WorldWideScience

Sample records for tandem mirror reactors

  1. Parametric studies of tandem mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  2. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  3. Tandem mirror reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1977-01-01

    A parametric analysis and a preliminary conceptual design for a 1000 MWe Tandem Mirror Reactor (TMR) are described. The concept is sufficiently attractive to encourage further work, both for a pure fusion TMR and a low technology TMR Fusion-Fission Hybrid

  4. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  5. MINIMARS tandem mirror reactor study

    International Nuclear Information System (INIS)

    Perkins, L.J.; Logan, B.G.; Doggett, J.N.

    1986-01-01

    During 1985-1986, Lawrence Livermore National Lab., in partnership with the Fusion Engineering Design Center of Oak Ridge National Lab., the Univ. of Wisconsin, TRW, Grumman Aerospace Corporation, General Dynamics/Convair, Argonne National Lab., and the Canadian Fusion Fuels Technology Project, has conducted the conceptual design of MINIMARS, a small commercial tandem mirror reactor with novel octopole end plugs. With a net electric output of 600 MW(e), MINIMARS is expressly designed for short (∼4- to 5-yr) construction time, factory-built modules, and a passively safe blanket and thermal cycle. In this way, we intend to achieve a small reactor based on the tandem mirror principle that will minimize utility financial risk, thereby providing an attractive alternative to the more conventional large fusion plant designs encountered to date

  6. Tandem mirror reactor studies at Lawrence Livermore National Laboratory, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Neef, W.S. Jr.

    1981-03-20

    The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror Fusion Test Facility (MFTF-B) in 1984. Continued analysis and conceptual design over this period will evolve the optimal configuration and parameters for a power-producing reactor. In this article we describe the progress we have made in this reactor design study effort during 1980.

  7. Tandem mirror reactor studies at Lawrence Livermore National Laboratory, FY 1980

    International Nuclear Information System (INIS)

    Carlson, G.A.; Neef, W.S. Jr.

    1981-01-01

    The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror Fusion Test Facility (MFTF-B) in 1984. Continued analysis and conceptual design over this period will evolve the optimal configuration and parameters for a power-producing reactor. In this article we describe the progress we have made in this reactor design study effort during 1980

  8. Designs of tandem-mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Barr, W.L.; Boghosian, B.M.

    1981-01-01

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability

  9. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  10. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  11. MINIMARS: An attractive small tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Perkins, L.J.; Logan, B.G.; Doggett, J.N.; Devoto, R.S.

    1986-01-01

    Through the innovative design of a novel end plug scheme employing octopole MHD stabilization, the authors present the conceptual design of ''MINIMARS'', a small commercial fusion reactor based on the tandem mirror principle. The current baseline for MINIMARS has a net electric output of 600 MWe and they have configured the design for short construction times, factory-built modules, inherently safe blanket systems, and multiplexing in station sizes of ≅ 600-2400 MWe. They demonstrate that the compact octopole end cell provides a number of advantages over the more conventional quadrupole (yin-yang) end cell encountered in the MARS tandem mirror reactor study, and enables ignition to be achieved with much shorter central cell lengths. Accordingly, being economic in small sizes, MINIMARS provides an attractive alternative to the more conventional larger conceptual fusion reactors encountered to date, and would contribute significantly to the lowering of utility financial risk in a developing fusion economy

  12. Magnet system for a thermal barrier Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  13. Parametric design study of tandem mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1977-01-01

    The parametric design study of the tandem mirror reactor (TMR) is described. The results of this study illustrate the variation of reactor characteristics with changes in the independent design parameters, reveal the set of design parameters which minimizes the cost of the reactor, and show the sensitivity of the optimized design to physics and technological uncertainties. The total direct capital cost of an optimized 1000 MWe TMR is estimated to be $1300/kWe. The direct capital cost of a 2000 MWe plant is less than $1000/kWe

  14. Tandem mirror and tokamak reactor maintainability comparison

    International Nuclear Information System (INIS)

    Zahn, H.S.

    1981-01-01

    The analysis proceeds through estimates of downtime and resources required for selected maintenance actions and optimization of the replacement fraction, availability and cost of electricity. Scheduled downtime estimates and availability goals provide a basis for determining allowable forced outage downtimes. These analyses have been conducted with the assumption of redundancy wherever feasible but without the impact of maintenance equipment outages. Annual maintenance cost estimates and availabilities for both reactors are found to be approximately equal. However, the tandem mirror reactor capital costs are higher. Reduction of these costs appears feasible with the trend of current design studies toward smaller and more accessible machines

  15. Heat-pipe liquid-pool-blanket concept for the Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Johnson, G.L.

    1981-01-01

    The blanket concept for the tandem mirror reactor described in this paper was developed to produce the medium temperature heat (approx. 850 to 950 K) for the General Atomic sulfur-iodine thermochemical process for producing hydrogen. This medium temperature heat from the blanket constitutes about 81% of the total power output of the fusion reactor

  16. Preliminary design of a tandem mirror reactor

    International Nuclear Information System (INIS)

    Strohmayer, J.N.

    1984-04-01

    The purpose of this thesis is to examine the TARA mirror experiment as a possible tandem mirror reactor configuration. This is a preliminary study to size the coil structure based on using the smallest end cell axial length that physics and engineering allow, zeroing the central cell parallel currents and having interchange stability. The input powers are estimated for the final reactor design so a Q value may be estimated. The Q value is defined as the fusion power divided by the total injected power absorbed by the plasma. A computer study was performed on the effect of the transition size, the transition vertical spacing and transition current. These parameters affect the central cell parallel currents, the recircularization of the flux tube and the ratio of central cell beta to anchor beta needed for marginal stability. Two designs were identified. The first uses 100 keV and 13 keV neutral beams to pump the ions that trap in the thermal barrier. The Q value of this reactor is 11.3. The second reactor uses a pump beam at 40 keV. This energy is chosen because there is a resonance for the charge exchange cross section between D 0 and He 2+ at this energy, thus the alpha ash will be pumped along with the deuterium and tritium. The Q value of this reactor is 11.6

  17. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Werner, R.W.; Ribe, F.L.

    1981-01-01

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units

  18. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  19. Introduction to tandem mirror physics

    International Nuclear Information System (INIS)

    Kesner, J.; Gerver, M.J.; Lane, B.G.; McVey, B.D.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.

    1983-09-01

    This monograph, prepared jointly by the MIT Plasma Fusion Center Mirror Fusion group and SAI, Boulder, Colorado, presents a review of the development of mirror fusion theory from its conception some thirty years ago to the present. Pertinent historic experiments and their contribution are discussed to set the stage for a detailed analysis of current experiments and the problems which remain to be solved in bringing tandem mirror magnetic confinement fusion to fruition. In particular, Chapter III discusses in detail the equilibrium and stability questions which must be dealt with before tandem mirror reactors become feasible, while Chapters IV and V discuss some of the current machines and those under construction which will help to resolve critical issues in both physics and engineering whose solutions are necessary to the commercialization of tandem mirror fusion

  20. Review of mirror fusion reactor designs

    International Nuclear Information System (INIS)

    Bender, D.J.

    1977-01-01

    Three magnetic confinement concepts, based on the mirror principle, are described. These mirror concepts are summarized as follows: (1) fusion-fission hybrid reactor, (2) tandem mirror reactor, and (3) reversed field mirror reactor

  1. On the startup and shutdown of a tandem mirror reactor

    International Nuclear Information System (INIS)

    Chang, F.R.; DeCanio, F.T.; Fisher, J.L.; Madden, P.A.

    1979-01-01

    The startup and shutdown of a fusion reactor must be performed in such a way that the plasma remains MHD stable. In a tandem mirror the stability depends on a sufficiently high pressure ratio between the plugs and the central cell, of the order of 100. Control of the neutral beam input to the plugs by means of active feedback has been investigated to achieve an acceptable pressure ratio throughout the entire startup/shutdown transient. An algorithm to control the beam input power has been developed. The control law was subsequently tested in a tandem mirror simulation code. This paper describes the basic models incorporated in the simulation, as well as the derivation of the control algorithm. The simulation results are presented and the practicality of implementing the algorithm is discussed. 4 refs

  2. Evolution of the Fusion Power Demonstration tandem mirror reactor configuration

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Lousteau, D.C.

    1985-01-01

    This paper gives a presentation of the evolution of configurations proposed for tandem mirror Fusion Power Demonstration (FPD) machines. The FPD study was undertaken to scope the mission as well as the technical and design requirements of the next tandem mirror device. Three configurations, entitled FPD I, II, and III were studied. During this process new systems were conceived and integrated into the design, resulting in a significantly changed overall machine configuration. The machine can be divided into two areas. A new center cell configuration, minimizing magnetic field ripple and thus maximizing center cell fusion power, features a semicontinuous solenoid. A new end cell has evolved which maintains the required thermal barrier in a significantly reduced axial length. The reduced end cell effective length leads to a shorter central cell length being required to obtain minimum ignition conditions. Introduced is the concept of an electron mantle stabilized octopole arrangement. The engineering features of the new end cell and maintenance concepts developed are influenced to a great extent by the octopole-based design. The new ideas introduced during the FPD study have brought forth a new perspective of the size, design, and maintenance of tandem mirror reactors, making them more attractive as commercial power sources

  3. Heavy-atom neutral beams for tandem-mirror end plugs

    International Nuclear Information System (INIS)

    Post, D.E.; Grisham, L.R.; Santarius, J.F.; Emmert, G.A.

    1981-05-01

    The advantages of neutral beams with Z greater than or equal to 3 formed from negative ions, accelerated to 0.5 to 1.0 MeV/amu, and neutralized with high efficiency, are investigated for use in tandem mirror reactor end plugs. These beams can produce Q's of 20 to 30, and thus can replace the currently proposed 200 to 500 keV neutral proton beams presently planned for tandem mirror reactors. Thus, these Z greater than or equal to 3 neutral beams increase the potential attractiveness of tandem mirror reactors by offering a substitute for difficult high energy neutral hydrogen end plug beams

  4. A drift-pump coil design for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Logan, B.

    1983-01-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yinyang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region

  5. Feasibility study of a fission-suppressed tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Lee, J.D.; Moir, R.W.; Barr, W.L.

    1982-04-01

    Results of a conceptual design study of a U-233 producing fusion breeder consisting of a tandem mirror fusion device and two types of fission-suppressed blankets are presented. The majority of the study was devoted to the conceptual design and evaluation of the two blankets. However, studies in the areas of fusion engineering, reactor safety, fuel reprocessing, other fuel cycle issues, economics, and deployment were also performed

  6. Physics-magnetics trade studies for tandem mirror reactors

    International Nuclear Information System (INIS)

    Campbell, R.B.; Perkins, L.J.; Blackfield, D.T.

    1985-01-01

    We describe and present results obtained from the optimization package of the Tandem Mirror Reactor Systems Code. We have found it to be very useful in searching through multidimensional parameter space, and have applied it here to study the effect of choke coil field strength and net electric power on cost of electricity (COE) and mass utilization factor (MUF) for MINIMARS type reactors. We have found that a broad optimum occurs at B/sub choke/ = 26 T for both COE and MUF. The COE economy of scale approaches saturation at quite low powers, around 600 MW(e). The saturation is mainly due to longer construction times for large plants, and the associated time related costs. The MUF economy of scale does not saturate, at least for powers up to 2400 MW(e)

  7. Tandem mirror next step conceptual design

    International Nuclear Information System (INIS)

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-01-01

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs

  8. Tandem mirror and field-reversed mirror experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Simonen, T.C.; Turner, W.C.

    1979-08-21

    This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.

  9. WITAMIR-I: A tandem mirror power reactor

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Beyer, J.B.

    1983-01-01

    A conceptual design of a near term commercial tandem mirror power reactor will be presented. The basic configuration utilizes Yin-yang minimum B end plugs with inboard thermal barriers, which are pumped by neutral beam injection. The maximum magnetic fields are 6.1 T, 8.1 T and 15 T in the central cell, Yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and breeder, and HT-9 as the structural material. This configuration yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. A single stage direct convertor is used at one end and an electron thermal dump at the other end. The plasma Q is 28 at a fusion power level of 3000 MWsub(th); the net electrical output is 1530 MWe and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs. (author)

  10. Engineering problems of tandem-mirror reactors

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-01-01

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper

  11. Tandem mirror reactor power balance studies

    International Nuclear Information System (INIS)

    Gorker, G.E.; Perkins, L.J.

    1985-01-01

    A tandem mirror reactor (TMR) power plant balance model has been developed and is now being used as a computer aid for performing parametric studies. End-cell power injection into the plasma and the physics thermal Q are used to determine the fusion power. About 80% of the fusion power is transferred by high-energy neutrons to the blanket modules and structures. The other 20% of the fusion power in the high-energy alpha particles is used to heat the deuterium-tritium (D-T) plasma. Most of the plasma-ionized particles transfer their energy to the halo dumps and direct converters. The plant efficiency is calculated for three different system cycles: (1) the pressurized water/saturated steam cycle; (2) the superheated steam cycle; and (3) the more complex superheat/reheat cycle. There is a signficiant improvement in plant efficiency as the electrical power multiplication factor and steam cycle efficiency increases

  12. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  13. Fusion reactor control study. Volume 3. Tandem mirror reactors. Final report

    International Nuclear Information System (INIS)

    Chang, F.R.; DeCanio, F.; Fisher, J.L.; Madden, P.A.

    1982-03-01

    A study of the control requirements of the Tandem Mirror Reactor concept is reported. The study describes the development of a control simulator that is based upon a spatially averaged physics code of the reactor concept. The simulator portrays the evolution of the plasma through the complete reactor operating cycle; it includes models of the control and measurement system, thus allowing the exploration of various strategies for reactor control. Startup, shutdown, and control during the quasi-steady-state power producing phase were explored. Configurations are described which use a variety of control effectors including modulation of the refueling rate, beam current, and electron cyclotron resonance heating. Multivariable design techniques were used to design the control laws and compensators for the feedback controllers and presume the practical measurement of only a subset of the plasma and machine variables. Performance of the various controllers is explored using the nonlinear control simulator. Derivative control strategies using new or developed sensors and effectors appropriate to a power reactor environment are postulated, based upon the results of the control configurations tested. Research and development requirements for these controls are delineated

  14. Design of an 18 Tesla, tandem mirror, fusion reactor, hybrid choke coil

    International Nuclear Information System (INIS)

    Parmer, J.F.; Agarwal, K.; Gurol, H.; Mancuso, A.; Michels, P.H.; Peck, S.D.; Burgeson, J.; Dalder, E.N.

    1987-01-01

    A hybrid, part normal part superconducting 18-Tesla solenoid choke coil is designed for a tandem mirror fusion reactor. The present state of the art is represented by the 12-Tesla, superconducting NbSn coil. Future applications other than tandem mirror fusion devices needing high field solenoids might require hybrid magnets of the type described herein. The hybrid design was generated because of critical field performance limitations on present, practical superconducting wires. A hybrid design might be required (due to structural limits) even if the critical field were higher. Also, hybrids could be a cost-effective way of getting very high fields for certain applications. The 18-Tesla solenoid described is composed of an inner coil made of water-cooled, high-strength zirconium copper which generates 3 Tesla. A superconducting NbSn background coil contributes the remaining 15 Tesla. The focus of the design study was on the inner coil. Demonstration fabrication and testing was performed

  15. Mirror Advanced Reactor Study (MARS) final report summary

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.

    1983-01-01

    The Mirror Advanced Reactor Study (MARS) has resulted in an overview of a first-generation tandem mirror reactor. The central cell fusion plasma is self-sustained by alpha heating (ignition), while electron-cyclotron resonance heating and negative ion beams maintain the electrostatic confining potentials in the end plugs. Plug injection power is reduced by the use of high-field choke coils and thermal barriers, concepts to be tested in the Tandem Mirror Experiment-Upgrade (TMX-U) and Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory

  16. Commercial tandem mirror reactor design with thermal barriers: WITAMIR-I

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1980-10-01

    A conceptual design of a near term commercial tandem mirror power reactor is presented. The basic configuration utilizes yin-yang minimum-B plugs with inboard thermal barriers. The maximum magnetic fields are 6.1 T, 8.1 T, and 15 T in the central cell, yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and HT-9 as the structural material. This yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. The plasma Q is 28 at a fusion power level of 3000 MW(t); the net electrical output is 1530 MW(e); and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs

  17. MARS: Mirror Advanced Reactor Study

    International Nuclear Information System (INIS)

    Logan, B.G.

    1984-01-01

    A recently completed two-year study of a commercial tandem mirror reactor design [Mirror Advanced Reactor Study (MARS)] is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted

  18. Cost study of the ESPRESSO blanket for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Raffray, A.R.; Hoffman, M.A.; Gaskins, T.

    1986-02-01

    A detailed cost study of the ESPRESSO blanket concept for the Tandem Mirror Fusion Reactor (TMR) has been performed to complement the thermal-hydraulic parametric study and to help narrow down the choice of parameters for the final design. The ESPRESSO blanket consists of a number of structurally independent ring modules. Each ring module is made up of a number of mutually pressure-supporting canisters containing arrays of breeder tubes. Two separate helium coolant flows are used: a main flow to cool the tube bank and a cooler first wall flow

  19. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Werner, R.W.

    1982-01-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H 2 SO 4 -H 2 O system

  20. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  1. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  2. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Ribe, F.L.; Werner, R.W.

    1981-01-01

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li 2 O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H 2 and O 2

  3. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  4. Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Logan, B.G.

    1983-01-01

    Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made

  5. TMRBAR power balance code for tandem mirror reactors

    International Nuclear Information System (INIS)

    Blackkfield, D.T.; Campbell, R.; Fenstermacher, M.; Bulmer, R.; Perkins, L.; Peng, Y.K.M.; Reid, R.L.; Wu, K.F.

    1984-01-01

    A revised version of the tandem mirror multi-point code TMRBAR developed at LLNL has been used to examine various reactor designs using MARS-like ''c'' coils. We solve 14 to 16 non-linear equations to obtain the densities, temperatures, plasma potential and magnetic field on axis at the cardinal points. Since ICRH, ECRH, and neutral beams may be used to stabilize the central cell, various combinations of rf and neutral beam powers may satisfy the physics. To select a desired set of physics parameters, we use nonlinear optimization techniques. Whit these routines, we minimize or maximize a physics variable subject to the physics constraints being satisfied. For example, for a given fusion power we may find the minimum length needed to have an ignited central cell or the maximum fusion Q. Finally, we have coupled this physics model to the LLNL magnetics-MHD code. This code runs the EFFI magnetic field generator and uses TEBASCO to calculate 1-D MHD equilibria and stability

  6. Potential measurements in tandem mirrors

    International Nuclear Information System (INIS)

    Glowienka, J.C.

    1985-11-01

    The US mirror program has begun conducting experiments with a thermal barrier tandem mirror configuration. This configuration requires a specific axial potential profile and implies measurements of potential for documentation and optimization of the configuration. This report briefly outlines the motivation for the thermal barrier tandem mirror and then outlines the techniques used to document the potential profile in conventional and thermal barrier tandem mirrors. Examples of typical data sets from the world's major tandem mirror experiments, TMX and TMX-U at Lawrence Livermore National Laboratory (LLNL) and Gamma 10 at Tsukuba University in Japan, and the current interpretation of the data are discussed together with plans for the future improvement of measurements of plasma potential

  7. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    Galloway, T.R.; Werner, R.W.

    1980-01-01

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO 3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  8. TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode

    International Nuclear Information System (INIS)

    Campbell, R.B.

    1983-01-01

    The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated

  9. Pebble bed blanket design for deuterium burning tandem mirror reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  10. Maintainability considerations for the central cell in WITAMIR-I, a conceptual design of a tandem mirror fusion power reactor

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.

    1980-10-01

    The concepts for maintaining the central cell reactor components for WITAMIR-I are described. WITAMIR-I is a conceptual tandem mirror fusion power reactor utilizing thermal barriers designed by the University of Wisconsin-Madison. Unique solutions to the difficult problems of routine blanket replacement and maintenance are proposed. Solutions are also proposed for maintaining the central cell coils and the shield

  11. Preliminary design study of the Tandem Mirror Reactor (TMR)

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1978-01-01

    This report describes work done in Fiscal Year 1977 by the Fusion Reactor Studies Group of LLL on the conceptual design of a 1000-MW(e) Tandem Mirror Reactor (TMR). The high Q (defined as the ratio of fusion power to injection power) predicted for the TMR (approximately 5) reduces the recirculating power to a nondominant problem and results in an attractive mirror fusion power plant. The fusion plasma of the TMR is contained in the 100-m-long central cell where the magnetic field strength is a modest 2 T. The blanket for neutron energy recovery and tritium breeding is cylindrical and, along with the solenoidal magnet, is divided into 3-m-long modules to facilitate maintenance. The central cell is fueled (but not heated) by the injection of low-energy neutral beams near its ends. Thus, the central cell is simple and of low technology. The end-cell plasmas must be of high density and high energy in order to plug and heat (via the electrons) the central-cell plasma. The present conceptual design uses 1.2-MeV neutral-beam injection for the end plugs and a cryogenic-aluminum, Yin-Yang magnet that produces an incremental field of about 1 T over a field of 16 T produced by a pair of Nb 3 Sn superconducting solenoids. Important design problems remain in both the neutral-beam injector and in the end-plug magnet. Also remaining are important physics questions such as alpha-beam particle transport and end-plug stability. These questions are discussed at length in the report and suggestions for future work are given

  12. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  13. Interim report on the tandem mirror hybrid design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1979-01-01

    The initial phase of a 2-year design study of a tandem mirror fusion reactor is presented. The following chapters are included: (1) mechanical design of the plant; (2) plasma physics; (3) blanket design; (4) magnet design; (5) injector design; (6) direct convertor design; (7) balance of plant design; (8) fission burner reactor; (9) environment and safety; and (10) economic analysis

  14. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-01-01

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to 7 Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation. Molten salt reprocessing was compared to aqueous solution reprocessing

  15. Tandem mirror technology demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  16. Tandem mirror technology demonstration facility

    International Nuclear Information System (INIS)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M 2 ) on an 8-m 2 test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m 2 and give the necessary experience for successful operation of an ETR

  17. Octopole and hexapole end cells for tandem mirrors

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1985-01-01

    To date, nearly all operating or planned tandem mirror experiments use quadrupole magnetic fields in the end cells for stabilization of magnetohydrodynamic (MHD) instabilities. A disadvantage with quadrupole fields is the considerable aximuthal asymmetry in the magnetic field. As a result, those center-cell ions which pass into the end cell can suffer a radial deflection and be lost by radial diffusion. The diffusion can be minimized by adding C-coils to the end cell to symmetrize the geodesic curvature in the end cell. Very small radial deflection can be obtained on each field line. Such a method is used in the design of the MFTF-B experiment and the MARS reactor. A disadvantage of this approach is the large number of coils required. In addition, since ions drift azimuthally as they reflect in the end cell, even perfect cancellation on individual field lines will, in general, not lead to zero radial diffusion. One way to form a more symmetric field in the end cells is to use multipoles higher than quadrupole. The use of an octopole end cell for a small tandem-mirror reactor was recently proposed/sup L/ and has been adopted for the miniMARS reactor study. In this paper the author discusses some feature of octopole, and to a lesser extent, hexapole end cells in both reactor and experimental (MFTF-B) applications

  18. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  19. Overview and direction in the tandem mirror program

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1983-04-01

    There are two main thrusts to the tandem mirror program at the present time. One is to gather the experimental data base to verify the axicell thermal-barrier concept and the other to improve the end plugs for tandems. With such improvements one might approach the ideal fusion reactor, a simple solenoid of modular elements whose ends are but a modest perturbation on the configuration from both a cost and technological viewpoint. Progress toward these two goals is discussed here, and the directions to be taken in the immediate future are described

  20. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design

  1. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  2. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  3. Some new ideas for Tandem Mirror blankets

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.

    1981-01-01

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  4. Survey of mirror machine reactors

    International Nuclear Information System (INIS)

    Condit, W.C.

    1978-01-01

    The Magnetic Mirror Fusion Program is one of the two main-line fusion efforts in the United States. Starting from the simple axisymmetric mirror concept in the 1950's, the program has successfully overcome gross flute-type instabilities (using minimum-B magnetic fields), and the most serious of the micro-instabilities which plagued it (the drift-cyclotron loss-cone mode). Dense plasmas approaching the temperature range of interest for fusion have been created (n/sub p/ = 10 14 /cc at 10 to 12 keV). At the same time, rather extensive conceptual design studies of possible mirror configurations have led to three principle designs of interest: the standard mirror fission-fusion hybrid, tandem mirror, and the field-reversed mirror. The lectures will discuss these three concepts in turn. There will be no discussion of diagnostics for the mirror machine in these lectures, but typical plasma parameters will be given for each type of machine, and the diagnostic requirements will be apparent. In a working fusion reactor, diagnostics will be required for operational control, and remarks will be made on this subject

  5. MHD stability of tandem mirrors

    International Nuclear Information System (INIS)

    Poulsen, P.; Molvik, A.; Shearer, J.

    1982-01-01

    The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration

  6. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  7. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem-mirror fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.; Hoffman, M.A.; Johnson, G.L.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  8. Analysis of tandem mirror reactor performance

    International Nuclear Information System (INIS)

    Wu, K.F.; Campbell, R.B.; Peng, Y.K.M.

    1984-11-01

    Parametric studies are performed using a tandem mirror plasma point model to evaluate the wall loading GAMMA and the physics figure of merit, Q (fusion power/injected power). We explore the relationship among several dominant parameters and determine the impact on the plasma performance of electron cyclotron resonance heating in the plug region. These global particle and energy balance studies were carried out under the constraints of magnetohydrodynamic (MHD) equilibrium and stability and constant magnetic flux, assuming a fixed end-cell geometry. We found that the higher the choke coil fields, the higher the Q, wall loading, and fusion power due to the combination of the increased central-cell field B/sub c/ and density n/sub c/ and the reduced central-cell beta β/sub c/. The MHD stability requirement of constant B/sub c/ 2 β/sub c/ causes the reduction in β/sub c/. In addition, a higher value of fusion power can also be obtained, at a fixed central-cell length, by operating at a lower value of B/sub c/ and a higher value of β/sub c/

  9. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    International Nuclear Information System (INIS)

    Clarkson, I.R.; Neef, W.S.

    1983-01-01

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  10. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  11. Design of self-cooled, liquid-metal blankets for tokamak and tandem mirror reactors

    International Nuclear Information System (INIS)

    Cha, Y.S.; Gohar, Y.; Hassanein, A.M.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.; Szo, D.K.

    1985-01-01

    Results of the self-cooled, liquid-metal blanket design from the Blanket Comparison and Selection Study (BCSS) are summarized. The objectives of the BCSS project are to define a small number (about three) of blanket concepts that should be the focus of the blanket research and development (RandD) program, identify and prioritize the critical issues for the leading blanket concepts, and provide technical input necessary to develop a blanket RandD program plan. Two liquid metals (lithium and lithium-lead (17Li-83Pb)) and three structural materials (primary candidate alloy (PCA), ferritic steel (FS) (HT-9), and vanadium alloy (V-15 Cr-5 Ti)) are included in the evaluations for both tokamaks and tandem mirror reactors (TMRs). TMR is of the tube configuration similar to the Mirror Advanced Reactor Study design. Analyses were performed in the following generic areas for each blanket concept: MHD, thermal hydraulics, stress, neutronics, and tritium recovery. Integral analyses were performed to determine the design window for each blanket design. The Li/Li/V blanket for tokamak and the Li/Li/V, LiPb/LiPb/V, and Li/Li/HT-9 blankets for the TMR are judged to be top-rated concepts. Because of its better thermophysical properties and more uniform nuclear heating profile, liquid lithium is a better coolant than liquid 17Li83Pb. From an engineering point of view, vanadium alloy is a better structural material than either FS or PCA since the former has both a higher allowable structural temperature and a higher allowable coolant/structure interface temperature than the latter. Critical feasibility issues and design constraints for the self-cooled, liquid-metal blanket concepts are identified and discussed

  12. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  13. TMX-U [Tandem Mirror Experiment-Upgrade] tandem-mirror thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.

    1986-01-01

    Thermal-barrier experiments have been carried out in the Tandem Mirror Experiment-Upgrade (TMX-U). Measurements of nonambipolar and ambipolar radial transport show that these transport processes, as well as end losses, can be controlled at modest densities and durations. Central-cell heating methods using ion-cyclotron heating (ICH) and neutral-beam injection have been demonstrated. Potential mesurements with recently developed methods indicate that deep thermal barriers can be established

  14. Issues facing the U. S. mirror program

    Energy Technology Data Exchange (ETDEWEB)

    George, T.V.

    1978-07-01

    Some of the current issues associated with the U.S. Magnetic Mirror Program are analyzed. They are presented as five separate papers entitled: (1) Relevant Issues Broughtup by the Mirror Reactor Design Studies. (2) An Assessment of the Design Study of the 1 MeV Neutral Beam Injector Required for a Tandem Mirror Reactor. (3) The Significance of the Radial Plasma Size Measured in Units of Ion Gyroradii in Tandem Mirrors and Field Reversed Mirrors. (4) Producing Field Reversed Mirror Plasmas by Methods used in Field Reversed Theta Pinch. (5) RF Stoppering of Mirror Confined Plasma.

  15. Tandem mirror next step: remote maintenance

    International Nuclear Information System (INIS)

    Doggett, J.N.; Damm, C.C.; Hanson, C.L.

    1980-01-01

    This study of the next proposed experiment in the Mirror Fusion Program, the Tandem Mirror Next Step (TMNS), has included serious consideration of the maintenance requirements of such a large source of high energy neutrons with its attendant throughput of tritium. Although maintenance will be costly in time and money, our conclusion is that with careful attention to a design for maintenance plan such a device can be reliably operated

  16. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  17. Progress in the tandem mirror program

    International Nuclear Information System (INIS)

    Fowler, T.K.; Borchers, R.R.

    1981-01-01

    Experimental results in TMX have confirmed the basic principles of the tandem-mirror concept. A center-cell particle confinement parameter eta tau approx. 10 11 cm -3 s has been obtained at ion temperatures around 100 eV, which is a hundred-fold improvement over single mirrors at the same temperatures. For TMX these results have been obtained at peak beta values in the center cell in the range 10 to 40%, not yet limited by MHD activity; and ion-cyclotron resonant heating (ICRH) in the Phaedrus tandem-mirror experiment has produced beta values approx. 25%, which is several times the ideal MHD limit for that device. In addition, it has been demonstrated that the end fan chambers of TMX simultaneously isolate the hot electrons from the end walls, provide adequate pumping and conveniently dispose of the exhaust plasma energy either by thermal deposition on the end wall or by direct conversion to electricity (at 48% efficiency in agreement with calculations). Also, evidence was obtained for inherent divertor action in TMX, presumably in part responsible for the observed low impurity level

  18. Prospects for a DD tandem mirror

    International Nuclear Information System (INIS)

    Logan, B.G.

    1977-01-01

    The possibility of burning advanced fusion fuels in a tandem mirror is considered for a catalyzed DD cycle, in which the T and 3 He reaction products from DD burn in both the solenoid and plugs are reinjected for complete burnup: 3D → p + 4 He + n + 21.6 MeV. Classical radial transport of the 4 He ash determines the steady state alpha fraction in the solenoid. Synchrotron radiation losses are minimized at high beta, such that charged particle fusion power recovered in a direct converter exceeds radiation losses by a factor greater than two. An overall system Q = 4.5 is found for one reaction example but the power output is large (3 GE(e) net) due to the low power density in the solenoid. Optimizing recirculating power cost (Q) against plug/solenoid density ratio (power density) should result in much smaller reactor size and cost

  19. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  20. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  1. Axisymmetric tandem mirror stabilized by a magnetic limiter

    International Nuclear Information System (INIS)

    Kesner, J.; Post, R.S.; Lane, B.

