WorldWideScience

Sample records for tamoxifen mediated estrogen

  1. The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha.

    Science.gov (United States)

    Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto

    2017-11-01

    Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.

  2. Metformin enhances tamoxifen-mediated tumor growth inhibition in ER-positive breast carcinoma

    International Nuclear Information System (INIS)

    Ma, Ji; Zhang, Jian; Liu, Wenchao; Guo, Yan; Chen, Suning; Zhong, Cuiping; Xue, Yan; Zhang, Yuan; Lai, Xiaofeng; Wei, Yifang; Yu, Shentong

    2014-01-01

    Tamoxifen, an endocrine therapy drug used to treat breast cancer, is designed to interrupt estrogen signaling by blocking the estrogen receptor (ER). However, many ER-positive patients are low reactive or resistant to tamoxifen. Metformin is a widely used anti-diabetic drug with noteworthy anti-cancer effects. We investigated whether metformin has the additive effects with tamoxifen in ER-positive breast cancer therapy. The efficacy of metformin alone and in combination with tamoxifen against ER-positive breast cancer was analyzed by cell survival, DNA replication activity, plate colony formation, soft-agar, flow cytometry, immunohistochemistry, and nude mice model assays. The involved signaling pathways were detected by western blot assay. When metformin was combined with tamoxifen, the concentration of tamoxifen required for growth inhibition was substantially reduced. Moreover, metformin enhanced tamoxifen-mediated inhibition of proliferation, DNA replication activity, colony formation, soft-agar colony formation, and induction of apoptosis in ER-positive breast cancer cells. In addition, these tamoxifen-induced effects that were enhanced by metformin may be involved in the bax/bcl-2 apoptotic pathway and the AMPK/mTOR/p70S6 growth pathway. Finally, two-drug combination therapy significantly inhibited tumor growth in vivo. The present work shows that metformin and tamoxifen additively inhibited the growth and augmented the apoptosis of ER-positive breast cancer cells. It provides leads for future research on this drug combination for the treatment of ER-positive breast cancer

  3. A Role for Estrogen Receptor Phosphorylation in the Resistance to Tamoxifen

    International Nuclear Information System (INIS)

    De Leeuw, R.; Neefjes, J.; Michalides, R.

    2011-01-01

    About two thirds of all human breast cancer cases are estrogen receptor positive. The drug of first choice for these patients is tamoxifen. However, about half of the recurrences after removal of the primary tumor are or become resistant to this drug. While many mechanisms have been identified for tamoxifen resistance in the lab, at present only a few have been translated to the clinic. This paper highlights the role in tamoxifen resistance of phosphorylation by different kinases on different sites of the estrogen receptor. We will discuss the molecular pathways and kinases that are involved in phosphorylation of ERa and how these affect tamoxifen resistance. Finally, we will elaborate on the clinical translation of these observations and the possibility to predict tamoxifen responses in patient tumor samples before treatment onset. The findings made originally on the bench may translate into a better and personalized treatment of breast cancer patients using an old and safe anticancer drug: tamoxifen

  4. The formation of estrogen-like tamoxifen metabolites and their influence on enzyme activity and gene expression of ADME genes.

    Science.gov (United States)

    Johänning, Janina; Kröner, Patrick; Thomas, Maria; Zanger, Ulrich M; Nörenberg, Astrid; Eichelbaum, Michel; Schwab, Matthias; Brauch, Hiltrud; Schroth, Werner; Mürdter, Thomas E

    2018-03-01

    Tamoxifen, a standard therapy for breast cancer, is metabolized to compounds with anti-estrogenic as well as estrogen-like action at the estrogen receptor. Little is known about the formation of estrogen-like metabolites and their biological impact. Thus, we characterized the estrogen-like metabolites tamoxifen bisphenol and metabolite E for their metabolic pathway and their influence on cytochrome P450 activity and ADME gene expression. The formation of tamoxifen bisphenol and metabolite E was studied in human liver microsomes and Supersomes™. Cellular metabolism and impact on CYP enzymes was analyzed in upcyte® hepatocytes. The influence of 5 µM of tamoxifen, anti-estrogenic and estrogen-like metabolites on CYP activity was measured by HPLC MS/MS and on ADME gene expression using RT-PCR analyses. Metabolite E was formed from tamoxifen by CYP2C19, 3A and 1A2 and from desmethyltamoxifen by CYP2D6, 1A2 and 3A. Tamoxifen bisphenol was mainly formed from (E)- and (Z)-metabolite E by CYP2B6 and CYP2C19, respectively. Regarding phase II metabolism, UGT2B7, 1A8 and 1A3 showed highest activity in glucuronidation of tamoxifen bisphenol and metabolite E. Anti-estrogenic metabolites (Z)-4-hydroxytamoxifen, (Z)-endoxifen and (Z)-norendoxifen inhibited the activity of CYP2C enzymes while tamoxifen bisphenol consistently induced CYPs similar to rifampicin and phenobarbital. On the transcript level, highest induction up to 5.6-fold was observed for CYP3A4 by tamoxifen, (Z)-4-hydroxytamoxifen, tamoxifen bisphenol and (E)-metabolite E. Estrogen-like tamoxifen metabolites are formed in CYP-dependent reactions and are further metabolized by glucuronidation. The induction of CYP activity by tamoxifen bisphenol and the inhibition of CYP2C enzymes by anti-estrogenic metabolites may lead to drug-drug-interactions.

  5. Endoxifen, 4-Hydroxytamoxifen and an Estrogenic Derivative Modulate Estrogen Receptor Complex Mediated Apoptosis in Breast Cancer.

    Science.gov (United States)

    Maximov, Philipp Y; Abderrahman, Balkees; Fanning, Sean W; Sengupta, Surojeet; Fan, Ping; Curpan, Ramona F; Quintana Rincon, Daniela Maria; Greenland, Jeffery A; Rajan, Shyamala S; Greene, Geoffrey L; Jordan, V Craig

    2018-05-08

    Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment for breast cancer inevitably occurs, but unexpectedly low dose estrogen can cause regression of breast cancer and increase disease free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here we describe modulation of the estrogen receptor liganded with antiestrogens (endoxifen, 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE) EthoxyTPE (EtOXTPE) on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared to planar estradiol in these cells. Using RT-PCR, ChIP, Western blotting, molecular modelling and X-ray crystallography techniques we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the PERK sensor system to trigger an Unfolded Protein Response (UPR). The American Society for Pharmacology and Experimental Therapeutics.

  6. Tamoxifen dosing for Cre-mediated recombination in experimental bronchopulmonary dysplasia.

    Science.gov (United States)

    Ruiz-Camp, Jordi; Rodríguez-Castillo, José Alberto; Herold, Susanne; Mayer, Konstantin; Vadász, István; Tallquist, Michelle D; Seeger, Werner; Ahlbrecht, Katrin; Morty, Rory E

    2017-02-01

    Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth characterized by blunted post-natal lung development. BPD can be modelled in mice by exposure of newborn mouse pups to elevated oxygen levels. Little is known about the mechanisms of perturbed lung development associated with BPD. The advent of transgenic mice, where genetic rearrangements can be induced in particular cell-types at particular time-points during organogenesis, have great potential to explore the pathogenic mechanisms at play during arrested lung development. Many inducible, conditional transgenic technologies available rely on the application of the estrogen-receptor modulator, tamoxifen. While tamoxifen is well-tolerated and has been widely employed in adult mice, or in healthy developing mice; tamoxifen is not well-tolerated in combination with hyperoxia, in the most widely-used mouse model of BPD. To address this, we set out to establish a safe and effective tamoxifen dosing regimen that can be used in newborn mouse pups subjected to injurious stimuli, such as exposure to elevated levels of environmental oxygen. Our data reveal that a single intraperitoneal dose of tamoxifen of 0.2 mg applied to newborn mouse pups in 10 μl Miglyol vehicle was adequate to successfully drive Cre recombinase-mediated genome rearrangements by the fifth day of life, in a murine model of BPD. The number of recombined cells was comparable to that observed in regular tamoxifen administration protocols. These findings will be useful to investigators where tamoxifen dosing is problematic in the background of injurious stimuli and mouse models of human and veterinary disease.

  7. Tamoxifen induces the expression of maspin through estrogen receptor-alpha.

    Science.gov (United States)

    Liu, Zesheng; Shi, Heidi Y; Nawaz, Zafar; Zhang, Ming

    2004-06-08

    Maspin (mammary serine protease inhibitor) is a tumor suppressor gene that plays an important role in inhibiting tumor growth, invasion and metastasis. Maspin expression is down regulated at transcription level in primary and metastatic breast tumor cells. Previous studies on hormonal regulation of maspin prompt us to test whether an estrogen antagonist tamoxifen (TAM) can exert its anti-tumor function by up regulating maspin gene expression. For this purpose, we first tested whether maspin promoter could be activated in normal and several breast tumor cells. We then carried out a series of promoter analysis in which estrogen receptors and TAM were reconstituted in an in vitro cell culture system. Here we report our new finding that tumor suppresser gene maspin is one of the TAM target genes. TAM induces a maspin/luciferase reporter in cell culture and this induction requires the presence of (estrogen receptor alpha) ERalpha but not estrogen receptor-beta (ERbeta). Maspin promoter deletion and mutation analysis showed that the cis element(s) within a region between -90and+87 bp but not the HRE site (-272 bp) was involved in TAM induction of maspin expression. TAM bound ERalpha may directly control maspin gene expression through the interaction with cofactor (s). Analysis using several ERalpha mutants showed that the N-terminal A/B motif (AF-1) was critical for maspin basal level transcription activation. An ERalpha mutant with point mutations at DNA binding domain abolished estrogen induction of an ERE-luciferase reporter but was still active in activating maspin promoter by TAM. LBD-AF2 domain was required for ERalpha-dependent TAM induction. Deletion of LBD-AF2 or a point mutation in the ERalpha LBD-AF2 region (LBDmtL539A) completely abolished the activation of maspin promoter, suggesting that TAM induction of maspin involves the recruitment of cofactor(s) by ERalpha to the maspin promoter region. This finding indicates that one of the pathways for cancer

  8. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells

    International Nuclear Information System (INIS)

    Hong, Wei; Chen, Linfeng; Li, Juan; Yao, Zhi

    2010-01-01

    Estrogen receptor alpha (ERα), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ERα activity and has been applied in breast cancer treatment. TAM-bound ERα associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ERα mediated signaling. We show that activated MAPK represses interaction of TAM-bound ERα with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ERα to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ERα activity via enhanced recruitment of SMRT, leading to reduced expression of ERα target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ERα, suggesting corepressor mediates inhibition of ERα transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.

  9. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells

    International Nuclear Information System (INIS)

    Zhao Wenhui; Zhang Qingyuan; Kang Xinmei; Jin Shi; Lou Changjie

    2009-01-01

    Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.

  10. [Effect of the estrogen antagonist tamoxifen in the treatment of advanced mastocarcinoma (author's transl)].

    Science.gov (United States)

    Szepesi, T; Kärcher, K H

    1977-12-01

    Today the endocrin therapy of the advanced mastocarcinoma is in common use. Besides the already known therapy by estrogens, androgens, gestagens, and steroids, Tamoxifen, and estrogen antagonist, is a very promising therapeutic drug. In the presented study, Tamoxifen was submitted to a critical clinical control during a period of one year from 1st October 1975 until 1st October 1976. After a three months' treatment, a rate of 41% of objective remissions could be obtained. The criteria of success were estimated according to the scheme of Karnofsky. The average remission time is 5,5 months. By a determination of the estrogen receptors it would be possible to realize a therapeutic selection and to achieve a higher remission rate. The authors made an interesting observation, i.e. a probably immuno-stimulating effect which, however, still has to be submitted to further examinations. The side effects are described in detail and the indications are established. Its is astonishing that the subjective ameliorations, i.e. cessation of pains in case of generalized formation of metastases in the bones are much more frequent than the objective remissions. We came to the conclusion that the treatment by Tamoxifen is a valuable alternative in the therapy of the mastocarcinoma, above all in the postmenopausal period if the disease is advanced and incurable.

  11. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    Science.gov (United States)

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-02

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Microarray Analysis on Gene Regulation by Estrogen, Progesterone and Tamoxifen in Human Endometrial Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chun-E Ren

    2015-03-01

    Full Text Available Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.

  13. Gene expression changes induced by estrogen and selective estrogen receptor modulators in primary-cultured human endometrial cells: signals that distinguish the human carcinogen tamoxifen

    International Nuclear Information System (INIS)

    Pole, Jessica C.M.; Gold, Leslie I.; Orton, Terry; Huby, Russell; Carmichael, Paul L.

