WorldWideScience

Sample records for tandem wind rotors

  1. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  2. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  3. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Holmkvist, Jonas

    1998-05-01

    A computer program for aerodynamic optimization of wind turbine rotors has been written in Fortran with the purpose to maximize the annual energy production. The constraints is the maximum power output from the turbine and maximum and minimum values on the design variables. The design of the rotor is described by the chord- and twist distribution. The chord- and twist distributions are described with Bezier splines which, with a few number of control points, are very flexible. The Bezier control points are the design variables which are optimized by the optimization program. The optimization method used in the program is the Method of Moving Asymptotes, MMA, suggested by Krister Svanberg at the Royal Institute of Technology in Stockholm. MMA is a stable method and it seems suitable for this application. It is also in general easy to implement constraints. It seems like there are many local maximum points and the variations in the annual energy production between the total maximum points are very small, so there are many solutions to choose between and finding the global maximum point can be a problem. The problem could possibly be avoided with smaller wind steps near the rated wind. In future versions of the optimization program the Reynolds number dependents of the aerodynamic coefficients should be taken into consideration. Constraints for the thrust and the aerodynamic noise should also be implemented in the program 8 refs, 8 figs, 13 tabs, 14 appendixes

  4. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  5. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...

  6. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    International Nuclear Information System (INIS)

    Ceyhan, Özlem; Grasso, Francesco

    2014-01-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages

  7. Methods and apparatus for rotor load control in wind turbines

    Science.gov (United States)

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  8. Computer simulation for horizontal axis wind turbine rotor optimization

    International Nuclear Information System (INIS)

    Mehfooz, O.; Ullah, I.

    2011-01-01

    Wind turbine design is a complex process that includes multiple and conflicting criteria like maximizing energy production and minimizing the cost incurred. Often, such problems are solved using optimization techniques. A computer simulation is essential in analyzing the performance of a wind turbine rotor and determining suitable values of various design variables. The simulation will work with a design optimizer to optimize the design. In this paper, the problem of optimal rotor design is formulated and a computer simulation presented to analyze the performance of a horizontal axis wind turbine rotor of a given airfoil over a range of rotor tip speed ratios. The MATLAB simulation takes inputs of blade twist angle and chord solidity along the rotor radius as well as wind speed distribution; it provides output in the form of plots of coefficient of performance against tip speed ratio, variation of induction factors, angle of attack and coefficients of lift and drag with blade radial positions. (author)

  9. SMART wind turbine rotor. Data analysis and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  10. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  11. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  12. SMART Rotor Development and Wind-Tunnel Test

    Science.gov (United States)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  13. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan

    2013-01-01

    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...

  14. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders

    2012-01-01

    This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  15. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  16. IMPER: Characterization of the Wind Field over a Large Wind Turbine Rotor

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Wagner, Rozenn

    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub...... height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field...

  17. Modal Characteristics of Novel Wind Turbine Rotors with Hinged Structures

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    The vibration problems of the wind turbine rotors have drawn public attention as the size of wind turbine has increased incredibly. Although various factors may cause the vibration problems, the flexibility is a big threat among them. Therefore, ensuring the high stiffness of the rotors by adopting novel techniques becomes a necessity. The study was a further investigation of several novel designs regarding the dynamic behaviour and the influencing mechanism. The modal testing experiments were conducted on a traditional blade and an isolated blade with the hinged rods mounted close to the root. The results showed that the rod increased both the modal frequency and the damping of the blade. More studies were done on the rods’ impact on the wind turbine rotor with a numerical model, where dimensionless parameters were defined to describe the configuration of the interveined and the bisymmetrical rods. Their influences on the modal frequencies of the rotor were analyzed and discussed.

  18. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  19. Wind Tunnel Test of the SMART Active Flap Rotor

    Science.gov (United States)

    Straub, Friedrich K.; Anand, Vaidyanthan R.; Birchette, Terrence S.; Lau, Benton H.

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, DARPA, MIT, UCLA, and U. of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. The Boeing SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing edge flap on each blade. The eleven-week test program evaluated the forward flight characteristics of the active-flap rotor at speeds up to 155 knots, gathered data to validate state-of-the-art codes for rotor aero-acoustic analysis, and quantified the effects of open and closed loop active flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness of the active flap control on noise and vibration was conclusively demonstrated. Results showed significant reductions up to 6dB in blade-vortex-interaction and in-plane noise, as well as reductions in vibratory hub loads up to 80%. Trailing-edge flap deflections were controlled within 0.1 degrees of the commanded value. The impact of the active flap on control power, rotor smoothing, and performance was also demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind-tunnel testing.

  20. Wind shear estimation and wake detection by rotor loads — First wind tunnel verification

    Science.gov (United States)

    Schreiber, J.; Cacciola, S.; Campagnolo, F.; Petrović, V.; Mourembles, D.; Bottasso, C. L.

    2016-09-01

    The paper describes a simple method for detecting presence and location of a wake affecting a downstream wind turbine operating in a wind power plant. First, the local wind speed and shear experienced by the wind turbine are estimated by the use of rotor loads and other standard wind turbine response data. Then, a simple wake deficit model is used to determine the lateral position of the wake with respect to the affected rotor. The method is verified in a boundary layer wind tunnel using two instrumented scaled wind turbine models, demonstrating its effectiveness.

  1. Hi-Q Rotor - Low Wind Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data

  2. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Science.gov (United States)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  3. Estimation of Rotor Effective Wind Speed: A Comparison

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Svenstrup, Mikael

    2013-01-01

    Modern wind turbine controllers use wind speed information to improve power production and reduce loads on the turbine components. The turbine top wind speed measurement is unfortunately imprecise and not a good representative of the rotor effective wind speed. Consequently, many different model......-based algorithms have been proposed that are able to estimate the wind speed using common turbine measurements. In this paper, we present a concise yet comprehensive analysis and comparison of these techniques, reviewing their advantages and drawbacks. We implement these techniques and compare the results on both...

  4. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Science.gov (United States)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  5. Fast Multilevel Panel Method for Wind Turbine Rotor Flow Simulations

    NARCIS (Netherlands)

    van Garrel, Arne; Venner, Cornelis H.; Hoeijmakers, Hendrik Willem Marie

    2017-01-01

    A fast multilevel integral transform method has been developed that enables the rapid analysis of unsteady inviscid flows around wind turbines rotors. A low order panel method is used and the new multi-level multi-integration cluster (MLMIC) method reduces the computational complexity for

  6. Assessment of research needs for wind turbine rotor materials technology

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1991-01-01

    ... on Assessment of Research Needs for Wind Turbine Rotor Materials Technology Energy Engineering Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe true use are Please breaks Page inserted. accidentally typesetting been have may original the from errors not...

  7. Actuator disk model of wind farms based on the rotor average wind speed

    DEFF Research Database (Denmark)

    Han, Xing Xing; Xu, Chang; Liu, De You

    2016-01-01

    Due to difficulty of estimating the reference wind speed for wake modeling in wind farm, this paper proposes a new method to calculate the momentum source based on the rotor average wind speed. The proposed model applies volume correction factor to reduce the influence of the mesh recognition...

  8. SMART Rotor Development and Wind Tunnel Test

    Science.gov (United States)

    2009-09-01

    data acquisition system into a pulse code modulated (PCM) serial data stream, and transmitted through one of the slip ring channels into the fixed...tare was taken before and after the test. The rotor was balanced and tracked using an Advanced Vibration Analyzer ( AVA ) and optical strobe. No...controls to alter blade airloads and generate an in-plane loading noise profile that would negate or reduce the thickness noise pulse [31]. Achieving

  9. IMPER: Characterization of the wind field over a large wind turbine rotor - final report; Improved performance

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt Paulsen, U.; Wagner, R.

    2012-01-15

    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization. The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of this project. (Author)

  10. Analysis and Tests of Pultruded Blades for Wind Turbine Rotors

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M. C.(PS Enterprises, Glastonbury, Connecticut); Olsen, T.; Quandt, G.; Archidiacono, P.

    1999-07-19

    PS Enterprises, Inc. investigated a flexible, downwind, free-yaw, five-blade rotor system employing pultruded blades. A rotor was designed, manufactured and tested in the field. A preliminary design study and proof of concept test were conducted to assess the feasibility of using pultruded blades for wind turbine rotors. A 400 kW turbine was selected for the design study and a scaled 80 kW rotor was fabricated and field tested as a demonstration of the concept. The design studies continued to support the premise that pultruded blades offer the potential for significant reductions in rotor weight and cost. The field test provided experimental performance and loads data that compared well with predictions using the FLEXDYNE aeroelastic analysis. The field test also demonstrated stable yaw behavior and the absence of stall flutter over the wind conditions tested. During the final year of the contract, several studies were conducted by a number of independent consultants to address specific technical issues related to pultruded blades that could impact the commercial viability of turbines using this technology. The issues included performance, tower strikes, yaw stability, stall flutter, fatigue, and costs. While the performance of straight pultruded blades was projected to suffer a penalty of about 13% over fully twisted and tapered blades, the study showed that an aerodynamic fairing over the inner 40% could recover 85% of that loss while still keeping the blade cost well below that of conventional blades. Other results of the study showed that with proper design, rotors using pultruded blades could operate without aeroelastic problems, have acceptable fatigue life, and cost less than half that of rotors employing conventionally manufactured blades.

  11. New type of wind turbine with composite rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Rys, J. [Cracow Univ. of Technology, Krakow (Poland)

    1995-11-01

    During the last three years a new type of a wind turbine has been designed and tested in Division of Machine Design at Cracow University of Technology. The wind turbine consists of four main units: (1) rotor with two blades, each of them having an aerodynamically formed surface made of a laminated composite material bordered by a metallic frame; (2) directing system consisting of one rotor unit which drives blades about their own axis and controls the orientation of the turbine towards the wind; (3) supporting and transmissing system; and (4) foundation consisting of typical reinforced concrete plates fastened together, convenient to transport. The paper presents the method describing simulation of motion of the turbine. Such an approach gives one the possibility to analyze the maximum load acting in the vicinity of the blade and the load response of the elements of the turbine. A certain useful technique is demonstrated which can be applied to determine the load distribution. It is used to find e.g. the optimal fastening of internal metallic frame of the rotor blade. Specific and important advantages of the new type of engine are summarized in the final remarks as follows: perfect static and dynamic balancing, nice geometric shape of rotor which can be made of typical materials, low mass and cost per unit, typical technology of elements, easy mounting and dismounting. Several designing and technological solutions are illustrated in graphs and drawings.

  12. Assessment of research needs for wind turbine rotor materials technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  13. An innovative medium speed wind turbine rotor blade design for low wind regime (electrical power generation)

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Chong Wen Tong

    2001-01-01

    This paper describes the preliminary study of a small-scale wind turbine rotor blade (a low wind speed region turbine). A new wind turbine rotor blade (AE2 blade) for stand alone system has been conceptualized, designed, constructed and tested. The system is a reduced size prototype (half-scaled) to develop an efficient (adapted to Malaysian wind conditions)and cost effective wind energy conversion system (WECS) with local design and production technique. The blades were constructed from aluminium sheet with metal blending technique. The layout and design of rotor blade, its innovative features and test results are presented. Results from indoor test showed that the advantages of AE2 blade in low speed, with the potential of further improvements. The best rotor efficiency, C P attained with simple AE2 blades rotor (number of blade = 3) was 37.3% (Betz efficiency = 63%) at tip speed ratio (TSR) = 3.6. From the fabrication works and indoor testing, the AE2 blade rotor has demonstrated its structural integrity (ease of assembly and transportation), simplicity, acceptable performance and low noise level. (Author)

  14. Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests

    Science.gov (United States)

    2016-05-19

    Investigation of UH-60A Rotor Structural Loads From Flight and Wind Tunnel Tests Hyeonsoo Yeo Mark Potsdam US Army Aviation Development Directorate...NFAC) 40- by 80-Foot Wind Tunnel (Ref. 14) provides an- other set of airloads and structural loads measurements. Fig- ure 2 shows the UH-60A rotor ...blades installed on the NFAC Large Rotor Test Apparatus (LRTA) in the wind tunnel test section. One of the objectives of the wind tunnel test was to

  15. Application of aeroacoustic models to design of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Madsen, H.A. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    A design method is presented for wind turbine rotors. The design process is split into overall design of the rotor and detailed design of the blade tip. A numerical optimization tool is used together with a semi-empirical noise prediction code for overall rotor design. The noise prediction code is validated with measurements and good agreement is obtained both on the total noise emission and on the sensitivity to wind speed, tip pitch angle and tip speed. A design study for minimum noise emission for a 300 kW rotor shows that the total sound power level can be reduced by 3 dB(A) without loss in energy production and the energy production can be increased by 2% without increase in the total noise. Detailed CFD calculations are subsequently done to resolve the blade tip flow. The characteristics of the general flow and the tip vortex are found, and the relevant parameters for the aeroacoustic models are derived for a sharp rectangular tip. (au) 16 refs.

  16. Vertical axis wind rotors: Status and potential. [energy conversion efficiency and aerodynamic characteristics

    Science.gov (United States)

    Vance, W.

    1973-01-01

    The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.

  17. Preform spar cap for a wind turbine rotor blade

    Science.gov (United States)

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  18. Rotor Performance of a UH-60 Rotor System in the NASA Ames 80- by 120-Foot Wind Tunnel

    National Research Council Canada - National Science Library

    Shinoda, Patrick M; Yeo, Hyeonsoo; Norman, Thomas R

    2002-01-01

    .... To evaluate the NASA Ames 80- by 120- Foot Wind Tunnel as a hover testing facility, rotor performance data were compared with predictions, UH-60 aircraft flight test data, and UH-60 model-scale data...

  19. Rotor equivalent wind speed for power curve measurement – comparative exercise for IEA Wind Annex 32

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Cañadillas, B.; Clifton, A.

    2014-01-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise....... Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast...... was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions...

  20. Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth

    OpenAIRE

    S. Lecheb; A. Nour; A. Chellil; H. Mechakra; N. Hamad; H. Kebir

    2015-01-01

    This study concerned the dynamic behavior of the wind turbine rotor. Before all we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue, also studied the rotor with longitudinal crack in order to determine stress, strain and displacement. Firstly we compared the first six modes shapes between cracking and uncracking of HAWT rotor. Secondly we show show evolution of first six natural frequencies with longitudinal crack propaga...

  1. Flow-driven simulation on variation diameter of counter rotating wind turbines rotor

    Directory of Open Access Journals (Sweden)

    Littik Y. Fredrika

    2018-01-01

    Full Text Available Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT. This research aims to investigating the influence of front rotor diameter variation (D1 with rear rotor (D2 to the angular velocity optimal (ω and tip speed ratio (TSR on counter rotating wind turbines (CRWT. The method used transient 3D simulation with computational fluid dynamics (CFD to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2 are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.

  2. Measurement of rotor centre flow direction and turbulence in wind farm environment

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Sommer, A.

    2014-01-01

    The measurement of inflow to a wind turbine rotor was made with a spinner anemometer on a 2 MW wind turbine in a wind farm of eight wind turbines. The wind speed, yaw misalignment and flow inclination angle was measured during a five months measurement campaign. Angular measurements were calibrat...

  3. WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm, D. J.; Hansen, A. C.

    2006-04-01

    This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

  4. Methods and apparatus for reduction of asymmetric rotor loads in wind turbines

    Science.gov (United States)

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-10

    A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.

  5. Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    Science.gov (United States)

    Spera, D. A.; Janetzke, D. C.

    1978-01-01

    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed.

  6. Wind Turbine Rotor Simulation via CFD Based Actuator Disc Technique Compared to Detailed Measurement

    Directory of Open Access Journals (Sweden)

    Esmail Mahmoodi

    2015-10-01

    Full Text Available In this paper, a generalized Actuator Disc (AD is used to model the wind turbine rotor of the MEXICO experiment, a collaborative European wind turbine project. The AD model as a combination of CFD technique and User Defined Functions codes (UDF, so-called UDF/AD model is used to simulate loads and performance of the rotor in three different wind speed tests. Distributed force on the blade, thrust and power production of the rotor as important designing parameters of wind turbine rotors are focused to model. A developed Blade Element Momentum (BEM theory as a code based numerical technique as well as a full rotor simulation both from the literature are included into the results to compare and discuss. The output of all techniques is compared to detailed measurements for validation, which led us to final conclusions.

  7. Initial design of a stall-controlled wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)

    1997-08-01

    A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)

  8. Benefits of Two Turbine Rotor Diameters and Hub Heights in the Same Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stanley, Andrew P. J. [Brigham Young University; Ning, Andrew [Brigham Young University

    2018-01-12

    Significant turbine-wake interactions greatly reduce power output in a wind farm. If different turbine hub heights and rotor diameters are included in the same wind farm, the wake interference in the farm will be reduced, resulting in a lower cost of energy (COE) than a farm with identical turbines. In this paper, we present a method to model wind farm COE in farms with hub heights and rotor diameters that vary across the wind farm. We also demonstrate how to optimize these wind farms to minimize COE. The results show that COE can be greatly reduced in wind farms with non-homogeneous turbines, especially when the turbines are spaced close together. For a unidirectional wind rose, including different turbine design in the wind farm has a similar decrease in COE to spreading the wind turbines farther apart. When the rotor diameter and hub height of the wind turbines in a farm are optimized uniformly, a COE decrease of 4% to 13% (depending on the grid spacing and wind shear exponent) is achieved compared to the baseline. When the rotor diameter and turbine heights are optimized non-uniformly, with two different diameters and heights throughout the farm, there is a COE decrease of 22% to 41% compared to the baseline. For a more spread wind rose with a dominant probability from the west, there is a COE decrease between 3% and 10% for uniformly optimized rotor diameter and height compared to the baseline. With two optimized rotor diameters and heights through the farm, a COE decrease of 3% to 19% is achieved. For a similar wind rose shifted such that the dominant wind direction is from the northwest, a COE decrease between 3% and 10% results from uniformly optimized wind turbines compared to the baseline. A COE decrease of 3% to 17% compared to the baseline occurs with two different turbines are optimized throughout the wind farm.

  9. CFD analysis of rotating two-bladed flatback wind turbine rotor.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, David, CA); Chao, David D.; Berg, Dale E. (University of California, David, CA)

    2008-04-01

    The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

  10. Loss of efficiency in a coaxial arrangement of a pair of wind rotors

    DEFF Research Database (Denmark)

    Okulov, V. L.; Naumov, I. V.; Tsoy, M. A.

    2017-01-01

    The efficiency of a pair of wind turbines is experimentally investigated for the case when the model of the second rotor is coaxially located in the wake of the first one. This configuration implies the maximum level of losses in wind farms, as in the rotor wakes, the deceleration of the freestream...... is maximum. As a result of strain gauge measurements, the dependences of dimensionless power characteristics of both rotors on the distances between them were determined for different modes at different tip speed ratios. The obtained results are of interest for further development of aerodynamics of wind...

  11. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    Science.gov (United States)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  12. Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua

    2015-01-01

    The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of −2.3˚, wind speeds of 10, 15, 24 m/s and yaw angles of 15......˚, 30˚ and 45˚. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm......, a pitch angle of 3˚, a wind speed of 5 m/s and yaw angles of 10˚ and 30˚. The computed loads are compared to the loads measured from pressure measurement....

  13. Blade-Element/Momentum Technique for Rotors operating in Wind Tunnels

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Sørensen, Dan Nørtoft

    2003-01-01

    small, since important properties of the blade boundary layer otherwise cannot be captured correctly. On the other hand, severe problems with wind tunnel blockage may be the result if the ratio between the areas of the rotor and the wind tunnel cross section is too big. In all cases, wind tunnel...

  14. A Novel Dual-Rotor Turbine for Increased Wind Energy Capture

    International Nuclear Information System (INIS)

    Rosenberg, A; Selvaraj, S; Sharma, A

    2014-01-01

    Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints. Aerodynamic interactions between turbines in a wind farm also lead to significant loss of wind farm efficiency. A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these two losses. A DRWT is designed that uses an existing turbine rotor for the main rotor, while the secondary rotor is designed using a high lift-to-drag ratio airfoil. Reynolds Averaged Navier- Stokes computational fluid dynamics simulations are used to optimize the design. Large eddy simulations confirm the increase energy capture potential of the DRWT. Wake comparisons however do not show enhanced entrainment of axial momentum

  15. Robots grind rotor blades for wind power systems; Roboter schleifen Rotorblaetter fuer Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Drenkelfort, Gunnar [GDC Consulting GmbH, Guetersloh (Germany)

    2009-11-30

    An integrated concept for automatic manufacturing of wind power systems is presented for the first time. Automatic grinding of rotor blades by robots is a key element, which saves up to 70 percent of the production cost. (orig.)

  16. Airloads Correlation of the UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    OpenAIRE

    I-Chung Chang; Thomas R. Norman; Ethan A. Romander

    2014-01-01

    The presented research validates the capability of a loosely coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the Full-Scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The stud...

  17. Far-field noise from a rotor in a wind tunnel

    Science.gov (United States)

    Grant, Justin Alexander

    This project is intended to demonstrate the current state of knowledge in the prediction of the tonal and broadband noise radiation from a Sevik rotor. The rotor measurements were made at the Virginia Tech Stability Wind Tunnel. Details of the rotor noise and flow measurements were presented by Wisda et al(2014) and Murray et al(2015) respectively. This study presents predictions based on an approach detailed by Glegg et al(2015) for the broadband noise generated by a rotor in an inhomogeneous flow, and compares them to measured noise radiated from the rotor at prescribed observer locations. Discrepancies between the measurements and predictions led to comprehensive study of the flow in the wind tunnel and the discovery of a vortex upstream of the rotor at low advance ratios. The study presents results of RANS simulations. The static pressure and velocity profile in the domain near the rotor's tip gap region were compared to measurements obtained from a pressure port array and a PIV visualization of the rotor in the wind tunnel.

  18. Loss of efficiency in a coaxial arrangement of a pair of wind rotors

    Science.gov (United States)

    Okulov, V. L.; Naumov, I. V.; Tsoy, M. A.; Mikkelsen, R. F.

    2017-07-01

    The efficiency of a pair of wind turbines is experimentally investigated for the case when the model of the second rotor is coaxially located in the wake of the first one. This configuration implies the maximum level of losses in wind farms, as in the rotor wakes, the deceleration of the freestream is maximum. As a result of strain gauge measurements, the dependences of dimensionless power characteristics of both rotors on the distances between them were determined for different modes at different tip speed ratios. The obtained results are of interest for further development of aerodynamics of wind turbines, for optimizing the work of existing wind farms and reducing their power losses due to interactions with wakes of other wind turbines during design and calculation.

  19. Design of a wind turbine rotor for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac

    2009-01-01

    maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...

  20. Hover test of a full-scale hingeless helicopter rotor: Aeroelastic stability, performance and loads data. [wind tunnel tests

    Science.gov (United States)

    Peterson, R. L.; Warmbrodt, W.

    1984-01-01

    A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.

  1. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    Science.gov (United States)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  2. Performance Analysis of a Savonius Wind Turbine in the Solar Integrated Rotor House

    Directory of Open Access Journals (Sweden)

    ABDUL LATIFMANGANHAR

    2017-07-01

    Full Text Available Rooftop, building integrated and building augmented micro wind systems have the potential for small scale power generation in the built environment. Nevertheless, the expansion of micro wind technology is very slow and its market is strongly affected by the low efficiency of conventional wind generators. WAG-RH (Wind Accelerating and Guiding Rotor House which is a new technique introduced to enhance the efficiency of vertical axis rotor. The present study utilizes other green energy element by integrating the WAG-RH with a solar heating system. In this effort roof of the WAG-RH has been utilized to heat air through micro solar chimney for creating buoyancy effect in the air flow channel at rotor zone in the WAG-RH. The integration is capable of improving the performance of rotor setup in the WAG-RH as well as providing hot air with sufficient air mass flow rate for space heating. The WAG-RH had brought about 138% increase in the performance coefficient(Cp of conventional three bladed Savonius rotor, whereas solar integrated WAG-RH has contributed 162% increase in the Cp of the same rotor.

  3. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise

    Science.gov (United States)

    Gliebe, P. R.

    1980-01-01

    An analytical study of the effects of wind tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80-foot wind tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise, refined and extended to include first-order effects of inlet turbulence anisotropy, was employed to carry out a parametric study of the effects of fan size, blade number, and operating line for outdoor test stand, NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels, they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  4. Rotor

    International Nuclear Information System (INIS)

    Gronert, H.; Vetter, J.; Eckert, M.

    1978-01-01

    In the field of hollow high speed rotors there is an increasing demand for progressively higher speeds of safe operation. High speed operation causes support bearings to be carefully designed if the rotor speed is to pass safely through its critical speed of operation where intense vibration is experienced. Also the rotational speed is limited by the peripheral velocity and strength of the outside surface portion of the rotor. The invention proposes that elemental boron, which has great tensile strength and lightness be used to provide a major part of a hollow rotor so that increased operating speeds can be attained. Such a rotor is usable to provide a high speed centrifuge drum. (author)

  5. Analysis of the wind tunnel test of a tilt rotor power force model

    Science.gov (United States)

    Marr, R. L.; Ford, D. G.; Ferguson, S. W.

    1974-01-01

    Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed.

  6. Fault diagnosis of a Wind Turbine Rotor using a Multi-blade Coordinate Framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2012-01-01

    Fault diagnosis of a wind turbine rotor is considered. The faults considered are sensor faults and blades mounted with a pitch offset. A fault at a single blade will result in asymmetries in the rotor, which can be applied for fault diagnosis. The diagnosis is derived by using the multiblade...... coordinate (MBC) transformation also known as the Coleman transformation together with active fault diagnosis (AFD). This transforms the setup from rotating to fixed frame coordinates. The rotor speed acts as the auxiliary input for the active diagnosis. The applied method take the varying rotor speed...... into account. Operation at different mean wind speeds is examined and it is discussed how to exploit the findings acquired by the investigation of the various faults....