    1985-06-01

    In order to stabilize MHD-like, fast growing m = 1 fluctuations in the central cell of a tandem mirror we propose the introduction of a magnetic limiter. The magnetic limiter would create a ring null in the magnetic field. Electrons which enter the null can stream azimuthally and thereby ''short-circuit'' m = 1 fluctuations. Some pressure could be maintained on the separatrix flux surface by locating the null on a local magnetic maxima or by axial plugging. This scheme introduces the possibility of a fully axisymmetric tandem mirror

  2. Status of tandem mirror theory

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1979-01-01

    This report contains the text and slides used for the review talk on tandem mirror theory presented at the meeting of the Division of Plasma Physics, A.P.S., Boston, MA, November 12-16, 1979. Topics covered include classical confinement, equilibria, MHD- and micro-stability, radial transport, and thermal barriers

  3. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs

  4. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1980-01-01

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface

  5. The reactor plasma physics of tandem mirror startup and fractional power operation

    International Nuclear Information System (INIS)

    Kantrowitz, F.D.; Firestone, M.A.; Guebel, D.M.; Mau, T.K.

    1984-01-01

    Plasma behavior and the performance of plasma technologies are studied during the startup and fractional power operation of tandem mirrors. Five phases of machine operation are identified, some of which require plasma. The plasma phases include plasma initiation and heating, a standby phase with plasma at the density and temperature characteristics of full design performance in reactors, a deuterium-tritium fractional power operating phase in which the fusion plasma undergoes staged power increases to full power, and rated power operating phase. Plasma initiation and heating uses electron cyclotron resonance heating preionization of background gas in the plug and ion cyclotron resonance heating in the central cell. Operation of the radio-frequency systems, the neutral beams, and the direct converter are studied to determine constraints affecting plasma operation. Studies of fractional power operation, carried out using a quasi-steady-state analysis, show that the plasma Q value can be made remarkably insensitive to the level of fusion power by controlling the plasma radius. Copper insert coils used to increase the maximum choke field require considerable power and cause the recirculating power fraction to increase sharply as the fusion power is reduced. Moreover, when an efficient drift pumping scheme is used, achieved improvements in plasma Q by using high-field choke coils must be weighed against their power consumption and other technological difficulties

  6. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1976-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80 percent. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59 percent and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high recirculating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)

  7. Physics issues in mirror and tandem mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1984-01-01

    Over the years the study of the confinement of high temperature plasma in magnetic mirror systems has presented researchers with many unusual physics problems. Many of these issues are by now understood theoretically and documented experimentally. With the advent of the tandem mirror idea, some new issues have emerged and are now under intensive study. These include: (1) the generation and control of ambipolar confining potentials and their effect on axial confinement and, (2) the combined influence of nonaxisymmetric magnetic fields (used to ensure MHD stability) and electric magnetic particle drifts on radial transport. Physics considerations associated with these two categories of issues will be reviewed, including concepts for the control of radial transport, under study or proposed

  8. Current results of the tandem mirror experiment

    International Nuclear Information System (INIS)

    Drake, R.P.

    1980-01-01

    The basic operating characteristics of the Tandem Mirror Experiment, (TMX) at the Lawrence Livermore Laboratory in the USA have been established. Tandem-mirror plasmas have been produced using neutral-beam-fueled end plugs and a gas-fueled center cell. An axial potential well between the end plugs has been measured. There is direct evidence that this potential well enhances the axial confinement of the center-cell ions. The observed densities and loss currents are consistent with preliminary studies of the particle sources and losses near the magnetic axis. The observed confinement is consistent with theory when plasma fluctuations are low. When the requirement of drift-cyclotron loss-cone mode stability is violated, the plasma fluctuations degrade the center-cell confinement

  9. Mirror fusion reactor design

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.; Carlson, G.A.

    1979-01-01

    Recent conceptual reactor designs based on mirror confinement are described. Four components of mirror reactors for which materials considerations and structural mechanics analysis must play an important role in successful design are discussed. The reactor components are: (a) first-wall and thermal conversion blanket, (b) superconducting magnets and their force restraining structure, (c) neutral beam injectors, and (d) plasma direct energy converters

  10. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    Science.gov (United States)

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  11. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    Logan, B.G.

    1978-01-01

    A method and apparatus are described for cooling a plasma confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell. The cooling is due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma

  12. Evolution of the mirror machine

    International Nuclear Information System (INIS)

    Damm, C.C.

    1983-01-01

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor

  13. Construction and operational experience of the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Chargin, A.K.; Calderon, M.O.; Moore, T.L.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) incorporates two new features at Lawrence Livermore National Laboratory (LLNL) tandem mirror program, thermal barriers in the end plugs and injection of the neutral beams at several oblique angles. The thermal barriers isolate the electrons in the end plugs from those in the central cell, making it possible to heat them independently with microwaves. In addition, this innovation produces a large potential gradient in the end plugs with lower magnetic fields and lower neutral-beam energies than would be possible in a conventional tandem mirror device. The TMX-U is also designed to test neutral-beam-injection angles as an experimental parameter. We use angles other than 90 0 to produce a plasma with improved microstability

  14. Plasma confinement in the TMX tandem mirror

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.; Allen, S.L.; Casper, T.A.

    1981-01-01

    Plasma confinement in the Tandem Mirror Experiment (TMX) is described. Axially confining potentials are shown to exist throughout the central 20-cm core of TMX. Axial electron-confinement time is up to 100 times that of single-cell mirror machines. Radial transport of ions is smaller than axial transport near the axis. It has two parts at large radii: nonambipolar, in rough agreement with predictions from resonant-neoclassical transport theory, and ambipolar, observed near the plasma edge under certain conditions, accompanied by a low-frequency, m = 1 instability or strong turbulence

  15. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    International Nuclear Information System (INIS)

    Simonen, T.; Cohen, R.; Correll, D.; Fowler, K.; Post, D.; Berk, H.; Horton, W.; Hooper, E.B.; Fisch, N.; Hassam, A.; Baldwin, D.; Pearlstein, D.; Logan, G.; Turner, B.; Moir, R.; Molvik, A.; Ryutov, D.; Ivanov, A.A; Kesner, J.; Cohen, B.; McLean, H.; Tamano, T.; Tang, X.Z.; Imai, T.

    2008-01-01

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  16. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  17. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  18. Plasma confinement in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.; Bruskin, L.G.; Cho, T.

    1999-01-01

    The central-cell density and the diamagnetic signal were doubled due to plug potential formation by ECRH in the hot ion mode experiments on the GAMMA 10 tandem mirror. In order to obtain these remarkable results, the axisymmetrized heating patterns of ECRH and ICRF were optimized. Furthermore, conducting plates were installed adjacent to the surface of the plasma along the flat shaped magnetic flux tube located at the anchor transition regions; the plates may contribute to reduce some irregular electric fields produced possibly with ECRH in these thin flux tube regions. The conducting plates contributed to the reduction of the radial loss rate to be less than 3% of the total particle losses along with the improvements in the reproducibility of the experiments and the controllability of the potential confinement. The increases in the central-cell density and the diamagnetism in association with the increase in the plug potentials scaled well with increasing the ECRH powers. A plug potential of 0.6 kV and a density increase of 100% were achieved using an ECRH power of 140 kW injected into both plug regions. The plasma confinement was improved by an order of magnitude over a simple mirror confinement due to the tandem mirror potential formation. (author)

  19. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  20. TMX-U [Tandem Mirror Experiment-Upgrade]: Final report, Volume 1

    International Nuclear Information System (INIS)

    Porter, G.D.

    1988-01-01

    This paper discusses the plasma control and the physics accomplishments of the Tandem Mirror Experiment-Upgrade. This particular volume discusses potential measurements, plasma confinement, and hot electron and ion physics. 230 refs

  1. Summary of results from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    Simonen, T.C.

    1981-01-01

    This report summarizes results from the successful experimental operation of the Tandem Mirror Experiment (TMX) over the period October 1978 through September 1980. The experimental program, summarized by the DOE milestones given in Table 1-1, had three basic phases: (1) an 8-month checkout period, October 1978 through May 1979; (2) a 6-month initial period of operation, June through November 1979, during which the basic principles of the tandem configuration were demonstrated (i.e., plasma confinement was improved over that of a single-cell mirror); and (3) a 10-month period, December 1979 through September 1980, during which the initial TMX results were corroborated by additional diagnostic measurements and many detailed physics investigations were carried out. This report summarizes the early results, presents results of recent data analysis, and outlines areas of ongoing research and data analysis which will be reported in future journal publications

  2. TMX-U [Tandem Mirror Experiment-Upgrade]: Final report, Volume 2

    International Nuclear Information System (INIS)

    Porter, G.D.

    1988-01-01

    This paper discusses the plasma control and the physics accomplishments of the Tandem Mirror Experiment-Upgrade. This particular volume discusses fueling, ion heating, Fokker-Planck modeling, plasma stability and technical development. 270 refs

  3. Stochastic motion of particles in tandem mirror devices

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Kamimura, T.

    1982-01-01

    Stochastic motion of particles in tandem mirror devices is examined on basis of a nonlinear mapping of particle positions on the equatorial plane. Local stability analysis provides detailed informations on particle trajectories. The rate of stochastic plasma diffusion is estimated from numerical observations of motions of particles over a large number of time steps. (author)

  4. Open-ended fusion devices and reactors

    International Nuclear Information System (INIS)

    Kawabe, T.; Nariai, H.

    1983-01-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown

  5. Tandem mirrors for neutron production

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1983-01-01

    Two mirror machine concepts are being studied as early-time, low-cost, neutron-producing devices for testing and demonstrating reactor-relevant fusion technology. The first of these concepts is for a new, small, driven, steady-state, D-T reactor, called the Technology Demonstration Facility (TDF). The second concept is for upgrades to the MFTF-B machine that burn tritium and run for pulse lengths of some hours. Both devices operate in the Kelley mode in order to provide high-wall loadings of 14-MeV neutrons, thereby providing a valuable test bed for reactor-relevant hardware and subsystems. Either one of these devices could be running in the early 1990's with first wall fluxes between 1.4 and 2.0 MW m -2

  6. Tandem Mirror Experiment Upgrade (TMX-U) overview-recent events

    International Nuclear Information System (INIS)

    Calderon, M.O.; Bell, H.H.

    1985-01-01

    Since its construction and commissioning was completed in the winter of 1981, the Tandem Mirror Experiment Upgrade (TMX-U) has been conducting tandem mirror thermal barrier experiments. The work, following the fall of 1983 when strong plugging with thermal barriers was achieved, has been directed toward controlling radial transport and forming thermal barriers with high density and Beta. This paper describes the overall engineering component of these efforts. Major changes to the machine have included vacuum improvements, changes to the Electron and Ion Cyclotron Resonance Heating systems (ECRH and ICRH), and the installation of a Plasma Potential Control system (PPC) for radial transport reduction. TMX-U operates an extensive diagnostics system that acquires data from 21 types of diagnostic instruments with more than 600 channels, in addition to 246 machine parameters. The changes and additions will be presented. The closing section of this paper will describe the initial study work for a proposed TMX-U octupole configured machine

  7. Moment approach to tandem mirror radial transport

    International Nuclear Information System (INIS)

    Siebert, K.D.; Callen, J.D.

    1986-02-01

    A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system

  8. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-01-01

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  9. Mirror reactor blankets

    International Nuclear Information System (INIS)

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  10. Status of tandem-mirror confinement

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1983-01-01

    Recent end-stopping experiments in TMX-Upgrade show strong plugging of the central cell by lower-density plugs, requiring both electron-cyclotron heating (ECRH) and 47 0 neutral-beam injection, consistent with the thermal-barrier concept. These experiments have low density (n 12 cm -3 ) due to inefficient ECRH power coupling. Hot-ion and hot-electron buildup are consistent with Fokker-Planck calculations. No ion-cyclotron activity is observed in the plugs; occasional electron-cyclotron activity is observed. With plugging, axial lifetimes (tau/sub parallel/ > 40 ms) are larger than radial (tau/sub perpendicular/ = 5 to 10 ms) due to observed non-ambipolar ion transport. Recent tandem-mirror theoretical activities are also surveyed

  11. Investigation of auxiliary heating in tandem mirrors and tokamaks and barrier cell pumping. Annual progress report, October 1, 1980 to December 31, 1981

    International Nuclear Information System (INIS)

    Emmert, G.A.; Scharer, J.

    1981-06-01

    The research has focussed on physics questions concerned with ECRH heating in tandem mirror plugs, pumping of tandem mirror thermal barriers by drift orbits, ICRH heating in tokamaks, and bundle divertors. We have concluded that drift-orbit pumping of thermal barriers is not feasible because the azimuthal E Vector X B Vector drift limits the excursion of trapped ions from a flux surface. We have developed a three-dimensional weakly relativistic (T/sub e/ less than or equal to 50 keV) ray tracing and absorption code for electron cyclotron heating in tandem mirror plugs and barriers. Cases run for TMX, MFTF-B and reactors at T/sub e/ > 10 keV show that strong absorption per pass is present and a careful choice of wave frequency and launch angle is required to ensure wave penetration and absorption in the plasma core. In the area of ion cyclotron frequency range heating in tokamaks, a three-dimensional hot plasma ray tracing theory and code has been developed to handle rays launched from any poloidal angle in the tokamak cross section. Wave heating in the central strong absorption zones is currently being investigated using a full wave solution for the various heating regimes

  12. Mirror research: status and prospects

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1983-01-01

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s

  13. Gas pressure measurements and control in the Tara tandem mirror experiment

    International Nuclear Information System (INIS)

    Post, R.S.; Brau, K.; Casey, J.

    1986-05-01

    The Tara Tandem Mirror has a 10 m long, 22 cm diameter central cell plasma heated by fundamental ion cyclotron heating. Typical central cell parameters in unplugged operation are n = 3 x 10 12 /cm 3 . T/sub i perpendicular/ = 300 eV, T/sub i parallel/ ≅ 75 eV. The axisymmetric plug cell incorporates sloshing ions and ECH to generate axial confining potentials. The axisymmetric central cell and plug comprise a max-B mirror which is observed to operate in both flute stable and unstable regimes. The flute instability is m = 1 and can be stabilized by an outboard anchor. The anchor plasma is formed by electron and ion cyclotron heating. Satisfactory operation of a tandem mirror requires extensive control of neutral gas from neutral beam (NB) sources and startup. Tara makes extensive use of Ti gettering in the beamlines, beam dumps and plasma surfaces for both hydrogen pumping and reflux control. A description of this technology along with its impact on plasma performance is discussed

  14. Electron and ion cyclotron heating calculations in the tandem-mirror modeling code MERTH

    International Nuclear Information System (INIS)

    Smith, G.R.

    1985-01-01

    To better understand and predict tandem-mirror experiments, we are building a comprehensive Mirror Equilibrium Radial Transport and Heating (MERTH) code. In this paper we first describe our method for developing the code. Then we report our plans for the installation of physics packages for electron- and ion-cyclotron heating of the plasma

  15. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  16. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    International Nuclear Information System (INIS)

    Badger, B.; Corradini, M.L.; El-Guebaly, L.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Perkins, L.J.; Peterson, R.R.; Plute, K.E.; Santarius, J.F.; Sawan, M.E.; Scharer, J.E.; Sviatoslavsky, I.N.; Sze, D.K.; Vogelsang, W.F.; Wittenberg, L.J.; Leppelmeier, G.W.; Grover, J.M.; Opperman, E.K.; Vogel, M.A.; Borie, E.; Taczanowski, S.; Arendt, F.; Dittrich, H.G.; Fett, T.; Haferkamp, B.; Heinz, W.; Hoelzchen, E.; Kleefeldt, K.; Klingelhoefer, R.; Komarek, P.; Kuntze, M.; Leiste, H.G.; Link, W.; Malang, S.; Manes, B.M.; Maurer, W.; Michael, I.; Mueller, R.A.; Neffe, G.; Schramm, K.; Suppan, A.; Weinberg, D.

    1984-04-01

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.) [de

  17. Progress on the reference mirror fusion reactor design

    International Nuclear Information System (INIS)

    Carlson, G.A.; Doggett, J.N.; Moir, R.W.

    1976-01-01

    The design of a reference mirror fusion reactor is underway at Lawrence Livermore Laboratory. The reactor, rated at about 900 MWe, features steady-state operation, an absence of plasma impurity problems, and good accessibility for blanket maintenance. It is concluded that a mirror reactor appears workable, but its dollar/kWe cost will be considerably higher than present-day nuclear costs. The cost would be reduced most markedly by an increase in plasma Q

  18. Annual progress report on an investigation of auxiliary heating in tandem mirrors and tokamaks for the period January 1, 1982-December 31, 1982

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1982-07-01

    The research has focused on physics questions concerned with ECRF heating in tandem mirror plugs and barriers and ICRF coupling and heating in tokamaks. We have utilized a three-dimensional weakly relativistic (T/sub e/ less than or equal to 50 keV) ray tracing and absorption code we have developed for electron cyclotron heating in tandem mirror plugs and barriers. Cases run for TMX, MFTF-B and reactors at T/sub e/ > 10 keV show that strong absorption per pass is present and a careful choice of wave mode, frequency and launch angle is required to ensure wave penetration and absorption in the plasma core. At elevated electron temperatures (T/sub e/ > 10 keV), ordinary mode launch at theta approx. = 70 0 provides good single pass absorption without the edge absorption problems associated with the extraordinary mode. We have also developed an ICRF 1-D slab model to investigate coupling and heating in tokamak plasmas

  19. A solid-breeder blanket and power conversion system for the Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Bullis, R.; Clarkson, I.

    1983-01-01

    A solid-breeder blanket has been designed for a commercial fusion power reactor based on the tandem mirror concept (MARS). The design utilizes lithium oxide, cooled by helium which powers a conventional steam electric generating cycle. Maintenance and fabricability considerations led to a modular configuration 6 meters long which incorporates two magnets, shield, blanket and first wall. The modules are arranged to form the 150 meter long reactor central cell. Ferritic steel is used for the module primary structure. The lithium oxide is contained in thin-walled vanadium alloy tubes. A tritium breeding ratio of 1.25 and energy multiplication of 1.1 is predicted. The blanket design appears feasible with only a modest advance in current technology

  20. Status of the Tandem Mirror Experiment-Upgrade (TMX-U) diagnostic system

    International Nuclear Information System (INIS)

    Coutts, G.W.; Coffield, F.E.; Hornady, R.S.

    1983-01-01

    This paper presents the current status of the Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics system. For the initial instruments active on TMX-U, the expansions or upgrades that have been implemented are outlined. For the newly added systems, more implementation details are presented

  1. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  2. Neutral beam control systems for the Tandem Mirror Experiment

    International Nuclear Information System (INIS)

    Ross, R.I.

    1979-01-01

    The Tandem Mirror Experiment (TMX) is presently developing the technology and approaches which will be used in larger fusion systems. This paper describes some of the designs which were used in creating the control system for the TMX neutral beams. To create a system of controls that would work near these large, rapid switching current sources required a mixture of different technologies: fiberoptic data transmission, printed circuit and wirewrap techniques, etc

  3. Mechanical device for enhancing halo density in the TMX-U tandem mirror

    International Nuclear Information System (INIS)

    Hsu, W.L.; Barr, W.L.; Simonen, T.C.

    1984-04-01

    The halo recycler, a mechanical device similar to pumped limiters used in tokamaks, is studied as a means of enhancing the halo plasma density in the Tandem Mirror Experiment Upgrade (TMX-U). The recycler structure consists of an annular chamber at each end of the tandem mirror device where the halo plasma is collected. The halo plasma density is increased by recycling the halo ions as they are neutralized by the collector plate. With sufficient power fed into the halo electrons, the recycler can sustain an upstream electron temperature of 30 eV for effective halo shielding while maintaining a low temperature of 5 eV near the collector plate to reduce sputtering. A power flow model has shown that the required power for heating the halo is low enough to make the halo recycler a practical concept

  4. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  5. Neoclassical resonant-plateau transport in the noncircular equipotential surface of a tandem mirror

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Ishii, K.; Yatsu, K.; Miyoshi, S.

    1989-01-01

    Neoclassical resonant-plateau transport in a minimum-B anchored tandem mirror is calculated in an experimentally observed case where a flux tube of equipotential contours is not circular at the central cell

  6. Structural design considerations in the Mirror Fusion Test Facility (MFTF-B) vacuum vessel

    International Nuclear Information System (INIS)

    Vepa, K.; Sterbentz, W.H.

    1981-01-01

    In view of favorable results from the Tandem Mirror Experiment (TMX) also at LLNL, the MFTF project is now being rescoped into a large tandem mirror configuration (MFTF-B), which is the mainline approach to a mirror fusion reactor. This paper concerns itself with the structural aspects of the design of the vessel. The vessel and its intended functions are described. The major structural design issues, especially those influenced by the analysis, are described. The objectives of the finite element analysis and their realization are discussed at length

  7. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  8. Hot-electron plasma formation and confinement in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-01-01

    Electron-cyclotron range-of-frequency heating (ECRH) at 28 GHz is used to create a population of mirror-confined hot electrons in the Tandem Mirror Experiment-Upgrade (TMX-U). Generation of a large fraction of such electrons within each end-cell of TMX-U is essential to the formation of the desired electrostatic potential profile of the thermal-barrier tandem mirror. The formation and confinement of the ECRH-generated hot-electron plasma was investigated with a variety of diagnostic instruments, including a novel instrumented limiter probe. The author characterized the spatial structure of the hot-electron plasma. Details of the heating process cause the plasma to separate into two regions: a halo, consisting entirely of energetic electrons, and a core, which is dominated by cooler electrons. The plasma structure forms rapidly under the action of second-harmonic ECRH. Fundamental ECRH, which is typically applied simultaneously, is only weakly absorbed and generally does not create energetic electrons. The ECRH-generated plasma displays several loss mechanisms. Hot electrons in the halo region, with T e ∼ 30 keV, are formed by localized ECRH near the plasma boundary, and are lost through a radial process involving open magnetic-curvature-drift surfaces

  9. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 1

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  10. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 2

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  11. U. S. Mirror Program

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1978-01-01

    The mirror approach is now the principal alternate to the tokamak in the U.S. magnetic fusion energy program. The program is now focused on two new concepts that can obtain high values of Q, defined as the ratio of fusion power output to the neutral beam power injected to sustain the reaction. These are the tandem mirror and field reversed mirror concepts. Theoretically both concepts should be able to attain Q = 5 or more, as compared with Q approximately 1 in previous mirror designs. Success with either or both of these approaches would point the way toward fusion power plants with many attractive features. The linear geometry of mirror systems offers a distinct alternative to the toroidal tokamak. As a direct consequence of this difference in geometry, it is generally possible to build mirror systems in smaller units of modular construction that can probably be made to operate in steady-state. During the next 5 years the main mirror facilities in the U.S. will be the 2XIIB (renamed Beta II); a tandem mirror experiment caled TMX; and the Mirror Fusion Test Facility (MFTF) scheduled to be completed in 1981 at a cost of $94 million. As a background for discussing this program and mirror reactor concepts in later lectures, the current status of mirror physics will be reviewed by comparing theory and experimental data in four critical areas. These are adiabatic confinement of individual ions, electron heat losses out of the ends of the machine, the achievement of beta values of order unity; and stabilization of ''loss cone'' modes

  12. Neoclassical resonant-plateau transport in the noncircular equipotential surface of a tandem mirror

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Ishii, K.; Yatsu, K.; Miyoshi, S.

    1988-07-01

    Neoclassical resonant-plateau transport in a minimum-B anchored tandem mirror is calculated in an experimentally observed case that a magnetic flux tube of an equipotential contours is not circular at the central cell. (author)

  13. Parametric systems analysis for tandem mirror hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U 3 O 8 cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions

  14. Monte Carlo particle simulation and finite-element techniques for tandem mirror transport

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.

    1987-01-01

    A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. (author)

  15. Monte Carlo particle simulation and finite-element techniques for tandem mirror transport

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.

    1985-12-01

    A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. 11 refs

  16. Mirror Advanced Reactor Study (MARS): executive summary and overview

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes ( 2 ), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li 17 Pb 83 ) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000 0 C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter

  17. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1982-01-01

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study

  18. Tandem-Mirror Experiment-Upgrade neutral pressure measurement diagnostic systems

    International Nuclear Information System (INIS)

    Pickles, W.L.; Allen, S.L.; Hill, D.N.; Hunt, A.L.; Simonen, T.C.

    1985-01-01

    The Tandem-Mirror Experiment-Upgrade (TMX-U) has a large and complex system of Bayard--Alpert, magnetron, and Penning gauges, in addition to mass spectrometers (RGA), all of which measure neutral pressures in the many internal regions of TMX-U. These pressure measurements are used as part of the confinement physics data base as well as for management of the TMX-U vacuum system. Dynamic pressures are modeled by a coupled-volumes simulation code, which includes wall reflux, getter pumping, and plasma pumping

  19. LLL mirror fusion program: summary

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    During 1976, new Mirror Program plans have been laid out to take into account the significant advances during the last 18 months. The program is now focused on two new mirror concepts, field reversal and the tandem mirror, that can obtain high Q, defined as the ratio of fusion power output to the neutral-beam power injected to sustain the reaction. Theoretically, both concepts can attain Q = 5 or more, as compared to Q = 1 in previous mirror designs. Experimental planning for the next 5 years is complete in broad outline, and we are turning attention to what additional steps are necessary to reach our long-range goal of an experimental mirror reactor operating by 1990. Highlights of the events that have led to the above circumstance are listed, and experimental program plans are outlined

  20. Field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1978-01-01

    The reactor design is a multicell arrangement wherein a series of field-reversed plasma layers are arranged along the axis of a long superconducting solenoid which provides the background magnetic field. Normal copper mirror coils and Ioffe bars placed at the first wall radius provide shallow axial and radial magnetic wells for each plasma layer. Each of 11 plasma layers requires the injection of 3.6 MW of 200 keV deuterium and tritium and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe and an estimated direct capital cost of $1200/kWe

  1. Stable operation of an effectively axisymmetric neutral beam driven tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Barter, J.D.; Buchenauer, D.A.; Casper, T.A.; Correll, D.L.; Dimonte, G.; Falabella, S.; Foote, J.H.; Pincosy, P.A.

    1990-01-01

    A quiescent plasma is sustained for 80 energy confinement times by only gas fuelling and neutral beam heating in an axisymmetric region of the Tandem Mirror Experiment Upgrade (TMX-U). This plasma should be unstable because of the bad magnetic curvature and the absence of ion cyclotron heating which previously provided ponderomotive stabilization to sustain plasmas in bad-curvature regions of other axisymmetric mirror experiments. The TMX-U data are consistent with stabilization by a symbiosis between two mechanisms - line tying, which reduces the growth rate, and finite Larmor radius edge stabilization, which can result in quiescent operation. (author). 42 refs, 8 figs, 1 tab

  2. Mirror advanced reactor study (MARS)

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.

    1982-01-01

    The agenda for the meeting is as follows: (1) basic Tandem Mirror approach, (2) baseline design, (3) transition and Yin-Yang coils, (4) drift pump physics, (5) drift pump coil, (6) Fokker-Planck analysis, (7) ignition-alpha pumping, (8) neutral beam status, (9) axicell layout, (10) axicell radiation levels, (11) ICRH system, (12) central cell cost optimization, (13) central cell coil design, (14) gridless direct converter, (15) direct converter directions, (16) end cell structure, (17) corrosion-double wall HX, (18) central cell maintenance, (19) radioactivity, (20) PbLi blanket design, and (21) MARS schedule

  3. Design for the magnetic field requirements of the tandem mirror experiment

    International Nuclear Information System (INIS)

    Chen, F.K.; Chargin, A.K.; Denhoy, B.S.; Waugh, A.F.

    1977-01-01

    The tandem mirror magnetic geometry is described, followed by an analysis of the magnet set designed to meet the requirements of the TMX experiment. The final magnet line-up is composed of a baseball coil with two C coils for each plug, six solenoidal coils for the central cell, and two RC coils plus one octupole coil for each transition

  4. Monte-Carlo study of ICRF-sustained mode operation in tandem mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1984-09-01

    A study, using a Monte-Carlo simulation code, of ICRF-sustained mode operation in tandem mirrors by way of ICRF end-cell fuelling and heating is described. Although the basic parameter space considered corresponds to the Phaedrus experiment, the central-cell density and temperatures are extended towards the reactor regime. It is found that significant end cell ion potential barriers can be generated with ICRF, but that, owing to choking of the central-cell ion source stream by the plugging potential, saturation occurs and power requirements rapidly increase, so that the potential rise is limited to about twice the central-cell ion temperature. Although performance is improved as the ion cyclotron resonance approaches the end-cell mid-plane, no significant difference is found between inboard, outboard or double resonance location. As the central-cell density and temperatures are increased, the RF power requirement is found to increase dramatically. Optimum performance for end cell fuelling results when the central-cell electron temperature is higher than the ion temperature, but the magnitude of this ratio is limited by an increase in threshold power level with electron temperature.

  5. Potential formation in axisymmetrized tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Ichimura, M.; Inutake, M.

    1985-01-01

    The paper reports experimental results on potential formation and end plugging in the axisymmetrized tandem mirror GAMMA 10. The plugging at both ends has been achieved by a combination of neutral beams and gyrotrons. The presence of a plug potential with a thermal barrier in an axisymmetric mirror has been confirmed by direct measurement of the axial potential profile. Enhancement of axial particle confinement has been observed during the end plugging. Non-ambipolar radial transport has been greatly reduced in the axisymmetrized magnetic configuration. The potentials measured by beam probes and end loss analysers are 0.7, 0.4 and 1.1 kV in the central, barrier and plug regions, respectively. Strong end plugging is observed when the central-cell density is higher than the densities in the plug and the barrier, and the plug density remains higher than the barrier density. The plug electron temperature is higher than the central temperature. Hot electrons forming a football-shaped profile have been stably produced in the axisymmetric mirror. The beta value and the fraction of the hot electrons reach up to 5% and 0.8, respectively. Central-cell ion-cyclotron resonance heating can sustain a stable plasma with higher density and ion temperature when resonance surfaces exist in both the anchor and the central cells. (author)

  6. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2007. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Miyazaki, Osamu; Awa, Yasuaki; Isaka, Koji; Kutsukake, Kenichi; Komeda, Masao; Shibata, Ko; Hiyama, Kazuhisa; Suzuki, Mayu; Sone, Takuya; Ohuchi, Tomoaki; Terakado, Yuichi; Sataka, Masao

    2009-06-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor-3), JRR-4(Japan Research Reactor-4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2007 and March 31, 2008. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator. (2) Utilization of research reactors and tandem accelerator. (3) Upgrading of utilization techniques of research reactors and tandem accelerator. (4) Safety administration for research reactors and tandem accelerator. (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, plans and outcomes in service and technical developments and so on. (author)

  7. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2010. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Yamada, Yusuke; Kawashima, Kazuhiro; Asozu, Takuhiro; Nakamura, Takemi; Arai, Masaji; Yoshinari, Shuji; Sataka, Masao

    2012-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2010 and March 31, 2011. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for research reactors and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, outcomes in service and technical developments and so on. (author)

  8. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  9. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2011. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Kabumoto, Hiroshi; Nakamura, Takemi; Tamura, Itaru; Kawasaki, Sayuri; Sataka, Masao

    2013-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2011 and March 31, 2012. The activities were categorized into six service/development fields: (1) Recovery from the Great East Japan Earthquake, (2) Operation and maintenance of research reactors and tandem accelerator, (3) Utilization of research reactors and tandem accelerator, (4) Upgrading of utilization techniques of research reactors and tandem accelerator, (5) Safety administration for research reactors and tandem accelerator, (6) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, commendation, outcomes in service and technical developments and so on. (author)

  10. Potential measurement and radial transport in GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ishii, K.; Katanuma, I.; Segawa, T.; Ohkawara, H.; Mase, A.; Miyoshi, S.