    2005-01-01

    Tamoxifen has long been the endocrine treatment of choice for women with breast cancer and is now employed for prophylactic use in women at high risk from breast cancer. Other selective estrogen receptor modulators (SERMs), such as raloxifene, mimic some of tamoxifen's beneficial effects and, like tamoxifen, exhibit a complex mixture of organ-specific estrogen agonist and antagonistic properties. However, accompanying the positive effects of tamoxifen has been the emergence of evidence for an increased risk of endometrial cancer associated with its use. A more complete understanding of the mechanism(s) of SERM carcinogenicity and endometrial effects is therefore required. We have sought to compare and characterise the transcript profile of tamoxifen, raloxifene and the agonist estradiol in human endometrial cells. Using primary cultures of human endometria, to best emulate the in vivo responses in a manageable in vitro system, we have shown 230 significant changes in gene expression for epithelial cultures and 83 in stromal cultures, either specific to 17β-estradiol, tamoxifen or raloxifene, or changed across more than one of the treatments. Considering the transcriptome as a whole, the endometrial responses to raloxifene or tamoxifen were more similar than either drug was to 17β-estradiol. Treatment of endometrial cultures with tamoxifen resulted in the largest number of gene changes relative to control cultures and a high proportion of genes associated with regulation of gene transcription, cell-cycle control and signal transduction. Tamoxifen-specific changes that might point towards mechanisms for its proliferative response in the endometrium included changes in retinoblastoma and c-myc binding proteins, the APCL, dihydrofolate reductase (DHFR) and E2F1 genes and other transcription factors. Tamoxifen was also found to give rise to the highest number of gene expression changes common to those that characterise malignant endometria. It is anticipated that this

  14. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Kim, Chungyeul; Tang, Gong; Pogue-Geile, Katherine L; Costantino, Joseph P; Baehner, Frederick L; Baker, Joffre; Cronin, Maureen T; Watson, Drew; Shak, Steven; Bohn, Olga L; Fumagalli, Debora; Taniyama, Yusuke; Lee, Ahwon; Reilly, Megan L; Vogel, Victor G; McCaskill-Stevens, Worta; Ford, Leslie G; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman; Paik, Soonmyung

    2011-11-01

    Several mechanisms have been proposed to explain tamoxifen resistance of estrogen receptor (ER) -positive tumors, but a clinically useful explanation for such resistance has not been described. Because the ER is the treatment target for tamoxifen, a linear association between ER expression levels and the degree of benefit from tamoxifen might be expected. However, such an association has never been demonstrated with conventional clinical ER assays, and the ER is currently used clinically as a dichotomous marker. We used gene expression profiling and ER protein assays to help elucidate molecular mechanism(s) responsible for tamoxifen resistance in breast tumors. We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials. In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER-positive tumors with low levels of ESR1 expression. These data suggest that low-level expression of ESR1 is a determinant of tamoxifen resistance in ER-positive breast cancer. Strategies should be developed to identify, treat, and prevent such tumors.

  15. Estrogen Receptor (ESR1) mRNA Expression and Benefit From Tamoxifen in the Treatment and Prevention of Estrogen Receptor–Positive Breast Cancer

    Science.gov (United States)

    Kim, Chungyeul; Tang, Gong; Pogue-Geile, Katherine L.; Costantino, Joseph P.; Baehner, Frederick L.; Baker, Joffre; Cronin, Maureen T.; Watson, Drew; Shak, Steven; Bohn, Olga L.; Fumagalli, Debora; Taniyama, Yusuke; Lee, Ahwon; Reilly, Megan L.; Vogel, Victor G.; McCaskill-Stevens, Worta; Ford, Leslie G.; Geyer, Charles E.; Wickerham, D. Lawrence; Wolmark, Norman; Paik, Soonmyung

    2011-01-01

    Purpose Several mechanisms have been proposed to explain tamoxifen resistance of estrogen receptor (ER) –positive tumors, but a clinically useful explanation for such resistance has not been described. Because the ER is the treatment target for tamoxifen, a linear association between ER expression levels and the degree of benefit from tamoxifen might be expected. However, such an association has never been demonstrated with conventional clinical ER assays, and the ER is currently used clinically as a dichotomous marker. We used gene expression profiling and ER protein assays to help elucidate molecular mechanism(s) responsible for tamoxifen resistance in breast tumors. Patients and Methods We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials. Results In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER-positive tumors with low levels of ESR1 expression. Conclusion These data suggest that low-level expression of ESR1 is a determinant of tamoxifen resistance in ER-positive breast cancer. Strategies should be developed to identify, treat, and prevent such tumors. PMID:21947828

  16. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    International Nuclear Information System (INIS)

    Moerkens, Marja; Zhang, Yinghui; Wester, Lynn; Water, Bob van de; Meerman, John HN

    2014-01-01

    Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10 -12 to 10 -6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK 1/3 , AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM

  17. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  18. Agonistic activity of tamoxifen, a selective estrogen-receptor modulator (SERM), on arthritic ovariectomized mice

    Science.gov (United States)

    Silva, L.A.S.; Felix, F.B.; Araujo, J.M.D.; Souza, E.V.; Camargo, E.A.; Grespan, R.

    2017-01-01

    Arthritis is positively associated with the decline of sex hormones, especially estrogen. Tamoxifen (TMX) is a selective estrogen receptor modulator, possessing agonist or antagonistic activity in different tissues. Thus, the objective of this study was to investigate the effect of TMX on the zymosan-induced arthritis model. Female Swiss normal and ovariectomized (OVX) mice were divided into groups and treated for five days with TMX (0.3, 0.9 or 2.7 mg/kg) or 17-β-estradiol (E2, 50 µg/kg). On the fifth day, arthritis was induced and 4 h later, leukocyte migration into joint cavities was evaluated. The neutrophil migration in OVX animals, but not in normal mice, treated with TMX (all tested doses) was significantly decreased compared with mice that received the vehicle (P≤0.05). Similarly, this effect was also demonstrated in the E2-treated group. Therefore, the present study demonstrates that TMX presented agonist effects in inhibiting neutrophil migration and preventing arthritis progression in OVX mice. PMID:29160416

  19. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats.

    Science.gov (United States)

    Lamas, Aline Z; Nascimento, Andrews M; Medeiros, Ana Raquel S; Caliman, Izabela F; Dalpiaz, Polyana L M; Firmes, Luciana B; Sousa, Glauciene J; Oliveira, Phablo Wendell C; Andrade, Tadeu U; Reis, Adelina M; Gouvea, Sônia A; Bissoli, Nazaré S

    2017-08-01

    The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  20. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei

    2017-05-02

    Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.

  1. The impact of tamoxifen on breast recurrence, cosmesis, complications, and survival in estrogen receptor-positive early-stage breast cancer

    International Nuclear Information System (INIS)

    Fowble, Barbara; Fein, Douglas A.; Hanlon, Alexandra L.; Eisenberg, Burton L.; Hoffman, John P.; Sigurdson, Elin R.; Daly, Mary B.; Goldstein, Lori J.

    1996-01-01

    Purpose: To evaluate the impact of tamoxifen on breast recurrence, cosmesis, complications, overall and cause-specific survival in women with Stage I-II breast cancer and estrogen receptor positive tumors undergoing conservative surgery and radiation. Methods and Materials: From 1982 to 1991, 491 women with estrogen receptor positive Stage I-II breast cancer underwent excisional biopsy, axillary dissection, and radiation. The median age of the patient population was 60 years with 21% < 50 years of age. The median follow-up was 5.3 years (range 0.1 to 12.8). Sixty-nine percent had T1 tumors and 83% had histologically negative axillary nodes. Reexcision was performed in 49% and the final margin of resection was negative in 64%. One hundred fifty-four patients received tamoxifen and 337 patients received no adjuvant therapy. None of the patients received adjuvant chemotherapy. Results: There were no significant differences between the two groups for age, race, clinical tumor size, histology, the use of reexcision, or median total dose to the primary. Patients who received tamoxifen were more often axillary node positive (44% tamoxifen vs. 5% no tamoxifen), and, therefore, a greater percentage received treatment to the breast and regional nodes. The tamoxifen patients less often had unknown margins of resection (9% tamoxifen vs. 22% no tamoxifen). The 5-year actuarial breast recurrence rate was 4% for the tamoxifen patients compared to 7% for patients not receiving tamoxifen (p 0.21). Tamoxifen resulted in a modest decrease in the 5-year actuarial risk of a breast recurrence in axillary node-negative patients, in those with unknown or close margins of resection, and in those who underwent a single excision. Axillary node-positive patients had a clinically significant decrease in the 5-year actuarial breast recurrence rate (21 vs. 4%; p 0.08). The 5-year actuarial rate of distant metastasis was not significantly decreased by the addition of adjuvant tamoxifen in all

  2. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells.

    Science.gov (United States)

    Vaziri-Gohar, Ali; Houston, Kevin D

    2016-02-15

    Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of mi......+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer.......RNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  4. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells.

    Science.gov (United States)

    Li, Wei; Xu, Ling; Che, Xiaofang; Li, Haizhou; Zhang, Ye; Song, Na; Wen, Ti; Hou, Kezuo; Yang, Yi; Zhou, Lu; Xin, Xing; Xu, Lu; Zeng, Xue; Shi, Sha; Liu, Yunpeng; Qu, Xiujuan; Teng, Yuee

    2018-05-02

    Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Our results suggested that c-Cbl can reverse tamoxifen

  5. Tamoxifen-Containing Eye Drops Successfully Trigger Cre-Mediated Recombination in the Entire Eye.

    Science.gov (United States)

    Schlecht, Anja; Leimbeck, Sarah V; Tamm, Ernst R; Braunger, Barbara M

    2016-01-01

    Embryonic lethality in mice with targeted gene deletion is a major issue that can be circumvented by using Cre-loxP-based animal models. Various inducible Cre systems are available, e.g. such that are activated following tamoxifen treatment, and allow deletion of a specific target gene at any desired time point during the life span of the animal. In this study, we describe the efficiency of topical tamoxifen administration by eye drops using a Cre- reporter mouse strain (R26R). We report that tamoxifen-responsive CAGGCre-ER (TM) mice show a robust Cre- mediated recombination throughout the entire eye.

  6. Prognostic and predictive importance of the estrogen receptor coactivator AIB1 in a randomized trial comparing adjuvant letrozole and tamoxifen therapy in postmenopausal breast cancer

    DEFF Research Database (Denmark)

    Alkner, S; Jensen, Maj-Britt Raaby; Rasmussen, B B

    2017-01-01

    PURPOSE: To evaluate the estrogen receptor coactivator amplified in breast cancer 1 (AIB1) as a prognostic marker, as well as a predictive marker for response to adjuvant tamoxifen and/or aromatase inhibitors, in early estrogen receptor-positive breast cancer. METHOD: AIB1 was analyzed...... with immunohistochemistry in tissue microarrays of the Danish subcohort (N = 1396) of the International Breast Cancer Study Group's trial BIG 1-98 (randomization between adjuvant tamoxifen versus letrozole versus the sequence of the two drugs). RESULTS: Forty-six percent of the tumors had a high AIB1 expression. In line...... with previous studies, AIB1 correlated to a more aggressive tumor-phenotype (HER2 amplification and a high malignancy grade). High AIB1 also correlated to higher estrogen receptor expression (80-100 vs. 1-79%), and ductal histological type. High AIB1 expression was associated with a poor disease-free survival...

  7. A comparison of survival outcomes and side effects of toremifene or tamoxifen therapy in premenopausal estrogen and progesterone receptor positive breast cancer patients: a retrospective cohort study

    International Nuclear Information System (INIS)

    Gu, Ran; Long, Meijun; Chen, Kai; Chen, Lili; Xiao, Qiaozhen; Wu, Mei; Song, Erwei; Su, Fengxi; Jia, Weijuan; Zeng, Yunjie; Rao, Nanyan; Hu, Yue; Li, Shunrong; Wu, Jiannan; Jin, Liang; Chen, Lijuan

    2012-01-01

    In premenopausal women, endocrine adjuvant therapy for breast cancer primarily consists of tamoxifen alone or with ovarian suppressive strategies. Toremifene is a chlorinated derivative of tamoxifen, but with a superior risk-benefit profile. In this retrospective study, we sought to establish the role of toremifene as an endocrine therapy for premenopausal patients with estrogen and/or progesterone receptor positive breast cancer besides tamoxifen. Patients with early invasive breast cancer were selected from the breast tumor registries at the Sun Yat-Sen Memorial Hospital (China). Premenopausal patients with endocrine responsive breast cancer who underwent standard therapy and adjuvant therapy with toremifene or tamoxifen were considered eligible. Patients with breast sarcoma, carcinosarcoma, concurrent contralateral primary breast cancer, or with distant metastases at diagnosis, or those who had not undergone surgery and endocrine therapy were ineligible. Overall survival and recurrence-free survival were the primary outcomes measured. Toxicity data was also collected and compared between the two groups. Of the 810 patients reviewed, 452 patients were analyzed in the study: 240 received tamoxifen and 212 received toremifene. The median and mean follow up times were 50.8 and 57.3 months, respectively. Toremifene and tamoxifen yielded similar overall survival values, with 5-year overall survival rates of 100% and 98.4%, respectively (p = 0.087). However, recurrence-free survival was significantly better in the toremifene group than in the tamoxifen group (p = 0.022). Multivariate analysis showed that recurrence-free survival improved independently with toremifene (HR = 0.385, 95% CI = 0.154-0.961; p = 0.041). Toxicity was similar in the two treatment groups with no women experiencing severe complications, other than hot flashes, which was more frequent in the toremifene patients (p = 0.049). No patients developed endometrial cancer. Toremifene may be a valid and

  8. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors......Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of miRNA......-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  9. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes.

