification based on the sequencing data which revealed the most conserved region on the pol gene. Statistical probit analysis was applied on qPCR studies which revealed a 95% detection limit of 100 copies/mL. In addition, linearity, reproducibility, and precision of the new test were assessed for diagnostic purposes. PMID:26295291

  8. Detailed polymorphism study on cytomegalovirus DNA polymerase gene to reveal the most suitable genomic targets for quantitative Real-time PCR

    Directory of Open Access Journals (Sweden)

    Onur Bilenoğlu

    2015-06-01

    Full Text Available The human cytomegalovirus (HCMV is an important human pathogen primarily affecting immunocompromised patients, like transplant recipients or HIV- infected individuals. Early diagnosis of cytomegalovirus (CMV infection in high-risk patients is essential in order to start preemptive treatments. pol (UL54 gene encoding for HCMV viral DNA polymerase is a well-defined target for HCMV detection in clinical samples and identifying most highly conserved regions for primer design remains crucial. Though real-time polymerase chain reaction (qPCR is a rapid and sensitive method for HCMV detection, failure to detect some HCMV strains due to primer and target mismatches have led the researchers to explore more sensitive and reliable methods. Hence, to understand the broader diversity of the pol mutations in HCMV and to specify the most suitable region for primer-probe design to be used in qPCR assay, we studied both nucleotide and amino acid heterogeneities in 60 HCMV positive samples that were collected to represent national mutational prevalence of pol gene of HCMV in Turkey. The test was designed with a new set of primers- probe for HCMV detection and quantification based on the sequencing data which revealed the most conserved region on the pol gene. Statistical probit analysis was applied on qPCR studies which revealed a 95% detection limit of 100 copies/mL. In addition, linearity, reproducibility, and precision of the new test were assessed for diagnostic purposes.

  9. Detailed polymorphism study on cytomegalovirus DNA polymerase gene to reveal the most suitable genomic targets for quantitative Real-time PCR.

    Science.gov (United States)

    Bilenoğlu, Onur; Altındiş, Mustafa; Öz, Ersoy; Yücel-Öz, Yeliz; İrigül-Sönmez, Öykü; Ünal, Can Bora

    2015-06-23

    The human cytomegalovirus (HCMV) is an important human pathogen primarily affecting immunocompromised patients, like transplant recipients or HIV- infected individuals. Early diagnosis of cytomegalovirus (CMV) infection in high-risk patients is essential in order to start preemptive treatments. pol (UL54) gene encoding for HCMV viral DNA polymerase is a well-defined target for HCMV detection in clinical samples and identifying most highly conserved regions for primer design remains crucial. Though real-time polymerase chain reaction (qPCR) is a rapid and sensitive method for HCMV detection, failure to detect some HCMV strains due to primer and target mismatches have led the researchers to explore more sensitive and reliable methods. Hence, to understand the broader diversity of the pol mutations in HCMV and to specify the most suitable region for primer-probe design to be used in qPCR assay, we studied both nucleotide and amino acid heterogeneities in 60 HCMV positive samples that were collected to represent national mutational prevalence of pol gene of HCMV in Turkey. The test was designed with a new set of primers- probe for HCMV detection and quantification based on the sequencing data which revealed the most conserved region on the pol gene. Statistical probit analysis was applied on qPCR studies which revealed a 95% detection limit of 100 copies/mL. In addition, linearity, reproducibility, and precision of the new test were assessed for diagnostic purposes.

  10. Real-time polymerase chain-reaction detection of pathogens is feasible to supplement the diagnostic sequence for urinary tract infections.

    Science.gov (United States)

    Lehmann, Lutz E; Hauser, Stefan; Malinka, Thomas; Klaschik, Sven; Stüber, Frank; Book, Malte

    2010-07-01

    To evaluate, in a prospective pilot study, the feasibility of identifying pathogens in urine using real-time polymerase chain reaction (PCR), and to compare the results with the conventional urine culture-based procedures. Severe urinary tract infections (UTIs) are frequent in critically ill patients in the intensive-care unit (ICU) and in outpatients, and thus the reliable and fast identification of the bacteria is mandatory, but routine urine culture is time-consuming and the therapeutic regimen is often calculated and not culture-based. The study included 301 prospectively collected urine samples from 189 patients with suspected UTI, based in a university hospital in 2005, and included outpatients and those in the ICU. Urine culture with Cled-, MacConkey- and malt extract agar of all samples was followed by microbiological identification of the pathogens in 98 samples with visible growth. In parallel, all samples were assessed using qualitative real-time PCR-based DNA detection and identification by labelled hybridization probes. In all, 15 dipstick culture-negative samples showed positive pathogen DNA identification by PCR. By contrast, 17 PCR-negative samples showed detectable pathogens by culture, of which 10 were not detectable on PCR because the identified pathogens were not represented in the probe panel. The sensitivity and specificity for detecting contaminated samples was 0.90 and 0.87, respectively. Overall, 95% of the mono-infection pathogens and 57% of the multiple-infection pathogens were detected concordantly with both methods. In this prospective pilot study PCR-based identification of pathogens was feasible for supplementing conventional culture methods for the diagnosis of UTI. The main advantage is the time saved in identifying the pathogens. The limited pathogen detection in multiple-infection-samples by PCR might be explained by competitive PCR amplification conditions.

  11. Optimization of rapid Salmonella enterica detection in liquid whole eggs by SYBR green I-based real-time reverse transcriptase-polymerase chain reaction.

    Science.gov (United States)

    Techathuvanan, Chayapa; D'Souza, Doris Helen

    2011-04-01

    Eggs and egg products have a high risk of Salmonella enterica serovar Enteritidis contamination leading to gastroenteritis outbreaks in humans. Thus, a rapid screening tool for viable Salmonella Enteritidis cells in the egg industry is needed. Our objective was to rapidly and sensitively detect viable Salmonella Enteritidis from spiked liquid whole eggs (LWEs) within 24 h using SYBR green I-based real-time reverse transcriptase-polymerase chain reaction (PCR) targeting the Salmonella specific invA gene along with an internal amplification control in a Bio-Rad iCycler. LWE was inoculated with Salmonella Enteritidis and mixed with tetrathionate broth, and 100 μL of serially diluted portions in phosphate-buffered saline was plated on Xylose Lysine Tergitol 4 agar or 5 mL were used for RNA extraction by the TRIzol method immediately or after enrichment of 6, 12, or 16 h at 37 °C. The real-time reverse transcriptase-PCR assay was carried out using previously described Salmonella invA gene primers. Melt temperature analysis of the PCR product was included to determine specific invA amplification. Without enrichment, the assay detection limit was 10(7) colony forming units (CFU)/25 mL LWE. After enrichment for 6 and 12 h, Salmonella Enteritidis could be detected from LWE up to 10(4) and 10(2) CFU/25 mL, respectively. Improved Salmonella Enteritidis detection up to 10(0) CFU/25 mL was obtained after 16-h enrichment. Even with 16-h enrichment, the results could be still be obtained within 24 h, which is much faster than by traditional cultural detection that takes several days. Therefore, this assay appears suitable for routine detection of Salmonella enterica contamination by the egg industry to help prevent the transmission of egg-associated Salmonella outbreaks and timely recall of contaminated products. © Mary Ann Liebert, Inc.

  12. Evaluation of a multiplex real-time polymerase chain reaction for the quantification of Escherichia coli O157 in cattle feces.

    Science.gov (United States)

    Jacob, Megan E; Shi, Xiaorong; An, Baoyan; Nagaraja, Tiruvoor G; Bai, Jianfa

    2012-01-01

    Cattle are asymptomatic reservoirs for Escherichia coli O157, a major foodborne pathogen. The organism generally colonizes the hindgut of cattle and is shed in the feces at low concentrations. The objective of this research was to evaluate a multiplex, real-time polymerase chain reaction (mqPCR) assay for quantification of E. coli O157 in cattle feces using stx1, stx2, and rfbE gene targets. Primer efficiency and analytical sensitivity of the assay were evaluated with a single or pooled (five strain) culture of E. coli O157. In pure culture, the minimum detection limit of the assay was 1.4×10(3) CFU/mL and 3.6×10(3) CFU/mL for the single and five-strain mixture of E. coli O157, respectively. Diagnostic sensitivity was analyzed using DNA extracted from cattle feces spiked with E. coli O157. In feces spiked with the pooled mixture of five E. coli O157 strains, the minimum detection limit was 3.6×10(4) CFU/g. We also evaluated the assay with feces from cattle experimentally inoculated with E. coli O157 by comparing the results to a culture-based method. For the majority of samples tested, the concentration of E. coli O157 detected by the real-time and culture methods was within one log difference. However, the assay could only be evaluated for cattle shedding high concentrations of E. coli O157. In conclusion, the mqPCR quantifying E. coli O157 in cattle feces using stx1, stx2, and rfbE gene targets may have use in detecting and quantifying super shedders, but is not applicable for quantification in animals shedding low concentrations (10(2) to 10(3) CFU/g feces).

  13. Diagnosis of bovine foot and mouth disease virus by real-time polymerase chain reaction and nucleotide sequencing from outbreak herd samples in Ilesha Baruba, Kwara state, Nigeria

    Directory of Open Access Journals (Sweden)

    Olatunde Hamza Olabode

    2014-10-01

    Full Text Available Aim: Molecular diagnosis of bovine foot and mouth disease virus (FMDV from outbreak herd in Bukaru-Rontuwa, Sinawu/Tumbunya ward of Ilesha Baruba, in Kwara state-Nigeria was conducted to establish the associated serotypes and disease control plan. Materials and Methods: Purposive study was conducted in cattle outbreak herds during the dry season of January-March, 2011. Random sampling of blood and observed epithelial tissues was collected, stored in accordance with standard methods and subjected to RNA extraction and real-time reverse transcription polymerase chain reaction (rRT-PCR. Positive samples for FMDV were further subjected to reverse transcription polymerase chain reaction (RT-PCR, nucleotide sequencing using sequence primers of serotypes O, A, SAT 1-3 and gel electrophoresis. Obtained data were interpreted based on NCBI BLASTN program. Results: Foot and mouth disease (FMD-RNA extract was not found in all the blood tested with beta-actin range of Ct = 30-34. rRT-PCR assay showed two positive samples with Ct values of 18.79 and 15.28. Gel electrophoresis identified sequenced PCR amplicons as serotype A and SAT 2 respectively. Direct product sequencing confirmed SAT 2 serotype was closely related to SAT 2 isolate LIB/7/2003. Cloned RT-PCR product in pGEM-T easy vector confirmed serotype A as closely related to sequence of A/NIG/21/2009, though multiple NIG/2009 sequences were also identified as closely related. Both isolates showed marked genetic homogeneity with >93% genetic identity in the VP1 region which confirmed heterogeneity and antigenic variation nature of FMDV. Conclusion: Quasi species and subtypes of FMD serotypes A and SAT 2 similar to A/NIG/21/2009 and SAT 2/LIB/7/2003 respectively caused the reported FMD outbreaks in Fulani livestock herds investigated. A combined real-time and optimized RT-PCR protocols that would facilitate effective and timely FMD outbreak control plan based on identified serotypes is thus suggested.

  14. Nanodroplet real-time PCR system with laser assisted heating

    Science.gov (United States)

    Kim, Hanyoup; Dixit, Sanhita; Green, Christopher J.; Faris, Gregory W.

    2011-01-01

    We report the successful application of low-power (~30 mW) laser radiation as an optical heating source for high-speed real-time polymerase chain reaction (PCR) amplification of DNA in nanoliter droplets dispersed in an oil phase. Light provides the heating, temperature measurement, and Taqman real-time readout in nanoliter droplets on a disposable plastic substrate. A selective heating scheme using an infrared laser appears ideal for driving PCR because it heats only the droplet, not the oil or plastic substrate, providing fast heating and completing the 40 cycles of PCR in 370 seconds. No microheaters or microfluidic circuitry were deposited on the substrate, and PCR was performed in one droplet without affecting neighboring droplets. The assay performance was quantitative and its amplification efficiency was comparable to that of a commercial instrument. PMID:19129891

  15. Classical swine fever virus detection: results of a real-time reverse transcription polymerase chain reaction ring trial conducted in the framework of the European network of excellence for epizootic disease diagnosis and control

    DEFF Research Database (Denmark)

    Hoffmann, Bernd; Blome, Sandra; Bonilauri, Paolo

    2011-01-01

    The current study reports on a real-time reverse transcription polymerase chain reaction (real-time RT-PCR) ring trial for the detection of Classical swine fever virus (CSFV) genomic RNA undertaken by 10 European laboratories. All laboratories were asked to use their routine in-house real-time RT...... and specificity values. Nevertheless, some in-house systems had unspecific reactions or suboptimal sensitivity with only a single CSFV genotype. Follow-up actions involved either improvement of suboptimal assays or replacement of specific laboratory assays with the FLI protocol, with or without modifications...

  16. Real-time isothermal detection of Abalone herpes-like virus and red-spotted grouper nervous necrosis virus using recombinase polymerase amplification.

    Science.gov (United States)

    Gao, Fang; Jiang, Jing-Zhe; Wang, Jiang-Yong; Wei, Hong-Ying

    2018-01-01

    Abalone herpes-like virus (AbHV) and Red-spotted grouper nervous necrosis virus (RGNNV) are two serious viruses that infect animal populations in aquaculture. Both viruses cause diseases associated with high mortality rates, resulting in dramatic economic losses in the aquaculture industry. There are currently no effective treatments for either of these two viral diseases. Thus, early, rapid, and accurate diagnosis plays a fundamental role in disease prevention and control in aquaculture. Traditional methods of diagnosis, such as virus culture, enzyme-linked immunoassay, and polymerase chain reaction (PCR), are either time consuming or require sophisticated temperature control devices. In this study, one sets of specific primers and probes were designed for the real-time quantitative recombinase polymerase amplification (qRPA) detection of AbHV and RGNNV separately. The sensitivity and specificity of detection were evaluated by comparison with detection by conventional PCR and quantitative PCR. The optimal reaction temperature and time for virus detection is 37°C for 20min. The detection limit is 100 copies per reaction, making this approach faster and more sensitive than qPCR in this study. In a field application, the detection percentage of qRPA was higher than that of qPCR for both AbHV and NNV. Additionally, good correlation was found between qRPA and qPCR detection (R 2 >0.8). The methods presented here can be used as alternatives to qPCR for quick and quantitative detection of pathogens infecting aquaculture species. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lactobacillus rhamnosus R11 consumed in a food supplement survived human digestive transit without modifying microbiota equilibrium as assessed by real-time polymerase chain reaction.

    Science.gov (United States)

    Firmesse, Olivier; Mogenet, Agnès; Bresson, Jean-Louis; Corthier, Gérard; Furet, Jean-Pierre

    2008-01-01

    The aim of this study was to evaluate the survival of Lactobacillus rhamnosus R11 and Lactobacillus acidophilus R52 in the human digestive tract and their effects on the microbiota homeostasis. We designed an open human trial including 14 healthy volunteers. A 3-week exclusion period of fermented products was followed by a 12-day consumption period of 4 capsules daily containing 2 x 10(9)L. rhamnosus R11 and 1 x 10(8)L. acidophilus R52, and a 12-day wash-out period. The 2 strains and dominant bacterial groups of the microbiota were quantified by real-time polymerase chain reaction. At the end of the capsule consumption period, high levels of L. rhamnosus R11 were detected in faecal samples from all volunteers, reaching a mean value of 7.1 log(10) colony-forming unit (CFU) equivalents/g of stool. L. acidophilus R52 was detected in the stools of only 1 volunteer, reaching a maximum level of 6.1 log(10) CFU equivalents/g of stool. Dilution plating enumerations performed in parallel provided less consistent and generally lower levels. No significant effect of capsule consumption was observed on microbiota homeostasis for the dominant faecal populations. Mean values of 8.8, 9.2, 9.9 and 10.6 log(10) CFU equivalents/g of stool were obtained for the Clostridium coccoides, Bifidobacterium sp., Bacteroides sp. and Clostridium leptum groups, respectively.

  18. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples.

    Science.gov (United States)

    Meyler, Kenneth L; Meehan, Mary; Bennett, Desiree; Cunney, Robert; Cafferkey, Mary

    2012-12-01

    Since the introduction of the Haemophilus influenzae serotype b vaccine, invasive H. influenzae disease has become dominated by nontypeable (NT) strains. Several widely used molecular diagnostic methods have been shown to lack sensitivity or specificity in the detection of some of these strains. Novel real-time assays targeting the fucK, licA, and ompP2 genes were developed and evaluated. The fucK assay detected all strains of H. influenzae tested (n = 116) and had an analytical sensitivity of 10 genome copies/polymerase chain reaction (PCR). This assay detected both serotype b and NT H. influenzae in 12 previously positive specimens (culture and/or bexA PCR) and also detected H. influenzae in a further 5 of 883 culture-negative blood and cerebrospinal fluid (CSF) samples. The fucK assay has excellent potential as a diagnostic test for detection of typeable and nontypeable strains of invasive H. influenzae in clinical samples of blood and CSF. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Quantification of classical HLA class I mRNA by allele-specific, real-time polymerase chain reaction for most Han individuals.

    Science.gov (United States)

    Pan, N; Lu, S; Wang, W; Miao, F; Sun, H; Wu, S; Nan, D; Qiu, J; Xu, J; Zhang, J

    2018-02-01

    Recent studies have shown that expression levels of different alleles at the same HLA class I locus can vary dramatically, which might have a broad influence on human disease. However, precise quantification of the relative expression level of each HLA allele is challenging, because distinguishing different alleles on the same locus is difficult. Here, we developed a series of allele-specific, real-time polymerase chain reaction assays for quantifying HLA class I allele mRNA in most Han individuals. The alleles of almost all heterozygous genotypes with a frequency higher than 0.5% in our population (78 alleles on HLA-A locus, 124 alleles on HLA-B locus, and 74 alleles on HLA-C locus) were specifically amplified. The specificity of the amplification was strictly validated by setting the corresponding negative control for each allele of each genotype. The amplification efficiency of each reaction was determined, and the slopes of the reactions were compared. This study provides a tool for detecting the comprehensive expression profile of HLA class I alleles and will be useful not only for the investigation of the molecular mechanism underlying HLA allele expression regulation but also for exploration of immunological mechanisms involving HLA expression in the fields of tumour immune evasion, viral infection, auto-immune disorders, and graft vs host disease after haematopoietic stem cell transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Qualitative detection of Legionella species in bronchoalveolar lavages and induced sputa by automated DNA extraction and real-time polymerase chain reaction.

    Science.gov (United States)

    Raggam, R B; Leitner, E; Mühlbauer, G; Berg, J; Stöcher, M; Grisold, A J; Marth, E; Kessler, H H

    2002-10-01

    Molecular assays for qualitative detection of Legionella spp. in clinical specimens were evaluated. DNA extraction was done either with a fully automated DNA extraction protocol on the MagNA Pure LC System or with manual DNA extraction. Amplification and detection were done by real-time polymerase chain reaction (PCR) on the LightCycler (LC) instrument. Oligonucleotides were derived from the 16S rRNA gene of Legionella spp. The assays included a specially designed DNA fragment as Legionella-specific internal control. For both molecular assays, the detection limit was determined to be 5 CFU per LC PCR run. Sixty-one clinical specimens were tested with the molecular assays. Results were compared to culture. Five samples were found to be positive with the molecular assays. Three of them were positive in culture. No inhibition was found throughout the whole study. In conclusion, the molecular assays described may lead to safe and early diagnosis of Legionnaires' disease. They proved to be suitable for the routine molecular diagnostics laboratory.

  1. Detection of herpes simplex-1 and -2 and varicella zoster virus by quantitative real-time polymerase chain reaction in corneas from patients with bacterial keratitis.

    Science.gov (United States)

    Nascimento, Heloisa; Watanabe, Aripuanã; Vieira, Ana Carolina Cabreira; Pelegrini, Andrea; Yu, Maria Cecília; Bispo, Paulo José Martins; Granato, Celso Francisco Hernandes; Höfling-Lima, Ana Luisa

    2017-01-01

    Bacterial keratitis occurs worldwide, and despite recent developments, it remains a potentially blinding condition. This study assesses the presence of herpes simplex virus (HSV-1 and -2) and varicella zoster virus (VZV) by quantitative real-time polymerase chain reaction (qPCR) in corneal scrapings from patients with bacterial keratitis. A total of 65 patients with clinical diagnoses of infectious corneal ulcers prospectively underwent clinical eye examinations. Corneal scrapings were investigated by Gram staining, Giemsa staining, culture, and qPCR (the study group). Risk factors and epidemiological data were recorded. The control group comprising 25 eyes with typical herpes dendritic keratitis was also analyzed by qPCR. From the study group (n=65), nine patients (13.8%) had negative smears, cultures, and qPCR findings. Fifty-six (86.2%) patients had positive cultures: 51 for bacteria, 4 for fungi, and 1 for amoebae. Of the patients who had positive bacterial cultures, qPCR identified 10 patients who were also positive for virus: one for VZV and nine for HSV-1. Of the 25 patients in the control group, 21 tested positive for HSV-1 by qPCR analysis. Herpes may be present in patients with bacterial corneal ulcers, and qPCR may be useful in its detection.

  2. Development and evaluation of a real-time polymerase chain reaction assay targeting iap for the detection of Listeria monocytogenes in select food matrices.

    Science.gov (United States)

    Chen, Yi; Kumar, Nishant; Siddique, Nusrat

    2011-10-01

    Listeria monocytogenes is an intracellular foodborne pathogen that has been associated with severe human illnesses. Various rapid detection methods have been developed for the specific detection of this pathogen. In the present study, a real-time quantitative polymerase chain reaction (PCR) assay targeting iap, a gene encoding extracellular protein p60, was developed for L. monocytogenes. The PCR efficiency is above 85% and the limit of detection (LOD) is 30 copies of genome per reaction for all strains tested. The assay exhibited 100% inclusivity and exclusivity rates. The detection of L. monocytogenes in five food matrices, whole milk, soft cheese, turkey deli meat, smoked salmon, and alfalfa sprouts, was evaluated with and without enrichment. Without enrichment, the LOD for all food matrices were 4×10(3) CFU/mL food enrichment mix for whole milk and 4×10(4) CFU/mL for all other foods. With 24 h incubation in Buffered Listeria Enrichment Broth, the LOD was 3 CFU/25 g food for whole milk, turkey deli meat, and smoked salmon and 9 CFU/25 g food for soft cheese and alfalfa sprouts. With 48 h incubation, the LOD was 3 CFU/25 g food for all matrices. This quantitative PCR appears to be a promising alternative for rapid detection of L. monocytogenes in select foods.

  3. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations.

    Science.gov (United States)

    Mejia, Rojelio; Vicuña, Yosselin; Broncano, Nely; Sandoval, Carlos; Vaca, Maritza; Chico, Martha; Cooper, Philip J; Nutman, Thomas B

    2013-06-01

    Diagnosis of gastrointestinal parasites has traditionally relied on stool microscopy, which has low diagnostic sensitivity and specificity. We have developed a novel, rapid, high-throughput quantitative multi-parallel real-time polymerase chain reaction (qPCR) platform. Species-specific primers/probes were used for eight common gastrointestinal parasite pathogens: Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Giardia lamblia, Cryptosporidium spp., Entamoeba histolytica, Trichuris trichiura, and Strongyloides stercoralis. Stool samples from 400 13-month-old children in rural Ecuador were analyzed and the qPCR was compared with a standard direct wet mount slide for stool microscopy, as were 125 8-14-year-old children before and after anthelmintic treatment. The qPCR showed higher detection rates for all parasites compared with direct microscopy, Ascaris (7.0% versus 5.5%) and for Giardia (31.5% versus 5.8%). Using an enhanced DNA extraction method, we were able to detect T. trichiura DNA. These assays will be useful to refine treatment options for affected populations, ultimately leading to better health outcomes.

  4. Diagnosis of EML4-ALK Translocation With FISH, Immunohistochemistry, and Real-time Polymerase Chain Reaction in Patients With Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Cruz-Rico, Graciela; Avilés-Salas, Alejandro; Segura-González, Manuel; Espinosa-García, Ana María; Ramírez-Tirado, Laura Alejandra; Morales-Oyarvide, Vicente; Rojas-Marín, Carlos; Cardona, Andrés-Felipe; Arrieta, Oscar

    2017-12-01

    To assess anaplastic lymphoma kinase (ALK) rearrangement detection with immunohistochemistry (IHC) and real-time polymerase chain reaction (RT-qPCR) in comparison with fluorescence in situ hybridization (FISH). Tumor tissue samples from 230 patients with advanced non-small cell lung cancer (NSCLC) were analyzed by FISH to detect ALK rearrangements. Additional IHC tests using 5A4 clone and RT-qPCR (variants 1 to 5) were performed in 63 and 48 patients, respectively. Thirteen percent of FISH tests were not evaluable. From the remaining tests (n=200), 18 (9.0%) were ALK positive (ALK). ALK patients were significantly younger at the time of diagnosis (below 55 y, 14.3% vs. 5.5%, P=0.035), were light smokers (tobacco index qPCR, these results were 55.6, 100, 90.7, and 100.0%, respectively. Our results suggest that RT-qPCR is an inadequate initial test for detecting ALK-positive lung cancer. IHC is highly useful as an initial screening test for ALK rearrangement detection in NSCLC. These results contribute to the medical literature on the establishment of IHC as a standard diagnostic test for ALK rearrangements in NSCLC.

  5. The influence of temperature and simulated transport conditions of diagnostic samples on real-time polymerase chain reaction for the detection of Tritrichomonas foetus DNA.

    Science.gov (United States)

    Clavijo, Alfonso; Erol, Erdal; Sneed, Loyd; Sun, Feng; Swinford, Amy

    2011-09-01

    Bovine trichomoniasis is a sexually transmitted disease in cattle that causes considerable economic loss due to abortions and infertility. In vitro culture of the organisms is the traditional method for diagnosis. However, culture cannot differentiate Tritrichomonas foetus from other, closely related nonpathogenic protozoa. Recently, a quantitative real-time polymerase chain reaction (qPCR) was developed for the differential diagnosis of trichomoniasis. The objective of the current work was to evaluate the effect of different simulated transport conditions on samples containing T. foetus for the diagnosis of trichomoniasis using culture and qPCR. Results indicate that transport temperatures of 4-20°C for 1-3 days before culture will reduce or temporarily inhibit parasite replication but maintain viability. Testing of samples by either culture or qPCR would be expected to give positive results. However, diagnosis of trichomonads by both methods was negatively affected when specimens were maintained at transport temperatures of 42°C for 24 hr or more. The current study stresses the importance of ensuring that clinical samples arrive to the diagnostic laboratory within 24-48 hr and of avoiding temperature transport conditions above 37°C in order to achieve an accurate diagnosis of trichomoniasis in cattle.

  6. Detection and quantification of Mycoplasma gallisepticum genome load in conjunctival samples of experimentally infected house finches (Carpodacus mexicanus) using real-time polymerase chain reaction.

    Science.gov (United States)

    Grodio, Jessica L; Dhondt, Keila V; O'Connell, Priscilla H; Schat, Karel A

    2008-08-01

    A TaqMan-based real-time, quantitative polymerase chain reaction (qPCR) assay utilizing the mgc2 gene was developed to detect Mycoplasma gallisepticum in conjunctival swabs of experimentally infected house finches. The assay was demonstrated to be quantitative by the standard curve method with reproducible results within runs and between runs. The detection limit of the mgc2 assay was examined using two standards. The test had a detection limit of less than 14 copies per reaction when tested with a plasmid standard and less than 10 copies per reaction when tested with M. gallisepticum genomic DNA. All M. gallisepticum-negative birds (10 specific pathogen free chickens and 10 house finches) were negative by mgc2 qPCR assay. Existing evidence suggests that an important part of M. gallisepticum pathogenesis includes both its attachment to and invasion of host cells. Thus, our test also made use of rag-1 as an internal control gene. The rag-1 qPCR results showed that host cell quantity varied greatly between conjunctival samples. After inoculation, M. gallisepticum levels in the house finch conjunctiva increased over the 7-day period post infection. The bird with the most pronounced clinical conjunctivitis harboured the highest level of M. gallisepticum and the bird that did not develop conjunctivitis had very low numbers of M. gallisepticum. Thus, it appears that development of conjunctivitis may correlate with M. gallisepticum load.