  7. Investigations on the Effect of Radius Rotor in Combined Darrieus-Savonius Wind Turbine

    Directory of Open Access Journals (Sweden)

    Kaprawi Sahim

    2018-01-01

    Full Text Available Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed.

  8. Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors

    International Nuclear Information System (INIS)

    Bhuyan, S.; Biswas, A.

    2014-01-01

    Highlights: • Hybrid H-Savonius vertical axis wind rotor for built-in environmental wind speeds. • Self-starting characteristics of unsymmetrical H-rotor and Hybrid H-Savonius rotor. • Comparisons between unsymmetrical H-rotor and Hybrid rotor at same experimental conditions. • Insight of the performances of optimum hybrid H-Savonius rotor. • Higher power performance of the optimum rotor compared with some existing VAWT rotors. - Abstract: With recent surge in fossil fuel prices and demands for renewable energy sources, vertical axis wind turbine (VAWT) technologies have emerged out as one of the prime growing sector for small-scale power generation in the built environment. In such an environment, self-starting and high performances are of utmost importance. Amongst all VAWT designs, H-rotor, being a lift-driven device, exhibits a high power coefficient. However, it suffers from poor starting behavior due to its conventional symmetrical NACA airfoil blades. The objective of the present study is to design a VAWT rotor that possesses both self-starting and high power coefficient simultaneously. For this, a three bladed H-rotor with unsymmetrical cambered S818 airfoil blades is investigated, which shows self-starting characteristics at many of the azimuthal angles. However to make the rotor completely self-starting, the same H-rotor is incorporated in a hybrid system with Savonius rotor as its starter. It is found that the hybrid design fully exhibits self-starting capability at all azimuthal positions, signified by the positive static torque coefficient values. For improving power performance of the hybrid rotor, the same is subjected to rigorous experimentations on the wind tunnel at different Reynolds numbers (Re) between 1.44 × 10 5 and 2.31 × 10 5 for five different overlap conditions in the Savonius rotor part. The performance coefficients of the hybrid rotor are compared with the simple H-rotor. Out of all the designs investigated, the maximum Cp

  9. Rotor current transient analysis of DFIG-based wind turbines during symmetrical voltage faults

    International Nuclear Information System (INIS)

    Ling, Yu; Cai, Xu; Wang, Ningbo

    2013-01-01

    Highlights: • We theoretically analyze the rotor fault current of DFIG based on space vector. • The presented analysis is simple, easy to understand. • The analysis highlights the accuracy of the expression of the rotor fault currents. • The expression can be widely used to analyze the different levels of voltage symmetrical fault. • Simulation results show the accuracy of the expression of the rotor currents. - Abstract: The impact of grid voltage fault on doubly fed induction generators (DFIGs), especially rotor currents, has received much attention. So, in this paper, the rotor currents of based-DFIG wind turbines are considered in a generalized way, which can be widely used to analyze the cases under different levels of voltage symmetrical faults. A direct method based on space vector is proposed to obtain an accurate expression of rotor currents as a function of time for symmetrical voltage faults in the power system. The presented theoretical analysis is simple and easy to understand and especially highlights the accuracy of the expression. Finally, the comparable simulations evaluate this analysis and show that the expression of the rotor currents is sufficient to calculate the maximum fault current, DC and AC components, and especially helps to understand the causes of the problem and as a result, contributes to adapt reasonable approaches to enhance the fault ride through (FRT) capability of DFIG wind turbines during a voltage fault

  10. State of the art and prospectives of smart rotor control for wind turbines

    International Nuclear Information System (INIS)

    Barlas, T K; Kuik, G A M van

    2007-01-01

    The continued reduction in cost of energy of wind turbines, especially with the increasingly upscaling of the rotor, will require contribution from technology advances in many areas. Reducing loads on the rotor can offer great reduction to the total cost of wind turbines. With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for locally distributed aerodynamic control systems with built-in intelligence on the blades. Such concepts are often named in popular terms 'smart structures' or 'smart rotor control'. This paper focuses on research regarding active rotor control and smart structures for load reduction. It presents an overview of available knowledge and future concepts on the application of active aerodynamic control and smart structures for wind turbine applications. The goal of the paper is to provide a perspective on the current status and future directions of the specific area of research. It comprises a novel attempt to summarize and analyze possible advanced control systems for future wind turbines. The overview builds on existing research on helicopter rotors and expands similar concepts for wind turbine applications, based on ongoing research in the field. Research work has been analyzed through UPWIND project's work package on Smart Rotor Blades and Rotor Control. First, the specifications of unsteady loads, the state of the art of modern control for load reduction and the need for more advanced and detailed active aerodynamic control are analyzed. Also, overview of available knowledge in application of active aerodynamic control on rotating blades, from helicopter research, is provided. Concepts, methods, and achieved results are presented. Furthermore, R and D so far and up-to-date ongoing progress of similar applications for wind turbines are presented. Feasibility studies for wind turbine applications, preliminary performance evaluation and novel computational and

  11. Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe; Giebel, Gregor

    2016-01-01

    varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...

  12. Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics

    Science.gov (United States)

    Koning, Witold J. F.

    2016-01-01

    Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tiltrotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity Unsteady Reynolds Averaged Navier-Stokes (URANS) solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade-element model (BEM) with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt, and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation, and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall, interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A "quasi linear trim" was used to trim the thrust

  13. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where man...... and rotor poles . The effectiveness and accuracy of the proposed position estimation method are verified by simulation at various operating conditions.......Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where many...... wind turbines are operating. Fast and accurate rotor position estimation is essential to promote the sensorless control as well as sensor fault tolerant operation of the SRG, which may improve the reliability of the system. This paper presents a rotor position sensorless estimation scheme for Switched...

  14. Aerodynamic performance analysis of an airborne wind turbine system with NREL Phase IV rotor

    International Nuclear Information System (INIS)

    Saeed, Muhammad; Kim, Man-Hoe

    2017-01-01

    Highlights: • Aerodynamic predictions for a buoyant airborne system at an altitude of 400 m. • Aerodynamic characteristics of NREL Phase IV rotor operating in a shell casing. • Buoyant shell aerodynamics under varying wind conditions. - Abstract: Wind energy becomes more powerful and consistent with an increase in altitude, therefore, harvesting the wind energy at high altitude results in a naturally restocked source of energy which is cheaper and far more efficient than the conventional wind power system. Airborne wind turbine (AWT), one of the many techniques being employed for this purpose, stands out due to its uninterrupted scheme of energy production. This paper presents the aerodynamic performance of AWT system with NREL Phase IV rotor at an altitude of 400 m. Unsteady simulation of the airborne system has been carried out and variations in the rotor’s torque for a complete revolution are reported and discussed. In order to compare the performance of the shell mounted configuration of Phase IV rotor with its standard test configuration, steady state simulations of the rotor are also conducted under various wind conditions for both configurations. Finally, for stable design of the buoyant airborne system, aerodynamic forces on the shell body are computed and reported.

  15. Smart dynamic rotor control using active flaps on a small-scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; van Wingerden, W.; Hulskamp, A.W.

    2013-01-01

    In this paper, the proof of concept of a smart rotor is illustrated by aeroelastic simulations on a small-scale rotor and comparison with wind tunnel experiments. The application of advanced feedback controllers using actively deformed flaps in the wind tunnel measurements is shown to alleviate d...

  16. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  17. Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.

  18. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoder, Nathanael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  19. A rotor-aerodynamics-based wind estimation method using a quadrotor

    Science.gov (United States)

    Song, Yao; Luo, Bing; Meng, Qing-Hao

    2018-02-01

    Attempts to estimate horizontal wind by the quadrotor are reviewed. Wind estimations are realized by utilizing the quadrotor’s thrust change, which is caused by the wind’s effect on the rotors. The basis of the wind estimation method is the aerodynamic formula for the rotor’s thrust, which is verified and calibrated by experiments. A hardware-in-the-loop simulation (HILS) system was built as a testbed; its dynamic model and control structure are demonstrated. Verification experiments on the HILS system proved that the wind estimation method was effective.

  20. Design and construction of a rotor for FC 4000 wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, K.

    1991-07-01

    The F.C. wind motor is a 1.5 wind turbine designed for low wind regimes. The cut in speed is rather low at 3 m/s. It is a multipurpose turbine which produces alternate current electric power that can be used for water pumping, grain grinding and battery charging. The wind turbine directly drives a permanent-magnet generator which has 14 poles and reaches an efficiency of 88% at ca. 430 rotations per minute, and thereafter declines gradually. The design of the windmill is described, including the choice of airfoil, the design of the rotor blade and the construction. The rotor produces an intermittent whistling noise possibly caused by the tip of a blade passing a side vane and causing aerodynamic interference - or by a blade passing the tower, giving a wide and turbulent wake behind this region. (AB)

  1. FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2013-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.

  2. Sensitivity of Key Parameters in Aerodynamic Wind Turbine Rotor Design on Power and Energy Performance

    International Nuclear Information System (INIS)

    Bak, Christian

    2007-01-01

    In this paper the influence of different key parameters in aerodynamic wind turbine rotor design on the power efficiency, C p , and energy production has been investigated. The work was divided into an analysis of 2D airfoils/blade sections and of entire rotors. In the analysis of the 2D airfoils it was seen that there was a maximum of the local C p for airfoils with finite maximum C l /C d values. The local speed ratio should be between 2.4 and 3.8 for airfoils with maximum c l /c d between 50 and 200, respectively, to obtain maximum local C p . Also, the investigation showed that Re had a significant impact on CP and especially for Re p for rotors was made with three blades and showed that with the assumption of constant maximum c l /c d along the entire blade, the design tip speed ratio changed from X=6 to X=12 for c l /cd=50 and c l /c d =200, respectively, with corresponding values of maximum c p of 0.46 and 0.525. An analysis of existing rotors re-designed with new airfoils but maintaining the absolute thickness distribution to maintain the stiffness showed that big rotors are more aerodynamic efficient than small rotors caused by higher Re. It also showed that the design tip speed ratio was very dependent on the rotor size and on the assumptions of the airfoil flow being fully turbulent (contaminated airfoil) or free transitional (clean airfoil). The investigations showed that rotors with diameter D=1.75m, should be designed for X around 5.5, whereas rotors with diameter D=126m, should be designed for Xbetween 6.5 and 8.5, depending on the airfoil performance

  3. Monitoring of a Wind Turbine Rotor using a Multi-blade Coordinate Framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper a method to detect asymmetric faults in a wind turbine rotor is presented. The paper describes how fault diagnosis using an observer-based residual generator approach is able to distinguish between the nominal and faulty case by the injection of e.g. a sinusoidal excitation signal i...

  4. Estimation of wake propagation behind the rotors of wind-powered generators

    DEFF Research Database (Denmark)

    Naumov, I. V.; Mikkelsen, Robert Flemming; Okulov, Valery

    2016-01-01

    The objectives of this work are to develop the experimental model of wake behind the wind-power generator rotor to estimate its propagation distance and the impact on the average and pulsation characteristics of incident flow with the possibility of further use of these data in the calculation mo...

  5. Simulation of Low frequency Noise from a Downwind Wind Turbine Rotor

    DEFF Research Database (Denmark)

    Madsen, Helge Aa.; Johansen, Jeppe; Sørensen, Niels

    2007-01-01

    One of the major drawbacks of a wind turbine with a downwind rotor is the generation of considerable low frequency noise (so-called thumping noise) which can cause annoyance of people at a considerable distance. This was experienced on a number of full-scale turbines in e.g. US and Sweden in the ...

  6. Simulation of low frequency noise from a downwind wind turbine rotor

    DEFF Research Database (Denmark)

    Madsen Aagaard, Helge; Johansen, Jeppe; Sørensen, Niels N.

    2007-01-01

    One of the major drawbacks of a wind turbine with a downwind rotor is the generation of considerable low frequency noise (so-called thumping noise) which can cause annoyance of people at a considerable distance. This was experienced on a number of full-scale turbines in e.g. US and Sweden in the ...

  7. Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine

    Directory of Open Access Journals (Sweden)

    Behnam Moghadassian

    2016-07-01

    Full Text Available The objective of this paper is to numerically investigate the effects of the atmospheric boundary layer on the aerodynamic performance and loads of a novel dual-rotor wind turbine (DRWT. Large eddy simulations are carried out with the turbines operating in the atmospheric boundary layer (ABL and in a uniform inflow. Two stability conditions corresponding to neutral and slightly stable atmospheres are investigated. The turbines are modeled using the actuator line method where the rotor blades are modeled as body forces. Comparisons are drawn between the DRWT and a comparable conventional single-rotor wind turbine (SRWT to assess changes in aerodynamic efficiency and loads, as well as wake mixing and momentum and kinetic energy entrainment into the turbine wake layer. The results show that the DRWT improves isolated turbine aerodynamic performance by about 5%–6%. The DRWT also enhances turbulent axial momentum entrainment by about 3.3 %. The highest entrainment is observed in the neutral stability case when the turbulence in the ABL is moderately high. Aerodynamic loads for the DRWT, measured as out-of-plane blade root bending moment, are marginally reduced. Spectral analyses of ABL cases show peaks in unsteady loads at the rotor passing frequency and its harmonics for both rotors of the DRWT.

  8. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  9. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  10. Airloads Correlation of the UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    Directory of Open Access Journals (Sweden)

    I-Chung Chang

    2014-01-01

    Full Text Available The presented research validates the capability of a loosely coupled computational fluid dynamics (CFD and comprehensive rotorcraft analysis (CRA code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the Full-Scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  11. Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Thermal/ Fluid Sciences & Engineering Dept.; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.; Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2015-04-01

    New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.

  12. Power curve report - with rotor equivalent wind speed

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    , the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  13. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    velocity on a wind turbine rotor is investigated. Specifically, the performance of blade element momentum theory with a quasisteady wake as well as two widely used engineering dynamic inflow models is evaluated. A moving actuator disc model is used as reference, since the dynamics associated with the wake...... will be inherently included in the solution of the associated fluid dynamic problem. Through analysis of integrated rotor loads, induced velocities and aerodynamic damping, it is concluded that typical surge motions are sufficiently slow to not affect the wake dynamics predicted by engineering models significantly...

  14. Wind Tunnel Testing of a 6%-Scale Large Civil Tilt Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs... rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe...airframe models were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. This test entry represents the first

  15. Development of an Active Twist Rotor for Wind: Tunnel Testing (NLPN97-310

    Science.gov (United States)

    Cesnik, Carlos E. S.; Shin, SangJoon; Hagood, Nesbitt W., IV

    1998-01-01

    The development of the Active Twist Rotor prototype blade for hub vibration and noise reduction studies is presented in this report. Details of the modeling, design, and manufacturing are explored. The rotor blade is integrally twisted by direct strain actuation. This is accomplished by distributing embedded piezoelectric fiber composites along the span of the blade. The development of the analysis framework for this type of active blade is presented. The requirements for the prototype blade, along with the final design results are also presented. A detail discussion on the manufacturing aspects of the prototype blade is described. Experimental structural characteristics of the prototype blade compare well with design goals, and preliminary bench actuation tests show lower performance than originally predicted. Electrical difficulties with the actuators are also discussed. The presented prototype blade is leading to a complete fully articulated four-blade active twist rotor system for future wind tunnel tests.

  16. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    DEFF Research Database (Denmark)

    Døssing, Mads

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design...... numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an eective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads...... due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coecient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization....

  17. Measured and predicted rotor performance for the SERI advanced wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

    1992-02-01

    Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.

  18. A Stereo PIV Study on the Wake Characteristics behind Dual-Rotor Wind Turbines

    Science.gov (United States)

    Hu, Hui; Wang, Zhenyu; Tian, Wei

    2015-11-01

    We report an experimental study to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs) with co- and counter-rotating configurations, in comparison to those of a conventional single-rotor wind turbine (SRWT). The experiments were performed in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) wind tunnel under neutral stability conditions. In addition to measuring the power outputs and dynamic wind loads acting on the SRWT and DRWT systems, a stereoscopic PIV was used for detailed wake flow field measurements (free-run and phase-locked) to quantify the characteristics of the turbulent turbine wake flow and to reveal visualize the evolution of the unsteady vortex structures in the wakes of DRWTs, in comparison with those behind a conventional SRWT systems. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics for higher total power yield and better durability of the wind turbines. The funding support from the Iowa Energy Center with Grant No. 14-008-OG and National Science Foundation (NSF) with Grant Numbers of CBET-1133751 and CBET-1438099 is gratefully acknowledged.

  19. Reduction mechanism of dynamic loads on down wind rotor; Furyoku hatsuden system down wind rotor no doteki kaju no keigen kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K.; Shimizu, Y.; Yasui, T. [Tokai University, Tokyo (Japan)

    1997-11-25

    Dynamic force on blades in a large wind mill changes with rotational speed for various reasons, such as wind shear that causes vertical distribution of wind velocity or titling angle. Therefore, a 2-blade system on a teetered hub is a practical selection for the coned, down-wind type. Use of teetered axis greatly reduces bending moment in the flap direction and that at the axis of rotation. An attempt was made to understand dynamic loads by inertial force resulting from oscillation of the blade rotating on the teetered axis, and thereby to avoid them. The in-plane load can be diminished to zero when the teetered axis is coincided with the center of gravity, but generally cannot be avoided when the blade is strained significantly, except it is operated at the rated condition. The in-plane load and bending moment can be avoided, when rotational freedom is given around the y axis. Dynamic load on a down-wind rotor can be avoided by use of universal joint. 3 refs., 6 figs.

  20. Wall interaction effects for a full-scale helicopter rotor in the NASA Ames 80- by 120-foot wind tunnel

    Science.gov (United States)

    Shinoda, Patrick M.

    1994-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.

  1. Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil

    DEFF Research Database (Denmark)

    Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning

    . However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design....... In this current work two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect...... to the main aerofoil defines the high lift. Orientation of slat aerofoil is a parameter of investigation in this paper. Computational fluid dynamics (CFD) have been used to obtain the aerodynamic characteristics of double aerofoil. The CFD simulations were carried out using Star CCM+ v7.04 (CD-adapco, UK...

  2. The Smart Rotor Concept on Wind Turbines - Actuators and Structures

    NARCIS (Netherlands)

    Hulskamp, A.W.

    2011-01-01

    Wind turbines suffer heavily from fatigue loads but current load control concepts are not effective in mitigating them. This thesis contributes to the development of a novel concept in which the air flow over the blade is controlled through spanwise distributed devices. The work is aimed at

  3. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external...

  4. Multilevel panel method for wind turbine rotor flow simulations

    NARCIS (Netherlands)

    van Garrel, Arne

    2016-01-01

    Simulation methods of wind turbine aerodynamics currently in use mainly fall into two categories: the first is the group of traditional low-fidelity engineering models and the second is the group of computationally expensive CFD methods based on the Navier-Stokes equations. For an engineering

  5. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær

    2016-01-01

    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Bot...

  6. Power curve report - with rotor equivalent wind speed

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere...

  7. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    Science.gov (United States)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  8. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  9. Analytical aeroelastic stability considerations and conversion loads for an XV-15 tilt-rotor in a wind tunnel simulation

    Science.gov (United States)

    Kottapalli, Sesi; Meza, Victor

    1992-01-01

    A rotorcraft analysis is conducted to assess tilt-rotor stability and conversion loads for the XV-15 rotor with metal blades within its specified test envelope. A 38-DOF flutter analysis based on the code by Johnson (1988) is developed to simulate a wind-tunnel test in which the rotor torque is constant and thereby study stability. The same analytical model provides the simulated loads including hub loads, blade loads, and oscillatory pitch-link loads with attention given to the nonuniform inflow through the proprotor in the presence of the wing. Tilt-rotor stability during the cruise mode is found to be sensitive to coupling effects in the control system stiffness, and a stability problem is identified in the XV-15 Advanced Technology Blades. The present analysis demonstrates that the tilt-rotor is stable within the specified test envelope of the NASA 40 x 80-ft wind tunnel.

  10. Performance results from a test of an S-76 rotor in the NASA Ames 80- by 120-foot wind tunnel

    Science.gov (United States)

    Shinoda, Patrick M.; Johnson, Wayne

    1993-01-01

    A full-scale helicopter rotor wind tunnel test has been conducted which covers a wide range of rotor-shaft angles-of-attack and 0-100 kt thrust conditions. The hover performance data thus obtained were compared with the results of momentum theory calculations; forward flight rotor-performance data were compared with calculations from a comprehensive rotorcraft analysis. These comparisons suggest that hover testing at an outdoor facility in the absence of ground effect is required to make a final determination of the absolute accuracy of the wind tunnel hover data.

  11. Fundamental Understanding of Rotor Aeromechanics at High Advance Ratio Through Wind Tunnel Testing

    Science.gov (United States)

    Berry, Benjamin

    The purpose of this research is to further the understanding of rotor aeromechanics at advance ratios (mu) beyond the maximum of 0.5 (ratio of forward airspeed to rotor tip speed) for conventional helicopters. High advance ratio rotors have applications in high speed compound helicopters. In addition to one or more conventional main rotors, these aircraft employ either thrust compounding (propellers), lift compounding (fixed-wings), or both. An articulated 4-bladed model rotor was constructed, instrumented, and tested up to a maximum advance ratio of mu=1.6 in the Glenn L. Martin Wind Tunnel at the University of Maryland. The data set includes steady and unsteady rotor hub forces and moments, blade structural loads, blade flapping angles, swashplate control angles, and unsteady blade pressures. A collective-thrust control reversal--where increasing collective pitch results in lower rotor thrust--was observed and is a unique phenomenon to the high advance ratio flight regime. The thrust reversal is explained in a physical manner as well as through an analytical formulation. The requirements for the occurrence of the thrust reversal are enumerated. The effects of rotor geometry design on the thrust reversal onset are explored through the formulation and compared to the measured data. Reverse-flow dynamic stall was observed to extend the the lifting capability of the edgewise rotor well beyond the expected static stall behavior of the airfoil sections. Through embedded unsteady blade surface pressure transducers, the normal force, pitching moment, and shed dynamic stall vortex time histories at a blade section in strong reverse flow were analyzed. Favorable comparisons with published 2-D pitching airfoil reverse flow dynamic stall data indicate that the 3-D stall environment can likely be predicted using models developed from such 2-D experiments. Vibratory hub loads were observed to increase with advance ratio. Maximum amplitude was observed near mu=1, with a

  12. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where many...... Reluctance Wind Generator (SRWG) based on Extreme Learning Machine (ELM) which could build a nonlinear mapping between flux linkage-current and rotor position. The learning data are derived from magnetization curves of the SRWG which are obtained from Finite Element Analysis (FEA) of an SRG with 8/6 stator...

  13. Design of rotor blade for vertical axis wind turbine using double aerofoil

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, P.D.; Ratkovich, N.; Kirkegaard, P.H.; Nielsen, Soeren R.K. [Aalborg Univ.. Dept. of Civil Engineering, Aalborg (Denmark)

    2012-07-01

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use,because they generate less noise, have bird free turbines and lower cost. There are few vertical axis wind turbines design with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design. In this current work, two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect to the main aerofoil defines the high lift. Orientation of slat aerofoil is a parameter of investigation in this paper. Computational fluid dynamics (CFD) have been used to obtain the aerodynamic characteristics of double aerofoil. The CFD simulations were carried out using Star CCM+ v7.04 (CD-adapco, UK) software. Aerofoils used in this work are selected from standard aerofoil shapes. (Author)

  14. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ichter, Brian; Steele, Adam; Loth, Eric; Moriarty, Patrick; Selig, Michael

    2016-04-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degrees at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.

  15. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Birgit Wieland

    2017-10-01

    Full Text Available The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  16. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling.

    Science.gov (United States)

    Wieland, Birgit; Ropte, Sven

    2017-10-05

    The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  17. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    Science.gov (United States)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  18. Simplified rotor load models and fatigue damage estimates for offshore wind turbines.

    Science.gov (United States)

    Muskulus, M

    2015-02-28

    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests

    Science.gov (United States)

    Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.

    2015-01-01

    The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.

  20. Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars

    Directory of Open Access Journals (Sweden)

    Jaime Rodríguez Arribas

    2014-01-01

    Full Text Available Among all the different types of electric wind generators, those that are based on doubly fed induction generators, or DFIG technology, are the most vulnerable to grid faults such as voltage sags. This paper proposes a new control strategy for this type of wind generator, that allows these devices to withstand the effects of a voltage sag while following the new requirements imposed by grid operators. This new control strategy makes the use of complementary devices such as crowbars unnecessary, as it greatly reduces the value of currents originated by the fault. This ensures less costly designs for the rotor systems as well as a more economic sizing of the necessary power electronics. The strategy described here uses an electric generator model based on space-phasor theory that provides a direct control over the position of the rotor magnetic flux. Controlling the rotor magnetic flux has a direct influence on the rest of the electrical variables enabling the machine to evolve to a desired work point during the transient imposed by the grid disturbance. Simulation studies have been carried out, as well as test bench trials, in order to prove the viability and functionality of the proposed control strategy.

  1. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II and IV Combined Experiment Rotor

    Science.gov (United States)

    Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

    1999-01-01

    Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

  2. Wind energy conversion. Volume VI. Nonlinear response of wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, I.

    1978-09-01

    The nonlinear equations of motor for a rigid rotor restrained by three flexible springs representing, respectively, the flapping, lagging, and feathering motions are derived using Lagrange's equations, for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order. The complete analysis is divided into three parts, A, B, and C. Part A consists of forced response of two-degree flapping-lagging rotor under the excitation of pure gravitational field (i.e., no aerodynamic forces). In Part B, the effect of aerodynamic forces on the dynamic response of two-degree flapping-lagging rotor is investigated. In Part C, the effect of third degree of motion, feathering, is considered.