    Science.gov (United States)

    Catanuto, Paola; Doublier, Sophie; Lupia, Enrico; Fornoni, Alessia; Berho, Mariana; Karl, Michael; Striker, Gary E; Xia, Xiaomei; Elliot, Sharon

    2009-06-01

    Diabetic nephropathy remains one of the most important causes of end-stage renal disease. This is particularly true for women from racial/ethnic minorities. Although administration of 17beta-estradiol to diabetic animals has been shown to reduce extracellular matrix deposition in glomeruli and mesangial cells, effects on podocytes are lacking. Given that podocyte injury has been implicated as a factor leading to the progression of proteinuria and diabetic nephropathy, we treated db/db mice, a model of type 2 diabetic glomerulosclerosis, with 17beta-estradiol or tamoxifen to determine whether these treatments reduce podocyte injury and decrease glomerulosclerosis. We found that albumin excretion, glomerular volume, and extracellular matrix accumulation were decreased in these mice compared to placebo treatment. Podocytes isolated from all treatment groups were immortalized and these cell lines were found to express the podocyte markers WT-1, nephrin, and the TRPC6 cation channel. Tamoxifen and 17beta-estradiol treatment decreased podocyte transforming growth factor-beta mRNA expression but increased that of the estrogen receptor subtype beta protein. 17beta-estradiol, but not tamoxifen, treatment decreased extracellular-regulated kinase phosphorylation. These data, combined with improved albumin excretion, reduced glomerular size, and decreased matrix accumulation, suggest that both 17beta-estradiol and tamoxifen may protect podocytes against injury and therefore ameliorate diabetic nephropathy.

  10. The impact of tamoxifen on breast recurrence, cosmesis, complications, and survival in estrogen receptor positive early stage breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fowble, B; Fein, D A; Hanlon, A L; Eisenberg, B L; Hoffman, J P; Sigurdson, E R; Daly, M B; Goldstein, L J

    1995-07-01

    Purpose: In the NSABP B14 trial evaluating tamoxifen (tam) in axillary node negative, estrogen receptor positive tumors fewer breast recurrences were observed in patients treated with conservative surgery and radiation who received tam compared to the observation arm. An additional series, however, has suggested that tam adversely impacts on the cosmetic result. To further address these issues we compared the outcome of estrogen receptor positive tumors treated with conservative surgery and radiation with or without tam. Materials and Methods: From 1982 to 1991, 491 women with estrogen receptor positive stage I-II breast cancer underwent excisional biopsy, axillary dissection and radiation. The median age of the patient population was 60 years (range 39-85). The median followup was 5.3 years (range .1-12.8). 69% had T1 tumors and 83% had histologically negative axillary nodes. Reexcision was performed in 49%. The final margin of resection was negative in 64%, unknown in 18%, and close or positive in 19%. None of the patients received adjuvant chemotherapy. 154 patients received tam and 337 received no adjuvant therapy. Patients who received tam were more often axillary node positive (44% tam vs 5% no tam) and less often had unknown margins (9% tam vs 22% no tam). There were no significant differences for the 2 groups for median age, primary tumor size, histology, race, or use of reexcision. Results: The 5 yr act rate of breast recurrence was 4% for the tam patients compared to 7% for patients not receiving tam (p=.21). At 8 yrs, the breast recurrence rates were 4% for the tam patients compared to 11% for the no tam patients (p=.05). However, at 9 years the rates were 17% tam vs 14% no tam (p=.21). The benefit from tam in terms of a decreased 5 year actuarial breast recurrence rate was most evident for patients who did not have a reexcision (3% tam vs 10% no tam, p=.15), had unknown margins (7% tam vs 13% no tam, p=.37) or close margins (0% tam vs 11% no tam, p=.34

  11. The impact of tamoxifen on breast recurrence, cosmesis, complications, and survival in estrogen receptor positive early stage breast cancer

    International Nuclear Information System (INIS)

    Fowble, B.; Fein, D.A.; Hanlon, A.L.; Eisenberg, B.L.; Hoffman, J.P.; Sigurdson, E.R.; Daly, M.B.; Goldstein, L.J.

    1995-01-01

    Purpose: In the NSABP B14 trial evaluating tamoxifen (tam) in axillary node negative, estrogen receptor positive tumors fewer breast recurrences were observed in patients treated with conservative surgery and radiation who received tam compared to the observation arm. An additional series, however, has suggested that tam adversely impacts on the cosmetic result. To further address these issues we compared the outcome of estrogen receptor positive tumors treated with conservative surgery and radiation with or without tam. Materials and Methods: From 1982 to 1991, 491 women with estrogen receptor positive stage I-II breast cancer underwent excisional biopsy, axillary dissection and radiation. The median age of the patient population was 60 years (range 39-85). The median followup was 5.3 years (range .1-12.8). 69% had T1 tumors and 83% had histologically negative axillary nodes. Reexcision was performed in 49%. The final margin of resection was negative in 64%, unknown in 18%, and close or positive in 19%. None of the patients received adjuvant chemotherapy. 154 patients received tam and 337 received no adjuvant therapy. Patients who received tam were more often axillary node positive (44% tam vs 5% no tam) and less often had unknown margins (9% tam vs 22% no tam). There were no significant differences for the 2 groups for median age, primary tumor size, histology, race, or use of reexcision. Results: The 5 yr act rate of breast recurrence was 4% for the tam patients compared to 7% for patients not receiving tam (p=.21). At 8 yrs, the breast recurrence rates were 4% for the tam patients compared to 11% for the no tam patients (p=.05). However, at 9 years the rates were 17% tam vs 14% no tam (p=.21). The benefit from tam in terms of a decreased 5 year actuarial breast recurrence rate was most evident for patients who did not have a reexcision (3% tam vs 10% no tam, p=.15), had unknown margins (7% tam vs 13% no tam, p=.37) or close margins (0% tam vs 11% no tam, p=.34

  12. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta.

    Science.gov (United States)

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki

    2004-01-01

    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  13. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2002-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  14. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2001-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  15. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-05-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor-α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α-positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

  16. MEL-18 loss mediates estrogen receptor–α downregulation and hormone independence

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-01-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor–α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α–positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer. PMID:25822021

  17. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    Science.gov (United States)

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  18. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  19. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination.

    Science.gov (United States)

    Khattak, Shahryar; Murawala, Prayag; Andreas, Heino; Kappert, Verena; Schuez, Maritta; Sandoval-Guzmán, Tatiana; Crawford, Karen; Tanaka, Elly M

    2014-03-01

    The axolotl (Mexican salamander, Ambystoma mexicanum) has become a very useful model organism for studying limb and spinal cord regeneration because of its high regenerative capacity. Here we present a protocol for successfully mating and breeding axolotls in the laboratory throughout the year, for metamorphosing axolotls by a single i.p. injection and for axolotl transgenesis using I-SceI meganuclease and the mini Tol2 transposon system. Tol2-mediated transgenesis provides different features and advantages compared with I-SceI-mediated transgenesis, and it can result in more than 30% of animals expressing the transgene throughout their bodies so that they can be directly used for experimentation. By using Tol2-mediated transgenesis, experiments can be performed within weeks (e.g., 5-6 weeks for obtaining 2-3-cm-long larvae) without the need to establish germline transgenic lines (which take 12-18 months). In addition, we describe here tamoxifen-induced Cre-mediated recombination in transgenic axolotls.

  20. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness–a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer

    International Nuclear Information System (INIS)

    Madeira, Marcelo; Mattar, André; Logullo, Ângela Flávia; Soares, Fernando Augusto; Gebrim, Luiz Henrique

    2013-01-01

    The role of estrogen receptor beta (ER-β) in breast cancer (BC) remains unclear. Some studies have suggested that ER-β may oppose the actions of estrogen receptor alpha (ER-α), and clinical evidence has indicated that the loss of ER-β expression is associated with a poor prognosis and resistance to endocrine therapy. The objective of the present study was to determine the role of ER-β and the ER-α/ER-β ratio in predicting the response to endocrine therapy and whether different regimens have any effect on ER-β expression levels. Ninety postmenopausal patients with primary BC were recruited for a short-term double-blinded randomized prospective controlled study. To determine tumor cell proliferation, we measured the expression of Ki67 in tumor biopsy samples taken before and after 26 days of treatment with anastrozole 1 mg/day (N = 25), tamoxifen 20 mg/day (N = 24) or placebo (N = 29) of 78 participants. The pre- and post-samples were placed in tissue microarray blocks and submitted for immunohistochemical assay. Biomarker statuses (ER-β, ER-α and Ki67) were obtained by comparing each immunohistochemical evaluation of the pre- and post-surgery samples using the semi-quantitative Allred’s method. Statistical analyses were performed using an ANOVA and Spearman’s correlation coefficient tests, with significance at p ≤ 0.05. The frequency of ER-β expression did not change after treatment (p = 0.33). There were no significant changes in Ki67 levels in ER-β-negative cases (p = 0.45), but in the ER-β-positive cases, the anastrozole (p = 0.01) and tamoxifen groups (p = 0.04) presented a significant reduction in post-treatment Ki67 scores. There was a weak but positive correlation between the ER-α and ER-β expression levels. Only patients with an ER-α/ER-β expression ratio between 1 and 1.5 demonstrated significant differences in Ki67 levels after treatment with anastrozole (p = 0.005) and tamoxifen (p = 0.026). Our results provide additional data that

  2. Tamoxifen and ICI 182,780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats.

    Science.gov (United States)

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-03-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30min compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. Published by Elsevier Inc.

  3. Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor alpha-positive postmenopausal breast carcinoma

    International Nuclear Information System (INIS)

    Bièche, Ivan; Girault, Igor; Urbain, Estelle; Tozlu, Sengül; Lidereau, Rosette

    2004-01-01

    Little is known of the function and clinical significance of intratumoral dysregulation of xenobiotic-metabolizing enzyme expression in breast cancer. One molecular mechanism proposed to explain tamoxifen resistance is altered tamoxifen metabolism and bioavailability. To test this hypothesis, we used real-time quantitative RT-PCR to quantify the mRNA expression of a large panel of genes coding for the major xenobiotic-metabolizing enzymes (12 phase I enzymes, 12 phase II enzymes and three members of the ABC transporter family) in a small series of normal breast (and liver) tissues, and in estrogen receptor alpha (ERα)-negative and ERα-positive breast tumors. Relevant genes were further investigated in a well-defined cohort of 97 ERα-positive postmenopausal breast cancer patients treated with primary surgery followed by adjuvant tamoxifen alone. Seven of the 27 genes showed very weak or undetectable expression in both normal and tumoral breast tissues. Among the 20 remaining genes, seven genes (CYP2A6, CYP2B6, FMO5, NAT1, SULT2B1, GSTM3 and ABCC11) showed significantly higher mRNA levels in ERα-positive breast tumors than in normal breast tissue, or showed higher mRNA levels in ERα-positive breast tumors than in ERα-negative breast tumors. In the 97 ERα-positive breast tumor series, most alterations of these seven genes corresponded to upregulations as compared with normal breast tissue, with an incidence ranging from 25% (CYP2A6) to 79% (NAT1). Downregulation was rare. CYP2A6, CYP2B6, FMO5 and NAT1 emerged as new putative ERα-responsive genes in human breast cancer. Relapse-free survival was longer among patients with FMO5-overexpressing tumors or NAT1-overexpressing tumors (P = 0.0066 and P = 0.000052, respectively), but only NAT1 status retained prognostic significance in Cox multivariate regression analysis (P = 0.0013). Taken together, these data point to a role of genes coding for xenobiotic-metabolizing enzymes in breast tumorigenesis, NAT1 being an

  4. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    International Nuclear Information System (INIS)

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu

    2007-01-01

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor β (TGFβ) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGFβ treatment, or co-treatment with TGFβ inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGFβ signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGFβ signaling pathway in breast cancer cells

  5. Tamoxifen and the Rafoxifene analog LY117018: their effects on arachidonic acid release from cells in culture and on prostaglandin I2 production by rat liver cells

    International Nuclear Information System (INIS)

    Levine, Lawrence

    2004-01-01

    Tamoxifen is being used successfully to treat breast cancer. However, tamoxifen also increases the risk of developing endometrial cancer in postmenopausal women. Raloxifene also decreases breast cancer in women at high risk and may have a lower risk at developing cancer of the uterus. Tamoxifen has been shown to stimulate arachidonic acid release from rat liver cells. I have postulated that arachidonic acid release from cells may be associated with cancer chemoprevention. Rat liver, rat glial, human colon carcinoma and human breast carcinoma cells were labelled with [ 3 H] arachidonic acid. The release of the radiolabel from these cells during incubation with tamoxifen and the raloxifene analog LY117018 was measured. The prostaglandin I 2 produced during incubation of the rat liver cells with μM concentrations of tamoxifen and the raloxifene analog was quantitatively estimated. Tamoxifen is about 5 times more effective than LY117018 at releasing arachidonic acid from all the cells tested. In rat liver cells only tamoxifen stimulates basal prostaglandin I 2 production and that induced by lactacystin and 12-O-tetradecanoyl-phorbol-13-acetate. LY117018, however, blocks the tamoxifen stimulated prostaglandin production. The stimulated prostaglandin I 2 production is rapid and not affected either by preincubation of the cells with actinomycin or by incubation with the estrogen antagonist ICI-182,780. Tamoxifen and the raloxifene analog, LY117018, may prevent estrogen-independent as well as estrogen-dependent breast cancer by stimulating phospholipase activity and initiating arachidonic acid release. The release of arachidonic acid and/or molecular reactions that accompany that release may initiate pathways that prevent tumor growth. Oxygenation of the intracellularly released arachidonic acid and its metabolic products may mediate some of the pharmacological actions of tamoxifen and raloxifene

  6. Effects of OK-432 (picibanil) on the estrogen receptors of MCF-7 cells and potentiation of antiproliferative effects of tamoxifen in combination with OK-432.