  7. A Novel, Multi-Parallel, Real-Time Polymerase Chain Reaction Approach for Eight Gastrointestinal Parasites Provides Improved Diagnostic Capabilities to Resource-Limited At-Risk Populations

    Science.gov (United States)

    Mejia, Rojelio; Vicuña, Yosselin; Broncano, Nely; Sandoval, Carlos; Vaca, Maritza; Chico, Martha; Cooper, Philip J.; Nutman, Thomas B.

    2013-01-01

    Diagnosis of gastrointestinal parasites has traditionally relied on stool microscopy, which has low diagnostic sensitivity and specificity. We have developed a novel, rapid, high-throughput quantitative multi-parallel real-time polymerase chain reaction (qPCR) platform. Species-specific primers/probes were used for eight common gastrointestinal parasite pathogens: Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Giardia lamblia, Cryptosporidium spp., Entamoeba histolytica, Trichuris trichiura, and Strongyloides stercoralis. Stool samples from 400 13-month-old children in rural Ecuador were analyzed and the qPCR was compared with a standard direct wet mount slide for stool microscopy, as were 125 8–14-year-old children before and after anthelmintic treatment. The qPCR showed higher detection rates for all parasites compared with direct microscopy, Ascaris (7.0% versus 5.5%) and for Giardia (31.5% versus 5.8%). Using an enhanced DNA extraction method, we were able to detect T. trichiura DNA. These assays will be useful to refine treatment options for affected populations, ultimately leading to better health outcomes. PMID:23509117

  8. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction.

    Science.gov (United States)

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-10-01

    This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL⁻¹ in pure culture and seawater, and 10 CFU g⁻¹ in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.

  9. Assessment of litter prevalence of Mycoplasma hyopneumoniae in preweaned piglets utilizing an antemortem tracheobronchial mucus collection technique and a real-time polymerase chain reaction assay.

    Science.gov (United States)

    Vangroenweghe, Frédéric; Karriker, Locke; Main, Rodger; Christianson, Eric; Marsteller, Thomas; Hammen, Kristin; Bates, Jessica; Thomas, Paul; Ellingson, Josh; Harmon, Karen; Abate, Sarah; Crawford, Kimberly

    2015-09-01

    The swine industry currently lacks validated antemortem methods of detecting baseline herd prevalence of Mycoplasma hyopneumoniae. The focus of our study was to evaluate alternative antemortem detection techniques and to determine baseline litter prevalence in preweaned pig populations utilizing the selected technique and a real-time polymerase chain reaction (qPCR) assay. Preliminary data was analyzed on weaned piglets with evidence of respiratory disease (n = 32). Five sample types (antemortem nasal swab, tracheobronchial mucus, postmortem deep airway swab, bronchoalveolar lavage, and lung tissue) were collected from each pig. Individual samples were tested for M. hyopneumoniae using qPCR. Compared to nasal swabs, tracheobronchial mucus demonstrated higher test sensitivity (P hyopneumoniae. Two out of 180 litters revealed a positive result (1.1%). Individual qPCR assays were run on the samples collected from sow farm 4. Five out of 30 samples revealed a positive result (16.7%). Tracheobronchial mucus collection in combination with qPCR is a sensitive antemortem sampling technique that can be used to estimate the prevalence of M. hyopneumoniae in preweaned pigs, thus providing insight into the infection dynamics across the entire farrow-to-finish process. © 2015 The Author(s).

  10. Real-Time Polymerase Chain Reaction-Based Detection of Bordetella pertussis in Mexican Infants and Their Contacts: A 3-Year Multicenter Study.

    Science.gov (United States)

    Aquino-Andrade, Alejandra; Martínez-Leyva, Gabriel; Mérida-Vieyra, Jocelin; Saltigeral, Patricia; Lara, Antonino; Domínguez, Wendy; García de la Puente, Silvestre; De Colsa, Agustín

    2017-09-01

    To evaluate the usefulness of real-time polymerase chain reaction (RT-PCR) as a diagnostic method for the detection of Bordetella pertussis in hospitalized patients aged pertussis detection and symptoms in household contacts of patients diagnosed with pertussis were studied. A total of 286 patients were included; of these, 67.1% had B pertussis and 4.5% had Bordetella spp. Complications occurred in 20% of patients, and the mortality rate was 6.7%. Of 434 contacts studied, 111 were mothers of study infants, representing the most frequently B pertussis-infected group and the main symptomatic contact. The use of RT-PCR permits improved detection and diagnosis of pertussis and a better understanding of the epidemiology of sources of infection. The complications and mortality rate of pertussis continue to be high. Household contacts are confirmed as a frequent source of infection of B pertussis in young children. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples.

    LENUS (Irish Health Repository)

    Meyler, Kenneth L

    2012-12-01

    Since the introduction of the Haemophilus influenzae serotype b vaccine, invasive H. influenzae disease has become dominated by nontypeable (NT) strains. Several widely used molecular diagnostic methods have been shown to lack sensitivity or specificity in the detection of some of these strains. Novel real-time assays targeting the fucK, licA, and ompP2 genes were developed and evaluated. The fucK assay detected all strains of H. influenzae tested (n = 116) and had an analytical sensitivity of 10 genome copies\\/polymerase chain reaction (PCR). This assay detected both serotype b and NT H. influenzae in 12 previously positive specimens (culture and\\/or bexA PCR) and also detected H. influenzae in a further 5 of 883 culture-negative blood and cerebrospinal fluid (CSF) samples. The fucK assay has excellent potential as a diagnostic test for detection of typeable and nontypeable strains of invasive H. influenzae in clinical samples of blood and CSF.

  12. Analytical validation of a real-time reverse transcription polymerase chain reaction test for Pan-American lineage H7 subtype Avian influenza viruses

    Science.gov (United States)

    Spackman, Erica; Ip, Hon S.; Suarez, D.L.; Slemons, R.D.; Stallknecht, D.E.

    2008-01-01

    A real-time reverse transcription polymerase chain reaction test for the identification of the H7 subtype in North American Avian influenza viruses (AIVs) was first reported in 2002; however, recent AIV surveillance efforts in wild birds and H7 outbreaks in poultry demonstrated that the 2002 test did not detect all H7 AIVs present in North and South America. Therefore, a new test, the 2008 Pan-American H7 test, was developed by using recently available H7 nucleotide sequences. The analytical specificity of the new assay was characterized with an RNA panel composed of 19 H7 viruses from around the world and RNA from all hemagglutinin subtypes except H16. Specificity for North and South American lineage H7 viruses was observed. Assay limits of detection were determined to be between 103 and 104 gene copies per reaction with in vitro transcribed RNA, and 100.0 and 10 0.8 50% egg infectious doses per reaction. The 2008 Pan-American H7 test also was shown to perform similarly to the 2002 test with specimens from chickens experimentally exposed to A/Chicken/BritishColumbia/314514-2/04 H7N3 highly pathogenic AIV. Furthermore, the 2008 test was able to detect 100% (n = 27) of the H7 AIV isolates recovered from North American wild birds in a 2006-2007 sample set (none of which were detected by the 2002 H7 test).

  13. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction

    Science.gov (United States)

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-01-01

    Background This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. Results The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL−1 in pure culture and seawater, and 10 CFU g−1 in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Conclusion Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24752974

  14. Using real-time polymerase chain reaction as an alternative rapid method for enumeration of colony count in liveBrucellavaccines.

    Science.gov (United States)

    Shell, Waleed S; Sayed, Mahmoud L; Samy, A A; Al-Sadek, Ghada Mohamed; El-Hamid, Gina Mohamed Mohamed Abd; Ali, Abdel Hakam M

    2017-06-01

    Brucellosis is a major bacterial zoonosis of global importance affecting a range of animal species and man worldwide. It has economic, public health, and bio-risk importance. Control and prevention of animal brucellosis mainly depend on accurate diagnostic tools and implementation of effective and safe animal vaccination program. There are three types of animal Brucella live vaccines - Brucella melitensis Rev-1 vaccine, Brucella abortus S19, and B . abortus RB51. Evaluation of these vaccines depends mainly on enumeration of Brucella viable count. At present, used colony count method is time consuming, costly and requires especial skills. Hence, the aim of this study is to use and standardize real-time polymerase chain reaction (RT-PCR) as an alternative, quantitative, sensitive, and rapid method to detect the colony count of Brucella in live Brucella vaccine. Four batches of different live Brucella vaccines were evaluated using of conventional bacterial count and RT-quantitative PCR (RT-qPCR) using BSCP31 gene specific primers and probe. Standard curve was generated from DNA template extracted from 10-fold serial dilution of living B. abortus RB51 vaccine to evaluate the sensitivity of RT-qPCR. Results revealed that three batches of living Brucella vaccines were acceptable for Brucella colony count when traditional bacterial enumeration method was used. Results of RT-qPCR were identical to that of conventional bacterial count. Results concluded that RT-qPCR was relatively sensitive compared to traditional bacterial colony count of these vaccines.

  15. Quantitative detection and typing of hepatitis D virus in human serum by real-time polymerase chain reaction and melting curve analysis.

    Science.gov (United States)

    Hofmann, Joerg; Frenzel, Katrin; Minh, Bui Q; von Haeseler, Arndt; Edelmann, Anke; Ross, Stefan R; Berg, Thomas; Krüger, Detlev H; Meisel, Helga

    2010-06-01

    Hepatitis D virus (HDV) infection is an important etiologic agent of fulminant hepatitis and may aggravate the clinical course of chronic hepatitis B infection resulting in cirrhosis and liver failure. This report describes the establishment of a real-time reverse transcriptase polymerase chain reaction method that allows the quantitative detection of HDV-1 and HDV-3 with a sensitivity in a linear range of 2 x 10(3) to 10(8) copies/mL. Additionally, the new assay provides the opportunity to distinguish HDV-1 from HDV-3 by a subsequent melting curve analysis, an important option because these HDV types are highly associated with severe clinical outcome. The results of the melting curve analysis of 42 HDV sequences obtained in this study and the phylogenetic analysis based on 139 full-length sequences from GenBank were consistent and showed that all sequences described here cluster within the HDV-1 clade. Therefore, this assay is useful for monitoring of antiviral treatment and molecular epidemiologic studies of HDV distribution. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Novel real-time PCR assays using TaqMan minor groove binder probes for identification of fecal carriage of Streptococcus bovis/Streptococcus equinus complex from rectal swab specimens.

    Science.gov (United States)

    Lopes, Paulo Guilherme Markus; Cantarelli, Vlademir Vicente; Agnes, Grasiela; Costabeber, Ane Micheli; d'Azevedo, Pedro Alves

    2014-03-01

    Real-time PCR based on the recN and gyrB genes was developed to detect four Streptococcus bovis/Streptococcus equinus complex (SBEC) subspecies from rectal swab specimens. The overall prevalence was 35.2%: Streptococcus gallolyticus subsp. gallolyticus (11.1%), S. gallolyticus subsp. pasteurianus (13%), Streptococcus infantarius subsp. coli (20.4%), and S. infantarius subsp. infantarius (11.1%). To conclude, these real-time PCR assays provide a reliable molecular method to detect SBEC pathogenic subspecies from rectal swab specimens.

  17. Propidium Monoazide Quantitative Real-Time Polymerase Chain Reaction for Enumeration of Some Viable but Nonculturable Foodborne Bacteria in Meat and Meat Products.

    Science.gov (United States)

    Abd El-Aziz, Norhan Khairy; Tartor, Yasmine Hasanine; Gharib, Ahlam Abd El-Aziz; Ammar, Ahmed Mohamed

    2018-01-03

    Foodborne infections due to bacterial pathogens are increasing worldwide. Given the surreptitious nature of viable but nonculturable (VBNC) bacteria, they largely remain a threat to public health and food safety due to their non-detectability through conventional plate count techniques. Hence, species-specific quantitative real-time polymerase chain reaction (PCR) (qPCR) alone and combined with the use of propidium monoazide (PMA) was used along with the plate count method to quantify VBNC Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, and Enterobacteriaceae in fresh and processed meat samples. The major bacterial pathogen isolated was S. aureus (93%) followed by Enterobacteriaceae (80.33%), C. perfringens (26.33%), and B. cereus (21.33%); their total viable counts were mostly recorded in raw meat than examined meat products. PMA quantitative real-time PCR (PMA qRT-PCR) could detect and quantify VBNC bacteria in 90.48% of culture-negative samples. It affirmed the presence of VBNC S. aureus (n = 10), B. cereus (n = 8), C. perfringens (n = 6), and Enterobacteriaceae (n = 12) in either single or mixed bacterial contamination. The log 10 mean values of VBNC bacterial counts were highly reported for C. perfringens and S. aureus (9.60 ± 0.449 and 8.27 ± 0.453 CFU/g, respectively) followed by Enterobacteriaceae (6.95 ± 0.564 CFU/g) and B. cereus (6.69 ± 0.749 CFU/g). Sequencing of rpoB gene of Enterobacteriaceae enabled the identification of Klebsiella pneumoniae complex, Enterobacter cloacae complex, and Salmonella Typhi, which have been reported to be capable of entry into the VBNC state. To our knowledge, this is the first report at least in Egypt that records the presence of VBNC cells in meat samples representing a strong threat to public health and food safety. Moreover, PMA qRT-PCR allowed a quick and unequivocal way of enumeration of VBNC foodborne bacteria.

  18. Ring test evaluation of the detection of influenza A virus in swine oral fluids by real-time, reverse transcription polymerase chain reaction (rRT-PCR) and virus isolation

    Science.gov (United States)

    The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 real-time, reverse transcription polymerase chain reaction (rRT-PCR) and 7 virus isolation (VI) assays. To conduct the study, OF was inoculated with H1N1 or H3N2 IAV and serially 10-fold d...

  19. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction--positive

    Science.gov (United States)

    Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...

  20. Removal of real-time reverse transcription polymerase chain reaction (RT-PCR) inhibitors associated with cloacal swab samples and tissues for improved diagnosis of avian influenza virus by RT-PCR

    Science.gov (United States)

    Real time reverse transcriptase polymerase chain reaction (RRT-PCR) is routinely used for the rapid detection of Avian Influenza virus (AIV) in clinical samples. The usefulness of diagnostic RRT-PCR can be limited, in part, by the inhibitory substances present in some clinical specimens, which can ...

  1. APLIKASI KUANTIFIKASI KOI HERPESVIRUS : REAL TIME – QUANTITATIVE POLYMERASE CHAIN REACTION (RT-Q PCR MENGGUNAKAN SYBR GREEN PADA IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Isti Koesharyani

    2017-08-01

    Full Text Available Koi Herpes Virus (KHV di Indonesia sejak tahun 2002 merupakan penyakit mematikan yang menyerang ikan koi Cyprinus carpio koi dan ikan mas Cyprinus carpio carpio, dan sampai saat ini, infeksi KHV dilaporkan sudah menyebar hampir di seluruh dunia. Untuk mengetahui adanya infeksi KHV perlu cara diagnosa yang sangat akurat/sensitif, sehingga keberadaan KHV dapat diketahui secara pasti dengan tingkat sensitivitas yang lebih baik pada ikan budidaya. Tujuan dari penelitian ini adalah untuk mengaplikasikan teknik deteksi dengan real time quantitative polymerase chain reaction (RT- qPCR/qPCR guna mengetahui adanya infeksi KHV secara kuantitatif pada ikan mas dengan mengetahui kandungan virus (viral load. Sebanyak masing-masing 3 ekor sampel diperoleh dari sentra budidaya ikan mas di Cirata-Jawa Barat, Maninjau-Sumatera Barat, dan Banjarmasin-Kalimantan Selatan. Sampel-sampel tersebut selanjutnya dianalisa keberadaan KHV-nya dengan RT-qPCR menggunakan SYBR Green. Hasil pengujian menunjukkan bahwa jumlah tertinggi (viral load diperoleh dari ikan mas asal Cirata-3 dengan nilai Threshold Cycle (Ct. 18,24 atau setara dengan 3,4 x 107 kopi, dan terendah dari ikan mas asal Banjarmasin-3 dengan nilai Ct. 33,39 atau 1,8 x 102 kopi. Dua standar yang digunakan dalam pengujian ini berupa plasmid dengan jumlah kopi 2 x 104 (Ct 27,24 dan 2 x 103 (Ct 30,24 dan kontrol atau Non Template Control (NTC adalah 3,1 x 10 atau dengan nilai Ct 35,65. Uji aplikasi deteksi KHV dengan metode RT-qPCR ini memberikan hasil yang lebih sensitif, di mana sampel yang tidak terdeteksi dengan metode PCR konvensional dapat dideteksi dan dihitung jumlah kopi DNA (DNA copy. Since 2002, Koi herpesvirus (KHV in Indonesian has been a malignant diseases, now recognized as a worldwide cause of mortality among populations of koi Cyprinus carpio koi and common carp Cyprinus carpio carpio. To determine the presence of infection is required the KHV diagnosis method with highly accurate and sensitive

  2. Comparison of culture versus quantitative real-time polymerase chain reaction for the detection of Taylorella equigenitalis in field samples from naturally infected horses in Canada and Germany.

    Science.gov (United States)

    Nadin-Davis, Susan; Knowles, Margaret K; Burke, Teresa; Böse, Reinhard; Devenish, John

    2015-07-01

    A quantitative real-time polymerase chain reaction method (qPCR) was developed and tested for the detection of Taylorella equigenitalis. It was shown to have an analytical sensitivity of 5 colony-forming units (CFU) of T. equigenitalis when applied to the testing of culture swabs that mimicked field samples, and a high analytical specificity in not reacting to 8 other commensal bacterial species associated with horses. As designed, it could also differentiate specifically between T. equigenitalis and T. asinigenitalis. The qPCR was compared to standard culture in a study that included 45 swab samples from 6 horses (1 stallion, 5 mares) naturally infected with T. equigenitalis in Canada, 39 swab samples from 5 naturally infected stallions in Germany, and 311 swab samples from 87 culture negative horses in Canada. When the comparison was conducted on an individual sample swab basis, the qPCR had a statistical sensitivity and specificity of 100% and 96.4%, respectively, and 100% and 99.1% when the comparison was conducted on a sample set basis. A comparison was also made on 203 sample swabs from the 5 German stallions taken over a span of 4 to 9 mo following antibiotic treatment. The qPCR was found to be highly sensitive and at least as good as culture in detecting the presence of T. equigenitalis in post-treatment samples. The work demonstrates that the qPCR assay described here can potentially be used to detect the presence of T. equigenitalis directly from submitted sample swabs taken from infected horses and also for determining T. equigenitalis freedom following treatment.

  3. Detection of disseminated tumor cells in the lymph nodes of colorectal cancer patients using a real-time polymerase chain reaction assay.

    Science.gov (United States)

    Lotspeich, Erkki; Schoene, Markus; Gerngross, Heinz; Schmidt, Roland; Steinmann, Reinhard; Ramadani, Marco; Gansauge, Susanne

    2007-09-01

    Postoperative treatment for colorectal cancer depends on tumor stage as defined by the International Union Against Cancer (UICC). Adjuvant chemotherapy is not recommended in patients without lymph node involvement (UICC stages I and II). As many as 20-30% of these patients, however, will develop recurrence. We conducted this study to determine the presence of disseminated tumor cells in the lymph nodes by quantitative real-time polymerase chain reaction (QRT-PCR) for cytokeratin 20 (CK20) in an attempt to provide supplementary information compared to histopathological findings. Using a standard QRT-PCR assay, we examined primary tumors and 391 lymph nodes from 31 patients with completely resected colorectal cancer. Of the 31 primary tumors, 29 were positive for CK20 by QRT-PCR. An examination of the lymph nodes from the 29 patients with CK20-positive primary tumors revealed that 35 (92.1% sensitivity) of the 38 histopathologically positive lymph nodes and 54 (16.7%) of the 324 histopathologically negative lymph nodes were positive by molecular analysis. CK20 expression was detected in 10 (100%) of 10 patients with a histopathologically positive lymph node status (pN1). In 9 (47.4%) of 19 patients with negative histopathological results (pN0), we detected a CK20 mRNA signal in at least one lymph node. Whereas eight patients with histopathologically negative lymph nodes could be upstaged on the basis of the molecular findings, no patient would be downstaged. Our results suggest that QRT-PCR for CK20 is a useful tool for the quantitative detection of micrometastases in the regional lymph nodes. We introduce a standardized procedure that integrates a molecular diagnostic technique in the clinical staging.

  4. Comparison of real-time polymerase chain reaction and serological tests for the confirmation of Mycoplasma pneumoniae infection in children with clinical diagnosis of atypical pneumonia.

    Science.gov (United States)

    Chang, Hsin-Yu; Chang, Luan-Yin; Shao, Pei-Lan; Lee, Ping-Ing; Chen, Jong-Min; Lee, Chin-Yun; Lu, Chun-Yi; Huang, Li-Min

    2014-04-01

    Mycoplasma pneumoniae is a common pathogen of respiratory tract infection in children, and its correct and rapid diagnosis is a clinical challenge. Real-time polymerase chain reaction (RT-PCR) has been used frequently for the detection of this pathogen. Medical records from all children with a clinical diagnosis of mycoplasma pneumonia and whose respiratory samples were tested for M. pneumoniae (using RT-PCR) during 2011 were reviewed retrospectively. We compared the sensitivity and specificity of serological assays versus those of RT-PCR for diagnosis of M. pneumoniae infections. We also reviewed retrospectively clinical characteristics, and laboratory and imaging findings of children with laboratory evidence of M. pneumoniae infection. In 2011, 290 children were diagnosed to have mycoplasma pneumonia clinically and had their respiratory samples tested for M. pneumoniae by RT-PCR. Fifty-four children (19%) had a positive result. Meanwhile, 63% (182/290) of these children also underwent serological tests, out of whom 44 (24%) were found to be positive for immunoglobulin M (IgM). Using PCR as a gold standard, M. pneumoniae IgM assay was found to show a sensitivity of 62.2% and a specificity of 85.5%. Positive and negative predictive values of IgM were 52.3% and 89.9%, respectively. In M. pneumoniae IgM-positive children, a negative PCR result was associated with more coinfection by other pathogens and longer duration of prehospitalization fever. Bacterial loads of M. pneumoniae were not correlated with clinical outcomes. The majority of clinically diagnosed mycoplasma pneumonia was unconfirmed. Mycoplasma pneumoniae IgM has poor sensitivity and a positive predictive value. Interpretation of Mycoplasma pneumoniae IgM should be done with caution. Copyright © 2013. Published by Elsevier B.V.

  5. Evaluation of Real-Time Quantitative Polymerase Chain Reaction (qPCR) to Determine Escherichia coli Concentrations at Two Lake Erie Beaches

    Science.gov (United States)

    Kephart, Christopher M.; Bushon, Rebecca N.

    2009-01-01

    During the recreational seasons of 2006 and 2007, the quantitative polymerase chain reaction (qPCR) method was used to determine Escherichia coli (E. coli) concentrations in samples from two Lake Erie beaches. Results from the qPCR method were compared to those obtained by traditional culturing on modified mTEC agar. Regression analysis showed strong, statistically significant correlations between results from the two methods for both years. Correlation coefficients at Edgewater and Villa Angela Beaches were 0.626 and 0.789 for 2006 and 0.667 and 0.829 for 2007, respectively. Linear regression analyses were done to determine how well E. coli concentrations could have been predicted from qPCR results. These hypothetical predictions were compared to the current practice of determining recreational water quality from E. coli concentrations determined for samples collected on the previous day. The qPCR method resulted in a greater percentage of correct predictions of water-quality exceedances than the current method for both beaches and both years. However, because regression equations differed somewhat between both sites and both years, the study did not result in any single relation reliable enough to use for actual real-time prediction of water-quality exceedances for either beach; therefore, a posterior analysis of data was done. Additional years of data may be needed to develop such a relation. Results from this study support the continued development and testing of a qPCR method for providing rapid and accurate estimates of E. coli concentrations for monitoring recreational water quality.

  6. Using real-time polymerase chain reaction as an alternative rapid method for enumeration of colony count in live Brucella vaccines

    Directory of Open Access Journals (Sweden)

    Waleed S. Shell

    2017-06-01

    Full Text Available Aim: Brucellosis is a major bacterial zoonosis of global importance affecting a range of animal species and man worldwide. It has economic, public health, and bio-risk importance. Control and prevention of animal brucellosis mainly depend on accurate diagnostic tools and implementation of effective and safe animal vaccination program. There are three types of animal Brucella live vaccines - Brucella melitensis Rev-1 vaccine, Brucella abortus S19, and B. abortus RB51. Evaluation of these vaccines depends mainly on enumeration of Brucella viable count. At present, used colony count method is time consuming, costly and requires especial skills. Hence, the aim of this study is to use and standardize real-time polymerase chain reaction (RT-PCR as an alternative, quantitative, sensitive, and rapid method to detect the colony count of Brucella in live Brucella vaccine. Materials and Methods: Four batches of different live Brucella vaccines were evaluated using of conventional bacterial count and RT-quantitative PCR (RT-qPCR using BSCP31 gene specific primers and probe. Standard curve was generated from DNA template extracted from 10-fold serial dilution of living B. abortus RB51 vaccine to evaluate the sensitivity of RT-qPCR. Results: Results revealed that three batches of living Brucella vaccines were acceptable for Brucella colony count when traditional bacterial enumeration method was used. Results of RT-qPCR were identical to that of conventional bacterial count. Conclusion: Results concluded that RT-qPCR was relatively sensitive compared to traditional bacterial colony count of these vaccines.

  7. Development and validation of a quantitative real-time polymerase chain reaction assay specific for the detection of Rickettsia felis and not Rickettsia felis-like organisms.

    Science.gov (United States)

    Odhiambo, Antony M; Maina, Alice N; Taylor, Melissa L; Jiang, Ju; Richards, Allen L

    2014-07-01

    Human infections with Rickettsia felis have been reported worldwide. Recent studies have revealed the presence of many closely related but unique rickettsiae, referred to as Rickettsia felis-like organisms (RFLO), identified in various arthropods. Due to the recent discovery of the lack of specificity of earlier R. felis-specific assays, there has become a need to develop a new generation of R. felis-specific molecular assays that will differentiate R. felis not only from other rickettsiae but more importantly from other members of the R. felis genogroup that may not be pathogenic to humans. This new generation of assays is essential for determining the true risk for flea-borne spotted fever (FBSF) by surveying arthropod vectors/hosts. Because of the lack of specificity of previous assays developed to detect R. felis infections, prior surveys may have overestimated the prevalence of R. felis in arthropod vectors and thus the perceived risk of FBSF. We have developed a specific quantitative real-time polymerase chain reaction (qPCR) assay to detect R. felis (RfelB). Specificity of the assay was determined by testing it with a panel of 17 related Rickettsia species and 12 nonrickettsial bacterial DNA preparations. The RfelB qPCR assay was positive for R. felis DNA and negative for all of the 17 related Rickettsia species and 12 nonrickettsia bacterial DNA preparations. The limit of detection of the RfelB qPCR assay was determined to be two copies (two genoequivalents) per microliter of R. felis target ompB fragment-containing plasmid. Validation of the RfelB qPCR assay was accomplished by testing 83 previously sequence-confirmed R. felis and RFLOs containing DNA preparations from human and flea samples collected from different geographical locations around the world. This assay will be useful for rapid detection, identification, and enumeration of R. felis, an emerging human pathogen of worldwide importance, from both clinical and environmental samples.

  8. Application of a new real-time polymerase chain reaction assay for surveillance studies of lymphocystis disease virus in farmed gilthead seabream.