    1989-01-01

    GAMMA 10 is an effectively axisymmetric tandem mirror with thermal barriers. Potential information is important to investigate the plasma confinement. The barrier and central space potentials are determined by means of two gold neutral beam probes. Two-dimensional potential profiles have been measured in the barrier cell. In GAMMA 10, to assure magneto-hydrodynamic (MHD) stability, the nonaxisymmetric minimum-B mirror cells are contained between the central-solenoid and the plug/barrier cells at the ends of the machine. From the point of view of neoclassical resonant-plateau transport in circular equipotential contours, this effective axisymmetrization is successful. The measured potential profiles are slightly elongated during the onset of ω ce ECRH. In this paper we report the beam probe potential measurement, the neoclassical ion radial transport in the noncircular equipotential surface and the thermal barrier potential. (author) 6 refs., 5 figs

  11. Proposal to the United States Energy Research and Development Administration for continuation of fusion reactor technology studies. Progress report October 1, 1977--July 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1978-01-01

    Since the last progress report we have concentrated on three main areas of research: (1) the study of the NUWMAK reactor design, (2) the study of rf heating for tokamak reactors, and (3) the initiation of a tandem mirror reactor study. The initial work on the tandem mirror reactor is included as background in the technical proposal. Summaries of our work on recent assessments of lithium reserves and neutral transport codes are included.

  12. Proposal to the United States Energy Research and Development Administration for continuation of fusion reactor technology studies. Progress report October 1, 1977--July 1, 1978

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1978-01-01

    Since the last progress report we have concentrated on three main areas of research: (1) the study of the NUWMAK reactor design, (2) the study of rf heating for tokamak reactors, and (3) the initiation of a tandem mirror reactor study. The initial work on the tandem mirror reactor is included as background in the technical proposal. Summaries of our work on recent assessments of lithium reserves and neutral transport codes are included

  13. TMX tandem-mirror experiments and thermal-barrier theoretical studies

    International Nuclear Information System (INIS)

    Simonen, T.C.; Baldwin, D.E.; Allen, S.L.

    1982-01-01

    This paper describes recent analysis of energy confinement in the Tandem Mirror Experiment (TMX). TMX data also indicates that warm plasma limits the amplitude of the anisotropy driven Alfven ion cyclotron (AIC) mode. Theoretical calculations show strong AIC stabilization with off-normal beam injection as planned in TMX-U and MFTF-B. This paper reports results of theoretical analysis of hot electrons in thermal barriers including electron heating calculations by Monte Carlo and Fokker-Planck codes and analysis of hot electron MHD and microinstability. Initial results from the TMX-U experiment are presented which show the presence of sloshing ions

  14. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    Science.gov (United States)

    Baldwin, D.E.; Logan, B.G.

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.

  15. Ion cyclotron resonant heating 2 x 1700 loop antenna for the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Ferguson, S.W.; Molvik, A.W.; Barter, J.

    1985-01-01

    This paper reviews the mechanical design and improvements that have taken place on the loop type ion cyclotron resonance heating (ICRH) antennas that are located in the center cell region of the Tandem Mirror Experiment-Upgrade (TMX-U)

  16. Controller routines for the DECsystem-10 with application to a tandem-mirror plasma code

    International Nuclear Information System (INIS)

    Faul, D.R.; Devoto, R.S.

    1979-01-01

    FORTRAN-callable subroutines have been written to enable controller--controllee interaction on the LLL DECsystem-10. These subroutines have been used to construct a controller (XTCTMR) for a tandem-mirror physics code (CTCTMR). A description of the subroutines and their use is presented. Also, sample results are given

  17. Role of ECRH in potential formation for tandem mirrors

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Matsuda, Y.; Stewart, J.J.

    1985-01-01

    The axial ion plugging potential in a tandem mirror is produced by electron cyclotron resonance heating (ECRH) applied at two locations in the end mirror cell. A second harmonic (ω = 2ω/sub c/) resonance is used near the midplane to generate hot electrons which yield an electron potential barrier between center cell electrons and electrons outboard of the end cell midplane. The latter group of electrons is then heated at the fundamental resonance (ω = ω/sub c/) on the outboard side of the magnetic well which drives an ion confining potential. Fokker-Planck and Monte Carlo calculations show that such a configuration is achievable, and the scaling obeys a rather simple set of equations. Another aspect of this configuration is the experimental observation that the fundamental heating drives the overall potential of the device relative to the wall to approx. 1 kV. An analytic model predicts this behavior for very strong ECRH. Results are given a numerical study of electron confinement in a mirror cell owing to fundamental heating as the level of the rf electric field, E/sub rf/, is increased. For the second part of the paper, we show that moderate levels of uniformly distributed rf fields, called cavity fields, can result in very hot (>250 keV) tails in the electron distribution as seen in the TMX-U experiment

  18. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  19. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  20. Technology of mirror machines: LLL facilities for magnetic mirror fusion experiments

    International Nuclear Information System (INIS)

    Batzer, T.H.

    1977-01-01

    Significant progress in plasma confinement and temperature has been achieved in the 2XIIB facility at Livermore. These encouraging results, and their theoretical corroboration, have provided a firm basis for the design of a new generation of magnetic mirror experiments, adding support to the mirror concept of a fusion reactor. Two new mirror experiments have been proposed to succeed the currently operating 2XIIB facility. The first of these called TMX (Tandem Mirror Experiment) has been approved and is currently under construction. TMX is designed to utilize the intrinsic positive plasma potential of two strong, and relatively small, minimum B mirror cells to enhance the confinement of a much larger, magnetically weaker, centrally-located mirror cell. The second facility, MFTF (Mirror Fusion Test Facility), is currently in preliminary design with line item approval anticipated for FY 78. MFTF is designed primarily to exploit the experimental and theoretical results derived from 2XIIB. Beyond that, MFTF will develop the technology for the transition from the present small mirror experiments to large steady-state devices such as the mirror FERF/FTR. The sheer magnitude of the plasma volume, magnetic field, neutral beam power, and vacuum pumping capacity, particularly in the case of MFTF, has placed new and exciting demands on engineering technology. An engineering overview of MFTF, TMX, and associated MFE activities at Livermore will be presented

  1. Linked tandem mirror configuration as a possible steady state high β plasma container

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1982-04-01

    A possibility of achieving steady state high β plasma confinement in toroidal geometry is considered in detail by closing off the ends of tandem mirrors entirely by flux bridges, where β is the ratio of plasma pressure to the magnetic pressure. The key problem of this approach seems to be the magnetic design of magneto-hydrodynamically stabilized, preferentially leaky bridges. (author)

  2. Interchange stability criteria for anisotropic central-cell plasmas in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Inutake, Masaaki; Ichimura, Makoto; Katsumata, Ryota; Watanabe, Tsuguhiro.

    1993-05-01

    Flute interchange stability of anisotropic central-cell plasmas in the tandem mirror GAMMA 10 is studied numerically. The stability criteria on the beta value is obtained as a function of axial localization length of the pressure in both central and anchor cells. The temperature anisotropy of the plasma is also discussed. (author)

  3. Annual report of Department of Research Reactors and Tandem Accelerator, JFY2006. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    2007-12-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor-3), JRR-4 (Japan Research Reactor-4) and NSRR (Nuclear Safety Research Reactor) and Tandem Accelerator. The following services and technical developments were achieved in Japanese Fiscal Year 2006: 1) JRR-3 was operated for 181 days in 7 cycles and JRR-4 for 149 days in 37 cycles to provide neutrons for research and development of in-house and outside users. 2) JRR-3 and JRR-4 were utilized through deliberate coordination as follows, a) Neutron irradiations of 628 materials, for neutron transmutation doping of silicon etc. b) Capsule irradiations of 3,067 samples, for neutron activation analyses etc. c) Neutron beam experiments of 6,338 cases x days. 3) Concerning to the 10 times increasing plan of cold neutron beams from JRR-3, a pressure resistant test model of the high-performance neutron moderator vessel which had been designed to increase cold neutrons twice as much as the present one was fabricated. Various developments for upgrading cold neutron guide tubes with super mirrors were in progress. 4) Boron neutron capture therapy was carried out 34 times using JRR-4. Improved neutron collimators were built to fit well to any irregular outline for cancer around the neck. 5) NSRR carried out 4 times of pulse irradiations of high burn-up MOX fuels and 9 times of un-irradiated fuels to contribute to fuel safety researches. 6) The Tandem Accelerator was operated for 201 days to contribute to the researches of nuclear physics and solid state physics with high energy heavy ions. The new utilization program of sharing beam times with outside users was performed by carrying out 45 days. The beam intensity increasing program with a high performance ion source, in place of the compact one which has been working in the high voltage terminal, has made great progress. (author)

  4. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2012. Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Murayama, Yoji; Ishii, Tetsuro; Nakamura, Kiyoshi; Uno, Yuki; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Odauchi, Shouji; Maruo, Takeshi

    2014-03-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2012 and March 31, 2013. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for department of research reactor and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, outcomes in service and technical developments and so on. (author)

  5. An RF heated tandem mirror plasma propulsion study

    Science.gov (United States)

    Yang, T. F.; Yao, X.; Peng, S.; Krueger, W. A.; Chang-Diaz, F. R.

    1989-01-01

    Experimental results on a tandem mirror hybrid plume rocket involving a three-stage system of plasma injection, heating, and subsequent injection through a magnetic nozzle are presented. In the experiments, a plasma is created by breaking down the gas with electron cyclotron resonance heating at 2 kW in the central cell, and the ion species is then heated to high temperatures with ion cyclotron resonance heating at 10 kW in the end cell. A Langmuir probe measured an electron density of 2.5 x 10 to the 16th/cu m and a temperature of 100 eV in the central cell and an ion density of 1.25 x 10 to the 17th/cu m and a temperature of 500 eV in the end cell.

  6. Investigation on the instability characteristics in MM-4U tandem mirror

    International Nuclear Information System (INIS)

    Ye Rubin; Ming Linzhou; Wu Guangun; Shi Qiang; Xu Liyun; Li Zhicai; Zhao Xiaochun

    1995-06-01

    The plasma fluctuation signals in MM-4U tandem mirror were investigated by using linear spectral analysis. Oscillation and propagation characteristics of the instability were obtained. the instability mode and probable exciting mechanism and a method for measuring electron temperature were deduced. The wave-wave nonlinear interaction processes were studied by using nonlinear spectral analysis technique. It is shown that the nonlinear three waves interaction process exists in the device as the main nonlinear process. The nonlinear interaction broadens the spectra of the instability

  7. Investigation of RF heating for tandem-mirror experiments. Phaedrus status report, Summer, 1983

    International Nuclear Information System (INIS)

    Breun, R.A.

    1983-01-01

    This report includes a summary description of experimental results obtained during the period of June, July and August, September 15, 1983 and details of major hardware changes to the Phaedrus experimental facility. Approximately one-third of the time was used to optimize conditions for neutral beam buildup. The remainder of the time was used to advance understanding of the RF heated and fueled tandem mirror experiments

  8. ICRF heating of passing ions in a thermal barrier tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Campbell, R.; Barter, J.; Cummins, W.F.; Falabella, S.; Poulsen, P.

    1985-05-01

    Ion heating is used in the central cells of tandem mirrors to reduce the collisional trapping of passing ions in the end cell thermal barriers. In this paper, we reevaluate ICRF heating of the TMX-U central cell in two limits. The first we term isotropic, because we impose the condition that ions heated in the perpendicular direction be confined for at least one 90 0 scattering time, thereby heating the passing ions. The second we call anisotropic heating. It uses higher ICRF power to mirror trap a majority of the ions near the midplane, thereby reducing the density and collisionality of passing ions. Anisotropic heating has the advantage of increasing with ICRF power, whereas isotropic heating is limited by ion collisionality. Both techniques require gas fueling near the central cell midplane, with an ion cyclotron resonance toward each end cell to heat the cold ions

  9. Fusion reactor physics and technology. Progress report, October 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1979-01-01

    During the present contract period, work has been carried out in the following areas: (a) The NUWMAK tokamak reactor design was completed and distributed throughout the community. In particular, specific work was completed on divertorless tokamak operation in NUWMAK, Ti alloy assessment, materials resource implications of NUWMAK style reactors, and an economic analysis; (b) Tandem mirror reactor technology studies were carried out on tandem mirror physics, the role of rf heating, power balance studies, the design of high field magnets, and blanket/shield design in TMR's; (c) work at Wisconsin is contributing to the evolving picture of an optimum TMR; (d) the WHIST tokamak reactor plasma transport code developed at Wisconsin has been extended in two directions; (e) Work on ICRF heating in tokamak reactors, both in terms of physics and launching structure design, has been completed and published

  10. Tandem mirror plasma confinement apparatus

    Science.gov (United States)

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  11. Tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1978-01-01

    Apparatus and method are described for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell

  12. The ''Kinetic Stabilizer'': A Simpler Tandem Mirror Confinement?

    International Nuclear Information System (INIS)

    Post, R.F.

    2000-01-01

    ion beams are injected along the field lines in such a way as to be reflected before they reach the mirrors, thus forming a localized peak in the plasma density. It will be shown that the power required to produce these stabilizing plasmas is much less than the power per meter of fusion power systems that might employ this technique. Use of the Kinetic Stabilizer idea may therefore permit the construction of tandem mirror fusion power systems that are much smaller and simpler than those based on the use of non-axisymmetric fields to achieve MHD stability

  13. Machine and plasma diagnostic instrumentation systems for the Tandem Mirror Experiment Upgrade

    International Nuclear Information System (INIS)

    Coutts, G.W.; Coffield, F.E.; Lang, D.D.; Hornady, R.S.

    1981-01-01

    To evaluate performance of a second generation Tandem Mirror Machine, an extensive instrumentation system is being designed and installed as part of the major device fabrication. The systems listed will be operational during the start-up phase of the TMX Upgrade machine and provide bench marks for future performance data. In addition to plasma diagnostic instrumentation, machine parameter monitoring systems will be installed prior to machine operation. Simultaneous recording of machine parameters will permit evaluation of plasma parameters sensitive to machine conditions

  14. Neoclassical resonant-plateau transport calculation in an effectively axisymmetrized tandem mirror with finite end plate resistance

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.

    1987-05-01

    Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)

  15. Vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Gerich, J.W.

    1986-01-01

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-tonne concrete-shielding vault with the 2850-tonne vacuum vessel system. To maintain a vacuum of 2 x 10 -8 torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200-m 3 internal volume) has been fabricated and erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system

  16. Physics of mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies

  17. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  18. Mechanical design aspects of a tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.

    1977-01-01

    Two ''plugs'' of dense plasma at either end of a central solenoid cell form the basis of a new mirror fusion power plant concept. A central cell blanket design is presented. Modules on crawler tracks serviced by remote welding and handling machines of very simple design are important features resulting from linear axisymmetric geometry. Three blanket designs are considered and the best one presented in some detail. It has lithium as the breeder material, helium cooled. ''Plug'' magnet field strengths must be high. A novel magnet is presented to satisfy the physics of the end plugs. Beam sources at 1,200 KV present special problems. Methods of voltage standoff, arc damage control, and neutralization are discussed. New secondary containment ideas are presented to allow removable roof sections of balanced design

  19. Gas box control system for Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bell, H.H. Jr.; Hunt, A.L.; Clower, C.A. Jr.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) uses several methods to feed gas (usually deuterium) at different energies into the plasma region of the machine. One is an arrangement of eight high-speed piezo-electric valves mounted on special manifolds (gas box) that feed cold gas directly to the plasma. This paper describes the electronic valve control and data acquisition portions of the gas box, which are controlled by a desk-top computer. Various flow profiles have been developed and stored in the control computer for ready access by the operator. The system uses two modes of operation, one that exercises and characterizes the valves and one that operates the valves with the rest of the experiment. Both the valve control signals and the pressure transducers data are recorded on the diagnostics computer so that they are available for experiment analysis

  20. Preliminary pellet injection experiment in the Gamma 10 tandem mirror

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, Eiichirou; Tamano, Teruo; Nakashima, Yousuke; Yoshikawa, Masayuki; Kobayashi, Shinji; Cho, Teruji; Ishii, Kameo; Yatsu, Kiyoshi [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Mase, Atsushi [Advanced Sceince and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka (Japan)

    2000-07-01

    In the GAMMA 10 tandem mirror, pellet injection experiments have been started as a solution for the density limit problem. This is the first pellet injection experiment in open systems. We describe the possibilities of confinement of pellet fueled particles. For that, we measure the number of end loss particles and compare them with pellet fueled ones in various conditions of confining potentials. The deterioration of confining potential with the pellet injection is a fundamental issue. The results show that the ion confining potential recover faster than central electron temperature due to thermal barrier. We also consider the operating space for fueling method. It is demonstrated that the operating space for pellet injection exceeds gas fueled one on hot ion mode plasmas. (author)

  1. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    International Nuclear Information System (INIS)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future

  2. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.; Gromada, R.J.; McCarville, T.J.; Moir, R.W.; Lee, J.D.; Bandini, B.R.; Fulton, F.J.; Wong, C.P.C.; Maya, I.; Hoot, C.G.; Schultz, K.R.; Miller, L.G.; Beeston, J.M.; Harris, B.L.; Westman, R.A.; Ghoniem, N.M.; Orient, G.; Wolfer, M.; DeVan, J.H.; Torterelli, P.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future.

  3. Results from the Tara tandem mirror experiment

    International Nuclear Information System (INIS)

    Lane, B.G.

    1987-09-01

    A summary of the experimental results from the Tara tandem mirror experiment is presented. Optimization of the fueling configuration, slow wave ion cyclotron heating from a magnetic ''plateau'' using an aperture antenna design, and enhanced stabilization from a magnetic divertor have allowed the attainment of a stable start up plasma (T/sub i,perpendicular/ = 800 - 1500 eV, n/sub e/ = 4 - 5 x 10 12 cm -3 , T/sub e/ = 70 - 80 eV). Plugging experiments using radiofrequency waves near the plug midplane ion cyclotron frequency have proved successful in reducing endloss, while simultaneously leading to an increase in central cell density. The plugging potentials have been limited to approximately the ion parallel temperature. This limitation is due to low frequency instabilities localized in the plug. Axial plugging experiments using electron cyclotron (ECH) resonant microwave radiation in the plug cells have had ambiguous results. Endloss reductions up to 100% have been achieved without build-up of central cell densities or the appearance of the reflected particles at the other end of the machine. We conjecture that rapid radial losses accompany the use of ECH, although the mechanisms for this loss remain unidentified. 9 refs., 9 figs

  4. Fueling moving ring field-reversed mirror reactor plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.

    1980-01-01

    The concept of small fusion reactors is being studied jointly by Lawrence Livermore Laboratory General Atomic Company, and Pacific Gas and Electric Company. The objective is to investigate alternatives and then to develop a conceptual design for a small reactor that could produce useful, though not necessarily economical, energy by the late 1980s. Three methods of fueling a small moving ring field-reversed mirror are considered: injection of fuel pellets accelerated by laser ablation, injection of fuel pellets accelerated by deflagration-gun ablation, and direct injection of plasma by a deflagration gun. 13 refs

  5. Analysis of influence of the radial electric field on turbulent transport in tandem mirror plasma

    International Nuclear Information System (INIS)

    Khvesyuk, Vladimir I.; Chirkov, Alexei Yu.; Pshenichnikov, Anton A.

    2000-01-01

    The model of anomalous transport in cylindrical non-uniform steady state plasma in uniform magnetic field under the influence of many mode drift wave oscillations is suggested. The effect of anomalous transport suppression due to radial electric field is studied, and physical picture of H mode in plasma of GAMMA-10 tandem mirror device is considered. Presented theoretical and numerical results agree with the experimental data obtained on GAMMA-10. (author)

  6. Technology requirements for fusion--fission reactors based on magnetic-mirror confinement

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    Technology requirements for mirror hybrid reactors are discussed. The required 120-keV neutral beams can use positive ions. The magnetic fields are 8 T or under and can use NbTi superconductors. The value of Q (where Q is the ratio of fusion power to injection power) should be in the range of 1 to 2 for economic reasons relating to the cost of recirculating power. The wall loading of 14-MeV neutrons should be in the range of 1 to 2 MW/m 2 for economic reasons. Five-times higher wall loading will likely be needed if fusion reactors are to be economical. The magnetic mirror experiments 2XIIB, TMX, and MFTF are described

  7. Maintenance of a multi-cell field reversed mirror reactor

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.

    1978-01-01

    The Field Reversed Mirror Reactor is composed of a horizontal linear chain of cells, each of which requires neutral beam injection. Blanket replacement is achieved by lifting one complete cell module from the reactor and replacing it with a preassembled and tested identical module. Ioffe bar connectors eliminate redundant bus bars. Asymmetric cell design simplifies magnet construction and reduces replacement time. A tapered cylindrical coolant distributor simplifies blanket removal. An evacuated housing surrounds the reactor reducing cell-to-cell sealing problems related to maintenance. Remote couplings are used for coolant and accessories. Hot-cell location and design permits immediate reconditioning or storage of replacement cells

  8. The magnet power control system for the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Bell, H.H.

    1983-01-01

    This paper describes the desktop computer/CAMAC based system that controls the power source for the Tandem Mirror Experiment-Upgrade (TMX-U) magnet power system. Presently it contains 42 dc rectifier power supplies connected to 24 magnet coils arranged in 17 circuits. During each shot, the system delivers 22.6 MW dc to the magnets for about 3 s. The system is presently being changed to add six power supplies, two solenoidal throttle coils, and two reverse C-coils. When complete, the delivered power will increase to 36.9 MW. The closed-loop control system usually provides current (and thus, magnetic field) that is within 1% of the requested current. Achieving this accuracy required using grounding, shielding, and isolation methods to reduce noise and related problems

  9. ICRF experiments and potential formation on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ichimura, M.; Cho, T.; Higaki, H.

    2005-01-01

    Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase in the plasma parameters. Recently, a new high power gyrotron system has been constructed and the plug ECRH power extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed. (author)

  10. Preliminary conceptual design of the blanket and power conversion system for the Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    A conceptual design of a commercial Mirror Hybrid Reactor, optimized for 239 Pu production, has been completed. This design is the product of a joint effort by Lawrence Livermore Laboratory and General Atomic Company, and follows directly from earlier work on the Mirror Hybrid. This paper describes the blanket and power conversion system of the reactor design. Included are descriptions of the prestressed concrete reactor vessel that supports the magnets and contains the blanket and power conversion system components, the blanket module design, the blanket fuel design, and the power conversion system

  11. Diagnostic mirror concept development for use in the complex environment of a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, Andreas Joachim

    2016-07-01

    Light-based diagnostic systems of fusion reactors require optical mirrors to channel light through the structures surrounding the plasma. With increasing plasma volume, power and plasma burn time, the environmental conditions grow more demanding and new requirements arise. In this dissertation, the design of optical mirrors inside the vacuum chamber of the prototype reactor ITER (Latin ''the way'') and future fusion power plants are investigated. Comparing the state of the art with the boundary conditions close to the fusion plasma, existing mirror designs and choices for the reflective surface are evaluated. For the design, it is not the individual boundary conditions that are critical, but rather, their combination and the resulting interactions. Drawing from the existing designs, possible realizations for central functionality are discussed. Included in the discussion are substrate choice, mounting, adjustment and thermal contacting as well as positioning of the mirror assembly compatible with hot cell maintenance. Building on the general discussion, mirror concepts for the charge exchange recombination spectroscopy (CXRS) diagnostic system for the ITER plasma core are proposed and simulated. In addition, prototypes are manufactured and tested to assess critical aspects of the proposed design. Testing includes positioning by pins, manufacturing of a stainless steel substrate with fluid channels adapted to the mirror shape, and tests with an SiO{sub 2} /TiO{sub 2} dielectric coating under selected ITER conditions. As a result of the work, the fusion reactor mirror design considerations given in the principal design discussion can be used as a basis for other diagnostic systems as well. In the case of the core CXRS mirror concept for ITER, the basic suitability was shown and critical topics were identified where additional work is necessary.

  12. Diagnostic mirror concept development for use in the complex environment of a fusion reactor

    International Nuclear Information System (INIS)

    Krimmer, Andreas Joachim

    2016-01-01

    Light-based diagnostic systems of fusion reactors require optical mirrors to channel light through the structures surrounding the plasma. With increasing plasma volume, power and plasma burn time, the environmental conditions grow more demanding and new requirements arise. In this dissertation, the design of optical mirrors inside the vacuum chamber of the prototype reactor ITER (Latin ''the way'') and future fusion power plants are investigated. Comparing the state of the art with the boundary conditions close to the fusion plasma, existing mirror designs and choices for the reflective surface are evaluated. For the design, it is not the individual boundary conditions that are critical, but rather, their combination and the resulting interactions. Drawing from the existing designs, possible realizations for central functionality are discussed. Included in the discussion are substrate choice, mounting, adjustment and thermal contacting as well as positioning of the mirror assembly compatible with hot cell maintenance. Building on the general discussion, mirror concepts for the charge exchange recombination spectroscopy (CXRS) diagnostic system for the ITER plasma core are proposed and simulated. In addition, prototypes are manufactured and tested to assess critical aspects of the proposed design. Testing includes positioning by pins, manufacturing of a stainless steel substrate with fluid channels adapted to the mirror shape, and tests with an SiO_2 /TiO_2 dielectric coating under selected ITER conditions. As a result of the work, the fusion reactor mirror design considerations given in the principal design discussion can be used as a basis for other diagnostic systems as well. In the case of the core CXRS mirror concept for ITER, the basic suitability was shown and critical topics were identified where additional work is necessary.

  13. LLNL Tandem Mirror Experiment (TMX) upgrade vacuum system

    International Nuclear Information System (INIS)

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.

    1981-01-01

    TMX Upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10 -8 torr), low H reflux from the first walls, and peak gas pressure (5 x 10 -7 torr) due to neutral beam gas during plasma operation. The 225 m 3 vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m 2 . These surfaces (when cooled to about 80 0 K) provide a pumping speed of 6 x 10 7 l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions

  14. Evolution of the mirror approach to fusion: some conjectures

    International Nuclear Information System (INIS)

    Post, R.E.

    1984-01-01

    Some possible directions for the future evolution of the mirror approach to fusion are outlined, in the context of economically-motivated criteria. Speculations are given as to the potential advantages, economic and otherwise, of the use of axially-symmetric systems, operated in semi-collisional regimes of lower Q (fusion power balance ratio) than that projected for present-day tandem mirror designs. These regims include barely tandem modes, and ion-heated modes, in association with higher efficiency direct conversion. Another possible economically advantageous approach mentioned is the use of a tandem mirror plasma to stabilize a FRM (field-reversed mirror) plasma, with potential synergistic advantages

  15. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  16. Reference design for the standard mirror hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.J.; Fink, J.H.; Galloway, T.R.; Kastenberg, W.E.; Lee, J.D.; Devoto, R.S.; Neef, W.S. Jr.; Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-05-22

    This report describes the results of a two-year study by Lawrence Livermore Laboratory and General Atomic Co. to develop a conceptual design for the standard (minimum-B) mirror hybrid reactor. The reactor parameters have been chosen to minimize the cost of producing nuclear fuel (/sup 239/Pu) for consumption in fission power reactors (light water reactors). The deuterium-tritium plasma produces approximately 400 MW of fusion power with a plasma Q of 0.64. The fast-fission blanket, which is fueled with depleted uranium and lithium, generates sufficient tritium to run the reactor, has a blanket energy multiplication of M = 10.4, and has a net fissile breeding ratio of Pu/n = 1.51. The reactor has a net electrical output of 600 MWe, a fissile production of 2000 kg of plutonium per year (at a capacity factor of 0.74), and a net plant efficiency of 0.18. The plasma-containment field is generated by a Yin-Yang magnet using NbTi superconductor, and the neutral beam system uses positive-ion acceleration with beam direct conversion. The spherical blanket is based on gas-cooled fast reactor technology. The fusion components, blanket, and primary heat-transfer loop components are all contained within a prestressed-concrete reactor vessel, which provides magnet restraint and supports the primary heat-transfer loop and the blanket.

  17. Reference design for the standard mirror hybrid reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Fink, J.H.; Galloway, T.R.; Kastenberg, W.E.; Lee, J.D.; Devoto, R.S.; Neef, W.S. Jr.; Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    This report describes the results of a two-year study by Lawrence Livermore Laboratory and General Atomic Co. to develop a conceptual design for the standard (minimum-B) mirror hybrid reactor. The reactor parameters have been chosen to minimize the cost of producing nuclear fuel ( 239 Pu) for consumption in fission power reactors (light water reactors). The deuterium-tritium plasma produces approximately 400 MW of fusion power with a plasma Q of 0.64. The fast-fission blanket, which is fueled with depleted uranium and lithium, generates sufficient tritium to run the reactor, has a blanket energy multiplication of M = 10.4, and has a net fissile breeding ratio of Pu/n = 1.51. The reactor has a net electrical output of 600 MWe, a fissile production of 2000 kg of plutonium per year (at a capacity factor of 0.74), and a net plant efficiency of 0.18. The plasma-containment field is generated by a Yin-Yang magnet using NbTi superconductor, and the neutral beam system uses positive-ion acceleration with beam direct conversion. The spherical blanket is based on gas-cooled fast reactor technology. The fusion components, blanket, and primary heat-transfer loop components are all contained within a prestressed-concrete reactor vessel, which provides magnet restraint and supports the primary heat-transfer loop and the blanket

  18. Field-reversed mirror pilot reactor. Annual report

    International Nuclear Information System (INIS)

    Devoto, R.S.; Erickson, J.L.; Fink, J.H.

    1980-09-01

    This report concludes a two-year effort to design a near-term small-scale fusion power plant which, through its construction and operation, would be a direct and important step toward the commercialization of fusion energy. The fusion reactor pilot plant was designed under the ground rules that it must produce net power, be compact, have minimum total cost, and use near-term (late 1980's) engineering technology. The neutral beam driven, field-reversed mirror (FRM) was selected as the fusion plasma confinement concept around which the pilot plant was designed. Although the physics data base for this design is not yet well in hand, it is being pursued within the magnetic field-reversal framework of the US Mirror Fusion Program. Depending on the plasma size, the pilot plant would gross up to 19.8 MW(e) and would produce up to 10.7 MW(e) net, with the recirculated power used principally for the neutral beam injectors and refrigeration for the superconducting magnets

  19. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Felker, B.; Calderon, M.O.; Chargin, A.K.