  3. Technical analysis of utilization suitability of various wind rotor’s types for compressor’s power driving

    Directory of Open Access Journals (Sweden)

    Radim Rybár

    2005-03-01

    Full Text Available Conception is from the converting of wind energy, which flows across the wind turbine in mechanic work needed for compressor working. The wind motor one part of energy transform into mechanical work, part of energy is unused and part of energy of stead flow is transformed into eddy after wind rotor.The aim was rendering of technical analysis for equipment, which would use the wind with parameters for chosen area and whole unit would supply power in peak demand. Unit consists of wind turbine, which pushes compressor. Compressor pumps air into the compressed air storage. The air is used for power producing in time of peak demand.

  4. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    Science.gov (United States)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  5. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work.

    Energy Technology Data Exchange (ETDEWEB)

    Deola, Regina Anne

    2010-02-01

    Portable remote sensing devices are increasingly needed to cost effectively characterize the meteorology at a potential wind energy site as the size of modern wind turbines increase. A short term project co-locating a Sound Detection and Ranging System (SODAR) with a 200 meter instrumented meteorological tower at the Texas Tech Wind Technology Field Site was performed to collect and summarize wind information through an atmospheric layer typical of utility scale rotor plane depths. Data collected identified large speed shears and directional shears that may lead to unbalanced loads on the rotors. This report identifies suggestions for incorporation of additional data in wind resource assessments and a few thoughts on the potential for using a SODAR or SODAR data to quantify or investigate other parameters that may be significant to the wind industry.

  6. Acoustic measurements from a rotor blade-vortex interaction noise experiment in the German-Dutch Wind Tunnel (DNW)

    Science.gov (United States)

    Martin, Ruth M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the 4-bladed BO-105 helicopter main rotor, measured in the large European aeroacoustic wind tunnel, the DNW. Rotor blade-vortex interaction (BVI) noise data in the low speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals is presented.

  7. WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics; TOPICAL

    International Nuclear Information System (INIS)

    Smith, K.

    2001-01-01

    Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota

  8. WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.

    2001-07-16

    Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota.

  9. THE DIAGNOSTICS OF INDUCTION MOTORS ROTOR BAR BREAKS BASED ON THE ANALYSIS OF ELECTROMOTIVE FORCE IN THE STATOR WINDINGS

    Directory of Open Access Journals (Sweden)

    M.V. Zagirnyak

    2014-12-01

    Full Text Available A method for diagnostics of the induction motor rotor bar breaks, based on the wavelet-analysis of the electromotive force induced in the stator windings in the rundown mode is developed. A method for decomposition of the electromotive force of the stator winding phase to the electromotive force signals of the active sides of winding coils using Z-transformation theory is developed. The effectiveness of the proposed diagnostic method was experimentally confirmed.

  10. Characterisation of Large Disturbance Rotor Angle and Voltage Stability in Interconnected Power Networks with Distributed Wind Generation

    OpenAIRE

    Meegahapola, Lasantha; Littler, Timothy

    2015-01-01

    Wind generation in highly interconnected power networks creates local and centralised stability issues based on their proximity to conventional synchronous generators and load centres. This paper examines the large disturbance stability issues (i.e. rotor angle and voltage stability) in power networks with geographically distributed wind resources in the context of a number of dispatch scenarios based on profiles of historical wind generation for a real power network. Stability issues have be...

  11. Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas

    2013-01-01

    a reliable implementation for turbine control applications. Main body of abstract During the summer of 2012, a proof-of-concept field campaign with the two-dimensional upwind scanning wind lidar mounted in the rotating spinner of an operating Vestas NM80 turbine (59 m hub height and 80 m rotor diameter......, a proof-of-concept trial with a blade mounted lidar was performed during the measurement campaign and is reported in a separate EWEA 2013 contribution. Conclusion The study presented here is the novel full two-dimensional continuation of the previous inflow measurements on a circle presented in the paper...

  12. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel

    Science.gov (United States)

    Hoque, M. S.; Peterson, R. L.; Graham, T. A.

    1990-01-01

    A shake test was conducted in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center, using a load frame and dummy weights to simulate the weight of the NASA Rotor Test Apparatus. The simulated hub was excited with broadband random excitation, and accelerometer responses were measured at various locations. The transfer functions (acceleration per unit excitation force as a function of frequency) for each of the accelerometer responses were computed, and the data were analyzed using modal analysis to estimate the model parameters.

  13. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise. [NASA Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Gliebe, P. R.; Kerschen, E. J.

    1979-01-01

    The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  14. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  15. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    Science.gov (United States)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  16. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model...

  17. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    Science.gov (United States)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  18. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Sivachandran Paulsamy

    2014-01-01

    Full Text Available In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG for direct coupled stand alone wind energy systems (SAWES. Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  19. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    Science.gov (United States)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  20. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  1. Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight

    Science.gov (United States)

    Wadcock, Alan J.; Yamauchi, Gloria K.; Schairer, Edward T.

    2013-01-01

    A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations.

  2. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    Science.gov (United States)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  3. Power Smoothing of a Variable-Speed Wind Turbine Generator in Association With the Rotor-Speed-Dependent Gain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeonhee; Kang, Moses; Muljadi, Eduard; Park, Jung-Wook; Kang, Yong Cheol

    2017-07-01

    This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of the MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.

  4. Enhancing LVRT Capability of DFIG-Based Wind Turbine Systems with SMES Series in the Rotor Side

    Directory of Open Access Journals (Sweden)

    Xiao Zhou

    2017-01-01

    Full Text Available The necessary Low Voltage Ride Through (LVRT capability is very important to wind turbines. This paper presents a method to enhance LVRT capability of doubly fed induction generators- (DFIGs- based wind turbine systems with series superconducting magnetic energy storage (SMES in the rotor side. When grid fault occurs, series SMES in the rotor side is utilized to produce a desired output voltage and absorbs energy. Compared with other methods which enhance LVRT capability with Superconducting Fault-Current Limiter-Magnetic Energy Storage System (SFCL-MESS, this strategy can control the output voltage of SMES to suppress the transient AC voltage component in the rotor directly, which is more effective and rapid. Theoretical study of the DFIG under low voltage fault is developed; the simulation results are operated by MATLAB/Simulink.

  5. Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same

    Science.gov (United States)

    Wetzel, Kyle Kristopher

    2014-06-24

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  6. Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan

    2015-01-01

    The wake of the 5MW reference wind turbine designed by the National Renewable Energy Laboratory (NREL) is simulated using computational fluid dynamics with a fully resolved rotor geometry, an actuator line method and an actuator disc method, respectively. Simulations are carried out prescribing...

  7. Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same

    Science.gov (United States)

    Wetzel, Kyle Kristopher

    2008-03-18

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  8. Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis

    DEFF Research Database (Denmark)

    Bottasso, C. L.; Campagnolo, F.; Croce, A.

    2014-01-01

    The present work describes a method for the structural optimization of wind turbine rotor blades for given prescribed aerodynamic shape. The proposed approach operates at various description levels producing cost-minimizing solutions that satisfy desired design constraints at the finest modeling ...

  9. Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Yeo, Hyeonsoo; Romander, Ethan A.

    2012-01-01

    Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.

  10. TANDEM

    Data.gov (United States)

    Federal Laboratory Consortium — The Tandem Van de Graaff facility provides researchers with beams of more than 40 different types of ions - atoms that have been stripped of their electrons. One of...

  11. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  12. Comprehensive Aerodynamic Analysis of a 10 MW Wind Turbine Rotor Using 3D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.

    2014-01-01

    This article describes a comprehensive aerodynamic analysis carried out on the DTU 10 MW Reference Wind Turbine (DTU 10MW RWT), in which 3D CFD simulations were used to analyse the rotor performance and derive airfoil aerodynamic characteristics for use in aero-elastic simulation tools. The 3D CFD...... airfoil data derived using the Azimuthal Averaging Technique (AAT) was compared to airfoil data based on 2D CFD simulations on airfoil sections in combination with an array of 3D-correction engineering models, which indicated that the model by Chaviaropoulos and Hansen was in best agreement with the 3D...... Eddy Simulations (DES) were carried out to derive airfoil data for standstill conditions in the range of angles of attack of AOA = [-180, 180] deg. showing distinct differences compared to the baseline data....

  13. Multi-piece wind turbine rotor blades and wind turbines incorporating same

    Science.gov (United States)

    Moroz,; Mieczyslaw, Emilian [San Diego, CA

    2008-06-03

    A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

  14. Air-Loads Prediction of a UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Chang, I-Chung; Romander, Ethan A.; Potsdam, Mark; Yeo, Hyeonsoo

    2010-01-01

    The presented research extends the capability of a loose coupling computational fluid dynamics (CFD) and computational structure dynamics (CSD) code to calculate the flow-field around a rotor and test stand mounted inside a wind tunnel. Comparison of predicted air-load results for a full-scale UH-60A rotor recently tested inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at Ames Research Center and in free-air flight are made for three challenging flight data points from the earlier conducted UH-60A Air-loads Program. Overall results show that the extension of the coupled CFD/CSD code to the wind-tunnel environment is generally successful.

  15. WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A.

    2001-04-30

    The United States Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. As part of the WindPACT program, Global Energy Concepts, LLC (GEC), was awarded contract number YAM-0-30203-01 to examine Technical Area 1-Blade Scaling, Technical Area 2-Turbine Rotor and Blade Logistics, and Technical Area 3-Self-Erecting Towers. This report documents the results of GEC's Technical Area 1-Blade Scaling. The primary objectives of the Blade-Scaling Study are to assess the scaling of current materials and manufacturing technologies for blades of 40 to 60 meters in length, and to develop scaling curves of estimated cost and mass for rotor blades in that size range.

  16. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  17. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  18. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  19. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  20. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  1. 380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results

    Science.gov (United States)

    Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.

    2002-08-01

    Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.

  2. Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar

    2018-04-01

    Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.

  3. Sizing and control of trailing edge flaps on a smart rotor for maximum power generation in low fatigue wind regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.

    2016-01-01

    to fatigue damage have been identified. In these regions, the turbine energy output can be increased by deflecting the trailing edge (TE) flap in order to track the maximum power coefficient as a function of local, instantaneous speed ratios. For this purpose, the TE flap configuration for maximum power...... generation has been using blade element momentum theory. As a first step, the operation in non-uniform wind field conditions was analysed. Firstly, the deterministic fluctuation in local tip speed ratio due to wind shear was evaluated. The second effect is associated with time delays in adapting the rotor...

  4. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2017-05-01

    Full Text Available Dual rotor permanent magnet (DRPM wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF, cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA. The results show that the slot and pole number combinations have an important impact on the generator properties.

  5. The Influence of Rotor Configurations on the Energy Production in an Array of Vertical-Axis Wind Turbines

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2012-11-01

    We analyze the flow field within an array of 18 vertical-axis wind turbines (VAWTs) at full-scale and under natural wind conditions. The emphasis is on the energy flux into the turbine array and the energy extraction by the turbines. The wind velocities throughout the turbine array are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. These measurements yield a detailed insight into the turbine wakes and the recovery of the flow. A high planform kinetic energy flux is detected, which enables the flow velocities to return to 95% of the upwind value within six rotor diameters downwind from a turbine row. This is significantly faster than the recovery behind a typical horizontal-axis wind turbine (HAWT). The Presentation will compare the results for different rotor configurations. Conclusions will be drawn about the influence of these configurations on the power production of the individual turbines as well as the turbine array as a whole. The authors gratefully acknowledge funding from the National Science Foundation Energy for Sustainability program (Grant No. CBET-0725164) and the Gordon and Betty Moore Foundation.

  6. Vibratory Loads Data from a Wind-Tunnel Test of Structurally Tailored Model Helicopter Rotors

    Science.gov (United States)

    Yeager, William T., Jr.; Hamouda, M-Nabil H.; Idol, Robert F.; Mirick, Paul H.; Singleton, Jeffrey D.; Wilbur, Matthew L.

    1991-01-01

    An experimental study was conducted in the Langley Transonic Dynamics Tunnel to investigate the use of a Bell Helicopter Textron (BHT) rotor structural tailoring concept, known as rotor nodalization, in conjunction with advanced blade aerodynamics as well as to evaluate rotor blade aerodynamic design methodologies. A 1/5-size, four-bladed bearingless hub, three sets of Mach-scaled model rotor blades were tested in forward flight from transition up to an advance ratio of 0.35. The data presented pertain only to the evaluation of the structural tailoring concept and consist of fixed-system and rotating system vibratory loads. These data will be useful for evaluating the effects of tailoring blade structural properties on fixed-system vibratory loads, as well as validating analyses used in the design of advanced rotor systems.

  7. GFRP life in wind rotor blades; Lebensdauer von GFK im Holmgurt und im Schubsteg von Rotorblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Kensche, C.W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany). Inst. fuer Bauweisen- und Konstruktionsforschung

    1999-07-01

    Lives of GFRP rotor blade components were calculated on the basis of Woehler curves and the wind power specific standard WISPERX using the linear Palmgren-Miner rule. The Calculations were based on experiments with belts made of the L20/SL epoxy resin system at pressure ratios R=0.1, and -1 and with torsionally stressed GFRP tubes of linen tissue with the epoxy resing GE162/C260 at R=0.1 and -1. The results were incorporated into Haigh diagrams, from which the damage from the collective load was calculated by linear interpolation of the averaged stresses and amplitudes resp. the lines of constant life. The life curves calculated for different maximum stress horizons are in good agreement with experimental collective loads. A comparison of life curves showed that the linen tissue material was more fatigue-sensitive than the belt material. [German] Fuer GFK-Gurte und Schubstege von Rotorblaettern wurden Lebensdauerberechnungen auf der Basis von Woehlerkurven und dem windenergiespezifischen Standard WISPERX unter Anwendung der linearen Palmgren-Miner Regel durchgefuehrt. Bei der Betrachtung der Gurte wurde auf Versuche an UD-Proben mit dem Epoxidharzsystem L20/SL zurueckgegriffen, die bei Spannungsverhaeltnissen von R=0.1, -1 und 10 durchgefuehrt worden waren. Grundlage fuer die Lebensdauerbestimmung der Schubstege waren Ermuedungsversuche an torsionsbelasteten GFK-Rohren aus Leinengewebe mit dem Epoxidharz GE162/C260 bei R=0.1 und -1. In den daraus konstruierten Haighdiagrammen wurden die Schaedigungen durch das Lastkollektiv mittels linearer Interpolation der Mittelspannungen und Amplituden bzw. der Linien konstanter Lebensdauer ermittelt. Die Lebensdauerkurven, die fuer verschiedene Maximalspannungshorizonte ermittelt wurden, stimmen gut mit experimentellen Lastkollektivergebnissen ueberein. Beim Vergleich der Lebensdauerkurven zeigt sich, dass ein Leinengewebesteg erheblich ermuedungsgefaehrdeter ist als ein Gurt. (orig.)

  8. A doubly-fed induction generator-based wind generation system with quasi-sine rotor injection

    Science.gov (United States)

    Yuvarajan, S.; Fan, Lingling

    Wind generating systems use doubly-fed induction generators (DFIGs) to achieve high conversion efficiency and to reduce the installation cost. The paper proposes and analyzes a simple DFIG-based wind generation system in which the excitation power is obtained from a photovoltaic (PV) panel and battery. The proposed scheme is suitable for small wind power systems for which a complex field orientation control is not justified. It can be used for stand-alone operation and also grid-tied operation. The rotor of the DFIG is applied with a quasi-sine wave instead of a sine wave. The operation and harmonic characteristics of the scheme are established using analysis, simulation, and experimentation. The details of the control circuit are given along with the experimental waveforms of voltages and currents and frequency spectra. The total harmonic distortion in the output current is found to be around 8%.

  9. Results from a test of a 2/3-scale V-22 rotor and wing in the 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Felker, Fort F.

    1991-01-01

    A test of a 0.658-scale V-22 rotor and wing was conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The principal objectives of the test were to measure the wing download in hover for a variety of test configurations, and rotor performance in forward flight. Also, a limited amount of data on rotor performance in vertical climb were acquired. This paper presents the results from the test with predictions from appropriate analytical methods. A new method for presenting and interpreting wing surface pressure data in hover is described, and this method shows that the wing flap can produce substantial lift loads in hover. The rotor performance in vertical climb was underpredicted by CAMRAD/JA and by the free wake analysis EHPIC. A simple momentum theory is presented which provides good predictions of rotor performance in forward flight.

  10. Condition monitoring of a rotor arrangement in particular a wind turbine

    DEFF Research Database (Denmark)

    2017-01-01

    the rotor arrangement rotates, recording corresponding values of azimuth angle and edgewise and flap wise root bending moments for a plurality of rotations of rotor arrangement, transforming by use of e.g. a multi blade coordinate transformation, a Park's transformation or similar transformation...... the recorded edgewise and flap wise root bending moments (q) into a coordinate system rotating with the rotational shaft, thereby obtaining transformed root bending moments (qf). The method further comprising identifying periodicity in each of the transformed root bending moments, determining the condition...... of the rotor arrangement to be faulty, in case the one or more periodicities are identified in the transformed root bending moments....

  11. Wind-Tunnel Survey of an Oscillating Flow Field for Application to Model Helicopter Rotor Testing

    Science.gov (United States)

    Mirick, Paul H.; Hamouda, M-Nabil H.; Yeager, William T., Jr.

    1990-01-01

    A survey was conducted of the flow field produced by the Airstream Oscillator System (AOS) in the Langley Transonic Dynamics Tunnel (TDT). The magnitude of a simulated gust field was measured at 15 locations in the plane of a typical model helicopter rotor when tested in the TDT using the Aeroelastic Rotor Experimental System (ARES) model. These measurements were made over a range of tunnel dynamic pressures typical of those used for an ARES test. The data indicate that the gust field produced by the AOS is non-uniform across the tunnel test section, but should be sufficient to excite a model rotor.

  12. Dynamic response of NASA Rotor Test Apparatus and Sikorsky S-76 hub mounted in the 80- by 120-Foot Wind Tunnel

    Science.gov (United States)

    Peterson, Randall L.; Hoque, Muhammed S.

    1994-01-01

    A shake test was conducted in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center, using the NASA Ames Rotor Test Apparatus (RTA) and the Sikorsky S-76 rotor hub. The primary objective of this shake test was to determine the modal properties of the RTA, the S-76 rotor hub, and the model support system installed in the wind tunnel. Random excitation was applied at the rotor hub, and vibration responses were measured using accelerometers mounted at various critical locations on the model and the model support system. Transfer functions were computed using the load cell data and the accelerometer responses. The transfer function data were used to compute the system modal parameters with the aid of modal analysis software.

  13. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Litvinov, I. V.

    2015-01-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the mai...... time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow....

  14. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  15. Added damping of a wind turbine rotor : Two-dimensional discretization expressing the nonlinear wind-force dependency

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2014-01-01

    In determining wind forces on wind turbine blades, and subsequently on the tower and the foundation, the blade response velocity cannot be neglected. This velocity alters the wind force, which depends on the wind velocity relative to that of the blades This blade response velocity component of the

  16. Anti-freeze coatings for the rotor blades of wind turbines; Anti-freeze Beschichtungen fuer Rotorblaetter von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, K.; Kaufmann, A.; Hirayama, M.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at projects involving the development of suggestions for coatings for the rotor blades of wind turbines. The coatings are to reduce the formation of hoarfrost on the leading edges of the blades. Various coatings are described and the mechanisms involved in the formation of the frost and in keeping the blades as free as possible from frost are discussed. Global know-how on the subject is discussed, as is know-how available in Europe and Switzerland. Manufacturers, planning offices and installation operators are listed, as are research institutes who are dealing with this problem. In the summary, the authors stress the importance of choosing the coating most suitable for the actual climatic conditions at the wind turbine's location. A suggestion is made for further work in this area.

  17. Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades

    Science.gov (United States)

    Yeager, William T., Jr.; Wilbur, Matthew L.

    2005-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.

  18. Wind Turbine Rotor-Tower Interaction Using an Incompressible Overset Grid Method

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.; Johansen, Jeppe

    2009-01-01

    are in good agreement with the experimental data available. The interaction between the rotor and the tower induces significant increases in the transient loads on the blades and is characterized by an instant deloading and subsequent reloading of the blade, associated with the velocity deficit in the wake......, combined with the interaction with the shed vortices, which causes a strongly time-varying response. Finally, the results show that the rotor has a strong effect on the tower shedding frequency, causing under certain flow conditions vortex lock-in to take place on the upper part of the tower. Copyright...

  19. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Martínez-Lauranchet, Jaime; Probst, Oliver

    2014-01-01

    the aerodynamic efficiency of small WT (SWT) rotors for a wide range of operational conditions. The design variables are (1) the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2) chord length, (3) twist angle, and (4) thickness along the blade span...

  20. Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    On the basis of the concepts outlined by Joukowsky nearly a century ago, an analytical aerodynamic optimization model is developed for rotors with a finite number of blades and constant circulation distribution. In the paper, we show the basics of the new model and compare its efficiency...

  1. Experimental and theoretical characterization of acoustic noise from a 7.6 m diameter yaw controlled teetered rotor wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, E. [Univ. of Texas at El Paso, Dept. of Mechanical and Industrial Engineering, El Paso, TX (United States)

    1997-12-31

    An experimental investigation into the acoustic noise from a small (7.6 m diameter) teetered rotor wind turbine, set at various yaw angles up to 90 degrees of yaw, was conducted. The results revealed a 1/3 octave spectra which was dominated by a broad peak in the higher frequency range, at all yaw angles investigated. This prompted a theoretical investigation to reveal the mechanisms producing the dominant feature in the experimentally obtained noise spectra and resulted in the development of a wind turbine aerodynamic noise prediction coce, WTNOISE. The location near busy roads and the relatively rough terrain of the wind test site caused difficulties in obtaining useful noise spectral information below 500Hz. However, sufficiently good data was obtained above 500Hz to clearly show a dominant `hump` in the spectrum, centered between 3000 and 4000Hz. Although the local Reynolds number for the blade elements was around 500,000 and one might expect Laminar flow over a significant portion of the blade, the data did not match the noise spectra predicted when Laminar flow was assumed. Given the relatively poor surface quality of the rotor blades and the high turbulence of the test site it was therefore assumed that the boundary layer on the blade may have tripped relatively early and that the turbulent flow setting should be used. This assumption led to a much better correlation between experiment and predictions. The WTNOISE code indicated that the broad peak in the spectrum was most likely caused by trailing edge bluntness noise. Unfortunately time did not allow for modifications to the trailing edge to be investigated. (au)

  2. Iterative data-driven load control for flexible wind turbine rotors

    NARCIS (Netherlands)

    Navalkar, S.T.

    2016-01-01

    Wind energy has reached a high degree ofmaturity: for wind-rich onshore locations, it is already competitive with conventional energy sources. However, for low-wind, remote and offshore regions, research efforts are still required to enhance its economic viability. While it is possible to reduce the

  3. Estimation of rotor effective wind speeds using autoregressive models on Lidar data

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; van Bussel, G.J.W.

    2016-01-01

    Lidars have become increasingly useful for providing accurate wind speed measurements in front of the wind turbine. The wind field measured at distant meteorological masts changes its structure or was too distorted before it reaches the turbine. Thus, one cannot simply apply Taylor's frozen

  4. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  5. Analysis of the Madaras Rotor Power Plant: an alternate method for extracting large amounts of power from the wind. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Whitford, D.H.; Minardi, J.E.; West, B.S.; Dominic, R.J.

    1978-06-01

    The purpose of the program was to analyze and up-date the design of the Madaras Rotor Power Plant concept that had been developed in the 1930's to determine the technical and economic feasibility of this system to be competitive with conventional horizontal axis wind turbines. A four-task program consisting of a series of wind tunnel tests, an electro-mechanical analysis, a performance analysis, and a cost analysis was conducted.

  6. An induction/synchronous motor with high temperature superconductor/normal conductor hybrid double-cage rotor windings

    International Nuclear Information System (INIS)

    Nakamura, T; Nagao, K; Nishimura, T; Matsumura, K

    2009-01-01

    We propose hybrid double-cage rotor windings that consist of a high temperature superconductor (HTS) and a normal conductor, which are introduced into an HTS induction/synchronous motor (HTS-ISM). The motor rotates as a conventional induction motor when the operating temperature of the hybrid rotor is above the critical temperature of the HTS bars, i.e., in the normal conducting state. On the other hand, the HTS-ISM rotates as a synchronous motor when the temperature is below the critical temperature, i.e., in the superconducting (zero resistance) state. In other words, we do not always need to take care of the cooling conditions, if the HTS-ISM is automatically, as well as appropriately, controlled, depending upon the rotation mode. Namely, the above-mentioned hybrid double-cage HTS-ISM is possibly a breakthrough in solving the cooling problems of HTS rotating machines, especially for industrial applications. The experimental results of the aforementioned motor are reported. An example of an operation flowchart of the motor is also presented and discussed.

  7. An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2016-01-01

    are printed with 3D printer and tested one by one in a Wind Tunnel. Lift, drag and moment coefficients are calculated from the measured experimental data and program WT-Perf based on blade-element momentum (BEM) theory is used to predict the performance of wind turbine. Cp curves generated from the test...

  8. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    Science.gov (United States)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean

  9. MPC for Wind Power Gradients - Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Jørgensen, John Bagterp

    2013-01-01

    decentralized energy storage in the turbines’ inertia combined with a central storage unit or deferrable consumers can be utilized to achieve this goal at a minimum cost. We propose a variation on model predictive control to incorporate predictions of wind speed. Due to the aerodynamics of the turbines...... the model contains nonconvex terms. To handle this nonconvexity, we propose a sequential convex optimization method, which typically converges in fewer than 10 iterations. We demonstrate our method in simulations with various wind scenarios and prices for energy storage. These simulations show substantial......We consider the control of a wind power plant, possibly consisting of many individual wind turbines. The goal is to maximize the energy delivered to the power grid under very strict grid requirements to power quality. We define an extremely low power output gradient and demonstrate how...