    Science.gov (United States)

    Valverde, Estefania J; Cano, Irene; Labella, Alejandro; Borrego, Juan J; Castro, Dolores

    2016-04-06

    Lymphocystis disease (LCD) is the main viral infection reported to affect cultured gilthead seabream (Sparus aurata) in Europe. The existence of subclinical Lymphocystis disease virus (LCDV) infection in this fish species has been recognised by using polymerase chain reaction (PCR)-based methods. Nevertheless, these methods do not provide quantitative results that can be useful in epidemiological and pathological studies. Moreover, carrier fish have been involved in viral transmission, therefore the use of specific and sensitive diagnostic methods to detect LCDV will be relevant for LCD prevention. We have developed a real-time PCR (qPCR) assay to detect and quantify LCDV. The assay was evaluated for viral diagnosis in surveillance studies in gilthead seabream farms, and also to identify viral reservoirs in a hatchery. The prevalence of LCDV infection in the asymptomatic gilthead seabream populations tested varied from 30 to 100 %, including data from one farm without previous records of LCD. Estimated viral load in caudal fin of subclinically infected fish was two to five orders of magnitude lower than in diseased fish. The qPCR assay allowed the detection of carrier fish in broodstock from a farm with a history of clinical LCD in juvenile fish. In addition, the quantitative detection of LCDV was achieved in all samples collected in the hatchery, including fertilized eggs, larvae and fingerlings, and also rotifer cultures and artemia metanauplii and cysts used for larval rearing. The qPCR assay developed in this study has proved to be a rapid, sensitive, and reliable method for LCDV diagnosis, which could be valuable to identify LCDV reservoirs or to study viral replication in gilthead seabream.

  9. Frequency of Pathogenic Paediatric Bacterial Meningitis in Mozambique: The Critical Role of Multiplex Real-Time Polymerase Chain Reaction to Estimate the Burden of Disease

    Science.gov (United States)

    Nhantumbo, Aquino Albino; Cantarelli, Vlademir Vicente; Caireão, Juliana; Munguambe, Alcides Moniz; Comé, Charlotte Elizabeth; Pinto, Gabriela do Carmo; Zimba, Tomás Francisco; Mandomando, Inácio; Semá, Cynthia Baltazar; Dias, Cícero; Moraes, Milton Ozório; Gudo, Eduardo Samo

    2015-01-01

    Background In Sub-Saharan Africa, including Mozambique, acute bacterial meningitis (ABM) represents a main cause of childhood mortality. The burden of ABM is seriously underestimated because of the poor performance of culture sampling, the primary method of ABM surveillance in the region. Low quality cerebrospinal fluid (CSF) samples and frequent consumption of antibiotics prior to sample collection lead to a high rate of false-negative results. To our knowledge, this study is the first to determine the frequency of ABM in Mozambique using real-time polymerase chain reaction (qPCR) and to compare results to those of culture sampling. Method Between March 2013 and March 2014, CSF samples were collected at 3 regional hospitals from patients under 5 years of age, who met World Health Organization case definition criteria for ABM. Macroscopic examination, cytochemical study, culture, and qPCR were performed on all samples. Results A total of 369 CSF samples were collected from children clinically suspected of ABM. qPCR showed a significantly higher detection rate of ABM-causing pathogens when compared to culture (52.3% [193/369] versus 7.3% [27/369], p = 0.000). The frequency of Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococci, and Neisseria meningitidis were 32.8% (121⁄369), 12.2%, (45⁄369), 3.0% (16⁄369) and 4.3% (11⁄369), respectively, significantly higher compared to that obtained on culture (p qPCR. The common use of culture rather than qPCR to identify ABM results in serious underestimation of the burden of the disease, and our findings strongly suggest that qPCR should be incorporated into surveillance activities for ABM. In addition, our data showed that S. pneumoniae represents the most common cause of ABM in children under 5 years of age. PMID:26393933

  10. Optimization of Reference Genes for Normalization of Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction Results in Senescence Study of Mesenchymal Stem Cells.

    Science.gov (United States)

    Su, Xiaodong; Yao, Xinglei; Sun, Zhao; Han, Qin; Zhao, Robert Chunhua

    2016-09-15

    Recently, it has been suggested that cellular senescence is associated with stem cell exhaustion, which reduces the regenerative potential of tissues and contributes to aging and age-related diseases. Mesenchymal stem cells (MSCs) attract a large amount of attention in stem cell research and regeneration medicine because they possess multiple advantages and senescent MSCs could be one of the most useful stem cell models in aging studies. It is important to quantitatively evaluate senescence markers to both identify and study the mechanisms involved in MSC senescence. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is currently the most widely used tool to quantify the mRNA levels of markers. However, no report has demonstrated the optimal reference genes that should be used to normalize RT-qPCR in senescence studies of MSCs. In this study, we compared 16 commonly used reference genes (GAPDH, ACTB, RPL13A, TBP, B2M, GUSB, RPLPO, YWHAZ, RPS18, EEF1A1, ATP5F1, HPRT1, PGK1, TFRC, UBC, and PPIA) in proliferating or replicative-senescent human adipose-derived MSCs (hAD-MSCs) that were isolated from seven healthy donors aged 29-59 years old. Three algorithms (geNorm, NormFinder, and BestKeeper) were used to determine the most optimal reference gene. The results showed that PPIA exhibited the most stable expression during senescence, while the widely used ACTB exhibited the lowest stability. We also confirmed that different reference genes lead to different evaluations of senescence markers. Our work ensures that results obtained from senescence studies of hAD-MSCs will be appropriately evaluated in both basic research and clinical trials.

  11. Evaluation of three 5' exonuclease-based real-time polymerase chain reaction assays for detection of pathogenic Leptospira species in canine urine.

    Science.gov (United States)

    Fink, Jamie M; Moore, George E; Landau, Ruth; Vemulapalli, Ramesh

    2015-03-01

    Leptospirosis is caused by several pathogenic Leptospira species, and is an important infectious disease of dogs. Early detection of infection is crucial for an effective antibiotic treatment of the disease. Though different polymerase chain reaction (PCR) assays have been developed for detection of pathogenic Leptospira spp., thorough evaluation of the performance of these assays using dog urine samples has not been carried out. In the current study, the performance of 3 real-time PCR (qPCR) assays was assessed, 1 targeting the 16S ribosomal RNA (rRNA) gene and the other 2 targeting the lipL32 gene, a gene for the LipL32 outer membrane protein. With DNA extracted from laboratory-cultured pathogenic Leptospira spp., all 3 qPCR assays showed 100% specificity and had identical lower limits of detection. Compared to a conventional, gel-based PCR assay, all 3 qPCR assays were 100-fold more sensitive. There was a 100% agreement in the results of the 3 assays when tested on urine samples collected aseptically from 30 dogs suspected for leptospirosis. However, when tested on 30 urine samples that were collected by the free-catch method, the 16S rRNA-based assay falsely detected 13.3% of the samples as positive for pathogenic Leptospira spp. Nucleotide sequence analysis of the amplified DNA fragments showed that the assay resulted in false positives because of unrelated bacteria. All urine samples collected from 100 apparently healthy dogs at a local animal shelter tested negative for pathogenic Leptospira spp. These results highlight the importance of sample-specific validation of PCR-based diagnostic assays and the application of appropriately validated assays for more reliable pathogen detection. © 2015 The Author(s).

  12. Quantitative assessment of Wilms tumor 1 expression by real-time quantitative polymerase chain reaction in patients with acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Hossein Ayatollahi

    2017-01-01

    Full Text Available Background: The Wilms tumor 1 (WT1 gene is originally defined as a tumor suppressor gene and a transcription factor that overexpressed in leukemic cells. It is highly expressed in more than 80% of acute myeloid leukemia (AML patients, both in bone marrow (BM and in peripheral blood (PB, and it is used as a powerful and independent marker of minimal residual disease (MRD; we have determined the expression levels of the WT1 by real-time quantitative polymerase chain reaction (RQ-PCR in PB and BM in 126 newly diagnosed AML patients. Materials and Methods: This study was done in molecular pathology and cancer research center from April 2014 to June 2015, RQ-PCR method was used to determine the WT1 gene expression in BM and/or PB samples from 126 patients of AML, we cloned both WT1 and ABL genes for creating a standard curve, and we calculate copy number of WT1 genes in patients. Results: A total of 126 AML patients consist of 70 males (55.6% and 56 females (44.4%, with a median age of 26 years; 104 (81% patients out of 126 show overexpression of WT1 gene. We also concomitant monitoring of fusion transcripts (PML RARa, AML1-ETO, MLL-MLL, CBFb-MYH11, or DEK-CAN in our patients, the AML1-ETO group showing remarkably low levels of WT1 compared with other fusion transcript and the CBFB-MYH11 showing high levels of WT1. Conclusion: We conclude that WT1 expression by RQ-PCR in AML patients may be employed as an independent tool to detect MRD in the majority of normal karyotype AML patients.

  13. Detection of the pandemic H1N1/2009 influenza A virus by a highly sensitive quantitative real-time reverse-transcription polymerase chain reaction assay.

    Science.gov (United States)

    Yang, Zhu; Mao, Guoliang; Liu, Yujun; Chen, Yuan-Chuan; Liu, Chengjing; Luo, Jun; Li, Xihan; Zen, Ke; Pang, Yanjun; Wu, Jianguo; Liu, Fenyong

    2013-02-01

    A quantitative real time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers recommended by the World Health Organization (WHO) has been widely used successfully for detection and monitoring of the pandemic H1N1/2009 influenza A virus. In this study, we report the design and characterization of a novel set of primers to be used in a qRT-PCR assay for detecting the pandemic H1N1/2009 virus. The newly designed primers target three regions that are highly conserved among the hemagglutinin (HA) genes of the pandemic H1N1/2009 viruses and are different from those targeted by the WHO-recommended primers. The qRT-PCR assays with the newly designed primers are highly specific, and as specific as the WHO-recommended primers for detecting pandemic H1N1/2009 viruses and other influenza viruses including influenza B viruses and influenza A viruses of human, swine, and raccoon dog origin. Furthermore, the qRT-PCR assays with the newly designed primers appeared to be at least 10-fold more sensitive than those with the WHO-recommended primers as the detection limits of the assays with our primers and the WHO-recommended primers were 2.5 and 25 copies of target RNA per reaction, respectively. When tested with 83 clinical samples, 32 were detected to be positive using the qRT-PCR assays with our designed primers, while only 25 were positive by the assays with the WHO-recommended primers. These results suggest that the qRT-PCR system with the newly designed primers represent a highly sensitive assay for diagnosis of the pandemic H1N1/2009 virus infection.

  14. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma.

    Science.gov (United States)

    Lambert, Nathalie C; Erickson, Timothy D; Yan, Zhen; Pang, Jennifer M; Guthrie, Katherine A; Furst, Daniel E; Nelson, J Lee

    2004-03-01

    Microchimerism (Mc), originating from bidirectional fetal-maternal cell traffic during pregnancy, has recently been identified in healthy adults and in patients with scleroderma (systemic sclerosis [SSc]). This study was undertaken to investigate the frequency and quantitative levels of maternal Mc (MMc) in healthy women and women with SSc. HLA-specific primers and fluorogenic probes were used in real-time quantitative polymerase chain reaction assays to detect and quantify MMc by targeting noninherited, nonshared HLA sequences. DNA-based HLA typing was conducted in 67 proband-mother pairs and in all children if the proband was parous. Statistical analysis was limited to 50 proband-mother pairs (including 32 healthy women and 18 women with SSc) in whom MMc could be distinguished from potential fetal Mc. MMc in peripheral blood mononuclear cells was more frequent among women with SSc (72%) than healthy women (22%) (odds ratio 9.3, P = 0.001). However, levels of MMc, expressed as the genome equivalent of maternal cells per million (gEq/mil), were not significantly different (0-68.6 gEq/mil in SSc patients, 0-54.5 in healthy women). In additional studies, positivity for MMc was demonstrated in a bone marrow aspirate from an SSc patient in whom peripheral blood had been found to be negative for MMc on 4 occasions, and tissue from a subsequent autopsy of this patient had MMc levels of 757 and 1,489 gEq/mil in the lung and heart, respectively. MMc is not uncommon in the peripheral blood of healthy adults, is increased in frequency in patients with SSc, and may be present in bone marrow and disease-affected tissues although absent in the peripheral blood.

  15. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  16. The use of quantitative real time polymerase chain reaction to quantify some rumen bacterial strains in an in vitro rumen system

    Directory of Open Access Journals (Sweden)

    Lucy Onime

    2013-08-01

    Full Text Available The aim of this work was to quantify four rumen bacterial strains (Butyrivibrio fibrisolvens, Ruminococcus albus, Streptococcus bovis, Megasphaera elsdenii in an in vitro batch rumen fermentative system by quantitative real time polymerase chain reaction (qPCR. The experiment was a 2×2 factorial arrangement with two types of liquid rumen, collected from dairy cows (DC and fattening bulls (FB and two types of fermentation substrate (forage:concentrate ratios, 75:25 and 25:75 and was replicated in two fermentation runs. Fermentation fluids from FB compared to those from DC had lower pH, higher total VFA concentrations (averages of 0 and 24 h samplings, 6.70 vs 7.04 and 72.6 vs 42.7 mmol/l P<0.001 and contained less acetic (P=0.014 and more propionic (P<0.01 and butyric (P=0.029 acids. The two types of substrates incubated produced very small differences in the end fermentation products. B. fibrosolvens concentrations were higher (P<0.001 in the DC fermentation fluids compared to that from bulls (averages of 0 and 24 h sampling times, 3.47 vs 1.38 x109 copies /mL, while M. elsdenii was detected only in FB fermentation fluids. R. albus and S. bovis concentrations were not different between the two types of rumen liquid. With the only exception for B. fibrosolvens, bacteria strains considered in this study increased their concentrations in the fermentation fluid during the 24 h of in vitro incubation.

  17. Detection of colonization by carbapenem-resistant organisms by real-time polymerase chain reaction from rectal swabs in patients with chronic renal disease.

    Science.gov (United States)

    Rezende, T F T; Doi, A M; Quiles, M G; Pignatari, A C C; Manfrendi, S; Grothe, C; Taminato, M; Barbosa, D A

    2017-06-01

    Carbapenem-resistant organism (CRO) colonization is a serious problem that increases the risk of infection and contributes to dissemination of antimicrobial resistance in healthcare-associated environments. The risk of acquisition and dissemination of CRO is high in chronic renal failure patients and the surveillance culture is recommended as a component of infection control programmes. To assess colonization by CRO, comparing phenotypic and molecular-based methods of diagnostics, in rectal swabs in a large population of chronic renal failure patients. A total of 1092 rectal swabs (ESwab™) were collected at two different times from 546 chronic kidney disease (CKD) patients from a specialized tertiary care university centre. They were divided into three groups: conservative treatment (N = 129), dialysis (N = 217), and transplanted patients (N = 200). A chromogenic (CHROMagar™) KPC agar and the multiplex real-time polymerase chain reaction (qPCR) targeting carbapenemase-encoding genes were tested as phenotypic and molecular screening for carbapenemase production. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and conventional PCR were also performed on the isolates grown on chromogenic agar. Among the 1092 samples, 150 (13.7%) were identified as CRO producers according to chromogenic agar. Only 26 (2.4%) were confirmed as KPC by conventional PCR. According to qPCR direct from swab, 31 (2.8%) were positive for KPC, 39 (3.6%) for GES, and three (0.3%) for SPM with kappa index of 0.256. The qPCR technique provides faster results when compared to culture method and enables rapid implementation of control measures and interventions to reduce the spread of CRO in healthcare settings, especially among CKD patients. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  18. Usefulness of Gastric Biopsy-Based Real-Time Polymerase Chain Reaction for the Diagnosis of Helicobacter pylori Infection in Children.

    Science.gov (United States)

    Kalach, Nicolas; Gosset, Pierre; Dehecq, Eric; Decoster, Anne; Spyckerelle, Claire; Papadopolos, Stephan; Dupont, Christophe; Raymond, Josette

    2015-09-01

    The aim of the study was to assess the usefulness of gastric biopsy-based quantitative real-time polymerase chain reaction (qPCR) for the detection of Helicobacter pylori infection and the identification of clarithromycin-resistant strains in children. A gastric biopsy-based qPCR for the detection of H pylori infection and the identification of clarithromycin-resistant strains in children was evaluated in 62 children with infection and 341 children without infection. H pylori infection was considered by the "reference method" when culture was positive for both histology and rapid urease test (RUT). Results were compared with those obtained using the qPCR. The reference method versus H pylori qPCR positivity showed 95% confidence interval sensitivity 100% versus 100%, specificity 93.2% (86.9-99.4) versus 100%, positive predictive value 59.7% (47.4-71.9) versus 100%, negative predictive value 100% versus 100%, and, finally, test accuracy of 59.6% (47.3-71.8) versus 100%. Sixty-two children were found to be H pylori positive, based on the qPCR results. Among those, 31 children had both positive qPCR and culture with concordant antimicrobial susceptibility testing results, whereas 31 children had negative culture and positive qPCR. The qPCR showed a bacterial load ≥10 copies per milliliter when culture, histology, and RUT were all positive (29/31 children) versus qPCR positivity is a more precise test than the routine culture, histology, RUT alone and allows detecting low bacterial loads.

  19. A diagnostic one-step real-time reverse transcription polymerase chain reaction method for accurate detection of influenza virus type A.

    Science.gov (United States)

    Behzadi, Mohammad Amin; Ziyaeyan, Mazyar; Alborzi, Abdolvahab

    2016-12-01

    Influenza A is known as a public health concern worldwide. In this study, a novel one-step real-time reverse transcription polymerase chain reaction (rtRT-PCR) assay was designed and optimized for the detection of influenza A viruses. The primers and probe were designed based on the analysis of 90 matrix nucleotide sequence data of influenza type A subtypes from the GenBank database of the National Center for Biotechnology Information (NCBI). The influenza virus A/Tehran/5652/2010 (H1N1 pdm09) was used as a reference. The rtRT-PCR assay was optimized, compared with that of the World Health Organization (WHO), and its analytical sensitivity, specificity and reproducibility were evaluated. In total, 64 nasopharyngeal swabs from patients with influenza-like illness (ILI) and 41 samples without ILI symptoms were tested for the virus, using conventional cell culture, direct immunofluorescence antibody (DFA) methods, and one-step rtRT-PCR with the designed primer set and probe and the WHO's. The optimized assay results were similar to the WHO's. The optimized assay results were similar to WHO's, with non-significant differences for 10-10 3 copies of viral RNA/reaction ( p > 0.05). It detected 10 copies of viral RNA/reaction with high reproducibility and no cross reactivity with other respiratory viruses. A specific cytopathic effect was observed in 6/64 (9.37%) of the ILI group using conventional culture and DFA staining methods; however, it was not seen in non-ILI. Also, the results of our assay and the WHO's were similar to those of viral isolation and DFA staining. Given the high specificity, sensitivity and reproducibility of this novel assay, it can serve as a reliable diagnostic tool for the detection of influenza A viruses in clinical specimens and lab experiments.

  20. Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR).

    Science.gov (United States)

    Garrido-Maestu, Alejandro; Azinheiro, Sarah; Fuciños, Pablo; Carvalho, Joana; Prado, Marta

    2018-04-25

    The treatment of gluten-related disorders is based on a lifelong, and strict, gluten-free diet. Thus, reliable and sensitive methods are required to detect the presence of gluten contamination. Traditional techniques rely on the detection of these proteins based on specific antibodies, but recent approaches go for an indirect route detecting the DNA that indicates the presence of cereals with gluten content. In the current study two different DNA amplification techniques, real-time PCR (qPCR) and real-time Loop-mediated isothermal AMPlification (qLAMP), were evaluated for their capability to detect and quantify gluten. Different detection strategies, based on these DNA amplification techniques, were tested. Even though good specificity results were obtained with the different approaches, overall qPCR proved more sensitive than qLAMP. This is the first study reporting a qLAMP based-method for the detection of gluten-containing cereals, along with its evaluation in comparison with qPCR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Improving clinical laboratory efficiency: a time-motion evaluation of the Abbott m2000 RealTime and Roche COBAS AmpliPrep/COBAS TaqMan PCR systems for the simultaneous quantitation of HIV-1 RNA and HCV RNA.

    Science.gov (United States)

    Amendola, Alessandra; Coen, Sabrina; Belladonna, Stefano; Pulvirenti, F Renato; Clemens, John M; Capobianchi, M Rosaria

    2011-08-01

    Diagnostic laboratories need automation that facilitates efficient processing and workflow management to meet today's challenges for expanding services and reducing cost, yet maintaining the highest levels of quality. Processing efficiency of two commercially available automated systems for quantifying HIV-1 and HCV RNA, Abbott m2000 system and Roche COBAS Ampliprep/COBAS TaqMan 96 (docked) systems (CAP/CTM), was evaluated in a mid/high throughput workflow laboratory using a representative daily workload of 24 HCV and 72 HIV samples. Three test scenarios were evaluated: A) one run with four batches on the CAP/CTM system, B) two runs on the Abbott m2000 and C) one run using the Abbott m2000 maxCycle feature (maxCycle) for co-processing these assays. Cycle times for processing, throughput and hands-on time were evaluated. Overall processing cycle time was 10.3, 9.1 and 7.6 h for Scenarios A), B) and C), respectively. Total hands-on time for each scenario was, in order, 100.0 (A), 90.3 (B) and 61.4 min (C). The interface of an automated analyzer to the laboratory workflow, notably system set up for samples and reagents and clean up functions, are as important as the automation capability of the analyzer for the overall impact to processing efficiency and operator hands-on time.

  2. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4.

    Directory of Open Access Journals (Sweden)

    Ying-Hong Lin

    Full Text Available This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method.

  3. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    Science.gov (United States)

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  4. Original Article: Real time reverse transcription (RRT)?polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs

    OpenAIRE

    Slomka, Marek J.; Densham, Anstice L. E.; Coward, Vivien J.; Essen, Steve; Brookes, Sharon M.; Irvine, Richard M.; Spackman, Erica; Ridgeon, Jonathan; Gardner, Rebecca; Hanna, Amanda; Suarez, David L.; Brown, Ian H.

    2010-01-01

    Please cite this paper as: Slomka et?al. (2010) Real time reverse transcription (RRT)?polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs. Influenza and Other Respiratory Viruses 4(5), 277?293. Background? There is a requirement to detect and differentiate pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by real time reverse transcription (RRT) PCR methods. Objectives...

  5. Reverse transcription quantitative real-time polymerase chain reaction reference genes in the spared nerve injury model of neuropathic pain: validation and literature search.

    Science.gov (United States)

    Piller, Nicolas; Decosterd, Isabelle; Suter, Marc R

    2013-07-10

    The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process

  6. Detection of Shigella spp. nucleic acids in the synovial tissue of Tunisian rheumatoid arthritis patients and other forms of arthritis by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Siala, Mariam; Rihl, Markus; Sellami, Hanen; Znazen, Abir; Sassi, Nadia; Laadhar, Lilia; Gdoura, Radhouane; Belghuith, Imen; Mrabet, Dalila; Baklouti, Sofien; Sellami, Slaheddine; Sibilia, Jean; Fourati, Hela; Hammami, Adnene; Cheour, Ilhem

    2018-02-05

    Enterobacterial components in the joints of patients are believed to contribute to a perpetuating inflammation leading to a reactive arthritis (ReA), a condition in which microbial agents cannot be recovered from the joint. At present, it is unclear whether nucleic acids from Shigella spp. are playing a pathogenic role in causing not only ReA but also other forms of arthritis. Quantitative real-time polymerase chain reaction assay (qPCR) is the method of choice for the identification of bacteria within the synovium. The aim of our study was to detect the presence of Shigella spp. nucleic acids in the synovial tissue (ST) of Tunisian arthritis patients. We investigated 57 ST samples from rheumatoid arthritis (RA) n = 38, undifferentiated oligoarthritis (UOA) n = 12, and spondyloarthritis (SpA) n = 7 patients; 5 ST samples from healthy individuals were used as controls. Shigella spp. DNA and mRNA transcripts encoding the virulence gene A (VirA) were examined using an optimized qPCR with newly designed primers and probes. Using qPCR, Shigella spp. DNA was found in 37/57 (65%) ST samples (24/38, i.e., 63.2% of RA, 8/12, i.e., 67% of UOA, and 5/7, i.e., 71.4% of SpA patients). Paired DNA and mRNA were extracted from 39 ST samples, whose VirA cDNA was found in 29/39 (74.4%) patients. qPCR did not yield any nucleic acids in the five healthy control ST samples. The qPCR assay was sensitive and showed a good intra- and inter-run reproducibility. These preliminary findings generated by an optimized, highly sensitive PCR assay underline a potential role of past gastrointestinal infections. In Tunisian patients, a bacterial etiology involving Shigella spp. in the manifestation of arthritic disorders including RA might be more common than expected.

  7. Comparison of Parasite Burden Using Real-Time Polymerase Chain Reaction Assay and Limiting Dilution Assay in Leishma-nia major Infected Mouse

    Directory of Open Access Journals (Sweden)

    Somayeh GHOTLOO

    2015-12-01

    Full Text Available Background:Limiting dilution assay is considered as the gold standard method for quantifying the number of parasites in the animal model of Leishmania infection. Nowadays, real-time PCR is being increasingly applied to quantify infectious agents. In the present study, a real-time PCR assay was developed to estimate para­site burdens in lymph nodes of Leishmania major infected BALB/C mice. Enumera­tion of parasites was also performed by limiting dilution assay and compared with the results of real-time PCR based quantification.Methods:The SYBR Green based real- time PCR assay was performed to amplify a 75 bp fragment of superoxide dismutase B1 gene in the lymph nodes of L. major infected BALB/C mice 8 weeks post infection. Mice were infected subcutaneously at the base of their tail with 2 × 105L. major promastigotes in the stationary phase of growth. To compare parasite burdens obtained by real-time PCR assay with those of limiting dilution assay, twelve 8-fold serial dilutions of the lymph node homoge­nates were prepared in the Schneider medium and incubated at 26°C.After 7 days, wells containing motile parasites were identified by direct observation under an inverted light microscope and the total number of parasites was estimated using the ELIDA software.Results:Spearman's correlation coefficient of the parasite burdens between real-time PCR and limiting dilution assay was 0.72 (Pvalue = 0.008.Conclusion:Real-time PCR assay is an appropriate replacement to existing limit­ing dilution assay in quantifying parasite burden in the experimental model of Leishma­nia infection.

  8. Comparison of histopathology and real-time polymerase chain reaction (RT-PCR) for detection of Mycobacterium tuberculosis in fistula-in-ano.

    Science.gov (United States)

    Garg, Pankaj

    2017-07-01

    Histopathology is commonly used to diagnose tuberculosis in fistula-in-ano. The aim was to compare the sensitivity of polymerase chain reaction and histopathology in detecting tuberculosis in fistula-in-ano. The histopathology and polymerase chain-reaction of tissue (fistula tract) was done in all the consecutive operated cases. When pus sample was also available, polymerase chain reaction-pus was also done RESULTS: Three hundred forty seven samples (179 patients) were tested over 2 years (median 6.5 months). The mean age was 38.8 ± 10.7 years, and male/female was 170/9. Histopathology and polymerase chain reaction of tissue (fistula tract) was done in 152 and 165 patients, respectively. Polymerase chain reaction (pus) could be done in 30 patients. Overall, tuberculosis was detected in 20/179 (11.2%) patients. Of these, tuberculosis was detected by histopathology (tissue) in 1/152 (0.7%) and by polymerase chain reaction (tissue) in 14/165 (8.5%) patients. In pus, polymerase chain reaction detected tuberculosis in 6/30 (20%) patients. Both polymerase chain reaction of tissue and pus were positive in one patient. Polymerase chain reaction (tissue) and polymerase chain reaction (pus) were significantly more sensitive than histopathology (tissue) for detecting tuberculosis [histopathology 1/152 vs. polymerase chain reaction (tissue) 14/165, p = 0.0009] [histopathology 1/152 vs. polymerase chain reaction (pus) 6/30, p Polymerase chain reaction was significantly more sensitive than histopathology in detecting tuberculosis in fistula-in-ano. Histopathology might be missing out tuberculosis in many patients leading to recurrence of the fistula.

  9. [Detection of Echinococcus granulosus and Echinococcus multilocularis in cyst samples using a novel single tube multiplex real-time polymerase chain reaction].