    1983-01-01

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system

  20. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2014. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Osa, Akihiko; Imahashi, Masaki; Hirane, Nobuhiko; Motome, Yuiko; Tayama, Hidekazu; Tamura, Itaru; Harada, Yuko; Sakata, Mami; Kadokura, Masakazu; Takita, Chiharu

    2017-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2014. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration, and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  1. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2013. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Kashima, Yoichi; Murayama, Yoji; Nakamura, Kiyoshi; Uno, Yuki; Hirane, Nobuhiko; Ohuchi, Hitoshi; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Harada, Yuko; Kadokura, Masakazu; Machi, Sumire; Takita, Chiharu

    2015-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2013. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  2. Review of the Tandem Mirror Experiment-Upgrade (TMX-U) machine-parameter-instrumentation system

    International Nuclear Information System (INIS)

    Kane, R.J.; Coffield, F.E.; Coutts, G.W.; Hornady, R.S.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) machine consists of seven major machine subsystems: magnet system, neutral beam system, microwave heating (ECRH), ion heating (ICRH), gas fueling, stream guns, and vacuum system. Satisfactory performance of these subsystems is necessary to achieve the experimental objectives planned for TMX-U operations. Since the performance quality of the subsystem is important and can greatly affect plasma parameters, a 233-channel instrumentation system has been installed. Data from the instrumentation system are acquired and stored with the plasma diagnostic information. Thus, the details of the machine performance are available during post-shot analysis. This paper describes all the machine-parameter-instrumentation hardware, presents some typical data, and outlines how the data are used

  3. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  4. Utilizing subcooled, superfluid He-II in the design of a 12-Tesla tandem mirror experiment

    International Nuclear Information System (INIS)

    Hoard, R.W.; Cornish, D.N.; Baldi, R.W.; Taylor, W.D.

    1981-01-01

    A design study of 12-T yin-yang coils for a conceptual Tandem Mirror Next Step facility has been recently performed by Lawrence Livermore National Laboratory in conjunction with the Convair Division of General Dynamics. The large magnets have major and mirror radii of 3.7 and 1.5 m, 0.70 x 3.75 m 2 cross section, 46.3 MA turns, and an overall current density of 1765 A/cm 2 , obtained by the use of Nb 3 Sn and Nb-Ti superconductors. Each coil is composed of several subcoils separated by internal strengthening substructure to react the enormous electromagnetic forces. The size of the yin-yang coils, and hence the current density, was reduced by utilizing subcooled, superfluid He-II at 1.8 K for the coolant. This paper reviews the design study, with emphasis on He-II heat transport and conductor stability. Methods are also presented which allow the extension of Gorter-Mellink-channel calculations to encompass multiple, interconnecting coolant channels

  5. Experiments on hot-electron ECRH in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Stallard, B.W.

    1983-01-01

    Experiments have begun on the Tandem Mirror Experiment Upgrade (TMX-U) using electron-cyclotron resonant heating (ECRH) to generate the hot electron populations required for thermal barrier operation (Energy E/sub eh/ approx. 50 keV, density n/sub eh/ 12 , and hot-to-cold fraction n/sub eh/n approx. 0.9). For this operation, rf power produced by 28-GHz gyrotrons is injected with extraordinary mode polarization at both fundamental and second harmonic locations. Our initial experiments, which concentrated on startup of the hot electrons, were carried out at low density ( 12 cm - 3 ) where Fokker-Planck calculations predict high heating efficiency when the electron temperature (T/sub e/) is low. Under these conditions, we produced substantial hot electron populations (diamagnetic energy > 400 J, E/sub eh/ in the range of 15 to 50 keV, and n/sub eh//n > 0.5)

  6. Neutral particle time-of-flight analyzer for the Tandem Mirror Experiment Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Carter, M.R.; Coutts, G.W.

    1985-01-01

    We describe the design and performance of a time-of-flight (ToF) analyzer being built for installation on the east end cell of the Tandem Mirror Experiment Upgrade (TMX-U). Its primary purpose is to measure the velocity distribution of escaping charge exchange neutral particles having energies between 20 and 5000 electron volts (eV). It also enables direct determination of the thermal barrier potential when used in conjunction with the plasma potential diagnostic and the end loss ion spectrometer. In addition, it can measure the velocity distribution of passing ions leaving the central cell and of ions trapped in the thermal barrier

  7. Development of divertor simulation research in the GAMMA 10/PDX tandem mirror

    International Nuclear Information System (INIS)

    Nakashima, Y.; Sakamoto, M.; Yoshikawa, M.; Oki, K.; Takeda, H.; Ichimura, K.; Hosoi, K.; Hirata, M.; Ichimura, M.; Ikezoe, R.; Imai, T.; Kariya, T.; Katanuma, I.; Kohagura, J.; Minami, R.; Numakura, T.; Wang, X.; Iwamoto, M.; Hosoda, Y.; Asakura, Nobuyuki; Fukumoto, Masakatsu; Kubo, Hirotaka; Hatayama, A.; Hirooka, Y.; Masuzaki, S.; Sagara, A.; Shoji, M.; Kado, S.; Matsuura, H.; Nagata, S.; Shikama, T.; Nishino, N.; Ohno, N.; Tonegawa, A.; Ueda, Y.

    2014-10-01

    This paper describes the recent development of divertor simulation research towards the characterization and control of the detached plasma. In the end-mirror of large tandem mirror device GAMMA 10/PDX, additional ICRF heating experiments in the anchor-cells significantly increases the density in both the anchor and the central cells, which attained the highest particle flux up to 1.7×10 23 particles/s·m 2 at the end-mirror exit. Massive gas injection (H 2 and noble gases) to enhance the radiation cooling in divertor simulation experimental module (D-module) was performed and we have succeeded for the first time in achieving detachment of high temperature plasma equivalent to the SOL plasma of tokamaks by using linear device. A remarkable reduction of the electron temperature (from few tens eV to < 3 eV) on the target plate was successfully achieved associated with the strong reduction of particle and heat fluxes. Two-dimensional image of Hα emission in D-module observed with high-speed camera showed the bright emission in upstream region and strong reduction near the target plate. These results indicate radiation cooling and formation of detached plasma due to gas injection. It is also found that Xe gas is much effective on achieving detached plasma than Ar gas. Simultaneous injection of noble gas and hydrogen gas showed the most effective results on detached plasma generation, which indicates the effect of molecular activated recombination (MAR) processes. The above results will contribute to establishment of detached plasma control and clarification of radiation cooling mechanism towards the development of future divertor systems. (author)

  8. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  9. Problems of gas control and fueling in the Tara tandem mirror

    International Nuclear Information System (INIS)

    Post, R.S.; Horne, S.; Brau, K.; Casey, J.; Golovato, S.; Sevillano, E.; Shuy, G.; Smith, D.K.

    1986-10-01

    Control of the edge neutral pressure is critical for successful thermal barrier operation of tandem mirrors. High neutral pressures lead to substantial charge exchange losses of plasma ions as well as creating a population of cold ions and electrons which may be electrostatically trapped in the negative and positive confining potentials in the end cells. The primary sources of neutral gas in Tara are central cell and transition gas injection, and neutral beam injection in the plugs. In the central cell, the region of ionization is separated from the mirror-trapped hot ion region. Gettering in the region of hot ions, controls reflux and reduces the central cell gas contribution to the plug. During end plugging, the plasma stream from the central cell which is used to fuel the minimum B anchor cells is cut off, so that gas fueling must be supplied in the transition region. The beamlines and dumps use LN/Ti pumps, baffling and bakeable dumps and scrapers to limit gas penetration to the plug plasma. Gettering of the plug wall and geometric considerations are used to control reflux from charge exchange. Monte-Carlo simulations are used to analyze the plug and central cell reflux. A new central cell configuration employing a midplane magnetic divertor is now being evaluated. The halo plasma produced in the diverted magnetic flux will be used to improve shielding of the core plasma from charge exchange

  10. Conceptual design of a mirror reactor for a fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Batzer, T.H.; Burleigh, R.C.; Carlson, G.A.; Dexter, W.L.; Hamilton, G.W.; Harvey, A.R.; Hickman, R.G.; Hoffman, M.A.; Hooper, E.B. Jr.; Moir, R.W.; Nelson, R.L.; Pittenger, L.C.; Smith, B.H.; Taylor, C.E.; Werner, R.W.; Wilcox, T.P.

    1975-01-01

    A conceptual design is presented for a small mirror fusion reactor for a Fusion Engineering Research Facility (FERF). The reactor produces 3.4 MW of fusion power and a useful neutron flux of about 10 14 n.cm -2 .s -1 . Superconducting ''yin-yang'' coils are used, and the plasma is sustained by injection of energetic neutral D 0 and T 0 . Conceptual layouts are given for the reactor, its major components, and supporting facilities. (author)

  11. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  12. Mirror plasma apparatus

    International Nuclear Information System (INIS)

    Moir, R.W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  13. Observation of scaling laws of ion confining potential versus thermal barrier depth and of axial particle confinement time in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Inutake, M.; Ishii, K.

    1988-01-01

    In the thermal barrier tandem mirror GAMMA 10, the scaling law governing the enhancement of the ion confining potential, φ c , resulting from thermal barrier formation, is obtained experimentally, and is consistently interpreted in terms of the weak and strong ECH theories set up by Cohen and co-workers. The scaling law on the axial particle confinement time, τ pparallel , related to this φ c formation, is also demonstrated in detail; it is in good agreement with the Pastukhov theory as modified by Cohen and co-workers. This scaling is verified at any radial position in the core plasma region and at any time through the various stages of a discharge; this indicates a scaling with drastic improvement of τ pparallel , due to the potential formation in the tandem mirror plasma. (author). 41 refs, 12 figs

  14. On the influence of fusion reactor conditions on optical properties of metallic plasma-viewing mirrors

    International Nuclear Information System (INIS)

    Voitsenya, V.S.; Gritsyna, V.I.; Konovalov, V.G.; Ruzhitskij, V.V.; Shapoval, A.N.; Orlinskij, D.V.

    1997-01-01

    This paper presents the results of imitation experiments concerning the effects of fusion reactor conditions on the properties of mirrors made of stainless steel, copper and beryllium. The neutron irradiation was imitated using MeV energy range ions. To imitate the effects of charge exchange atoms (CXA) bombardment, keV energy range D + and He + ions were used. From the data obtained it was concluded that not only the reflectivity but also the resistance to CXA sputtering have to be taken into account when choosing the materials for the first mirrors of a fusion reactor. (orig.)

  15. Summary of Thomson-scattering data from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    Goodman, R.K.

    1982-01-01

    We provide a synthesis of our Thomson-scattering measurements of electron temperature (T/sub e/) and density (n/sub e/) for the Tandem Mirror Experiment (TMX). TMX operated in two modes - high and low T/sub e/. When performing in the high T/sub e/ mode (in general > 100 eV), heating the central-cell ions with neutral beams raised T/sub e/ in the end plug. We achieved a maximum T/sub e/ of 260 eV in the east end plug. Specifically, our experiments demonstrated that in the end plug, the radial T/sub e/ profiles were flat to r = 5 cm; the ratio of potential (phi/sub p/) to T/sub e/ ranged between four and six. In addition, we found that although T/sub e/ in the central cell was generally comparable to that in the plug, it was often not constant along a magnetic field line. Under some conditions a non-Maxwellian electron distribution may have been present

  16. Use of coaxial plasma guns to start up field-reversed-mirror reactors

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Carlson, G.A.; Eddleman, J.L.; Hartman, C.W.; Neef, W.S. Jr.

    1980-01-01

    Application of a magnetized coaxial plasma gun for start-up of a field-reversed-mirror reactor is considered. The design is based on preliminary scaling laws and is compared to the design of the start-up gun used in the Beta II experiment

  17. Thermal and mechanical design of WITAMIR-I blanket

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.N.

    1980-10-01

    The design philosophy of WITAMIR-I, a Wisconsin Tandem Mirror Reactor design study, uses the experience obtained from our previous tokamak studies and combines it with the unique features of the tandem mirror to obtain an attractive design of a TM power reactor. It is aimed at maximizing the strengths of the tandem mirror while mitigating its weaknesses. The end product should be a safe, reliable, maintainable and a relatively economic power reactor. The general description of the reactor, the plasma calculations, the magnet design, the neutronic calculations and the maintenance considerations are presented elsewhere. This paper presents the blanket design of this reactor study

  18. ECRH [electron-cyclotron resonance heating]-heated distributions in thermal-barrier tandem mirrors

    International Nuclear Information System (INIS)

    Cohen, R.H.; LoDestro, L.L.

    1987-01-01

    The distribution function is calculated for electrons subjected to strong electron-cyclotron resonance heating (ECRH) at the plug and barrier in a tandem-mirror thermal-barrier cell. When ECRH diffusion locally dominates over collisions and a boundary condition (associated with electrons passing to the center cell) imposes variations on the distribution function rapid compared to the variation of the ECRH and collisional diffusion coefficients, the kinetic equation can be reduced approximately to Laplace's equation. For the typical case where velocity space is divided into distinct regions in which plug and barrier ECRH dominate, the solution in each region can be expressed in terms of the plasma dispersion function or exponential integrals, according to whether the passing electrons are dominated by collisions or ECRH, respectively. The analytic results agree well with Fokker-Planck code results, in terms of both velocity-space structure and values of moments. 10 refs., 4 figs

  19. Development of procedures to ensure quality and integrity in Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics systems

    International Nuclear Information System (INIS)

    Coutts, G.W.; Coon, M.L.; Hinz, A.F.; Hornady, R.S.; Lang, D.D.; Lund, N.P.

    1983-01-01

    The diagnostic systems for Tandem Mirror Experiment-Upgrade (TMX-U) have grown from eleven initial systems to more than twenty systems. During operation, diagnostic system modifications are sometimes required to complete experimental objectives. Also, during operations new diagnostic systems are being developed and implemented. To ensure and maintain the quality and integrity of the data signals, a set of plans and systematic actions are being developed. This paper reviews the procedures set in place to maintain the integrity of existing data systems and ensure the performance objectives of new diagnostics being added

  20. Mechanical design of a magnetic fusion production reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Jassby, D.L.

    1986-01-01

    The mechanical aspects of a tandem mirror and tokamak concepts for the tritium production mission are compared, and a proposed breeding blanket configuration for each type of reactor is presented in detail, along with a design outline of the complete fusion reaction system. In both cases, the reactor design is developed sufficiently to permit preliminary cost estimates of all components. A qualitative comparison is drawn between both concepts from the view of mechanical design and serviceability, and suggestions are made for technology proof tests on unique mechanical features. Detailed cost breakdowns indicate less than 10% difference in the overall costs of the two reactors

  1. ECE diagnostic for the TARA tandem mirror machine using a fast-scanning Michelson interferometer

    International Nuclear Information System (INIS)

    Guharay, S.K.; Boyd, D.A.; Ellis, R.F.

    1986-01-01

    This ECE (electron cyclotron emission) diagnostic utilizes a fast-scanning Michelson interferometer to determine two parameters, the temperature and the loss cone angle, of the distribution function of the hot electrons (Tapprox. >100 keV) generated in the axisymmetric plug plasma of the TARA tandem mirror device. The radiation transport system employs a lens relay and a low-pass grating filter in order to transmit the synchrotron radiation over a spectral range of 2.9--18.6 cm -1 . This enables us to study the emitted radiation spectrum up to the 40th harmonic of the electron--cyclotron frequency in the plug plasma (B = 5 kG). Details of the design principles and the development of the diagnostic at TARA will be presented

  2. Fusion plasma theory Task II: ECRH and transport modeling in tandem mirrors and divertor physics. Final report, January 1-December 31, 1985

    International Nuclear Information System (INIS)

    Emmert, G.A.

    1985-07-01

    The research reported here focuses on: (1) the coupling of an ECRH ray tracing and absorption code to a tandem mirror transport code in order to self-consistently model the temporal and spatial evolution of the plasma, and (2) the further development of semi-analytical models for plasma flow in divertors and pumped limiters. 5 refs., 1 fig

  3. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-01-01

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states

  4. The hybrid reactor project based on the straight field line mirror concept

    Science.gov (United States)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on

  5. Neutronics shielding analysis of the last mirror-beam duct system for a laser fusion power reactor

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Klein, A.C.

    1981-01-01

    A Monte Carlo three-dimensional neutronics analysis for the last mirror-beam duct system for the SOLASE conceptual laser-driven fusion power reactor design is presented. Detailed geometric configurations including the reactor cavity, the two last mirrors, and the three-section two-right-angle bends duct are modeled. Measurements are given of the dimensions and compositions of the reactor components, and of neutron scalar fluxes, spatial dependencies and neutron volumetric heating rates for the cases of aluminum or Boral as laser beam duct liners, and ordinary concrete or lead mortar as shield material. A three-dimensional modeling of laser-driven reactor penetrations is employed. The particle leakage is found to be excessively high for the configuration of the conceptual design considered and the advantages and disadvantages of various solutions, such as the use of Boral as a duct liner and the use of lead mortar instead of ordinary concrete as a shield material, are considered

  6. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  7. Engineering overview of the Minimars reactor

    International Nuclear Information System (INIS)

    Nelson, W.D.; Lousteau, D.C.; Taylor, G.E.; Doggett, J.N.

    1985-01-01

    A two-year study to describe an attractive tandem mirror reactor is in progress. The reactor, called Minimars, will produce 600 MW of net electrical power at a cost of less than 50 mills/kWh and will be inherently safe. The first year of the study has emphasized innovative concepts and trade studies that lead to good cost vs performance ratings. a set of baseline parameters and a preliminary engineering description of the machine have been generated, along with a first cost estimate. The second year of the study will develop the proposed concepts into an integrated point design and provide a ''bottoms-up'' cost estimate

  8. Application of structural mechanics methods to the design of large tandem mirror fusion devices (MFTF-B)

    International Nuclear Information System (INIS)

    Karpenko, V.N.; Ng, D.S.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a resonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnetic and vessel finite-element models. The anlytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. (orig.)

  9. Generalization and consolidation of scaling laws of potential formation and associated effects in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Cho, T.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Itakura, A.; Katanuma, I.; Kohagura, J.; Nakashima, Y.; Saito, T.; Tanaka, S.; Tatematsu, Y.; Yoshikawa, M.; Numakura, T.; Minami, R.; Nagashima, S.; Watanabe, H.; Yoshida, M.; Sakamoto, Y.; Tamano, T.; Yatsu, K.; Miyoshi, S.

    2001-01-01

    Generalized scaling laws for the formation of plasma confining potentials and the associated effectiveness of the potentials produced are systematically investigated to find the physics essentials common to the representative tandem mirror operational modes of GAMMA 10, and to explore novel extended operational modes from the scaling bases constructed. (a) The potential formation scalings are generalized using a novel finding of wider validity of Cohen's strong ECH theory covering the representative modes. (b) The potentials produced, in turn, provide a favourable novel scaling of the increase in the central cell electron temperatures T e with increasing thermal barrier potentials φ b , limited by the available ECH power. The scaling of T e with φ b is well interpreted in terms of the generalized Pastukhov theory of plasma potential confinement. A detailed comparison of the results from several related modified theories is also made. (c) Consolidation of the two major scalings of (a) and (b) in a tandem mirror is carried out by the use of an electron energy balance equation for the first time. In addition, (d) an empirical scaling of φ c with ECH power in the plug region and the central cell densities are studied to discover whether there is the possibility of extending these theoretically well interpreted scaling data to parameters in the future scalable regime. There is also a discussion about numerical scalings in the three dimensional parameter spaces. (author)

  10. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1974-01-01

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  11. A supplemental device to return escaping particles to a magnetic mirror reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Mitsuaki [Nippon Electronic Engineering College, Noboribetsu-shi, Hokkaido (Japan); Sawada, Keiichi [Soft Creator Company, Kyoto (Japan)

    2018-12-15

    Cyclotron resonance is now applied as one of the important means for heating plasma in a fusion reactor. We examined this phenomenon from the viewpoint of electron gyration orbits through a solution of the linearized relativistic equation of motion. We found a powerful term that accelerates a relativistic charged particle largely at a resonance point when a magnetic field strength is very large. In this study, aiming an effect of this term, we consider applying a resonance phenomenon to reducing the number of charged particles that escape from a magnetic mirror reactor. We install a long supplemental device at the exit of a main magnetic bottle and make a cyclotron resonance space within the device, as shown in Fig. 7. If velocities (perpendicular to a magnetic field) of charged particles are accelerated largely within the cyclotron resonance space, the reflection efficiency of a magnetic mirror behind the resonance space ought to be improved. Based on this idea, we discuss such a supplemental device for recovering the maximum number of escaping charged particles. (orig.)

  12. Fokker-Planck equation in mirror research

    International Nuclear Information System (INIS)

    Post, R.F.

    1983-01-01

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror

  13. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  14. Drift orbits in the TMX and MFTF-B tandem mirrors

    International Nuclear Information System (INIS)

    Byers, J.A.

    1982-01-01

    Drift orbits for the TMX and MFTF-B tandem-mirror designs are followed by using a long-thin expansion of the drift equations. Unexpected asymmetries in the field-line curvatures in the yin-yang end-mirror traps, caused by the transition coils between the solenoid and the yin-yang, result in an elliptical distortion of the drift surface with a/b=1.5 at most, a perhaps tolerable deviation from omnigenity. Yushmanov-trapped particles are no worse than the bulk hot particles. Finite-beta plasma fields, coupled to the asymmetric curvature, produce sizeable banana orbits with widths comparable to the plasma radius, but these orbits are possible for only a few of the particles. Details of the transition through resonance in the solenoid are shown, including the banana shapes of the drift surfaces and the disruption of the surface in the stochastic regime. The orbits in the original design for the A-cell of MFTF-B are the most extreme; in the vacuum fields they all have an extended peanut shape that finally closes only at about 3m. This shape is strongly non-omnigenous and suggests a hollow plasma-density profile. Finite-beta B vectorxnablaB drifts can help to minimize the radial extent of these orbits, but the strength of the vacuum curvatures makes omnigenity only marginally possible. Including B vectorxnablaphi drifts makes omnigenity even more unlikely for the ions, for which the B vectorxnablaB and B vectorxnablaphi drifts are of opposite sign, and conversely helps to omnigenize the drift surfaces of the ECRH 200-keV electrons. It is argued that not every class of particles can have good, i.e. near-omnigenous drifts, regardless of the ability of phi(r) to adjust to limit the radial extent of the orbits. This lack of omnigenity leaves one with no theoretical base for describing the MHD equilibrium in the original designs, but a new magnetic field design for MFTF-B A-cell has apparently completely restored omnigenous orbits. (author)

  15. The hybrid reactor project based on the straight field line mirror concept

    International Nuclear Information System (INIS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestål, A.; Källne, J.; Anglart, H.

    2012-01-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with “semi-poor” plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Q r = P fis /P fus >>1. The upper bound on Q r is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Q r ≈150, corresponding to a neutron multiplicity of k eff =0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement T e ≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as

  16. Study of carbon ion behavior by using collisional radiative model in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Kobayashi, Takayuki; Yoshikawa, Masayuki; Kubota, Yuusuke; Saito, Masashi; Matama, Ken; Itakura, Akiyoshi; Cho, Teruji; Kato, Takako

    2006-01-01

    In a plasma experiment, collisional radiative model (CRM) is very useful model to evaluate impurity behaviors and plasma parameters with line emission from a plasma. CRMs for carbon and oxygen have been developed. However verification and application of the model for analysis of experimental results are not enough. Then we applied CRM calculation results to observed impurity spectra in the GAMMA 10 tandem mirror to evaluate the impurity density profile and the particle balance of each charge state of carbon ion. We calculated the effective ionization rate for each charge state of carbon ion and obtained the density profile of each ion. Moreover, we calculated absolute emission intensities from all carbon ions. (author)

  17. Extended consolidation of scaling laws of potentials covering over the representative tandem-mirror operations in GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Higaki, H.; Hirata, M.

    2003-01-01

    Scaling laws of potential formation and associated effects are constructed in the GAMMA 10 tandem mirror. A novel proposal of extended consolidation and generalization of the two major theories of (i) Cohen's strong electron cyclotron heating (ECH) theory for the formation physics of plasma confining potentials, and (ii) the generalized Pastukhov theory for the effectiveness of the produced potentials on plasma confinement is made through the use of the energy-balance equation. This proposal is then followed by the verification from experimental data in two representative operational modes, characterized in terms of (i) a high-potential mode having kV-order plasma-confining potentials, and (ii) a hot-ion mode yielding fusion neutrons with 10-20 keV bulk-ion temperatures. The importance of the validity of the proposed consolidated physics-based scaling is highlighted by a possibility of extended capability inherent in Pastukhov's prediction of requiring ion-confining potential (φ c ) of 30 kV for a fusion Q value of unity on the basis of an application of Cohen's potential formation method. In addition to the above potential physics scaling, an externally controllable parameter scaling including both plug and barrier ECH powers for potential formation is investigated. The combination of (i) the physics scaling of the above-proposed consolidation over potential formation and effects with (ii) the externally controllable practical ECH power scaling provides a scalable way for the future tandem-mirror researches. Under the assumption of the validity of the extension of the present theoretically well interpreted scaling, the formation of Pastukhov's predicted φ c for confining Q=1 plasmas is scaled to require total plug with barrier ECH powers of 3 MW. (author)

  18. Continuous cryopump for steady state mirror fusion reactors

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    The characteristics of mirror fusion reactors, i.e., steady state operation, a low neutral gas density, and a large gas throughput require unique vacuum pumping capabilities. One approach that appears to meet these requirements is a liquid helium-cooled cryopump system in which a fixed portion can be isolated and degassed while the remainder continues to pump. The time to degas a rotating, fixed portion of the pumping area and the ratio of that area to the total area fixes the gas inventory in the chamber. It follows that the active pump area maintains the required neutral gas density and the time-averaged degassing rate equals the gas throughput. We have built such a cryopump whereby the gas condensed (deuterium) on the liquid helium-cooled panel can be transferred to a collector pump and subsequently to an exterior mechanical pump and exhausted. At panel loadings as high as 0.55 Torr-/lcm 2 the gas leakage during degassing is less than 8% and the degassing time is less than 10 min. Scaling to reactor size appears to be feasible

  19. Hot electron formation in thermal barrier region of tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Sawada, K.; Miyoshi, S.

    1987-01-01

    We have studied the hot electron build-up by the second harmonic electron cyclotron resonance heating in the thermal barrier region of tandem mirror GAMMA 10 by using a Fokker-Planck code with self-consistent potential profile taken into account. We have found two phases in the evolution of hot electron population and the potential profile. In the first phase where the RF diffusion is dominant quick increase of the hot electron density and that of the mean energy are observed. No further increase in the mean energy is observed thereafter. The potential is the deepest during the first phase. The second phase starts in the mean-free-time of the pitch angle scattering of hot electrons on cold electrons and ions. In this phase the hot electron population increases in the rate of the pitch angle scattering. The potential dip shallows due to the accumulation of pitch angle scattered passing ions. This observation indicates the necessity of the ion pumping for maintaining the negative potential at the thermal barrier. (author)

  20. Technician support for operation and maintenance of large fusion experiments: the tandem mirror experiment upgrade (TMX-U) approach

    International Nuclear Information System (INIS)

    Mattson, G.E.

    1983-01-01

    As experiments continue to grow in size and complexity, a few technicians will no longer be able to maintain and operate the complete experiment. Specialization is becoming the norm. Subsystems are becoming very large and complex, requiring a great deal of experience and training for technicians to become qualified maintenance/operation personnel. Formal in-house and off-site programs supplement on-the-job training to fulfill the qualification criteria. This paper presents the Tandem Mirror Experiment-Upgrade (TMX-U) approach to manpower staffing, some problems encountered, possible improvements, and safety considerations for the successful operation of a large experimental facility

  1. Mirror power reactor magnet coil system: a technically and economically feasible design

    International Nuclear Information System (INIS)

    Peterson, M.A.

    1977-01-01

    The design and preliminary engineering analysis of a ''Yin Yang'' coil system utilizing several original design concepts to achieve technical and economic feasibility will be presented. The design analysis is begun with a general description of the constraints and prerequisites which define the problem of designing a satisfactory coil system for a mirror power reactor. This description includes a discussion of the coil conductor geometry required by plasma physics considerations, and also a description of the magnitude and direction of the magnetic force system distributed over the conductor geometry. In addition, the important design constraints which all mirror coil system designs must satisfy if they are to successfully interface with the other reactor components are reviewed. After considering the basic constraints that Yin Yong coil systems must be developed around, a survey of the various design concepts that were developed and explored in search of a satisfactory coil system design is discussed. From this extensive preliminary investigation of potential coil system configurations, a coil system design was developed which appears to offer by far the best combination of technical and economic feasibility of any other coil system design developed thus far

  2. Neoclassical resonant transport of a mirror cell

    International Nuclear Information System (INIS)

    Ito, T.; Katanuma, I.

    2005-01-01

    The neoclassical resonant plateau transport in a mirror cell is studied theoretically. The analytical expression for a non-square-well magnetic field is obtained. The analytical result is applied to the GAMMA10 tandem mirror [T. Cho, M. Yoshida, J. Kohagura et al., Phys. Rev. Lett. 94, 085002-1 (2005)], which consists of several mirror cells in it, and the confinement time due to the neoclassical resonant plateau transport is determined in each mirror cell. It is found that the neoclassical resonant transport of ions trapped in the nonaxisymmetric anchor mirror cell and transition mirror cells is significantly smaller than those trapped in the central cell

  3. Ion cyclotron radio frequency systems and performance on the tandem mirror experiment-upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Moore, T.L.; Molvik, A.W.; Cummins, W.F.; Pedrotti, L.R.; Henderson, A.L.; Karsner, P.G.; Scofield, D.W.; Brooksby, C.A.

    1983-01-01

    High power ion cyclotron radio frequency (ICRF) systems are now gaining greater attention than before as prime driver ion heating systems. Lawrence Livermore National Laboratory (LLNL) has installed a 200 kW high frequency (HF) transmitter system on its Tandem Mirror Experiment-Upgrade (TMX-U). This paper describes the system, antenna, controls, and monitoring apparatus. The transmitter operates into a high Q antenna installed in the central cell region of the experiment. It incorporates a dual-port feedback system to automatically adjust the transmitter's output power and allow the maximum consistent with the plasma loading of the antenna. Special techniques have been used to measure, in real-time, the dynamically changing loading values presented by the plasma. From the measurements, the antenna impedance can be optimized for specified plasma density

  4. Special topics reports for the reference tandem mirror fusion breeder: beryllium lifetime assessment. Volume 3

    International Nuclear Information System (INIS)

    Miller, L.G.; Beeston, J.M.; Harris, B.L.; Wong, C.P.C.

    1984-10-01

    The lifetime of beryllium pebbles in the Reference Tandem Mirror Fusion Breeder blanket is estimated on the basis of the maximum stress generated in the pebbles. The forces due to stacking height, lithium flow, and the internal stresses due to thermal expansion and differential swelling are considered. The total stresses are calculated for three positions in the blanket, at a first wall neutron wall loading of 1.3 MW/m 2 . These positions are: (a) near the first fuel zone wall, (b) near the center, and (c) near the back wall. The average lifetime of the pebbles is estimated to be 6.5 years. The specific estimated lifetimes are 2.4 years, 5.4 years, and 15 years for the first fuel zone wall, center and near the back wall, respectively

  5. A comparison of mainline and alternate approaches to fusion energy and their application to commercial power production

    International Nuclear Information System (INIS)

    Hayman, P.W.; Roth, J.R.

    1983-01-01

    The tokamak and tandem mirror concepts are compared with alternate confinement concepts using the criteria established in DOE/ET-0047, ''An Evaluation of Alternate Magnetic Fusion Concepts 1977''. The concepts are evaluated and rated in each of three broad categories: confidence in physics, confidence in technology and reactor desirability. The STARFIRE reactor and Mars reactor were used as a basis for comparing the mainline tokamak and tandem mirror concepts with the 12 alternate concepts evaluated in DOE/ET-0047. Results indicate that the physics of tokamaks and tandem mirrors is better understood than most alternate concepts. Both rank near the middle for technology requirements, and both rank near or at the bottom when compared with the reactor desirability of alternate concepts

  6. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  7. Modularized mirror fusion reactor concept with emphasis on fabricability, assembly, and disassembly

    International Nuclear Information System (INIS)

    Peterson, M.A.; Werner, R.W.; Hoffman, M.A.; Carlson, G.A.