    Science.gov (United States)

    Aoyagi, H; Iino, Y; Takeo, T; Horii, Y; Morishita, Y; Horiuchi, R

    1997-01-01

    OK-432 (picibanil), a streptococcal preparation, has a strong biological response modifier (BRM) function and is expected to produce clinical improvement and prolongation of survival in treated cancer patients in Japan. We were interested in whether OK-432 augments estrogen receptor (ER) levels in breast cancer. To investigate the effect of the BRMs on cellular growth and the characteristics of ER and progesterone receptors (PgR) in the human breast cancer cell line MCF-7, we used OK-432, Krestin (PSK), a protein-bound polysaccharide extracted from Coriolus versicolor, and lentinan, a fungal branched (1...3)-beta-D-glycan. OK432 and PSK dose dependently inhibited DNA synthesis of MCF-7 cells, and the 50% inhibitory concentrations of OK-432 and PSK were 1.2 KE (klinische Einheit, clinical unit)/ml and 200 micrograms/ml, respectively. Lentinan showed no direct anticancer effect in vitro. We found that OK-432 induced a 2-fold increase in ER levels in MCF-7 cells at 0.005 KE/ml, but not in PgR. Lentinan and low-dose PSK did not change ER or PgR levels, but high-dose PSK decreased ER and PgR. We also studied the combined effect of OK-432 and antiestrogens, tamoxifen (TAM) and DP-TAT-59. The combined treatment with OK-432 and TAM showed an additive inhibitory effect on MCF-7 cells. These results suggest that OK-432 may augment the therapeutic effect of TAM in breast cancer.

  7. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  8. Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells

    NARCIS (Netherlands)

    Meijer, Danielle; van Agthoven, Ton; Bosma, Peter T.; Nooter, Kees; Dorssers, Lambert C. J.

    2006-01-01

    Antiestrogens, such as tamoxifen, are widely used for endocrine treatment of estrogen receptor-positive breast cancer. However, as breast cancer progresses, development of tamoxifen resistance is inevitable. The mechanisms underlying this resistance are not well understood. To identify genes

  9. Role of RBP2-Induced ER and IGF1R-ErbB Signaling in Tamoxifen Resistance in Breast Cancer.

    Science.gov (United States)

    Choi, Hee-Joo; Joo, Hyeong-Seok; Won, Hee-Young; Min, Kyueng-Whan; Kim, Hyung-Yong; Son, Taekwon; Oh, Young-Ha; Lee, Jeong-Yeon; Kong, Gu

    2018-04-01

    Despite the benefit of endocrine therapy, acquired resistance during or after treatment still remains a major challenge in estrogen receptor (ER)-positive breast cancer. We investigated the potential role of histone demethylase retinoblastoma-binding protein 2 (RBP2) in endocrine therapy resistance of breast cancer. Survival of breast cancer patients according to RBP2 expression was analyzed in three different breast cancer cohorts including METABRIC (n = 1980) and KM plotter (n = 1764). RBP2-mediated tamoxifen resistance was confirmed by invitro sulforhodamine B (SRB) colorimetric, colony-forming assays, and invivo xenograft models (n = 8 per group). RNA-seq analysis and receptor tyrosine kinase assay were performed to identify the tamoxifen resistance mechanism by RBP2. All statistical tests were two-sided. RBP2 was associated with poor prognosis to tamoxifen therapy in ER-positive breast cancer (P = .04 in HYU cohort, P = .02 in KM plotter, P = .007 in METABRIC, log-rank test). Furthermore, RBP2 expression was elevated in patients with tamoxifen-resistant breast cancer (P = .04, chi-square test). Knockdown of RBP2 conferred tamoxifen sensitivity, whereas overexpression of RBP2 induced tamoxifen resistance invitro and invivo (MCF7 xenograft: tamoxifen-treated control, mean [SD] tumor volume = 70.8 [27.9] mm3, vs tamoxifen-treated RBP2, mean [SD] tumor volume = 387.9 [85.1] mm3, P < .001). Mechanistically, RBP2 cooperated with ER co-activators and corepressors and regulated several tamoxifen resistance-associated genes, including NRIP1, CCND1, and IGFBP4 and IGFBP5. Furthermore, epigenetic silencing of IGFBP4/5 by RBP2-ER-NRIP1-HDAC1 complex led to insulin-like growth factor-1 receptor (IGF1R) activation. RBP2 also increased IGF1R-ErbB crosstalk and subsequent PI3K-AKT activation via demethylase activity-independent ErbB protein stabilization. Combinational treatment with tamoxifen and PI3K inhibitor could overcome RBP2-mediated tamoxifen

  10. Estrogen

    Science.gov (United States)

    ... menopause ('change of life', the end of monthly menstrual periods). Some brands of estrogen are also used ... you.Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient.

  11. Tamoxifen and ovarian function.

    Directory of Open Access Journals (Sweden)

    Martine Berliere

    Full Text Available BACKGROUND: Some studies suggest that the clinical parameter "amenorrhea" is insufficient to define the menopausal status of women treated with chemotherapy or tamoxifen. In this study, we investigated and compared the ovarian function defined either by clinical or biological parameters in pre-menopausal breast cancer patients treated with tamoxifen administered as adjuvant therapy. MATERIALS AND METHODS: Between 1999 and 2003, 138 premenopausal patients consecutively treated for early breast cancer were included. Sixty-eight received tamoxifen in monotherapy as the only adjuvant systemic treatment (Group I and 70 were treated with tamoxifen after adjuvant chemotherapy (Group II. All patients had a confirmed premenopausal status based on clinical parameters and hormonal values at study entry. They were followed prospectively every 3 months for 3 years: menses data, physical examination and blood tests (LH, FSH, 17-beta-estradiol. Vaginal ultrasonography was carried out every 6 months. After 3 years, prospective evaluation was completed and monitoring of ovarian function was performed as usual in our institution (1x/year. All data were retrospectively evaluated in 2011. RESULTS: Three patients were excluded from the study in group I and 2 were excluded in group II. Patients were divided into 4 subgroups according to clinical data, i.e. menses patterns. These patterns were assessed by questionnaires. a: Regular menses (>10 cycles/year b: Oligomenorrhea (5 to 9 cycles/year c: Severe oligomenorrhea (1 to 4 cycles/year d: Complete amenorrhea Estrogen levels did not appear to have any impact on disease-free survival rates after 3 or 8 years. FSH values were also documented and analyzed. They exhibited the same profile as estradiol values. CONCLUSIONS: Amenorrhea is an insufficient parameter to define menopausal status in patients receiving tamoxifen. Low estradiol levels must be coupled with other biological parameters to characterize endocrine status

  12. Changes in the transcriptome of the human endometrial Ishikawa cancer cell line induced by estrogen, progesterone, tamoxifen, and mifepristone (RU486 as detected by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Karin Tamm-Rosenstein

    Full Text Available BACKGROUND: Estrogen (E2 and progesterone (P4 are key players in the maturation of the human endometrium. The corresponding steroid hormone modulators, tamoxifen (TAM and mifepristone (RU486 are widely used in breast cancer therapy and for contraception purposes, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression profiling of the human endometrial Ishikawa cancer cell line treated with E2 and P4 for 3 h and 12 h, and TAM and RU486 for 12 h, was performed using RNA-sequencing. High levels of mRNA were detected for genes, including PSAP, ATP5G2, ATP5H, and GNB2L1 following E2 or P4 treatment. A total of 82 biomarkers for endometrial biology were identified among E2 induced genes, and 93 among P4 responsive genes. Identified biomarkers included: EZH2, MDK, MUC1, SLIT2, and IL6ST, which are genes previously associated with endometrial receptivity. Moreover, 98.8% and 98.6% of E2 and P4 responsive genes in Ishikawa cells, respectively, were also detected in two human mid-secretory endometrial biopsy samples. TAM treatment exhibited both antagonistic and agonistic effects of E2, and also regulated a subset of genes independently. The cell cycle regulator cyclin D1 (CCND1 showed significant up-regulation following treatment with TAM. RU486 did not appear to act as a pure antagonist of P4 and a functional analysis of RU486 response identified genes related to adhesion and apoptosis, including down-regulated genes associated with cell-cell contacts and adhesion as CTNND1, JUP, CDH2, IQGAP1, and COL2A1. CONCLUSIONS: Significant changes in gene expression by the Ishikawa cell line were detected after treatments with E2, P4, TAM, and RU486. These transcriptome data provide valuable insight into potential biomarkers related to endometrial receptivity, and also facilitate an understanding of the molecular changes that take place in the endometrium in the early stages of breast cancer treatment and contraception usage.

  13. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Clausen, Mathias Porsmose; Bennetzen, Martin

    2009-01-01

    , the compound is now also recognized as a multitargeting drug with diverse potential applications, for example, it has antiproliferative properties and it can reverse resistance toward antibiotics in bacteria. Furthermore, chlorpromazine can reverse multidrug resistance caused by overexpression of P......Tamoxifen resistance is a major clinical problem in the treatment of estrogen receptor a-positive breast tumors. It is, at present, unclear what exactly causes tamoxifen resistance. For decades, chlorpromazine has been used for treating psychotic diseases, such as schizophrenia. However......-sensitive breast cancer cell line, MCF-7, and in a tamoxifen-resistant cell line, established from the MCF-7 cells. Tamoxifen-sensitive and tamoxifen-resistant cells were killed equally well by combined treatment with chlorpromazine and tamoxifen. This synergistic effect could be prevented by addition of estrogen...

  14. A trans-acting enhancer modulates estrogen-mediated transcription of reporter genes in osteoblasts.

    Science.gov (United States)

    Sasaki-Iwaoka, H; Maruyama, K; Endoh, H; Komori, T; Kato, S; Kawashima, H

    1999-02-01

    The presence of bone-specific estrogen agonists and discovery of the osteoblast-specific transcription factor (TF), Cbfa1, together with the discovery of synergism between a TF Pit-1 and estrogen receptor alpha (ERalpha) on rat prolactin gene, led to investigation of Cbfa1 in the modulation of osteoblast-specific actions of estrogen. Reverse transcribed-polymerase chain reaction demonstrated expression of Cbfa1 in the osteoblastic cell lines, MG63, ROS17/2.8, and MC3T3E1, but not in nonosteoblastic cell lines, MCF7, C3H10T1/2, and HeLa. An ER expression vector and a series of luciferase (Luc) reporter plasmids harboring the Cbfa1 binding site OSE2 (the osteoblast-specific cis element in the osteocalcin promoter) and palindromic estrogen response elements (EREs) were cotransfected into both osteoblastic and nonosteoblastic cells. OSE2 worked as a cis- acting element in osteoblastic cells but not nonosteoblastic cells, whereas EREs were cis- acting in all cell lines. Synergistic transactivation was observed in osteoblastic cells only when both ERE and OSE2 were placed in juxtaposition to the promoter. Forced expression of Cbfa1 in C3H10T1/2 cells also induced synergism. Tamoxifen, a partial agonist/antagonist of estrogen, acted as an osteoblast-specific agonist in cells transfected with a promoter containing ERE and acted synergistically with a promoter containing the ERE-OSE2 enhancer combination. These results support the idea that bone-specific TFs modulate the actions of estrogen in a tissue-specific manner.

  15. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Stisova, Viktorie [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic); Goffinont, Stephane; Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire CNRS, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Davidkova, Marie, E-mail: davidkova@ujf.cas.c [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic)

    2010-08-15

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERalpha, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with gamma rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  16. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Paul L. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M. [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Ford, Benjamin M.; Franks, Lirit N. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Radominska-Pandya, Anna, E-mail: RadominskaAnna@uams.edu [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States)

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  17. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    International Nuclear Information System (INIS)

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-01-01

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  18. Paradoxical action of fulvestrant in estradiol-induced regression of tamoxifen-stimulated breast cancer.