    Science.gov (United States)

    Can, Hüseyin; İnceboz, Tonay; Caner, Ayşe; Atalay Şahar, Esra; Karakavuk, Muhammet; Döşkaya, Mert; Çelebi, Fehmi; Değirmenci Döşkaya, Aysu; Gülçe İz, Sultan; Gürüz, Yüksel; Korkmaz, Metin

    2016-04-01

    Cystic echinococcosis (CE) and alveolar echinococcosis (AE) caused by Echinococcus granulosus and Echinococcus multilocularis, respectively, are important helminthic diseases worldwide as well as in our country. Epidemiological studies conducted in Turkey showed that the prevalence of CE is 291-585/100.000. It has also been showed that the seroprevalence of AE is 3.5%. For the diagnosis of CE and AE, radiological (ultrasonography, computed tomography, magnetic resonance) and serological methods, in addition to clinical findings, are being used. The definitive diagnosis relies on pathological examination When the hydatid cysts are sterile or does not contain protoscolex, problems may occur during pathological discrimination of E.granulosus and E.multilocularis species. In this study, we aimed to develop a novel multiplex real-time polymerase chain reaction (M-RT-PCR) targeting mitochondrial 12S rRNA gene of E.granulosus and E.multilocularis using Echi S (5'-TTTATGAATATTGTGACCCTGAGAT-3') and Echi A (5'-GGTCTTAACTCAACTCATGGAG-3') primers and three different probes; Anchor Ech (5'-GTTTGCCACCTCGATGTTGACTTAG-fluoroscein-3'), Granulosus (5'-LC640-CTAAGGTTTTGGTGTAGTAATTGATATTTT-phosphate-3') and Multilocularis (5'-LC705-CTGTGATCTTGGTGTAGTAGTTGAGATT-phosphate-3') that will enable the diagnosis of CE and AE in same assay. During M-RTR-PCR, plasmids containing E.granulosus (GenBank: AF297617.1) and E.multilocularis (GenBank: NC_000928.2) mitochondrial 12S rRNA regions were used as positive controls. Cysts samples of patients which were pathologically confirmed to be CE (n: 10) and AE (n: 15) and healthy human DNA samples (n: 25) as negative control as well as DNA samples of 12 different parasites (Taenia saginata, Hymenolepis nana, Trichuris trichiura, Fasciola hepatica, Enterobius vermicularis, Toxoplasma gondii, Pneumocystis jirovecii, Trichomonas vaginalis, Cryptosporidium hominis, Strongyloides stercoralis, Plasmodium falciparum, Plasmodium vivax) were used to develop M

  10. Effectiveness of real-time polymerase chain reaction assay for the detection of Mycobacterium tuberculosis in pathological samples: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Emmanuel O. Babafemi

    2017-10-01

    Full Text Available Abstract Background Rapid and accurate diagnosis of tuberculosis (TB is key to manage the disease and to control and prevent its transmission. Many established diagnostic methods suffer from low sensitivity or delay of timely results and are inadequate for rapid detection of Mycobacterium tuberculosis (MTB in pulmonary and extra-pulmonary clinical samples. This study examined whether a real-time polymerase chain reaction (RT-PCR assay, with a turn-a-round time of 2 h, would prove effective for routine detection of MTB by clinical microbiology laboratories. Methods A systematic literature search was performed for publications in any language on the detection of MTB in pathological samples by RT-PCR assay. The following sources were used MEDLINE via PubMed, EMBASE, BIOSIS Citation Index, Web of Science, SCOPUS, ISI Web of Knowledge and Cochrane Infectious Diseases Group Specialised Register, grey literature, World Health Organization and Centres for Disease Control and Prevention websites. Forty-six studies met set inclusion criteria. Generated pooled summary estimates (95% CIs were calculated for overall accuracy and bivariate meta-regression model was used for meta-analysis. Results Summary estimates for pulmonary TB (31 studies were as follows: sensitivity 0.82 (95% CI 0.81–0.83, specificity 0.99 (95% CI 0.99–0.99, positive likelihood ratio 43.00 (28.23–64.81, negative likelihood ratio 0.16 (0.12–0.20, diagnostic odds ratio 324.26 (95% CI 189.08–556.09 and area under curve 0.99. Summary estimates for extra-pulmonary TB (25 studies were as follows: sensitivity 0.70 (95% CI 0.67–0.72, specificity 0.99 (95% CI 0.99–0.99, positive likelihood ratio 29.82 (17.86–49.78, negative likelihood ratio 0.33 (0.26–0.42, diagnostic odds ratio 125.20 (95% CI 65.75–238.36 and area under curve 0.96. Conclusions RT-PCR assay demonstrated a high degree of sensitivity for pulmonary TB and good sensitivity for extra-pulmonary TB. It indicated a

  11. Validation of tumor markers in central nervous system germ cell tumors by real-time reverse transcriptase polymerase chain reaction using formalin-fixed paraffin-embedded tissues.

    Science.gov (United States)

    Kim, Dowhan; Lee, Da Hye; Choi, Junjeong; Shim, Kyu Won; Kim, Se Hoon

    2013-01-01

    The therapeutic protocols for treatment of germinomas and non-germinomatous germ cell tumors (NGGCTs) are completely different, so it is important to distinguish pure germinomas from NGGCTs. As it can be difficult to diagnose by morphology alone, immunohisto-chemistry (IHC) has been widely used as an ancillary test to improve diagnostic accuracy. However, IHC has limitations due to the misinterpretation of results or the aberrant loss of immunoreactivity. However, real-time RT-PCR has certain advantages over IHC, including its quantitative nature. The aim of our study was to evaluate the usefulness of real-time RT-PCR on formalin-fixed paraffin-embedded (FFPE) tissue blocks for the diagnosis of germ cell tumors of the central nervous system. We selected eight markers of germ cell tumors using a literature search, and validated them using real-time RT-PCR. Among them, POU5F1, NANOG and TGFB2 were statistically significant (P=0.05) in multiple comparisons (MANOVA) of three groups (pure germinomas, mature teratomas and malignant germ cell tumors). Two-group (pure germinomas and NGGCTs) discriminant analysis achieved a 70.0% success rate in cross-validation. We concluded that real-time RT-PCR using FFPE tissue has adequate validating power comparable to IHC in the diagnosis of central nervous system germ cell tumors; therefore, when IHC is not available, not conclusive or not informative, RT-PCR is a potential alternative to a repeat biopsy.

  12. Evaluation of two real-time polymerase chain reaction assays for porcine epidemic diarrhea virus (PEDV) to assess PEDV transmission in growing pigs

    Science.gov (United States)

    In April 2013 a porcine epidemic diarrhea virus (PEDV) epidemic began in the United States. As part of the response, real-time RT-PCR assays to detect PEDV were developed by several Veterinary Diagnostic Laboratories. This study evaluated RT-PCR PEDV assays that detect the N gene (gN) and S gene (gS...

  13. Use of automated real-time reverse transcription-polymerase chain reaction (RT-PCR) to monitor experimental swine vesicular disease virus infection in pigs

    DEFF Research Database (Denmark)

    Reid, S.M.; Paton, D.J.; Wilsden, G.

    2004-01-01

    Automated real-time RT-PCR was evaluated as a diagnostic tool for swine vesicular disease virus (SVDV) infection on a range of samples (vesicular epithelium, serum, nasal swabs, faeces) from four inoculated and three in-contact pigs over a period of 28 days. Traditional diagnostic procedures (vir...

  14. Quality of bulk tank milk samples from Danish dairy herds based on real-time polymerase chain reaction identification of mastitis pathogens

    DEFF Research Database (Denmark)

    Katholm, Jørgen; Bennedsgaard, T.W.; Koskinen, M.T.

    2012-01-01

    Results of a commercial real-time PCR analysis for 11 mastitis pathogens from bulk tank milk (BTM) samples from all 4,258 Danish dairy herds in November 2009 to January 2010 were compared with somatic cell count (SCC) and total bacteria count (TBC) estimates in BTM. For Streptococcus agalactiae......, Streptococcus dysgalactiae, and Streptococcus uberis, a low real-time PCR cycle threshold (Ct) value (corresponding to high bacterial DNA quantity) was correlated with higher SCC and higher TBC. For Staphylococcus aureus, low Ct values were correlated only with higher SCC. For the environmental mastitis...... pathogens Klebsiella spp., Enterococcus spp., and Escherichia coli, low Ct values had a correlation with higher TBC. Staphylococcus spp. were found in the BTM from all herds, Strep. uberis in 95%, Staph. aureus in 91%, and Strep. dysgalactiae in 86%, whereas E. coli, Klebsiella, and Strep. agalactiae were...

  15. Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages

    Czech Academy of Sciences Publication Activity Database

    Horňáková, Darina; Matoušková, Petra; Kindl, Jiří; Valterová, Irena; Pichová, Iva

    2010-01-01

    Roč. 397, č. 1 (2010), s. 118-120 ISSN 0003-2697 R&D Projects: GA ČR GA203/09/1446; GA MŠk(CZ) LC531; GA MŠk 2B06007 Institutional research plan: CEZ:AV0Z40550506 Keywords : real-time PCR * reference genes * Bombus * bumblebees Subject RIV: CE - Biochemistry Impact factor: 3.236, year: 2010

  16. Use of a high resolution melt real-time polymerase chain reaction (PCR) assay for the environmental monitoring of Vibrio cholerae

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2011-10-01

    Full Text Available nucleotide sequencing (Inqaba Biotec, South Africa) and alignment of the obtained sequences to sequences in an existing database (GenBank at NCBI, BLASTn option). PCR sensitivity and proficiency evaluation For the evaluation of PCR sensitivity... culture based methods. Using the real-time PCR assay described here, problem areas and possible cholera outbreaks can be quickly identified reducing socio- economic impacts and the loss of lives. REFERENCES Albert MJ, Islam D, Nahar S, Qadri F...

  17. Evaluation of the reference genes for expression analysis using quantitative real-time polymerase chain reaction in the green peach aphid, Myzus persicae.

    Science.gov (United States)

    Kang, Zhi-Wei; Liu, Fang-Hua; Tian, Hong-Gang; Zhang, Meng; Guo, Shan-Shan; Liu, Tong-Xian

    2017-04-01

    The green peach aphid, Myzus persicae Sulzer (Hemiptera, Aphididae), is an important cosmopolitan pest. Real time qRT-PCR has been used for target gene expression analysis on M. persicae. Using real time qRT-PCR, the expression levels are normalized on the basis of the reliable reference genes. However, to date, the stability of available reference genes has been insufficient. In this study, we evaluated nine candidate reference genes from M. persicae under diverse experimental conditions. The tested candidate genes were comprehensively ranked based on five alternative methods (RefFinder, geNorm, Normfinder, BestKeeper and the comparative ΔC t method). 18s, Actin and ribosomal protein L27 (L27) were recommended as the most stable reference genes for M. persicae, whereas ribosomal protein L27 (L27) was found to be the least stable reference genes for abiotic studies (photoperiod, temperature and insecticide susceptibility). Our finding not only sheds light on establishing an accurate and reliable normalization of real time qRT-PCR data in M. persicae but also lays a solid foundation for further studies of M. persicae involving RNA interference and functional gene research. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  18. A novel rapid genotyping technique for Collie eye anomaly: SYBR Green-based real-time polymerase chain reaction method applicable to blood and saliva specimens on Flinders Technology Associates filter paper.

    Science.gov (United States)

    Chang, Hye-Sook; Mizukami, Keijiro; Yabuki, Akira; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Arai, Toshiro; Yamato, Osamu

    2010-09-01

    Collie eye anomaly (CEA) is a canine inherited ocular disease that shows a wide variety of manifestations and severity of clinical lesions. Recently, a CEA-associated mutation was reported, and a DNA test that uses conventional polymerase chain reaction (PCR) has now become available. The objective of the current study was to develop a novel rapid genotyping technique by using SYBR Green-based real-time PCR for future large-scale surveys as a key part in the strategy to eradicate CEA by selective breeding. First, a SYBR Green-based real-time PCR assay for genotyping of CEA was developed and evaluated by using purified DNA samples from normal, carrier, and affected Border Collies in which genotypes had previously been determined by conventional PCR. This real-time PCR assay demonstrated appropriate amplifications in all genotypes, and the results were consistent with those of conventional PCR. Second, the availability of Flinders Technology Associates filter paper (FTA card) as DNA templates for the real-time PCR assay was evaluated by using blood and saliva specimens to determine suitability for CEA screening. DNA-containing solution prepared from a disc of blood- or saliva-spotted FTA cards was available directly as templates for the real-time PCR assay when the volume of solution was 2.5% of the PCR mixture. In conclusion, SYBR Green-based real-time PCR combined with FTA cards is a rapid genotyping technique for CEA that can markedly shorten the overall time required for genotyping as well as simplify the sample preparation. Therefore, this newly developed technique suits large-scale screening in breeding populations of Collie-related breeds.

  19. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    Science.gov (United States)

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  20. Detection of chicken and turkey meat in meat mixtures by using real-time PCR assays.

    Science.gov (United States)

    Kesmen, Zulal; Yetiman, Ahmet E; Sahin, Fikrettin; Yetim, Hasan

    2012-02-01

    In this study, TaqMan-based real-time Polymerase Chain Reaction (PCR) techniques were developed for the detection of chicken and turkey meat in raw and heat-treated meat mixtures. Primers and TaqMan probe sets were designed to amplify 86 bp and 136 bp fragments for the chicken and turkey species, respectively, on the mitochondrial NADH dehydrogenase subunit 2 gene. In the results, it was possible to detect each species at the level of 0.1 pg template DNA with the TaqMan probe technique without any cross-reactivity with nontarget species (bovine, ovine, donkey, pork, and horse) while the detection level was 1 pg template DNA using conventional PCR. The TaqMan probe assays used in this study allowed the detection of as little as 0.001% level of both species in the experimental meat mixtures, prepared by mixing chicken and turkey meat with beef at different levels (0.001% to 10%). In conclusion, TaqMan probe assays developed in this research are promising tools in the specific identification and sensitive quantification of meat species even in the case of heat-treated meat products, and suitable for a rapid, automated, and routine analysis. © 2012 Institute of Food Technologists®

  1. A new reliable reference gene UBA52 for quantitative real-time polymerase chain reaction studies in pyloric cecal tissues of the starfish Asterias rubens.

    Science.gov (United States)

    Sadritdinova, A F; Dmitriev, A A; Snezhkina, A V; Belenikin, M S; Krasnov, G S; Manylov, O G; Kudryavtsev, A A; Melnikova, N V; Speranskaya, A S; Darii, M V; Lakunina, V A; Uroshlev, L A; Smurov, A O; Stepanov, O A; Kudryavtseva, A V

    2014-05-23

    The starfish Asterias rubens is one of the most abundant echinoderm species in the White, Barents, North, and Baltic Seas. This species is an important component of marine ecosystems and a model object for certain biological studies, in particular those requiring quantitative estimation of gene expression. As a rule, expression at the transcriptional level is estimated by real-time qPCR using the ΔΔCt method, which allows the comparison of the copy number of target gene transcripts in samples with unknown mRNA/cDNA concentration. Application of this method requires normalization of the results relative to genes with stable expression levels (reference genes). The identification of reference genes is still a challenging task since data of this kind are missing for certain taxa, whereas the use of "standard" endogenous control genes without additional tests might lead to erroneous conclusions. We performed a preliminary analysis of the expression of many housekeeping genes in the pyloric ceca of A. rubens by high-throughput sequencing under normal and heat shock conditions. For one of them, the ubiquitin gene UBA52, low variation of expression (not greater than 2-fold) was shown using real-time qPCR. Tissues of pyloric ceca of normal adults and underyearlings and of adults after heat shock were used. The data obtained suggest that the UBA52 gene may be used as reference for normalization of gene expression at the mRNA level in the starfish A. rubens and probably in closely related species.

  2. Real-time polymerase chain reaction optimised for hepatitis C virus detection in dried blood spots from HIV-exposed infants, KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Anneta Naidoo

    2016-03-01

    Objectives: The aim of this study was to optimise a real-time HCV PCR method to detect HCV RNA from infant DBS specimens for use as a tool for HCV surveillance in KwaZulu-Natal, South Africa. Method: The LightCycler® 2.0 instrument was used for the HCV PCR using the LightCycler® RNA Master SYBR Green I kit. Template volume, primer concentration and primer annealing temperatures were optimised and the method was used on 179 DBS specimens from HIV-exposed infants in KwaZulu-Natal. Results: Primer concentrations adjusted to 0.25 µM and a template volume of 10 µL improved the PCR amplification. Primer annealing temperatures lowered from 65 °C to 58 °C resulted in higher quantities of amplified PCR product. The limit of detection of the optimised HCV PCR assay was between 1200 IU/mL and 3580 IU/mL of HCV RNA. HCV was not detected in any of the 179 DBS specimens. Conclusion: The optimised real-time HCV PCR on infant DBS specimens performed well, but HCV was not found in this surveillance study. HIV infection may have little impact on the vertical transmission of HCV in this region.

  3. Sensitivity and specificity of real-time reverse transcription polymerase chain reaction, histopathology, and immunohistochemical labeling for the detection of Rift Valley fever virus in naturally infected cattle and sheep.

    Science.gov (United States)

    Odendaal, Lieza; Fosgate, Geoffrey T; Romito, Marco; Coetzer, Jacobus A W; Clift, Sarah J

    2014-01-01

    Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), histopathology, and immunohistochemical labeling (IHC) were performed on liver specimens from 380 naturally infected cattle and sheep necropsied during the 2010 Rift Valley fever (RVF) epidemic in South Africa. Sensitivity (Se) and specificity (Sp) of real-time RT-PCR, histopathology, and IHC were estimated in a latent-class model using a Bayesian framework. The Se and Sp of real-time RT-PCR were estimated as 97.4% (95% confidence interval [CI] = 95.2-98.8%) and 71.7% (95% CI = 65-77.9%) respectively. The Se and Sp of histopathology were estimated as 94.6% (95% CI = 91-97.2%) and 92.3% (95% CI = 87.6-95.8%), respectively. The Se and Sp of IHC were estimated as 97.6% (95% CI = 93.9-99.8%) and 99.4% (95% CI = 96.9-100%), respectively. Decreased Sp of real-time RT-PCR was ascribed to cross-contamination of samples. Stratified analysis of the data suggested variations in test accuracy with fetuses and severely autolyzed specimens. The Sp of histopathology in fetuses (83%) was 9.3% lower than the sample population (92.3%). The Se of IHC decreased from 97.6% to 81.5% in the presence of severe autolysis. The diagnostic Se and Sp of histopathology was higher than expected, confirming the value of routine postmortem examinations and histopathology of liver specimens. Aborted fetuses, however, should be screened using a variety of tests in areas endemic for RVF, and results from severely autolyzed specimens should be interpreted with caution. The most feasible testing option for countries lacking suitably equipped laboratories seems to be routine histology in combination with IHC.

  4. Evaluation of virus isolation, one-step real-time reverse transcription polymerase chain reaction assay, and two rapid influenza diagnostic tests for detecting canine Influenza A virus H3N8 shedding in dogs.

    Science.gov (United States)

    Pecoraro, Heidi L; Spindel, Miranda E; Bennett, Susi; Lunn, Katharine F; Landolt, Gabriele A

    2013-05-01

    Sustained transmission of canine Influenza A virus (CIV) H3N8 among U.S. dogs underscores the threat influenza continues to pose to canine health. Because rapid and accurate detection of infection is critical to the diagnosis and control of CIV, the 2 main objectives of the current study were to estimate and compare the sensitivities of CIV testing methods on canine swab samples and to evaluate the performance of Flu Detect™ (Synbiotics Corp., Kansas City, MO) for detecting CIV nasal shedding in high-risk shelter dogs. To address the first objective, nasal and pharyngeal swab samples were collected from 124 shelter and household dogs seen by Colorado State University Veterinary Teaching Hospital clinicians for canine infectious respiratory disease between April 2006 and March 2007 and tested for CIV shedding using virus isolation, the rapid influenza diagnostic test Directigen Flu A+B™ (BD Diagnostic Systems, Sparks, MD), and real-time reverse transcription polymerase chain reaction (RT-PCR). For the second objective, 1,372 dogs with unknown respiratory health status were sampled from 6 U.S. shelters from December 2009 to November 2010. Samples were tested for presence of CIV using real-time RT-PCR and Flu Detect. Using a stochastic latent class modeling approach, the median sensitivities of virus isolation, rapid influenza diagnostic test, and real-time RT-PCR were 72%, 65%, and 95%, respectively. The Flu Detect test performed poorly for detecting CIV nasal shedding compared to real-time RT-PCR. In conclusion, the real-time RT-PCR has the highest sensitivity for detecting virus nasal shedding and can be used as a rapid diagnostic test for CIV.

  5. Use of palivizumab and infection control measures to control an outbreak of respiratory syncytial virus in a neonatal intensive care unit confirmed by real-time polymerase chain reaction.

    LENUS (Irish Health Repository)

    O'Connell, K

    2011-04-01

    Respiratory syncytial virus (RSV) is a potentially life-threatening infection in premature infants. We report an outbreak involving four infants in the neonatal intensive care unit (NICU) of our hospital that occurred in February 2010. RSV A infection was confirmed by real-time polymerase chain reaction. Palivizumab was administered to all infants in the NICU. There were no additional symptomatic cases and repeat RSV surveillance confirmed that there was no further cross-transmission within the unit. The outbreak highlighted the infection control challenge of very high bed occupancy in the unit and the usefulness of molecular methods in facilitating detection and management.

  6. Real-time polymerase chain reaction quantification of the transgenes for roundup ready corn and roundup ready soybean in soil samples.

    Science.gov (United States)

    Lerat, S; England, L S; Vincent, M L; Pauls, K P; Swanton, C J; Klironomos, J N; Trevors, J T

    2005-03-09

    A method for quantification of recombinant DNA for Roundup Ready (RR) corn and RR soybean in soil samples is described. Soil DNA from experimental field samples was extracted using a soil DNA extraction kit with a modified protocol. For the detection and quantification of recombinant DNA of RR corn and RR soybean, a molecular beacon and two pairs of specific primers were designed to differentially target recombinant DNA in these two genetically modified crops. Soil DNA extracts were spiked with RR corn or RR soybean DNA, and recombinant DNA was quantified using real-time PCR with a molecular beacon. As few as one copy of RR corn genome or one copy of RR soybean genome was detected in the soil DNA extract.

  7. Delayed vaccine virus replication in chickens vaccinated subcutaneously with an immune complex infectious bursal disease vaccine: Quantification of vaccine virus by real-time polymerase chain reaction

    OpenAIRE

    Iván, Judit; Velhner, Maja; Ursu, Krisztina; Germán, Péter; Mató, Tamás; Drén, Csaba Nick; Mészáros, János

    2005-01-01

    The distribution of the immune complex vaccine virus for infectious bursal disease (IBD) in tissue was examined and the viral loads of the organs were quantitatively compared. One-day-old specific pathogen free (SPF) and maternally immune broiler chickens were injected subcutaneously with the vaccine. Lymphoid and non-lymphoid tissues were collected at various time intervals during the experiment to test for infectious bursal disease virus (IBDV)-RNA by using reverse transcriptase-polymerase ...

  8. Detection of carcinoembryonic antigen messenger RNA in blood using quantitative real-time reverse transcriptase-polymerase chain reaction to predict recurrence of gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Wang Zhi-qiang

    2010-10-01

    Full Text Available Abstract Background The existence of circulating tumor cells (CTCs in peripheral blood as an indicator of tumor recurrence has not been clearly established, particularly for gastric cancer patients. We conducted a retrospective analysis of the relationship between CTCs in peripheral blood at initial diagnosis and clinicopathologic findings in patients with gastric carcinoma. Methods Blood samples were obtained from 123 gastric carcinoma patients at initial diagnosis. mRNA was extracted and amplified for carcinoembryonic antigen (CEA mRNA detection using real-time RT-PCR. Periodic 3-month follow-up examinations included serum CEA measurements and imaging. Results The minimum threshold for corrected CEA mRNA score [(CEA mRNA/GAPDH mRNA × 106] was set at 100. Forty-five of 123 patients (36.6% were positive for CEA mRNA expression. CEA mRNA expression significantly correlated with T stage and postoperative recurrence status (P = 0.001. Recurrent disease was found in 44 of 123 cases (35.8%, and 25 of these (56.8% were positive for CEA mRNA. Of these patients, CEA mRNA was more sensitive than serum CEA in indicating recurrence. Three-year disease-free survival of patients positive for CEA mRNA was significantly poorer than of patients negative for CEA mRNA (P Conclusions CEA mRNA copy number in peripheral blood at initial diagnosis was significantly associated with disease recurrence in gastric adenocarcinoma patients. Real-time RT-PCR detection of CEA mRNA levels at initial diagnosis appears to be a promising predictor for disease recurrence in gastric adenocarcinoma patients.

  9. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Gaipa, Giuseppe; Cazzaniga, Giovanni; Valsecchi, Maria Grazia; Panzer-Grümayer, Renate; Buldini, Barbara; Silvestri, Daniela; Karawajew, Leonid; Maglia, Oscar; Ratei, Richard; Benetello, Alessandra; Sala, Simona; Schumich, Angela; Schrauder, Andre; Villa, Tiziana; Veltroni, Marinella; Ludwig, Wolf-Dieter; Conter, Valentino; Schrappe, Martin; Biondi, Andrea; Dworzak, Michael N; Basso, Giuseppe

    2012-10-01

    Flow cytometric analysis of leukemia-associated immunophenotypes and polymerase chain reaction-based amplification of antigen-receptor genes rearrangements are reliable methods for monitoring minimal residual disease. The aim of this study was to compare the performances of these two methodologies in the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Polymerase chain reaction and flow cytometry were simultaneously applied for prospective minimal residual disease measurements at days 15, 33 and 78 of induction therapy on 3565 samples from 1547 children with acute lymphoblastic leukemia enrolled into the AIEOP-BFM ALL 2000 trial. The overall concordance was 80%, but different results were observed according to the time point. Most discordances were found at day 33 (concordance rate 70%) in samples that had significantly lower minimal residual disease. However, the discordance was not due to different starting materials (total versus mononucleated cells), but rather to cell input number. At day 33, cases with minimal residual disease below or above the 0.01% cut-off by both methods showed a very good outcome (5-year event-free survival, 91.6%) or a poor one (5-year event-free survival, 50.9%), respectively, whereas discordant cases showed similar event-free survival rates (around 80%). Within the current BFM-based protocols, flow cytometry and polymerase chain reaction cannot simply substitute each other at single time points, and the concordance rates between their results depend largely on the time at which they are used. Our findings suggest a potential complementary role of the two technologies in optimizing risk stratification in future clinical trials.

  10. Application of a real-time fluorescence resonance energy transfer polymerase chain reaction assay with melting curve analysis for the detection of Paragonimus heterotremus eggs in the feces of experimentally infected cats.

    Science.gov (United States)

    Tantrawatpan, Chairat; Intapan, Pewpan M; Thanchomnang, Tongjit; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Anamnart, Witthaya; Maleewong, Wanchai

    2013-09-01

    Paragonimus heterotremus is a medically important lung fluke that causes human and animal paragonimiasis in Southeast Asia, including Thailand. In the current study, a real-time fluorescence resonance energy transfer polymerase chain reaction (real-time FRET PCR) with melting curve analysis was developed and evaluated to detect P. heterotremus eggs in the feces of experimentally infected cats. The detection limit of this method for the P. heterotremus DNA sequence was 3 × 10(2) copies of the positive control plasmid and 10(-3) ng of P. heterotremus genomic DNA. The assay system could detect 10 eggs of P. heterotremus per gram of cat feces. No fluorescence signal was observed when DNA purified from 16 other organisms or genomic DNA from cats and human beings were tested. Real-time FRET PCR yielded positive results for all fecal samples from 17 P. heterotremus-infected cats and showed a negative relationship (r = -0.852, P Paragonimus species examined were divided into 4 groups by melting peak analysis. This assay can be useful for the detection of, and epidemiological studies on, P. heterotremus infection in endemic areas.

  11. Determination of the foraging behaviour and blood meal source of malaria vector mosquitoes in Trincomalee District of Sri Lanka using a multiplex real time polymerase chain reaction assay.