    1975-01-01

    A progress report on a continuing study directed toward the development of mirror reactor designs which simultaneously satisfy the various engineering, economic, and maintenance consideration is presented. Two new blanket and coil structure designs are presented which satisfy engineering requirements equally as well as previous designs while offering substantial gains in accessibility for maintenance. Because of the commercial requirement for a high duty cycle and the possible high frequency of blanket module removal--for either maintenance replacement--the module removal must be accomplished quickly with a minimum disruption of reactor operations. The blanket and coil structure designs allow the removal of any one of the identical blanket modules without disturbing either the remaining modules or the coil and its associated support structure. With fabricated coil structure costs estimated at $2.50/lbm and the reactor net electrical power calculated from a plasma and reactor system model detailed in the paper, coil and support structure costs of between 100 to 200 $/kwe were estimated. (U.S.)

  8. Extended consolidation of scaling laws of potential formation and effects covering the representative Tandem mirror operations in GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Itakura, A.; Katanuma, I.; Kohagura, J.; Nakashima, Y.; Saito, T.; Tatematsu, Y.; Yoshikawa, M.; Minami, R.; Numakura, T.; Yoshida, M.; Watanabe, H.; Yatsu, K.; Miyoshi, S.; Cho, T.

    2003-01-01

    Scaling laws of potential formation and associated effects along with their physical interpretations are consolidated on the basis of experimental verification using the GAMMA 10 tandem mirror. A proposal of extended consolidation and generalization of the two major theories - (i) Cohen's strong electron cyclotron heating (ECH) theory for the formation physics of plasma confining potentials and (ii) the generalized Pastukhov theory for the effectiveness of the produced potentials on plasma confinement is made through the use of the energy balance equation. This proposal is then followed by verification using experimental data from two representative operational modes of GAMMA 10, characterized in terms of (i) a high-potential mode having plasma confining potentials of the order of kilovolts and (ii) a hot ion mode yielding fusion neutrons with bulk ion temperatures of 10-20 keV. The importance of the validity of the proposed physics-based scaling is highlighted by the possibility of extended capability inherent in Pastukhov's prediction of requiring an ion confining potential of ∼30 kV for a fusion Q value of unity on the basis of an application of Cohen's potential formation method. In addition to the above potential physics scaling, an externally controllable parameter scaling of the potential formation increasing with either plug or barrier ECH powers is summarized. The combination of (i) the physics-based scaling of the proposed consolidation of potential formation and effects with (ii) the externally controllable practical ECH power scaling provides a new direction for future tandem mirror studies. (author)

  9. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    International Nuclear Information System (INIS)

    Karpenko, V.N.; Ng, D.S.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs

  10. Magnetic mirror fusion: status and prospects

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed

  11. Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Lappa, D.A.; Logan, B.G.

    1979-01-01

    Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q

  12. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  13. Interaction of the precessional wave with free-boundary Alfven surface waves in tandem mirrors

    International Nuclear Information System (INIS)

    Berk, H.L.; Kaiser, T.B.

    1984-04-01

    We consider a symmetric tandem mirror plugging a long central cell, with plugs stabilized by a hot component plasma. The system is taken to have a flat pressure profile with a steep edge gradient. We then consider the interaction of the precessional mode with Alfven waves generated in the central cell. This analysis is non-eikonal and is valid when mΔ/r < 1 (m is the azimuthal mode number. r the plasma radius and Δ the radial gradient scale length) for long-wavelength radial modes. We find that without FLR effects the precessional mode is always destabilized by the excitation of the Alfven waves for m greater than or equal to 2. For m=1, it is possible to achieve stabilization with conducting walls. A discussion is given of how FLR affects stabilization of the m greater than or equal to 2 long-wavelength modes and of finite-Larmor-radius stabilization of modes described in the eikonal approximation

  14. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  15. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  16. Plasma characteristics of the end-cell of the GAMMA 10 tandem mirror for the divertor simulation experiment

    International Nuclear Information System (INIS)

    Nakashima, Y.; Sakamoto, M.; Yoshikawa, M.; Takeda, H.; Ichimura, K.; Hosoi, K.; Hirata, M.; Ichimura, M.; Ikezoe, R.; Imai, T.; Kariya, T.; Katanuma, I.; Kohagura, J.; Minami, R.; Numakura, T.; Oki, K.; Ueda, H.; Asakura, Nobuyuki; Furuta, T.; Hatayama, A.; Toma, M.; Hirooka, Y.; Masuzaki, S.; Sagara, A.; Shoji, M.; Kado, S.; Matsuura, H.; Nagata, S.; Nishino, N.; Ohno, N.; Tonegawa, A.; Ueda, Y.

    2012-11-01

    In this paper, detailed characteristics and controllability of plasmas emitted from the end-cell of the GAMMA 10 tandem mirror are described from the viewpoint of divertor simulation studies. The energy analysis of ion flux by using end-loss ion energy analyzer (ELIEA) proved that the obtained high ion temperature (100 - 400 eV) was comparable to SOL plasma parameters in toroidal devices and was controlled by changing the ICRF power. Parallel ion temperature T i∥ determined from the probe and calorimeter shows a linear relationship with the ICRF power in the central-cell and agrees with the results of ELIEA. Additional ICRF heating revealed a significant enhancement of particle flux, which indicated an effectiveness of additional plasma heating in adjacent cells toward the improvement of the performance. Superimposing the ECH pulse of 380 kW, 5 ms attained the maximum heat-flux more than 10 MW/m 2 on axis. This value comes up to the heat-load of the divertor plate of ITER, which gives a clear prospect of generating the required heat density for divertor studies by building up heating systems to the end-mirror cell. Initial results of plasma irradiation experiment and construction of new divertor module are also described. (author)

  17. Special topics reports for the reference tandem mirror fusion breeder. Volume 2. Reactor safety assessment

    International Nuclear Information System (INIS)

    Maya, I.; Hoot, C.G.; Wong, C.P.C.; Schultz, K.R.; Garner, J.K.; Bradbury, S.J.; Steele, W.G.; Berwald, D.H.

    1984-09-01

    The safety features of the reference fission suppressed fusion breeder reactor are presented. These include redundancy and overcapacity in primary coolant system components to minimize failure probability, an improved valve location logic to provide for failed component isolation, and double-walled coolant piping and steel guard vessel protection to further limit the extent of any leak. In addition to the primary coolant and decay heat removal system, reactor safety systems also include an independent shield cooling system, the module safety/fuel transfer coolant system, an auxiliary first wall cooling system, a psssive dump tank cooling system based on the use of heat pipes, and several lithium fire suppression systems. Safety system specifications are justified based on the results of thermal analysis, event tree construction, consequence calculations, and risk analysis. The result is a reactor design concept with an acceptably low probability of a major radioactivity release. Dose consequences of maximum credible accidents appear to be below 10CFR100 regulatory limits

  18. Potential mirror concepts for radiation testing of fusion reactor materials

    International Nuclear Information System (INIS)

    Miley, G.H.

    1977-01-01

    Studies under the University of Illinois PROMETHEUS (Plasma Reactor Optimized for Materials Experimentation for Thermonuclear Energy Usage) project are described that started in 1971 with the realization that a practical fusion-plasma neutron source was feasible with a net-power input (rather than production). The basic objectives were similar to those in later FERF (Fusion Engineering Research Facility) studies: namely, to maximize the neutron flux and usable experimental volume; to include the flexibility to handle a variety of both materials and engineering experiments; to minimize capital and operating costs; and to utilize near- term technology. The PROMETHEUS design provides a neutron flux of approximately 5x10 14 n/cm 2 s by injection of approximately 30 MW of neutral-beams into a 20 cm radius mirror-confined plasma. Charge-exchange bombardment of the first wall is viewed as a key problem in the design and is discussed in some detail. To gain yet higher neutron fluxes for accelerated testing, two alternate designs have been studied: a 'Twin-beam' injection device and a field reversed mirror concept. The latter potentially offers fluxes approaching 10 16 n/cm 2 s but involves more speculative technology. (Auth.)

  19. A comparison of mainline and alternate approaches to fusion energy

    International Nuclear Information System (INIS)

    Hayman, P.W.; Roth, J.R.

    1985-01-01

    The tokamak and tandem mirror concepts are compared with alternate confinement concepts using the criteria established in DOE/ET-0047, ''An Evaluation of Alternate Magnetic Fusion Concepts 1977.'' The concepts are evaluated and rated in each of three broad categories: confidence in physics and technology, and reactor desirability. The STARFIRE and MARS reactors are used as a basis for comparing the mainline tokamak and tandem mirror concepts with the alternate concepts evaluated in DOE/ET-0047. Two recent alternate concepts, the ohmically heated toroidal experiment (OHTE) and the compact reversed field pinch reactor (CRFPR), are also evaluated. Results indicate that the physics of the mainline tokamaks and tandem mirrors is better understood than that of most alternate concepts. Both mainline concepts rank near the middle for technology requirements, and both rank near or at the bottom when compared with the reactor desirability of alternate concepts

  20. Mirror confinement systems: Final technical report

    International Nuclear Information System (INIS)

    1988-08-01

    This report contains: (1) A discussion of azimuthal asymmetrics and fluctuations in RFC-XX-M. Both lead to enhanced radial transport in RFC-XX-M, and presumably most other tandem mirror machines as well; A report on four operating modes of RFC-XX-M which were developed and studied as part of the collaboration. These operating modes were the simple tandem mode, the negative (floating) potential mode, the hot electron mode, and the ECH (electron cyclotron heating) mode; A pulsed rf heated discharge cleaning system which was developed for RFC-XX-M. This method of cleaning proved much more effective than normal glow discharge cleaning, and variations of it are currently in use on the GAMMA-10 tandem mirror and the JIPP TII-U tokamak at the Institute for Plasma Physics at Nagoya; Short descriptions of the diagnostics development and improvement done in conjunction with the work on RFC-XX-M; and a compilation of the work performed at the University of Tsukuba on GAMMA-10. Most of the effort on GAMMA-10 involved diagnostics development and improvement. 16 refs., 42 figs., 1 tab

  1. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  2. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. Addendum 1. Alternate concepts. 12-month progress report addendum, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Dee, J.B.; Backus, G.A.; Culver, D.W.

    1976-01-01

    During the course of the Mirror Hybrid Fusion-Fission Reactor study several alternate concepts were considered for various reactor components. Several of the alternate concepts do appear to exhibit features with potential advantage for use in the mirror hybrid reactor. These are described and should possibly be investigated further in the future

  3. Conceptual design of the field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.; Condit, W.C.; Devoto, R.S.; Fink, J.H.; Hanson, J.D.; Neef, W.S.; Smith, A.C. Jr.

    1978-01-01

    For this reactor a reference case conceptual design was developed in some detail. The parameters of the design result partly from somewhat arbitrary physics assumptions and partly from optimization procedures. Two of the assumptions--that only 10% of the alpha-particle energy is deposited in the plasma and that particle confinement scales with the ion-ion collision time--may prove to be overly conservative. A number of possible start-up scenarios for the field-reversed plasmas were considered, but the choice of a specific start-up method for the conceptual design was deferred, pending experimental demonstration of one or more of the schemes in a mirror machine. Basic to our plasma model is the assumption that, once created, the plasma can be stably maintained by injection of a neutral-beam current sufficient to balance the particle-loss rate. The reference design is a multicell configuration with 11 field-reversed toroidal plasma layers arranged along the horizontal axis of a long-superconducting solenoid. Each plasma layer requires the injection of 3.6 MW of 200-keV deuterium and tritium, and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe. The preliminary estimate for the direct capital cost of the reference design is $1200/kWe. A balance-of-plant study is now underway and will result in a more accurate cost estimate

  4. Investigation of barrier cell and auxilliary heating in a tandem mirror. Annual progress report, October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Kesner, J.; Emmert, G.A.; Howard, J.E.

    1980-06-01

    A number of areas relating to RF heating and thermal barrier formation in a tandem mirror have been investigated. The possibility of creating axisymmetric confinement through the use of sloshing-ions has been investigated. We have also suggested the complimentary concept of sloshing-electrons. Self-consistent thermal barrier formation has been studied and ion drift orbits in non-axisymmetric barriers are being investigated. The study of dynamic stabilization of the DCLC by RF fields has been extended to ω near 2 ω/sub ci/; significant stabilization is found. Fast and slow wave heating have been extensively studied using single particle theory. A new theory of relativistic ECH is under development

  5. Multiple-mirror plasma confinement

    International Nuclear Information System (INIS)

    Lichtenberg, A.J.; Lieberman, M.A.; Logan, B.G.

    1975-01-01

    A large enhancement of the confinement time can be achieved in a straight system of multiple mirrors over an equal length uniform magnetic field. The scaling is diffusive rather than that of flow, thereby scaling the square of the system length rather than linear with system length. Probably the most economic mode of operation for a reactor occurs when lambda/M is approximately l/sub c/, where lambda is the mean free path, M the mirror ratio, and l/sub c/ the length between mirrors; but where the scale length of the mirror field l/sub m/ is much less than lambda. The axial confinement time has been calculated theoretically and numerically for all important parameter regimes, and confirmed experimentally. A typical reactor calculation gives Q/sub E/ = 2 for a 400 meter system with 3000 MW(e) output. The main concern of a multiple-mirror system is stability. Linked quadrupoles can achieve average minimum-B stabilization of flute modes, and experiments have demonstrated this stabilization. Localized instabilities at finite β and enhanced diffusion resulting from the distorted flux surfaces and possibly from turbulent higher order modes still remain to be investigated

  6. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  7. Anomalous transport in mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    As now being explored for fusion applications confinement systems based on the mirror principle embody two kinds of plasma regimes. These two regimes are: (a) high-beta plasmas, stabilized against MHD and other low frequency plasma instabilities by magnetic-well fields, but characterized by non-Maxwellian ion distributions; (b) near-Maxwellian plasmas, confined electrostatically (as in the tandem mirror) or in a field-reversed region within the mirror cell. Common to both situations are the questions of anomalous transport owing to high frequency instabilities in the non-maxwellian portions of the plasmas. This report will summarize the status of theory and of experimental data bearing on these questions, with particular reference to the high temperature regimes of interest for fusion power

  8. The TESS [Tandem Experiment Simulation Studies] computer code user's manual

    International Nuclear Information System (INIS)

    Procassini, R.J.

    1990-01-01

    TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs

  9. Tandem mirror reactor with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.; Arfin, B.; Barr, W.L.; Boghosian, B.M.; Erickson, J.L.; Fink, J.H.; Hamilton, G.W.; Logan, B.G.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report gives detailed information in the form of the following chapters: (1) overview, (2) plasma physics, (3) magnets, (4) end-plug neutral beams, (5) barrier pump neutral beams, (6) ecr heating, (7) plasma direct converter, and (8) central cell

  10. Remote handling requirements and considerations for D-T fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1984-01-01

    This paper presents an overview of the maintenance considerations for next-generation fusion reactors. It draws upon the work done at the Fusion Engineering Design Center over the past several years in the conceptual development of tokamaks and tandem mirrors. It specifically addresses the maintenance philosophy adopted for these devices, the configuration development using a modular design approach, scheduled and unscheduled maintenance operations, assembly and disassembly scenarios for component replacements, maintenance equipment requirements, and the operating availability of these devices. In addition, recent work on the development of a totally remote tokamak configuration is presented

  11. Remote handling requirements and considerations for D-T fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1984-01-01

    This paper an overview of the maintenance considerations of next-generation fusion reactors. It draws upon the work done at the Fusion Engineering Design Center over the past several years in the conceptual development of tokamaks and tandem mirrors. It specifically addresses the maintenance philosophy adopted for these devices, the configuration development using a modular design approach, scheduled and unscheduled maintenance operations, assembly and disassembly scenarios for component replacements, maintenance equipment requirements, and the operating availability of these devices. In addition, recent work on the development of a totally remote tokamak configuration is presented

  12. 3D equilibrium codes for mirror machines

    International Nuclear Information System (INIS)

    Kaiser, T.B.

    1983-01-01

    The codes developed for cumputing three-dimensional guiding center equilibria for quadrupole tandem mirrors are discussed. TEBASCO (Tandem equilibrium and ballooning stability code) is a code developed at LLNL that uses a further expansion of the paraxial equilibrium equation in powers of β (plasma pressure/magnetic pressure). It has been used to guide the design of the TMX-U and MFTF-B experiments at Livermore. Its principal weakness is its perturbative nature, which renders its validity for high-β calculation open to question. In order to compute high-β equilibria, the reduced MHD technique that has been proven useful for determining toroidal equilibria was adapted to the tandem mirror geometry. In this approach, the paraxial expansion of the MHD equations yields a set of coupled nonlinear equations of motion valid for arbitrary β, that are solved as an initial-value problem. Two particular formulations have been implemented in computer codes developed at NYU/Kyoto U and LLNL. They differ primarily in the type of grid, the location of the lateral boundary and the damping techniques employed, and in the method of calculating pressure-balance equilibrium. Discussions on these codes are presented in this paper. (Kato, T.)

  13. Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1978-01-01

    A large, new Mirror Fusion Test Facility is under construction at LLL. Begun in FY78 it will be completed at the end of FY78 at a cost of $94.2M. This facility gives the mirror program the flexibility to explore mirror confinement principles at a signficant scale and advances the technology of large reactor-like devices. The role of MFTF in the LLL program is described here

  14. Development of the monitoring system of plasma behavior using a CCD camera in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Kawano, Hirokazu; Nakashima, Yousuke; Higashizono, Yuta

    2007-01-01

    In the central-cell of the GAMMA 10 tandem mirror, a medium-speed camera (CCD camera, 400 frames per second, 216 x 640 pixel) has been installed for the observation of plasma behavior. This camera system is designed for monitoring the plasma position and movement in the whole discharge duration. The captured two-dimensional (2-D) images are automatically displayed just after the plasma shot and stored sequentially shot by shot. This system has been established as a helpful tool for optimizing the plasma production and heating systems by measuring the plasma behavior in several experimental conditions. The camera system shows that the intensity of the visible light emission on the central-cell limiter accompanied by central electron cyclotron heating (C-ECH) correlate with the wall conditioning and immersion length of a movable limiter (iris limiter) in the central cell. (author)

  15. High-concentration mirror-based Kohler integrating system for tandem solar cells

    Science.gov (United States)

    Winston, R.; Benitez, P.; Cvetkovic, A.

    2006-06-01

    A novel two-mirror high concentration nonimaging optic has been designed that shares the advantages of present two mirror aplanatic imaging concentrators but also overcomes their main limitation of trade-off between acceptance angle and irradiance uniformity. A system concept has been defined, and a first prototype in under development.

  16. Magnetic mirrors: history, results, and future prospects

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Ivanov, A.A.; Kruglyakov, E.P.; Burdakov, A.V.; Ivanov, A.A.; Beklemishev, A.D.; Ivanov, A.A.; Burdakov, A.V.

    2012-01-01

    The evolution of open traps brought them from simple solenoids to highly sophisticated and huge tandem mirrors with quadrupole magnetic stabilizers. They tried to compete with toroidal devices using ambipolar confinement and thermal barriers, but were too late and failed, and are almost extinct. A side branch of open traps went for simplicity and good fast-ion confinement inherent in axially symmetric mirrors. Since simplicity means lower cost of construction and servicing, and lower engineering and materials demands, such type of traps might still have an edge. Axially symmetric mirrors at the Budker Institute of Nuclear Physics in Novosibirsk currently represent the front line of mirror research. We discuss recent experimental results from the multiple-mirror trap, GOL-3, and the gas-dynamic trap, GDT. The next step in this line of research is the GDMT program that will combine the GDT-style fast-ion-dominated central mirror with multiple-mirror end plugs. This superconducting device will be modular and built in stages. The first stage, GDMT-T, will be based on 5m, 7T superconducting solenoid (multiple-mirror plug of the full device). Its 3-year scientific program is oriented primarily on PMI studies.

  17. Use of a silicon surface-barrier detector for measurement of high-energy end loss electrons in a tandem mirror

    International Nuclear Information System (INIS)

    Saito, T.; Kiwamoto, Y.; Honda, T.; Kasugai, A.; Kurihara, K.; Miyoshi, S.

    1991-01-01

    An apparatus for the measurement of high-energy electrons (10--500 keV) with a silicon surface-barrier detector is described. The apparatus has special features. In particular, a fast CAMAC transient digitizer is used to directly record the wave form of a pulse train from the detector and then pulse heights are analyzed with a computer instead of on a conventional pulse height analyzer. With this method the system is capable of detecting electrons with a count rate as high as ∼300--400 kilocounts/s without serious deterioration of performance. Moreover, piled up signals are reliably eliminated from analysis. The system has been applied to measure electron-cyclotron-resonance-heating-induced end loss electrons in the GAMMA 10 tandem mirror and has yielded information relating to electron heating and diffusion in velocity space

  18. Neutronic calculation and cross section sensitivity analysis of the Livermore mirror fusion/fission hybrid reactor blanket

    International Nuclear Information System (INIS)

    Ku, L.P.; Price, W.G. Jr.

    1977-08-01

    The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model

  19. E parallel B end-loss-ion analyzer for the Tandem Mirror Experiment-Upgrade (TMX-U). Revision 1

    International Nuclear Information System (INIS)

    Wood, B.E.; Foote, J.H.; Coutts, G.W.; Pedrotti, L.R.; Schlander, L.F.; Brown, M.D.

    1985-01-01

    We have installed a new diagnostic instrument to investigate ions emanating along magnetic-field lines of the TMX-U tandem-mirror experiment. This analyzer contains parallel electric and magnetic fields, which yield ion mass and energy spatial separation. A dual array of 128 copper collector plates detects particles in the ion flux that is first collimated and then focused through the 180-degree bending magnetic field. An electric field applied transverse to the bending particle path then separates the ion masses in the direction perpendicular to the magnetic-pole faces while the magnetic field spreads out the different energies of each mass in a plane parallel to the magnetic-pole tips. The CAMAC-based data recorders are fiber-optically coupled to the system controller for data acquisition, analysis, and display. A commercial CAMAC data recorder was modified for current input. We expect to measure higher particle energies than the present gridded end-loss analyzers as well as to more accurately determine the energy spectra

  20. Extended consolidation of scaling laws of potentials covering over the representative tandem-mirror operations in GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.

    2002-01-01

    (i) A verification of our novel proposal of extended consolidation of the two major theories of Cohen's potential formation and Pastukhov's potential effectiveness is carried out by the use of a novel experimental mode with central ECH. The validity of the proposal provides a roadmap of bridging and combining two present representative modes in GAMMA 10 for upgrading to hot-ion plasmas with high potentials. (ii) A novel efficient scaling of ion-confining potential formation due to plug ECH with barrier ECH is constructed as the extension over the IAEA 2000 scaling with plug ECH alone. The combination of the physics scaling of (i) with the externally controllable power scaling of (ii) provides a scalable way for future tandem-mirror researches. The importance of the validity of the present consolidation is highlighted by a possibility of the extended capability inherent in Pastukhov's prediction of requiring 30 kV potentials for a fusion Q of unity with an application of Cohen's potential formation method. (author)

  1. Special topics reports for the reference tandem mirror fusion breeder: liquid metal MHD pressure drop effects in the packed bed blanket. Vol. 1

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wong, C.P.C.

    1984-09-01

    Magnetohydrodynamic (MHD) effects which result from the use of liquid metal coolants in magnetic fusion reactors include the modification of flow profiles (including the suppression of turbulence) and increases in the primary loop pressure drop and the hydrostatic pressure at the first wall of the blanket. In the reference fission-suppressed tandem mirror fusion breeder design concept, flow profile modification is a relatively minor concern, but the MHD pressure drop in flowing the liquid lithium coolant through an annular packed bed of beryllium/thorium pebbles is directly related to the required first wall structure thickness. As such, it is a major concern which directly impacts fissile breeding efficiency. Consequently, an improved model for the packed bed pressure drop has been developed. By considering spacial averages of electric fields, currents, and fluid flow velocities the general equations have been reduced to simple expressions for the pressure drop. The averaging approach results in expressions for the pressure drop involving a constant which reflects details of the flow around the pebbles. Such details are difficult to assess analytically, and the constant may eventually have to be evaluated by experiment. However, an energy approach has been used in this study to bound the possible values of the constant, and thus the pressure drop. In anticipation that an experimental facility might be established to evaluate the undetermined constant as well as to address other uncertainties, a survey of existing facilities is presented

  2. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Baxi, C.B.; Rao, R.

    1976-01-01

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  3. X-ray imaging studies of electron cyclotron microwave-heated plasmas in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Failor, B.H.

    1986-02-01

    An x-ray pinhole camera designed to efficiently detect photons with energies between 5 and 250 keV was built to image bremsstrahlung emission from a microwave-heated hot electron plasma. This plasma is formed at one of the thermal barrier locations in the Tandem Experiment-Upgrade at Lawrence Livermore National Laboratory. The instrument consists of a lead aperture, an x-ray converter in the form of a sodium-activated cesium iodide scintillator, light intensifier electronics, and a recording medium that may either be high speed film or a CCD array. The nominal spatial and temporal resolutions are one part in 40 and 17 msec, respectively. The component requirements for optimum performance were determined both analytically and by computer simulation, and were verified experimentally. The details of these results are presented. The instrument has been used to measure x-ray emission from the TMX-U west end cell. Data acquired with the x-ray camera has allowed us to infer the temporal evolution of the mirror-trapped electron radial profile

  4. An x-ray detection system development for Tandem Mirror Experiment Upgrade (TMX-U): Hardware and software

    International Nuclear Information System (INIS)

    Jones, R.M.; Coutts, G.W.; Failor, B.H.

    1983-01-01

    This x-ray detection system measures the electron Bremstrahlung spectrum from the Tandem Mirror Experiment-Upgrade (TMX-U). From this spectrum, we can calculate the electron temperature. The low energy portion of the spectrum (0.5-40 keV) is measured by a liquid-nitrogen-cooled, lithium-drifted silicon detector. The higher energy spectrometer uses an intrinsic germanium detector to accommodate the 100 to 200 keV spectra. The system proceeds as follows. The preamplified detector signals are digitized by a high-speed A-to-D converter located in a Computer Automated Measurement and Control (CAMAC) crate. The data is then stored in a histogramming memory via a data router. The CAMAC crate interfaces with a local desktop computer or the main data acquisition computer that stores the data. The software sets up the modules, acquires the energy spectra (with sample times as short as 2 ms) and plots it. Up to 40 time-resolved spectra are available during one plasma cycle. The actual module configuration, CAMAC interfacing and software that runs the system are the subjects of this paper

  5. Tandem mirror experiment-upgrade neutral beam test stand: a powerful tool for development and quality assurance

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Kane, R.J.; Kerr, R.G.; Poulsen, P.

    1983-01-01

    During construction of the Tandem Mirror Experiment-Upgrade (TMX-U), we assembled a test stand to develop electronics for the neutral beam system. In the first six months of test stand use we operated a few neutral beam injector modules and directed considerable effort toward improving the electronic system. As system development progressed, our focus turned toward improving the injector modules themselves. The test stand has proved to be the largest single contributor to the successful operation of neutral beams on TMX-U, primarily because it provides quality assurance andd development capability in conjunction with the scheduled activities of the main experiment. This support falls into five major categories: (1) electronics development, (2) operator training, (3) injector module testing and characterization, (4) injector module improvements, and (5) physics improvements (through areas affected by injector operation). Normal day-to-day operation of the test stand comes under the third category, testing and characterization, and comprises our final quality assurance activity for newly assembled or repaired modules before they are installed on TMX-U

  6. Mirror hybrid reactor studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1978-01-01

    The hybrid reactor studies are reviewed. The optimization of the point design and work on a reference design are described. The status of the nuclear analysis of fast spectrum blankets, systems studies for fissile fuel producing hybrid reactor, and the mechanical design of the machine are reviewed

  7. Ion Cyclotron Resonant Heating 2 X 1700 loop antenna for the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Ferguson, S.W.; Molvik, A.W.; Barter, J.

    1986-01-01

    This paper reviews the mechanical design and improvements that have taken place on the loop type ion cyclotron resonance heating (ICRH) antennas that are located in the center cell region of the Tandem Mirror Experiment-Upgrade (TMX-U). A computer code (JASON) was used to design getter-shielded antenna supports that will hold off very high voltages (83 kV, DC) over a small insulator distance (2.25 inches) in a vacuum of 10/sup -5/ Torr. The authors also added corona shields on the ceramic-to-metal joints of the matching network capacitors. The system now operates reliably with peak radio frequency (RF) voltages of 40 kV at 2-to-4- MHz frequency and power levels up to 200 kW. The authors have just installed a new loop antenna in the east part of the central cell where the slot antenna was located. This antenna uses two of the slot's internal coax lines and the external matching network. The feedthroughs designed by Lawrence Livermore National Laboratory (LLNL) were replaced with two high-voltage RF feedthroughs designed by Oak Ridge National Laboratory (ORNL)

  8. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  9. A design assessment of tritium removal systems for the mirror advanced reactor study

    International Nuclear Information System (INIS)

    Sood, S.K.; Kveton, O.K.

    1983-01-01

    This study investigates the available processes for removing tritium from light water, and selects the most appropriate process for recovering tritium from the various tritiated water streams identified in the Mirror Advanced Reactor Study (MARS). A simplified flowsheet is shown for the process and the main process parameters are identified. Previous experience is utilized to predict direct capital costs and power requirement for the Tritiated Water Removal Unit (TWRU). A number of possibilities are discussed for lowering the cost of the TWRU. An estimate is made of the direct capital cost for the Air Detritiation System that has already been selected as the reference design by MARS personnel. The leakage from the MARS coolant loop is estimated, based on the experience obtained with Ontario Hydro's coolant systems. Design targets are identified for tritium levels in the reactor hall atmosphere and in water and air emissions. Tritium levels are predicted for these and are assessed against the previously identified targets

  10. Status of the mirror-next-step (MNS) study

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1979-09-01

    A study was made to define the features of the experimental mirror fusion device - the Mirror Next Step, or MNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. The project goals and organization of the study are outlined, some initial device parameters are described, and the technological requirements are related to ongoing development programs

  11. ICRF wave propagation and absorption in axisymmetric mirrors. Annual report, July 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Phillips, M.W.

    1986-04-01

    A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror. In general, the fields peak on the outside which would show that the resulting pondermotive force would tend to stabilize the plasma

  12. Numerical solutions of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.

    1985-01-01

    The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown

  13. TMX-Upgrade vacuum-system design and analysis

    International Nuclear Information System (INIS)

    Simonen, T.C.; Chargin, A.K.; Drake, R.P.; Nexsen, W.E.; Pickles, W.L.; Poulsen, P.; Stack, T.P.; Wong, R.L.

    1981-10-01

    This paper describes the design and analysis of the TMX Upgrade Vacuum System. TMX Upgrade is a modification of the TMX tandem mirror device. It will employ thermal barriers to further improve plasma confinement. Thermal barriers are produced by microwave heating and neutral-beam pumping. They increase the feasibility of tandem-mirror reactors by reducing both the required magnetic field strengths and the neutral-beam injection voltages

  14. Feasibility study on tandem fuel cycle

    International Nuclear Information System (INIS)

    Han, P.S.; Suh, I.S.; Rim, C.S.; Kim, B.K.; Suh, K.S.; Ro, S.K.; Juhn, P.I.; Kim, S.Y.