    Science.gov (United States)

    Osipo, Clodia; Gajdos, Csaba; Liu, Hong; Chen, Bin; Jordan, V Craig

    2003-11-05

    Long-term tamoxifen treatment of breast cancer can result in tamoxifen-stimulated breast cancer, in which estrogen inhibits tumor growth after tamoxifen withdrawal. We investigated the molecular mechanism(s) of estradiol-induced tumor regression by using an in vivo model of tamoxifen-stimulated human breast cancer. Growth of parental estradiol-stimulated MCF-7E2 and long-term tamoxifen-stimulated MCF-7TAMLT xenografts in athymic mice was measured during treatment with vehicle, estradiol, estradiol plus tamoxifen, tamoxifen alone, estradiol plus fulvestrant, or fulvestrant alone. Apoptosis was detected by the terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Protein expression was assessed by western blot analysis. mRNA expression was assessed by real-time reverse transcription-polymerase chain reaction. All statistical tests were two-sided. MCF-7E2 tumor growth was stimulated by estradiol (cross-sectional area at week 13 = 1.06 cm2, 95% confidence interval [CI] = 0.82 to 1.30 cm2; Pestradiol-induced regression to 0.18 cm2 (95% CI = 0.15 to 0.21 cm2; P<.001), and tamoxifen or estradiol plus fulvestrant enhanced tumor growth to 1.00 cm2 (95% CI = 0.88 to 1.22 cm2). Estradiol increased the number of apoptotic cells in tumors by 23% (95% CI = 20% to 26%; P<.001) compared with all other treatments, decreased estrogen receptor alpha(ERalpha) protein expression, increased the expression of Fas mRNA and protein, decreased the expression of HER2/neu mRNA and protein and nuclear factor kappaB (NF-kappaB) protein but did not affect Fas ligand protein expression compared with control. Paradoxically, fulvestrant reversed this effect and stimulated MCF-7TAMLT tumor growth apparently through ERalpha-mediated regulation of Fas, HER2/neu, and NF-kappaB. Physiologic levels of estradiol induced regression of tamoxifen-stimulated breast cancer tumors, apparently by inducing the death receptor Fas and suppressing the antiapoptotic

  19. Tumorigenic Effects of Tamoxifen on the Female Genital Tract

    Directory of Open Access Journals (Sweden)

    Kaei Nasu M.D., Ph.D.

    2008-01-01

    Full Text Available Tamoxifen is widely used for endocrine treatment and breast cancer prevention. It acts as both an estrogen antagonist in breast tissue and an estrogen agonist in the female lower genital tract. Tamoxifen causes severe gynecologic side effects, such as endometrial cancer. This review focuses on the effects of prolonged tamoxifen treatment on the human female genital tract and considers its tumorigenicity in the gynecologic organs through clinical data analysis. Tamoxifen is associated with an increased incidence of benign endometrial lesions such as polyps and hyperplasia and a two- to four-fold increased risk of endometrial cancer in postmenopausal patients. Moreover, the incidence of functional ovarian cysts is significantly high in premenopausal tamoxifen users. To prevent tamoxifen from having severe side effects in gynecologic organs, frequent gynecological examination should be performed for both premenopausal and postmenopausal patients with breast cancer who are treated with this drug.

  20. Estrogen-mediated hemangioma-derived stem cells through estrogen receptor-α for infantile hemangioma

    Directory of Open Access Journals (Sweden)

    Zhang L

    2017-07-01

    Full Text Available Ling Zhang,1 Hai Wei Wu,1 Weien Yuan,2 Jia Wei Zheng1 1Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Background: Infantile hemangiomas (IHs are the most common benign vascular tumor of infancy. They occur more frequently in female infants. The cause of hemangioma is currently unknown; however, current studies suggested the importance of estrogen (E2 signaling in hemangioma proliferation. Methods: Hemangioma-derived stem cells (HemSCs were cultured with estrogen for 48–72 h; the cell viability and proliferation were evaluated with the messenger RNA (mRNA and protein expression levels of fibroblast growth factor 2 (FGF2, vascular endothelial growth factor-A (VEGF-A and estrogen receptor-α (ER-α, by application of several in vitro assays, such as methyl thiazolyl tetrazolium (MTT, reverse transcriptase–polymerase chain reaction (RT-PCR, real-time PCR, enzyme-linked immunosorbent assay (ELISA and Western blotting. Also, the cell population’s response to external estrogen was investigated by in vivo experiments. HemSCs and human umbilical vein endothelial cells (HUVECs were mixed and injected subcutaneously into 20 flank of BALB/c-nu mice, which were randomly divided into 5 groups based on different E2 treatment doses (0, 0.01, 0.1 and 1 mg, respectively, 0.1 mg dimethyl sulfoxide (DMSO as control. Each group of mice were treated intramuscularly every week, then 2 and 4 weeks later, the subcutaneous implants were harvested and evaluated the tumor tissues with microvessel density (MVD assay and immunohistochemistry. Results: The study demonstrated that application of E2 increased the expression of FGF2, VEGF-A, and ER-α in HemSCs with the optimal concentration from 10−9 to 10−5 M. Two

  1. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Chramostová, Kateřina; Plíšková, M.; Bláha, L.; Brack, W.; Kozubík, Alois; Machala, M.

    2004-01-01

    Roč. 23, č. 9 (2004), s. 2214-2220 ISSN 0730-7268 R&D Projects: GA ČR GA525/03/1527 Institutional research plan: CEZ:AV0Z5004920 Keywords : aryl hydrocarbon receptor-mediated activity * estrogenicity * intercellular communication inhibition Subject RIV: BO - Biophysics Impact factor: 2.121, year: 2004

  2. Effects of tamoxifen on vaginal blood flow and epithelial morphology in the rat

    Directory of Open Access Journals (Sweden)

    Goldstein Irwin

    2006-09-01

    Full Text Available Abstract Background Tamoxifen, a selective estrogen receptor modulator with both estrogenic and anti-estrogenic activity, is widely used as adjuvant therapy in breast cancer patients. Treatment with tamoxifen is associated with sexual side effects, such as increased vaginal dryness and pain/discomfort during sexual activity. There have been limited investigations of the effect of tamoxifen on estrogen-dependent peripheral genital arousal responses. The objective of this study was to investigate the effects of tamoxifen on vaginal physiology in the rat. Methods Female Sprague-Dawley rats were subjected to sham surgery or bilateral ovariectomy. After 2 weeks, sham-operated rats were implanted with subcutaneous osmotic infusion pumps containing vehicle (control or tamoxifen (150 μg/day. Ovariectomized rats were similarly infused with vehicle. After an additional 2 weeks, vaginal blood flow responses to pelvic nerve stimulation were measured by laser Doppler flowmetry and vaginal tissue was collected for histological and biochemical assay. Results Tamoxifen treatment did not change plasma estradiol concentrations relative to control animals, while ovariectomized rats exhibited a 60% decrease in plasma estradiol. Tamoxifen treatment caused a significant decrease in mean uterine weight, but did not alter mean vaginal weight. Vaginal blood flow was significantly decreased in tamoxifen-infused rats compared to controls. Similar to ovariectomized animals, estrogen receptor binding was increased and arginase enzyme activity was decreased in tamoxifen-infused rats. However, different from control and ovariectomized animals, the vaginal epithelium in tamoxifen-infused rats appeared highly mucified. Periodic acid-Schiff staining confirmed a greater production of carbohydrate-rich compounds (e.g. mucin, glycogen by the vaginal epithelium of tamoxifen-infused rats. Conclusion The observations suggest that tamoxifen exerts both anti-estrogenic and pro-estrogenic

  3. Prognostic Impact of the Combination of Recurrence Score and Quantitative Estrogen Receptor Expression (ESR1) on Predicting Late Distant Recurrence Risk in Estrogen Receptor-Positive Breast Cancer After 5 Years of Tamoxifen: Results From NRG Oncology/National Surgical Adjuvant Breast and Bowel Project B-28 and B-14.

    Science.gov (United States)

    Wolmark, Norman; Mamounas, Eleftherios P; Baehner, Frederick L; Butler, Steven M; Tang, Gong; Jamshidian, Farid; Sing, Amy P; Shak, Steven; Paik, Soonmyung

    2016-07-10

    We determined the utility of the 21-Gene Recurrence Score (RS) in predicting late (> 5 years) distant recurrence (LDR) in stage I and II breast cancer within high and low-ESR1-expressing groups. RS was assessed in chemotherapy/tamoxifen-treated, estrogen receptor (ER) -positive, node-positive National Surgical Adjuvant Breast and Bowel Project B-28 patients and tamoxifen-treated, ER-positive, node-negative B-14 patients. The association of the RS with risk of distant recurrence (DR) 0 to 5 years and those at risk > 5 years was assessed. An ESR1 expression cut point was optimized in B-28 and tested in B-14. Median follow-up was 11.2 years for B-28 and 13.9 years for B-14. Of 1,065 B-28 patients, 36% had low ( 5 to 10 years (log-rank P = .02) regardless of ESR1 expression. An ESR1 expression cut point of 9.1 CT was identified in B-28. It was validated in B-14 patients for whom the RS was associated with DR in years 5 to 15: 6.8% (95% CI, 4.4% to 10.6%) versus 11.2% (95% CI, 6.2% to 19.9%) versus 16.4% (95% CI, 10.2% to 25.7%) for RS < 18, RS 18 to 30, and RS ≥ 31, respectively (log-rank P = .01). For LDR, RS is strongly prognostic in patients with higher quantitative ESR1. Risk of LDR is relatively low for patients with low RS. These results suggest the value of extended tamoxifen therapy merits evaluation in patients with intermediate and high RS with higher ESR1 expression at initial diagnosis. © 2016 by American Society of Clinical Oncology.

  4. Prognostic Impact of the Combination of Recurrence Score and Quantitative Estrogen Receptor Expression (ESR1) on Predicting Late Distant Recurrence Risk in Estrogen Receptor–Positive Breast Cancer After 5 Years of Tamoxifen: Results From NRG Oncology/National Surgical Adjuvant Breast and Bowel Project B-28 and B-14

    Science.gov (United States)

    Wolmark, Norman; Baehner, Frederick L.; Butler, Steven M.; Tang, Gong; Jamshidian, Farid; Sing, Amy P.; Shak, Steven; Paik, Soonmyung

    2016-01-01

    Purpose We determined the utility of the 21-Gene Recurrence Score (RS) in predicting late (> 5 years) distant recurrence (LDR) in stage I and II breast cancer within high and low-ESR1–expressing groups. Patients and Methods RS was assessed in chemotherapy/tamoxifen-treated, estrogen receptor (ER) –positive, node-positive National Surgical Adjuvant Breast and Bowel Project B-28 patients and tamoxifen-treated, ER-positive, node-negative B-14 patients. The association of the RS with risk of distant recurrence (DR) 0 to 5 years and those at risk > 5 years was assessed. An ESR1 expression cut point was optimized in B-28 and tested in B-14. Results Median follow-up was 11.2 years for B-28 and 13.9 years for B-14. Of 1,065 B-28 patients, 36% had low ( 5 to 10 years (log-rank P = .02) regardless of ESR1 expression. An ESR1 expression cut point of 9.1 CT was identified in B-28. It was validated in B-14 patients for whom the RS was associated with DR in years 5 to 15: 6.8% (95% CI, 4.4% to 10.6%) versus 11.2% (95% CI, 6.2% to 19.9%) versus 16.4% (95% CI, 10.2% to 25.7%) for RS < 18, RS 18 to 30, and RS ≥ 31, respectively (log-rank P = .01). Conclusion For LDR, RS is strongly prognostic in patients with higher quantitative ESR1. Risk of LDR is relatively low for patients with low RS. These results suggest the value of extended tamoxifen therapy merits evaluation in patients with intermediate and high RS with higher ESR1 expression at initial diagnosis. PMID:27217450

  5. Tamoxifen or letrozole versus standard methods for women with estrogen-receptor positive breast cancer undergoing oocyte or embryo cryopreservation in assisted reproduction

    NARCIS (Netherlands)

    Dahhan, Taghride; Balkenende, Eva; van Wely, Madelon; Linn, Sabine; Goddijn, Mariette

    2013-01-01

    Cryopreservation of oocytes or embryos preceded by controlled ovarian stimulation (COS) can increase the chance of future pregnancy in women with breast cancer who risk therapy-induced ovarian failure. In women with estrogen-receptor (ER) positive breast cancer, alternative COS protocols with

  6. Effect of conjugated equine estrogens and tamoxifen administration on thyroid gland histomorphology of the rat Os efeitos dos estrogênios conjugados equinos e do tamoxifeno na histomorfologia da glândula tireóide de ratas