    Science.gov (United States)

    Gunathilaka, Nayana; Denipitiya, Thanuja; Hapugoda, Menaka; Abeyewickreme, Wimaladharma; Wickremasinghe, Rajitha

    2016-04-26

    Studies of host preference patterns in blood-feeding anopheline mosquitoes are crucial to incriminating malaria vectors. However, little information is available on host preferences of Anopheles mosquitoes in Sri Lanka. Adult Anopheles mosquitoes were collected from five selected sentinel sites in Trincomalee District during June-September 2011. Each blood-fed mosquito was processed on filter papers. DNA was extracted using the dried blood meal protocol of the QIAmp DNA mini kit. A multiplexed, real-time PCR assay targeting eight animals was developed for two panels to identify the host meal of Anopheles. Human blood index (HBI), forage ratio (FR) and host feeding index (HFI) were calculated. A total of 280 field-caught, freshly engorged female mosquitoes belonging to 12 anopheline species were analysed. The overall HBI and HFI in the present study were low indicating that humans were not the preferred host for the tested anopheline species. Nevertheless, a small proportion engorged Anopheles aconitus, Anopheles culicifacies, Anopheles barbirostris, Anopheles annularis, Anopheles subpictus, Anopheles peditaeniatus, Anopheles pseudojamesi, and Anopheles barbumbrosus contained human blood. The presence of human blood in mosquito species indicates the possibility of them transmitting malaria. Further studies on vector competence are needed to determine the role of each of the above anopheline species as efficient vectors of malaria.

  12. Quantitative real-time polymerase chain reaction for detecting Mycoplasma hyosynoviae and Mycoplasma hyorhinis in pen-based oral, tonsillar, and nasal fluids.

    Science.gov (United States)

    Gomes Neto, João Carlos; Bower, Leslie; Erickson, Barbara Z; Wang, Chong; Raymond, Matthew; Strait, Erin L

    2015-01-01

    Mycoplasma (M.) hyorhinis and M. hyosynoviae are pathogens known to cause disease in pigs post-weaning. Due to their fastidious nature, there is increased need for culture-independent diagnostic platforms to detect these microorganisms. Therefore, this study was performed to develop and optimize quantitative real-time PCR (qPCR) assays to rapidly detect M. hyorhinis and M. hyosynoviae in pen-based oral fluids as well as nasal and tonsillar fluids as proxies for samples used in swine herd surveillance. Two methods of genomic DNA extraction, automated versus manual, were used to compare diagnostic test performance. A wean-to-finish longitudinal study was also carried out to demonstrate the reproducibility of using pen-based oral fluids. Overall, pen-based oral and tonsillar fluids were more likely to be positive for both types of bacteria whereas only M. hyorhinis was detected in nasal fluids. DNA extraction protocols were shown to significantly influence test result. Although the initial detection time somewhat differed, both organisms were repeatedly detected in the longitudinal study. Overall, this study evaluated two qPCR methods for rapid and specific detection of either mycoplasma. Results from the present investigation can serve as a foundation for future studies to determine the prevalence of the two microorganisms, environmental load, and effectiveness of veterinary interventions for infection control.

  13. Quantitative real-time polymerase chain reaction for detecting Mycoplasma hyosynoviae and Mycoplasma hyorhinis in pen-based oral, tonsillar, and nasal fluids

    Science.gov (United States)

    Bower, Leslie; Erickson, Barbara Z.; Wang, Chong; Raymond, Matthew; Strait, Erin L.

    2015-01-01

    Mycoplasma (M.) hyorhinis and M. hyosynoviae are pathogens known to cause disease in pigs post-weaning. Due to their fastidious nature, there is increased need for culture-independent diagnostic platforms to detect these microorganisms. Therefore, this study was performed to develop and optimize quantitative real-time PCR (qPCR) assays to rapidly detect M. hyorhinis and M. hyosynoviae in pen-based oral fluids as well as nasal and tonsillar fluids as proxies for samples used in swine herd surveillance. Two methods of genomic DNA extraction, automated versus manual, were used to compare diagnostic test performance. A wean-to-finish longitudinal study was also carried out to demonstrate the reproducibility of using pen-based oral fluids. Overall, pen-based oral and tonsillar fluids were more likely to be positive for both types of bacteria whereas only M. hyorhinis was detected in nasal fluids. DNA extraction protocols were shown to significantly influence test result. Although the initial detection time somewhat differed, both organisms were repeatedly detected in the longitudinal study. Overall, this study evaluated two qPCR methods for rapid and specific detection of either mycoplasma. Results from the present investigation can serve as a foundation for future studies to determine the prevalence of the two microorganisms, environmental load, and effectiveness of veterinary interventions for infection control. PMID:25643803

  14. How to develop an in-house real-time quantitative cytomegalovirus polymerase chain reaction: Insights from a cancer centre in Eastern India

    Directory of Open Access Journals (Sweden)

    Anusha Harishankar

    2015-01-01

    Full Text Available Development of a reliable, cost-effective cytomegalovirus quantitative polymerase chain reaction (QPCR is a priority for developing countries. Manufactured kits are expensive, and availability can be inconsistent. Development of an in-house QPCR kit that is reliable and quality assured requires significant effort and initial investment. However, the rewards of such an enterprise are manifold and include an in-depth understanding of molecular reactions, and expertise in the development of further low-cost molecular kits. The experience of an oncology centre in Eastern India has been shared. Hopefully, this would provide a brief roadmap for such an initiative. Staff with adequate understanding of molecular processes are essential along with vital infrastructure for molecular research and development.

  15. Diagnostic performance of fecal quantitative real-time polymerase chain reaction for detection of Lawsonia intracellularis–associated proliferative enteropathy in nursery pigs

    DEFF Research Database (Denmark)

    Pedersen, Ken Steen; Stege, Helle; Jensen, Tim Kåre

    2013-01-01

    performance was evaluated in terms of diagnostic sensitivity and specificity. Data from pigs originating from 20 herds with antibiotic treatment requiring diarrhea outbreaks from a prior study were reused. Before treatment, pigs were randomly selected for histopathological and immunohistochemical examination......Quantitative polymerase chain reaction (qPCR) tests for detection and quantification of Lawsonia intracellularis in feces from pigs have been developed. The objective of the current study was to evaluate the diagnostic performance of a fecal qPCR test for detection of nursery pigs with L....../g feces. This cutoff provided a diagnostic sensitivity of 0.84 and diagnostic specificity of 0.93. The diagnostic sensitivity and specificity were significantly different between herds (P sensitivity and specificity were different between subpopulations of pigs...

  16. Immunohistochemical detection of the BRAF V600E mutation in papillary thyroid carcinoma. Evaluation against real-time polymerase chain reaction.

    Science.gov (United States)

    Paja Fano, Miguel; Ugalde Olano, Aitziber; Fuertes Thomas, Elena; Oleaga Alday, Amelia

    2017-02-01

    The BRAF V600E mutation is the most common genetic change in papillary thyroid carcinoma and is associated with a poorer clinical course. Usual methods for its study (DNA sequencing or molecular test based on PCR) are expensive and time-consuming. Recently, immunohistochemistry (IHC) for BRAF mutation has been introduced. To compare the results of IHC and real time PCR (RT-PCR) in the detection of BRAF V600E mutation in papillary thyroid carcinoma. Analysis of clinical and pathological differences depending on RT-PCR results is included. A prospective study was performed in 82 consecutive samples, 54 of them taken through a core needle biopsy. IHC was performed on tissue fixed for 24hours with 10% neutral formalin using the anti-BRAF V600E (VE-1) mouse monoclonal primary antibody and was rated as positive or negative. DNA was extracted from formalin-fixed, paraffin-embedded tissues by manual microdissection, and BRAF mutation was detected by RT-PCR using the Cobas® 4800 BRAF V600 mutation test (Roche). Both techniques were concordant in 81 cases, and BRAF was positive in 49. Discordance appeared in a follicular variant showing positive IHC and negative RT-PCR, attributed to histological heterogeneity. Cost of materials for IHC was less than half of the cost for RT-PCR. IHC appears to be a reliable, economical and easily available alternative to molecular biology techniques for routine detection of the BRAF V600E mutation in papillary thyroid carcinoma patients, provided optimal fixation conditions are used. It may be a useful technique in hospitals with no access to molecular biology techniques. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. The efficiency of sodC gene / N. meningitidis detection in comparison with the classical methods for the diagnosis of meningococcal infection / Evaluarea eficienţei Real Time PCR TaqMan utilizând gena sodC / N. meningitidis în comparaţie cu metodele clasice utilizate în diagnosticul infecţiei meningococice

    Directory of Open Access Journals (Sweden)

    Nemescu Roxana Elena

    2015-03-01

    Full Text Available Pentru a iniția corect terapia antibiotică și a institui profilaxia pentru contacți, infecția meningococică necesită un diagnostic cât mai rapid și precis. Scopul studiului nostru a fost evaluarea eficienței Real Time PCR -TaqMan utilizând gena sodC / N. meningitidis în comparație cu metodele clasice de diagnostic utilizate în infecția meningococică: examen direct, cultură, latex aglutinare din LCR (lichid cefalorahidian și hemocultură. Prin RT-PCR au fost identificați 24/44 (54.54% pacienți cu infecție meningococică; atât în cazul pacienților trataţi cu antibiotice anterior internării, cât și a celor fără tratament, cele mai înalte valori ale ariei de sub curbă au fost înregistrate în cazul RT-PCR din LCR și sânge. În concluzie, testul sodC RT-PCR este o metodă rapidă, cu sensibilitate și specificitate ridicate pentru detecția Neisseria meningitidis, motiv pentru care ar fi utilă includerea acestei metode ca variantă multiplex, pentru depistarea şi a altor etiologii, în testarea de rutină a pacienților cu suspiciune clinică de infecție meningococică.

  18. Detection and quantification of Anaplasma phagocytophilum and Babesia spp. in Ixodes ricinus ticks from urban and rural environment, northern Poland, by real-time polymerase chain reaction.

    Science.gov (United States)

    Stańczak, Joanna; Cieniuch, Stella; Lass, Anna; Biernat, Beata; Racewicz, Maria

    2015-05-01

    Anaplasma phagocytophilum and Babesia spp. are emerging tick-borne pathogens which can threaten human health. A duplex real-time PCR and qPCRs with primers and probes targeting 97 and 116 bp fragments of 16S rRNA and 18S rRNA genes, respectively, were used for qualitative and quantitative detection of both pathogens in Ixodes ricinus ticks. Altogether 1875 ticks (1084 adults and 791 nymphs) were collected from rural and urban habitats in northern Poland. Of them, at least 0.9% were found to be infected with A. phagocytophilum while 2.5% with Babesia spp. A comparison of the infection rates by the tick stage, the type of area, the collection site, habitats of different tick density and by the month of collection was done. The prevalence of pathogens was significantly lower in nymphs than in adult ticks (p = 0.02) and in rural areas than in urban areas (p = 0.007). Four different 16S rRNA gene variants of A. phagocytophilum were determine, however none of them showed 100% identity with compared sequences isolated from human patients. The dominant Babesia species was B. venatorum. Results of qPCRs with circular and linearized forms of plasmids used as the standards showed significant difference in the pathogen loads (p = 0.001). The copy numbers of A. phagocytophilum and Babesia spp. estimated from the linear plasmids were 28.7 and 5.1 times lower, respectively, when compared with their circular forms, and were accepted as more reliable. The average number of copies of 16S rRNA gene of A. phagocytophilum in the positive I. ricinus samples were 3.39 × 10(5) ± 6.09 × 10(5). The mean copy number of 18S rRNA gene of Babesia spp. was ~2.55 × 10(5) ± 1.04 × 10(6). We confirmed the presence of A. phagocytophilum and Babesia spp. in I. ricinus in both rural and urban environments. The determined low infection rates suggests, however, that the risk for local population and tourists to acquire infection is also low. Moreover, we confirmed recent findings that serious

  19. Screening for seemingly healthy newborns with congenital cytomegalovirus infection by quantitative real-time polymerase chain reaction using newborn urine: an observational study.

    Science.gov (United States)

    Yamaguchi, Akira; Oh-Ishi, Tsutomu; Arai, Takashi; Sakata, Hideaki; Adachi, Nodoka; Asanuma, Satoshi; Oguma, Eiji; Kimoto, Hirofumi; Matsumoto, Jiro; Fujita, Hidetoshi; Uesato, Tadashi; Fujita, Jutaro; Shirato, Ken; Ohno, Hideki; Kizaki, Takako

    2017-01-20

    Approximately 8-10% of newborns with asymptomatic congenital cytomegalovirus (cCMV) infection develop sensorineural hearing loss (SNHL). However, the relationship between CMV load, SNHL and central nervous system (CNS) damage in cCMV infection remains unclear. This study aimed to examine the relationship between urinary CMV load, SNHL and CNS damage in newborns with cCMV infection. The study included 23 368 newborns from two maternity hospitals in Saitama Prefecture, Japan. Urine screening for cCMV infection (quantitative real-time PCR) and newborn hearing screening (automated auditory brainstem response (AABR) testing) were conducted within 5 days of birth to examine the incidence of cCMV infection and SNHL, respectively. CNS damage was assessed by MRI of cCMV-infected newborns. The incidence of cCMV infection was 60/23 368 (0.257%; 95% CI 0.192% to 0.322%). The geometric mean urinary CMV DNA copy number in newborns with cCMV was 1.79×10 6 copies/mL (95% CI 7.97×10 5 to 4.02×10 6 ). AABR testing revealed abnormalities in 171 of the 22 229 (0.769%) newborns whose parents approved hearing screening. Of these 171 newborns, 22 had SNHL (12.9%), and 5 of these 22 were infected with cCMV (22.7%). Newborns with both cCMV and SNHL had a higher urinary CMV DNA copy number than newborns with cCMV without SNHL (p=0.036). MRI revealed CNS damage, including white matter abnormalities, in 83.0% of newborns with cCMV. Moreover, newborns with CNS damage had a significantly greater urinary CMV load than newborns without CNS damage (p=0.013). We determined the incidence of cCMV infection and urinary CMV DNA copy number in seemingly healthy newborns from two hospitals in Saitama Prefecture. SNHL and CNS damage were associated with urinary CMV DNA copy number. Quantification of urinary CMV load may effectively predict the incidence of late-onset SNHL and neurodevelopmental disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already

  20. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Stewart Don

    2008-05-01

    Full Text Available Abstract Background Based upon defining a common reference point, current real-time quantitative PCR technologies compare relative differences in amplification profile position. As such, absolute quantification requires construction of target-specific standard curves that are highly resource intensive and prone to introducing quantitative errors. Sigmoidal modeling using nonlinear regression has previously demonstrated that absolute quantification can be accomplished without standard curves; however, quantitative errors caused by distortions within the plateau phase have impeded effective implementation of this alternative approach. Results Recognition that amplification rate is linearly correlated to amplicon quantity led to the derivation of two sigmoid functions that allow target quantification via linear regression analysis. In addition to circumventing quantitative errors produced by plateau distortions, this approach allows the amplification efficiency within individual amplification reactions to be determined. Absolute quantification is accomplished by first converting individual fluorescence readings into target quantity expressed in fluorescence units, followed by conversion into the number of target molecules via optical calibration. Founded upon expressing reaction fluorescence in relation to amplicon DNA mass, a seminal element of this study was to implement optical calibration using lambda gDNA as a universal quantitative standard. Not only does this eliminate the need to prepare target-specific quantitative standards, it relegates establishment of quantitative scale to a single, highly defined entity. The quantitative competency of this approach was assessed by exploiting "limiting dilution assay" for absolute quantification, which provided an independent gold standard from which to verify quantitative accuracy. This yielded substantive corroborating evidence that absolute accuracies of ± 25% can be routinely achieved. Comparison

  1. Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR).

    Science.gov (United States)

    Hornyák, Akos; Bálint, Adám; Farsang, Attila; Balka, Gyula; Hakhverdyan, Mikhayil; Rasmussen, Thomas Bruun; Blomberg, Jonas; Belák, Sándor

    2012-05-01

    Feline infectious peritonitis is one of the most severe devastating diseases of the Felidae. Upon the appearance of clinical signs, a cure for the infected animal is impossible. Therefore rapid and proper diagnosis for both the presence of the causative agent, feline coronavirus (FCoV) and the manifestation of feline infectious peritonitis is of paramount importance. In the present work, a novel real-time RT-PCR method is described which is able to detect FCoV and to determine simultaneously the quantity of the viral RNA. The new assay combines the M gene subgenomic messenger RNA (sg-mRNA) detection and the quantitation of the genome copies of FCoV. In order to detect the broadest spectrum of potential FCoV variants and to achieve the most accurate results in the detection ability the new assay is applying the primer-probe energy transfer (PriProET) principle. This technology was chosen since PriProET is very robust to tolerate the nucleotide substitutions in the target area. Therefore, this technology provides a very broad-range system, which is able to detect simultaneously many variants of the virus(es) even if the target genomic regions show large scale of variations. The detection specificity of the new assay was proven by positive amplification from a set of nine different FCoV strains and negative from the tested non-coronaviral targets. Examination of faecal samples of healthy young cats, organ samples of perished animals, which suffered from feline infectious peritonitis, and cat leukocytes from uncertain clinical cases were also subjected to the assay. The sensitivity of the P-sg-QPCR method was high, since as few as 10 genome copies of FCoV were detected. The quantitative sg-mRNA detection method revealed more than 10-50,000 times increase of the M gene sg-mRNA in organ materials of feline infectious peritonitis cases, compared to those of the enteric FCoV variants present in the faeces of normal, healthy cats. These results indicate the applicability of

  2. Chromogenic in situ Hybridization Compared with Real time Quantitative Polymerase Chain Reaction to Evaluate HER2/neu Status in Breast Cancer.

    Science.gov (United States)

    Ayatollahi, Hossein; Fani, Azar; Ghayoor Karimiani, Ehsan; Homaee, Fateme; Shajiei, Arezoo; Sheikh, Maryam; Shakeri, Sepideh; Shams, Seyyede Fatemeh

    2017-01-01

    The assessment of human epidermal growth factor receptor 2 (HER2) status has become of great importance in the diagnosis of breast cancer. The aim of this study was to investigate the diagnostic value of quantitative Polymerase Chain Reaction (qPCR) and Chromogenic In Situ Hybridization (CISH) to assess HER2 status of biopsy specimens. To elucidate the status of HER2 gene amplification, biopsies of breast carcinoma from 120 patients with 2+ IHC status were analyzed by qPCR and CISH. The results of the two experiments were compared, and it was depicted that the concordance rate between CISH and qPCR assays was 88.1%.The quantification of HER2 gene with CISH and qPCR showed that there was a significant correlation (p value= 0.0001 and r= 0.808). The results of this research support the idea that qPCR is a precise and reproducible technique, which can be employed as a supplementary method to evaluate HER2 status.

  3. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    Science.gov (United States)

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  4. Quantification of hTERT Splice Variants in Melanoma by SYBR Green Real-time Polymerase Chain Reaction Indicates a Negative Regulatory Role for the β Deletion Variant

    Directory of Open Access Journals (Sweden)

    Lisa F. Lincz

    2008-10-01

    Full Text Available Telomerase activity is primarily determined by transcriptional regulation of the catalytic subunit, human telomerase reverse transcriptase (hTERT. Several mRNA splice variants for hTERT have been identified, but it is not clear if telomerase activity is determined by the absolute or relative levels of full-length (functional and variant hTERT transcripts. We have developed an SYBR green-based reverse transcription-quantitative polymerase chain reaction assay for the enumeration of the four common hTERT mRNA variants and correlated these with telomerase activity and telomere length in 24 human melanoma cell lines. All except five of the lines expressed four hTERT transcripts, with an overall significant level of co-occurrence between absolute mRNA levels of full-length α+/β+ hTERT and the three splice variants α-/β+, α+/β-, and α-/β-. On average, α+/β+ made up the majority (48.1% of transcripts, followed by α+/β- (44.6%, α-/β- (4.4%, and α-/β+ (2.9%. Telomerase activity ranged from 1 to 247 relative telomerase activity and correlated most strongly with the absolute amount of α+/β+ (R = 0.791, P = .000004 and the relative amount of α+/β- (R = -0.465, P = .022. This study shows that telomerase activity in melanoma cells is best determined by the absolute expression of full-length hTERT mRNA and indicates a role for the hTERT β deletion variant in the negative regulation of enzyme activity.

  5. DEVELOPMENT OF TEST KIT FOR DETECTION OF PANDEMIC STRAIN INFLUENZA VIRUS A (H1N1 2009 BY REAL TIME POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    S. V. Stepaniuk

    2013-04-01

    Full Text Available Influenza viruses A play an important role in the structure of the incidence of people with acute respiratory viral infection, which make up 90% from all other infectious diseases. According to the World Health Organization, only severe flu worldwide suffer annually 3.5 million, of which 45–60% are children. An economic loss from seasonal flu epidemic is in average about 85% of economic losses from infectious diseases in general. The experience of fighting the flu, accumulated over the years, has shown that to develop and deliver effective preventive measures necessary to build a system of permanent monitoring for influenza virus circulation, based on use of laboratory methods for accurate and rapid dentification and characterization of circulating strains of influenza virus A. Among the methods of laboratory diagnosis of influenza, the most effective is a method of polymerase chain reaction. Data on the evelopment of diagnostic test kits in the format of two-stage multiplex RTPCR-analysis for detection and genotyping of pandemic influenza virus A (H1N12009 are given. The results of laboratory and experimental research of «DIA Influenza H1N1» test system showed that it is effective and specific for detection of California pandemic influenza virus A (H1N12009 strains and can be used to diagnose disease caused by this strain of virus. Clinical trial of the course of the State registration by Ministry of Health of Ukraine have shown sensitivity and specificity of «DIA Influenza H1N1» test systems up to 100%.

  6. Quantitative Real-Time Polymerase Chain Reaction for the Diagnosis of Mycoplasma genitalium Infection in South African Men With and Without Symptoms of Urethritis.

    Science.gov (United States)

    le Roux, Marie Cecilia; Hoosen, Anwar Ahmed

    2017-01-01

    This study was done to diagnose Mycoplasma genitalium infection based on bacterial load in urine specimens from symptomatic and asymptomatic men. Urine specimens from 94 men with visible urethral discharge, 206 with burning on micturition and 75 without symptoms presenting to a family practitioner were tested for M. genitalium as well as Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis by transcription-mediated amplification assays. A quantitative polymerase chain reaction assay was used to determine the bacterial load for all specimens in which M. genitalium was the only organism detected. Among the 375 specimens collected, M. genitalium was detected in 59 (15.7%) men (both symptomatic and asymptomatic) using the transcription-mediated amplification assay, and in 45 (12.0%) of the total population, it was the only pathogen detected. One or more pathogens were detected in 129 (43%) of the symptomatic men, with N. gonorrhoeae in 50 (16.7%); C. trachomatis in 37 (12.3%) and T. vaginalis present in 24 (8.0%) patients. Among the 17 patients where mixed infections were detected, M. genitalium with N. gonorrhoeae was the most common (11/17; 64.7%). Patients with visible urethral discharge had significantly higher M. genitalium concentrations than those with burning on micturition. The median M. genitalium load in symptomatic men was significantly higher than that in asymptomatic men. This study confirms the high prevalence of M. genitalium among men with urethritis in South Africa and demonstrates that there is a strong association with M. genitalium bacterial load and clinical urethritis. As the number of organisms increased, the severity of the symptoms increased, an indication of the role that the organism plays in disease progression.

  7. Detection of Toxoplasma gondii and Epstein-Barr virus in HIV patients with clinical symptoms of suspected central nervous system infection using duplex real-time polymerase chain reaction

    Science.gov (United States)

    Rahmawati, E.; Ibrahim, F.; Imran, D.; Sudarmono, P.

    2017-08-01

    Focal brain lesion is a neurological complication in HIV, which is marked as a space occupying lesion (SOL) and needs rapid and effective treatment. This lesion is mainly caused by encephalitis toxoplasma and primary central nervous system lymphoma related to the Epstein-Barr virus (EBV) infection, which is difficult to distinguish using CT scan or magnetic resonance imaging (MRI). The gold standard of diagnosing focal brain lesion has been brain biopsy, but this examination is an invasive procedure that causes complications. The objective of this study is to obtain the rapid laboratory diagnosis of Toxoplasma gondii (T. gondii) and EBV infection. In this experimental study, blood and cerebrospinal fluid were obtained from HIV patients who were admitted to the Neurology Department of Cipto Mangunkusumo Hospital. The samples were examined using duplex real-time polymerase chain reaction (PCR) to detect T. gondii and EBV. The first step was the optimization of duplex real-time PCR, including the annealing temperature, primer and probe concentration, elution volume, and template volume. Minimal DNA detection was used to measure minimal T. gondii and EBV. Cross reactions were determined for technical specificity using the bacteria and viruses Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Mycobacterium tuberculosis H37Rv, Candida spp, cytomegalovirus, herpes zoster virus, and varicella zoster virus. Duplex real-time PCR was applied optimally to patients. In the optimization of duplex real-time PCR, the annealing temperature of T. gondii and EBV were 58 °C, the concentration of primer forward and reverse for T. gondii and EBV were 0.2 μM, the concentration of probe for T. gondii and EBV were 0.4μM and 0.2 μM, respectively. Minimal DNA detection of T. gondii and EBV were 5.68 copy/ml and 1.31 copy/ml, respectively. There was no cross reaction between another bacteria and virus that were used as the primer and probe for T. gondii and EBV. The

  8. Assessment of nucleic acid modification induced by amotosalen and ultraviolet A light treatment of platelets and plasma using real-time polymerase chain reaction amplification of variable length fragments of mitochondrial DNA.

    Science.gov (United States)

    Bakkour, Sonia; Chafets, Daniel M; Wen, Li; Dupuis, Kent; Castro, Grace; Green, Jennifer M; Stassinopoulos, Adonis; Busch, Michael P; Lee, Tzong-Hae

    2016-02-01

    Pathogen inactivation methods are increasingly used to reduce the risk of infections after transfusion of blood products. Photochemical treatment (PCT) of platelets (PLTs) and plasma with amotosalen and ultraviolet A (UVA) light inactivates pathogens and white blood cells through formation of adducts between amotosalen and nucleic acid that block replication, transcription, and translation. The same adducts block the amplification of nucleic acids using polymerase chain reaction (PCR) in a manner that correlates with the number of adducts formed, providing a direct quality control (QC). Current QC measures for PCT rely on indirect methods that measure the delivered UVA dose or percent residual amotosalen after illumination, rather than directly measuring nucleic acid modification. Endogenous mitochondrial DNA (mtDNA), which is detectable in PLT and plasma units, was chosen as a target for the quantification of photochemically induced modifications. DNA was extracted from untreated or amotosalen and UVA-treated PLTs or plasma, and mtDNA fragments of variable lengths were quantified using a real-time PCR inhibition assay. PCT induced increasing real-time PCR inhibition of mtDNA amplification for larger amplicon sizes. Amplification was unaffected by treatment with amotosalen or UVA alone, whereas up to 3 log inhibition was observed after PCT. Blinded PCR testing of a panel of 110 samples each, from PLT or plasma components prepared for routine use within a blood center, allowed 100% discrimination between untreated and treated units. Our initial findings indicate that an adequately sensitive, quantitative real-time PCR inhibition assay targeting mtDNA could provide a valuable tool to confirm and monitor PCT. © 2015 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  9. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  10. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.

    Science.gov (United States)

    Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio

    2008-06-25

    Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.

  11. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis.

    Science.gov (United States)

    Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko

    2009-11-01

    To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.

  12. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  13. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  14. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  15. Real-time radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Oien, C.T.

    1981-01-01

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  16. Expression of Leptin and Visfatin in Gingival Tissues of Chronic Periodontitis With and Without Type 2 Diabetes Mellitus: A Study Using Enzyme-Linked Immunosorbent Assay and Real-Time Polymerase Chain Reaction.

    Science.gov (United States)

    Ghallab, Noha A; Amr, Eman M; Shaker, Olfat G

    2015-07-01

    The aim of this study is to investigate the protein and gene expression of leptin and visfatin in gingival tissue from patients with chronic periodontitis (CP), patients with CP and type 2 diabetes mellitus (T2DM), and healthy individuals. The study includes 50 individuals: 10 healthy individuals, 20 patients with CP, and 20 patients with CP and T2DM. Plaque index, gingival index, probing depth, and clinical attachment loss were measured, and gingival biopsies were obtained. Leptin and visfatin protein expression in gingival tissues was determined using enzyme-linked immunosorbent assay, and messenger RNA (mRNA) expression was measured via real-time polymerase chain reaction. The highest leptin mRNA and protein expression was observed in the control group and was significantly (P ≤0.05) different from the CP and CP+T2DM groups. Gingival tissues from patients with CP and T2DM had a significant increase in visfatin and a decrease in leptin gene and protein expression (P <0.05) compared with both controls and patients with CP. Expression of leptin and visfatin in the gingival tissues suggests a possible role for these adipokines in the pathogenesis of CP and T2DM.