    1983-01-01

    The objective of this feasibility study is to review and assess the current state of technology concerning the tandem fuel cycle. Based on the results from this study, a long-term development plan suitable for Korea has been proposed for this cycle, i.e., the PWR → CANDU tandem fuel cycle which used plutonium and uranium, recovered from spent PWR fuel by co-processing, as fuel material for CANDU reactors. (Author)

  15. Anchor stabilization of trapped particle modes in mirror machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Roslyakov, G.V.

    1986-07-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  16. Anchor stabilization of trapped particle modes in mirror machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Roslyakov, G.V.

    1986-04-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  17. Mirror fusion test facility

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    The MFTF is a large new mirror facility under construction at Livermore for completion in 1981--82. It represents a scaleup, by a factor of 50 in plasma volume, a factor of 5 or more in ion energy, and a factor of 4 in magnetic field intensity over the Livermore 2XIIB experiment. Its magnet, employing superconducting NbTi windings, is of Yin-Yang form and will weigh 200 tons. MFTF will be driven by neutral beams of two levels of current and energy: 1000 amperes of 20 keV (accelerating potential) pulsed beams for plasma startup; 750 amperes of 80 keV beams of 0.5 second duration for temperature buildup and plasma sustainment. Two operating modes for MFTF are envisaged: The first is operation as a conventional mirror cell with n/sup tau/ approximately equal to 10 12 cm -3 sec, W/sub i/ = 50 keV, where the emphasis will be on studying the physics of mirror cells, particularly the issues of improved techniques of stabilization against ion cyclotron modes and of maximization of the electron temperature. The second possible mode is the further study of the Field Reversed Mirror idea, using high current neutral beams to sustain the field-reversed state. Anticipating success in the coming Livermore Tandem Mirror Experiment (TMX) MFTF has been oriented so that it could comprise one end cell of a scaled up TM experiment. Also, if MFTF were to succeed in achieving a FR state it could serve as an essentially full-sized physics prototype of one cell of a FRM fusion power plant

  18. Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Felker, B.; Calderon, M.O.; Chargin, A.K.

    1983-01-01

    The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here

  19. Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.

    1983-11-18

    The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.

  20. Observation of ion confining potential enhancement due to thermal barrier potential formation and its scaling law in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, Teruji; Nakashima, Yousuke; Foote, J.H.

    1987-01-01

    In the tandem mirror GAMMA 10, (i) the enhancement of the ion confining potential, φ c , only during the period of the thermal barrier potential φ b -formation, has been observed first by using not only end-loss-analysers (ELA's) of GAMMA 10 but an end-loss-ion-spectrometer (ELIS) installed from TMX-U. This results in strong end-loss-ion plugging with increased central cell density. (ii) The first experimental observation of the φ c vs φ b -scaling law is obtained, where φ c increases with φ b . This scaling law is consistently interpreted by Cohen's theories of the weak-ECH and the strong-ECH in the plug region. (iii) Good agreement of the plug potential measured with the ELA's and the ELIS is achieved. (author)

  1. A double pendulum plasma thrust balance and thrust measurement at a tandem mirror exhaust

    International Nuclear Information System (INIS)

    Yang, T.F.; Liu, P.; Chang-Diaz, F.R.; Lander, H.; Childs, R.A.; Becker, H.D.; Fairfax, S.A.

    1995-01-01

    For the purpose of measuring the plasma momentum flux in a plasma system, a highly sensitive and precision balance has been developed. It can measure a force, an impulse, or thrust as low as 0.1 mN free of mechanical noise, electrical and magnetic pickups. The double pendulum system consists of two parallel conducting plates. One or both of the plates can be suspended by needles. The needle suspended plate (or plates) can swing freely with negligible friction because of the sharp points of the needles. When one of the plates is impacted by an impulse it will swing relatively to the fixed plate or other movable plate. The capacitance between the plates changes as a result of such a motion. The change of capacitance as a function of time is recorded as an oscillating voltage signal. The amplitude of such a voltage signal is proportional to the impacting force or impulse. The proportional factor can be calibrated. The forces can thus be read out from the recorded value of the voltage. The equation of motion for the pendulum system has been solved analytically. The circuit equation for the electronic measurement system has been formulated and solved numerically. Using this balance the thrust at the exhaust of a Tandem Mirror plasma thruster has been measured. The analytical solution of the overall characteristics agrees greatly with the measurement. copyright 1995 American Institute of Physics

  2. Tandem Mirror Experiment-Upgrade neutral beam test stand: A powerful tool for development and quality assurance

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Kane, R.J.; Kerr, R.G.; Poulsen, P.

    1983-01-01

    During construction of the Tandem Mirror Experiment-Upgrade (TMX-U), a test stand was assembled to develop electronics for the neutral beam system. In the first six months of test stand use the authors operated a few neutral beam injector modules and directed considerable effort toward improving the electronic system. As system development progressed, the focus turned toward improving the injector modules themselves. The test stand has proved to be the largest single contributor to the successful operation of neutral beams on TMX-U, primarily because it provides quality assurance and development capability in conjunction with the scheduled activities of the main experiment. This support falls into five major categories: (1) electronics development, (2) operator training, (3) injector module testing and characterization, (4) injector module improvements, and (5) physics improvements (through areas affected by injector operation). Normal day-to-day operation of the test stand comes under the third category, testing and characterization, and comprises the final quality assurance activity for newly assembled or repaired modules before they are installed on TMX-U. They have also used the test stand to perform a series of physics experiments, including: reducing gas flow through valve and arc chamber characterization, reducing impurities by titanium gettering, and reducing streaming gas using apertures and collisional gas dynamics

  3. Alpha-induced instabilities in tandem thermal barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    A major premise in the operation of Tandem Mirror reactors is that the fusion reactions take place in the central cell only. The alpha particles generated by the Deuterium-Tritium (DT) fusions, along with other ions, will however pass from the central cell to the thermal barriers and return to the central cell as a result of reflection by the potential hills that exist by the plugs' side of these barriers. This streaming motion gives rise to electrostatic and electomagnetic instabilities which could detract from the barrier's function as a thermal insulator. The number density and streaming velocity of these passing particles are dictated by the electrostatic potential variation and the magnetic field structure in these regions. It is shown that, in the absence of alphas, barriers with deep potential depression are less susceptible to electrostatic instabilities while particularly vulnerable to unstable electromagnetic modes. In the presence of alphas, especially the fast alphas whose mean energy is significantly larger than the barrier potentials they see, (which is twice as high as that seen by the ions) both types of modes become unstable.

  4. Study on the materials for mirrors and back mirror reflectors of thermonuclear reactors and their testing in Tore-Supra

    International Nuclear Information System (INIS)

    Schunke, B.; Voytsenya, V.; Gil, C.; Lipa, M.

    2003-01-01

    Plasma diagnostics using visible or ultra-violet or infra-red radiations require mirrors to probe the plasma. These mirrors have to sustain very hostile environment and despite that must maintain good optical properties. Mirror samples made of 3 different metals: copper, stainless steel and molybdenum have been designed and installed in Tore Supra tokamak and will be exposed to plasmas till mid 2004. This project will allow fusion engineers to assess the impact of plasma ion bombardment on mirror reflectivity. Optical properties and parameters concerning the surface state of the samples have been measured before the installation in Tore Supra and are presented in the paper. Simulations with a Monte-Carlo code predict the particle flux and spectra near the samples. A specific back mirror reflector has been designed to probe mirror reflectivity changes. (A.C.)

  5. Cost assessment of a generic magnetic fusion reactor

    International Nuclear Information System (INIS)

    Sheffield, J.; Dory, R.A.; Cohn, S.M.; Delene, J.G.; Parsly, L.F.; Ashby, D.E.T.F.; Reiersen, W.T.

    1986-03-01

    A generic reactor model is used to examine the economic viability of generating electricity by magnetic fusion. The simple model uses components that are representative of those used in previous reactor studies of deuterium-tritium-burning tokamaks, stellarators, bumpy tori, reversed-field pinches (RFPs), and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak; rather, it is intended to emphasize what is common to all magnetic fusion rectors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent, it is not as good an approximation to systems such as the RFP in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core - blanket, shield, structure, and coils. The model shows that a 1200-MW(e) power plant with a fusion core weight of about 10,000 tonnes should be competitive in the future with fission and fossil plants. Studies of the sensitivity of the model to variations in the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that a fusion reactor of this scale may be realized with only moderate advances in physics and technology capabilities

  6. Plasma surface interactions in Q-enhanced mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    Two approaches to enhancement of the Q (energy gain) factor of mirror systems are under study at Livermore. These include the Tandem Mirror and the Field Reversed Mirror. Both of these new ideas preserve features of conventional mirror systems as far as plasma-wall interactions are concerned. Specifically in both approaches field lines exit from the ends of the system and impinge on walls located at a distance from the confinement chamber. It is possible to predict some aspects of the plasma/surface interactions of TM and FRM systems from experience obtained in the Livermore 2XIIB experiment. In particular, as observed in 2XIIB, effective isolation of the plasma from thermal contact with the ends owing to the development of sheath-like regions is to be expected. Studies presently underway directed toward still further enhancing the decoupling of the plasma from the effects of plasma surface interactions at the walls will be discussed, with particular reference to the problem of minimizing the effects of refluxing secondary electrons produced by plasma impact on the end walls

  7. Fusion-reactor physics and technology studies. Progress report, December 1, 1982-June 30, 1983

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1983-01-01

    The work performed during the past fiscal year (1983) was directed almost entirely towards the MARS project. This tandem mirror reactor design study is due to be finished in September of 1983 and a final report will be issued at that time. The present report mainly covers progress made after the interim report and is meant to supplement information in UCRL-53333. The areas covered in this present report are: (1) blanket design improvements; (2) end cell neutronics; (3) RF heating systems; (4) economic optimization of blanket; (5) plasma startup; (6) Li 17 Pb 83 corrosion; (7) double walled steam generator analysis; and (8) tritium system

  8. Fusion power demonstration - a baseline for the mirror engineering test reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Neef, W.S.

    1983-01-01

    Developing a definition of an engineering test reactor (ETR) is a current goal of the Office of Fusion Energy (OFE). As a baseline for the mirror ETR, the Fusion Power Demonstration (FPD) concept has been pursued at Lawrence Livermore National Laboratory (LLNL) in cooperation with Grumman Aerospace, TRW, and the Idaho National Engineering Laboratory. Envisioned as an intermediate step to fusion power applications, the FPD would achieve DT ignition in the central cell, after which blankets and power conversion would be added to produce net power. To achieve ignition, a minimum central cell length of 67.5 m is needed to supply the ion and alpha particles radial drift pumping losses in the transition region. The resulting fusion power is 360 MW. Low electron-cyclotron heating power of 12 MW, ion-cyclotron heating of 2.5 MW, and a sloshing ion beam power of 1.0 MW result in a net plasma Q of 22. A primary technological challenge is the 24-T, 45-cm bore choke coil, comprising a copper hybrid insert within a 15 to 18 T superconducting coil

  9. Preliminary results in double cusp tandem mirror MM-4U

    International Nuclear Information System (INIS)

    Ming Linzhou; Tian Zhongyu; Feng Xiaozhen

    1990-10-01

    MM-4U device and preliminary experimental results are presented. Main results are as follows: The plasma has been produced by means of the injection of strong electron current; the axial profile of the plasma potential and the plasma electron density have been obtained respectively, they had a simular form; the plasma potential in the centre of the east cusp, the west cusp and the simple mirror; V e = -180V, V w = -164V, V m -1.8V; the electron density: n e = 1.7 x 10 11 cm -3 , n w = 4.7 x 10 10 cm -3 , n m = 7.5 x 10 7 cm -3 ; the electron temperature: T e = (19.9 ± 1.6) eV, T w = (20.7 ± 1.7) eV; the plasma pressure at 8 cm on the right of the west cusp centre is about 6.76 Pa, β ≅ 1.7 x 10 -3 . The plasma instability has been observed in the simple mirror, its vibration frequency was 7∼9.2 kHz. The results are discussed. The next new task of the physical experiment are proposed

  10. Model for ion confinement in a hot-electron tandem mirror anchor

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1980-01-01

    Anisotropic, hot electrons trapped in local minimum-B wells have been proposed as MHD-stabilizing anchors to an otherwise axisymmetric tandem configuration. This work describes a model for plasma confinement between the anchors and the remainder of the system and calcuates the power loss implied by maintenance of this plasma

  11. Modeling and optimization of operating parameters for a test-cell option of the Fusion Power Demonstration-II tandem mirror design

    International Nuclear Information System (INIS)

    Haney, S.W.; Fenstermacher, M.E.

    1985-01-01

    Models of tandem mirror devices operated with a test-cell insert have been used to calculate operating parameters for FPD-II+T, an upgrade of the Fusion Power Demonstration-II device. Two test-cell configurations were considered, one accommodating two 1.5 m blanket test modules and the other having four. To minimize the cost of the upgrade, FPD-II+T utilizes the same coil arrangement and machine dimensions outside of the test cell as FPD-II, and the requirements on the end cell systems have been held near or below those for FPD-II. The maximum achievable test cell wall loading found for the short test-cell was 3.5 MW/m 2 while 6.0 MW/m 2 was obtainable in the long test-cell configuration. The most severe limitation on the achievable wall loading is the upper limit on test-cell beta set by MHD stability calculations. Modification of the shape of the magnetic field in the test-cell by improving the magnet design could raise this beta limit and lead to improved test-cell performance

  12. Measurements of radial profiles of ion cyclotron resonance heating on the tandem mirror experiment

    International Nuclear Information System (INIS)

    Falabella, S.

    1988-01-01

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawrence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). This analyzer indicates an increase in ion temperature from ∼20 eV before ICRH to ∼150 eV during ICRH, with ∼60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial integral of n i T i as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma potential is seen to vary from axially peaked, to nearly flat, as the plasma conditions varied over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U

  13. Computer control of the titanium getter system on the tandem mirror experiment-upgrade (TMX-U)

    International Nuclear Information System (INIS)

    McAlice, A.J.; Bork, R.G.; Clower, C.A.; Moore, T.L.; Lang, D.D.; Pico, R.E.

    1983-01-01

    Gettering has been a standard technique for achieving high-quality vacuum in fusion experiments for some time. On Lawrence Livermore National Laboratory's Tandem Mirror Experiment (TMX-U), an extensive gettering system is utilized with liquid-nitrogen-cooled panels to provide the fast pumping during each physics experiment. The getter wires are a 85% titanium and 15% tantalum alloy directly heated by an electrical current. TMX-U has 162 getter power-supply channels; each channel supplies approximately 106 A of regulated power to each getter for a 60-s cycle. In the vacuum vessel, the getter wires are organized into poles or arrays. On each pole there are six getter wires, each cables to the exterior of the vessel. This arrangement allows the power supplies to be switched from getter wire to getter wire as the individual wires deteriorate after 200 to 300 gettering cycles. To control the getter power suppiles, we will install a computer system to operate the system and document the performance of each getter circuit. This computer system will control the 162 power supplies via a Computer Automated Measurement and Control (CAMAC) architecture with a fiber-optic serial highway. Getter wire history will be stored on the built-in 10 megabyte disc drive with new entries backed up daily on a floppy disc. Overall, this system will allow positive tracking of getter wire condition, document the total gettering performance, and predict getter maintenance/changeover cycles. How we will employ the computer system to enhance the getter system is the subject of this paper

  14. Microwave measurement test results of circular waveguide components for electron cyclotron resonant heating (ECRH) of the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Williams, C.W.; Rubert, R.R.; Coffield, F.E.; Felker, B.; Stallard, B.W.; Taska, J.

    1983-01-01

    Development of high-power components for electron cyclotron resonant heating (ECRH) applications requires extensive testing. In this paper we describe the high-power testing of various circular waveguide components designed for application on the Tandem Mirror Experiment-Upgrade (TMX-U). These include a 2.5-in. vacuum valve, polarizing reflectors, directional couplers, mode converters, and flexible waveguides. All of these components were tested to 200 kW power level with 40-ms pulses. Cold tests were used to determine field distribution. The techniques used in these tests are illustrated. The new high-power test facility at Lawrence Livermore National Laboratory (LLNL) is described and test procedures are discussed. We discuss the following test results: efficiency at high power of mode converters, comparison of high power vs low power for waveguide components, and full power tests of the waveguide system. We also explain the reasons behind selection of these systems for use on TMX-U

  15. CTR plasma engineering studies. Annual progress report, 1 November 1983-30 October 1984

    International Nuclear Information System (INIS)

    Miley, G.H.

    1984-01-01

    This report covers research on the following topics: (1) transport in compact tori, (2) bremsstrahlung energy deposition in first wall materials, (3) Coulombic energy transfer collisions, (4) magnetic helicity injection study, (5) blankets for tritium catalyzed deuterium fusion reactors, (6) exploratory studies of applications of optimal control theory, (7) design of a burn dynamic experiment, (8) alpha driven low frequency fast magnetosonic wave microinstability in tandem mirror, (9) fusion product heating and confinement in a tandem mirror, and (10) velocity-space particle loss in field reversed configurations

  16. Ideal magnetohydrodynamic stability of axisymmetric mirrors

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Hafizi, B.; Myra, J.R.

    1982-01-01

    The governing partial differential equation for general mode-number pressure-driven ballooning modes in a long-thin, axisymmetric plasma is derived within the context of ideal magnetohydrodynamics. It is shown that the equation reduces in special limits to the Hain--Luest equation, the high-m diffuse p(psi) ballooning equation, and the low-m sharp-boundary equation. A low-β analytic solution of the full partial differential equation is presented for quasiflute modes in an idealized tandem mirror model to elucidate the relationship of the various limiting cases

  17. Reversed-field multiple mirror concept

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Grossmann, W.; Seyler, C.E.

    1978-01-01

    The reversed-field multiple mirror (RFMM), is a promising technique for end-stoppering linear magnetic fusion plasmas. By this means the physics and engineering advantages of a linear plasma are gained while circumventing the endloss problem, allowing the projection of very short (less than or equal to 100 m) conceptual reactors. RFMM end-stoppering is accomplished by a string of closed field-line cells on the plasma column axis; these cells strongly retard the axial flow of particles and energy. We describe the reactor implications of the RFMM

  18. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  19. Feasibility Studies of Alpha-Channeling in Mirror Machines

    International Nuclear Information System (INIS)

    Zhmoginov, A.I.; Fisch, N.J.

    2010-01-01

    The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the α-channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting α particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for α-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for α particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

  20. Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives

    International Nuclear Information System (INIS)

    Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.

    2003-01-01

    Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)

  1. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  2. Neutral beams for mirrors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1983-01-01

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  3. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  4. Bifurcated transition of radial transport in the HIEI tandem mirror

    International Nuclear Information System (INIS)

    Sakai, O.; Yasaka, Y.

    1995-01-01

    Transition to a high radial confinement mode in a mirror plasma is triggered by limiter biasing. Sheared plasma rotation is induced in the high confinement phase which is characterized by reduction of edge turbulence and a confinement enhancement factor of 2-4. Edge plasma parameters related to radial confinement show a hysteresis phenomenon as a function of bias voltage or bias current, leading to the fact that transition from low to high confinement mode occurs between the bifurcated states. A transition model based on azimuthal momentum balance is employed to clarify physics of the observed bifurcation. copyright 1995 American Institute of Physics

  5. Measured and projected performance of plasma direct converters

    International Nuclear Information System (INIS)

    Barr, W.L.; Moir, R.W.

    1981-01-01

    Test results from two plasma direct converters and their predicted cost and performance on tandem mirror fusion reactors are present. The tests were done at high power density (approx. 70 W/cm 2 ) in steady state to simulate the predicted conditions in a reactor. A single stage unit and a two-stage unit of the Venetian blind type were tested at up to 100 kV and 6 kW for a total time of about 80 hours. Measured efficiencies, when projected to a reactor, are typically about 50% for a single stage unit and 60 to 70% for a two-stage unit, depending on the energy distribution of the ions, the degree of subdivision of the collectors, and on the gas pressure. The high ambipolar potential in tandem mirror devices makes this good efficiency possible. When radiatively cooled grids are used, the incident power density is limited to about 100 W/cm 2 by the thermionic emission of electrons

  6. Economic significance of Q for mirror reactors: combinations of Q and M which look promising

    International Nuclear Information System (INIS)

    Werner, R.W.

    1978-01-01

    This term Q is the ratio of the fusion powder produced to the power input. It is a driven device. Q is truly the success parameter for mirrors--widely discussed but not succinctly specified as to required value. The problem is that Q can be treated as a subjective parameter--there are many milestone Qs; for scientific demonstration, for breakeven power, etc. Yet for a successful reactor, there is only one Q and that is the Q which produces mirror fusion power at the busbar that is less than the cost of delivered power in mills/kwhr by other means. We call this Q/sub PRACTICAL/ and believe there is a convincing argument that says this Q/sub PRACTICAL/ can be about 5.0 even assuming modest efficiencies for system components. A direct convertor is necessary. If the direct convertor were deleted, a Q/sub PRACTICAL/ of approximately 7.5 would be required. If we wish to soften the value of Q further, then the technical logic for the fusion fission hybrid is very powerful. With the hybrid a Q/sub PRACTICAL/ of 1.5 to 2.0 appears to be a very reasonable value. The key in being able to specify values of Q/sub PRACTICAL/ lies in economically comparing the capital cost of fusion power to the sum of the capital cost and the present value of all the fuel costs for the competitive fuel intensive plants

  7. Classical transport in field reversed mirrors: reactor implications

    International Nuclear Information System (INIS)

    Auerbach, S.P.; Condit, W.C.

    1980-01-01

    Assuming that the field-reversed mirror (or the closely related spheromak) turns out to be stable, the next crucial issue is transport of particles and heat. Of particular concern is the field null on axis (the X-point), which at first glance seems to allow particles to flow out unhindered. We have evaluated the classical diffusion coefficients for particles and heat in field-reversed mirrors, with particular reference to a class of Hill's vortex models. Two fairly surprising results emerge from this study. First, the diffusion-driven flow of particles and heat is finite at the X-points. This may be traced to the geometrical constraint that the current (and hence the ion-electron drag force, which causes cross-field transport) must vanish on axis. This conclusion holds for any transport model. Second, the classical diffusion coefficient D(psi), which governs both particle and heat flux, is finite on the separatrix. Indeed, in a wide class of Hill's vortex equilibria (spherical, oblate, or prolate) D(psi) is essentially independent of psi (except for the usual factor of n

  8. Recent developments in the design of conceptual fusion reactors

    International Nuclear Information System (INIS)

    Ribe, F.L.

    1977-01-01

    Since the first round of conceptual fusion reactor designs in 1973 - 1974, there has been considerable progress in design improvement. Two recent tokamak designs of the Wisconsin and Culham groups, with increased plasma beta and wall loading (power density), lead to more compact reactors with easier maintenance. The Reference Theta-Pinch Reactor has undergone considerable upgrading in the design of the first wall insulator and blanket. In addition, a conceptual homopolar energy storage and transfer system has been designed. In the case of the mirror reactor, there are design changes toward improved modular construction and ease of handling, as well as improved direct converters. Conceptual designs of toroidal-multiple-mirror, liner-compression, and reverse-field pinch reactors are also discussed. A design is presented of a toroidal multiple-mirror reactor that combines the advantages of steady-state operation and high-aspect ratio. The liner-compression reactor eliminates a major problem of radiation damage by using a liquid-metal first wall that also serves as a neutron-thermalizing blanket. The reverse-field pinch reactor operates at higher beta, larger current density and larger aspect ratio than a tokamak reactor. These properties allow the possibility of ignition by ohmic heating alone and greater ease of maintenance

  9. Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report

    International Nuclear Information System (INIS)

    1981-09-01

    The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM 2 , excluding substructure

  10. Fueling, heating, and leaking of plasma in mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    The principles of mirror machine confinement are reviewed with emphasis on the physical process of neutral beam injection and plasma end leakage. The characteristics of efficient neutral beam injectors and direct energy convertors for the plasma and leakage are described

  11. Magnet and conductor developments for the Mirror Fusion Program

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb 3 Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed

  12. Mechanism design of the Thomson scattering diagnostic system for the TMX east mirror plug

    International Nuclear Information System (INIS)

    Lang, D.D.; Goodman, R.K.; Jenkins, S.L.; Wilkerson, J.A.; Parkinson, J.L.

    1979-01-01

    This Thomson scattering diagnostic system is used to measure the electron temperature and density of the east mirror plug of the Tandem Mirror Experiment (TMX) at Lawrence Livermore Laboratory. The measurements are made by firing a high-power ruby laser pulse through the plasma where the electrons then re-radiate a small fraction of the light. Because of the velocity of the electrons, the wavelength of the re-radiated light is Doppler shifted. The width of the Doppler-shifted wavelength spectrum is a measure of the temperature of the electrons in the plasma, and the total amount of re-radiated light is proportional to the electron density

  13. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    International Nuclear Information System (INIS)

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  14. Report of the workshop on rf heating in mirror systems

    International Nuclear Information System (INIS)

    Price, R.E.; Woo, J.T.

    1980-08-01

    This report is prepared from the proceedings of the Workshop on RF Heating in Magnetic Mirror Systems held at DOE Headquarters in Washington, DC, on March 10-12, 1980. The workshop was organized into four consecutive half-day sessions of prepared talks and one half-day discussion. The first session on tandem mirror concepts and program plans served to identify the opportunities for the application of rf power and the specific approaches that are being pursued. A summary of the ideas presented in this session is given. The following sessions of the workshop were devoted to an exposition of current theoretical and experimental knowledge on the interaction of rf power with magnetically confined, dense, high temperature plasmas at frequencies near the electron cyclotron resonance, lower hybrid resonance and ion cyclotron resonance (including magnetosonic) ranges. The conclusions from these proceedings are presented

  15. Mirror boxes and mirror mounts for photophysics beamline

    International Nuclear Information System (INIS)

    Raja Rao, P.M.; Raja Sekhar, B.N.; Das, N.C.; Khan, H.A.; Bhattacharya, S.S.; Roy, A.P.

    1996-01-01

    Photophysics beamline makes use of one metre Seya-Namioka monochromator and two toroidal mirrors in its fore optics. The first toroidal mirror (pre mirror) focuses light originating from the tangent point of the storage ring onto the entrance slit of the monochromator and second toroidal mirror (post mirror) collects light from the exit slit of the monochromator and focuses light onto the sample placed at a distance of about one metre away from the 2nd mirror. To steer light through monochromator and to focus it on the sample of 1mm x 1mm size require precision rotational and translational motion of the mirrors and this has been achieved with the help of precision mirror mounts. Since Indus-1 operates at pressures less than 10 -9 m.bar, the mirror mounts should be manipulated under similar ultra high vacuum conditions. Considering these requirements, two mirror boxes and two mirror mounts have been designed and fabricated. The coarse movements to the mirrors are imparted from outside the mirror chamber with the help of x-y tables and precision movements to the mirrors are achieved with the help of mirror mounts. The UHV compatibility and performance of the mirror mounts connected to mirror boxes under ultra high vacuum condition is evaluated. The details of the design, fabrication and performance evaluation are discussed in this report. 5 refs., 9 figs., 1 tab

  16. TMX: a new fusion plasma experiment

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The primary goal of the magnetic fusion energy program at LLL is the development of a technically and economically feasible approach to the generation of fusion energy. Results from our earlier 2XIIB experiment lead us to believe that a fusion power plant based on a mirror system is technically feasible, assuming a favorable extrapolation to plasmas of reactor size. Achieving economic feasibility is more difficult. For power-producing applications, a reactor needs a large Q, the ratio of fusion power output to the power injected to sustain the system. In a conventional mirror reactor, the fusion power is only about equal to the power injected by the neutral beams--that is, Q is only about unity. A new idea, the tandem mirror concept described in this article, promises to increase this gain, enhancing Q by at least a factor of 5

  17. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Falabella, S.

    1988-01-01

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10 12 cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs

  18. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Falabella, S.

    1988-05-11

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

  19. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  20. Mirroring

    DEFF Research Database (Denmark)

    Wegener, Charlotte; Wegener, Gregers

    2016-01-01

    and metaphorical value of mirroring for creativity theory across two different research fields — neuroscience and learning. We engage in a mutual (possibly creative) exploration of mirroring from ‘mirror neurons’ to mirroring in social learning theory. One of the most fascinating aspects of mirroring...... as a neurobiological and as a learning phenomenon is that it points to the embodied and unconscious aspects of social interaction. Thus, mirroring should not be reduced to the non-creative, mechanical repetition of the original, outstanding creativity. To mirror is a human capability built into our capacity to create......Most definitions of creativity emphasise originality. The creative product is recognised as distinct from other products and the creative person as someone who stands out from the crowd. What tend to be overlooked are acts of mirroring as a crucial element of the creative process. The human ability...

  1. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.

    2011-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  2. Mirror, mirror on the wall

    CERN Multimedia

    2005-01-01

    RICH 2, one of the two Ring Imaging Cherenkov detectors of the LHCb experiment, is being prepared to join the other detector elements ready for the first proton-proton collisions at LHC. The mirrors of the RICH2 detector are meticulously assembled in a clean room.In a large dark room, men in white move around an immense structure some 7 metres high, 10 metres wide and nearly 2.5 metres deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors. Each spherical mirror wall is made up of facets like a fly's eye. Twenty-eight individual thin glass mirrors will all point to the same point in space to within a few micro-radians. The development of these mirrors has been technically demanding : Ideally they should be massless, sturdy, precise and have high reflectivity. In practice, though not massless, they are made from a mere 6 mm thin gl...

  3. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  4. Symmetric tandem mirror program. Annual progress report, period ending October 1980

    International Nuclear Information System (INIS)

    1980-10-01

    A technique for measuring the spatial distribution of the diamagnetism of the energetic electron plasma was developed. Using this technique, it was determined that high-β plasmas (β approx. 50%) are indeed produced with their pressure peak near the second harmonic locations in the plane midway between the mirror coils. Measurements of the cold plasma properties (Te, n/sub e/) led to deeper understanding of the plasma equilibrium. It was found that the electron temperature is controlled by adjustment of the neutral density (10 < Te < 50 eV). The cold plasma density is determined by the applied power. It was found that the minimum ratio of cold to hot electron density for which stable equilibria exist is approximately unity

  5. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  6. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal.

    Science.gov (United States)

    Corballis, Michael C

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d ) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  7. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal

    Directory of Open Access Journals (Sweden)

    Michael C. Corballis

    2018-04-01

    Full Text Available Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  8. Development and technology

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This program is aimed at developing the technology required for carrying out the mirror reactor program. Much of this work applies to the national program and fusion in general; it covers the following areas: Neutral-beam program (including beam direct conversion and vacuum technology). Direct conversion: In addition to direct conversion associated with neutral beams, we have a continuing program to develop efficient direct recovery systems, which are required for reducing power losses from future mirror reactors. Materials program, several key problems on tritium control and handling that must be solved for any large D-T fusion device are being investigated in the LLL tritium laboratory; emphasis is on cleanup of low tritium concentrations in reactor containment buildings and on the containment of tritium by using various low-permeability barriers and coatings to be applied to metal walls. The effects of neutrons on properties of superconducting materials are being investigated using a unique apparatus in which superconducting properties are measured while the specimen is continuously maintained at liquid-helium temperature. Reactor design studies: Design studies of mirror reactors form a basis for evaluation of mirror concepts and for guiding our long-range program. Present emphasis is on delineating features of reactors based on the tandem mirror concept (TMR), on a fission/fusion hybrid reactor based on the TMR, and on an engineering evaluation of a small reactor system based on field reversal. Reactors that are small and candidates for construction the next decade are being investigated in a program sponsored by the Electric Power Research Institute

  9. Mirror Neurons and Mirror-Touch Synesthesia.

    Science.gov (United States)

    Linkovski, Omer; Katzin, Naama; Salti, Moti

    2016-05-30

    Since mirror neurons were introduced to the neuroscientific community more than 20 years ago, they have become an elegant and intuitive account for different cognitive mechanisms (e.g., empathy, goal understanding) and conditions (e.g., autism spectrum disorders). Recently, mirror neurons were suggested to be the mechanism underlying a specific type of synesthesia. Mirror-touch synesthesia is a phenomenon in which individuals experience somatosensory sensations when seeing someone else being touched. Appealing as it is, careful delineation is required when applying this mechanism. Using the mirror-touch synesthesia case, we put forward theoretical and methodological issues that should be addressed before relying on the mirror-neurons account. © The Author(s) 2016.