  10. Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar

    OpenAIRE

    Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas; Foroughi Abari, Farzad; Mikkelsen, Torben; Harris, Michael; Slinger, Chris; Kapp, Stefan

    2013-01-01

    IntroductionWind turbine load reduction and power performance optimization via advanced control strategies is an active area in the wind energy community. In particular, feed-forward control using upwind inflow measurements by lidar (light detection and ranging) remote sensing instruments has attracted an increasing interest during the last couple of years. So far, the reported inflow measurements have been along a few measurement directions or at most on a circle in front of the turbine, whi...

  11. A multi-frequency fatigue testing method for wind turbine rotor blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Belloni, Federico; Tesauro, Angelo

    2017-01-01

    means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance...... excitation where typically a rotating mass excites the blade close to its first natural frequency. During operation the blade response due to external forcing is governed by a weighted combination of its eigenmodes. Current test methodologies which only utilise the lowest eigenfrequency induce a fictitious...... damage where additional tuning masses are required to recover the desired damage distribution. Even with the commonly adopted amplitude upscaling technique fatigue tests remain a time-consuming and costly endeavour. The application of tuning masses increases the complexity of the problem by lowering...

  12. A comprehensive investigation of trailing edge damage in a wind turbine rotor blade

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Eder, Martin Alexander; Belloni, Federico

    2016-01-01

    model, compared with experimental data of a blade test conducted at Danmarks Tekniske Universitet (DTU) Wind Energy (Department of Wind Energy, Technical University of Denmark), showed to be in good agreement. Subsequently, the effects of geometrical non-linear cross-section deformation and trailing-edge...... separate production of the multi-material subcomponents of which a blade is comprised and which are commonly joined through adhesives. Adhesive joints are known to represent a weak link in the structural integrity of blades, where particularly, the trailing-edge joint is notorious for its susceptibility...... for adhesive joint failure in blades is scarce. This paper presents a comprehensive numerical investigation of energy release rates at the tip of a transversely oriented crack in the trailing edge of a 34m long blade for a 1.5MW wind turbine. First, results of a non-linear finite element analysis of a 3D blade...

  13. Methodology for testing subcomponents; background and motivation for subcomponent testing of wind turbine rotor blades

    DEFF Research Database (Denmark)

    Antoniou, Alexandros; Branner, Kim; Lekou, D.J.

    2016-01-01

    that cannot be verified through the currently followed testing procedures and recommend ways to overcome these limitations. The work is performed within Work-Package WP7.1 entitled “Improved and validated wind turbine structural reliability - Efficient blade structure” of the IRPWIND programme. The numerical...

  14. Wind-tunnel tests of the XV-15 tilt rotor aircraft

    Science.gov (United States)

    Weiberg, J. A.; Maisel, M. D.

    1980-01-01

    The XV-15 aircraft was tested in the Ames 40 by 80 Foot Wind Tunnel for preliminary evaluation of aerodynamic and aeroelastic characteristics prior to flight. The tests were undertaken to investigate the aircraft performance, stability, control and structural loads for flight modes from helicopter through transition and airplane mode up to the tunnel capability of 170 knots. Results from these tests are presented.

  15. Increased Power Capture by Rotor Speed–Dependent Yaw Control of Wind Turbines

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Fleming, Paul A.; Scholbrock, Andrew K.

    2013-01-01

    and tested. Results show that, with the correction scheme in place, the yaw alignment of the case turbine is improved and the yaw error is reduced to the vicinity of zero degrees. As a result of the improved yaw alignment, an increased power capture is observed for below-rated wind speeds....

  16. Control of wind turbines with 'Smart' rotors : Proof of concept & LPV subspace identification

    NARCIS (Netherlands)

    Van Wingerden, J.W.

    2008-01-01

    Active control is becoming more and more important for the wind energy community. If we compare the 'old' stall regulated turbines with today's individual pitch controlled turbines we see that the loads can be considerably reduced, leading to lighter or larger turbines. However, limited actuator

  17. LM lightning protection and evolutions for larger wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, I. [LM Glasfiber Group, Lunderskov (Denmark)

    2005-07-01

    Over 2000 thunder storms are active throughout the world at any given moment, producing approximately 100 flashes of lightning per second. Non-conducting wind turbine blades without conducting components are often struck by lightning and suffer major damage. Statistics have shown that lightning causes 4 to 8 faults per 100 turbines per year in northern Europe, and that 7 to 10 per cent of all lightning damages involve wind turbine blades, which are the most expensive components to repair. There is also an increased risk of inboard puncture for lightning strikes of lower currents. Various lightning protection systems were presented in this paper, as well as optimization methods for different types of wind turbine blades. Multi-receptors, drain receptors, conductive cables and diverter strips were evaluated. Testing procedures for lightning protection components were reviewed. An outline of the Hige voltage test was presented. It was noted that pollution promotes the capture capabilities of wind turbine blades. Extensive high-voltage impact tests have shown that the semi-conductive carbon fibre is struck by lightning as often as the actual lightning receptors. Details of the LM DiverterStrip were presented. The strip captures the lightning strike and guides the way to the receptor. The strip is low maintenance and designed to last for 20 years, with a minimal influence on air flow. In addition, the current travelling in an ionized path above the segments of the LM strip makes a smooth transfer to the receptor. A recent year-long field tests has shown good results, without any wear or lightning damage to the strips. It was concluded that lightning protection reduces insurance costs, and that standard lightning protection systems used for fibre glass blades do not provide sufficient lightning protection for carbon fibre blades. refs., tabs., figs.

  18. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Aeroelastic impact of above-rated wave-induced structural motions on the near-wake stability of a floating offshore wind turbine rotor

    Science.gov (United States)

    Rodriguez, Steven; Jaworski, Justin

    2017-11-01

    The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.

  20. Correlating CFD Simulation with Wind Tunnel Test for the Full-Scale UH-60A Airloads Rotor

    Science.gov (United States)

    Romandr, Ethan; Norman, Thomas R.; Chang, I-Chung

    2011-01-01

    Data from the recent UH-60A Airloads Test in the National Full-Scale Aerodynamics Complex 40- by 80- Foot Wind Tunnel at NASA Ames Research Center are presented and compared to predictions computed by a loosely coupled Computational Fluid Dynamics (CFD)/Comprehensive analysis. Primary calculations model the rotor in free-air, but initial calculations are presented including a model of the tunnel test section. The conditions studied include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall. Predictions show reasonable agreement with measurement for integrated performance indicators such as power and propulsive but occasionally deviate significantly. Detailed analysis of sectional airloads reveals good correlation in overall trends for normal force and pitching moment but pitching moment mean often differs. Chord force is frequently plagued by mean shifts and an overprediction of drag on the advancing side. Locations of significant aerodynamic phenomena are predicted accurately although the magnitude of individual events is often missed.

  1. Control of a DFIG-based wind energy conversion system operating under harmonically distorted unbalanced grid voltage along with nonsinusoidal rotor injection conditions

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel control scheme for DFIG-based systems operating under three abnormal conditions. • Exact harmonic analysis of a DFIG operating under three abnormal conditions. • Implementation of the proposed hybrid controllers in the (dq) + and rotor (α r β r ) reference frames. - Abstract: In this study, novel hybrid proportional-integral-harmonic resonant (PI-R) controllers implemented in the both (dq) + and rotor (α r β r ) reference frames are presented to control a doubly fed induction generator (DFIG)-based wind power generation system operating simultaneously under the three conditions which are nonsinusoidal rotor voltage injection, harmonically distorted grid voltage, and unbalanced grid voltage. The contribution of this work is to present a novel control scheme implemented in the both (dq) + and rotor (α r β r ) reference frames by considering all the three mentioned conditions (no one or two of them). It will be shown that the proposed control scheme keeps the DFIG in an acceptable operation margin and furthermore, it eliminates all harmonics and pulsations components from the stator and the rotor circuits when the DFIG operates under harmonically distorted unbalanced grid voltage along with quasi-sine rotor injection conditions. The proposed control scheme is simulated in MATLAB/Simulink and simulated results are presented to validate the theoretical results. Although this work is carried out under the three mentioned conditions and other related works have been reported under only one condition, comparison between the results of this work and other works is performed to prove the excellent performances of the proposed control scheme

  2. Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter

    Science.gov (United States)

    Yeager, William T., Jr.; Mantay, Wayne R.; Wilbur, Matthew L.; Cramer, Robert G., Jr.; Singleton, Jeffrey D.

    1987-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions.

  3. Structural modelling of composite beams with application to wind turbine rotor blades

    DEFF Research Database (Denmark)

    Couturier, Philippe

    The ever changing structure and growing size of wind turbine blades put focus on the accuracy and flexibility of design tools. The present thesis is organized in four parts - all concerning the development of efficient computational methods for the structural modelling of composite beams which...... represented within the elements. A post processing scheme is also presented to recover inter laminar stresses via equilibrium equations of 3D elasticity derived in the laminate coordinate system.In the final part of the thesis a flexible method for analysing two types of instabilities associated with bending...... longitudinal stresses is modelled with a Finite Strip buckling analysis based on the deformed cross-section. The analysis is well suited for early stages of design as it only requires a simple 2D line mesh of the cross-section....

  4. Structural Health and Prognostics Management for Offshore Wind Turbines: Sensitivity Analysis of Rotor Fault and Blade Damage with O&M Cost Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Myrent, Noah J. [Vanderbilt Univ., Nashville, TN (United States). Lab. for Systems Integrity and Reliability; Barrett, Natalie C. [Vanderbilt Univ., Nashville, TN (United States). Lab. for Systems Integrity and Reliability; Adams, Douglas E. [Vanderbilt Univ., Nashville, TN (United States). Lab. for Systems Integrity and Reliability; Griffith, Daniel Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technology Dept.

    2014-07-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling and simulation approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Sensitivity analyses were carried out for the detection strategies of rotor imbalance and shear web disbond developed in prior work by evaluating the robustness of key measurement parameters in the presence of varying wind speeds, horizontal shear, and turbulence. Detection strategies were refined for these fault mechanisms and probabilities of detection were calculated. For all three fault mechanisms, the probability of detection was 96% or higher for the optimized wind speed ranges of the laminar, 30% horizontal shear, and 60% horizontal shear wind profiles. The revised cost model provided insight into the estimated savings in operations and maintenance costs as they relate to the characteristics of the SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability

  5. Calibration of partial safety factors for wind turbine rotor blades against fatigue failure; Kalibrering af partielle sikkerhedsfaktorer for udmattelse af vindmoellerotorer

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.J.; Ronold, K.O.; Thoegersen, M.L.

    2000-08-01

    The report describes a calibration of partial safety factors for wind turbine rotor blades subjected to fatigue loading in flapwise and edgewise bending. While earlier models - developed by the authors - dealt with such calibrations for site-specific individual turbines only, the calibration model applied herein covers an integrated analysis with different turbines on different sites and with different blade materials. The result is an optimized set of partial safety factors, i.e. a set of safety factors that lead to minimum deviation from the target reliability of the achieved reliabilities over the selected scope of turbines, sites and materials. The turbines included in the study cover rated powers of 450-600 kW. The result from the calibration are discussed in relation to the partial safety factors that are given in the Danish codes for design of glass fibre reinforced rotor blades (DS472 and DS456). (au)

  6. Multi-life-stage monitoring system based on fibre bragg grating sensors for more reliable wind turbine rotor blades: Experimental and numerical analysis of deformation and failure in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira

    , design and optimisation of offshore wind turbines. The MareWint main scientific objective is to optimise the design of offshore wind turbines, maximise reliability, and minimise maintenance costs. Integrated within the innovative rotor blades work-package, this PhD project is focused on damage analysis...... and structural health monitoring of wind turbine blades. The work presented sets the required framework to develop a monitoring system based on fibre Bragg gratings (FBG), which can be applied to the different life stages of a wind turbine blade. In this concept, the different measured physical parameters......, and supported/validated by numerical models, software tools, signal post-processing, and experimental validation. The damage in the wind turbine rotor blade is analysed from a material perspective (fibre reinforced polymers) and used as a design property, meaning that damage is accepted in an operational wind...

  7. Effect of Short-Circuit Faults in the Back-to-Back Power Electronic Converter and Rotor Terminals on the Operational Behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Giaourakis

    2015-02-01

    Full Text Available This paper deals with the operational behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System under power electronic converter and rotor terminals faulty conditions. More specifically, the effect of the short-circuit fault both in one IGBT of the back-to-back power electronic converter and in rotor phases on the overall system behavior has been investigated via simulation using a system of 2 MW. Finally, the consequences of these faults have been evaluated.

  8. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    National Research Council Canada - National Science Library

    Young, L. A; Lillie, D; McCluer, M; Yamauchi, G. K; Derby, M. R

    2002-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics...

  9. Wind Tunnel Evaluation of a Model Helicopter Main-Rotor Blade With Slotted Airfoils at the Tip

    Science.gov (United States)

    Noonan, Kevin W.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.

    2001-01-01

    Data for rotors using unconventional airfoils are of interest to permit an evaluation of this technology's capability to meet the U.S. Army's need for increased helicopter mission effectiveness and improved safety and survivability. Thus, an experimental investigation was conducted in the Langley Transonic Dynamics Tunnel (TDT) to evaluate the effect of using slotted airfoils in the rotor blade tip region (85 to 100 percent radius) on rotor aerodynamic performance and loads. Four rotor configurations were tested in forward flight at advance ratios from 0.15 to 0.45 and in hover in-ground effect. The hover tip Mach number was 0.627, which is representative of a design point of 4000-ft geometric altitude and a temperature of 95 F. The baseline rotor configuration had a conventional single-element airfoil in the tip region. A second rotor configuration had a forward-slotted airfoil with a -6 deg slat, a third configuration had a forward-slotted airfoil with a -10 slat, and a fourth configuration had an aft-slotted airfoil with a 3 deg flap (trailing edge down). The results of this investigation indicate that the -6 deg slat configuration offers some performance and loads benefits over the other three configurations.

  10. Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    Science.gov (United States)

    Brooks, Thomas F.; Martin, Ruth M.

    1987-01-01

    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism.

  11. Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    Science.gov (United States)

    Brooks, Thomas F.; Martin, Ruth M.

    1987-10-01

    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism.

  12. Rotor blade assembly having internal loading features

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, Daniel David

    2017-05-16

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  13. Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms

    Science.gov (United States)

    Mancuso, Peter Timothy

    Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.

  14. DIRECT POWER CONTROL OF A DFIG BASED WIND TURBINS UNDER UNBALANCED GRID VOLTAGE WITHOUT ROTOR POSITION SENSOR

    Directory of Open Access Journals (Sweden)

    ali izanlo

    2017-05-01

    Full Text Available In this paper, the behavior of a doubly fed induction generator (DFIG is proposed under unbalanced grid voltage and without using a rotor position sensor. There are two main methods that are been used for the detection of rotor position: using shaft sensor and sensorless algorithm. In this paper the shaft sensor is eliminated and a position sensorless algorithm is used for estimating the rotor position. Sensorless operation is more desirable than using shaft sensor, because the shaft sensor has several disadvantages related to the cost, cabling, robustness and maintenance. Also, during network unbalance, three selectable control targets are identified for the rotor side converter (RSC, i.e., obtaining sinusoidal and symmetrical stator currents, mitigation of active and reactive powers ripples and the cancellation of electromagnetic torque oscillations. The effectiveness of the proposed control strategy is confirmed by the simulation results from a 2-MW DFIG system. It is concluded that the sensorless algorithm is able to produce accurate results similar to the case of that used from shaft sensor and it can be used in the practical applications.

  15. Feasibility study of Unmanned Aerial Vehicles (UAV) application for ultrasonic Non-Destructive Testing (NDT) of Wind Turbine Rotor Blades. Preliminary experiments of handheld and UAV utrasonic testing on glass fibre laminate

    OpenAIRE

    Skaga, Simon Kleppevik

    2017-01-01

    In this thesis, we have conducted a feasibility study on UAV application for ultrasonic pulsed non-destructive testing of wind turbine rotor blades. Due to the high initial cost of wind turbines, and their decreasing availability due to increasing size and offshore locations, it is imperative to properly maintain these structures over their 10-30-year lifetime. Operation and maintenance costs can account for 25-30% of the overall energy generation costs (MartinezLuengo, et al., 2016), where t...

  16. Fast Calculation Model and Theoretical Analysis of Rotor Unbalanced Magnetic Pull for Inter-Turn Short Circuit of Field Windings of Non-Salient Pole Generators

    Directory of Open Access Journals (Sweden)

    Guangtao Zhang

    2017-05-01

    Full Text Available Inter-turn short circuit of field windings (ISCFW may cause the field current of a generator to increase, output reactive power to decrease, and unit vibration to intensify, seriously affecting its safe and stable operation. Full integration of mechanical and electrical characteristics can improve the sensitivity of online monitoring, and detect the early embryonic period fault of small turns. This paper studies the calculations and variations of unbalanced magnetic pull (UMP, of which the excitation source of rotor vibration is the basis and key to online fault monitoring. In grid load operation, ISCFW are first calculated with the multi-loop method, so as to obtain the numerical solutions of the stator and the rotor currents during the fault. Next, the air-gap magnetic field of the ISCFW is analyzed according to the actual composition modes of the motor loops in the fault, so as to obtain the analytic expressions of the air-gap magnetic motive force (MMF and magnetic density. The UMP of the rotor is obtained by solving the integral of the Maxwell stress. The correctness of the electric quantity calculation is verified by the ISCFW experiment, conducted in a one pair-pole non-salient pole model machine. On this basis, comparing the simulation analysis with the calculation results of the model in this paper not only verifies the accuracy of the electromagnetic force calculation, but also proves that the latter has the advantages of a short time consumption and high efficiency. Finally, the influencing factors and variation law of UMP are analyzed by means of an analytic model. This develops a base for the online monitoring of ISCFW with the integration of mechanical and electrical information.

  17. Initial Investigation of the Acoustics of a Counter-Rotating Open Rotor Model with Historical Baseline Blades in a Low-Speed Wind Tunnel

    Science.gov (United States)

    Elliott, David M.

    2012-01-01

    A counter-rotating open rotor scale model was tested in the NASA Glenn Research Center 9- by 15-Foot Low-Speed Wind Tunnel (LSWT). This model used a historical baseline blade set with which modern blade designs will be compared against on an acoustic and aerodynamic performance basis. Different blade pitch angles simulating approach and takeoff conditions were tested, along with angle-of-attack configurations. A configuration was also tested in order to determine the acoustic effects of a pylon. The shaft speed was varied for each configuration in order to get data over a range of operability. The freestream Mach number was also varied for some configurations. Sideline acoustic data were taken for each of these test configurations.

  18. The flow upstream of a row of aligned wind turbine rotors and its effect on power production

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels; Gaunaa, Mac

    2017-01-01

    The blockage developing in front of a laterally aligned row of wind turbines and its impact on power production over a single turbine was analysed using two different numerical methods. The inflow direction was varied from orthogonal to the row until 45◦, with the turbines turning into the wind, ...

  19. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  20. Calculation of Rotor Performance and Loads Under Stalled Conditions

    National Research Council Canada - National Science Library

    Yeo, Hyeonsoo

    2003-01-01

    Rotor behavior in stalled conditions is investigated using wind tunnel test data of a 1/10-scale CH-47B/C type rotor, which provides a set of test conditions extending from unstalled to light stall...

  1. Wind turbine/generator set and method of making same

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  2. Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih; Weihing, Pascal; Lutz, Thorsten; Krämer, Ewald [University of Stuttgart, Stuttgart (Germany)

    2017-05-15

    The present study focuses on the impact of grid for accurate prediction of the MEXICO rotor under stalled conditions. Two different blade mesh topologies, O and C-H meshes, and two different grid resolutions are tested for several time step sizes. The simulations are carried out using Delayed detached-eddy simulation (DDES) with two eddy viscosity RANS turbulence models, namely Spalart- Allmaras (SA) and Menter Shear stress transport (SST) k-ω. A high order spatial discretization, WENO (Weighted essentially non- oscillatory) scheme, is used in these computations. The results are validated against measurement data with regards to the sectional loads and the chordwise pressure distributions. The C-H mesh topology is observed to give the best results employing the SST k-ω turbulence model, but the computational cost is more expensive as the grid contains a wake block that increases the number of cells.

  3. Experimental tests of the effect of rotor diameter ratio and blade number to the cross-flow wind turbine performance

    Science.gov (United States)

    Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.

  4. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  5. Flowfield Characteristics on a Retreating Rotor Blade

    Science.gov (United States)

    2015-12-03

    fixed wing, and then as a rotor blade in a low-speed wind tunnel . Fixed-wing results from load measurements and flow visualization showed that the sharp...wing airloads (Figure 1.3) and tuft visualization, to Particle Image Velocimetry (PIV) under a blade held fixed as part of a rotor in a wind tunnel [43...were performed in the 2.13m×2.74m John Harper wind tunnel at our institution. The untwisted rectangular blade has a NACA 0013 planform. The rotor used

  6. Radial Flow Effects On A Retreating Rotor Blade

    Science.gov (United States)

    2014-05-01

    understood. Experiments were conducted on a rigid two bladed teetering rotor at high advance ratios in a low speed wind tunnel . Particle image...the John Harper low speed wind tunnel described in the previous section with the motor positioned below the rotor . In order to simplify the operations...at 2.5 cm spacing to the suction side of the wing. A 134 (a) Drawing of the wing setup (b) Side view of the rotor blade setup in the wind tunnel

  7. Performance analysis of a novel planetary speed increaser used in single-rotor wind turbines with counter-rotating electric generator

    Science.gov (United States)

    Saulescu, R.; Neagoe, M.; Munteanu, O.; Cretescu, N.

    2016-08-01

    The paper presents a study on the kinematic and static performances of a new type of 1DOF (Degree Of Freedom) planetary speed increaser to be implemented in wind turbines, a transmission with three operating cases: a) one input and one output, b) one input and two outputs, in which the speed of the secondary output is equal to the input speed, and c) with one input and two outputs, where the secondary output speed is higher than the input speed. The proposed speed increaser contains two sun gears and a double satellite, allowing operation with an output connected to the fixed stator of a classic generator (case I) or with two counterrotating outputs that drive a counter-rotating generator (with a mobile stator). A new variant of planetary transmission capable of providing the speed increase of the generator stator and, thus, the increase of the relative speed between the generator rotor and stator is obtained by the parallel connection of the speed increaser with a planetary gear. The three conceptual variants of planetary transmission are analytically modelled and comparatively analysed based on a set of kinematic and static parameters. The proposed transmission has higher performances compared to the same transmission with one input and one output, the increase of the kinematic amplification ratio and efficiency being achieved simultaneously.

  8. output enhancement in the transfer-field machine using rotor circuit ...

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... series or in parallel and hence double the output. When the secondary/rotor winding of a conventional would- rotor induction machine is made to supply the primary (rotor) winding of an inverted induction machine to which it is rigidly coupled; and if the secondary (stator) winding of the second, machine is.

  9. Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM

    Science.gov (United States)

    2013-12-01

    Georgia Tech rotor - airframe interaction wind tunnel experimental setup – reproduced from Reference 23... Rotor - Airframe Interaction Experimental Setup The wind tunnel experiment in Reference 20 involves placement of a simple fuselage body in a 2.3 m...Laser Doppler Velocimetry (LDV) technique. Figure 5.1: Georgia Tech rotor - airframe interaction wind tunnel experimental setup – reproduced

  10. Low-Speed Wind-Tunnel Test of an Unpowered High-Speed Stoppable Rotor Concept in Fixed-Wing Mode

    Science.gov (United States)

    Lance, Michael B.; Sung, Daniel Y.; Stroub, Robert H.

    1991-01-01

    An experimental investigation of the M85, a High Speed Rotor Concept, was conducted at the NASA Langley 14 x 22 foot Subsonic Tunnel, assisted by NASA-Ames. An unpowered 1/5 scale model of the XH-59A helicopter fuselage with a large circular hub fairing, two rotor blades, and a shaft fairing was used as a baseline configuration. The M85 is a rotor wing hybrid aircraft design, and the model was tested with the rotor blade in the fixed wing mode. Assessments were made of the aerodynamic characteristics of various model rotor configurations. Variation in configurations were produced by changing the rotor blade sweep angle and the blade chord length. The most favorable M85 configuration tested included wide chord blades at 0 deg sweep, and it attained a system lift to drag ratio of 8.4.

  11. Experimental investigation of main rotor wake

    Directory of Open Access Journals (Sweden)

    Stepanov Robert

    2017-01-01

    Full Text Available In this work, experimental results of rotor wake in hover mode are presented. The experiments were carried out with a rotor rig model in the T-1K wind tunnel in Kazan National Research Technical University (Kazan Aviation Institute. The rotor consisted of four identical blades. The Q-criterion was used to identify tip vortices for a 2D case. The results were then compared with two different wake models.

  12. Experimental investigation of main rotor wake

    OpenAIRE

    Stepanov Robert; Mikhailov Sergey

    2017-01-01

    In this work, experimental results of rotor wake in hover mode are presented. The experiments were carried out with a rotor rig model in the T-1K wind tunnel in Kazan National Research Technical University (Kazan Aviation Institute). The rotor consisted of four identical blades. The Q-criterion was used to identify tip vortices for a 2D case. The results were then compared with two different wake models.

  13. An parametric investigation into the effect of low induction rotor (LIR) wind turbines on the levelised cost of electricity of a 1 GW offshore wind farm in a North Sea wind climate

    NARCIS (Netherlands)

    R. Quinn; B. Bulder; Gerard Schepers

    In this report, the details of an investigation into the eect of the low induction wind turbines on the Levelised Cost of Electricity (LCoE) in a 1GW oshore wind farm is outlined. The 10 MW INNWIND.EU conventional wind turbine and its low induction variant, the 10 MW AVATAR wind turbine, are

  14. Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion

    DEFF Research Database (Denmark)

    Døssing, Mads; Aagaard Madsen, Helge; Bak, Christian

    2012-01-01

    The blade element momentum (BEM) method is widely used for calculating the quasi-steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now...... by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios. It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM....... In short, allows fast aerodynamic calculations and optimizations with a much higher degree of accuracy than the traditional BEM model. Copyright © 2011 John Wiley & Sons, Ltd....