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Bittencourt de Araujo

    2006-08-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the action of the conjugated equine estrogens and tamoxifen on the morphology of thyroid gland in ovariectomized (OVx rats. METHODS: Conjugated equine estrogens (CEE, clinically used as estrogen therapy, is a complex formulation containing multiple estrogens that decrease menopausal symptoms. Thirty ovariectomized rats were randomly divided into 3 treatment groups: GI, vehicle (propylene glycol; GII, CEE 200 µg/kg per day; and GIII, tamoxifen 1 mg/kg per day. Another group of 10 rats with intact ovaries (GIV was included, treated with the vehicle, and sacrificed during estrous. All animals were treated by gavage for 50 days, after which they were sacrificed. Blood samples were collected, and the thyroid was removed for morphological analysis and PCNA evaluation through immunohistochemical study. RESULTS: The thyroid follicular cell height was increased in animals treated with CEE (14.90 ± 0.20 µm, with TAM (14.90 ± 0.10 µm, and in rats with intact ovaries (15.10 ± 0.50 µm in comparison to that of the vehicle group (9.90 ± 0.20 µm (P OBJETIVO: Avaliar a ação dos estrogênios conjugados eqüinos e do tamoxifeno na histomorfologia da tireóide de ratas. MÉTODO: Estrogênios conjugados eqüinos são ministrados clinicamente como terapia estrogênica e contêm formulação complexa com muitos tipos de estrogênios que diminuem os sintomas da pós-menopausa. Trinta ratas adultas ooforectomizadas foram divididas aleatoriamente em três grupos: GI - veículo (propilenoglicol; GII - ECE 200 µg/Kg por dia; e GIII - TAM 1 mg/Kg por dia. Acrescentou-se ainda um grupo de 10 animais com os ovários intactos e tratados com veículo (GIV. Todos os animais foram tratados por gavagem durante 50 dias consecutivos, ao final foram coletadas amostras do sangue e a tireóide removida e processada para análise morfológica e imunohistoquímico para avaliar o PCNA. RESULTADOS: A maior altura das c

  7. Estrogen-mediated Height Control in Girls with Marfan Syndrome.

    Science.gov (United States)

    Lee, Dong-Yun; Hyun, Hye Sun; Huh, Rimm; Jin, Dong-Kyu; Kim, Duk-Kyung; Yoon, Byung-Koo; Choi, DooSeok

    2016-02-01

    This study evaluated the efficacy of a stepwise regimen of estradiol valerate for height control in girls with Marfan syndrome. Eight girls with Marfan syndrome who had completed estrogen treatment for height control were included. Estradiol valerate was started at a dose of 2 mg/day, and then was increased. The projected final height was estimated using the initial height percentile (on a disease-specific growth curve for Korean Marfan syndrome [gcPFHt]), and the initial bone age (baPFHt). After the estrogen treatment, the projected final height was compared to the actual final height (FHt). The median baseline chronological and bone age were 10.0 and 10.5 years, respectively. After a median of 36.5 months of treatment, the median FHt (172.6 cm) was shorter than the median gcPFHt (181.0 cm) and baPFHt (175.9 cm). In the six patients who started treatment before the age of 11 years, the median FHt (171.8 cm) was shorter than the median gcPFHt (181.5 cm) and baPFHt (177.4 cm) after treatment. The median differences between the FHt and gcPFHt and baPFHt were 9.2 and 8.3 cm, respectively. In two patients started treatment after the age of 11, the differences between FHt and gcPFHt, and baPFHt after treatment were -4 and 1.4 cm, and -1.2 and 0 cm for each case, respectively. A stepwise increasing regimen of estradiol valerate may be an effective treatment for height control in girls with Marfan syndrome, especially when started under 11 years old.

  8. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor.

    Science.gov (United States)

    Kousteni, Stavroula; Almeida, Maria; Han, Li; Bellido, Teresita; Jilka, Robert L; Manolagas, Stavros C

    2007-02-01

    Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.

  9. Quantifying mediating effects of endogenous estrogen and insulin in the relation between obesity, alcohol consumption, and breast cancer

    DEFF Research Database (Denmark)

    Hvidtfeldt, Ulla A; Gunter, Marc J; Lange, Theis

    2012-01-01

    Increased exposure to endogenous estrogen and/or insulin may partly explain the relationship of obesity, physical inactivity, and alcohol consumption and postmenopausal breast cancer. However, these potential mediating effects have not been formally quantified in a survival analysis setting....

  10. Exogenous estrogen as mediator of racial differences in bioactive insulin-like growth factor-I levels among postmenopausal women.

    Science.gov (United States)

    Jung, Su Yon; Vitolins, Mara Z; Paskett, Electra D; Chang, Shine

    2015-04-01

    The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race-IGF-I relationship in postmenopausal women. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women's Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race-IGF-I relationship, we used the Baron-Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race-IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    Science.gov (United States)

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver

    International Nuclear Information System (INIS)

    Conti, Aline de; Tryndyak, Volodymyr; Churchwell, Mona I.; Melnyk, Stepan; Latendresse, John R.; Muskhelishvili, Levan; Beland, Frederick A.; Pogribny, Igor P.

    2014-01-01

    Highlights: • Treatment of female mice with tamoxifen caused genotoxic changes in the livers. • Tamoxifen treatment did not affect the hepatic epigenome. • Tamoxifen caused over-expression of hepatic Lcn13 and Pparγ genes. • Mice are resistant to tamoxifen-induced liver carcinogenesis and fatty liver injury. - Abstract: Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-α-(deoxyguanosin-N 2 -yl)-tamoxifen (dG-TAM) and (E)-α-(deoxyguanosin-N 2 -yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Pparγ), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen

  13. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  14. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes

    DEFF Research Database (Denmark)

    Wiik, A.; Hellsten, Ylva; Berthelson, P.

    2009-01-01

    is ER independent. The muscle contraction-induced transactivation of ERE and increase in ERbeta mRNA were instead found to be MAP kinase (MAPK) dependent. This study demonstrates for the first time that muscle contractions have a similar functional effect as estrogen in skeletal muscle myotubes, causing......The aim of the present study was to investigate the activation of estrogen response elements (EREs) by estrogen and muscle contractions in rat myotubes in culture and to assess whether the activation is dependent on the estrogen receptors (ERs). In addition, the effect of estrogen and contraction...... on the mRNA levels of ERalpha and ERbeta was studied to determine the functional consequence of the transactivation. Myoblasts were isolated from rat skeletal muscle and transfected with a vector consisting of sequences of EREs coupled to the gene for luciferase. The transfected myoblasts were...

  15. Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line

    Science.gov (United States)

    Varadharajaperumal, Pradeepa; Subramanian, Balakumar; Santhanam, Amutha

    2017-09-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterials, which have used as antimicrobial and disinfectant agents due to their detrimental effect on target cells. In the present study it was explored to deliver a novel tamoxifen drug system that can be used in breast cancer treatment, based on chitosan coated silver nanoparticles on MCF-7 human breast cancer cells. AgNPs synthesized from Adenia hondala tuber extract were used to make the chitosan coated AgNPs (Ch-AgNPs), in which the drug tamoxifen was loaded on chitosan coated silver nanoparticles (Tam-Ch-AgNPs) to construct drug loaded nanoparticles as drug delivery system. The morphology and characteristics of the Ch-AgNPs were investigated by UV, FTIR, zeta potential and FESEM. Furthermore, the toxicity of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs was evaluated through cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3, DNA laddering, and TUNEL assay in human breast cancer cells (MCF-7) and HBL-100 continuous cell line as a control. Treatment of cancer cells with various concentrations of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs for 24 h revealed that Tam-Ch-AgNPs could inhibit cell viability and induce significant membrane leakage in a dose-dependent manner. Cells exposed to Tam-Ch-AgNPs showed increased reactive oxygen species and hydroxyl radical production when compared to AgNPs, Ch-AgNPs. Furthermore, the apoptotic effects of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs were confirmed by activation of caspase-3 and DNA nuclear fragmentation. The present findings suggest that Tam-Ch-AgNPs could contribute to the development of a suitable anticancer drug delivery.

  16. Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer

    NARCIS (Netherlands)

    Meijer, Danielle; Sieuwerts, Anieta M.; Look, Maxime P.; van Agthoven, Ton; Foekens, John A.; Dorssers, Lambert C. J.

    2008-01-01

    Tamoxifen treatment of estrogen-dependent breast cancer ultimately loses its effectiveness due to the development of resistance. From a functional screen for identifying genes responsible for tamoxifen resistance in human ZR-75-1 breast cancer cells, fibroblast growth factor (FGF) 17 was recovered.

  17. Approaches for predicting effects of unintended environmental exposure to an endocrine active pharmaceutical, tamoxifen

    Science.gov (United States)

    Tamoxifen is an endocrine-active pharmaceutical (EAP) that is used world-wide. Because tamoxifen is a ubiquitous pharmaceutical and interacts with estrogen receptors, a case study was conducted with this compound to (1) determine effects on reproductive endpoints in a nontarget s...

  18. Phase I Clinical Trial Assessing Temozolomide and Tamoxifen With Concomitant Radiotherapy for Treatment of High-Grade Glioma

    International Nuclear Information System (INIS)

    Patel, Shilpen; DiBiase, Steven; Meisenberg, Barry; Flannery, Todd; Patel, Ashish; Dhople, Anil; Cheston, Sally; Amin, Pradip

    2012-01-01

    Purpose: The new standard treatment of glioblastoma multiforme is concurrent radiotherapy (RT) and temozolomide. The proliferation of high-grade gliomas might be partly dependent on protein kinase C-mediated pathways. Tamoxifen has been shown in vitro to inhibit protein kinase C through estrogen receptor-independent antineoplastic effects. This Phase I trial was designed to determine the maximal tolerated dose (MTD) of tamoxifen when given with temozolomide and concurrent RT to patients with high-grade gliomas. Methods and Materials: A total of 17 consecutive patients in four cohorts with World Health Organization Grade 3 (n = 2) and 4 (n = 15) gliomas were given tamoxifen twice daily during 6 weeks of concurrent RT and temozolomide. Eligibility included histologic diagnosis, age >18 years old, Karnofsky performance status ≥60, and no previous brain RT or chemotherapy. The starting dose was 50 mg/m 2 divided twice daily. If no dose-limiting toxicities (DLTs) occurred in 3 patients, the dose was escalated in 25-mg/m 2 increments until the MTD was reached. When ≥2 patients within a cohort experienced a DLT, the MTD had been exceeded. Temozolomide was given with RT at 75 mg/m 2 . A dose of 60 Gy in 2 Gy/d fractions to a partial brain field was delivered. Results: A total of 6 patients in Cohort 4 had received tamoxifen at 125 mg/m 2 . One patient was excluded, and the fourth patient developed Grade 4 thrombocytopenia (DLT). Thus, 3 more patients needed to be enrolled. A deep venous thrombosis (DLT) occurred in the sixth patient. Thus, the MTD was 100 mg/m 2 . Conclusions: The MTD of tamoxifen was 100 mg/m 2 when given concurrently with temozolomide 75 mg/m 2 and RT. Tamoxifen might have a role in the initial treatment of high-grade gliomas and should be studied in future Phase II trials building on the newly established platform of concurrent chemoradiotherapy.

  19. Tamoxifen reduces P-gp-mediated multidrug resistance via inhibiting the PI3K/Akt signaling pathway in ER-negative human gastric cancer cells.

    Science.gov (United States)

    Mao, Zonglei; Zhou, Jin; Luan, Junwei; Sheng, Weihua; Shen, Xiaochun; Dong, Xiaoqiang

    2014-03-01

    Multidrug resistance (MDR), mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem limiting successful chemotherapy of gastric cancer. Tamoxifen (TAM), a triphenylethylene nonsteroidal antiestrogen agent, shows broad-spectrum antitumor properties. Emerging studies demonstrated that TAM could significantly reduce the MDR in a variety of human cancers. Here we investigated the effects and possible underlying mechanisms of action of TAM on the reversion of MDR in ER-negative human gastric cancer cells. Our results demonstrated that in MDR phenotype SGC7901/CDDP gastric cancer cells TAM dramatically lowered the IC50 of CDDP, 5-FU and ADM, increased the intracellular Rhodamine123 accumulation and induced G0/G1 phase arrest, while G2/M phase decreased accordingly. Furthermore, at the molecular level, TAM substantially decreased the expression of P-gp, p-Akt and the Akt-regulated downstream effectors such as p-GSK-3β, p-BAD, Bcl-XL and cyclinD1 proteins without affecting the expression of t-Akt, t-GSK-3β, t-BAD proteins in SGC7901/CDDP cells. Thus, our findings demonstrate that TAM reverses P-gp-mediated gastric cancer cell MDR via inhibiting the PI3K/Akt signaling pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. The role of estrogen in bipolar disorder, a review

    DEFF Research Database (Denmark)

    Meinhard, Ninja; Kessing, Lars Vedel; Vinberg, Maj

    2014-01-01

    hormones, e.g. estrogen, are fluctuating and particularly postpartum there is a steep fall in the levels of serum estrogen. The role of estrogen in women with bipolar disorder is, however, not fully understood. Aim: The main objective of this review is to evaluate the possible relation between serum...... estrogen levels and women with bipolar disorder including studies of the anti manic effects of the selective estrogen receptor modulator tamoxifen. Method: A systematically literature search on PubMed was conducted: two studies regarding the connection between serum estrogen levels and women with bipolar...... tamoxifen studies found that tamoxifen was effective in producing antimanic effects. Conclusion: These results indicate that estrogen fluctuations may be an important factor in the etiology of bipolar disorder and it is obvious that more research on this topic is needed to clarify the role of estrogen...