  10. Conceptual design of a technology development facility (TDF)

    International Nuclear Information System (INIS)

    Doggett, J.N.; Damm, C.C.

    1981-01-01

    We have developed a concept for employing a single-cell mirror machine in a facility for testing and developing fusion reactor materials, components, and subsystems in a fusion reactor environment. Our approach is similar to that of the 1974 FERF study, except that we have added an auxiliary thermal-barrier cell at each end of the yin-yang magnet. In this way, we provide for plasma microstability by confining a warm plasma component between potential peaks at each end of the device (just as in the tandem mirror with auxiliary barrier cells) while we further improve confinement by the inherent reduction in ambipolar potential drop in the central cell

  11. Neutronics activities for next generation devices

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized

  12. Effect of teaching with or without mirror on balance in young female ballet students.

    Science.gov (United States)

    Notarnicola, Angela; Maccagnano, Giuseppe; Pesce, Vito; Di Pierro, Silvia; Tafuri, Silvio; Moretti, Biagio

    2014-07-04

    In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9-10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p  0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved.

  13. Effect of teaching with or without mirror on balance in young female ballet students

    Science.gov (United States)

    2014-01-01

    Background In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9–10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). Results The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p  0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. Conclusions These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved. PMID:24996519

  14. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  15. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    Science.gov (United States)

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  16. Technology Development Facility (TDF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1982-01-01

    We have been studying small, driven, magnetic-mirror-based fusion reactors for the Technology Development Facility (TDF), that will test fusion reactor materials, components, and subsystems. Magnetic mirror systems are particularly interesting for this application because of their inherent steady-state operation, potentially high neutron wall loading, and relatively small size. Our design is a tandem mirror device first described by Fowler and Logan, based on the physics of the TMX experiments at Lawrence Livermore National Laboratory (LLNL). The device produces 20 MW of fusion power with a first-wall, uncollided 14-MeV neutron flux of 1.4 MW/m 2 on an area of approximately 8 m 2 , while consuming approximately 250 MW of electrical power. The work was done by a combined industrial-laboratory-university group

  17. Economic potential of magnetic fusion energy

    International Nuclear Information System (INIS)

    Henning, C.D.

    1981-01-01

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion

  18. Applying alpha-channeling to mirror machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhmoginov, A. I.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  19. Chiral mirrors

    International Nuclear Information System (INIS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-01-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

  20. Mirror agnosia and the mirrored-self misidentification delusion: a hypnotic analogue.

    Science.gov (United States)

    Connors, Michael H; Cox, Rochelle E; Barnier, Amanda J; Langdon, Robyn; Coltheart, Max

    2012-05-01

    Mirrored-self misidentification is the delusional belief that one's reflection in the mirror is a stranger. Current theories suggest that one pathway to the delusion is mirror agnosia (a deficit in which patients are unable to use mirror knowledge when interacting with mirrors). This study examined whether a hypnotic suggestion for mirror agnosia can recreate features of the delusion. Ten high hypnotisable participants were given either a suggestion to not understand mirrors or to see the mirror as a window. Participants were asked to look into a mirror and describe what they saw. Participants were tested on their understanding of mirrors and received a series of challenges. Participants then received a detailed postexperimental inquiry. Three of five participants given the suggestion to not understand mirrors reported seeing a stranger and maintained this belief when challenged. These participants also showed signs of mirror agnosia. No participants given the suggestion to see a window reported seeing a stranger. Results indicate that a hypnotic suggestion for mirror agnosia can be used to recreate the mirrored-self misidentification delusion. Factors influencing the effectiveness of hypnotic analogues of psychopathology, such as participants' expectations and interpretations, are discussed.

  1. Mirror profile optimization for nano-focusing KB mirror

    International Nuclear Information System (INIS)

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-01-01

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 μrad, peak-to-valley, compared to the bent slope of 3000 μrad.

  2. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    Science.gov (United States)

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Classical diffusion in a field-reversed mirror

    International Nuclear Information System (INIS)

    Auerbach, S.P.; Condit, W.C.

    1981-01-01

    Classical transport of particles and heat in field-reversed mirrors is discussed. The X-points (field nulls on axis) are shown to have no deleterious effect on transport; this conclusion is true for any transport model. For an elongated Hill's vortex equilibrium the classical diffusion coefficient is calculated analytically and used to construct an analytic solution to the transport equation for particles or energy; this yields exact results for particle and energy confinement times. These life-times are roughly 3 to 6 times shorter than previous heuristic estimates. Experimentally determined life-times are within a factor of 3 to 4 of our estimates. To assess the impact of these results on reactor designs, the authors construct an analytic reactor model in which neutral-beam input balances ion heat loss. Energy loss due to synchrotron radiation is calculated analytically and shown to be negligible, even with no wall reflection. Formulas are presented which give the reactor parameters in terms of plasma temperature, energy multiplication factor Q, and allowed neutron wall loading. The effect of anomalous resistivity is incorporated heuristically by assuming an anomalous resistivity which is enhanced by a factor A over classical resistivity. For large A the minimum power of a reactor scales as Asup(11/6). A=50 gives a reactor design which still seems reasonable, but A=200 leads to extremely large, high-power reactors. (author)

  4. On the reflectivity of nickel neutron mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Kenawy, M.A.; Wahba, M.; Ashry, A.H. (Ain Shams Univ., Cairo (Egypt))

    1991-02-01

    Neutron reflectivities were determined for 300 nm thick films of natural nickel and nickel 58 coated on glass plates. The measurements were performed at glancing angles between 40' and 60'. The incident neutron beam from one of the ET-RR-1 reactor horizontal channels covered neutron wavelengths between 0.55 and 0.80 nm. It was found that nickel 58, because of the high value of its critical glancing angle, is more efficient as a neutron mirror than natural nickel. (orig.).

  5. Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs

    Directory of Open Access Journals (Sweden)

    Nobuaki Negishi

    2014-10-01

    Full Text Available We developed a photocatalytic solar tower reactor for the elimination of low concentrations of volatile organic compounds (VOCs typically emitted from small industrial establishments. The photocatalytic system can be installed in a narrow space, as the reactor is cylindrical-shaped. The photocatalytic reactor was placed vertically in the center of a cylindrical scattering mirror, and this vertical reactor was irradiated with scattered sunlight generated by the scattering mirror. About 5 ppm toluene vapor, used as representative VOC, was continuously photodegraded and converted to CO2 almost stoichiometrically under sunny conditions. Toluene removal depended only on the intensity of sunlight. The performance of the solar tower reactor did not decrease with half a year of operation, and the average toluene removal was 36% within this period.

  6. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  7. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  8. Note: Tandem Kirkpatrick-Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics

    Science.gov (United States)

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu

    2018-03-01

    Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.

  9. Development in LIYaF of the method of polarized thermal neutron beam production by mirror reflection

    International Nuclear Information System (INIS)

    Borovikova, N.V.; Bulkin, A.P.; Gukasov, A.G.

    1980-01-01

    Main stages of development of polarizing neutron guide equipment in LIYaF of the USSR Academy of Sciences are described. To carry out experiments on solid-state physics constructed was a working mock-up of a polarizing neutron guide having 1570 mm length of a mirror channel. Successful application of polarizing mirrors to the working mock-up permitted to develop and fabricate five-meter polarizing neutron guide with output flux equal to 1.5x10 7 neutr/cm 2 xs. The following stage of development of polarizing neutron guides was the construction of four-meter neutron guide at the WWR-M reactor with output flux equal to the highest possible. Improvement of optical sections geometry made it possible to produce integral flux of 6.0x10 7 neutr/cm 2 xs in this neutron guide at 15 MW reactor power. The results obtained testify to prospects of the mirror method for polarization of thermal neutrons of a wave length lambda >= A. Neutron guides-polarizators permit to produce high fluxes of polarized thermal neutrons in the wide interval of wave length [ru

  10. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  11. Radioisotope detection with tandem electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Gove, H E; Elmore, D; Ferraro, R [Rochester Univ., NY (USA). Nuclear Structure Research Lab.; Beukens, R P; Chang, K H; Kilius, L R; Lee, H W; Litherland, A E [Toronto Univ., Ontario (Canada). Dept. of Physics; Purser, K H [General Ionex Corp., Newburyport, MA (USA)

    1980-01-01

    An MP tandem Van de Graaff accelerator at the University of Rochester has been employed since May 1977 to detect /sup 14/C in terrestrial samples, /sup 36/Cl in terrestrial and extraterrestrial samples and /sup 10/Be and /sup 26/Al in samples produced by reactor and accelerator irradiation. The sample sizes ranged from about 10 to less than 1 mg and the ratio of the radioisotope to the stable isotopes approached one part in 10/sup 16/ for /sup 14/C and /sup 36/Cl and one part in 10/sup 14/ for /sup 10/Be and /sup 26/Al. /sup 14/C has been measured in a number of samples of geological and archaelogical interest. /sup 36/Cl has been measured in various groundwater samples as well as samples at Antarctic meteorites and ice. Dedicated systems for /sup 14/C dating and geological measurements based on the tandem electrostatic accelerator principle are presently under construction for laboratories in the U.S.A., U.K. and Canada.

  12. Laser-start-up system for magnetic mirror fusion

    International Nuclear Information System (INIS)

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  13. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    International Nuclear Information System (INIS)

    Carnes, K.D.; Cocke, C.L.; Chang, Z.; Ben-Itzhak, I.; Needham, H.V.; Rankin, A.

    2007-01-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined

  14. The CANDUR Reactor - The Practical Path to RU and TH use in Nuclear Reactors

    International Nuclear Information System (INIS)

    Kuran, Sermet; Yang, Dezi

    2012-01-01

    The CANDU heavy water reactor has unrivalled flexibility for using a variety of fuels, such as Natural Uranium (NU), Low Enriched Uranium (LEU), Recycled Uranium (RU), Mixed Oxide (MOX), and Thorium (Th). Recently, this unique CANDU reactor feature attracted considerable attention due to favourable commercial, environmental and strategic needs. This paper summarizes the solid progress over the last three years and outlines CANDU Energy Incorporated's (CEI) multi-stage vision of utilizing various fuels in currently operational and new build CANDU reactors. In CEI's fuel-cycle vision, CANDU reactors will operate in conjunction with other reactor types and use advanced fuels to produce more energy and ensure the most efficient and least costly method of utilizing Light Water Reactor (LWR) used fuel. With this vision and the tandem goal of systematic adoption of Thorium based fuels, CANDU reactors will be a strong technology partner in ensuring the availability of long-term stable resources for nuclear power plants

  15. Topological mirror superconductivity.

    Science.gov (United States)

    Zhang, Fan; Kane, C L; Mele, E J

    2013-08-02

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  16. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  17. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    International Nuclear Information System (INIS)

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-01-01

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 angstrom to 304 angstrom) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner

  18. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  19. Plasma heating and hot ion sustaining in mirror based hybrids

    International Nuclear Information System (INIS)

    Moiseenko, V. E.; Ågren, O.

    2012-01-01

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  20. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  1. Annual technical progress report

    International Nuclear Information System (INIS)

    1980-01-01

    During the present contract period Phaedrus has begun operation as a true tandem mirror. This was accomplished by achieving the rf sustained mode in which the plug densities were built up by a combination of central cell gas puffing and plug ICRH following stream gun turn off. It was demonstrated that the tandem mirror plasma could be sustained by plug ICRH for up to 1 msec following decay of the external plasma. In this mode plasma characteristics were no longer dominated by problems associated with a high conductivity stream gun plasma in the external region (as was the case in many previous experiments in Phaedrus). Among these problems were (1) line tying which significantly reduced instabilities in a way that would not apply to reactors and (2) low electron temperatures which had been held to approx. 20 eV

  2. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  3. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  4. Fusion component design for the moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1981-01-01

    This partial report on the reactor design contains sections on the following: (1) burner section magnet system design, (2) plasma ring energy recovery, (3) vacuum system, (4) cryogenic system, (5) tritium flows and inventories, and (6) reactor design and layout

  5. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  6. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  7. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  8. High temperature blankets for non-electrical/electrical applications of fusion reactors: Progress report, July 15, 1983--November 30, 1984

    International Nuclear Information System (INIS)

    Ribe, F.L.; Woodruff, G.L.

    1988-01-01

    We report a continuation of work done in collaboration with the Lawrence Livermore National Laboratory (LLNL) on design studies of the tandem-mirror fusion reactor (TMR) coupled to the General Atomic (GA) sulfur-iodine thermochemical process for producing hydrogen. During this report period the emphasis was on a solid-breeder gas cooled ''cannister'' blanket for TMR-based hydrogen production. This work was integrated with the Department of Energy (DOE), Office of Fusion Energy (OFE) Blanket Comparison and Selection Study, coordinated by the Argonne National Laboratory (ANL). The areas investigated by the two principal investigators and their students were the following: Plasma engineering of the TMR, including the magnets. Neutronics transport support for the synfuel blanket and shield. Completion of studies of the GA sulfur-iodine process. Under subcontract D.S. Rowe of Rowe and Associates worked with both UW and LLNL personnel on Mechanical design and thermal hydraulics of a high temperature, solid breeder blanket. 2 refs., 3 figs

  9. Fusion reactor pumped laser

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  10. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  11. Neutron polarizing set-up of the Sofia IRT research reactor

    International Nuclear Information System (INIS)

    Krezhov, K.; Mikhajlova, V.; Okorokov, A.

    1990-01-01

    Neutron polarizing set-up of one of the horizontal beam tubes of the IRT-200 research reactor of the Bulgarian Institute of Nuclear Research and Nuclear Energy is presented. Neutron mirrors are extensively used in an effort to compensate the moderate reactor beam intensity by the high reflected intensity and wide-band transmittance of the mirror neutron guides. Time-to-flight technique using a slotted neutron absorbing chopper with a horizontal rotation axis has been applied to obtain the exit neutron spectra. Beam polarization and flipping ratios have been determined. Cadmium ratio in the polarized beam has been found almost 10 4 and the average polarization has been measured to be higher than 96%. 3 figs, 3 refs

  12. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    Science.gov (United States)

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  13. Review of alternative concepts for magnetic fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given

  14. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  15. Influence of alpha-particles on parameters of plasma confined in open traps

    International Nuclear Information System (INIS)

    Chebotaev, P.Z.

    1987-01-01

    The numerical calculations of the longitudinal motion in multi-mirror reactor have shown that the energy contribution of α-particles has substantial influence on the gain factor (the given off thermonuclear energy/ the initial imparted energy) in the temperature region 5-7 keV. The numerical technique has been developed that takes into account the radial distribution of alpha particles caused by their drag on electrons. This effect is substantial for ρ α /R ≥ 1/2 (where ρ α is alpha particles gyro radius, R is plasma radius), e.g. for Gas-Dinamic trap. In a Tandem-Mirror reactor some part of fusion alpha particles have the probability to slow down to the plasma energy, that can lead to the 'poisoning' of the reactor by the thermonuclear reaction products. The fusion alpha particles can have a strong effect on accumulation of impurities with z ≤ 15 and thermal alpha particles in TMR. (orig.)

  16. Mirror and (absence of) counter-mirror responses to action sounds measured with TMS.

    Science.gov (United States)

    Ticini, Luca F; Schütz-Bosbach, Simone; Waszak, Florian

    2017-11-01

    To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. © The Author (2017). Published by Oxford University Press.

  17. Electrical insulator requirements for mirror fusion reactors

    International Nuclear Information System (INIS)

    Condit, R.H.; Van Konynenburg, R.A.

    1977-01-01

    The requirements for mirror fusion electrical insulators are discussed. Insulators will be required at the neutral beam injectors, injector power supplies, direct converters, and superconducting magnets. Insulators placed at the neutral beam injectors will receive the greatest radiation exposure, 10 14 to 10 16 neutrons/m 2 .s and 0.3 to 3 Gy/s (10 5 to 10 6 R/h) of gamma rays, with shielding. Direct converter insulators may receive the highest temperature (up to 1300 0 K), but low voltage holding requirements. Insulators made from organic materials (e.g., plastics) for the magnet coils may be satisfactory. Immediate conductivity increases of all insulators result from gamma irradiation. With an upper limit to gamma flux exposures of 300 Gy/s in a minimally shielded region, the conductivity could reach 10 -6 S/m. Damage from neutron irradiation may not be serious during several years' exposure. Surface changes in ceramics at the neutral beam injector may be serious. The interior of the injector will contain atomic hydrogen, and sputtering may transfer material away from or onto the ceramic insulators. Unknown and potentially damaging interactions between irradiation, electric fields, temperature gradients, cycling of temperature, surface and joint reactions, sputtering, polarization, and electrotransport in the dielectrics are of concern. Materials research to deal with these problems is needed

  18. The mirror neuron system.

    Science.gov (United States)

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  19. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  20. MSFC Test Results for Selected Mirrors: Brush-Wellman/Goodrich 0.5 meter Joined-Beryllium Mirror; IABG 0.5 meter C/SiC Mirror; Xinetics 0.5 meter SiC Mirror; and Kodak 0.23 meter SiO2 Mirror

    Science.gov (United States)

    Hadaway, James; Blackwell, Lisa; Matthews, Gary; Eng, Ron; Stahl, Phil; Hraba, John; Thornton, Gary

    2002-01-01

    The results of cryo tests performed at the XRCF on the above mirrors will be presented. Each mirror was tested from room-temperature to around 30 K. The first three were tested together on a 3-mirror stand in the large chamber using the PhaseCam interferometer, while the Kodak mirror was tested in the small chamber using the EPI interferometer.

  1. Proposal of a wide-band mirror polarizer of slow neutrons at a pulsed neutron source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ostanevich, Yu.M.

    1992-01-01

    The new type wide-band mirror-based neutron polarizer to be operated at a pulsed neutron source is suggested. The idea is to use a movable polarizing mirror system, which, be the incoming beam monochromatized by the time-of-flight, would allow one to tune glancing angles in time so, that the total reflection condition is always fulfilled only for one of the two neutron spin eigenstates. Estimates show, that with the pulsed reactor IBR-2 such polarizer allows one to build a small-angle neutron scattering instrument capable to effectively use the wave-length band from 2 to 15 A. 9 refs.; 1 fig

  2. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  3. Research report on the users' needs for next research reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Tamura, Itaru; Hosoya, Toshiaki; Horiguchi, Hironori

    2015-03-01

    JRR-3 has been operated for more than 25 years for that it is time to investigate the role of a next research reactor. A task force under the Committee for Promotion of JRR-3 Neutron Beam Application has been organized by Department of Research Reactor and Tandem Accelerator to survey neutron beam application trends in the future. This is a report on the survey results and users' requirements for the next research reactor have been summarized in this report carried by the task force. (author)

  4. Massachusetts Institute of Technology, Plasma Fusion Center, 1984-1985. Report to the President

    International Nuclear Information System (INIS)

    1985-07-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on four fronts: (1) the basic physics of high-temperature plasmas (plasma theory, rf heating, free electron lasers, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields; (3) development of an innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experiment beginning in 1984; and (4) a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter wave source development, and system studies of fusion reactor design, operation, and technology requirements). A review of these programs is given

  5. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume IV

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    This volume contains the following chapters (1) neutronics tests, (2) fluence considerations, (3) instrumentation and test matrix, (4) non-neutron test stands, (5) accelerator-based point neutron sources, (6) utilization of fission reactors, (7) tandem mirror test facilities, (8) tokamak fusion test facilities, (9) reliability development testing impacts on fusion reactor availability, and (10) fusion development scenarios. In addition, the following appendices are included: (1) evaluation of experience from fast breeder reactors, (2) observations of experts from the fission field, (3) evaluation of experience from the aerospace industry, (4) characterization of fusion nuclear systems operating environment, (5) modelling of MFTF-α+T high gamma mode performance, and (6) small-scale, multiple effects testing at US/DOE breeder reactor in-pile facilities

  6. Clinical characteristics of mirror syndrome: a comparison of 10 cases of mirror syndrome with non-mirror syndrome fetal hydrops cases.

    Science.gov (United States)

    Hirata, Go; Aoki, Shigeru; Sakamaki, Kentaro; Takahashi, Tsuneo; Hirahara, Fumiki; Ishikawa, Hiroshi

    2016-01-01

    To investigate clinical features of mirror syndrome. We retrospectively reviewed 71 cases of fetal hydrops with or without mirror syndrome, and compared with respect to maternal age, the body mass index, the primipara rate, the gestational age at delivery, the timing of fetal hydrops onset, the severity of fetal edema, placental swelling, the laboratory data and the fetal mortality. The data are expressed as the medians. Mirror syndrome developed in 29% (10/35) of the cases with fetal hydrops. In mirror group, the onset time of fetal hydrops was significantly earlier (29 weeks versus 31 weeks, p = 0.011), and the severity of fetal hydrops (fetal edema/biparietal diameter) was significantly higher than non-mirror group (0.23 versus 0.16, p < 0.001). There was significantly higher serum human chorionic gonadotropin (hCG) (453,000 IU/L versus 80,000 IU/L, p < 0.001) and lower hemoglobin (8.9 g/dL versus 10.1 g/dL, p =0.002), hypoalbuminemia (2.3 mg/dL versus 2.7 mg/dL, p = 0.007), hyperuricemia (6.4 mg/dL versus 5.0 mg/dL, p = 0.043) in mirror group. Mirror syndrome is occurred frequently in early and severe fetal hydrops and cause hemodilution and elevation of serum hCG.

  7. Startup of reversed-field mirror reactors using coaxial plasma guns

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Hartman, C.W.; Carlson, G.A.; Neef, W.S. Jr.; Eddleman, J.L.

    1979-01-01

    Preliminary calculations are given that indicate that a coaxial plasma gun might scale reasonably to reactor-grade operating conditions. Ongoing experiments and numerical simulations should shed some light on the validity of the described scaling laws

  8. Bronze rainbow hologram mirrors

    Science.gov (United States)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  9. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible

  10. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  11. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  12. Design requirements, operation and maintenance of gas-cooled reactors

    International Nuclear Information System (INIS)

    1989-06-01

    At the invitation of the Government of the USA the Technical Committee Meeting on Design Requirements, Operation and Maintenance of Gas-Cooled Reactors, was held in San Diego on September 21-23, 1988, in tandem with the GCRA Conference. Both meetings attracted a large contingent of foreign participants. Approximately 100 delegates from 18 different countries participated in the Technical Committee meeting. The meeting was divided into three sessions: Gas-cooled reactor user requirement (8 papers); Gas-cooled reactor improvements to facilitate operation and maintenance (10 papers) and Safety, environmental impacts and waste disposal (5 papers). A separate abstract was prepared for each of these 23 papers. Refs, figs and tabs

  13. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Geometry of mirror manifolds

    International Nuclear Information System (INIS)

    Aspinwall, P.S.; Luetken, C.A.

    1991-01-01

    We analyze the mirror manifold hypothesis in one and three dimensions using the simplest available representations of the N = 2 superconformal algebra. The symmetries of these tensor models can be divided out to give an explicit representation of the mirror, and we give a simple group theoretical algorithm for determining which symmetries should be used. We show that the mirror of a superconformal field theory does not always have a geometrical interpretation, but when it does, deformations of complex structure of one manifold are reflected in deformations of the Kaehler form of the mirror manifold, and we show how the large radius limit of a manifold corresponds to a large complex structure limit in the mirror manifold. The mirror of the Tian-Yau three generation model is constructed both as a conformal field theory and as an algebraic variety with Euler number six. The Hodge numbers of this manifolds are fixed, but the intersection numbes are highly ambiguous, presumably reflected a rich structure of multicritical points in the moduli space of the field theory. (orig.)

  15. Study of fusion product effects in field-reversed mirrors

    International Nuclear Information System (INIS)

    Driemeyer, D.E.

    1980-01-01

    The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included

  16. Mirror systems.

    Science.gov (United States)

    Fogassi, Leonardo; Ferrari, Pier Francesco

    2011-01-01

    Mirror neurons are a class of visuomotor neurons, discovered in the monkey premotor cortex and in an anatomically connected area of the inferior parietal lobule, that activate both during action execution and action observation. They constitute a circuit dedicated to match actions made by others with the internal motor representations of the observer. It has been proposed that this matching system enables individuals to understand others' behavior and motor intentions. Here we will describe the main features of mirror neurons in monkeys. Then we will present evidence of the presence of a mirror system in humans and of its involvement in several social-cognitive functions, such as imitation, intention, and emotion understanding. This system may have several implications at a cognitive level and could be linked to specific social deficits in humans such as autism. Recent investigations addressed the issue of the plasticity of the mirror neuron system in both monkeys and humans, suggesting also their possible use in rehabilitation. WIREs Cogn Sci 2011 2 22-38 DOI: 10.1002/wcs.89 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students.

    Science.gov (United States)

    Hodgin, Katie L; Graham, Dan J

    2016-01-01

    Previous research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one's personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA) and the low percentage who actually meet PA participation standards. However, few studies have examined how mirror exposure and both perceived and actual body size influence highly valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI) would be more likely to take the stairs, and that body size distorting mirrors would impact the stair-elevator decision. One hundred sixty-seven students (51% male) enrolled in an introductory psychology course were recruited to take a survey about their "transportation choices" at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants' choice of floor-climbing method (stairs or elevator) was recorded, and they were administered an Internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror [odds ratios (OR) = 0.37, 95% CI: 0.14-0.96], males (OR = 0.33, 95% CI: 0.13-0.85), those with lower BMI (OR = 0.84, 95% CI: 0.71-0.99), those

  18. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students

    Directory of Open Access Journals (Sweden)

    Katie L Hodgin

    2016-04-01

    Full Text Available AbstractPrevious research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one’s personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA and the low percentage who actually meet PA participation standards. Few studies, however, have examined how mirror exposure and both perceived and actual body size influence highly-valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally-healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI would be more likely to take the stairs, and that body-size distorting mirrors would impact the stair-elevator decision. One hundred and sixty-seven students (51% male enrolled in an introductory psychology course were recruited to take a survey about their transportation choices at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants’ choice of floor climbing method (stairs or elevator was recorded and they were administered an internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror (OR = 0.37, 95% CI: 0.14 – 0.96, males (OR = 0.33, 95% CI: 0.13 – 0.85, those with lower BMI (OR = 0.84, 95% CI: 0.71

  19. Proposed tandem mirror research program for FY87 presented to the MFAC subcommittee on mirror research, July 8-9, 1986

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Correll, D.L.; Fowler, T.K.; Grubb, D.P.; Hershkowitz, N.; Porter, G.D.; Post, R.S.; Simonen, T.C.

    1986-01-01

    We have reexamined the goal of approx.10 13 cm -3 central-cell density with end-plugging and reconfirmed its importance as a test of thermal barrier end-plugging performance in either Tara or TMX-U. We conclude that, when all factors are considered including the impact on other programs interlinked with LLNL in the present OFE budget, the lowest cost approach to have a fair chance to meet this goal is to extend Tara operation for the full FY87. Continuation of TMX-U operation in FY87, in addition to the full year of Tara operation, would greatly improve the chance of success. Continuation of the mirror program into FY88 and beyond would be based on an experimental program in TMX-U and Tara at a minimum budget level of $25M/y, with restart of MFTF-B requiring an increase in the national fusion budget. The experimental program to be investigated by TMX-U and Tara would include improvement in the mgnetic geometry (stability, beta limits, and transport), continued plug studies (longer pulse length, impurities, drift pumping, and ECH efficiency), and transport studies (chi/sub e/, fueling, and halo formation)

  20. Development of portable laser peening systems for nuclear power reactors

    International Nuclear Information System (INIS)

    Chida, Itaru; Uehara, Takuya; Yoda, Masaki; Miyasaka, Hiroyuki; Kato, Hiromi

    2009-01-01

    Stress corrosion cracking (SCC) is the major factor to reduce the reliability of aged reactor components. Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening technology was developed and applied to reactor components in operating BWRs and PWRs. Laser peening is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water without any surface preparations. Laser peening systems, which deliver laser pulses with mirrors or through an optical fiber, were developed and have been applied to preventive maintenance against SCC in nuclear power reactors since 1999. Each system was composed of laser oscillators, a beam delivery system, a laser irradiation head, remote handling equipment and a monitor/control system. Beam delivery with mirrors was accomplished through alignment/tracking functions with sufficient accuracy. Reliable fiber-delivery was attained by the development of a novel input coupling optics and an irradiation head with auto-focusing. Recently, we have developed portable laser peening (PLP) system which could employ both mirror- and fiber- delivery technologies. Size and weight of the PLP system for BWR bottom was almost 1/25 compared to the previous system. PLP system would be the applicable to both BWRs and PWRs as one of the maintenance technologies. (author)

  1. Gasdynamic Mirror Fusion Propulsion Experiment

    Science.gov (United States)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  2. Evaluation of the impact of a committed site on fusion reactor development

    International Nuclear Information System (INIS)

    Reid, R.L.; Nagy, A.

    1979-01-01

    The technical and economic merits of a committed fusion site for development of tokamak, mirror, and EBT reactor from ignition through demo phases were evaluated. Schedule compression resulting from evolving several reactor concepts and/or phases on a committed site as opposed to sequential use of independent sites was estimated. Land, water, and electrical power requirements for a committed fusion site were determined. A conceptual plot plan for siting three fusion reactors on a committed site was configured. Reactor support equipment common to the various concepts was identified as candidates for sharing. Licensing issues for fusion plants were briefly addressed

  3. A study of reflex tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Takao; Morinobu, Shunpei; Gono, Yasuyuki; Sagara, Kenji; Sugimitsu, Tsuyoshi; Mitarai, Shiro; Nakamura, Hiroyuki; Ikeda, Nobuo; Morikawa, Tsuneyasu [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1996-12-01

    An investigation on `developing research theme and its realizing experimental apparatus` based on the tandem accelerator facility is executed. At a standpoint of recognition on essentiality of preparation, improvement or novel technical development capable of extreme increase in capacity of the tandem accelerator facility to form COE with high uniqueness, proposal of numerous ideas and their investigations and searches were conducted. In this paper, consideration results of `beam reacceleration using tandem accelerator` were shown as follows: (1) Short life unstable nuclei formed by nuclear reaction using tandem acceleration primary beam is ionized to negative and to reaccelerate by using the same tandem accelerator. And (2) by combination of plural electrons with the tandem primary accelerated beam, numbers of charge is reduced to reaccelerate by the tandem. (G.K.)

  4. The obsidian mirror The obsidian mirror

    Directory of Open Access Journals (Sweden)

    Maria do Socorro Reis Amorin

    2008-04-01

    Full Text Available The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian. The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian.

  5. Proposal of a wide-band mirror polarizer of slow neutrons at a pulsed neutron source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ostanevich, Yu.M.