  15. Wind-tunnel investigation of the effects of blade tip geometry on the interaction of torsional loads and performance for an articulated helicopter rotor

    Science.gov (United States)

    Yeager, W. T.; Mantay, W. R.

    1981-01-01

    The Langley transonic dynamics tunnel was used to determine the degree of correlation between rotor performance and the dynamic twist generated by changes in blade tip geometry using an articulated rotor with four different tip geometries at advance ratios of 0.20, 0.30 and 0.35. Based on the data obtained, it is concluded that: (1) there appears to be no strong correlation between blade torsion loads and rotor performance prediction; (2) for a given rotor task at each advance ratio investigated, both the azimuthal variation of torsional moment and the mean torsional moment at 81% radius are configuration dependent; (3) reducing the nose down twist on the advancing blade appears to be more important to forward flight performance than increasing the nose down twist on the retreating blade; (4) the rotor inflow model used was important in predicting the performance of the adaptive rotor; and (5) neither rigid blade solidity effects, inflow environment, nor blade torsion loads can be used alone to accurately predict active rotor performance.

  16. Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter

    Science.gov (United States)

    Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.

  17. Open Rotor - Analysis of Diagnostic Data

    Science.gov (United States)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  18. Investigation of Rotor Loads and Vibration at Transition Speed

    National Research Council Canada - National Science Library

    Yeo, Hyeonsoo; Shinoda, Patrick M

    2002-01-01

    .... There is good agreement for the oscillatory flap bending moments between the flight and wind tunnel tests when the rotor in the wind tunnel was trimmed to match thrust and pitch and roll moments...

  19. Performance and Vibratory Loads Data From a Wind-Tunnel Test of a Model Helicopter Main-Rotor Blade With a Paddle-Type Tip

    Science.gov (United States)

    Yeager, William T., Jr.; Noonan, Kevin W.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.

    1997-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to obtain data to permit evaluation of paddle-type tip technology for possible use in future U.S. advanced rotor designs. Data was obtained for both a baseline main-rotor blade and a main-rotor blade with a paddle-type tip. The baseline and paddle-type tip blades were compared with regard to rotor performance, oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Data was obtained in hover and forward flight over a nominal range of advance ratios from 0.15 to 0.425. Results indicate that the paddle-type tip offers no performance improvements in either hover or forward flight. Pitch-link oscillatory loads for the paddle-type tip are higher than for the baseline blade, whereas 4-per-rev vertical fixed-system loads are generally lower.

  20. A Study of Coaxial Rotor Performance and Flow Field Characteristics

    Science.gov (United States)

    2016-01-22

    1950 (Ref. 8) in the full-scale wind tunnel at NASA Langley Research Center. The coaxial rotor consisted of two 20-in diameter rotors , with two blades...C., “ Wind - tunnel studies of the perfor- mance of multirotor configurations,” NACA TN- 3236, Au- gust 1954. 17Kim, H. W. and Brown, R. E...A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field

  1. A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control

    NARCIS (Netherlands)

    Lackner, M.A.; van Kuik, G.A.M.

    2009-01-01

    Modern wind turbines have been steadily increasing in size, and have now become very large, with recent models boasting rotor diameters greater than 120 m. Reducing the loads experienced by the wind turbine rotor blades is one means of lowering the cost of energy of wind turbines. Wind turbines are

  2. Single rotor turbine engine

    Science.gov (United States)

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  3. Transonic Axial Splittered Rotor Tandem Stator Stage

    Science.gov (United States)

    2016-12-01

    you provided. Andria Holmes, thank you for our weekly sports discussions and all the help you provided. Dr. Platzer, thank you for sharing your...vertical Z direction. The extruder works in the same manner as a hot glue gun tip. Electrical coils heat the tip of the extruder and melt the plastic...change of enthalpy, equation 4, is equated to the product of the specific heat capacity at constant pressure and the change of temperature between

  4. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  5. Loads and performance data from a wind-tunnel test of model articulated helicopter rotors with 2 different blade torsional stiffnesses

    Science.gov (United States)

    Yeager, W. T., Jr.; Mantay, W. R.

    1983-01-01

    A passive means of tailoring helicopter rotor blades to improve performance and reduce loads was evaluated. The parameters investigated were blade torsional stiffness, blade section camber, and distance between blade structural elastic axis and blade tip aerodynamic center. This offset was accomplished by sweeping the tip. The investigation was conducted at advance ratios of 0.20, 0.30, and 0.40. Data are presented without analysis; however, cross referencing of performance data and harmonic loads data may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating passive aeroelastic tailoring or rotor blade parameters.

  6. Wind energy expo '82 and national conference American Wind Energy Association

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, V. (ed.)

    1982-01-01

    Separate abstracts were prepared for 41 papers in this conference report. Wind farms, large wind turbines, new wind turbines, marketing small wind systems, programs, performance, and economics, analytic methods, testing, power conversion, and rotor systems are the principal topics covered.

  7. Rotor pole refurbishment for hydrogenerators: insulation problems and solutions

    International Nuclear Information System (INIS)

    Reynolds, R.R.; Rux, L.

    2005-01-01

    Rotor poles for Unit 1 at Lower Granite Powerhouse were removed from the rotor and shipped to a repair facility for refurbishment. Upon inspection, it was found that all of the pole bodies exhibited a distinct bow, center to end, on the pole mounting surface. In some cases, the deflection was as much as 0.106 inch. Concerns were raised about how this condition might affect the ability to properly insulate and/or re-seat the poles. This paper presents details of the rotor pole and field winding evaluation, the problems encountered, and the solutions implemented to successfully refurbish the rotor poles and field winding. (author)

  8. WTG Energy Systems' MP1-200 200 kilowatt wind turbine generator. [a fixed pitch rotor configuration driving a synchronous generator

    Science.gov (United States)

    Spaulding, A. P., Jr.

    1979-01-01

    The preliminary design criteria of the MP1-200 wind turbine are given along with a brief description of the wind turbine generator. Performance and operational experience and cost factors are included. Recommendations for additional research are listed.

  9. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  10. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...... of the rotor, icing and lightning. Research is done throughout the world in order to develop and improve such measurement systems. Commercial hardware and software available for the described purpose is presented in the report....

  11. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  12. Modelling Wind Turbine Inflow: The Induction Zone

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    to the rotor, but requires exact knowledge of the flow deceleration to estimate the available, undis- turbed kinetic energy. Thus this thesis explores, mostly numerically, any wind turbine or environmental dependencies of this deceleration. The computational fluid dynamics model (CFD) employed is validated......A wind turbine decelerates the wind in front of its rotor by extracting kinetic energy. The wind speed reduction is maximal at the rotor and negligible more than five rotor radii upfront. By measuring wind speed this far from the rotor, the turbine’s performance is determined without any rotor bias...... significant parameter. Exploiting this singu- lar dependency, a fast semi-empirical model is devised that accurately predicts the velocity deficit upstream of a single turbine. Near-rotor mea-surements in combination with this model are able to retrieve the kinetic energy available to the turbine in flat...

  13. Towards Efficient Fluid-Structure-Control Interaction for Smart Rotors

    NARCIS (Netherlands)

    Gillebaart, T.

    2016-01-01

    One of the solutions to speed up the energy transition is the smart rotor concept: wind turbine blades with actively controlled Trailing Edge Flaps. In the past decade feasibility studies (both numerical and experimental) have been performed to assess the applicability of smart rotors in future

  14. Wind Turbine Test Wind Matic WM 15S

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    The report describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, dynamical...... behaviour of the turbine, loads at cut-in and braking, rotor torque at stopped condition, and noise emission....

  15. Wind Turbine Test. Wind Matic WM 17S

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    The report describes standard measurements performed on a Wind-Matic WM 17S, 75 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, structural...

  16. Methods and apparatus for cooling wind turbine generators

    Science.gov (United States)

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  17. Surface-Mount Rotor Motion Sensing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  18. Controlling the quantum rotational dynamics of a driven planar rotor ...

    Indian Academy of Sciences (India)

    Archana Shukla

    driven planar rotor, a model for rigid diatomic molecules, by rebuilding barriers in the classical phase space. The barriers are invariant tori with irrational winding ratios which are perturbatively constructed at desired locations in the phase space. We.

  19. A Surface-Mounted Rotor State Sensing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  20. Individual Blade Control of a 5-bladed Rotor Using the Multiple Swashplate System

    OpenAIRE

    Küfmann, Philip; Bartels, Rainer; van der Wall, Berend G.; Schneider, Oliver; Holthusen, Hermann; Postma, Jos

    2017-01-01

    After its first wind tunnel test in 2015, the multiple swashplate system (META) as well as the DLR's rotor test rig were modified and upgraded extensively to allow IBC operation on a five-bladed rotor system. In late 2016 a second wind tunnel test was performed on a Mach-scaled, five-bladed model rotor with the goal to reduce Vibration, noise and required rotor power on a five-bladed rotor in different flight conditions using proven IBC strategies. Highlights of the test matrix were 2/rev swe...

  1. Measurement of electrical polar symmetry in turbogenerator rotors

    International Nuclear Information System (INIS)

    Ramírez-Niño, J; González Vázquez, A

    2012-01-01

    This paper presents a measurement technique and an analysis of the electrical polar symmetry in turbogenerator rotors using the so-called recurrent pulse comparison with the injection of charge as the excitation source. The polar symmetry should be measured because it provides information that allows electrical insulation failures in the rotor winding to be detected. A simple electrical model for the rotor is introduced, and the technique for comparing the recurrent pulses is analysed in detail. The particular measurement instrumentation and the analysis of the results obtained in the time and frequency domains, including their relation to the rotor failures, are also described. (paper)

  2. Aeromechanics of a High Speed Coaxial Helicopter Rotor

    Science.gov (United States)

    Schmaus, Joseph Henry

    The current work seeks to understand the aeromechanics of lift offset coaxial rotors in high speeds. Future rotorcraft will need to travel significantly faster that modern rotorcraft do while maintaining hovering efficiency and low speed maneuverability. The lift offset coaxial rotor has been shown to have those capabilities. A majority of existing coaxial research is focused on hovering performance, and few studies examine the forward flight performance of a coaxial rotor with lift offset. There are even fewer studies of a single rotor with lift offset. The current study used comprehensive analysis and a new set of wind tunnel experiments to explore the aeromechanics of a lift offset coaxial rotor in high speed forward flight. The simulation was expanded from UMARC to simultaneously solve multiple rotors with coupled aerodynamics. It also had several modifications to improve the aerodynamics of the near-wake model in reverse flow and improve the modeling of blade passages. Existing coaxial hovering tests and flight test data from the XH-59A were used to validate the steady performance and blade loads of the comprehensive analysis. It was used to design the structural layout of the blades used in the wind tunnel experiment as well as the test envelope and testing procedure. The wind tunnel test of a model rotor developed by the University of Texas at Austin and the University of Maryland was performed in the Glenn L Martin Wind Tunnel. The test envelope included advance ratios 0.21-0.53, collectives 4°- 8°, and lift offsets 0%-20% for both rotors tested in isolation and as a coaxial system operating at 900 RPM. Rotating frame hub loads, pushrod loads, and pitch angle were recorded independently for each rotor. Additional studies were performed at 1200 RPM to isolate Reynold effects and with varying rotor-to-rotor phase to help quantify aerodynamic interactions. Lift offset fundamentally changes the lift distribution around the rotor disk, doing so increases the

  3. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  4. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  5. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    Science.gov (United States)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  6. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment...... the experimental results using the Reynold‐Averaged Navier‐Stokes method. Second, three‐dimensional airfoil characteristics are extracted that allow simulations with simpler wake models. Copyright © 2011 John Wiley & Sons, Ltd....

  7. Wake dynamics in offshore wind farms

    DEFF Research Database (Denmark)

    de Mare, Martin Tobias

    Wind turbines within offshore wind farms spend considerable time operating in the wake of neighboring wind turbines. An important contribution to the loads on a wake-affected wind turbine is the slow movement of the wake from the upstream wind turbine across the rotor of the wake-affected wind...

  8. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran

    2013-01-01

    The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip-fl...

  9. Open Rotor Development

    Science.gov (United States)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  10. Aerodynamic Characteristic Analysis of Multi-Rotors Using a Modified Free-Wake Method

    Science.gov (United States)

    Lee, Jaewon; Yee, Kwanjung; Oh, Sejong

    Much research is in progress to develop a next-generation rotor system for various aircrafts, including unmanned aerial vehicles (UAV) with multi-rotor systems, such as coaxial and tandem rotors. Development and design of such systems requires accurate estimation of rotor performance. The most serious problem encountered during analysis is wake prediction, because wake-wake and wake-rotor interactions make the problem very complex. This study analyzes the aerodynamic characteristics based on the free-wake method, which is both efficient and effective for predicting wake. This code is modified to include the effect of complex planforms as well as thickness by using an unsteady 3D panel method. A time-marching free-wake model is implemented based on the source-doublet panel method that assigns panels to the surface and analyzes them. The numerical wake instability, the most critical problem for analysis, is resolved by adopting slow start-up and by including viscous effects. Also, the instability due to wake interference in tandem rotor analysis is resolved by configuring the initial shapes of the multi-rotor wake as that of a single rotor wake trajectory. The developed code is verified by comparing with previous experimental data for coaxial and tandem rotors.

  11. Stochastic Modeling of Lift and Drag Dynamics to Obtain Aerodynamic Forces with Local Dynamics on Rotor Blade under Unsteady Wind Inflow

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan Luhur

    2014-01-01

    Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes

  12. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    performance of the wind pump. One year wind speed data collected at 10 m height was extrapolated to the wind pump hub height using wind shear coefficient. The model assumed balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. The theoretical model estimated the average ...

  13. Strength and fatigue testing of large size wind turbines rotors. Volume II. Full size natural vibration and static strength test, a reference case

    International Nuclear Information System (INIS)

    Arias, F.; Soria, E.

    1996-01-01

    This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particularly it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)

  14. Strength and fatigue testing of large size wind turbines rotors. Vol. II: Full size natural vibration and static strength test, a reference case

    Energy Technology Data Exchange (ETDEWEB)

    Arias, F.; Soria, E.

    1996-12-01

    This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particular it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel`s test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)

  15. Aero dynamical and mechanical behaviour of the Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Batna Univ., (Algeria). Applied Energetic Physics Laboratory

    2009-07-01

    Although the Savonius wind turbine is not as efficient as the traditional Darrieus wind turbine, its rotor design has many advantages such as simple construction; acceptance of wind from all directions; high starting torque; operation at relatively low speed; and easy adaptation to urban sites. These advantages may outweigh its low efficiency and make it suitable for small-scale power requirements such as pumping and rural electrification. This paper presented a study of the aerodynamic behaviour of a Savonius rotor, based on blade pressure measurements. A two-dimensional analysis method was used to determine the aerodynamic strengths, which leads to the Magnus effect and the generation of the vibrations on the rotor. The study explained the vibratory behaviour of the rotor and proposed an antivibration system to protect the machine. 14 refs., 1 tab., 9 figs.

  16. Wind turbine having a direct-drive drivetrain

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  17. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær

    2007-01-01

    This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier......-Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been...

  18. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  19. Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model

    DEFF Research Database (Denmark)

    Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul

    2010-01-01

    -blade/control-system aeroelastic analysis. The rotor blade analysis was in good agreement and validated by comparing with DYMORE. Numerical results were obtained for a four-bladed, small-scale, articulated rotor rotating in vacuum and in a wind tunnel to simulate forward-flight conditions and its aerodynamic effects. The complete......In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...... on an intrinsic formulation of moving beams implemented in the time domain. The rotor control system was modeled as a combination of rigid and elastic components. A multicomponent analysis was then developed by coupling the beam finite element model with the rotor control system model to obtain a complete rotor...

  20. Data-driven wind plant control

    NARCIS (Netherlands)

    Gebraad, P.M.O.

    2014-01-01

    Each wind turbine in a cluster of wind turbines (a wind power plant) can influence the performance of other turbines through the wake that forms downstream of its rotor. The wake has a reduced wind velocity, since the turbine extracts energy from the flow, and the obstruction by the wind turbine

  1. A high speed vertical axis wind machine

    National Research Council Canada - National Science Library

    South, P

    1976-01-01

    The operational feasibility of vertical axis wind machines was investigated at the National Aeronautical Establishment in Ottawa through use of a wind tunnel and a rotor with blades curved in a skipping rope shape...

  2. Positioning and tail rotor of a small horizontal axis wind turbine of due to the influence of drag coefficient and lift affecting vane cola

    International Nuclear Information System (INIS)

    Farinnas Wong, E. Y.; Jauregui Rigo, S.; Betancourt Mena, J.

    2009-01-01

    In the present investigation was carried out an assessment on the state of technology on guidance systems and tail protection when used in small horizontal axis wind turbines, work was improved methodological approach for the development of guidance systems queue by time of these machines, to incorporate the use of coefficients of lift and drag behavior varies according to the aspect ratio, using the principles of continuum mechanics and CFD methods. Two versions are analyzed , original and updated, the wind turbine CEET-01, on which the author would have been granted a Certificate of Patent of Invention and one of Industrial Model, the updated version was derived from the procedure proposed by the author, this presents a holder for the longest vane and a larger area in the vane. In addition to analyzing the amount and cost of power generated and the capacity factor at three locations in the province of Villa Clara it was concluded that the updated variant of the turbine CEET-01 is superior to the original

  3. in Rotor Dynamics

    Directory of Open Access Journals (Sweden)

    Lutz Sperling

    2000-01-01

    Full Text Available Synchronous elimination as one of the possible methods of cancelling any harmful vibration resulting from the unbalance of rotary machines is considered. This method, introduced by Fesca and Thearle, involves the placement of unbalanced elements (e.g. ring, pendulum, ball balancers on the rotor axis, which can occupy any angular position in relation to the rotor. Under defined conditions in the postcritical frequency range, there is a spontaneous placement of the corection elements such that they balance the rotor unbalance. Hedaya and Sharp generalized this method by combining two force balancers to compensate the unbalanced moment as well as the unbalanced force of a rigid rotor.

  4. Performance and wake conditions of a rotor located in the wake of an obstacle

    DEFF Research Database (Denmark)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, Robert Flemming

    2016-01-01

    to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics......, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity...

  5. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2015-09-01

    Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.

  6. A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading

    DEFF Research Database (Denmark)

    Lekou, D.J.; Bacharoudis, K. C.; Farinas, A. B.

    2015-01-01

    are evaluated. This paper shows the major findings of the comparative work performed by six organizations (universities and research institutes) participating in the benchmark exercise. The case concerns a 90m Glass/Epoxy blade of a horizontal axis 10MW wind turbine. The detailed blade geometry, the material...... properties of the constitutive layers and the aero-elastic loads formed the base by which global and local blade stiffness and strength are evaluated and compared. Static, modal, buckling and fatigue analysis of the blade were performed by each partner using their own tools; fully in-house developed...... is compared in terms of displacements, stresses, strains and failure indices at the ply level of the blade structure, eigen-frequencies and eigen-modes, critical buckling loads and Palmgren-Miner damage indices due to cycle loading. Results indicate that differences between estimations range from 0.5% to even...

  7. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...

  8. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...... the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field....

  9. Wind tunnel tests of a free yawing downwind wind turbine

    NARCIS (Netherlands)

    Verelst, D.R.S.; Larsen, T.J.; Van Wingerden, J.W.

    2014-01-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the

  10. Aeromechanics of an Optimized, Actively-Morphing Rotor System

    Science.gov (United States)

    2013-09-17

    wind   tunnel  tests  as  well  as  a   good  description  of  the   rotor  geometry.  UMARC  has  been  validated...Morphing   rotor  final  report:  N000140911921  (Chopra,  UMD)     Graham  Bowen-­‐Davies  9/4/2013   Final Progress Report...on “Aeromechanics of an Optimized, Actively-Morphing Rotor System” to Office Naval Research Air Vehicle Technology

  11. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  12. Evaluation of wind flow with a nacelle-mounted, continuous wave wind lidar

    DEFF Research Database (Denmark)

    Medley, John; Barker, Will; Harris, Mike

    2014-01-01

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  13. Analysis of small-scale rotor hover performance data

    Science.gov (United States)

    Kitaplioglu, Cahit

    1990-01-01

    Rotor hover-performance data from a 1/6-scale helicopter rotor are analyzed and the data sets compared for the effects of ambient wind, test stand configuration, differing test facilities, and scaling. The data are also compared to full scale hover data. The data exhibited high scatter, not entirely due to ambient wind conditions. Effects of download on the test stand proved to be the most significant influence on the measured data. Small-scale data correlated resonably well with full scale data; the correlation did not improve with Reynolds number corrections.

  14. Generator rotor dovetail cracking

    International Nuclear Information System (INIS)

    Toth, J.

    2004-01-01

    In the presentation the dovetail control and recommended arrangements of the large steam turbine generators are described. The company General Electric established a complete package comprising working schedule of rotor control and solutions of the problems of the dovetail cracking of the large steam turbine generator rotors with long-term operation. A part of the article is also the recommended packet including more items. (author)

  15. 3D Navier-Stokes Simulations of a rotor designed for Maximum Aerodynamic Efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Madsen, Helge. Aa.; Gaunaa, Mac

    2007-01-01

    The present paper describes the design of a three-bladed wind turbine rotor taking into account maximum aerodynamic efficiency only and not considering structural as well as offdesign issues. The rotor was designed assuming constant induction for most of the blade span, but near the tip region a ...

  16. Modelling the influence of yaw using a simple vortex rotor model

    DEFF Research Database (Denmark)

    Troldborg, Niels; Gaunaa, Mac; Guntur, Srinivas

    2012-01-01

    A simple analytical rotor model based on vortex theory is briefly presented and used to investigate the main mechanisms for wind turbine rotors operating at yaw misalignment. The overall findings of the model is verified by comparing with an existing model as well as with results obtained using...

  17. Rotor Performance at High Advance Ratio: Theory versus Test

    Science.gov (United States)

    Harris, Franklin D.

    2008-01-01

    Five analytical tools have been used to study rotor performance at high advance ratio. One is representative of autogyro rotor theory in 1934 and four are representative of helicopter rotor theory in 2008. The five theories are measured against three sets of well documented, full-scale, isolated rotor performance experiments. The major finding of this study is that the decades spent by many rotorcraft theoreticians to improve prediction of basic rotor aerodynamic performance has paid off. This payoff, illustrated by comparing the CAMRAD II comprehensive code and Wheatley & Bailey theory to H-34 test data, shows that rational rotor lift to drag ratios are now predictable. The 1934 theory predicted L/D ratios as high as 15. CAMRAD II predictions compared well with H-34 test data having L/D ratios more on the order of 7 to 9. However, the detailed examination of the selected codes compared to H-34 test data indicates that not one of the codes can predict to engineering accuracy above an advance ratio of 0.62 the control positions and shaft angle of attack required for a given lift. There is no full-scale rotor performance data available for advance ratios above 1.0 and extrapolation of currently available data to advance ratios on the order of 2.0 is unreasonable despite the needs of future rotorcraft. Therefore, it is recommended that an overly strong full-scale rotor blade set be obtained and tested in a suitable wind tunnel to at least an advance ratio of 2.5. A tail rotor from a Sikorsky CH-53 or other large single rotor helicopter should be adequate for this exploratory experiment.

  18. Topologies for three-phase wound-field salient rotor switched-flux machines for HEV applications

    Science.gov (United States)

    Khan, Faisal; Sulaiman, Erwan; Ahmad, Md Zarafi; Husin, Zhafir Aizat; Mazlan, Mohamed Mubin Aizat

    2015-05-01

    Wound-field switched-flux machines (WFSFM) have an intrinsic simplicity and high speed that make them well suited to many hybrid electric vehicle (HEV) applications. However, overlap armature and field windings raised the copper losses in these machines. Furthermore, in previous design segmented-rotor is used which made the rotor less robust. To overcome these problems, this paper presents novel topologies for three-phase wound-field switched-flux machines. Both armature and field winding are located on the stator and rotor is composed of only stack of iron. Non-overlap armature and field windings and toothed-rotor are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes more robust. Design feasibility and performance analysis of 12 slots and different rotor pole numbers are examined on the basis of coil arrangement test, peak armature flux linkage, back emf, cogging torque and average torque by using Finite Element Analysis(FEA).

  19. CALCULATION OF LOADS ON THE CONTROLS WITH HELICOPTER MAIN ROTOR OF SINGLE-ROTOR DESIGN

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article describes the method of calculation of the moments about the hinge axis of the main rotor hub from the action of aerodynamic and inertial forces generated on the blade. The assumptions were taken that the blades are absolutely rigid and have a rectangular shape in plan view. Flapping motion of blade is described accurately up to the first harmonic of the Fourier series, inductive speed is considered to be uniformly distributed over the rotor disk.The aerodynamic component of hinge moment is numerical integration of running forces on blade radius taking into account aerodynamic characteristics of the profiles received according to wind tunnel tests at different angles of attack and Mach numbers. The moment from elastic forces is determined for the main rotor hub with the lamellar torsion bar. On the basis of the hinge moments values data loads on rotorcraft rotating ring, arising at different azimuthal location of the rotating main rotor blades are calculated.The calculations executed on the example of Mi-34 helicopter main rotor have shown that average loads in one revolution in the channel of collective pitch control increase in a control path at flying speed. At the same time loads in the channel of longitudinal control make up to 80 % of loads in the channel of collective pitch control, and in the channel oflateral control - to 40 % that will well be coordinated with the provided data of flight tests.