  17. Development and Accuracy of Quantitative Real-Time Polymerase Chain Reaction Assays for Detection and Quantification of Enterotoxigenic Escherichia coli (ETEC) Heat Labile and Heat Stable Toxin Genes in Travelers' Diarrhea Samples

    Science.gov (United States)

    Youmans, Bonnie P.; Ajami, Nadim J.; Jiang, Zhi-Dong; Petrosino, Joseph F.; DuPont, Herbert L.; Highlander, Sarah K.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples. PMID:24189361

  18. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  19. The value of molecular expression of KIT and KIT ligand analysed using real-time polymerase chain reaction and immunohistochemistry as a prognostic indicator for canine cutaneous mast cell tumours.

    Science.gov (United States)

    Costa Casagrande, T A; de Oliveira Barros, L M; Fukumasu, H; Cogliati, B; Chaible, L M; Dagli, M L Z; Matera, J M

    2015-03-01

    This study investigated the correlation between KIT gene expression determined by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) and the rate of tumour recurrence and tumour-related deaths in dogs affected with mast cell tumour (MCT). Kaplan-Meier curves were constructed to compare tumour recurrence and tumour-related death between patients. The log-rank test was used to check for significant differences between curves. KIT-I, KIT-II and KIT-III staining patterns were observed in 9 (11.11%), 50 (61.73%) and 22 (27.16%) tumours, respectively. Tumour recurrence rates and tumour-related deaths were not associated with KIT staining patterns (P = 0278, P > 0.05), KIT (P = 0.289, P > 0.05) or KIT ligand (P = 0.106, P > 0.05) gene expression. Despite the lack of association between KIT staining pattern and patient survival time, the results suggest a correlation between aberrant KIT localization and increased proliferative activity of MCTs. RT-PCR seems to be a sensible method for quantitative detection of KIT gene expression in canine MCT, although expressions levels are not correlated with prognosis. © 2013 Blackwell Publishing Ltd.

  20. Comparison of the AdvanSure HBV real-time PCR test with three other HBV DNA quantification assays.

    Science.gov (United States)

    Kim, Hyunjung; Shin, Soyoung; Oh, Eun-Jee; Kahng, Jimin; Kim, Yonggoo; Lee, Hae Kyung; Kwon, Hi Jeong

    2013-01-01

    We compared the AdvanSure hepatitis B virus real-time polymerase chain reaction (AdvanSure HBV) kit with three other HBV DNA quantification assays and evaluated its performance. The AdvanSure HBV real-time PCR assay was compared with the Abbott RealTime HBV Quantification Kit, the COBAS TaqMan HBV Test, and the VERSANT HBV branched DNA 3.0 assay. The precision, linearity, accuracy, limit of detection (LOD), cross reactivity, and genotype inclusivity of the assays were compared, and any influence of the sampling tube type was evaluated. The AdvanSure HBV PCR showed good correlations with the three other HBV DNA assays. The R(2) coefficients were 0.944, 0.939, and 0.921 with the Abbott RealTime HBV Quantification Kit, the COBAS TaqMan HBV Test, and the VERSANT bDNA 3.0 assay, respectively. Linearity was good in the tested range of 1.15-8.45 log10 IU/ml. The lower LOD result was consistent with the 18 IU/ml claimed by the manufacturer. HBV genotypes A-F were all correctly amplified, and no cross reactivity was found in samples with high HCV RNA levels or high protein concentrations. The results were not influenced by the sample preparation tube (i.e. plain tube, SST, and EDTA containing tubes). The AdvanSure HBV real-time PCR assay is a reliable method for quantifying HBV DNA levels in routine laboratory testing.

  1. Route around real time

    International Nuclear Information System (INIS)

    Terrier, Francois

    1996-01-01

    The greater and greater autonomy and complexity asked to the control and command systems lead to work on introducing techniques such as Artificial Intelligence or concurrent object programming in industrial applications. However, while the critical feature of these systems impose to control the dynamics of the proposed solutions, their complexity often imposes a high adaptability to a partially modelled environment. The studies presented start from low level control and command systems to more complex applications at higher levels, such as 'supervision systems'. Techniques such as temporal reasoning and uncertainty management are proposed for the first studies, while the second are tackled with programming techniques based on the real time object paradigm. The outcomes of this itinerary crystallize on the ACCORD project which targets to manage - on the whole life cycle of a real time application - these two problematics, sometimes antagonistic: control of the dynamics and adaptivity. (author) [fr

  2. Real Time Processing

    CERN Multimedia

    CERN. Geneva; ANDERSON, Dustin James; DOGLIONI, Caterina

    2015-01-01

    The LHC provides experiments with an unprecedented amount of data. Experimental collaborations need to meet storage and computing requirements for the analysis of this data: this is often a limiting factor in the physics program that would be achievable if the whole dataset could be analysed. In this talk, I will describe the strategies adopted by the LHCb, CMS and ATLAS collaborations to overcome these limitations and make the most of LHC data: data parking, data scouting, and real-time analysis.

  3. Evaluation of real-time RT-PCR assays for detection and quantification of norovirus genogroups I and II.

    Science.gov (United States)

    Rupprom, Kitwadee; Chavalitshewinkoon-Petmitr, Porntip; Diraphat, Pornphan; Kittigul, Leera

    2017-04-01

    Noroviruses are the leading cause of acute gastroenteritis in humans. Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) is a promising molecular method for the detection of noroviruses. In this study, the performance of three TaqMan real-time RT-PCR assays was assessed, which were one commercially available real-time RT-PCR kit (assay A: Norovirus Real Time RT-PCR kit) and two in-house real-time RT-PCR assays (assay B: LightCycler RNA Master Hybprobe and assay C: RealTime ready RNA Virus Master). Assays A and B showed higher sensitivity than assay C for norovirus GI, while they all had the same sensitivity (10 3 DNA copies/mL) for GII DNA standard controls. Assay B had the highest efficiency for both genogroups. No cross-reactivity was observed among GI and GII noroviruses, rotavirus, hepatitis A virus, and poliovirus. The detection rates of these assays in GI and GII norovirus-positive fecal samples were not significantly different. However, the mean quantification cycle (Cq) value of assay B for GII was lower than assays A and C with statistical significance (P-value, 0.000). All three real-time RT-PCR assays could detect a variety of noroviruses including GI.2, GII.2, GII.3, GII.4, GII.6, GII.12, GII.17, and GII.21. This study suggests assay B as a suitable assay for the detection and quantification of noroviruses GI and GII due to good analytical sensitivity and higher performance to amplify norovirus on DNA standard controls and clinical samples.

  4. Encefalitis herpética confirmada por reacción en cadena de la polimerasa en tiempo real: reporte de caso Herpetic encephalitis confirmed by real time polymerase chain reaction: case report

    Directory of Open Access Journals (Sweden)

    Beatriz H. Aristizábal

    2006-04-01

    , migraine and alteration in the conscience level. Due to the commitment of the temporary lobe, the clinical manifestations can also include hallucinations, aphasia and changes of personality. The sequels in the treated patients are significant. Objective: to show the importance of early molecular diagnosis in patients with suspected herpetic encephalitis infection. Methods: the diagnosis of the herpetic encephalitis has changed in the last years thanks to the coming of the real time polymerase chain reaction for herpes simplex virus in cerebrospinal fluid, a fast strategy with high sensitivity and specificity that has allowed to replace the suspect diagnoses made by tomography axial computerized or electroencephalogram, or the low yields of the viral isolation in the cerebrospinal fluid. Results: A clinical case report of a patient attended in our hospital with image and neuropsychological studies compatible for herpetic encephalitis, and confirmed diagnosis by real time polymerase chain reaction is described. Conclusions: the results of laboratory and the early diagnosis are critical for the precocious treatment and the evolution of the patient.

  5. Fetal RHD Genotyping Using Real-Time Polymerase Chain Reaction Analysis of Cell-Free Fetal DNA in Pregnancy of RhD Negative Women in South of Iran

    Directory of Open Access Journals (Sweden)

    Leili Moezzi

    2016-05-01

    Full Text Available Background: Maternal-fetal RhD antigen incompatibility causes approximately 50% of clinically significant alloimmunization cases. The routine use of prophylactic anti-D immunoglobulin has dramatically reduced hemolytic disease of the fetus and newborn. Recently, fetal RHD genotyping in RhD negative pregnant women has been suggested for appropriate use of anti-D immunoglobulin antenatal prophylaxis and decrease unnecessary prenatal interventions. Materials and Methods: In this prospective cohort study, in order to develop a reliable and non-invasive method for fetal RHD genotyping, cell free fetal DNA (cffDNA was extracted from maternal plasma. Real-time quantitative polymerase chain reaction (qPCR for detection of RHD exons 7, 5, 10 and intron 4 was performed and the results were compared to the serological results of cord blood cells as the gold standard method. SRY gene and hypermethylated Ras-association domain family member 1 (RASSF1A gene were used to confirm the presence of fetal DNA in male and female fetuses, respectively. Results: Out of 48 fetuses between 8 and 32 weeks (wks of gestational age (GA, we correctly diagnosed 45 cases (93.75% of RHD positive fetuses and 2 cases (4.16% of the RHD negative one. Exon 7 was amplified in one sample, while three other RHD gene sequences were not detected; the sample was classified as inconclusive, and the RhD serology result after birth showed that the fetus was RhD-negative. Conclusion: Our results showed high accuracy of the qPCR method using cffDNA for fetal RHD genotyping and implicate on the efficiency of this technique to predict the competence of anti-D immunoglobulin administration.

  6. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction.

    Science.gov (United States)

    Grau, Frederic R; Schroeder, Megan E; Mulhern, Erin L; McIntosh, Michael T; Bounpheng, Mangkey A

    2015-03-01

    African swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD) are highly contagious animal diseases of significant economic importance. Pigs infected with ASF and CSF viruses (ASFV and CSFV) develop clinical signs that may be indistinguishable from other diseases. Likewise, various causes of vesicular disease can mimic clinical signs caused by the FMD virus (FMDV). Early detection is critical to limiting the impact and spread of these disease outbreaks, and the ability to perform herd-level surveillance for all 3 diseases rapidly and cost effectively using a single diagnostic sample and test is highly desirable. This study assessed the feasibility of simultaneous ASFV, CSFV, and FMDV detection by multiplex reverse transcription real-time polymerase chain reaction (mRT-qPCR) in swine oral fluids collected through the use of chewing ropes. Animal groups were experimentally infected independently with each virus, observed for clinical signs, and oral fluids collected and tested throughout the course of infection. All animal groups chewed on the ropes readily before and after onset of clinical signs and before onset of lameness or serious clinical signs. ASFV was detected as early as 3 days postinoculation (dpi), 2-3 days before onset of clinical disease; CSFV was detected at 5 dpi, coincident with onset of clinical disease; and FMDV was detected as early as 1 dpi, 1 day before the onset of clinical disease. Equivalent results were observed in 4 independent studies and demonstrate the feasibility of oral fluids and mRT-qPCR for surveillance of ASF, CSF, and FMD in swine populations. © 2015 The Author(s).

  7. A comparison of two real-time polymerase chain reaction assays using hybridization probes targeting either 16S ribosomal RNA or a subsurface lipoprotein gene for detecting leptospires in canine urine.

    Science.gov (United States)

    Gentilini, Fabio; Zanoni, Renato Giulio; Zambon, Elisa; Turba, Maria Elena

    2015-11-01

    Leptospires are excreted in the urine of infected animals, and the prompt detection of leptospiral DNA using polymerase chain reaction (PCR) is increasingly being used. However, contradictory data has emerged concerning the diagnostic accuracy of the most popular PCR assays that target either the 16S ribosomal RNA (rrs) or the subsurface lipoprotein (LipL32) genes. In order to clarify the effect of the gene target, a novel hydrolysis probe-based, quantitative real-time PCR (qPCR) assay targeting the LipL32 gene was developed, validated, and then compared directly to the previously described rrs hydrolysis probe-based qPCR using a convenience collection of canine urine samples. The novel LipL32 qPCR assay was linear from 5.9 × 10(6) to 59 genome equivalents per reaction. Both the LipL32 and the rrs qPCR assays showed a limit of detection of 10 target copies per reaction indicating an approximately equivalent analytical sensitivity. Both assays amplified all 20 pathogenic leptospiral strains tested but did not amplify a representative collection of bacteria commonly found in voided canine urine. When the field samples were assayed, 1 and 5 out of 184 samples yielded an amplification signal in the LipL32 and rrs assays, respectively. Nevertheless, when the limit of detection was considered as the cutoff for interpreting findings, the 4 discordant cases were judged as negative. In conclusion, our study confirmed that both LipL32 and rrs are suitable targets for qPCR for the detection of leptospiral DNA in canine urine. However, the rrs target requires the mandatory use of a cutoff value in order to correctly interpret spurious amplifications. © 2015 The Author(s).

  8. Real Time Text Analysis

    Science.gov (United States)

    Senthilkumar, K.; Ruchika Mehra Vijayan, E.

    2017-11-01

    This paper aims to illustrate real time analysis of large scale data. For practical implementation we are performing sentiment analysis on live Twitter feeds for each individual tweet. To analyze sentiments we will train our data model on sentiWordNet, a polarity assigned wordNet sample by Princeton University. Our main objective will be to efficiency analyze large scale data on the fly using distributed computation. Apache Spark and Apache Hadoop eco system is used as distributed computation platform with Java as development language

  9. Real time Faraday spectrometer

    International Nuclear Information System (INIS)

    Smith, T.E.; Struve, K.W.; Colella, N.J.

    1991-01-01

    This patent describes an invention which uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements

  10. Real time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs

    Science.gov (United States)

    BACKGROUND. Requirement to detect pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by RealTime real time reverse transcription (RRT) PCR methods. Objectives. First, modify an existing M gene RRT PCR for sensitive generic detection of H1N1v and other European SIVs. S...

  11. Real time production optimization

    Energy Technology Data Exchange (ETDEWEB)

    Saputelli, Luigi; Otavio, Joao; Araujo, Turiassu; Escorcia, Alvaro [Halliburton, Houston, TX (United States). Landmark Division

    2004-07-01

    Production optimization encompasses various activities of measuring, analyzing, modeling, prioritizing and implementing actions to enhance productivity of a field. We present a state-of-the-art framework for optimizing production on a continuous basis as new sensor data is acquired in real time. Permanently acquired data is modeled and analyzed in order to create predictive models. A model based control strategy is used to regulate well and field instrumentation. The optimum field operating point, which changes with time, satisfies the maximum economic return. This work is a starting point for further development in automatic, intelligent reservoir technologies which get the most out of the abilities of permanent, instrumented wells and remotely activated downhole completions. The strategy, tested with history-matched data from a compartmentalised giant field, proved to reduce operating costs while increasing oil recovery by 27% in this field. (author)

  12. Real time urbanism

    Directory of Open Access Journals (Sweden)

    Ana Ruiz Varona

    2012-12-01

    Full Text Available Nowadays, given the technological revolution of the society of information, the administrative management of the cities faces a new problem not as related to the projection of the urban space as to the capacity of controlling and measuring the process of direct and centralized production of the cities by part of some non-homogeneous social multitudes, in a hyper-accelerated time towards instantaneity. Against libertarian apologies of the new “participative urbanisms”, the article puts forward a discourse that shows the lost associated to the new problem of temporal instantaneity. In this regard we claim new process of mediation that allow administrations and urbanist monitoring the production of the city. To that end, a previous and necessary step will be the redefinition of the role of a new real time urbanist.

  13. Real-time ed end-point Polymerase Chain Reaction per la quantizzazione del DNA di Citomegalovirus: confronto tra metodi e con il test per l’antigene pp65

    Directory of Open Access Journals (Sweden)

    Tiziano Allice

    2006-03-01

    Full Text Available Quantitave Polymerase Chain Reaction (PCR for Cytomegalovirus (CMV DNA provides highly sensitive and specific data for detecting CMV as well as monitoring the infection and determining the appropriate antiviral strategy.To determine the clinical application of a recently introduced real-time (RT PCR assay for CMV DNA quantitation in peripheral blood leukocytes (PBLs and defining its correlation with the commercial quantitative end-point (EP PCR method COBAS AMPLICOR CMV Monitor and pp65 antigen test. Sequential PBL samples (n=158 from 32 liver transplanted patients with CMV asymptomatic infection and positive for CMV DNA by EP-PCR were retrospectively analysed with RT-PCR and studied according to pp65 antigen levels. A good correlation was found between RT-PCR and pp65 antigen test (r=0.691 and between the two PCR assays (r=0.761. RT-PCR data were significantly higher in pre-emptive treated patients (those with >20 pp65+positive cells, median value: 3.8 log10 copies/500,000 PBLs than in not-treated ones (2.9 logs.According to pp65 levels of 0, 1-10, 11-20, 21-50, 51-100 and >100 positive cells/200,000 PBLs, median CMV DNA load by RT-PCR was 2.6, 3.0, 3.6, 4.0. 4.2 and 4.8, log10 copies/ 500,000 PBLs, respectively (EP-PCR CMV DNA levels: 2. 8, 2.9, 3.8, 3.7, 3.9 and 4.0 logs. For samples with >20 pp65+cells, that is above the level at which pre-emptive therapy was started, RT-PCR values were significantly higher than in groups with less than 20 pp65+cells, whereas EP-PCR values did not significantly differ and showed a slower progression rate. Dilutions of DNA from CMV AD169 strain were used to probe RT-PCR reproducibility (between and intra-assay variability < 2% and sensitivity (100% detection rate at 10 copies/reaction, 28.5% with EP-PCR. A significant improvement is coming from the introduction of RT-PCR to the study of CMV DNA dynamics in differently CMV infected patients due to a more reliable quantitation of CMV DNA for moderate and high

  14. Clinical value of miR-452-5p expression in lung adenocarcinoma: A retrospective quantitative real-time polymerase chain reaction study and verification based on The Cancer Genome Atlas and Gene Expression Omnibus databases.

    Science.gov (United States)

    Gan, Xiao-Ning; Luo, Jie; Tang, Rui-Xue; Wang, Han-Lin; Zhou, Hong; Qin, Hui; Gan, Ting-Qing; Chen, Gang

    2017-05-01

    The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.

  15. Real-time PCR in Food Science: Introduction.

    Science.gov (United States)

    Rodriguez-Lazaro, David; Hernandez, Marta

    2013-01-01

    Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons.

  16. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  17. Comparison of histopathology, acid fast bacillus smear and real-time polymerase chain reaction for detection of Mycobacterium tuberculosis in anal fistula in 161 patients: A prospective controlled trial.

    Science.gov (United States)

    Garg, Pankaj; Garg, Mohinder K; Agarwal, Narinder

    2016-12-01

    Mycobacterium tuberculosis (MTB) is a known cause of refractory and recurrent fistula-in-ano. Histopathology of fistula tract and acid fast bacillus (AFB) smear of the pus are the standard procedures employed to diagnose MTB. However, they have some drawbacks. Nontubercular mycobacteria (NTM) has also been detected to cause fistula-in-ano and these methods cannot differentiate between MTB and NTM. Secondly, as these methods have low sensitivity, they could possibly be missing out MTB patients. Real-time polymerase chain reaction (RT-PCR) has high sensitivity in detecting mycobacteria. The aim of the study was to compare the sensitivity of RT-PCR, histopathology, and AFB smear in detecting MTB in fistula-in-ano. The histopathology and RT-PCR of tissue (fistula tract) was done along with AFB smear and RT-PCR of the pus was done in all the cases as per the availability of the specimen. The histopathology, AFB smear and RT-PCR was done by same pathologists in all the cases and all the patients were operated by a single surgeon. A total of 286 samples were tested in 161 patients of fistula-in-ano who were operated over a period of 1year. The mean age was 38.6±10.5 and male/female ratio was 153/8. Histopathology and RT-PCR of tissue (fistula tract) was done in 131 patients and 141 patients respectively. AFB smear and RT-PCR of pus (fistula) was done in 14 patients. Overall, MTB was detected in total of 17/161 (10.63%) patients. Out of these, MTB was detected in tissue (fistula tract) in 1/131 (0.76%) by histopathology and 14/141 (10%) by RT-PCR tissue. In pus samples, AFB smear was negative in all cases (0/14), whereas RT-PCR detected MTB in four of 14 (28.6%) patients. In 17 patients detected to have MTB, four-drug antitubercular therapy (ATT) was recommended. ATT was started in 15 patients. Nine of 17 patients completed 6months ATT and were cured. Six of 17 patients are currently taking ATT. Two patients did not take ATT; both of these have persistent symptoms of pus

  18. [Investigation of human papillomavirus prevalence in women in Eskişehir, Turkey by Pap smear, hybrid capture 2 test and consensus real-time polymerase chain reaction and typing with pyrosequencing method].

    Science.gov (United States)

    Aslan, Ferhat Gürkan; Us, Tercan; Kaşifoğlu, Nilgün; Özalp, Sabit Sinan; Akgün, Yurdanur; Öge, Tufan

    2016-01-01

    Human papillomavirus (HPV) infections have a broad range of clinical spectrum from subclinical or asymptomatic infection to anogenital carcinoma. The detection of HPV-DNA and determination of the risk groups in cervical cancer (CC) screening is very important because CC is considered to be a preventable illness which is the third most common cancer type of women in the world. The aims of this study were to investigate the presence of HPV-DNA in women by two different molecular methods and to compare their results together with the results of cytology, in Eskişehir, Central Anatolia, Turkey. A total of 1081 women aged between 30-65 years, who applied to Eskişehir Early Diagnosis, Screening and Training of Cancer Center (KETEM) for screening were included in the study. Three separate cervical samples were collected simultaneously from the participants for cytologic examination and molecular studies. In the first step of the study, all cervical samples were investigated for the presence of HPV-DNA by Hybrid Capture 2 (HC2; Qiagen, Germany) method. In the second part of the study, consensus real-time polymerase chain reaction (RT-PCR) (Takara Bio Inc., Japan) was performed in 152 samples which included HC2 positive and randomly selected negative samples, and then the HPV genotypes were detected by using a commercial kit based on pyrosequencing method (Diatech Pharmacogenetics S.R.L, Italy). In the first part of the study, HC2 test was found positive in 3% (32/1081) of the women, while in 4.4% (47/1081) Pap smear was positive alone or with HC2 test. Five (0.5%) samples yielded positive results with both of the methods, and four of them were positive for high risk HPV types. Cytology results were negative in 19 out of 23 (23/1081, 2.1%) samples that were reported as high risk HPV by HC2 test. On the other hand, 42 (42/1081, 3.9%) samples that were positive by cytology yielded negative results by HC2 test. In the second part of the study, 32 (21.1%) of 152 selected

  19. Clinical performance of the new Roche COBAS TaqMan HCV Test and High Pure System for extraction, detection and quantitation of HCV RNA in plasma and serum

    NARCIS (Netherlands)

    Gelderblom, Huub C.; Menting, Sandra; Beld, Marcel G.

    2006-01-01

    We evaluated the Roche COBAS TaqMan HCV Test For Use With The High Pure System (TaqMan HPS; Roche Diagnostics), for the extraction, detection and quantitation of hepatitis C virus (HCV) RNA in serum or plasma of HCV-infected individuals. The TaqMan HPS is a real-time PCR assay with a reported linear

  20. A home-brew real-time PCR assay for reliable detection and quantification of mature miR-122.

    Science.gov (United States)

    Naderi, Mahmood; Abdul Tehrani, Hossein; Soleimani, Masoud; Shabani, Iman; Hashemi, Seyed Mahmoud

    2015-09-01

    miR-122 is a liver-specific miRNA that has significant gene expression alterations in response to specific pathophysiological circumstances of liver such as drug-induced liver injury, hepatocellular carcinoma, and hepatitis B and C virus infections. Therefore, accurate and precise quantification of miR-122 is very important for clinical diagnostics. However, because of the lack of in vitro diagnostics assays for miR-122 detection and quantification of the existence of an open-source assay could inevitably provide external evaluation by other researchers and the chance of promoting the assay when required. The aim of this study was to develop a Taqman real-time polymerase chain reaction assay, which is capable of robust and reliable quantification of miR-122 in different sample types. We used stem loop methodology to design a specific Taqman real-time polymerase chain reaction assay for miR-122. This technique enabled us to reliably and reproducibly quantify short-length oligonucleotides such as miR-122. The specificity, sensitivity, interassay and intra-assay, and the dynamic range of the assay were experimentally determined by their respective methodology. The assay had a linear dynamic range of 3E to 4.8E miR-122 copies/reaction and the limit of detection was determined to be between 960 and 192 copies/reaction with 95% confidence interval. The assay gave a coefficient of variation for the Ct values of 50,000 copies per hepatocyte, this assay is able to suffice the need for reliable detection and quantification of this miRNA. Therefore, this study can be considered as a start point for standardizing miR-122 quantification.

  1. The TEL-AML1 real-time quantitative polymerase chain reaction (PCR) might replace the antigen receptor-based genomic PCR in clinical minimal residual disease studies in children with acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    de Haas, V.; Breunis, W. B.; dee, R.; Verhagen, O. J. H. M.; Kroes, W.; van Wering, E. R.; van Dongen, J. J. M.; van den Berg, H.; van der Schoot, C. E.

    2002-01-01

    Prospective studies in children with B-precursor acute lymphoblastic leukaemia (ALL) have shown that polymerase chain reaction (PCR)-based detection of minimal residual disease (MRD) using immunoglobin (Ig) and T-cell receptor (TCR) gene rearrangements as targets can be used to identify patients

  2. Enterocytozoon bieneusi Identification Using Real-Time Polymerase Chain Reaction and Restriction Fragment Length Polymorphism in HIV-Infected Humans from Kinshasa Province of the Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Roger Wumba

    2012-01-01

    in 242 HIV-infected patients. Typing was based on DNA polymorphism of the ribosomal DNA ITS region of E. bieneusi. PCRRFLP generated with two restriction enzymes (Nla III and Fnu 4HI in PCR-amplified ITS products for classifying strains into different lineages. The diagnosis performance of the indirect immune-fluorescence-monoclonal antibody (IFI-AcM was defined in comparison with real-time PCR as the gold standard. Results. Out of 242 HIV-infected patients, using the real-time PCR, the prevalence of E. bieneusi was 7.9% (n=19 among the 19 E. bieneusi, one was coinfected with E. intestinalis. In 19 E. bieneusi persons using PCR-RFLP method, 5 type I strains of E. bieneusi (26.3% and 5 type IV strains of E. bieneusi (26.3% were identified. The sensitivity of IFI-AcM was poor as estimated 42.1%. Conclusion. Despite different PCR methods, there is possible association between HIVinfection, geographic location (France, Cameroun, Democratic Republic of Congo, and the concurrence of type I and type IV strains.

  3. The influence of drinking-water pollution with heavy metal on the expression of IL-4 and IFN-γ in mice by real-time polymerase chain reaction.

    Science.gov (United States)

    Radbin, Rayhaneh; Vahedi, Fatemeh; Chamani, JamshidKhan

    2014-10-01

    In recent years, water pollution has been converted to a challenging discussion in health area of human being. Heavy elements are one of the most important water pollutants and their negative adverse effects on body systems have been confirmed. In this study, investigation of effects of two heavy elements including lead (Pb) and copper (Cu) on expression of interlukin-4 (IL-4) and interferon-gamma (IFN-γ) as humoral and cellular immunity biomarkers, respectively, was aimed and PCR, real-time PCR and electrophoresis techniques were used. In this study, BALB/c mice were studied that had free access to drinking water which contained Cu or Pb salts. After 2 weeks, spleens of mice were removed, RNA extracted, and cDNA was prepared for RT-PCR. Then the expression of IL-4 and IFN-γ genes were assessed by real-time PCR. The expression of IFN-γ was up-regulated in both treated groups and the expression of IL-4 was only up-regulated in the group treated with Cu and down-regulated in the group treated with Pb. This study shows that the presence of heavy elements as drinking-water pollutants results in a disproportion of natural cytokines balances, and thus may result in a negative effect on immune system.

  4. Detection of pathogenic elephant endotheliotropic herpesvirus in routine trunk washes from healthy adult Asian elephants (Elephas maximus) by use of a real-time quantitative polymerase chain reaction assay

    Science.gov (United States)

    Stanton, Jeffrey J.; Zong, Jian-Chao; Latimer, Erin; Tan, Jie; Herron, Alan; Hayward, Gary S.; Ling, Paul D.