  1. The role of estrogen in bipolar disorder, a review

    DEFF Research Database (Denmark)

    Meinhard, Ninja; Kessing, Lars Vedel; Vinberg, Maj

    2014-01-01

    hormones, e.g. estrogen, are fluctuating and particularly postpartum there is a steep fall in the levels of serum estrogen. The role of estrogen in women with bipolar disorder is, however, not fully understood. AIM: The main objective of this review is to evaluate the possible relation between serum...... estrogen levels and women with bipolar disorder including studies of the anti manic effects of the selective estrogen receptor modulator tamoxifen. METHOD: A systematically literature search on PubMed was conducted: two studies regarding the connection between serum estrogen levels and women with bipolar...... tamoxifen studies found that tamoxifen was effective in producing antimanic effects. CONCLUSION: These results indicate that estrogen fluctuations may be an important factor in the etiology of bipolar disorder and it is obvious that more research on this topic is needed to clarify the role of estrogen...

  2. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    Science.gov (United States)

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  3. Generation of NSE-MerCreMer transgenic mice with tamoxifen inducible Cre activity in neurons.

    Directory of Open Access Journals (Sweden)

    Mandy Ka Man Kam

    Full Text Available To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer, which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult.

  4. Tamoxifen-independent recombination in the RIP-CreER mouse.

    Directory of Open Access Journals (Sweden)

    Yanmei Liu

    Full Text Available BACKGROUND: The inducible Cre-lox system is a valuable tool to study gene function in a spatial and time restricted fashion in mouse models. This strategy relies on the limited background activity of the modified Cre recombinase (CreER in the absence of its inducer, the competitive estrogen receptor ligand, tamoxifen. The RIP-CreER mouse (Tg (Ins2-cre/Esr1 1Dam is among the few available β-cell specific CreER mouse lines and thus it has been often used to manipulate gene expression in the insulin-producing cells of the endocrine pancreas. PRINCIPAL FINDINGS: Here, we report the detection of tamoxifen-independent Cre activity as early as 2 months of age in RIP-CreER mice crossed with three distinct reporter strains. SIGNIFICANCE: Evidence of Cre-mediated recombination of floxed alleles even in the absence of tamoxifen administration should warrant cautious use of this mouse for the study of pancreatic β-cells.

  5. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.

    Science.gov (United States)

    Sikora, Matthew J; Jacobsen, Britta M; Levine, Kevin; Chen, Jian; Davidson, Nancy E; Lee, Adrian V; Alexander, Caroline M; Oesterreich, Steffi

    2016-09-20

    critical role in estrogen-induced growth that may also mediate endocrine resistance. WNT4 signaling may represent a novel target to modulate endocrine response specifically for patients with ILC.

  6. Estrogen receptor-α mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract

    International Nuclear Information System (INIS)

    Couse, John F.; Korach, Kenneth S.

    2004-01-01

    It is generally believed that estrogen receptor-dependent and -independent pathways are involved in mediating the developmental effects of the synthetic estrogen, diethylstilbestrol (DES). However, the precise role and extent to which each pathway contributes to the resulting pathologies remains unknown. We have employed the estrogen receptor knockout (ERKO) mice, which lack either estrogen receptor-α (αERKO or estrogen receptor-β (βERKO), to gain insight into the contribution of each ER-dependent pathway in mediating the effects of neonatal DES exposure in the female and male reproductive tract tissues of the mouse. Estrogen receptor-α female mice exhibited complete resistance to the chronic effects of neonatal DES exposure that were obvious in exposed wild-type animals, including atrophy and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent cornification of the vaginal epithelium. DES-mediated reduction in uterine Hoxa10, Hoxa11 and Wnt7a expression that occurs wild-type females during the time of exposure was also absent in αERKO females. In the male, αERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure on the prostate, including decreased androgen receptor levels, epithelial hyperplasia, and increased basal cell proliferation. Although ERβ is highly expressed in the prostate epithelium, DES-exposed βERKO males exhibited all of the effects of neonatal DES exposure that were observed in similarly exposed wild-type males. Therefore, the lack of DES-effects on gene expression and tissue differentiation in the αERKO uterus and prostate provides unequivocal evidence of an obligatory role for ERα in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract

  7. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    Science.gov (United States)

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  8. Estrogen receptor, Progesterone receptor, HER2 status and Ki67 index and responsiveness to adjuvant tamoxifen in postmenopausal high-risk breast cancer patients enrolled in the DBCG 77C trial

    DEFF Research Database (Denmark)

    Knoop, Ann; Lænkholm, Anne Vibeke; Jensen, M. B.

    2014-01-01

    BCRR and BCM in postmenopausal patients with ER positive breast cancers. The relative benefit from tamoxifen was not significantly different in luminal A and B subtypes. Funding: The Danish Breast Cancer Cooperative Group (DBCG) prepared the original protocol (DBCG 77C) and was the sponsor of the study......Background: The DBCG 77C trial compared one year of tamoxifen in postmenopausal, steroid-receptor unknown, high-risk breast cancer patients to no adjuvant systemic therapy. After a potential follow-up of 30 years we report overall efficacy of the study and results according to subtypes subsequently...... assessed by immunohistochemistry and fluorescent in situ hybridisation (FISH). Methods: Between 1977 and 1982, 1716 postmenopausal patients with tumours larger than 5 cm or positive axillary nodes were randomly assigned to no systemic therapy or tamoxifen 30 mg daily for one year. Archival tumour tissue...

  9. Tamoxifen treatment of bleeding irregularities associated with Norplant use.

    Science.gov (United States)

    Abdel-Aleem, Hany; Shaaban, Omar M; Amin, Ahmed F; Abdel-Aleem, Aly M

    2005-12-01

    To evaluate the possible role of tamoxifen (selective estrogen receptor modulators, SERM) in treating bleeding irregularities associated with Norplant contraceptive use. Randomized clinical trial including 100 Norplant users complaining of vaginal bleeding irregularities. The trial was conducted in the Family Planning Clinic of Assiut University Hospital. Women were assigned at random to receive tamoxifen tablets (10 mg) twice daily for 10 days or similar placebo. Women were followed-up for 3 months. The end points were percentage of women who stopped bleeding during treatment, bleeding/spotting days during the period of follow-up, effect of treatment on their lifestyle, and side effects and discontinuation of contraception. There was good compliance with treatment. At the end of treatment, a significantly higher percentage of tamoxifen users stopped bleeding in comparison to the control group (88% vs. 68%, respectively; p=.016). Women who used tamoxifen had significantly less bleeding and/or spotting days than women who used placebo, during the first and second months. During the third month, there were no significant differences between the two groups. Women who used tamoxifen reported improvement in performing household activities, religious duties and in sexual life, during the first 2 months. In the third month, there were no differences between the two groups. There were no significant differences between tamoxifen and placebo groups in reporting side effects. In the group who used tamoxifen, two women discontinued Norplant use because of bleeding vs. nine women in the placebo group. Tamoxifen use at a dose of 10 mg twice daily orally, for 10 days, has a beneficial effect on vaginal bleeding associated with Norplant use. In addition, the bleeding pattern was better in women who used tamoxifen for the following 2 months after treatment. However, these results have to be confirmed in a larger trial before advocating this line of treatment.

  10. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    Science.gov (United States)

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  11. Tamoxifen- Induced Dermatomyositis

    Directory of Open Access Journals (Sweden)

    Bandyopadhyay Debabrata

    1997-01-01

    Full Text Available A 38 year old woman developed dermatomyositis after radical mastectomy and tamoxifen therapy for metastatic breast carcinoma. The possibility of the drug as the underlying cause of the connective tissue disease is discussed.

  12. The Distinct Effects of Estrogen and Hydrostatic Pressure on Mesenchymal Stem Cells Differentiation: Involvement of Estrogen Receptor Signaling.

    Science.gov (United States)

    Zhao, Ying; Yi, Fei-Zhou; Zhao, Yin-Hua; Chen, Yong-Jin; Ma, Heng; Zhang, Min

    2016-10-01

    This study aimed to investigate the differential and synergistic effects of mechanical stimulation and estrogen on the proliferation and osteogenic or chondrogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and the roles of estrogen receptor (ER) in them. BMSCs were isolated and cultured using the whole bone marrow adherence method, and flow cytometry was used to identify the surface marker molecules of BMSCs. Cells were pre-treated with 1 nM 17β-estradiol or 1 nM of the estrogen receptor antagonist tamoxifen. Then, the cells were stimulated with hydrostatic pressure. Assessment included flow cytometry analysis of the cell cycle; immunofluorescent staining for F-actin; protein quantification for MAPK protein; and mRNA analysis for Col I, OCN, OPN and BSP after osteogenic induction and Sox-9, Aggrecan and Col-II after chondrogenic induction. Hydrostatic pressure (90 kPa/1 h) and 1 nM 17β-estradiol enhanced the cellular proliferation ability and the cytoskeleton activity but without synergistic biological effects. Estrogen activated ERKs and JNKs simultaneously and promoted the osteogenic differentiation, whereas the pressure just caused JNK-1/2 activation and promoted the chondrogenic differentiation of BMSCs. Estrogen had antagonism effect on chondrogenic promotion of hydrostatic pressure. Mechanobiological effects of hydrostatic pressure are closely associated with ERα activity. MAPK molecules and F-actin were likely to be important mediator molecules in the ER-mediated mechanotransduction of BMSCs.

  13. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy.

    Science.gov (United States)

    Dorchies, Olivier M; Reutenauer-Patte, Julie; Dahmane, Elyes; Ismail, Heham M; Petermann, Olivier; Patthey- Vuadens, Ophélie; Comyn, Sophie A; Gayi, Elinam; Piacenza, Tony; Handa, Robert J; Décosterd, Laurent A; Ruegg, Urs T

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.

  14. Mitochondrial p38β and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Han Liu

    Full Text Available While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2 protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R by inhibiting p38α - p53 signaling in apoptosis and activating pro-survival p38β mitogen activated protein kinase (p38β MAPK, leading to suppression of reactive oxygen species (ROS post H/R. However, little is known about the mechanism behind the antioxidant actions of E2-dependent p38β. The aim of this study is to determine whether the cytoprotection by estrogen involves regulation of manganese superoxide dismutase (MnSOD, a major mitochondrial ROS scavenging enzyme, via cardiac p38β.We identified mitochondrial p38β by immunocytochemistry and by immunoblotting in mitochondria isolated from neonatal cardiomyocytes of Sprague-Dawley rats. E2 facilitated the mitochondrial localization of the active form of the kinase, phosphorylated p38β (p-p38β. E2 also reduced the H/R-induced mitochondrial membrane potential decline, augmented the MnSOD activity and suppressed anion superoxide generation, while the dismutase protein expression remained unaltered. Co-immunoprecipitation studies showed physical association between MnSOD and p38β. p38β phosphorylated MnSOD in an E2-dependent manner in in-vitro kinase assays.This work demonstrates for the first time a mitochondrial pool of active p38β and E2-mediated phosphorylation of MnSOD by the kinase. The results shed light on the mechanism behind the cytoprotective actions of E2 in cardiomyocytes under oxidative stress.

  15. Circadian and Melatonin Disruption by Exposure to Light at Night Drives Intrinsic Resistance to Tamoxifen Therapy in Breast Cancer

    Science.gov (United States)

    Dauchy, Robert T.; Xiang, Shulin; Mao, Lulu; Brimer, Samantha; Wren, Melissa A.; Yuan, Lin; Anbalagan, Muralidharan; Hauch, Adam; Frasch, Tripp; Rowan, Brian G.; Blask, David E.; Hill, Steven M.

    2014-01-01

    Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to anti-estrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of ERα+ MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speeds the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characters were not produced in animals where circadian rhythms were not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to re-establish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. PMID:25062775

  16. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen.

    Science.gov (United States)

    Benedykcinska, Anna; Ferreira, Andreia; Lau, Joanne; Broni, Jessica; Richard-Loendt, Angela; Henriquez, Nico V; Brandner, Sebastian

    2016-02-01

    Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS) can be limited, when the promoter (such as GFAP) is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER) allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours. © 2016. Published by The Company of Biologists Ltd.

  17. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen

    Directory of Open Access Journals (Sweden)

    Anna Benedykcinska

    2016-02-01

    Full Text Available Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS can be limited, when the promoter (such as GFAP is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours.

  18. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  19. Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance.

    Directory of Open Access Journals (Sweden)

    John Koren

    Full Text Available MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB. Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.

  20. Endocrine disruptive estrogens role in electron transfer: bio-electrochemical remediation with microbial mediated electrogenesis.