  20. Theoretical analysis of the flow around a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z.; Djoumati, D. [Batna Univ., Batna (Algeria). Laboratoire de Physique Energetique Appliquee; Djamel, H. [Batna Univ., Batna (Algeria). Dept. de Mecanique Energetique

    2009-07-01

    While Savonius rotors do not perform as well as Darrieus wind turbine rotors, Savonius rotors work in all wind directions, do not require a rudder, and are capable of operating at relatively low speeds. A discrete vortex method was used to analyze the complex flow around a Savonius rotor. Velocity and pressure fields obtained in the analysis were used to determine both mechanical and energetic rotor performance. Savonius rotor bi-blades were considered in relation to 4 free eddies, the leakage points of each blade, and the distribution of basic eddies along the blades. Each blade was divided into equal elementary arcs. Linear equations and Kelvin theorem were reduced to a single equation. Results showed good agreement with data obtained in previous experimental studies. The study demonstrated that vortice emissions were unbalanced. The resistant blade had 2 vortice emissions, while the driving blade had only a single vortex. The results of the study will be used to clarify the mechanical and aerodynamic functions as well as to determine the different values between the blades and the speed of the turbine's engine. 9 refs., 4 figs.

  1. An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    Mantas Brazinskas

    2016-10-01

    Full Text Available The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped. Partially overlapping rotor setups (tandem, multirotor have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000. Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3% was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0

  2. Comparison of rigid and swivelling rotor hubs for a MW wind power system, using the example of the WKA Autoflug A 1200; Vergleich von starrer und Pendel-Rotornabe fuer eine Windkraftanlage der Megawatt-Leistungsklasse am Beispiel der WKA Autoflug A 1200

    Energy Technology Data Exchange (ETDEWEB)

    Quell, P. [aerodyn Energiesysteme GmbH, Rendsburg (Germany)

    1996-12-31

    Developments in the MW range are a further illustration of the well-known problem that a linear increase of the rotor surface area will result in an overproportional increase of mass. One classical approach for reducing weight is the installation of a two-blade rotor with a swivelling hub. In the course of the development activities for the 1.2 MW A1200 wind power system of Autoflug Energietechnik GmbH, it was investigated whether a pendulum hub is a technically and economically feasible concept for a plant of this size. For this purpose, two otherwise identical plants were projected and compared, one with a rigid hub and the other with a swivelling hub. Both systems were simulated using the dynamic program GAROS. With the loads thus determined, both concepts are detailed enough to permit a comprehensive cost comparison in consideration of the masses, the resulting cost, performance and reliability. [Deutsch] Der Entwicklungsprozess der Megawatt-Anlagen verdeutlicht den aus frueheren Untersuchungen bekannten Zusammenhang eines ueberproportionalen Massenzuwachses bei linear steigender Rotorflaeche. Ein klassischer Ansatz zur Reduzierung des Anlagengewichtes ist der Einsatz eines Zweiblatt-Rotors in Verbindung mit einer Pendelnabe. Im Rahmen der Entwicklungstaetigkeit fuer die 1,2 MW-Windkraftanlage A 1200 der Fa. Autoflug Energietechnik GmbH wurde untersucht, inwieweit der Einsatz einer Pendelnabe fuer eine Anlage dieser Groessenordnung ein technisch und wirtschaftlich sinnvolles Konzept darstellen kann. Dazu wurden zwei grundsaetzlich gleiche Anlagen mit Zweiblatt-Rotor unter Verwendung einer Pendelnabe und einer starren Nabe konzipiert und gegenuebergestellt. Zur Bewertung des Anlagenverhaltens sowie zur Ermittlung realitaetsnaher Belastungen werden sowohl die Anlagenversion mit Pendelnabe als auch die Version mit starrer Nabe mit dem Dynamikprogramm GAROS simuliert. Basierend auf den ermittelten Lasten werden beide Konzepte so detailliert, dass ein umfassender

  3. Fan Noise Screening Rig for New Open Rotor and Propeller Concepts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advancements in open rotor engine concepts warrant continued research, however the cost of wind tunnel tests is not insignificant. Because the jet noise of an...

  4. Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent

    Science.gov (United States)

    Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza

    2017-11-01

    All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  5. TORNADO concept and realisation of a rotor for small VAWTs

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-09-01

    Full Text Available The concept of a three-tier configuration for a vertical axis rotor was successfully developed into a experimental model. The rotor assembly is divided into three tiers with three straight blades in each tier. The three-tiers are shifted by an angle of 400 generating a full helical flow field inside the rotor. Thereby the new configuration has some different mechanism of torque generation as other Darrieus rotors. The three-tier configuration facilitates the operation by enabling the turbine to self-start at wind velocity as low as 2 m/s with good performance and a smoother driving torque. At the same time the design couples an esthetic appearance with low noise level.

  6. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  7. A regular Strouhal number for large-scale instability in the far wake of a rotor

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor V.; Mikkelsen, Robert Flemming

    2014-01-01

    The flow behind a model of a wind turbine rotor is investigated experimentally in a water flume using particle image velocimetry (PIV) and laser Doppler anemometry (LDA). The study performed involves a three-bladed wind turbine rotor designed using the optimization technique of Glauert (Aerodynamic...... visualizations and a reconstruction of the flow field using LDA and PIV measurements it is found that the wake dynamics is associated with a precession (rotation) of the helical vortex core....

  8. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    , varying cross-section properties and assumes small cross-section displacements and rotations, by which the associated elastic stiffness and inertial terms are linear. The formulation consistently describes all inertial terms, including centrifugal softening and gyroscopic forces. Aerodynamic lift forces...... are assumed to be proportional to the relative inflow angle, which also gives a linear form with equivalent stiffness and damping terms. Geometric stiffness effects including the important stiffening from tensile axial stresses in equilibrium with centrifugal forces are included via an initial stress...... mode and the combined whirling modes respectively, via a shared set of collocated sensor/actuator pairs. The collective mode controller is decoupled from the whirling mode controller by an exact linear filter, which is identified from the fundamental dynamics of the gyroscopic system. As in the method...

  9. The Influence of Rotor Unbalance on Turbocharger Rotor Dynamics

    Directory of Open Access Journals (Sweden)

    Knotek Jiří

    2015-12-01

    Full Text Available This paper describes the influence of an unbalance on turbocharger rotor dynamics. The structural model of the turbocharger rotor and the hydrodynamic model of the journal floating ring bearing are described and assembled in multibody dynamics software. Moreover, the paper presents various results describing rotor dynamics where the influence of an unbalance is discussed.

  10. A simple model of the wind turbine induction zone derived from numerical simulations

    DEFF Research Database (Denmark)

    Troldborg, Niels; Meyer Forsting, Alexander Raul

    2017-01-01

    The induction zone in front of different wind turbine rotors is studied by means of steady-state Navier-Stokes simulations combined with an actuator disk approach. It is shown that, for distances beyond 1 rotor radius upstream of the rotors, the induced velocity is self-similar and independent of...... of the rotor geometry. On the basis of these findings, a simple analytical model of the induction zone of wind turbines is proposed....

  11. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  12. Data Input, Processing and Presentation. [helicopter rotor balance measurement

    Science.gov (United States)

    Langer, H. J.

    1984-01-01

    The problems of data acquisition, processing and display are investigated in the case of a helicopter rotor balance. The types of sensors to be employed are discussed in addition to their placement and application in wind tunnel trials. Finally, the equipment for data processing, evaluation and storage are presented with a description of methods.

  13. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  14. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  15. Wind turbine reliability analysis

    OpenAIRE

    Pinar Pérez, Jesús María; García Márquez, Fausto Pedro; Tobias, Andrew Mark; Papaelias, Mayorkinos

    2013-01-01

    Against the background of steadily increasing wind power generation worldwide, wind turbine manufacturers are continuing to develop a range of configurations with different combinations of pitch control, rotor speeds, gearboxes, generators and converters. This paper categorizes the main designs, focusing on their reliability by bringing together and comparing data from a selection of major studies in the literature. These are not particularly consistent but plotting failure rates against hour...

  16. Fault diagnosis and condition monitoring of wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2017-01-01

    This paper describes a model-free method for the fault diagnosis and condition monitoring of rotor systems in wind turbines. Both fault diagnosis and monitoring can be achieved without using a model for the wind turbine, applied controller, or wind profiles. The method is based on measurements from...... standard sensors on modern wind turbines, including moment sensors and rotor angle sensors. This approach will allow the method to be applied to existing wind turbines without any modifications. The method is based on the detection of asymmetries in the rotor system caused by changes or faults in the rotor...... system. A multiblade coordinate transformation is used directly on the measured flap-wise and edge-wise moments followed by signal modulation. Changes or faults in the rotor system will result in unique signatures in the set of modulation signals. These signatures are described through the amplitudes...

  17. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  18. Engineering models in wind energy aerodynamics : Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  19. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  20. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  1. Turning to the wind

    Science.gov (United States)

    Sorensen, B.

    1981-10-01

    Consideration is given the economic and technological aspects of both free-stream (horizontal-axis) and cross-wind (vertical-axis) wind energy conversion systems, with attention to operational devices ranging in rotor diameter from 10 to 40 m and in output from 22 to 630 kW. After a historical survey of wind turbine design and applications development, the near-term technical feasibility and economic attractiveness of combined wind/fossil-fueled generator and wind/hydroelectric systems are assessed. Also presented are estimates of wind energy potential extraction in the U.S. and Denmark, the industrial requirements of large-scale implementation, energy storage possibilities such as pumped hydro and flywheels, and cost comparisons of electrical generation by large and small wind systems, coal-fired plants, and light-water fission reactors.

  2. Full-Scale Wind Tunnel Test of an Individual Blade Control System for a UH-60 Helicopter

    National Research Council Canada - National Science Library

    Jacklin, Stephen A; Haber, Axel; de Simone, Gary; Norman, Thomas R; Kitaplioglu, Cahit; Shinoda, Patrick

    2002-01-01

    .... The acquired wind tunnel data set includes measurements of rotor performance, steady and dynamic hub forces and moments, rotor loads, control system loads, and blade vortex interaction (BVI) noise...

  3. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2

    Science.gov (United States)

    Magee, J. P.; Clark, R.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.

  4. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  5. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  6. Data Summary Report for the Open Rotor Propulsion Rig Equipped with F31/A31 Rotor Blades

    Science.gov (United States)

    Stephens, David B.

    2014-01-01

    An extensive wind tunnel test campaign was undertaken to quantify the performance and acoustics of a counter-rotating open rotor system. The present document summarizes the portion of this test performed with the so-called "Historical Baseline" rotor blades, designated F31/A31. It includes performance and acoustic data acquired at Mach numbers from take-off to cruise. It also includes the effect of propulsor angle of attack as well as an upstream pylon. This report is accompanied by an electronic data set including relevant acoustic and performance measurements for all of the F31/A31 data.

  7. Untersuchung des Stroemungsverhaltens von hochbelasteten ungekuehlten Niederdruck-Turbinengittern unter Berucksichtigung der Rotor-Stator Interaktion (Examination of Flow Behavior of Highly Loaded Uncooled Low-Pressure Turbine Grids with Regard to Rotor-Stator Interaction)

    National Research Council Canada - National Science Library

    Brunner, Stefan

    2000-01-01

    ... the typical Mach and Reynolds number combinations. After an introduction on the influence of rotor-stator interaction on the profile border layers in turbo machines, a trial construction ensues in a High-Speed Grid Wind Canal (HSGWC...

  8. Actuator line/Navier–Stokes computations for the MEXICO rotor: comparison with detailed measurements

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2012-01-01

    line/Navier–Stokes (AL/NS) model developed at the Technical University of Denmark. The AL/NS model was combined with a large eddy simulation technique and used to compute the flow past the MEXICO rotor in free air and in the DNW German‐Dutch wind tunnel for three commonly defined test cases at wind...

  9. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    Science.gov (United States)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  10. Electric motors with elastically mounted rotors

    Science.gov (United States)

    But, D. A.; Kulikov, N. I.

    1984-08-01

    Motors with a conical motion of the shaft suitable for applications in mixers, medical equipment and robotics are analyzed. The rotor is made in the form of a disk with a ferromagnetic active region and a shaft running through the center of the disk. The free end of the shaft is connected to the mechanical load. The rotor is held by a flexible support, which is a rubber bushing, bellows, coiled spring, etc. The magnetic cores with the windings are arranged around the stator periphery, adjacent to the end faces of the disk at axial working gaps. The upper and lower cores are mounted on a common steel frame. The windings are powered through controlled rectifiers, switched so as to drive the disk to oscillatory wave-like motions. Various configurations of such motors are discussed and analytical expressions are derived for disk acceleration, rpm and average magnetic force on the disk. The theory is illustrated with sample calculations for an approximately 30 W motor running at 600 rpm with an efficiency of 0.576 weighing about 8 kg.

  11. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor......-blade geometry. The basics of the blade-element momentum theory are presented along with guidelines for the construction of airfoil data. Various theories for aerodynamically optimum rotors are discussed, and recent results on classical models are presented. State-of-the-art advanced numerical simulation tools...

  12. Lift capability prediction for helicopter rotor blade-numerical evaluation

    Science.gov (United States)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru

    2016-06-01

    The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.

  13. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  14. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.......During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible...

  15. Permanent magnet machine with windings having strand transposition

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  16. Integrated technology rotor/flight research rotor concept definition study

    Science.gov (United States)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  17. Comprehensive analysis of bearingless rotors - Model development and experimental correlation of modes, response, trim and stability

    Science.gov (United States)

    Jambunathan, V.; Murthy, V. R.

    1993-01-01

    A generic mathematical model that is capable of accurately modeling the multiple load path bearingless rotor blade is developed. A comprehensive, finite element based solution for the natural vibration of the rotor blade is developed. An iterative scheme based on harmonic balance is used to evaluate the nonlinear response of the rotor to control inputs and a Newton-Raphson procedure is employed to evaluate the trim of rotorcraft. Linearized perturbation model of the nonlinear system are presented. The model is validated by comparing with existing whirl tower, wind tunnel and flight test results of BMR/BO-105 helicopter. Frequencies of two bearingless rotor blades compare well with results from experiments. Nonlinear response and trim results are presented for the bearingless BMR/BO-105 rotor. Aeroelastic stability in forward flight, evaluated using floquet theory agrees with test data in general.

  18. Techno-economic Analysis of Rotor Flettner in Container Ship 4000DWT

    Directory of Open Access Journals (Sweden)

    Agoes Santoso

    2017-06-01

    Full Text Available Rotor flettner is a kind of technology which developed and used in 21st century. This technology is very simple, cylindrical in shape, applied in the upper deck, and rotated by the electrical motor. This technology uses wind energy and applicating magnus effect to create propulsion force. Rotor flettner depends on the condition of the sea wind. The designer has to check the weather condition in its route before make a design of rotor flettner. This kind of technology is not only useful for the economic side, but also, for the environment. Rotor flettner can reduce the emission of a ship. It helps to gain some power to increase in fuel saving.The emission can be decreased by the increasing of fuel saving. So, this technology is a kind of environmentally friendly technology that can be used for the future innovation

  19. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  20. Performance and wake conditions of a rotor located in the wake of an obstacle

    Science.gov (United States)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  1. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun

    2009-01-01

    of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used......This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  2. Final project report: High energy rotor development, test and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  3. Study of aerodynamical and mechanical behaviours of Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Hadj Lakhdar Univ., Batna (Algeria). Applied Energetic Physic Laboratory

    2007-07-01

    Although the efficiency of a Savonius rotor is not as high conventional propeller-type and Darrieus wind turbines, it has the advantage of simple construction; acceptance of wind from various directions, thereby eliminating the need for reorientation; high starting torque; and, relatively low operating speed. These advantages outweigh its low efficiency and make it an ideal economic source to meet small-scale power requirements. The instantaneous pressure field on the blades surface was determined in order to analyze the flow around a Savonius rotor. A two dimensional analysis was used to determine the aerodynamic strengths, which led to underline the Magnus effect and to vibrations on the rotor. An anti-vibratory system was also proposed to stabilize or avoid these vibrations. The drag and lift coefficients were found to be in good agreement with results reported in literature. This study identified an inversion lift effect on a Savonius rotor, which closely resembled the Reynolds number, particularly in the peripheral speed coefficient values. It was shown that the machine does not move in accordance with the Magnus effect. 22 refs., 1 tab., 9 figs.

  4. Novel rotor position estimation technique for switched reluctance motor (SRM)

    Science.gov (United States)

    Moradi, Hassan; Afjei, Ebrahim

    2011-09-01

    This article presents a new and novel method which is designed to detect the rotor position at standstill and at low speeds in switched reluctance motor. Since the inductance parameter plays a significant role both in the steady state and in the dynamic characteristics of an electromagnetic device, the rotor position can be determined using inductance bridge systems to measure unknown inductance and resistance values. In this method we use motor winding in Maxwell-Wien Bridge, with the standard capacitor and the resistor in parallel with it adjusted to achieve balance in an aligned position when the maximum inductance occurs. The supply voltage, in conjunction with the drive transistor, produces short pulses for this AC bridge. The condition of the balanced bridge v 0 = 0 leads to the relation between the impedances of the bridge branches. The phase inductance varies with the rotor position. Therefore the motor goes into an unaligned position and the Maxwell-Wien Bridge goes into an unbalanced condition thus causing variation in the state of the bridge output. It then continues to sense the rotor position with the motor running by applying the same procedure, but only to the un-energised phases winding. The simulation and experimentally obtained results demonstrate the feasibility and practicability of this method.

  5. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang

    2012-08-01

    Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device

  6. Prediction models for wind speed at turbine locations in a wind farm

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Soltani, Mohsen

    2011-01-01

    turbulence models. The esti- mator includes a nonlinear time varying wind speed model, which compared with literature results in an adaptive filter. Given the estimated effective wind speed, it is possible to establish wind speed prediction models by system identification. As the prediction models are based...... manifested through the wind field is hence required. This paper develops models for this relationship. The result is based on two new contributions: the first is related to the estimation of effective wind speeds, which serves as a basis for the second contribution to wind speed prediction models. Based...... on standard turbine measurements such as rotor speed and power produced, an effective wind speed, which represents the wind field averaged over the rotor disc, is derived. The effective wind speed estimator is based on a continuous–discrete extended Kalman filter that takes advantage of nonlinear time varying...

  7. Flexible-Rotor Balancing Demonstration

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Report describes method for balancing high-speed rotors at relatively low speeds and discusses demonstration of method on laboratory test rig. Method ensures rotor brought up to speeds well over 20,000 r/min smoothly, without excessive vibration amplitude at critical speeds or at operating speed.

  8. Coupled CFD/CSD Computation of Airloads of an Active-Twist Rotor

    Science.gov (United States)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K

    2013-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code for blade trim and aeroelastic effects is presented for a second-generation Active-Twist Rotor. Mesh and temporal sensitives of computed airloads are evaluated. In the final paper, computed airloads will be compared with wind tunnel data for the Active-Twist Rotor test that is currently underway.

  9. Dynamic model of cage induction motor with number of rotor bars as parameter

    Directory of Open Access Journals (Sweden)

    Gojko Joksimović

    2017-05-01

    Full Text Available A dynamic mathematical model, using number of rotor bars as parameter, is reached for cage induction motors through the use of coupled-circuits and the concept of winding functions. The exact MMFs waveforms are accounted for by the model which is derived in natural frames of reference. By knowing the initial motor parameters for a priori adopted number of stator slots and rotor bars model allows change of rotor bars number what results in new model parameters. During this process, the rated machine power, number of stator slots and stator winding scheme remain the same. Although presented model has a potentially broad application area it is primarily suitable for the analysis of the different stator/rotor slot combination on motor behaviour during the transients or in steady-state regime. The model is significant in its potential to provide analysis of dozen of different number of rotor bars in a few tens of minutes. Numerical example on cage rotor induction motor exemplifies this application, including three variants of number of rotor bars.

  10. 3D Navier-Stokes simulations of a rotor designed for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Madsen Aagaard, Helge; Gaunaa, Mac

    2007-01-01

    a value of slightly above 0.51, while global thrust coefficient, CT, was 0.87. The local power coefficient, Cp, increased to slightly above the Betz limit on the inner part of the rotor as well as the local thrust coefficient, Ct, increased to a value above 1.1. This agrees well with the theory of de......The present paper describes the design of a three-bladed wind turbine rotor taking into account maximum aerodynamic efficiency only and not considering structural as well as offdesign issues. The rotor was designed assuming constant induction for most of the blade span, but near the tip region...

  11. Efficient Beam-Type Structural Modeling of Rotor Blades

    OpenAIRE

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    The present paper presents two recently developed numerical formulations which enable accurate representation of the static and dynamic behaviour of wind turbine rotor blades using little modeling and computational effort. The first development consists of an intuitive method to extract fully coupled six by six cross-section stiffness matrices with limited meshing effort. Secondly, an equilibrium based beam element accepting directly the stiffness matrices and accounting for large variations ...

  12. CFD computations of the second round of MEXICO rotor measurements

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Boorsma, K.

    2016-01-01

    A comparison, between selected wind tunnel data from the NEW MEXICO measuring campaign and CFD computations are shown. The present work, documents that a state of the art CFD code, including a laminar turbulent transition model, can provide good agreement with experimental data. Good agreement is...... is shown for the integral loads, radial distributions of blades forces, pressure distributions, and the velocity profiles up- and downstream of the rotor....

  13. Integrated technology rotor/flight research rotor hub concept definition

    Science.gov (United States)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  14. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  15. Comparative study on the wake deflection behind yawed wind turbine models

    Science.gov (United States)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  16. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    9% and 3% of the freestream longitudinal wind speed were measured for the abovementioned high and low CP values, respectively. Turbulence statistics, calculated using 2.5-min time series, suggest that the standard deviation of the longitudinal wind component decreases close to the rotor, while...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  17. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    Science.gov (United States)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  18. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F.; Thirstrup Petersen, J. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  19. 14 CFR 27.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  20. 14 CFR 29.1509 - Rotor speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  1. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...

  2. Experimental study on power augmentation of Savonius rotor; Savonius gata fusha no shutsuryoku zokyo ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S.; Kikuchi, K.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)

    1997-11-25

    Wind power now being used is mostly for power generation, and the power generating rotor is represented by the horizontal propeller type. The vertical type, such as Savonius rotor which uses drag force, may be used for special purposes. The Savonius rotor has been used for water pumping-up and ventilation for its characteristics of low rotational speed and high torque. The authors have proposed, based on the data collected by operating a wind mill of 10W, a method for reducing resistance by deflecting wind flowing onto the return bucket to augment drag force, in an attempt to make the system more functional. The Savonius rotor is equipped with a semi-cylindrical cover, and guide and side plates, to follow their effects. It is found that these plates work to augment power without needing expansion of sweeping area. 4 refs., 12 figs.

  3. Modern rotor balancing - Emerging technologies

    Science.gov (United States)

    Zorzi, E. S.; Von Pragenau, G. L.

    1985-01-01

    Modern balancing methods for flexible and rigid rotors are explored. Rigid rotor balancing is performed at several hundred rpm, well below the first bending mode of the shaft. High speed balancing is necessary when the nominal rotational speed is higher than the first bending mode. Both methods introduce weights which will produce rotor responses at given speeds that will be exactly out of phase with the responses of an unbalanced rotor. Modal balancing seeks to add weights which will leave other rotor modes unaffected. Also, influence coefficients can be determined by trial and error addition of weights and recording of their effects on vibration at speeds of interest. The latter method is useful for balancing rotors at other than critical speeds and for performing unified balancing beginning with the first critical speed. Finally, low-speed flexible balancing permits low-speed tests and adjustments of rotor assemblies which will not be accessible when operating in their high-speed functional configuration. The method was developed for the high pressure liquid oxygen turbopumps for the Shuttle.

  4. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  5. The effect of solidity on the performance of H-rotor Darrieus turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S. M. Rakibul, E-mail: rakibulhassan21@gmail.com; Ali, Mohammad, E-mail: mali@me.buet.ac.bd; Islam, Md. Quamrul, E-mail: quamrul@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2016-07-12

    Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (C{sub P}) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.

  6. The effect of solidity on the performance of H-rotor Darrieus turbine

    Science.gov (United States)

    Hassan, S. M. Rakibul; Ali, Mohammad; Islam, Md. Quamrul

    2016-07-01

    Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (CP) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.

  7. The Finite-Bladed Betz Rotor

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    The finite-bladed optimum Betz rotor is treated. It is first very recently that a complete description of this rotor has been derived. In the chapter, a full analytical solution to the Betz rotor problem will be given, and the results will be compared to other optimum rotor models, both with resp......The finite-bladed optimum Betz rotor is treated. It is first very recently that a complete description of this rotor has been derived. In the chapter, a full analytical solution to the Betz rotor problem will be given, and the results will be compared to other optimum rotor models, both...... with respect to performance and resulting rotor geometry. It is here shown that for tip speed ratios greater than three, all models result in the same geometry at the outer part of the rotor, whereas the inner part always is different, both with respect to plan form and with respect to twist distribution....

  8. Evaluation of wind flow with a nacelle-mounted continuous-wave lidar

    DEFF Research Database (Denmark)

    Medley, John; Slinger, Chris; Barker, Will

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  9. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  10. Wind-Farm Parametrisations in Mesoscale Models

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2013-01-01

    In this paper we compare three wind-farm parametrisations for mesoscale models against measurement data from the Horns Rev I offshore wind-farm. The parametrisations vary from a simple rotor drag method, to more sophisticated models. Additional to (4) we investigated the horizontal resolution...

  11. Study on wind turbine arrangement for offshore wind farms

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2011-01-01

    In this paper, the separation distance between two neighboring offshore wind turbines has been carried out by using the Actuator Line/Navier-Stokes technique developed at the Technical University of Denmark (DTU). Under offshore atmospheric conditions, Large Eddy Simulation has been performed for...... to the turbulence mixing. This study hints that the optimal separation distance between neighboring turbines for offshore wind farms should be 7 rotor diameters....

  12. Aerodynamic benchmarking of the DeepWind design

    DEFF Research Database (Denmark)

    Bedon, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...

  13. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2013-05-01

    Full Text Available Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be horizontal axis or verticalaxis Savonius and Darrieus rotor. Latest innovations allow operation of variable speed wind turbines, or turbinespeed control based on wind speed. Wind energy is considered one of the most sustainable choices betweenvariants future wind resources are immense.