    2013-01-01

    Objective To investigate the pathogenesis and transmission of elephant endotheliotropic herpesvirus (EEHV1) by analyzing various elephant fluid samples with a novel EEHV1-specific real-time PCR assay. Animals 5 apparently healthy captive Asian elephants (Elephas maximus) from the same herd. Procedures A real-time PCR assay was developed that specifically detects EEHV1. The assay was used to evaluate paired whole blood and trunk-wash samples obtained from the 5 elephants during a 15-week period. Deoxyribonucleic acid sequencing and viral gene subtyping analysis were performed on trunk-wash DNA preparations that had positive results for EEHV1. Viral gene subtypes were compared with those associated with past fatal cases of herpesvirus-associated disease within the herd. Results The PCR assay detected viral DNA to a level of 1,200 copies/mL of whole blood. It was used to detect EEHV1 in trunk secretions of 3 of the 5 elephants surveyed during the 15-week period. Viral gene subtyping analysis identified 2 distinct elephant herpesviruses, 1 of which was identical to the virus associated with a previous fatal case of herpesvirus-associated disease within the herd. Conclusions and Clinical Relevance EEHV1 was shed in the trunk secretions of healthy Asian elephants. Trunk secretions may provide a mode of transmission for this virus. Results of this study may be useful for the diagnosis, treatment, and management of EEHV1-associated disease and the overall management of captive elephant populations. PMID:20673092

  5. Enterocytozoon bieneusi Identification Using Real-Time Polymerase Chain Reaction and Restriction Fragment Length Polymorphism in HIV-Infected Humans from Kinshasa Province of the Democratic Republic of Congo

    Science.gov (United States)

    Wumba, Roger; Jean, Menotti; Benjamin, Longo-Mbenza; Madone, Mandina; Fabien, Kintoki; Josué, Zanga; Jean, Sala; Eric, Kendjo; AC, Guillo-Olczyk; Marc, Thellier

    2012-01-01

    Objective. To determine the prevalence and the genotypes of Enterocytozoon bieneusi in stool specimens from HIV patients. Methods. This cross-sectional study was carried out in Kinshasa hospitals between 2009 and 2012. Detection of microsporidia including E. bieneusi and E. intestinalis was performed in 242 HIV-infected patients. Typing was based on DNA polymorphism of the ribosomal DNA ITS region of E. bieneusi. PCRRFLP generated with two restriction enzymes (Nla III and Fnu 4HI) in PCR-amplified ITS products for classifying strains into different lineages. The diagnosis performance of the indirect immune-fluorescence-monoclonal antibody (IFI-AcM) was defined in comparison with real-time PCR as the gold standard. Results. Out of 242 HIV-infected patients, using the real-time PCR, the prevalence of E. bieneusi was 7.9% (n = 19) among the 19 E. bieneusi, one was coinfected with E. intestinalis. In 19 E. bieneusi persons using PCR-RFLP method, 5 type I strains of E. bieneusi (26.3%) and 5 type IV strains of E. bieneusi (26.3%) were identified. The sensitivity of IFI-AcM was poor as estimated 42.1%. Conclusion. Despite different PCR methods, there is possible association between HIVinfection, geographic location (France, Cameroun, Democratic Republic of Congo), and the concurrence of type I and type IV strains. PMID:22811884

  6. Real-Time Parameter Identification

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have implemented in the control room a technique for estimating in real time the aerodynamic parameters that describe the stability and control...

  7. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  8. Clinical Value of Treponema pallidum Real-Time PCR for Diagnosis of Syphilis

    NARCIS (Netherlands)

    Heymans, R.; van der Helm, J. J.; de Vries, H. J. C.; Fennema, H. S. A.; Coutinho, R. A.; Bruisten, S. M.

    2010-01-01

    The diagnosis of syphilis can be complicated when it is based on diverse clinical manifestations, dark-field microscopy, and serology. In the present study, therefore, we examined the additional clinical value of a Treponema pallidum real-time TaqMan PCR for the detection of primary and secondary

  9. Specific and sensitive diagnosis of syphilis using a real-time PCR for Treponema pallidum

    NARCIS (Netherlands)

    Koek, A. G.; Bruisten, S. M.; Dierdorp, M.; van Dam, A. P.; Templeton, K.

    2006-01-01

    A real-time PCR assay with a Taqman probe was developed that targeted the polA gene of Treponema pallidum. The test was validated using an analytical panel (n = 140) and a clinical panel of genital samples (n = 112) from patients attending a sexually transmitted infections clinic. High sensitivities

  10. Evaluation of probe chemistries and platforms to improve the detection limit of real-time PCR

    DEFF Research Database (Denmark)

    Reynisson, E.; Josefsen, Mathilde Hartmann; Krause, Michael

    2006-01-01

    A validated PCR-based Salmonella method targeting a 94-bp sequence of the ttr gene was used as a model to compare six different combinations of reporter and quencher dyes of a TaqMan probe, on three different instruments, to improve the detection limit in a real-time PCR assay with the aim...

  11. Using the rate of bacterial clearance determined by real-time polymerase chain reaction as a timely surrogate marker to evaluate the appropriateness of antibiotic usage in critical patients with Acinetobacter baumannii bacteremia.

    Science.gov (United States)

    Chuang, Yu-Chung; Chang, Shan-Chwen; Wang, Wei-Kung

    2012-08-01

    Bacteremia caused by Acinetobacter baumannii is becoming more frequent among critically ill patients, and has been associated with high mortality and prolonged hospital stay. Multidrug resistance and delay in blood culture have been shown to be significant barriers to appropriate antibiotic treatment. Quantitative polymerase chain reaction assays were recently used to monitor bacterial loads; we hypothesized that the rate of bacterial clearance determined by quantitative polymerase chain reaction can be used as a timely surrogate marker to evaluate the appropriateness of antibiotic usage. Prospective observational study. University hospital and research laboratory. Patients with culture-proven A. baumannii bacteremia in the intensive care units were prospectively enrolled from April 2008 to February 2009. Plasmid Oxa-51/pCRII-TOPO, which contained a 431-bp fragment of the A. baumannii-specific Oxa-51 gene in a pCRII-TOPO vector, was used as the standard. Sequential bacterial DNA loads in the blood were measured by a quantitative polymerase chain reaction assay. We enrolled 51 patients with A. baumannii bacteremia, and examined 318 sequential whole blood samples. The initial mean bacterial load was 2.15 log copies/mL, and the rate of bacterial clearance was 0.088 log copies/mL/day. Multivariate linear regression using the generalized estimation equation approach revealed that the use of immunosuppressants was an independent predictor for slower bacterial clearance (coefficient, 1.116; prate of bacterial clearance experienced higher in-hospital mortality (odds ratio, 2.323; p=.04) Immunosuppression and appropriate antibiotic usage were independent factors affecting the rate of clearance of A. baumannii bacteremia in critical patients. These findings highlight the importance of appropriate antibiotic usage and development of effective antibiotics against A. baumannii in an era of emerging antibiotic resistance. The rate of bacterial clearance could serve as a timely

  12. Detection, quantification and genotyping of Herpes Simplex Virus in cervicovaginal secretions by real-time PCR: a cross sectional survey

    Directory of Open Access Journals (Sweden)

    Natividad-Sancho Angels

    2005-08-01

    Full Text Available Abstract Background Herpes Simplex Virus (HSV Genital Ulcer Disease (GUD is an important public health problem, whose interaction with HIV results in mutually enhancing epidemics. Conventional methods for detecting HSV tend to be slow and insensitive. We designed a rapid PCR-based assay to quantify and type HSV in cervicovaginal lavage (CVL fluid of subjects attending a Genito-Urinary Medicine (GUM clinic. Vaginal swabs, CVL fluid and venous blood were collected. Quantitative detection of HSV was conducted using real time PCR with HSV specific primers and SYBR Green I. Fluorogenic TaqMan Minor Groove Binder (MGB probes designed around a single base mismatch in the HSV DNA polymerase I gene were used to type HSV in a separate reaction. The Kalon test was used to detect anti-HSV-2 IgG antibodies in serum. Testing for HIV, other Sexually Transmitted Infections (STI and related infections was based on standard clinical and laboratory methods. Results Seventy consecutive GUM clinic attendees were studied. Twenty-seven subjects (39% had detectable HSV DNA in CVL fluid; HSV-2 alone was detected in 19 (70% subjects, HSV-1 alone was detected in 4 (15% subjects and both HSV types were detected in 4 (15% subjects. Eleven out of 27 subjects (41% with anti-HSV-2 IgG had detectable HSV-2 DNA in CVL fluid. Seven subjects (10% were HIV-positive. Three of seven (43% HIV-infected subjects and two of five subjects with GUD (40% were secreting HSV-2. None of the subjects in whom HSV-1 was detected had GUD. Conclusion Quantitative real-time PCR and Taqman MGB probes specific for HSV-1 or -2 were used to develop an assay for quantification and typing of HSV. The majority of subjects in which HSV was detected had low levels of CVL fluid HSV, with no detectable HSV-2 antibodies and were asymptomatic.

  13. Designing Real Time Assistive Technologies

    DEFF Research Database (Denmark)

    Sonne, Tobias; Obel, Carsten; Grønbæk, Kaj

    2015-01-01

    Children with mental disorders like Attention Deficit Hyperactivity Disorder (ADHD) often experience challenges in school as they struggle to maintain their attention. Based on empirical studies conducted in school contexts and together with teachers and ADHD domain professionals, we identified...... design criteria in relation to three core components (sensing, recognizing, and assisting) for designing real time assistive technologies for children with ADHD. Based on these design criteria, we designed the Child Activity Sensing and Training Tool (CASTT), a real time assistive prototype that captures...... activities and assists the child in maintaining attention. From a preliminary evaluation of CASTT with 20 children in several schools, we and found that: 1) it is possible to create a wearable sensor system for children with ADHD that monitors physical and physiological activities in real time; and that 2...

  14. Translation of a laboratory-validated equine herpesvirus-1 specific real-time PCR assay into an insulated isothermal polymerase chain reaction (iiPCR) assay for point-of-need diagnosis using POCKIT™ nucleic acid analyzer.

    Science.gov (United States)

    Balasuriya, Udeni B R; Lee, Pei-Yu Alison; Tsai, Yun-Long; Tsai, Chuan-Fu; Shen, Yu-Han; Chang, Hsiao-Fen Grace; Skillman, Ashley; Wang, Hwa-Tang Thomas; Pronost, Stéphane; Zhang, Yan

    2017-03-01

    Equine herpesvirus myeloencephalopathy (EHM), a major problem for the equine industry in the United States, is caused by equine herpesvirus-1 (EHV-1). In addition, EHV-1 is associated with upper respiratory disease, abortion, and chorioretinal lesions in horses. Here we describe the development and evaluation of an inexpensive, user-friendly insulated isothermal PCR (iiPCR) method targeting open reading 30 (ORF30) to detect both neuropathogenic and non-neuropathogenic strains on the field-deployable POCKIT™ device for point-of-need detection of EHV-1. The analytical sensitivity of the EHV-1 iiPCR assay was 13 genome equivalents per reaction. The assay did not cross react with ten non-target equine viral pathogens. Performance of the EHV-1 iiPCR assay was compared to two previously described real-time PCR (qPCR) assays in two laboratories by using 104 archived clinical samples. All 53 qPCR-positive and 46 of the 51 qPCR-negative samples tested positive and negative, respectively, by the iiPCR. The agreement between the two assays was 95.19% (confidence interval 90.48-99.90%) with a kappa value of 0.90. In conclusion, the newly developed EHV-1 iiPCR assay is robust to provide specificity and sensitivity comparable to qPCR assays for the detection of EHV-1 nucleic acid in clinical specimens. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A multicenter prospective trial to asses a new real-time polymerase chain reaction for detection of Treponema pallidum, herpes simplex-1/2 and Haemophilus ducreyi in genital, anal and oropharyngeal ulcers.

    Science.gov (United States)

    Glatz, M; Juricevic, N; Altwegg, M; Bruisten, S; Komericki, P; Lautenschlager, S; Weber, R; Bosshard, P P

    2014-12-01

    Treponema pallidum, herpes simplex virus types 1 or 2 (HSV-1/2) and Haemophilus ducreyi are sexually transmitted pathogens that can cause genital, anal and oropharyngeal ulcers. Laboratory evaluation of these pathogens in ulcers requires different types of specimens and tests, increasing the risk of improper specimen handling and time lapse until analysis. We sought to develop a new real-time PCR (TP-HD-HSV1/2 PCR) to facilitate the detection of T. pallidum, HSV-1/2 and H. ducreyi in ulcers. The TP-HD-HSV1/2 PCR was tested (i) in a retrospective study on 193 specimens of various clinical origin and (ii) in a prospective study on 36 patients with genital, anal or oropharyngeal ulcers (ClinicalTrials.gov # NCT01688258). The results of the TP-HD-HSV1/2 PCR were compared with standard diagnostic methods (T. pallidum: serology, dark field microscopy; HSV-1/2: PCR; H. ducreyi: cultivation). Sensitivity and specificity of the TP-HD-HSV1/2 PCR for T. pallidum were both 100%, for HSV-1 100% and 98%, and for HSV-2 100% and 98%, respectively. T. pallidum and HSV-1/2 were detected in 53% and 22% of patients in the prospective study; H. ducreyi was not detected. In the prospective study, 5/19 (26%) specimens were true positive for T. pallidum in the TP-HD-HSV1/2 PCR but non-reactive in the VDRL. The TP-HD-HSV1/2 PCR is sensitive and specific for the detection of T. pallidum and HSV-1/2 in routine clinical practice and it appears superior to serology in early T. pallidum infections. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  16. Microbiological effects of consuming a synbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria.

    Science.gov (United States)

    Bartosch, Sabine; Woodmansey, Emma J; Paterson, Jacqueline C M; McMurdo, Marion E T; Macfarlane, George T

    2005-01-01

    Because of changes in gut physiology, immune system reactivity, and diet, elderly people are more susceptible to gastrointestinal infections than are younger adults. The gut microflora, which provides a natural defense against invading microorganisms, changes in elderly people with the development of potentially damaging bacterial populations, which may lead to alterations in bacterial metabolism and higher levels of infection. A randomized, double-blind, controlled feeding trial was done with 18 healthy elderly volunteers (age, >62 years) using a synbiotic comprising Bifidobacterium bifidum BB-02 and Bifidobacterium lactis BL-01 (probiotics) together with an inulin-based prebiotic (Synergy 1; Orafti). Real-time PCR was employed to quantitate total bifidobacteria, B. bifidum, and B. lactis in fecal DNA before, during, and after synbiotic consumption. Counting all viable anaerobes, bifidobacteria, and lactobacilli and identification of bacterial isolates to species level was also done. Throughout feeding, both bifidobacteria species were detected in fecal samples obtained from all subjects receiving the synbiotic, with significant increases in the number of copies of the 16S rRNA genes of B. bifidum, B. lactis, and total bifidobacteria, compared with the control week and the placebo group. At least 1 of these species remained detectable in fecal samples 3 weeks after feeding in individuals that had no fecal B. bifidum and/or B. lactis in the control week, indicating that the probiotics persisted in the volunteers. Counting of viable organisms showed significantly higher total numbers of fecal bifidobacteria, total numbers of lactobacilli, and numbers of B. bifidum during synbiotic feeding. Synbiotic consumption increased the size and diversity of protective fecal bifidobacterial populations, which are often very much reduced in older people.

  17. Real Time Sonic Boom Display

    Science.gov (United States)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  18. Real time automatic scene classification

    NARCIS (Netherlands)

    Verbrugge, R.; Israël, Menno; Taatgen, N.; van den Broek, Egon; van der Putten, Peter; Schomaker, L.; den Uyl, Marten J.

    2004-01-01

    This work has been done as part of the EU VICAR (IST) project and the EU SCOFI project (IAP). The aim of the first project was to develop a real time video indexing classification annotation and retrieval system. For our systems, we have adapted the approach of Picard and Minka [3], who categorized

  19. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  20. Real-time process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1991-01-01

    We describe an axiom system ACPp that incorporates real timed actions. Many examples are provided in order to explain the intuitive contents of the notation. ACP p is a generalisation of ACP. This implies that some of the axioms have to be relaxed and that ACP can be recovered as a special case from

  1. Real time freeway incident detection.

    Science.gov (United States)

    2014-04-01

    The US Department of Transportation (US-DOT) estimates that over half of all congestion : events are caused by highway incidents rather than by rush-hour traffic in big cities. Real-time : incident detection on freeways is an important part of any mo...

  2. Real Time Control on Firewire

    NARCIS (Netherlands)

    Zhang, Yuchen

    2004-01-01

    The goal of this project is to get insight into the use of Firewire as a field bus for real-time control. A characterization of Firewire's asynchronous transmission has been made by testing the point-to-point roundtrip in a 3-node Firewire network. The results show Firewire's asynchronous

  3. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  4. A real-time PCR approach to detect predation on anchovy and sardine early life stages

    Science.gov (United States)

    Cuende, Elsa; Mendibil, Iñaki; Bachiller, Eneko; Álvarez, Paula; Cotano, Unai; Rodriguez-Ezpeleta, Naiara

    2017-12-01

    Recruitment of sardine (Sardina pilchardus Walbaum, 1792) and anchovy (Engraulis encrasicolus Linnaeus, 1758) is thought to be regulated by predation of their eggs and larvae. Predators of sardine and anchovy can be identified by visual taxonomic identification of stomach contents, but this method is time consuming, tedious and may underestimate predation, especially in small predators such as fish larvae. Alternatively, genetic tools may offer a more cost-effective and accurate alternative. Here, we have developed a multiplex real-time polymerase chain reaction (RT-PCR) assay based on TaqMan probes to simultaneously detect sardine and anchovy remains in gut contents of potential predators. The assay combines previously described and newly generated species-specific primers and probes for anchovy and sardine detection respectively, and allows the detection of 0,001 ng of target DNA (which corresponds to about one hundredth of the total DNA present in a single egg). We applied the method to candidate anchovy and sardine egg predators in the Bay of Biscay, Atlantic Mackerel (Scomber scombrus) larvae. Egg predation observed was limited primarily to those stations where sardine and/or anchovy eggs were present. Our developed assay offers a suitable tool to understand the effects of predation on the survival of anchovy and sardine early life stages.

  5. Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide.

    Science.gov (United States)

    Tian, Qian; Feng, Jian-Jun; Hu, Jie; Zhao, Wen-Jun

    2016-10-14

    In recent years, use of the DNA-intercalating dye propidium monoazide (PMA) in real-time PCR has been reported as a novel method to detect viable bacteria in different types of samples, such as food, environmental, and microbiological samples. In this study, viable cells of Acidovorax citrulli, the causal agent of bacterial seedling blight and fruit blotch, were selectively detected and differentiated from dead cells by real-time fluorescent polymerase chain reaction amplification after the bacterial solution was treated with the DNA-binding dye PMA. The primers and TaqMan probe were based on the A. citrulli genome (Aave_1909, Gene ID: 4669443) and were highly specific for A. citrulli. The detection threshold of this assay was 10 3 colony-forming units per mL (CFU/mL) in pure cell suspensions containing viable and dead cells and infected watermelon seeds. Application of this assay enables the selective detection of viable cells of A. citrulli and facilitates monitoring of the pathogen in watermelon and melon seeds.

  6. Real time psychrometric data collection

    International Nuclear Information System (INIS)

    McDaniel, K.H.

    1996-01-01

    Eight Mine Weather Stations (MWS) installed at the Waste Isolation Pilot Plant (WIPP) to monitor the underground ventilation system are helping to simulate real-time ventilation scenarios. Seasonal weather extremes can result in variations of Natural Ventilation Pressure (NVP) which can significantly effect the ventilation system. The eight MWS(s) (which previously collected and stored temperature, barometric pressure and relative humidity data for subsequent NVP calculations) were upgraded to provide continuous real-time data to the site wide Central monitoring System. This data can now be utilized by the ventilation engineer to create realtime ventilation simulations and trends which assist in the prediction and mitigation of NVP and psychrometric related events

  7. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  8. Real-time holographic endoscopy

    Science.gov (United States)

    Smigielski, Paul; Albe, Felix; Dischli, Bernard

    1992-08-01

    Some new experiments concerning holographic endoscopy are presented. The quantitative measurements of deformations of objects are obtained by the double-exposure and double- reference beam method, using either a cw-laser or a pulsed laser. Qualitative experiments using an argon laser with time-average holographic endoscopy are also presented. A video film on real-time endoscopic holographic interferometry was recorded with the help of a frequency-doubled YAG-laser working at 25 Hz for the first time.

  9. Real-time PCR quantitative assessment of hepatitis A virus ...

    African Journals Online (AJOL)

    We applied real-time RT-PCR (reverse transcription-polymerase chain reaction) to assess the incidence of hepatitis A virus, rotaviruses and enteroviruses in the Tyume River, an important water resource in the impoverished Eastern Cape Province of South Africa. Detection of noroviruses was done using conventional ...

  10. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  11. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    Science.gov (United States)

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  12. Real time analysis under EDS

    Science.gov (United States)

    Schneberk, D.

    1985-07-01

    The analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL) is described. Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis.

  13. Real time analysis under EDS

    International Nuclear Information System (INIS)

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs

  14. Development and implementation of a rapid real-time polymerase ...

    African Journals Online (AJOL)

    internal process control in the form of an Escherichia coli (E. coli) strain carrying a single genomic copy of the gfp gene from. Aequorea victoria. Establishment of the assay required the selection of suitable PCR primers and probes for both the ctxA and gfp genes. This was followed by an optimisation phase where ideal PCR ...

  15. Development and implementation of a rapid real-time polymerase ...

    African Journals Online (AJOL)

    Establishment of the assay required the selection of suitable PCR primers and probes for both the ctxA and gfp genes. This was followed by an optimisation phase where ideal PCR cycling conditions and primer/probe concentrations were established. A validation phase established the performance parameters of the assay ...

  16. Detection of Bartonella spp. DNA in clinical specimens using an internally controlled real-time PCR assay

    NARCIS (Netherlands)

    Bergmans, Anneke M C; Rossen, John W A

    2013-01-01

    Bartonella henselae is the causative agent of cat-scratch disease (CSD), usually presenting itself as a -self-limiting lymphadenopathy. In this chapter an internally controlled Taqman probe-based real-time PCR targeting the groEL gene of Bartonella spp. is described. This assay allows for the rapid,

  17. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    Science.gov (United States)

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  18. Real-time scene generator

    Science.gov (United States)

    Lord, Eric; Shand, David J.; Cantle, Allan J.

    1996-05-01

    This paper describes the techniques which have been developed for an infra-red (IR) target, countermeasure and background image generation system working in real time for HWIL and Trial Proving applications. Operation is in the 3 to 5 and 8 to 14 micron bands. The system may be used to drive a scene projector (otherwise known as a thermal picture synthesizer) or for direct injection into equipment under test. The provision of realistic IR target and countermeasure trajectories and signatures, within representative backgrounds, enables the full performance envelope of a missile system to be evaluated. It also enables an operational weapon system to be proven in a trials environment without compromising safety. The most significant technique developed has been that of line by line synthesis. This minimizes the processing delays to the equivalent of 1.5 frames from input of target and sightline positions to the completion of an output image scan. Using this technique a scene generator has been produced for full closed loop HWIL performance analysis for the development of an air to air missile system. Performance of the synthesis system is as follows: 256 * 256 pixels per frame; 350 target polygons per frame; 100 Hz frame rate; and Gouraud shading, simple reflections, variable geometry targets and atmospheric scaling. A system using a similar technique has also bee used for direct insertion into the video path of a ground to air weapon system in live firing trials. This has provided realistic targets without degrading the closed loop performance. Delay of the modified video signal has been kept to less than 5 lines. The technique has been developed using a combination of 4 high speed Intel i860 RISC processors in parallel with the 4000 series XILINX field programmable gate arrays (FPGA). Start and end conditions for each line of target pixels are prepared and ordered in the I860. The merging with background pixels and output shading and scaling is then carried out in

  19. Universal conventional and real-time PCR diagnosis tools for Sarcoptes scabiei.

    Science.gov (United States)

    Angelone-Alasaad, Samer; Molinar Min, AnnaRita; Pasquetti, Mario; Alagaili, Abdulaziz N; D'Amelio, Stefano; Berrilli, Federica; Obanda, Vincent; Gebely, Mohamed A; Soriguer, Ramón C; Rossi, Luca

    2015-11-14

    The mite Sarcoptes scabiei has a known host-range of over 100 mammal species including humans. One of the prime objectives of the Sarcoptes-World Molecular Network (WMN) is to design and develop universal Sarcoptes PCR-based diagnosis methods. We describe here for the first time two universal mitochondrial-based diagnosis methods: (i) conventional end-point PCR and (ii) TaqMan real-time PCR. The design of both of these universal diagnosis methods was based on Sarcoptes samples collected from 23 host species in 14 countries. These methods, based on skin scrapings, were successfully used to etiologically confirm the diagnosis of different clinical degrees of sarcoptic mange in 48 animals belonging to six species. These universal PCR-based diagnosis methods are highly specific, technically sensitive and simple, and are based on the amplification of 135 bp from the Mitochondrial 16S rDNA. The method based on TaqMan real-time qPCR was more sensitive than the conventional end-point PCR. Two universal PCR-based diagnosis methods for S. scabiei were successfully designed and applied; one based on conventional end-point PCR and the other on TaqMan real-time PCR. We recommend further testing and the application of these new universal methods worldwide.

  20. A real time monitoring system

    International Nuclear Information System (INIS)

    Fontanini, Horacio; Galdoz, Erwin

    1989-01-01

    A real time monitoring system is described. It was initially developed to be used as a man-machine interface between a basic principles simulator of the Embalse Nuclear Power Plant and the operators. This simulator is under construction at the Bariloche Atomic Center's Process Control Division. Due to great design flexibility, this system can also be used in real plants. The system is designed to be run on a PC XT or AT personal computer with high resolution graphics capabilities. Three interrelated programs compose the system: 1) Graphics Editor, to build static image to be used as a reference frame where to show dynamically updated data. 2) Data acquisition and storage module. It is a memory resident module to acquire and store data in background. Data can be acquired and stored without interference with the operating system, via serial port or through analog-to-digital converter attached to the personal computer. 3) Display module. It shows the acquired data according to commands received from configuration files prepared by the operator. (Author) [es

  1. Mobile real time radiography system

    International Nuclear Information System (INIS)

    Vigil, J.; Taggart, D.; Betts, S.

    1997-01-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights ∼38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility

  2. Real time 3D photometry

    Science.gov (United States)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; García-Botella, A.; Romo, J.; Serrano, Ana

    2017-09-01

    The photometry and radiometry measurement is a well-developed field. The necessity of measuring optical systems performance involves the use of several techniques like Gonio-photometry. The Gonio photometers are a precise measurement tool that is used in the lighting area like office, luminaire head car lighting, concentrator /collimator measurement and all the designed and fabricated optical systems that works with light. There is one disadvantage in this kind of measurements that obtain the intensity polar curves and the total flux of the optical system. In the industry, there are good Gonio photometers that are precise and reliable but they are very expensive and the measurement time is long. In industry the cost can be of minor importance but measuring time that is around 30 minutes is of major importance due to trained staff cost. We have designed a system to measure photometry in real time; it consists in a curved screen to get a huge measurement angle and a CCD. The system to be measured projects light onto the screen and the CCD records a video of the screen obtaining an image of the projected profile. A complex calibration permits to trace screen data (x,y,z) to intensity polar curve (I,αγ). This intensity is obtained in candels (cd) with an image + processing time below one second.

  3. Scalable Real-Time Negotiation Toolkit

    National Research Council Canada - National Science Library

    Lesser, Victor

    2004-01-01

    ... to implement an adaptive distributed sensor network. These activities involved the development of a distributed soft, real-time heuristic resource allocation protocol, the development of a domain-independent soft, real time agent architecture...