    1993-01-01

    The new type of wide-band mirror-based neutron polarizer, which is to be operated at a pulsed neutron source, is suggested. The idea is to use a movable polarizing mirror system, which, with the incoming beam monochromatized by the time-of-flight, would allow one to tune glancing angles in time so that the total reflection condition is always fulfilled only for one of the two neutron spin eigenstates. Estimates show that with the pulsed reactor IBR-2 such a polarizer allows one to build a small angle neutron scattering instrument capable of effectively using the wavelength band from 2 A with a rather high luminosity (time-averaged flux at sample position being up to 10 7 n/s/cm -2 ). (orig.)

  6. Fusion reactor design: On the road to commercialization

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    1984-01-01

    The worldwide effort in fusion is now approximately 2 billion dollars per year and over 12 billion dollars has been invested since 1951 in developing this energy source for the 21st century. A vital component of the past efforts in fusion research has been the conceptual design activities performed by scientists and engineers around the world. Almost 80 such major designs of Tokamak, Mirror, Laser and Ion Beam Reactors have been published and this article discusses how recent conceptual designs have afftected our perception of future fusion reactor performance. (orig.) [de

  7. Tandem mirror hybrid reactor study (LLL Purchase Order 6887809 dated August 31, 1979)

    International Nuclear Information System (INIS)

    1980-02-01

    The results, bases, qualifications, and exclusions of the preconceptual cost estimate are presented below. This estimate is an order-of-magnitude assessment of the direct level POP Costs. The direct level cost consists of: (1) total cost of all materials forming the permanent part of the completed plant, and (2) total cost of all labor engaged in installing and erecting all materials forming the permanent part of the completed plant. A cost summary and a supporting breakdown of this estimate are shown

  8. Scientific report. Plasma-wall interaction studies related to fusion reactor materials

    International Nuclear Information System (INIS)

    Temmerman, G. De

    2006-01-01

    This scientific report summarises research done on erosion and deposition mechanisms affecting the optical reflectivity of potential materials for use in the mirrors used in fusion reactors. Work done in Juelich, Germany, at the Federal Institute of Technology in Lausanne, Switzerland, the JET laboratory in England and in Basle is discussed. Various tests made with the mirrors are described. Results obtained are presented in graphical and tabular form and commented on. The influence of various material choices on erosion and deposition mechanisms is discussed

  9. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    Science.gov (United States)

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.

  10. The mirror-neuron system.

    Science.gov (United States)

    Rizzolatti, Giacomo; Craighero, Laila

    2004-01-01

    A category of stimuli of great importance for primates, humans in particular, is that formed by actions done by other individuals. If we want to survive, we must understand the actions of others. Furthermore, without action understanding, social organization is impossible. In the case of humans, there is another faculty that depends on the observation of others' actions: imitation learning. Unlike most species, we are able to learn by imitation, and this faculty is at the basis of human culture. In this review we present data on a neurophysiological mechanism--the mirror-neuron mechanism--that appears to play a fundamental role in both action understanding and imitation. We describe first the functional properties of mirror neurons in monkeys. We review next the characteristics of the mirror-neuron system in humans. We stress, in particular, those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation. We conclude by discussing the relationship between the mirror-neuron system and language.

  11. Mirror monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  12. Synthetic aperture focusing technique in real-time and tandem operation for thick section steels

    International Nuclear Information System (INIS)

    Doctor, S.R.; Hall, T.E.; Reid, L.D.; Mart, G.A.

    1988-01-01

    The authors report on a program underway at Pacific Northwest Laboratory (PNL) to move the synthetic aperture focusing technique (SAFT) from the laboratory into the field for the purpose of inspecting light-water reactor (LWR) components. The SAFT technology was developed to produce high-resolution and high signal-to-noise ratio images of ultrasonic anomalies in materials. Other researchers have been involved in developing the 2-D or line SAFT technology, but the one thing that has limited the acceptance of 38-D SAFT is the slow processing rates. This paper describes how a special purpose processor can be used to achieve processing rates of 10 A-scans/second or larger. The tandem mode has been successfully used with SAFT but only on this materials. This paper also describes how to effectively implement the tandem mode for thick section materials

  13. Thermal effects on beryllium mirrors

    International Nuclear Information System (INIS)

    Weinswig, S.

    1989-01-01

    Beryllium is probably the most frequently used material for spaceborne system scan mirrors. Beryllium's properties include lightweightedness, high Young's modulus, high stiffness value, high resonance value. As an optical surface, beryllium is usually nickel plated in order to produce a higher quality surface. This process leads to the beryllium mirror acting like a bimetallic device. The mirror's deformation due to the bimetallic property can possibly degrade the performance of the associated optical system. As large space borne systems are designed and as temperature considerations become more crucial in the instruments, the concern about temporal deformation of the scan mirrors becomes a prime consideration. Therefore, two sets of tests have been conducted in order to ascertain the thermal effects on nickel plated beryllium mirrors. These tests are categorized. The purpose of this paper is to present the values of the bimetallic effect on typical nickel plated beryllium mirrors

  14. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    Science.gov (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  16. TCV mirrors cleaned by plasma

    Directory of Open Access Journals (Sweden)

    L. Marot

    2017-08-01

    Full Text Available Metallic mirrors exposed in TCV tokamak were cleaned by plasma in laboratory. A gold (Au mirror was deposited with 185–285nm of amorphous carbon (aC:D film coming from the carbon tiles of TCV. Another molybdenum (Mo mirror had a thicker deposit due to a different location within the tokamak. The thickness measurements were carried out using ellipsometry and the reflectivity measurements performed by spectrophotometry revealed a decrease of the specular reflectivity in the entire range (250–2500nm for the Mo mirror and specifically in the visible spectrum for the Au. Comparison of the simulated reflectivity using a refractive index of 1.5 and a Cauchy model for the aC:D gives good confidence on the estimated film thickness. Plasma cleaning using radio frequency directly applied to a metallic plate where the mirrors were fixed demonstrated the ability to remove the carbon deposits. A mixture of 50% hydrogen and 50% helium was used with a −200V self-bias. Due to the low sputtering yield of He and the low chemical erosion of hydrogen leading to volatile molecules, 20h of cleaning were needed for Au mirror and more than 60h for Mo mirror. Recovery of the reflectivity was not complete for the Au mirror most likely due to damage of the surface during tokamak exposure (breakdown phenomena.

  17. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m 2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  18. Tandem mirror theory workshop

    International Nuclear Information System (INIS)

    1981-05-01

    The workshop was divided into three sections which were constituted according to subject matter: RF Heating, MHD Equilibrium and Stability, and Transport and Microstability. An overview from Livermore's point of view was given at the beginning of each session. Each session was assigned a secretary to take notes. These notes have been used in preparing this report on the workshop. The report includes the activities, conclusions, and recommendations of the workshop

  19. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    International Nuclear Information System (INIS)

    Moir, R.W.; Chapline, G.F. Jr.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the π - 's being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m 2 neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-μA, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use

  20. Mirroring patients – or not

    DEFF Research Database (Denmark)

    Davidsen, Annette Sofie; Fosgerau, Christina Fogtmann

    2015-01-01

    on studies of imitative behaviour within linguistics and psychology, we argue that interactional mirroring is an important aspect of displaying implicit mentalization. We aimed to explore if, and in that case how, mirroring is displayed by general practitioners (GPs) and psychiatrists in consultations...... with patients with depression. We wanted to see how implicit mentalizing unfolds in physician–patient interactions. Consultations were videorecorded and analysed within the framework of conversation analysis. GPs and psychiatrists differed substantially in their propensity to mirror body movements and verbal...... and acoustic features of speech. GPs mirrored their patients more than psychiatrists in all modalities and were more flexible in their interactional behaviour. Psychiatrists seemed more static, regardless of the emotionality displayed by patients. Implicitly mirroring and attuning to patients could signify...

  1. Optical design considerations for laser fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Maniscalco, J.A.

    1977-09-01

    The plan for the development of commercial inertial confinement fusion (ICF) power plants is discussed, emphasizing the utilization of the unique features of laser fusion to arrive at conceptual designs for reactors and optical systems which minimize the need for advanced materials and techniques requiring expensive test facilities. A conceptual design for a liquid lithium fall reactor is described which successfully deals with the hostile x-ray and neutron environment and promises to last the 30 year plant lifetime. Schemes for protecting the final focusing optics are described which are both compatible with this reactor system and show promise of surviving a full year in order to minimize costly downtime. Damage mechanisms and protection techniques are discussed, and a recommendation is made for a high f-number metal mirror final focusing system

  2. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  3. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  4. Transmission X-ray mirror

    International Nuclear Information System (INIS)

    Lairson, B.M.; Bilderback, D.H.

    1982-01-01

    Transmission X-ray mirrors have been made from 400 A to 10 000 A thick soap films and have been shown to have novel properties. Using grazing angles of incidence, low energy X-rays were reflected from the front surface while more energetic X-rays were transmitted through the mirror largely unattenuated. A wide bandpass monochromator was made from a silicon carbide mirror followed by a soap film transmission mirror and operated in the white beam at the cornell High Energy Synchrotron Source (CHESS). Bandpasses of ΔE/E=12% to 18% were achieved at 13 keV with peak efficiencies estimated to be between 55% and 75%, respectively. Several wide angle scattering photographs of stretched polyethylene and a phospholipid were obtained in 10 s using an 18% bandpass. (orig.)

  5. Advances in telescope mirror cleaning

    Science.gov (United States)

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  6. Axisymmetric pumping scheme for the thermal barrier in a tandem mirror

    International Nuclear Information System (INIS)

    Li, X.Z.

    1985-09-01

    An axisymmetric pumping scheme is proposed to pump the particles that trap in a thermal barrier without invoking the neutral beam or geodesic curvature. In this scheme a magnetic scraper is moved uni-directionally on the barrier peak to push the barely trapped particles into the central cell. We utilize a potential jump that forms at the peak field for sufficiently strong pumping. The non-collisional catching effect has to be limited by setting an upper limit on the scraping frequency of the magnetic bump. On the other hand, the dynamic stability of the pumping scheme sets a lower limit on the scraping frequency. Using the variational method, we are able to estimate the window between these two limits, which seems feasible for the Tara reactor parameter set. A primary calculation shows that the magnetic bump, ΔB/B is about 10 -4 and the scraping frequency, nu/sub sc/, is about 10 +5 sec -1 , which are similar to the parameters required for those for drift pumping

  7. Spontaneous expression of mirror self-recognition in monkeys after learning precise visual-proprioceptive association for mirror images.

    Science.gov (United States)

    Chang, Liangtang; Zhang, Shikun; Poo, Mu-Ming; Gong, Neng

    2017-03-21

    Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal.

  8. TANDEM

    Data.gov (United States)

    Federal Laboratory Consortium — The Tandem Van de Graaff facility provides researchers with beams of more than 40 different types of ions - atoms that have been stripped of their electrons. One of...

  9. Results of TMX operations: January-July 1980

    International Nuclear Information System (INIS)

    Correll, D.L.; Drake, R.P.

    1980-01-01

    This interim report summarizes results from the Tandem Mirror Experiment (TMX) during the period January to July 1980 and describes the physics experiments, the machine operation, and the diagnostics that were added to TMX during this period. This operating period followed the initial proof-of-principle TMX experiments and predated the ongoing final experiments preceding TMX shutdown for modification to TMX Upgrade. The results described in this report include measurements of plasma parameters and plasma behavior which confirm the initial TMX results that demonstrated that the tandem mirror configuration can be generated and sustained by neutral beam injection and that the tandem mirror configuration improves confinement of magnetic mirror systems

  10. Where do mirror neurons come from?

    Science.gov (United States)

    Heyes, Cecilia

    2010-03-01

    Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction. (c) 2009 Elsevier Ltd. All rights reserved.

  11. Mirror matter as self-interacting dark matter

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Nussinov, S.; Teplitz, V.L.

    2002-01-01

    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and that alternative dark matter candidates which are self-interacting may explain observations better. One new class of self-interacting dark matter that has been proposed in the context of mirror universe models of particle physics is the mirror hydrogen atom, whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms has the right order of magnitude for solving the 'cuspy' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to a higher mirror mass scale prevents the mirror halo matter from collapsing into a disk, strengthening the argument for mirror matter as galactic dark matter

  12. Graded Mirror Self-Recognition by Clark's Nutcrackers.

    Science.gov (United States)

    Clary, Dawson; Kelly, Debbie M

    2016-11-04

    The traditional 'mark test' has shown some large-brained species are capable of mirror self-recognition. During this test a mark is inconspicuously placed on an animal's body where it can only be seen with the aid of a mirror. If the animal increases the number of actions directed to the mark region when presented with a mirror, the animal is presumed to have recognized the mirror image as its reflection. However, the pass/fail nature of the mark test presupposes self-recognition exists in entirety or not at all. We developed a novel mirror-recognition task, to supplement the mark test, which revealed gradation in the self-recognition of Clark's nutcrackers, a large-brained corvid. To do so, nutcrackers cached food alone, observed by another nutcracker, or with a regular or blurry mirror. The nutcrackers suppressed caching with a regular mirror, a behavioural response to prevent cache theft by conspecifics, but did not suppress caching with a blurry mirror. Likewise, during the mark test, most nutcrackers made more self-directed actions to the mark with a blurry mirror than a regular mirror. Both results suggest self-recognition was more readily achieved with the blurry mirror and that self-recognition may be more broadly present among animals than currently thought.

  13. Mirror neurons: from origin to function.

    Science.gov (United States)

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  14. Conceptual design study for a mirror fusion breeder

    International Nuclear Information System (INIS)

    Huang Jinhua; Deng Boquan; Li Guiqing

    1986-01-01

    A mirror fusion breeder, CHD, has been designed for providing plenty of nuclear fuel for light water reactors to meet the needs for rapid development of nuclear power in the first half of next century. The breeder is able to support the nuclear fuel needs for more than 10 LWRs of equal scale in power with fuel enriched directly in CHD without reprocessing. Measures are taken to flatten the power density distribution in the blanket so that fission is suppressed in the region close to the plasma, and by this way fuel production is enhanced for this direct enriched fusion breeder. In order to reduce the MHD pressure drop, LiPb flows in the blanket axially. Though the tritium inventory in the reactor is very low, special material and design have to be developed to reduce the permeation of tritium through the coolant pipes. The cost of electricity from the system, consisting of 11 LWR plants and one fusion breeder is predicted to be 1.05 times of that from a traditional LWR plant. This figure is insensitive both to the cost of CHD and its support ratio

  15. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  16. Qualitative comparisons of fusion reactor materials for waste handling and disposal

    International Nuclear Information System (INIS)

    Maninger, R.C.

    1985-01-01

    The activation of five structural materials and seven coolant/breeder/multiplier materials in a common reference neutron environment was calculated with the FORIG activation code. The reference environment was the neutron flux and spectrum at the first wall of the mirror advanced reactor study (MARS) reactor. Qualitative comparison of these activated materials were made with respect to worker protection requirements for gamma radiation in handling the materials and with respect to their classifications for near-surface disposal of radioactive waste

  17. Laser cleaning of ITER's diagnostic mirrors

    Science.gov (United States)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  18. Mirror image agnosia.

    Science.gov (United States)

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-10-01

    Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles reflected self-images. A new observation involving failure

  19. Plasma potential formation and measurement in TMX-U and MFTF-B

    International Nuclear Information System (INIS)

    Grubb, D.P.

    1984-01-01

    Tandem mirrors control the axial variation of the plasma potential to create electrostatic plugs that improve the axial confinement of central cell ions and, in a thermal barrier tandem mirror, control the electron axial heat flow. Measurements of the spatial and temporal variations of the plasma potential are, therefore, important to the understanding of confinement in a tandem mirror. In this paper we discuss potential formation in a thermal barrier tandem mirror and examine the diagnostics and data obtained on the TMX-U device, including measurements of the thermal barrier potential profile using a diagnostic neutral beam and charged particle energy-spectroscopy. We then describe the heavy ion beam probe and other new plasma potential diagnostics that are under development for TMX-U and MFTF-B and examine problem areas where additional diagnostic development is desirable

  20. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    Science.gov (United States)

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  1. X-ray imaging with toroidal mirror

    International Nuclear Information System (INIS)

    Aoki, Sadao; Sakayanagi, Yoshimi

    1978-01-01

    X-ray imaging is made with a single toroidal mirror or two successive toroidal mirrors. Geometrical images at the Gaussian image plane are described by the ray trace. Application of a single toroidal mirror to small-angle scattering is presented. (author)

  2. Survey on the fusion/fission-hybrid-reactors, a literature review

    International Nuclear Information System (INIS)

    A survey, based on existing literature, of the work being pursued worldwide on fusion - fission (hybrid) reactor systems is presented. Six areas are reviewed: Plasma physics parameters; Blankets concepts; Fuel cycles; Reactor conceptual designs; Safety and environmental problems; System studies and economic perspectives. Attention has been restricted to systems using magnetically confined plasmas, mainly to mirror and Tokamak - type concepts. The aim is to provide sufficient information, even if not exhaustive, on hybrid reactor concepts in order to help understand what may be expected from their possible development and the ways in which hybrids could affect the future energy scenario. Some concluding remarks are made which represent the personal view of the authors only

  3. Passivation coating for flexible substrate mirrors

    Science.gov (United States)

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  4. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  5. Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation

    Science.gov (United States)

    Mohapatra, Rabindra N.; Nussinov, Shmuel

    2018-01-01

    The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.

  6. The mirror neuron system: new frontiers.

    Science.gov (United States)

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into studying their location and properties in the human brain. Here we review these original findings and introduce the main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror system embedded into the mosaic of circuits that compose our brain? How does the mirror system contribute to communication, language and social interaction? Can the principle of mirror neurons be extended to emotions, sensations and thoughts? Papers using a wide range of methods, including single cell recordings, fMRI, TMS, EEG and psychophysics, collected in this special issue, start to give us some impressive answers.

  7. STATIONARY DISTRIBUTION OF A TANDEM QUEUE WITH ADDITIONAL FLOWS ON THE STATIONS OF THE TANDEM

    Directory of Open Access Journals (Sweden)

    V. I. Klimenok

    2017-01-01

    Full Text Available A tandem queueing system consisting of a finite number of multi-server stations without buffers is analized. The input flow at the first station is a ???????????? (Markovian arrival process. The customers from this flow aim to be served at all stations of the tandem. For any station, besides transit customers proceeding from the previous station, an additional ???????????? flow of new customers arrives at this station directly. Customers from this flow aim to be served at this station and all subsequent stations of the tandem. The service times of customer at the stations are exponentially distributed with the service rate depending of number of the station. The algorithms for culculation of stationary distributions and the loss probabilities associated with the tandem are given.

  8. Mirror neurons: functions, mechanisms and models.

    Science.gov (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Tandem accelerator operation and improvements

    International Nuclear Information System (INIS)

    Yang Bingfan; Zhang Canzhe; Qin Jiuchang; Hu Yueming; Zhang Guilian; Jiang Yongliang; Hou Deyi; Yang Weimin; Yang Zhiren; Su Shengyong; Kan Chaoxin; Liu Dezhong; Wang Liyong; Bao Yiwen; You Qubo; Yang Tao; Zhang Yan; Zhou Lipeng; Chai Shiqin; Wang Meiyan

    1998-01-01

    The scheduled operation of HI-13 tandem accelerator for various experiments was performed well in 1996 and 1997. The machine running time was 4600 h and 4182 h while the beam time was 3845 h and 3712 h in 1996 and 1997, respectively. The operation of HI-13 tandem accelerator is pretty well. The beam distribution with terminal voltage and the distribution of beam time with ion species are shown out. The development of accelerating tubes for HI-13 tandem is in progress

  10. Plasma confinement apparatus using solenoidal and mirror coils

    Science.gov (United States)

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  11. Mirror neurons and language in schizophrenia

    OpenAIRE

    Bendová, Marie

    2016-01-01

    Mirror neurons are a specific kind of visuomotor neurons that are involved in action execution and also in action perception. The mirror mechanism is linked to a variety of complex psychological functions such as social-cognitive functions and language. People with schizophrenia have often difficulties both in mirror neuron system and in language skills. In the first part of our research we studied the connectivity of mirror neuron areas (such as IFG, STG, PMC, SMC and so on) by fMRI in resti...

  12. Tritium containment and blanket design challenges for a 1 GWe mirror fusion central power station

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1976-06-01

    Tritium containment and removal problems associated with the blanket and power-systems for a mirror fusion reactor are identified and conceptual process designs are devised to reduce emissions to the environment below 1 Ci/day. The blanket concept development proceeds by starting with this emission goal of 1 Ci/day and working inward to the blanket. At each decision point, worker safety, operational labor costs, and capital cost tradeoffs are contrasted. The conceptual design uses air for the reactor hall with a continuous catalytic oxidizer-molecular sieve adsorber cleanup system to maintain a 40 μCi/m 3 tritium level (5 μCi/m 3 HTO) against 180 Ci/day leakage from reactor components, energy recovery systems, and process piping. This blanket contains submodules with Li 2 Be 2 O 3 --Be for tritium breeding and submodules with Be for mostly energy production. Tritium production in both is handled by separately containing this breeding material and scavenging this container with lithium vapor-doped helium gas stream

  13. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    Fowler, T.K.; Condit, W.C.

    1979-01-01

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  14. Owning the body in the mirror: The effect of visual perspective and mirror view on the full-body illusion.

    Science.gov (United States)

    Preston, Catherine; Kuper-Smith, Benjamin J; Ehrsson, Henrik H

    2015-12-17

    Mirrors allow us to view our own body from a third-person (observer) perspective. However, how viewing ourselves through a mirror affects central body representations compared with true third-person perspective is not fully understood. Across a series of experiments, multisensory full-body illusions were used to modulate feelings of ownership over a mannequin body that was viewed from a third-person perspective through a mirror, from a third-person perspective without a mirror, and from a first-person perspective. In contrast to non-mirror third-person perspective, synchronously touching the participant's actual body and the mannequin body viewed in the mirror elicited strong feelings of ownership over the mannequin and increased physiological responses to the mannequin being threatened compared to the equivalent asynchronous (non-ownership) control condition. Subjective reports of ownership viewing the mannequin through a mirror were also statistically equivalent to those following the first-person perspective illusion. These findings suggest that mirrors have a special role for viewing the self. The results also support the importance of egocentric reference frames for body ownership and suggest that mirror reflections of one's own body are related to peripersonal space, which enables updating of central body representations.

  15. Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation

    Directory of Open Access Journals (Sweden)

    Rabindra N. Mohapatra

    2018-01-01

    Full Text Available The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n−n′ mixing parameter δ and n−n′ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ≤2×10−27 GeV and Δ≤10−24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.

  16. The mirror neuron system : New frontiers

    NARCIS (Netherlands)

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into Studying their location and properties in the human brain. Here we review these original findings and introduce the Main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror

  17. Tandem accelerators, 1973--1974

    International Nuclear Information System (INIS)

    Howard, F.T.

    1974-01-01

    High voltage tandem accelerators are very important instruments in the field of nuclear physics research, especially in the acceleration of heavy ions. This survey identifies 77 tandems installed in 21 countries; of these, 34 are in the United States. Most installations have supplied data sheets identifying their machines and briefly characterizing their research programs. (U.S.)

  18. Analytic solution for a quartic electron mirror

    Energy Technology Data Exchange (ETDEWEB)

    Straton, Jack C., E-mail: straton@pdx.edu

    2015-01-15

    A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.

  19. Sensorimotor learning configures the human mirror system.

    Science.gov (United States)

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2007-09-04

    Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.

  20. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    mirror reflecting guides. By installing super mirror guides we expect to deliver beam fluxes to the instruments that are comparable, and in some cases exceed, those enjoyed at the world's leading facilities. Our estimates of neutron flux delivery indicate that this reactor should rate in the top five to ten facilities worldwide in terms of its capacity for neutron beam research

  1. Trieste lectures on mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hori, K [Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario (Canada)

    2003-08-15

    These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 + 1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. (author)

  2. A Research on the Primary Mirror Manipulator of Large Segmented-mirror Telescope

    Science.gov (United States)

    Zuo, H.

    2012-09-01

    Since Galileo firstly used the telescope to observe the sky 400 years ago, the aperture of the telescope has become larger and larger to observe the deeper universe, and the segmented-mirror telescope is becoming more and more popular with increasing aperture. In the early 21st century, a series of segmented-mirror telescopes have been constructed including the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) of China. LAMOST is a meridian reflecting Schmidt telescope, and the dimension of the primary mirror is about 6.7 m× 6 m, which is composed of 37 hexagonal sub-mirrors. However, a problem about the mirror installation appears with the increasing aperture. If there are hundreds of sub-mirrors in the telescope, it is a challenging job to mount and dismount them to the truss. This problem is discussed in this paper and a manipulator for the primary mirror of LAMOST is designed to perform the mount and dismount work. In chapter 1, all the segmented-mirror telescopes in the world are introduced and how the sub-mirrors of these telescopes are installed has been investigated. After comparing with the serial and the parallel robot, a serial robot manipulator proposal, which has several redundant degrees of freedom (DOFs), has been chosen from a series of design proposals. In chapter 2, the theoretical analysis has been carried out on the basis of the design proposal, which includes the forward kinematics and the inverse kinematics. Firstly the D-H coordinate is built according to the structure of the manipulator, so it is possible to obtain the end-effector position and orientation from the individual joint motion thanks to the forward kinematics. Because of the redundant DOFs of the manipulator, the inverse kinematics solution can be a very trick task, and the result may not be only, therefore a kind of simulation is carried out to get the numerical solution using ADAMS (Automatic Dynamic Analysis of Mechanical System). In the dynamics analysis the

  3. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid; Garnett, Erik C.; Cui, Yi; McGehee, Michael D.; Brongersma, Mark L.

    2014-01-01

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  4. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid

    2014-06-22

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  5. Vertex algebras and mirror symmetry

    International Nuclear Information System (INIS)

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  6. Mirror Objects in the Solar System?

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2002-01-01

    This talk was given at the Tunguska-2001 international conference but it is not about the Tunguska event. Instead we tried to give some flavor of mirror matter, which is predicted to exist if parity is an unbroken symmetry of nature, to non-experts. The possible connection of the mirror matter ideas to the Tunguska phenomenon was indicated by Foot and Gninenko some time ago and was elaborated by Foot in the separate talk at this conference. If the mirror world interpretation of the Tunguska like events is indeed correct then the most fascinating (but very speculative) possibility is that some well known celestial bodies with strange properties are in fact made mostly from mirror matter, and so maybe the mirror world was discovered long ago and we just have not suspected this. (author)

  7. A comparison of performance of lightweight mirrors

    Science.gov (United States)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  8. Phase-stepping optical profilometry of atom mirrors

    International Nuclear Information System (INIS)

    MacLaren, D A; Goldrein, H T; Holst, B; Allison, W

    2003-01-01

    Electrically deformed single crystal mirrors will be a vital part of a first generation of scanning helium microscope (SHeM). Optimized mirrors will be used to focus thermal energy helium atoms into a surface-sensitive, low-energy probe, with a resolution that depends upon the precise mirror shape. Here, we present surface profilometry measurements of a prototype atom mirror. A temporal phase-stepping Mach-Zender fibre interferometer is used to profile the mirror surface with an accuracy of a few tens of nanometres. Results are compared with the theory of small deflections of an elastic thin plate. Our experiments suggest that relatively simple apparatus can induce the mirror profiles required to demagnify a conventional helium source into a microprobe suitable for a SHeM. Use of elliptical boundary conditions in the clamping mechanism afford biaxial bending in the crystal whilst a simple double-electrode design is demonstrated to be capable of asymmetric control of the mirror deformation

  9. Minimal mirror twin Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Riccardo [Institute of Theoretical Studies, ETH Zurich,CH-8092 Zurich (Switzerland); Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126 Pisa (Italy); Hall, Lawrence J.; Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States)

    2016-11-29

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z{sub 2} parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z{sub 2} breaking, can generate the Z{sub 2} breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals in Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z{sub 2} breaking from the vacuum expectation values of B−L breaking fields are also discussed.

  10. Brief-stimulus presentations on multiform tandem schedules

    OpenAIRE

    Reed, Phil

    1994-01-01

    Three experiments examined the influence of a brief stimulus (a light) on the behavior of food-deprived rats whose lever pressing on tandem schedules comprising components of different schedule types resulted in food presentation. In Experiment 1, either a tandem variable-ratio variable-interval or a tandem variable-interval variable-ratio schedule was used. The variable-interval requirement in the tandem variable-ratio variable-interval schedule was yoked to the time taken to complete the va...

  11. Auditory-vocal mirroring in songbirds.

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  12. Mounting and Alignment of IXO Mirror Segments

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  13. A generalized construction of mirror manifolds

    International Nuclear Information System (INIS)

    Berglund, P.; Huebsch, T.

    1993-01-01

    We generalize the known method for explicit construction of mirror pairs of (2,2)-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known. (orig.)

  14. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    Science.gov (United States)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  15. Giant pandas failed to show mirror self-recognition.

    Science.gov (United States)

    Ma, Xiaozan; Jin, Yuan; Luo, Bo; Zhang, Guiquan; Wei, Rongping; Liu, Dingzhen

    2015-05-01

    Mirror self-recognition (MSR), i.e., the ability to recognize oneself in a mirror, is considered a potential index of self-recognition and the foundation of individual development. A wealth of literature on MSR is available for social animals, such as chimpanzees, Asian elephants and dolphins, yet little is known about MSR in solitary mammalian species. We aimed to evaluate whether the giant panda can recognize itself in the mirror, and whether this capacity varies with age. Thirty-four captive giant pandas (F:M = 18:16; juveniles, sub-adults and adults) were subjected to four mirror tests: covered mirror tests, open mirror tests, water mark control tests, and mark tests. The results showed that, though adult, sub-adult and juvenile pandas exposed to mirrors spent similar amounts of time in social mirror-directed behaviors (χ(2) = 0.719, P = 0.698), none of them used the mirror to touch the mark on their head, a self-directed behavior suggesting MSR. Individuals of all age groups initially displayed attacking, threatening, foot scraping and backwards walking behaviors when exposed to their self-images in the mirror. Our data indicate that, regardless of age, the giant pandas did not recognize their self-image in the mirror, but instead considered the image to be a conspecific. Our results add to the available information on mirror self-recognition in large mammals, provide new information on a solitary species, and will be useful for enclosure design and captive animal management.

  16. Genetics Home Reference: congenital mirror movement disorder

    Science.gov (United States)

    ... Health Conditions Congenital mirror movement disorder Congenital mirror movement disorder Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Congenital mirror movement disorder is a condition in which intentional movements ...

  17. Kodak AMSD Mirror Development Program

    Science.gov (United States)

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  18. Summary of mirror experiments relevant to beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1988-01-01

    A promising design for a deuterium-tritium (DT) neutron source is based on the injection of neutral beams into a dense, warm plasma column. Its purpose is to test materials for possible use in fusion reactors. A series of designs have evolved, from a 4-T version to an 8-T version. Intense fluxes of 5--10 MW/m 2 is achieved at the plasma surface, sufficient to complete end-of-life tests in one to two years. In this report, we review data from earlier mirror experiments that are relevant to such neutron sources. Most of these data are from 2XIIB, which was the only facility to ever inject 5 MW of neutral beams into a single mirror call. The major physics issues for a beam-plasma neutron source are magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, cold-ion fueling of the midplane to allow two-component reactions, and operation in the Spitzer conduction regime, where the power is removed to the ends by an axial gradient in the electron temperature T/sub e/. We show in this report that the conditions required for a neutron source have now been demonstrated in experiments. 20 refs., 15 figs., 3 tabs

  19. Auditory–vocal mirroring in songbirds

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory–vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory–vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory–vocal mirroring in the songbird's brain. PMID:24778375

  20. Light-weight spherical mirrors for Cherenkov detectors

    CERN Document Server

    Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.