  14. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  15. Critical speed analysis of rotors

    Science.gov (United States)

    Cavicchi, R. H.

    1970-01-01

    General frequency equation is developed for both forward and backward precession of rigid rotors in undamped bearings on flexible foundations. As well as major critical speeds, nonsynchronous critical speeds that may result from bearing defects can be located.

  16. Thuega. Wind in the forest; Thuega. Wind im Wald

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-07-01

    The contribution under consideration reports on the wind farms Biebersdorf and Neuerkirch. The wind farm Biebersdorf was built by Windpark Biebersdorf GmbH (Maerkische Heide, Federal Republic of Germany). It consists of fourteen wind turbines with an output of 28 MW. The annual production of this wind farm is approximately 62.4 million kWh. With this, approximately 15,600 households were supplied with clean electricity, and emissions of 50,000 tonnes of CO{sub 2} were avoided. The wind farm Neuerkirch (Neuerkirch, Federal Republic of Germany) consists of eight wind turbines of Enercon E-82 E2 with a capacity of 2.3 MW, a rotor diameter of 82 meters and a hub height of 138 meters. It was built by juwi Holding AG (Woerrstadt, Federal Republic of Germany). Thuega Erneuerbare Energie GmbH and Co. KG (Munich, Federal Republic of Germany) acquired both wind farms.

  17. Wind turbine power and sound in relation to atmospheric stability

    NARCIS (Netherlands)

    van den Berg, G. P.

    2008-01-01

    Atmospheric stability cannot, with respect to modem, toll wind turbines, be viewed as a 'small perturbation to a basic neutral state' This can be demonstrated by comparison of measured wind velocity at the height of the rotor with the wind velocity expected in a neutral or 'standard' atmosphere.

  18. Laboratory development of wind turbine simulator using variable ...

    African Journals Online (AJOL)

    user

    The wind energy conversion system simulates the steady state wind turbine behaviors in a controlled environment without dependence on natural wind resource and ..... The equation shows the relationship between rotor current and slip frequency at a given flux which is constant in constant torque operating region. 4.

  19. Doppler Lidar in the Wind Forecast Improvement Projects

    Directory of Open Access Journals (Sweden)

    Pichugina Yelena

    2016-01-01

    Full Text Available This paper will provide an overview of some projects in support of Wind Energy development involving Doppler lidar measurement of wind flow profiles. The high temporal and vertical resolution of these profiles allows the uncertainty of Numerical Weather Prediction models to be evaluated in forecasting dynamic processes and wind flow phenomena in the layer of rotor-blade operation.

  20. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  1. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  2. Software tool for horizontal-axis wind turbine simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7, 5 CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    The main problem of a wind turbine generator design project is the design of the right blades capable of satisfying the specific energy requirement of an electric system with optimum performance. Once the blade has been designed for optimum operation at a particular rotor angular speed, it is necessary to determine the overall performance of the rotor under the range of wind speed that it will encounter. A software tool that simulates low-power, horizontal-axis wind turbines was developed for this purpose. With this program, the user can calculate the rotor power output for any combination of wind and rotor speeds, with definite blade shape and airfoil characteristics. The software also provides information about distribution of forces along the blade span, for different operational conditions. (author)

  3. Measurements of wakes originated from 2-bladed and 3-bladed rotors

    Science.gov (United States)

    Wu, Yu-Ting; Lyu, Shao-Dong; Chen, Bo-Wei

    2016-04-01

    Measurements of wakes originated from 2-bladed and 3-bladed rotors were carried out using a hot-wire probe system in an open jet wind tunnel. Hot-wire anemometry was adopted to characterize the spanwise profiles of mean wind speed, turbulence intensity and momentum flux for downwind locations at 0.5, 1, 2, 3, and 4 rotor diameters. The results showed that the 2-bladed rotor spun faster than the 3-bladed one, where the ratio of the two blade angular velocities was 1.065:1 under the same inflow condition with a uniform distribution of 5.4 m/s flow velocity. The turbulence flow statistics of the rotor wakes showed that the wake originated from the 3-bladed rotor has larger velocity deficit, streamwise turbulence intensity, momentum flux magnitude, but smaller spanwise turbulence intensity. The velocity spectrum showed peaks associated with the presence of the blade-induced tip vortices in the near wake region (approximately within 3 rotor diameters).

  4. FEM Analysis of a New Electromechanical Converter with Rolling Rotor and Axial Air-Gap

    Directory of Open Access Journals (Sweden)

    UNGUREANU, C.

    2015-11-01

    Full Text Available The paper presents the modeling of a new type of electromechanical converter with rolling rotor (ECRR in order to obtain an optimisation at functional level. The ECRR prototype comprises a stator composed of twelve magnetic poles and a disk-shaped rolling rotor made of ferromagnetic material, without windings. Each magnetic pole is made of an E-shaped magnetic system and a winding placed on its central column. The electromechanical converter with rolling rotor is analyzed through a magnetic field study with Flux2D software in magnetostatic application. The field study examines the influence of the rotor thickness, axial air-gap size and current density on the magnetic attraction force that changes the position of the disk-shaped rolling rotor. Also, it is analyzed the variation of the magnetic attraction force for different inclination angles of the rolling rotor. The main advantage of the ECRR is represented by a low rotational speed without using mechanical gearboxes. The ECRR prototype can be used in photovoltaic panels tracking systems.

  5. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  6. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...... to the square of its rotor radius, therefore it seems reasonable to increase the size of the wind turbine in order to capture more power. However as the size increases, the mass of the blades increases by cube of the rotor size. This means in order to keep structural feasibility and mass of the whole structure...... reasonable, the ratio of mass to size should be reduced. This trend results in more flexible structures. Control of the flexible structure of a wind turbine in a wind field with stochastic nature is very challenging. In this thesis we are examining a number of robust model based methods for wind turbine...

  7. Wind farm production estimates

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Larsen, Gunner Chr.; Aagaard Madsen, Helge

    2012-01-01

    inves- tigated for a full polar (i.e. as function of mean inflow wind direction). This investigation relates to a mean wind speed bin defined as 8m=s±1m=s. The impact of ambient turbu- lence intensity and turbine inter spacing on the production of a wind turbine operating under full wake conditions...... is investi- gated. Four different turbine inter spacings, ranging between 3.8 and 10.4 rotor diameters, are analyzed for ambient turbu- lence intensities varying between 2% and 20%. This analysis is based on full scale production data from three other wind farms Wieringermeer [3], Horns Rev [4] and Nysted [5......]. A very satisfactory agreement between experimental data and predictions is observed. This paper finally includes additionally an analysis of the production impact caused by atmospheric stability effects. For this study, atmospheric stability conditions are defined in terms of the Monin-Obukhov length...

  8. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  9. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  10. Investigation of Counter-Rotating Wind Turbine Performance using Computational Fluid Dynamics Simulation

    Science.gov (United States)

    Koehuan, V. A.; Sugiyono; Kamal, S.

    2017-11-01

    Investigation of the dual rotor counter-rotating wind turbine (CRWT) performance using non-dimensional parameters of the rotor diameter ratio and the rotor axial distance ratio against the characteristics of power coefficient with tip speed ratio (TSR) as input parameters have been successfully carried through CFD simulation. CFD simulation used k-e turbulence realizable with hexahedral meshing to predict the CRWT performance to the rotor diameter ratio of D1/D2 1 and rotor axial distance ratio with the s826 airfoil that has been applied to the single rotor wind turbine. The best CRWT performance obtained on the rotor diameter ratio of D1/D2 = 1.0 with the peak power coefficient of 0.5219 or increased to ΔCp, max = 16.49% from the single rotor. CRWT performance through the addition of rotor axial distance ratio showed the power coefficient of the front rotor continued to rise closely to the single rotor performance while the rear rotor will continue to decline. However, the overall CRWT performance were relatively stable after the ratio of the distance Z/D1 = 0.5 with the peak power coefficient of 0.5348 or increased to ΔCp, max = 19.37%.

  11. Dynamic Analysis of a Floating Vertical Axis Wind Turbine Under Emergency Shutdown Using Hydrodynamic Brake

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    Emergency shutdown is always a challenge for an operating vertical axis wind turbine. A 5-MW vertical axis wind turbine with a Darrieus rotor mounted on a semi-submersible support structure was examined in this study. Coupled non-linear aero-hydro-servo-elastic simulations of the floating vertical...... axis wind turbine were carried out for emergency shutdown cases over a range of environmental conditions based on correlated wind and wave data. When generator failure happens, a brake should be applied to stop the acceleration of the rotor to prevent the rotor from overspeeding and subsequent disaster...

  12. Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight

    Science.gov (United States)

    Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.

    2013-01-01

    A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.

  13. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  14. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1

    Science.gov (United States)

    Magee, J. P.; Clark, R. D.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.

  15. Atmospheric stability and its influence on wind turbine loads

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Barlas, Thanasis K.

    2012-01-01

    Simulations of wind turbine loads for the NREL 5 MW reference wind turbine under diabatic wind conditions are performed for mean wind speeds between 3 { 16 m/s at the turbine hub height. The loads are quantified as the cumulative sum of the damage equivalent load for different wind speeds...... that are weighted according to the wind speed and stability distribution. It is observed that atmospheric stability influences the tower and rotor loads. The difference in the calculated tower loads using diabatic wind conditions and those obtained assuming neutral conditions only is approximately 16%, whereas...... the difference for the rotor loads is up to 11%. The blade loads are hardly influenced by atmospheric stability, where the difference between the calculated loads using diabatic and neutral input wind conditions is less than 1%. The wind profiles and turbulence under diabatic conditions have contrasting...

  16. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  17. Full-scale measurements of aerodynamic induction in a rotor plane

    International Nuclear Information System (INIS)

    Larsen, Gunner Chr; Hansen, Kurt S

    2014-01-01

    Reliable modelling of aerodynamic induction is imperative for successful prediction of wind turbine loads and wind turbine dynamics when based on state-of- the-art aeroelastic tools. Full-scale LiDAR based wind speed measurements, with high temporal and spatial resolution, have been conducted in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented

  18. Full-scale measurements of aerodynamic induction in a rotor plane

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    Reliable modelling of aerodynamic induction is imperative for successful prediction of wind turbine loads and wind turbine dynamics when based on state-of- the-art aeroelastic tools. Full-scale LiDAR based wind speed measurements, with high temporal and spatial resolution, have been conducted...... in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented....

  19. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...

  20. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind...

  1. Development of a piezoelectric actuator for trailing-edge flap control of rotor blades

    Science.gov (United States)

    Straub, Friedrich K.; Ngo, Hieu T.; Anand, V.; Domzalski, David B.

    1999-06-01

    Piezoelectric actuator technology has now reached a level where macro-positioning applications in the context of smart structures can be considered. One application with high payoffs is vibration reduction, noise reduction, and performance improvements in helicopters. Integration of piezoelectric actuators in the rotor blade is attractive, since it attacks the problem at the source. The present paper covers the development of a piezoelectric actuator for trailing edge flap control on a 34-foot diameter helicopter main rotor. The design of an actuator using bi-axial stack columns, and its bench, shake, and spin testing are described. A series of enhancements lead to an improved version that, together with use of latest stack technology, meets the requirements. Next steps in this DARPA sponsored program are development of the actuator and full scale rotor system for wind tunnel testing in the NASA Ames 40 X 80 foot wind tunnel and flight testing on the MD Explorer.

  2. The modeling of the dynamic behavior of an unsymmetrical rotor

    Science.gov (United States)

    Pǎrǎuşanu, Ioan; Gheorghiu, Horia; Petre, Cristian; Jiga, Gabriel; Crişan, Nicoleta

    2018-02-01

    The purpose of this article is to present the modeling of the dynamic behaviour of unsymmetrical rotors in relatively simple quantitative terms. Numerical simulations show that the shaft orthotropy produces a peak of resonant vibration about half the regular critical speed and, for small damping, a range of possible unstable behavior between the two critical speeds. Rotors having the shaft and/or the disks with unequal diametral moments of inertia (e.g., two-bladed small airplane propellers, wind turbines and fans) are dynamically unstable above a certain speed and some of these may return to a stable condition at a sufficiently high speed, depending on the particular magnitudes of the gyroscopic coupling and the inertia inequality.

  3. Power Curves in a Wind Turbine Array: A Numerical Study

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    The impact of measuring a power curve inside a wind turbine array is investigated using computational fluid dynamics. The array consists of five aligned rotors that yaw with the free-stream wind direction. The flow-field in front of a wind turbine array changes with wind direction and hence...... the individual power output of each turbine. By incorporating the current IEC standards on power performance measurements, the bias in the power performance of turbines in an array over an isolated rotor is determined. The power change depends on the position of the turbine in the array and reaches maximally 9...

  4. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    opportunity Screening eight sites identified in the Wind Atlas of Georgia (2004) based on a preliminary assessment of the wind power potential, feasibility and construction costs of each site, points to Skra as the most feasible area for pilot development of wind power. The Skra site in Gori/Kareli regions has good (above 7 m/s at 100m) and steady wind resources, minimal land-use and environmental conflicts and high accessibility. An 80m wind measurement mast has recently been put up on the site by a Georgian company. The Skra site is estimated to potentially hold up to 35 3MW turbines (90m rotor diameter) or 45 2MW turbines (80m rotor diameter). The total capacity of the wind farm would thus be 105MW or 90MW respectively. A preliminary estimation for the annual energy production of the wind farm using 2,500 full-load-hours, gives production estimations of 260 GWh for a 105MW and 225 GWh for a 90MW wind farm on the site. Investment cost of the wind farm is estimated to be roughly 1.5 MEuro/MW, which amounts to 158 MEuro for a 105MW farm and 135 MEuro for a 90 MW farm. Several stakeholders in Georgia have expressed interest in using second hand turbines in order to reduce investment costs. Most available used turbines on the market are of sizes less than 2MW and the prize vary significantly depending especially on the capacity, age and make of the turbine. Other interesting sites in Georgia to explore further with an aim for wind power development include Chorokhi, Kutaisi, Samgori and Yagludja.(auth)

  5. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  6. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  7. The Flettner Rotor Ship in the Light of the Kutta-Joukowski Theory and of Experimental Results

    Science.gov (United States)

    Rizzo, Frank

    1925-01-01

    In this paper the fundamental principles of the Flettner rotor ship (Reference I) are discussed in the light of the Kutta-Joukowski theory and available experimental information on the subject. A brief exposition of the Kutta-Joukowski theory is given and the speed of the rotor ship Buckau computed, first by using effective propulsive force obtained by the above theory, and then by direct application of wind tunnel data.

  8. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    Science.gov (United States)

    Kalvig, Siri; Manger, Eirik; Hjertager, Bjørn

    2014-12-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach.

  9. Rotor Voltage Dynamics in the Doubly Fed Induction Generator During Grid Faults

    DEFF Research Database (Denmark)

    Lima, Francisco K. A.; Luna, Alvaro; Rodriguez, Pedro

    2010-01-01

    This paper presents a new control strategy for the rotor-side converter (RSC) of wind turbines (WTs) based on doubly fed induction generators (DFIG) that intends to improve its low-voltage ride through capability. The main objective of this work is to design an algorithm that would enable the sys...

  10. 3D flows near a HAWT rotor : A dissection of blade and wake contributions

    NARCIS (Netherlands)

    Micallef, D.

    2012-01-01

    Investigating the flow physics in the vicinity of the wind turbine blade is a challenging endeavour. In the past, focus was placed on the understanding of near wake flows arising from wake vorticity and the rotor loading. In this work, a different approach is taken by considering the flow field in

  11. Comparison of classical methods for blade design and the influence of tip correction on rotor performance

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Okulov, Valery; Mikkelsen, Robert Flemming

    2016-01-01

    The classical blade-element/momentum (BE/M) method, which is used together with different types of corrections (e.g. the Prandtl or Glauert tip correction), is today the most basic tool in the design of wind turbine rotors. However, there are other classical techniques based on a combination...

  12. Is blade element momentum theory (BEM) enough for smart rotor design

    NARCIS (Netherlands)

    Yu, W.; Simao Ferreira, C.J.; van Kuik, G.A.M.

    2014-01-01

    Smart rotor emerges as an innovation technique to reduce the impact of dynamic loading on wind turbines. Local movements of distributed aerodynamic devices will enhance the non-uniformity and dynamic effects of loading, which will challenge the applicability of the blade element momentum theory

  13. Validation of the actuator line method using near wake measurements of the MEXICO rotor

    DEFF Research Database (Denmark)

    Nilsson, Karl; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2015-01-01

    The purpose of the present work is to validate the capability of the actuator line method to compute vortex structures in the near wake behind the MEXICO experimental wind turbine rotor. In the MEXICO project/MexNext Annex, particle image velocimetry measurements have made it possible to determine...

  14. A New Open Loop Approach for Identifying the Initial Rotor Position of a Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2017-01-01

    Full Text Available The precision of initial rotor position detection is critical for the start and running performance of permanent magnet synchronous motor (PMSM. This work describes a new open loop approach for identifying the initial position of a PMSM with an incremental encoder, even when a constant load torque is being applied. By giving a testing current with high frequency to the stator winding, the initial rotor position of a PMSM can be detected with reasonable accuracy. The rotor almost does not move during the process of identification. The FFT algorithms are used to remove the phase bias effects in identification. Our approach is quicker and simpler than the conventional approaches.

  15. Filter type rotor for multistation photometer

    Science.gov (United States)

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  16. impedance calculations of induction machine rotor conductors.

    African Journals Online (AJOL)

    Dr Obe

    This paper describes a method of' calculating the impedance of Rectangular and Trapezoidal rotor bars. An R-L parallel network is used to model each of the Rotor bars. A computer optimisation Algorithm is developed and from which the Rotor circuit parameters at several frequencies are estimated. The model solutions ...

  17. Assessment of blockage effects on the wake characteristics and power of wind turbines

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid; Nishino, T.; Martínez-Tossas, L.A.

    2016-01-01

    Large Eddy Simulations (LES) are performed in order to study the wake and power characteristics of a horizontal-axis wind turbine in a wind tunnel. Using an actuator line technique, the effect of wind tunnel blockage ratio (defined as the ratio of the rotor swept area to the tunnel cross-sectiona......Large Eddy Simulations (LES) are performed in order to study the wake and power characteristics of a horizontal-axis wind turbine in a wind tunnel. Using an actuator line technique, the effect of wind tunnel blockage ratio (defined as the ratio of the rotor swept area to the tunnel cross...

  18. Setting the frame for up-scaled off-shore wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Chaviaropoulos, T.; Jamieson, P.

    2009-01-01

    Wind turbines with a rated power of 5-6 MW are now being designed and installed at off-shore sites. Within the EU supported UpWind research project costs model are being developed for up-scaling of wind turbines up to 20MW. These wind turbines are expected to have a rotor diameter of 250m and a hub...... pr MWh (levelised production costs). The main design parameters are selected as the rotor diameter, the hub height, the tip speed and the wind turbines separation (in wind farms)....

  19. Dynamic Properties of Offshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Damgaard, Mads

    frequencies. The highly variable and cyclic loads on the rotor, tower and foundation, caused by wind and wave loads as well as low-frequent excitations from the rotor blades, all demand special fatigue design considerations and create an even greater demand for a fuller appreciation of how the wind turbine...... and material damping in the soil. Modal properties in terms of natural frequencies and corresponding damping ratios of offshore wind turbines are investigated by full-scale modal testing and simple numerical quasi-static simulations. The analyses show distinctly time-varying inherent modal properties that...... of the soil indicates that the modal properties and cross-wind fatigue loads of offshore wind turbines are strongly affected by the interrelation effects between the foundation and subsoil....

  20. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...... and 3h, respectively; this provides the clearance between the rotor and ground of 2h which is similar to the value obtained by the rule of thumb. Spatial variations of wind energy production, the average wind speed shear and cumulative TKE inside the layer of 2h - 5h above the ground around the gaps...

  1. Impacts of wind energy in-feed on power system small signal stability

    OpenAIRE

    Banna, Hasan UI; Luna Alloza, Álvaro; Ying, Shaoqing; Ghorbani, Hamidreza; Rodríguez Cortés, Pedro

    2014-01-01

    Integration of large amount of wind energy in an interconnected power system creates concerns about secure, reliable and economical operation of the entire power system. So it becomes very necessary to investigate the impacts of wind power infeed on the dynamic behavior of the power system. This paper presents the impacts of large amount of wind power in feed on the rotor oscillatory stability. Wind turbine generator types currently employed in wind farms, optimal location of the wind farms i...

  2. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    International Nuclear Information System (INIS)

    Feng, Ju; Sheng, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades

  3. Increasing the competitiveness of wind energy. New technologies for advanced wind predictability

    International Nuclear Information System (INIS)

    Bertolotti, Fabio

    2013-01-01

    The performance of thermal and nuclear power plants is assessed routinely and precisely, whereas the performance assessment of wind turbines is lagging far behind. This increases operational costs, reduces energy capture, and makes wind energy less competitive. The paper presents a technology and system with improved 24-h power forecasting, as well as condition monitoring of the rotor blades. The system can be employed by any wind power plant and offers potentials to increase the competitiveness of the power industry. (orig.)

  4. Increasing the competitiveness of wind energy. New technologies for advanced wind predictability

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotti, Fabio [SSB Wind Systems GmbH und Co. KG, Salzbergen (Germany). Research and Technology

    2013-10-01

    The performance of thermal and nuclear power plants is assessed routinely and precisely, whereas the performance assessment of wind turbines is lagging far behind. This increases operational costs, reduces energy capture, and makes wind energy less competitive. The paper presents a technology and system with improved 24-h power forecasting, as well as condition monitoring of the rotor blades. The system can be employed by any wind power plant and offers potentials to increase the competitiveness of the power industry. (orig.)

  5. Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine

    International Nuclear Information System (INIS)

    Maganhar, A.L.

    2015-01-01

    In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)

  6. 232Th, a rigid rotor

    International Nuclear Information System (INIS)

    Singh, M.; Pradeep Kumar; Singh, Y.; Varshney, A.K.; Gupta, D.K.

    2014-01-01

    We undertake the present work to treat 232 Th with a soft rotor formula used recently by C. Bihari et. al for γ-band and modified by J.B. Gupta et. al. It describes energy in terms of moment of inertia and softness parameter

  7. Topological dynamics in supramolecular rotors.

    Science.gov (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.

  8. Dynamic Analysis of Composite Rotors

    Directory of Open Access Journals (Sweden)

    S. P. Singh

    1996-01-01

    accounted for. Material damping is also taken into account. The layerwise theory is compared with conventionally used equivalent modulus beam theory. Some interesting case studies are presented. The effect of various parameters on dynamic behavior and stability of a composite rotor is presented.

  9. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  10. Experimental apparatus and its operational characteristics for MHD rotating machine with superconducting rotor

    International Nuclear Information System (INIS)

    Katsurai, Makoto; Karasaki, Takashi; Sekiguchi, Tadashi; Matsuda, Shoji; Ichikawa, Hayao.

    1976-01-01

    This paper presents the construction and operational characteristics of the experimental apparatus of MHD rotating machine with superconducting rotor, which has the electromechanical energy conversion function based on the inductive interactions between travelling magnetic field produced by the rotor and MHD working fluid. The machine consists of a rotating-dewar type superconducting rotor and a coaxially rotating metal cylinder which simulates the liquid metal MHD working fluid, and the both of them are driven separately by speed-controlled driving motors. The superconducting magnets installed in the rotor has the 8 shaped winding whose outer diameter is 11 cm and hight is 11 cm, and with the excitation current of 200 A (rating), it produces screw type magnetic field in the inductive interaction region of the cylinder with the peak value of 0.2 Wb/m 2 , whereas the average field strength reaches almost 4 Wb/m 2 inside the winding. In this condition, mutual interaction force is 30 N in the peripheral direction and 8 N in the axial direction and the total driving power of motors is 1,300 W when the relative rotation speed of the rotor and the cylinder is 800 rpm. Observed characteristics of this machine are for the most part in agreement with those estimated by the theoretical analysis. (auth.)

  11. Efficient Beam-Type Structural Modeling of Rotor Blades

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    The present paper presents two recently developed numerical formulations which enable accurate representation of the static and dynamic behaviour of wind turbine rotor blades using little modeling and computational effort. The first development consists of an intuitive method to extract fully...... coupled six by six cross-section stiffness matrices with limited meshing effort. Secondly, an equilibrium based beam element accepting directly the stiffness matrices and accounting for large variations in geometry and material along the blade is presented. The novel design tools are illustrated...

  12. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  13. Design of low noise wind turbine blades using Betz and Joukowski concepts

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hrgovan, Iva; Okulov, Valery

    2014-01-01

    /reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using......This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline...... the concepts of Betz and Joukowski, and the CQU-DTU-LN1 series of airfoils. Performance analysis shows that the newly designed turbine rotors can achieve an overall noise reduction of 6 dB and 1.5 dB(A) with a similar power output as compared to the reference rotor....

  14. Comprehensive aeroelastic analysis of helicopter rotor with trailing-edge flap for primary control and vibration control

    Science.gov (United States)

    Shen, Jinwei

    A comprehensive aeroelastic analytical model of helicopter rotors with trailing-edge flaps for primary and vibration controls has been developed. The derivation of system equations is based on Hamilton principles, and implemented with finite element method in space and time. The blade element consists of fifteen degrees of freedom representing blade flap, lag, torsional, and axial deformations. Three aerodynamic models of flapped airfoils were implemented in the present analysis, the unsteady Hariharan-Leishman model for trailing-edge flaps without aerodynamic balance, a quasi-steady Theodorsen theory for an aerodynamic balanced trailing-edge flap, and table lookup based on wind tunnel test data. The trailing-edge flap deflections may be modeled as a degree of freedom so that the actuator dynamics can be captured properly. The coupled trim procedures for swashplateless rotor are solved in either wind tunnel trim or free flight condition. A multicyclic controller is also implemented to calculate the flap control inputs for minimization of vibratory rotor hub loads. The coupled blade equations of motion are linearized by using small perturbations about a steady trimmed solution. The aeroelastic stability characteristics of trailing-edge flap rotors is then determined from an eigenanalysis of the homogeneous equations using Floquet method. The correlation studies of a typical bearingless rotor and an ultralight teetering rotor are respectively based on wind tunnel test data and simulations of another comprehensive analysis (CAMRAD II). Overall, good correlations are obtained. Parametric study identifies that the effect of actuator dynamics cannot be neglected, especially for a torsionally soft smart actuator system. Aeroelastic stability characteristics of a trailing-edge flap rotor system are shown to be sensitive to flap aerodynamic and mass balances. Key parameters of trailing-edge flap system for primary rotor control are identified as blade pitch index angle

  15. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input...... the swept rotor area would allow the determination of the electrical power as a function of an equivalent wind speed where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub...