  4. Comparison of multiplex RT-PCR and real-time HybProbe assay for serotyping of dengue virus using reference strains and clinical samples from India

    Directory of Open Access Journals (Sweden)

    Anita Chakravarti

    2016-01-01

    Full Text Available Background: Dengue virus serotyping is crucial from clinical management and epidemiological point of view. Aims: To compare efficacy of two molecular detection and typing methods, namely, multiplex reverse transcription polymerase chain reaction (RT-PCR and real-time Hybprobe assay using a panel of known dilution of four reference Dengue virus strains and a panel of sera collected from clinically suspected dengue patients. Settings: This study was conducted at a tertiary-care teaching hospital in Delhi, India. Materials and Methods: Dengue serotype specific virus strains were used as prototypes for serotyping assays. Viral load was quantified by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR. Acute phase serum samples were collected from 79 patients with clinically suspected Dengue fever on their first day of presentation during September-October 2012. Viral RNA from serum and cell culture supernatant was extracted. Reverse transcription was carried out. Quantitative detection of DENV RNA from reference strain culture supernatants and each of the 79 patient samples by real-time PCR was performed using light cycler Taqman master mix kit. Serotyping was done by multiplex RT-PCR assay and Hybprobe assay. Results: The multiplex RT-PCR assay, though found to be 100% specific, couldn't serotype either patient or reference strains with viral load less than 1000 RNA copies/ml. The Hybprobe assay was found to have 100% specificity and had a lower limit of serotype detection of merely 3.54 RNA copies/ml. Conclusions: HybProbe assay has an important role especially in situations where serotyping is to be performed in clinical samples with low viral load.

  5. Hard Real-Time Networking on FIrewire

    NARCIS (Netherlands)

    Zhang, Yuchen; Orlic, B.; Visser, P.M.; Broenink, Johannes F.; Marquet, P; McGuire, N; Wurmsdobler, P

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  6. Handheld real-time PCR device.

    Science.gov (United States)

    Ahrberg, Christian D; Ilic, Bojan Robert; Manz, Andreas; Neužil, Pavel

    2016-02-07

    Here we report one of the smallest real-time polymerase chain reaction (PCR) systems to date with an approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in the form of virtual reaction chambers (VRCs) where a ≈200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate the PCR performance. The standard curve slope was -3.02 ± 0.16 cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of 0.91 ± 0.05 per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics.

  7. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  8. A quantitative PCR (TaqMan assay for pathogenic Leptospira spp

    Directory of Open Access Journals (Sweden)

    Symonds Meegan L

    2002-07-01

    Full Text Available Abstract Background Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA and slide agglutination test (SAT, can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT. Methods The polymerase chain reaction (PCR has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples. Results and Conclusions The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells.

  9. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  10. Quantitative detection method for Roundup Ready soybean in food using duplex real-time PCR MGB chemistry.

    Science.gov (United States)

    Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson

    2010-07-01

    Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.

  11. Improvement of Barley yellow dwarf virus-PAV detection in single aphids using a fluorescent real time RT-PCR.

    Science.gov (United States)

    Fabre, Frédéric; Kervarrec, Christine; Mieuzet, Lucie; Riault, Gérard; Vialatte, Aude; Jacquot, Emmanuel

    2003-06-09

    One of the major factors determining the incidence of Barley yellow dwarf virus (BYDV) on autumn-sown cereals is the viruliferous state of immigrant winged aphids. This variable is assessed routinely using the enzyme-linked immunosorbant assay (ELISA). However, the threshold for virus detection by ELISA can lead to false negative results for aphids carrying less than 10(6) particles. Although molecular detection techniques enabling the detection of lower virus quantities in samples are available, the relatively laborious sample preparation and data analysis have restricted their use in routine applications. A gel-free real-time one-step reverse transcription polymerase chain reaction (RT-PCR) protocol is described for specific detection and quantitation of BYDV-PAV, the most widespread BYDV species in Western Europe. This new assay, based on TaqMan technology, detects and quantifies from 10(2) to 10(8) BYDV-PAV RNA copies. This test is 10 and 10(3) times more sensitive than the standard RT-PCR and ELISA assays published previously for BYDV-PAV detection and significantly improves virus detection in single aphids. Extraction of nucleic acids from aphids using either phenol/chloroform or chelatin resin-based protocols allow the use of pooled samples or of a small part (up to 1/1600th) of a single aphid extract for efficient BYDV-PAV detection.

  12. Development and Preliminary Evaluation of a New Real-Time RT-PCR Assay For Detection of Peste des petits Ruminants Virus Genome.

    Science.gov (United States)

    Polci, A; Cosseddu, G M; Ancora, M; Pinoni, C; El Harrak, M; Sebhatu, T T; Ghebremeskel, E; Sghaier, S; Lelli, R; Monaco, F

    2015-06-01

    A duplex real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for a simple and rapid diagnosis of Peste des petits ruminants (PPR). qRT-PCR primers and TaqMan probe were designed on a conserved region of nucleocapsid protein (Np) of PPR virus (PPRV) genome. An in vitro transcript of the target region was constructed and tested to determine analytical sensitivity. Commercial heterologous Armored RNA(®) was used as an internal positive control (IPC) for either RNA isolation or RT-PCR steps. The detection limit of the newly designed duplex real-time RT-PCR (qRT-PCR PPR_Np) was approximately 20 copies/μl with a 95% probability. No amplification signals were recorded when the qRT-PCR PPR_Np was applied to viruses closely related or clinically similar to PPRV- or to PPR-negative blood samples. A preliminary evaluation of the diagnostic performance was carried out by testing a group of 43 clinical specimens collected from distinct geographic areas of Africa and Middle East. qRT-PCR PPR_Np showed higher sensitivity than the conventional gel-based RT-PCR assays, which have been used as reference standards. Internal positive control made it possible to identify the occurrence of 5 false-negative results caused by the amplification failure, thus improving the accuracy of PPRV detection. © 2013 Blackwell Verlag GmbH.

  13. Duplex real-time PCR method for the detection of sesame (Sesamum indicum) and flaxseed (Linum usitatissimum) DNA in processed food products.

    Science.gov (United States)

    López-Calleja, Inés María; de la Cruz, Silvia; Martín, Rosario; González, Isabel; García, Teresa

    2015-01-01

    The development of a duplex real-time polymerase chain reaction (PCR) method allowing the simultaneous detection of sesame and flaxseed DNA in commercial food products is described. This duplex real-time PCR technique is based in the design of sesame- and flaxseed-specific primers based on the ITS1 region and two TaqMan fluorescent probes. The method was positive for sesame and flaxseed, and showed no cross-reactivity for all other heterologous plant and animal species tested. Sesame and flaxseed could be detected in a series of model samples with defined raw and heat-treated sesame in flaxseed, and flaxseed in sesame, respectively, with detection limits of 1.3 mg kg(-1) for sesame and 1.4 mg kg(-1) for flaxseed. The applicability of the assay for determining sesame and flaxseed in different food matrices was investigated by analysing a total of 238 commercial foodstuffs. This PCR method is useful for highly selective and sensitive detection of traces of sesame and flaxseed in commercial food products.

  14. Market analysis of food products for detection of allergenic walnut (Juglans regia) and pecan (Carya illinoinensis) by real-time PCR.

    Science.gov (United States)

    López-Calleja, Inés María; de la Cruz, Silvia; González, Isabel; García, Teresa; Martín, Rosario

    2015-06-15

    Two real-time polymerase chain reaction (PCR)-based assays for detection of walnut (Juglans regia) and pecan (Carya illinoinensis) traces in a wide range of processed foods are described here. The method consists on a real-time PCR assay targeting the ITS1 region, using a nuclease (TaqMan) probe labeled with FAM and BBQ. The method was positive for walnut and pecan respectively, and negative for all other heterologous plants and animals tested. Using a series of model samples with defined raw walnut in wheat flour and heat-treated walnut in wheat flour with a range of concentrations of 0.1-100,000 mg kg(-1), a practical detection limit of 0.1 mg kg(-1) of walnut content was estimated. Identical binary mixtures were done for pecan, reaching the same limit of detection of 0.1 mg kg(-1). The assay was successfully trialed on a total of 232 commercial foodstuffs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Synthesis of O-serogroup specific positive controls and real-time PCR standards for nine clinically relevant non-O157 STECs.

    Science.gov (United States)

    Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim

    2012-10-01

    Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction ....... In the Bertrand case, welfare is the same with all or no consumers on smart meters.......We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  17. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction t....... In the Bertrand case, welfare is the same with all or no consumers on smart meters.......We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  18. A Real time network at home

    OpenAIRE

    Hanssen, F.T.Y.; Jansen, P.G.; Hartel, Pieter H.; Scholten, Johan; Vervoort, Wiek; Karelse, F.

    2001-01-01

    This paper proposes a home network which integrates both real-time and non-real-time capabilities for one coherent, distributed architecture. Such a network is not yet available. Our network will support inexpensive, small appliances as well as more expensive, large appliances. The network is based on a new type of real-time token protocol that uses scheduling to achieve optimal token-routing through the network. Depending on the scheduling algorithm, bandwidth utilisations of 100 percent are...

  19. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  20. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  1. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power......We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...

  2. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  3. Semi-Nested Real-Time Reverse Transcription Polymerase Chain Reaction Methods for the Successful Quantitation of Cytokeratin mRNA Expression Levels for the Subtyping of Non-Small-Cell Lung Carcinoma Using Paraffin-Embedded and Microdissected Lung Biopsy Specimens

    International Nuclear Information System (INIS)

    Nakanishi, Yoko; Shimizu, Tetsuo; Tsujino, Ichiro; Obana, Yukari; Seki, Toshimi; Fuchinoue, Fumi; Ohni, Sumie; Oinuma, Toshinori; Kusumi, Yoshiaki; Yamada, Tsutomu; Takahashi, Noriaki; Hashimoto, Shu; Nemoto, Norimichi

    2013-01-01

    In patients with inoperable advanced non-small cell lung carcinomas (NSCLCs), histological subtyping using small-mount biopsy specimens was often required to decide the indications for drug treatment. The aim of this study was to assess the utility of highly sensitive mRNA quantitation for the subtyping of advanced NSCLC using small formalin fixing and paraffin embedding (FFPE) biopsy samples. Cytokeratin (CK) 6, CK7, CK14, CK18, and thyroid transcription factor (TTF)-1 mRNA expression levels were measured using semi-nested real-time quantitative (snq) reverse-transcribed polymerase chain reaction (RT-PCR) in microdissected tumor cells collected from 52 lung biopsies. Our results using the present snqRT-PCR method showed an improvement in mRNA quantitation from small FFPE samples, and the mRNA expression level using snqRT-PCR was correlated with the immunohistochemical protein expression level. CK7, CK18, and TTF-1 mRNA were expressed at significantly higher levels (P<0.05) in adenocarcinoma (AD) than in squamous cell carcinoma (SQ), while CK6 and CK14 mRNA expression was significantly higher (P<0.05) in SQ than in AD. Each histology-specific CK, particularly CK18 in AD and CK6 in SQ, were shown to be correlated with a poor prognosis (P=0.02, 0.02, respectively). Our results demonstrated that a quantitative CK subtype mRNA analysis from lung biopsy samples can be useful for predicting the histology subtype and prognosis of advanced NSCLC

  4. Real-time communication protocols: an overview

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Jansen, P.G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally

  5. A Real time network at home

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Jansen, P.G.; Hartel, Pieter H.; Scholten, Johan; Vervoort, Wiek; Karelse, F.

    2001-01-01

    This paper proposes a home network which integrates both real-time and non-real-time capabilities for one coherent, distributed architecture. Such a network is not yet available. Our network will support inexpensive, small appliances as well as more expensive, large appliances. The network is based

  6. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  7. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  8. Real time refractive index measurement by ESPI

    International Nuclear Information System (INIS)

    Torroba, R.; Joenathan, C.

    1991-01-01

    In this paper a method to measure refractive index variations in real time is reported. A technique to introduce reference fringes in real time is discussed. Both the theoretical and experimental results are presented and an example with phase shifting is given. (author). 8 refs, 5 figs

  9. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  10. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  11. The ALMA Real Time Control System

    Science.gov (United States)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  12. Real-Time Java Commercial Product Assessment

    National Research Council Canada - National Science Library

    Piszcz, Alan; Vidrine, Kent

    2000-01-01

    .... Specification status and implementation towards an industry standard application-programming interface are split between two consortiums striving to introduce different paradigms of Java integration with real-time (RT) services...

  13. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  14. Visualization in Real-Time Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project will be to migrate some of the outputs from the WFF Mission Planning Lab (MPL) into a real-time visualization system.  The MPL is...

  15. Interactive Real-time Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Brix, Lau

    seeks to implement and assess existing reconstruction algorithms using multi-processors of modern graphics cards and many-core computer processors and to cover some of the potential clinical applications which might benefit from using an interactive real-time MRI system. First an off......Real-time acquisition, reconstruction and interactively changing the slice position using magnetic resonance imaging (MRI) have been possible for years. However, the current clinical use of interactive real-time MRI is limited due to an inherent low spatial and temporal resolution. This PhD project......-line, but interactive, slice alignment tool was used to support the notion that 3D blood flow quantification in the heart possesses the ability to obtain curves and volumes which are not statistical different from standard 2D flow. Secondly, the feasibility of an interactive real-time MRI system was exploited...

  16. Diagnostic efficacy of a real time-PCR assay for Chlamydia trachomatis infection in infertile women in north India

    Directory of Open Access Journals (Sweden)

    Benu Dhawan

    2014-01-01

    Full Text Available Background & objectives: Little is known about the prevalence of Chlamydia trachomatis infection in Indian women with infertility. To improve the diagnosis of C. trachomatis infection in developing countries, there is an urgent need to establish cost-effective molecular test with high sensitivity and specificity. This study was conducted to determine the diagnostic utility of a real time-PCR assay for detention of C. trachomatis infection in infertile women attending an infertility clinic in north India. The in house real time-PCR assay was also compared with a commercial real-time PCR based detection system. Methods: Endocervical swabs, collected from 200 infertile women were tested for C. trachomatis by three different PCR assays viz. in-house real time-PCR targeting the cryptic plasmid using published primers, along with omp1 gene and cryptic plasmid based conventional PCR assays. Specimens were also subjected to direct fluorescence assay (DFA and enzyme immunoassay (EIA Performance of in-house real time-PCR was compared with that of COBAS Taqman C. trachomatis Test, version 2.0 on all in-house real time-PCR positive sample and 30 consecutive negative samples. Results: C. trachomatis infection was found in 13.5 per cent (27/200 infertile women by in-house real time-PCR, 11.5 per cent (23/200 by cryptic plasmid and/or omp1 gene based conventional PCR, 9 per cent (18/200 by DFA and 6.5 per cent (7/200 by EIA. The in-house real time-PCR exhibited a sensitivity and specificity of 100 per cent, considering COBAS Taqman CT Test as the gold standard. The negative and positive predictive values of the in-house real time-PCR were 100 per cent. The in-house real time-PCR could detect as low as 10 copies of C. trachomatis DNA per reaction. Interpretation & conclusions: In-house real time-PCR targeting the cryptic plasmid of C. trachomatis exhibited an excellent sensitivity and specificity similar to that of COBAS Taqman CT Test, v2.0 for detection of C

  17. Real time monitoring of electron processors

    International Nuclear Information System (INIS)

    Nablo, S.V.; Kneeland, D.R.; McLaughlin, W.L.

    1995-01-01

    A real time radiation monitor (RTRM) has been developed for monitoring the dose rate (current density) of electron beam processors. The system provides continuous monitoring of processor output, electron beam uniformity, and an independent measure of operating voltage or electron energy. In view of the device's ability to replace labor-intensive dosimetry in verification of machine performance on a real-time basis, its application to providing archival performance data for in-line processing is discussed. (author)

  18. Scala for Real-Time Systems?

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional languag...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  19. Real-Time PCR Identification of Unique Bacillus anthracis Sequences.

    Science.gov (United States)

    Cieślik, P; Knap, J; Kolodziej, M; Mirski, T; Joniec, J; Graniak, G; Zakowska, D; Winnicka, I; Bielawska-Drózd, A

    2015-01-01

    Bacillus anthracis is a spore-forming, Gram-positive microorganism. It is a causative agent of anthrax, a highly infectious disease. It belongs to the "Bacillus cereus group", which contains other closely related species, including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides. B. anthracis naturally occurs in soil environments. The BA5345 genetic marker was used for highly specific detection of B. anthracis with TaqMan probes. The detection limit of a real-time PCR assay was estimated at the level of 16.9 copies (CI95% - 37.4 to 37.86, SD = 0.2; SE = 0.118). Oligonucleotides designed for the targeted sequences (within the tested locus) revealed 100 % homology to B. anthracis strain reference sequences deposited in the database (NCBI) and high specificity to all tested B. anthracis strains. Additional in silico analysis of plasmid markers pag and cap genes with B. anthracis strains included in the database was carried out. Our study clearly indicates that the BA5345 marker can be used with success as a chromosomal marker in routine identification of B. anthracis; moreover, detection of plasmid markers indicates virulence of the examined strains.

  20. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  1. Rapid Detection of blaKPC Carbapenemase Genes by Real-Time PCR▿

    OpenAIRE

    Hindiyeh, Musa; Smollen, Gill; Grossman, Zehava; Ram, Daniela; Davidson, Yehudit; Mileguir, Fernando; Vax, Marina; Ben David, Debbie; Tal, Ilana; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan

    2008-01-01

    Carbapenem resistance among Enterobacteriaceae is an emerging problem worldwide. Klebsiella pneumoniae carbapenemase (blaKPC) enzymes are among the most common β-lactamases described. In this study, we report the development and validation of a real-time PCR (q-PCR) assay for the detection of blaKPC genes using TaqMan chemistry. The q-PCR amplification of blaKPC DNA was linear over 7 log dilutions (r2 = 0.999; slope, 3.54), and the amplification efficiency was 91.6%. The q-PCR detection limit...

  2. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    Science.gov (United States)

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  3. Detection of Bartonella spp. DNA in clinical specimens using an internally controlled real-time PCR assay.

    Science.gov (United States)

    Bergmans, Anneke M C; Rossen, John W A

    2013-01-01

    Bartonella henselae is the causative agent of cat-scratch disease (CSD), usually presenting itself as a -self-limiting lymphadenopathy. In this chapter an internally controlled Taqman probe-based real-time PCR targeting the groEL gene of Bartonella spp. is described. This assay allows for the rapid, sensitive, and simple detection of Bartonella spp. in samples from CSD or endocarditis suspects, and it is suitable for implementation in the diagnostic microbiology laboratory.

  4. Real-time PCR in detection and quantitation of Leishmania donovani for the diagnosis of Visceral Leishmaniasis patients and the monitoring of their response to treatment

    Science.gov (United States)

    Ghosh, Prakash; Khan, Md. Anik Ashfaq; Duthie, Malcolm S.; Vallur, Aarthy C.; Picone, Alessandro; Howard, Randall F.; Reed, Steven G.

    2017-01-01

    Sustained elimination of Visceral Leishmaniasis (VL) requires the reduction and control of parasite reservoirs to minimize the transmission of Leishmania donovani infection. A simple, reproducible and definitive diagnostic procedure is therefore indispensable for the early and accurate detection of parasites in VL, Relapsed VL (RVL) and Post Kala-azar Dermal Leishmaniasis (PKDL) patients, all of whom are potential reservoirs of Leishmania parasites. To overcome the limitations of current diagnostic approaches, a novel quantitative real-time polymerase chain reaction (qPCR) method based on Taqman chemistry was devised for the detection and quantification of L. donovani in blood and skin. The diagnostic efficacy was evaluated using archived peripheral blood buffy coat DNA from 40 VL, 40 PKDL, 10 RVL, 20 cured VL, and 40 cured PKDL along with 10 tuberculosis (TB) cases and 80 healthy endemic controls. Results were compared to those obtained using a Leishmania-specific nested PCR (Ln-PCR). The real time PCR assay was 100% (95% CI, 91.19–100%) sensitive in detecting parasite genomes in VL and RVL samples and 85.0% (95% CI, 70.16–94.29%) sensitive for PKDL samples. In contrast, the sensitivity of Ln-PCR was 77.5% (95% CI, 61.55–89.16%) for VL samples, 100% (95%CI, 69.15–100%) for RVL samples, and 52.5% (95% CI, 36.13–68.49%) for PKDL samples. There was significant discordance between the two methods with the overall sensitivity of the qPCR assay being considerably higher than Ln-PCR. None of the assay detected L. donovani DNA in buffy coats from cured VL cases, and reduced infectious burdens were demonstrated in cured PKDL cases who remained positive in 7.5% (3/40) and 2.5% (1/40) cases by real-time PCR and Ln-PCR, respectively. Both assays were 100% (95% CI, 95.98–100) specific with no positive signals in either endemic healthy control or TB samples. The real time PCR assay we developed offers a molecular tool for accurate detection of circulating L

  5. Real-Time PCR Identification of Six Malassezia Species.

    Science.gov (United States)

    Ilahi, Amin; Hadrich, Inès; Neji, Sourour; Trabelsi, Houaida; Makni, Fattouma; Ayadi, Ali

    2017-06-01

    Lipophilic yeast Malassezia species is widely found on the skin surface of humans and other animals. This fungus can cause pityriasis versicolor, Malassezia folliculitis, and seborrheic dermatitis. Still now, there is a problem with species identification of Malassezia with conventional methods. We developed a real-time polymerase chain reaction (PCR) assay with multiple hybridization probes for detecting M. globosa, M. furfur, M. restricta, M. sympodialis, M. slooffiae, and M. pachydermatis. The amplification curves and specific melting peaks of the probes hybridized with real-time PCR product were used for species identifications. The assay was further evaluated on 120 samples which were performed by swabbing from 60 domestic animals (23 goats, 10 dogs, 15 cows, 3 cats, 8 rabbits, and 1 donkey) and in 70 human samples (28 patients with pityriasis versicolor, 17 breeders, and 25 control group). Fifteen M. pachydermatis were identified from animals. From human, 61 isolates were identified as M. globosa (28), M. furfur (15), M. restricta (6), M. sympodialis (8), M. slooffiae (2), and M. pachydermatis (2). Eight cases of co-detection from 6 patients and 2 breeders were revealed. Our findings show that the assay was highly effective in identifying Malassezia species. The application of multiplex real-time PCR provides a sensitive and rapid identification system for Malassezia species, which may be applied in further epidemiological surveys from clinical samples.

  6. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  7. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    Science.gov (United States)

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  8. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    Science.gov (United States)

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  9. Network protocols for real-time applications

    Science.gov (United States)

    Johnson, Marjory J.

    1987-01-01

    The Fiber Distributed Data Interface (FDDI) and the SAE AE-9B High Speed Ring Bus (HSRB) are emerging standards for high-performance token ring local area networks. FDDI was designed to be a general-purpose high-performance network. HSRB was designed specifically for military real-time applications. A workshop was conducted at NASA Ames Research Center in January, 1987 to compare and contrast these protocols with respect to their ability to support real-time applications. This report summarizes workshop presentations and includes an independent comparison of the two protocols. A conclusion reached at the workshop was that current protocols for the upper layers of the Open Systems Interconnection (OSI) network model are inadequate for real-time applications.

  10. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  11. Real Time Structured Light and Applications

    DEFF Research Database (Denmark)

    Wilm, Jakob

    ]. A high performance flexible open source software toolkit is presented [Contribution C], which makes real time scanning possible on commodity hardware. Further, an approach is presented to correct for motion artifacts in dynamic scenes [Contribution E]. An application for such systems is presented......, increased processing power, and methods presented in this thesis, it is possible to perform structured light scans in real time with 20 depth measurements per second. This offers new opportunities for studying dynamic scenes, quality control, human-computer interaction and more. This thesis discusses...... several aspects of real time structured light systems and presents contributions within calibration, scene coding and motion correction aspects. The problem of reliable and fast calibration of such systems is addressed with a novel calibration scheme utilising radial basis functions [Contribution B...

  12. The development of a qualitative real-time RT-PCR assay for the detection of hepatitis C virus

    NARCIS (Netherlands)

    Clancy, A.; Crowley, B.; Niesters, H.; Herra, C.

    2008-01-01

    Real-time polymerase chain reaction (PCR) represents a favourable option for the detection of hepatitis C virus (HCV). A real-time reverse transcriptase PCR (RT-PCR) assay was developed as a qualitative diagnostic screening method for the detection of HCV using the ABI PRISM 7500 Sequence Detection

  13. Real Time Linux - The RTOS for Astronomy?

    Science.gov (United States)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  14. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  15. Machine vision for real time orbital operations

    Science.gov (United States)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  16. SignalR real time application development

    CERN Document Server

    Ingebrigtsen, Einar

    2013-01-01

    This step-by-step guide gives you practical advice, tips, and tricks that will have you writing real-time apps quickly and easily.If you are a .NET developer who wants to be at the cutting edge of development, then this book is for you. Real-time application development is made simple in this guide, so as long as you have basic knowledge of .NET, a copy of Visual Studio, and NuGet installed, you are ready to go.

  17. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  18. Image processing in real time radiography

    International Nuclear Information System (INIS)

    Link, R.; Nuding, W.; Sauevwein, K.; Souw, E.K.

    1985-01-01

    Image processing in real time radiography has become an important feature to improve the detectibility of defects. However, often enough, impressed by the tremendous success of image processing of e.g. evaluation of Landsat pictures, people expect the same or nearly the same effect in NDT applications. The magic word image processing thus results in unrealistic demands to the capability even of highly sophisticated image processing systems. In this paper the possibilities as well as the different tasks of image processing in the field of real time radiography is discussed

  19. Real-Time Mesoscale Prediction on workstations.

    Science.gov (United States)

    Cotton, William R.; Thompson, Gregory; Mieike, Paul W., Jr.

    1994-03-01

    Experience in performing real-time mesoscale numerical prediction forecasts using the Regional Atmospheric Modeling System (RAMS) over Colorado for a winter season on high-performance workstations is summarized. Performance evaluation is done for specific case studies and, statistically, for the entire winter season. RAMS forecasts are also compared with nested grid model forecasts. In addition, RAMS precipitation forecasts with a simple "dump bucket" scheme are compared with explicit, bulk microphysics parameterization schemes. The potential applications and political/ social problems of having a readily accessible, real-time mesoscale forecasting capability on low-cost, high-performance workstations is discussed.

  20. Collecting data in real time with postcards

    DEFF Research Database (Denmark)

    Yee, Kwang Chien; Kanstrup, Anne Marie; Bertelsen, Pernille

    2013-01-01

    Systems. These methods often involve cross-sectional, retrospective data collection. This paper describes the postcard method for prospective real-time data collection, both in paper format and electronic format. This paper then describes the results obtained using postcard techniques in Denmark...... and Australia. The benefits of this technique are illustrated. There are limitations in using postcard techniques and this paper provides a detail discussion about these limitations. Postcard techniques provide unique advantages in understanding real time healthcare context and it is an important technique...

  1. Refactoring Real-Time Java Profiles

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Thomsen, Bent; Ravn, Anders P.

    2011-01-01

    Just like other software, Java profiles benefits from refactoring when they have been used and have evolved for some time. This paper presents a refactoring of the Real-Time Specification for Java (RTSJ) and the Safety Critical Java (SCJ) profile (JSR-302). It highlights core concepts and makes...

  2. Real Time Grid Reliability Management 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  3. Quantitative real-time imaging of glutathione

    Science.gov (United States)

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  4. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-based monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  5. Real-time Texture Error Detection

    Directory of Open Access Journals (Sweden)

    Dan Laurentiu Lacrama

    2008-01-01

    Full Text Available This paper advocates an improved solution for the real-time error detection of texture errors that occurs in the production process in textile industry. The research is focused on the mono-color products with 3D texture model (Jacquard fabrics. This is a more difficult task than, for example, 2D multicolor textures.

  6. Feedback as Real-Time Constructions

    Science.gov (United States)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  7. Real-Time Operating System/360

    Science.gov (United States)

    Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.

    1969-01-01

    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.

  8. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-base monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  9. Real-time PCR gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  10. Refactoring Real-Time Java Profiles

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Thomsen, Bent; Ravn, Anders Peter

    2011-01-01

    Just like other software, Java profiles benefits from refactoring when they have been used and have evolved for some time. This paper presents a refactoring of the Real-Time Specification for Java (RTSJ) and the Safety Critical Java (SCJ) profile (JSR-302). It highlights core concepts and makes...... to comprehend and use for application developers and students....

  11. Robust synthesis for real-time systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Louis-Marie

    2014-01-01

    Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract...

  12. Real-time brute force S