  16. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  17. Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine

    Science.gov (United States)

    de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis

    2013-08-01

    This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.

  18. Wind turbine test Vestas V27-225 kW

    Energy Technology Data Exchange (ETDEWEB)

    Markkilde Petersen, S.

    1990-10-15

    The report describes fundamental measurements performed on a Vestas-V27-225 kW pitch regulated wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, structural dynamics, loads at cut-in and braking, yaw error statistics, flapwise root bending moment and rotor thrust. (author).

  19. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined......, we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based...... by the effective wind speed on the rotor disc. We take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore, the scheduling variable is known for the entire prediction horizon. By taking the advantage of having future values of the scheduling variable...

  20. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  1. Tandem mirror reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1977-01-01

    A parametric analysis and a preliminary conceptual design for a 1000 MWe Tandem Mirror Reactor (TMR) are described. The concept is sufficiently attractive to encourage further work, both for a pure fusion TMR and a low technology TMR Fusion-Fission Hybrid

  2. Tandem mirror reactors

    International Nuclear Information System (INIS)

    Logan, B.G.; Barr, W.L.; Bender, D.J.

    1978-01-01

    We have made preliminary designs of tandem mirror fusion reactors burning D-T fuel and of fusion-fission (hybrid) tandem mirrors producing both fissile fuel and electricity. For the hybrid reactor, we find that by using stream-stabilized, 2XIIB-like plugs and by injecting 200-keV deuterium beams into a tritium-plasma target confined electrostatically in the solenoid (two-component operation), we obtain a useful Q (fusion power/injection power) near unity. The D-T tandem reactor parameters are optimized to obtain the minimum capital cost per kW(e) net. For $200/kW(e) of 1200-keV neutral beam injection power in the plugs and a solenoid cost of about $3 million per metre length, the optimum Q is near 5. To allow for more expensive injector costs, a higher D-T reactor Q of 10 is obtainable with either increased power output or decreased neutron wall loading. Fokker--Planck calculations show steady-state Q approximately 5 for D-D tandem reactors burning only deuterium fuel and its reaction products, with most of the charged-particle fusion power recovered in a direct converter

  3. Frost protection for wind energy installations; Frostschutz fuer Windenergieanlagen. Eisfreie Oberflaechen der Natur abgeschaut

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, K.; Meola, G.; Hirayama, M.

    2009-07-01

    This article discusses how naidered intural materials can be used to prevent wind energy installations in exposed alpine locations from icing up. The problems encountered with wind turbines in Scandinavia and in the Swiss Alps due to icing-up are discussed. The mechanisms involved in the formation of hoar frost and clear ice on the rotors of the wind turbines are discussed. Techniques and materials for fighting the icing-up of the rotors are examined. Various special 'ice-phobic' coatings for the rotor blades are listed and discussed. These must adhere to the rotor blades but be repellent to ice. Teflon is quoted as being the most tested material. So-called 'anti-freeze' proteins that can be found in fish and insects are also being examined as a possible coating for the rotors.

  4. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    Science.gov (United States)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  5. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    Science.gov (United States)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  6. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  7. Mesoscale to microscale wind farm flow modeling and evaluation

    DEFF Research Database (Denmark)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    2017-01-01

    The increasing size of wind turbines, with rotors already spanning more than 150m diameter and hub heights above 100m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer stru...

  8. Fatigue Analysis of Casted Hubs in Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, Søren R.K.; Sørensen, Steffen

    2002-01-01

    The hub of a wind turbine rotor is excited by time-varying forces and moments from the blades caused by extemal dynamic loads such as wind loading and aeroelastic effects. The paper describes how reliability-based fatigue analysis can be made based on SN-curves and how reliability-based inspection...

  9. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  10. Design and analysis of full pitch winding and concentrated stator ...

    Indian Academy of Sciences (India)

    the winding, (ii) low cogging torque and permanent magnet (PM) weight. The basic machine configuration is an 8 salient pole rotor and 6 salient pole stator with concentrated windings. Permanent Magnets are fixed to the stator pole. Figure 1 shows this machine configuration. FRM for low-speed servo drive application was ...

  11. Investigation of blade performance of horizontal axis wind turbine ...

    African Journals Online (AJOL)

    The shape of rotor blade plays an important role in determining the overall aerodynamic performance of a horizontal axis wind turbine. In this work, blade is designed for a 5KW horizontal axis wind turbine which is already in market. For designing blade, blade element momentum theory (BEMT) is used and a computer ...

  12. Wind farms threaten southern Africa's cliff-nesting vultures ...

    African Journals Online (AJOL)

    ... tops and upper slopes), and that both species generally fly at heights within the rotor-sweep of a typical, modern wind turbine. We constructed a population viability model using actual population data from the area presently being targeted by the wind energy industry, calibrated with actual data on local population trends, ...

  13. Load attenuating passively adaptive wind turbine blade

    Science.gov (United States)

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  14. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated......The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...

  15. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated....... Simulation results have been presented and the effectiveness of the stability improvement methods has been discussed....

  16. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  17. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    Science.gov (United States)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  18. Determination of the angle of attack on rotor blades

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2009-01-01

    Two simple methods for determining the angle of attack (AOA) on a section of a rotor blade are proposed. Both techniques consist of employing the Biot-Savart integral to determine the influence of the bound vorticity on the velocity field. In the first technique, the force distribution along...... the blade and the velocity at a monitor point in the vicinity of the blade are assumed to be known from experiments or CFD computations. The AOA is determined by subtracting the velocity induced by the bound circulation, determined from the loading, from the velocity at the monitor point. In the second...... to be located closer to the blade, and thus to determine the AOA with higher accuracy. Data from CFD computations for flows past the Tellus 95 kW wind turbine at different wind speeds are used to test both techniques. Comparisons show that the proposed methods are in good agreement with existing techniques...

  19. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  20. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produce...

  1. Repetitive model predictive approach to individual pitch control of wind turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob; Odgaard, Peter Fogh

    2011-01-01

    Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use this....... A simulation comparison betweeen the proposed controller and an industry-standard PID controller shows better mitigation of drive-train, blade and tower loads.......Wind turbines are inherently exposed to nonuniform wind fields with of wind shear, tower shadow, and possible wake contributions. Asymmetrical aerodynamic rotor loads are a consequence of such periodic, repetitive wind disturbances experienced by the blades. A controller may estimate and use...... this peculiar disturbance pattern to better attenuate loads and regulate power by controlling the blade pitch angles individually. A novel model predictive (MPC) approach for individual pitch control of wind turbines is proposed in this paper. A repetitive wind disturbance model is incorporated into the MPC...

  2. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  3. Superconducting generators for wind turbines: design considerations

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Abrahamsen, Asger Bech; Træholt, Chresten

    2010-01-01

    The harmonic content of high temperature superconductors (HTS) field winding in air-core high temperature superconducting synchronous machine (HTS SM) has been addressed in order to investigate tendency of HTS SM towards mechanical oscillation and additional loss caused by higher flux harmonic. B....... Both analytical expressions for flux distribution and current sheet distribution have been derived and analyzed. The two main contributors to the AC loss of HTS rotor winding are also identified and their influence addressed on general level....

  4. Dynamic behavior of parked wind turbine at extreme wind speed

    DEFF Research Database (Denmark)

    Totsuka, Yoshitaka; Imamura, Hiroshi; Yde, Anders

    2016-01-01

    In wind turbine design process, a series of load analysis is generally performed to determine ultimate and fatigue loads under various design load cases (DLCs) which is specified in IEC 61400. These design load scenario covers not only normal operating condition but also startup, shutdown, parked...... of standstill and idling is analyzed by time domain simulations using two different coupled aero-hydro-servo-elastic codes. Trend in modern wind turbines is development of bigger, lighter and more flexible rotors where vibration issues may cause aero-elastic instabilities which have a serious impact...

  5. Dynamic eccentricity fault diagnosis in round rotor synchronous motors

    International Nuclear Information System (INIS)

    Ebrahimi, Bashir Mahdi; Etemadrezaei, Mohammad; Faiz, Jawad

    2011-01-01

    Research highlights: → We have presented a novel approach to detect dynamic eccentricity in round rotor synchronous motors. → We have introduced an efficient index based on processing torque using time series data mining method. → The stator current spectrum of the motor under different levels of fault and load are computed. → Winding function method has been employed to model healthy and faulty synchronous motors. -- Abstract: In this paper, a novel approach is presented to detect dynamic eccentricity in round rotor synchronous motors. For this, an efficient index is introduced based on processing developed torque using time series data mining (TSDM) method. This index can be utilized to diagnose eccentricity fault and its degree. The capability of this index to predict dynamic eccentricity is illustrated by investigation of load variation impacts on the nominated index. Stator current spectrum of the faulty synchronous motor under different loads and dynamic eccentricity degrees are computed. Effects of the dynamic eccentricity and load variation simultaneously are scrutinized on the magnitude of 17th and 19th harmonic components as traditional indices for eccentricity fault diagnosis in synchronous motors. Necessity signals and parameters for processing and feature extraction are evaluated by winding function method which is employed to model healthy and faulty synchronous motors.

  6. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  7. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-04-01

    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  8. Variable Speed Rotor System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  9. Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit

    Directory of Open Access Journals (Sweden)

    Flávio Oliveira

    2015-12-01

    Full Text Available This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT, it is proposed a novel solution, using Superconducting Current Limiter (SCL in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC, and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD™/EMTDC™ and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.

  10. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    Directory of Open Access Journals (Sweden)

    Hyewon Lee

    2017-04-01

    Full Text Available In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. The simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.

  11. Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poore, R.; Lettenmaier, T.

    2003-08-01

    This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

  12. Balancing High-Speed Rotors at Low Speed

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Flexible balancing reduces vibrations at operating speeds. Highspeed rotors in turbomachines dynamically balanced at fraction of operating rotor speed. New method takes into account rotor flexible rather than rigid.

  13. Aeroservoelastic analysis of storm-ride-through control strategies for wind turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    An investigation of a control strategy to allow wind turbines to operate at high wind speeds by derating the rotor speed and generator torque set-points is presented. The investigation analyzes the wind turbine aeroservoelastic behavior in the above rated operational range by computing the aerody...

  14. Controller design for a Wind Farm, Considering both Power and Load Aspects

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2011-01-01

    turbine. The control algorithm determines the reference signals for each individual wind turbine controller in two scenarios based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization...

  15. On the Application of Fluid Power Transmission in Offshore Wind Turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.

    2013-01-01

    Offshore wind energy is currently characterized by the high costs associated with installation and operation. Gearboxes in particular have been singled out as a key source of the high maintenance costs of offshore wind farms. For a given wind speed, the torque of the rotor increases cubically with

  16. A Wind Farm Controller for Load and Power Optimization in a Farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Brand, Arno; Wisniewski, Rafal

    2011-01-01

    based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization into account. In high wind speed, the power and pitch angle reference signals are determined while structural loads are minimized....

  17. Diffuser augmented wind turbine analysis code

    Science.gov (United States)

    Carroll, Jonathan

    Wind Energy is becoming a significant source of energy throughout the world. This ever increasing field will potentially reach the limit of availability and practicality with the wind farm sites and size of the turbine itself. Therefore, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one such innovation. DAWTs increase the power output of the rotor by increasing the wind speed into the rotor using a duct. Currently, developing these turbines is an involved process using time consuming Computational Fluid Dynamics codes. A simple and quick design tool is necessary for designers to develop efficient energy capturing devices. This work lays out the theory for a quick analysis tool for DAWTs using an axisymmetric surface vorticity method. This method allows for quick analysis of duct, hubs and rotors giving designers a general idea of the power output of the proposed hub, blade and duct geometry. The method would be similar to the way blade element momentum theory is used to design conventional HAWTs. It is determined that the presented method is viable for preliminary design of DAWTs.

  18. Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding

    Directory of Open Access Journals (Sweden)

    Mohamed Nabil Fathy Ibrahim

    2017-09-01

    Full Text Available This paper compares four prototype Synchronous Reluctance Motors (SynRMs having an identical geometry of iron lamination stacks in the stator and rotor. Two different stator winding layouts are employed: a conventional three-phase star connection and a combined star–delta winding. In addition, two rotors are considered: a conventional rotor without magnets and a rotor with ferrite magnets. The performance of the four SynRMs is evaluated using a two-dimensional (2D Finite Element Model (FEM. For the same copper volume and current, the combined star–delta-connected stator with Permanent Magnets (PMs in the rotor corresponds to an approximately 22% increase in the output torque at rated current and speed compared to the conventional machine. This improvement is mainly thanks to adding ferrite PMs in the rotor as well as to the improved winding factor of the combined star–delta winding. The torque gain increases up to 150% for low current. Moreover, the rated efficiency is 93.60% compared to 92.10% for the conventional machine. On the other hand, the impact on the power factor and losses of SynRM when using the star–delta windings instead of the star windings is merely negligible. The theoretical results are experimentally validated using four identical prototype machines with identical lamination stacks but different rotors and winding layouts.

  19. Wind tunnel tests of a free yawing downwind wind turbine

    Science.gov (United States)

    Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.

    2014-12-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.

  20. Enzyme catalysed tandem reactions

    OpenAIRE

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-01-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a r...

  1. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  2. Some design aspects of high-speed vertical-axis wind turbines

    National Research Council Canada - National Science Library

    Templin, R. J; South, P

    1977-01-01

    ... (rotor height to diameter ratio, solidity, number of blades, etc.) for high-speed vertical-axis wind turbines from kilowatt to megawatt sizes and shows that very large turbines are theoretically feasible...

  3. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  4. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Science.gov (United States)

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E

    2012-01-01

    Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  5. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Directory of Open Access Journals (Sweden)

    Manuela de Lucas

    Full Text Available BACKGROUND: Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. METHODOLOGY/PRINCIPAL FINDINGS: As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. CONCLUSIONS: Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed. We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  6. A spinner-integrated wind lidar for enhanced wind turbine control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Angelou, Nikolas; Hansen, Kasper Hjorth

    2013-01-01

    diameter, 59 m hub height 2.3 MW wind turbine (Vestas NM80), located at Tjæreborg Enge in western Denmark is presented. Preview wind data at two selected upwind measurement distances, acquired during two measurement periods of different wind speed and atmospheric stability conditions, are analyzed...... of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed-forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd.......A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m rotor...

  7. Peigans plan wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-06-01

    The Peigan Nation of southwest Alberta will have four one-MW Nordex wind turbines installed on its land by October 1998, as the first step in a $200 million 101 MW grid-connected wind farm. The installation is a joint venture between Peigan Utilities Inc., Advanced Thermodynamics, the licencees to market the Nordex turbines, and the Sault Ste. Marie`s Batchawana Band. The joint venture is named `Weather-Dancer`. The test turbine is scheduled to be installed in August, with three more planned in October. Each turbine has a rotor of 54 metres in diameter, atop a 60-metre tower. Initially, the power will be used on the reserve through a Peigan-administered rural electrification association. The remainder of the turbines will be added as purchase contracts are signed with the Alberta Power Pool.

  8. Standards for measurements and testing of wind turbine power quality

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P. [Risoe National Lab., Roskilde (Denmark); Gerdes, G.; Klosse, R.; Santjer, F. [DEWI, Wilhelmshaven (Germany); Robertson, N.; Davy, W. [NEL, Glasgow (United Kingdom); Koulouvari, M.; Morfiadakis, E. [CRES, Pikermi (Greece); Larsson, Aa. [Chalmers Univ. of Technology, Goeteborg (Sweden)

    1999-03-01

    The present paper describes the work done in power quality sub-task of the project `European Wind Turbine Testing Procedure Developments` funded by the EU SMT program. The objective of the power quality sub-task has been to make analyses and new recommendation(s) for the standardisation of measurement and verification of wind turbine power quality. The work has been organised in three major activities. The first activity has been to propose measurement procedures and to verify existing and new measurement procedures. This activity has also involved a comparison of the measurements and data processing of the participating partners. The second activity has been to investigate the influence of terrain, grid properties and wind farm summation on the power quality of wind turbines with constant rotor speed. The third activity has been to investigate the influence of terrain, grid properties and wind farm summation on the power quality of wind turbines with variable rotor speed. (au)

  9. Basic DTU Wind Energy controller

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Henriksen, Lars Christian

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring...... smooth switching between the two modes of operation. The partial and full load controllers are both based on classical proportional-integral control theory as well as additional filters such as an optional drive train damper and a notch filter mitigating the influence of rotor speed dependent variations...... in the feedback. The controller relies on generator speed as the primary feedback sensor. Additionally, the reference generator power is used as a feedback term to smoothen the switching between partial and full load operation. Optionally, a low-pass filtered wind speed measurement can be used for wind speed...

  10. Operation of a test bed axial-gap brushless dc rotor with a superconducting stator

    Science.gov (United States)

    McKeever, J. W.; Sohns, C. W.; Schwenterly, S. W.; Young, R. W., Sr.; Campbell, V. W.; Hickey, M. H.; Ott, G. W.; Bailey, J. M.

    A variable-speed axial-gap motor with a stator consisting of four liquid helium cooled superconducting electromagnets (two pole pairs) was built and proof tested up to 608 rpm in November 1990 as a tool for joint industry-laboratory evaluation of coils fabricated from high temperature oxide superconductors. A second rotor was fabricated with improved material, winding configuration, and wire type, and the drive system was modified to eliminate current spiking. The modified motor was characterized to design speed, 188 rad/s (1800 rpm), to acquire a performance baseline for future comparison with that of high temperature superconducting (HIS) wire. As it becomes commercially available, HTS wire will replace the low temperature electromagnet wire in a stator modified to control wire temperatures between 4 K and 77 K. Measurements of the superconducting electromagnetic field and locked rotor torque as functions of cryocurrent and dc current through two phases of the rotor, respectively, provided data to estimate power that could be developed by the rotor. Back emf and parasitic mechanical and electromagnetic drag torques were measured as functions of angular velocity to calculate actual rotor power developed and to quantify losses, which reduce the motor's efficiency. A detailed measurement of motor power at design speed confirmed the developed power equation. When subsequently operated at the 33-A maximum available rotor current, the motor delivered 15.3 kW (20.5 hp) to the load. In a final test, the cryostat was operated at 2500 A, 200 A below its critical current. At rotor design current of 60 A and 2500 A stator current, the extrapolated developed power would be 44.2 kW (59.2 hp) with 94% efficiency.

  11. Method for changing removable bearing for a wind turbine generator

    Science.gov (United States)

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee , Gadre; Dattatraya, Aniruddha [Rexford, NY

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  12. A Coordinated LVRT Control for a PMSG Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Chunghun; Gui, Yonghao; Chung, Chung Choo

    2017-01-01

    This paper proposes a coordinated controller for a permanent-magnet synchronous generator wind turbine to enhance its low voltage ride through capability. In the proposed method, both rotor side and grid side converters are cooperatively controlled to regulate the DC link voltage during the grid ...... of the DC link voltage could be obtained with less rotor acceleration. We validated the proposed method using MATLAB/Simulink SimPowerSystems and compared the performances of with and without the coordinated control....

  13. Removable bearing arrangement for a wind turbine generator

    Science.gov (United States)

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  14. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  15. Using time-frequency and wavelet analysis to assess turbulence/rotor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N.D.; Osgood, R.M.; Bialasiewicz, J.T.; Jakubowski, A.

    2000-01-05

    Large loading events on wind turbine rotor blades are often associated with transient bursts of coherent turbulent energy in the turbine inflow. These coherent turbulent structures are identified as peaks in the three-dimensional, instantaneous, turbulent shearing stress field. Such organized inflow structures and the accompanying rotor aeroelastic responses typically have time scales of only a few seconds and therefore do not lend themselves for analysis by conventional Fourier spectral techniques. Time-frequency analysis (and wavelet analysis in particular) offers the ability to more closely study the spectral decomposition of short period events such as the interaction of coherent turbulence with a moving rotor blade. In this paper, the authors discuss the initial progress in the application of time-frequency analysis techniques to the decomposition and interpretation of turbulence/rotor interaction. The authors discuss the results of applying both the continuous and discrete wavelet transforms for their application. Several examples are given of the techniques applied to both observed turbulence and turbine responses and those generated using numerical simulations. They found that the presence of coherent turbulent structures, as revealed by the inflow Reynolds stress field, is a major contributor to large load excursions. These bursts of coherent turbulent energy induce a broadband aeroelastic response in the turbine rotor as it passes through them.

  16. On Stability of Open-Loop Operation without Rotor Information for Brushless DC Motors

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2014-01-01

    Full Text Available Open-loop operation mode is often used to control the Brushless DC Motors (BLDCMs without rotor position sensors when the back electromotive force (EMF is too weak due to the very low rotor velocity. The rotor position information is not necessary in this mode and the stator windings are supplied with voltages under a certain ratio of the amplitude to the frequency. However, the rotor synchronization will be destroyed once if the commutation instant is inappropriate. In order to improve the reliability of the open-loop operation mode, a dynamic equation is established to represent the synchronization error between the rotor and the stator. Thereafter, the stability of the open-loop control mode is analyzed by using Lyapunov indirect method. Theoretical analysis indicates that the open-loop control mode is asymptotically stable only when the commutation instant of the stator current lags behind the ideal one suitably. Finally, theoretical analysis is verified through the experimental results of a certain BLDCM.

  17. Refined Performance and Loads of a Mach-Scale Rotor at High Advance Ratios

    Science.gov (United States)

    Trollinger, Lauren N.

    This work will investigate the performance and vibratory loads of a Mach-scale rotor with highly similar, non-instrumented blades at advance ratios (micro) up to 0.9. Wind tunnel tests were performed on a 4-bladed, articulated rotor with a diameter of 2.78 ft. The slowed rotor was operated at 30%, 40%, and 50% of nominal speed,corresponding to advancing tip Mach numbers up to 0.53, and shaft tilt angles of -4°, 0°, and 4° were tested. Collective sweeps from -2° to 12° were performed for each flight condition, and blade motion, control cyclics, and hub loads were measured. Blade similarity was shown to improve rotor track and trim at high micro. Thrust reversal was observed at micro = 0.9, but positive (aft) shaft tilt increased lift at high micro. Vibratory hubloads are shown to increase with advance ratio. Correlations performed using the comprehensive analysis code UMARC show good agreement for rotor performance.

  18. Evaluation of feasibility of prestressed concrete for use in wind turbine blades

    Science.gov (United States)

    Leiblein, S.; Londahl, D. S.; Furlong, D. B.; Dreier, M. E.

    1979-01-01

    A preliminary evaluation of the feasibility of the use of prestressed concrete as a material for low cost blades for wind turbines was conducted. A baseline blade design was achieved for an experimental wind turbine that met aerodynamic and structural requirements. Significant cost reductions were indicated for volume production. Casting of a model blade section showed no fabrication problems. Coupled dynamic analysis revealed that adverse rotor tower interactions can be significant with heavy rotor blades.

  19. Development and construction of an HTS rotor for ship propulsion application

    International Nuclear Information System (INIS)

    Nick, W; Frank, M; Kummeth, P; Rabbers, J J; Wilke, M; Schleicher, K

    2010-01-01

    A low-speed high-torque HTS machine is being developed at Siemens on the basis of previous steps (400kW demonstrator, 4MVA generator). The goal of the programme is to utilize the characteristic advantages offered by electrical machines with HTS-excited rotor, such as efficiency, compact size, and dynamic performance. To be able to address future markets, requirements from ship classification as well as potential customers have to be met. Electromagnetic design cannot be focused on nominal operation only, but has to deal with failure modes like short circuit too. Utilization of superconductor requires to consider margins taking into account that the windings have to operate reliably not only in 'clean' laboratory conditions, but in rough environment with the stator connected to a power converter. Extensive quality control is needed to ensure homogenous performance (current capacity, electrical insulation, dimensions) for the large quantity of HTS (45 km). The next step was to set up and operate a small-scale 'industrial' manufacturing process to produce HTS windings in a reproducible way, including tests at operating conditions. A HTS rotor includes many more components compared to a conventional one, so tough geometric tolerances must be met to ensure robust performance of the system. All this gives a challenging task, which will be concluded by cold testing of the rotor in a test facility. Then the rotor will be delivered for assembly to the stator. In following machine tests the performance of the innovative HTS drive system will be demonstrated.

  20. Wind Power Fluctuation Smoothing Controller Based on Risk Assessment of Grid Frequency Deviation in an Isolated System

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Song, Yonghua

    2013-01-01

    a smoothing controller to suppress the power fluctuation from doubly-fed induction generator (DFIG)-based wind farm. This controller consists of threemain functionality components: risk assessmentmodel, wind turbine rotor speed optimizer, and rotor speed upper limiter. In order to avoid unnecessary energy...... loss, this paper designs a risk assessment model of grid frequency deviation, which is capable of locally estimating the maximum grid frequency deviation risk of the next dispatch cycle. A wind turbine speed optimizer then uses the estimated frequency deviation risk to search for the optimal power...... curve with reduced output so that a trade-off between fluctuation smoothing and energy loss is achieved. Subsequently, the controller limits the maximum rotor speed to shift down the power curve of wind power plant based on the optimal wind turbine rotor speed. Therefore, the power fluctuation...