    Science.gov (United States)

    Kumar, A Kiran; Reddy, M Venkateswar; Chandrasekhar, K; Srikanth, S; Mohan, S Venkata

    2012-01-01

    Bioremediation of selected endocrine disrupting compounds (EDCs)/estrogens viz. estriol (E3) and ethynylestradiol (EE2) was evaluated in bio-electrochemical treatment (BET) system with simultaneous power generation. Estrogens supplementation along with wastewater documented enhanced electrogenic activity indicating their function in electron transfer between biocatalyst and anode as electron shuttler. EE2 addition showed more positive impact on the electrogenic activity compared to E3 supplementation. Higher estrogen concentration showed inhibitory effect on the BET performance. Poising potential during start up phase showed a marginal influence on the power output. The electrons generated during substrate degradation might have been utilized for the EDCs break down. Fuel cell behavior and anodic oxidation potential supported the observed electrogenic activity with the function of estrogens removal. Voltammetric profiles, dehydrogenase and phosphatase enzyme activities were also found to be in agreement with the power generation, electron discharge and estrogens removal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    Science.gov (United States)

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  2. Antiarrhythmic effect of tamoxifen on the vulnerability induced by hyperthyroidism to heart ischemia/reperfusion damage.

    Science.gov (United States)

    Pavón, Natalia; Hernández-Esquivel, Luz; Buelna-Chontal, Mabel; Chávez, Edmundo

    2014-09-01

    Hyperthyroidism, known to have deleterious effects on heart function, and is associated with an enhanced metabolic state, implying an increased production of reactive oxygen species. Tamoxifen is a selective antagonist of estrogen receptors. These receptors make the hyperthyroid heart more susceptible to ischemia/reperfusion. Tamoxifen is also well-known as an antioxidant. The aim of the present study was to explore the possible protective effect of tamoxifen on heart function in hyperthyroid rats. Rats were injected daily with 3,5,3'-triiodothyronine at 2mg/kg body weight during 5 days to induce hyperthyroidism. One group was treated with 10mg/kg tamoxifen and another was not. The protective effect of the drug on heart rhythm was analyzed after 5 min of coronary occlusion followed by 5 min reperfusion. In hyperthyroid rats not treated with tamoxifen, ECG tracings showed post-reperfusion arrhythmias, and heart mitochondria isolated from the ventricular free wall lost the ability to accumulate and retain matrix Ca(2+) and to form a high electric gradient. Both of these adverse effects were avoided with tamoxifen treatment. Hyperthyroidism-induced oxidative stress caused inhibition of cis-aconitase and disruption of mitochondrial DNA, effects which were also avoided by tamoxifen treatment. The current results support the idea that tamoxifen inhibits the hypersensitivity of hyperthyroid rat myocardium to reperfusion damage, probably because its antioxidant activity inhibits the mitochondrial permeability transition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. CB1 and CB2 Receptors are Novel Molecular Targets for Tamoxifen and 4OH-Tamoxifen

    OpenAIRE

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-01-01

    Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for t...

  4. Bioanalytical methods for determination of tamoxifen and its phase I metabolites: A review

    International Nuclear Information System (INIS)

    Teunissen, S.F.; Rosing, H.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H.

    2010-01-01

    The selective estrogen receptor modulator tamoxifen is used in the treatment of early and advanced breast cancer and in selected cases for breast cancer prevention in high-risk subjects. The cytochrome P450 enzyme system and flavin-containing monooxygenase are responsible for the extensive metabolism of tamoxifen into several phase I metabolites that vary in toxicity and potencies towards estrogen receptor (ER) alpha and ER beta. An extensive overview of publications on the determination of tamoxifen and its phase I metabolites in biological samples is presented. In these publications techniques were used such as capillary electrophoresis, liquid, gas and thin layer chromatography coupled with various detection techniques (mass spectrometry, ultraviolet or fluorescence detection, liquid scintillation counting and nuclear magnetic resonance spectroscopy). A trend is seen towards the use of liquid chromatography coupled to mass spectrometry (LC-MS). State-of-the-art LC-MS equipment allowed for identification of unknown metabolites and quantification of known metabolites reaching lower limit of quantification levels in the sub pg mL -1 range. Although tamoxifen is also metabolized into phase II metabolites, the number of publications reporting on phase II metabolism of tamoxifen is scarce. Therefore the focus of this review is on phase I metabolites of tamoxifen. We conclude that in the past decades tamoxifen metabolism has been studied extensively and numerous metabolites have been identified. Assays have been developed for both the identification and quantification of tamoxifen and its metabolites in an array of biological samples. This review can be used as a resource for method transfer and development of analytical methods used to support pharmacokinetic and pharmacodynamic studies of tamoxifen and its phase I metabolites.

  5. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  6. Estrogenic Activities of Fatty Acids and a Sterol Isolated from Royal Jelly

    Science.gov (United States)

    Isohama, Yoichiro; Maruyama, Hiroe; Yamada, Yayoi; Narita, Yukio; Ohta, Shozo; Araki, Yoko; Miyata, Takeshi; Mishima, Satoshi

    2008-01-01

    We have previously reported that royal jelly (RJ) from honeybees (Apis mellifera) has weak estrogenic activity mediated by interaction with estrogen receptors that leads to changes in gene expression and cell proliferation. In this study, we isolated four compounds from RJ that exhibit estrogenic activity as evaluated by a ligand-binding assay for the estrogen receptor (ER) β. These compounds were identified as 10-hydroxy-trans-2-decenoic acid, 10-hydroxydecanoic acid, trans-2-decenoic acid and 24-methylenecholesterol. All these compounds inhibited binding of 17β-estradiol to ERβ, although more weakly than diethylstilbestrol or phytoestrogens. However, these compounds had little or no effect on the binding of 17β-estradiol to ERα. Expression assays suggested that these compounds activated ER, as evidenced by enhanced transcription of a reporter gene containing an estrogen-responsive element. Treatment of MCF-7 cells with these compounds enhanced their proliferation, but concomitant treatment with tamoxifen blocked this effect. Exposure of immature rats to these compounds by subcutaneous injection induced mild hypertrophy of the luminal epithelium of the uterus, but was not associated with an increase in uterine weight. These findings provide evidence that these compounds contribute to the estrogenic effect of RJ. PMID:18830443

  7. Estrogenic Activities of Fatty Acids and a Sterol Isolated from Royal Jelly

    Directory of Open Access Journals (Sweden)

    Kazu-Michi Suzuki

    2008-01-01

    Full Text Available We have previously reported that royal jelly (RJ from honeybees (Apis mellifera has weak estrogenic activity mediated by interaction with estrogen receptors that leads to changes in gene expression and cell proliferation. In this study, we isolated four compounds from RJ that exhibit estrogenic activity as evaluated by a ligand-binding assay for the estrogen receptor (ER β. These compounds were identified as 10-hydroxy-trans-2-decenoic acid, 10-hydroxydecanoic acid, trans-2-decenoic acid and 24-methylenecholesterol. All these compounds inhibited binding of 17β-estradiol to ERβ, although more weakly than diethylstilbestrol or phytoestrogens. However, these compounds had little or no effect on the binding of 17β-estradiol to ERα. Expression assays suggested that these compounds activated ER, as evidenced by enhanced transcription of a reporter gene containing an estrogen-responsive element. Treatment of MCF-7 cells with these compounds enhanced their proliferation, but concomitant treatment with tamoxifen blocked this effect. Exposure of immature rats to these compounds by subcutaneous injection induced mild hypertrophy of the luminal epithelium of the uterus, but was not associated with an increase in uterine weight. These findings provide evidence that these compounds contribute to the estrogenic effect of RJ.

  8. Alcohol consumption negates estrogen-mediated myocardial repair in ovariectomized mice by inhibiting endothelial progenitor cell mobilization and function.

    Science.gov (United States)

    Mackie, Alexander R; Krishnamurthy, Prasanna; Verma, Suresh K; Thorne, Tina; Ramirez, Veronica; Qin, Gangjian; Abramova, Tatiana; Hamada, Hiromichi; Losordo, Douglas W; Kishore, Raj

    2013-06-21

    We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.

  9. Mechanisms of G Protein-Coupled Estrogen Receptor-Mediated Spinal Nociception

    DEFF Research Database (Denmark)

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.

    2012-01-01

    . Cytosolic calcium concentration elevates faster and with higher amplitude following G-1 intracellular microinjections compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium......Human and animal studies suggest that estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pronociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER......) activation. Membrane depolarization and increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological, and fluorescent imaging studies, we evaluated GPER involvement...

  10. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Science.gov (United States)

    2018-01-01

    Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention. PMID:29385066

  11. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Directory of Open Access Journals (Sweden)

    Olga A. Sukocheva

    2018-01-01

    Full Text Available Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1 and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.

  12. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1.

    Science.gov (United States)

    Treas, Justin; Tyagi, Tulika; Singh, Kamaleshwar P

    2013-11-01

    Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation. © 2013 Wiley Periodicals, Inc.

  13. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders.

    Science.gov (United States)

    Borrow, Amanda P; Cameron, Nicole M

    2014-10-03

    Clinical research has demonstrated a significant sex difference in the occurrence of depressive disorders. Beginning at pubertal onset, women report a higher incidence of depression than men. Women are also vulnerable to the development of depressive disorders such as premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression. These disorders are associated with reproductive stages involving changes in gonadal hormone levels. Specifically, female depression and female affective behaviors are influenced by estradiol levels. This review argues two major mechanisms by which estrogens influence depression and depressive-like behavior: through interactions with neurotrophic factors and through an influence on the serotonergic system. In particular, estradiol increases brain derived neurotrophic factor (BDNF) levels within the brain, and alters serotonergic expression in a receptor subtype-specific manner. We will take a regional approach, examining these effects of estrogens in the major brain areas implicated in depression. Finally, we will discuss the gaps in our current knowledge of the effects of estrogens on female depression, and the potential utility for estrogen receptor modulators in treatment for this disorder. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Tamoxifen induces apoptotic neutrophil efferocytosis in horses.

    Science.gov (United States)

    Olave, C; Morales, N; Uberti, B; Henriquez, C; Sarmiento, J; Ortloff, A; Folch, H; Moran, G

    2018-03-01

    Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.

  15. Estrogen-cholinergic interactions: Implications for cognitive aging.

    Science.gov (United States)

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  16. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  17. TNF-{alpha} mediates the stimulation of sclerostin expression in an estrogen-deficient condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom-Jun [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Bae, Sung Jin [Health Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Lee, Sun-Young; Lee, Young-Sun; Baek, Ji-Eun; Park, Sook-Young [Asan Institute for Life Sciences, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Lee, Seung Hun [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Koh, Jung-Min, E-mail: jmkoh@amc.seoul.kr [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of); Kim, Ghi Su [Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2-Dong, Seoul (Korea, Republic of)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Estrogen deprivation stimulates the bony sclerostin levels with reversal by estrogen. Black-Right-Pointing-Pointer TNF-{alpha} increases the activity and expression of MEF2 in UMR-106 cells. Black-Right-Pointing-Pointer TNF-{alpha} blocker prevents the stimulation of bony sclerostin expression by ovariectomy. Black-Right-Pointing-Pointer No difference in bony sclerostin expression between sham-operated and ovariectomized nude mice. -- Abstract: Although recent clinical studies have suggested a possible role for sclerostin, a secreted Wnt antagonist, in the pathogenesis of postmenopausal osteoporosis, the detailed mechanisms how estrogen deficiency regulates sclerostin expression have not been well-elucidated. Bilateral ovariectomy or a sham operation in female C57BL/6 mice and BALB/c nude mice was performed when they were seven weeks of age. The C57BL/6 mice were intraperitoneally injected with phosphate-buffered serum (PBS), 5 {mu}g/kg {beta}-estradiol five times per week for three weeks, or 10 mg/kg TNF-{alpha} blocker three times per week for three weeks. Bony sclerostin expression was assessed by immunohistochemistry staining in their femurs. The activity and expression of myocyte enhancer factors 2 (MEF2), which is essential for the transcriptional activation of sclerostin, in rat UMR-106 osteosarcoma cells were determined by luciferase reporter assay and western blot analysis, respectively. Bony sclerostin expression was stimulated by estrogen deficiency and it was reversed by estradiol supplementation. When the UMR-106 cells were treated with well-known, estrogen-regulated cytokines, only TNF-{alpha}, but not IL-1 and IL-6, increased the MEF2 activity. Consistently, TNF-{alpha} also increased the nuclear MEF2 expression. Furthermore, the TNF-{alpha} blocker prevented the stimulation of bony sclerostin expression by ovariectomy. We also found that there was no difference in sclerostin expression between ovariectomized

  18. TNF-α mediates the stimulation of sclerostin expression in an estrogen-deficient condition

    International Nuclear Information System (INIS)

    Kim, Beom-Jun; Bae, Sung Jin; Lee, Sun-Young; Lee, Young-Sun; Baek, Ji-Eun; Park, Sook-Young; Lee, Seung Hun; Koh, Jung-Min; Kim, Ghi Su

    2012-01-01

    Highlights: ► Estrogen deprivation stimulates the bony sclerostin levels with reversal by estrogen. ► TNF-α increases the activity and expression of MEF2 in UMR-106 cells. ► TNF-α blocker prevents the stimulation of bony sclerostin expression by ovariectomy. ► No difference in bony sclerostin expression between sham-operated and ovariectomized nude mice. -- Abstract: Although recent clinical studies have suggested a possible role for sclerostin, a secreted Wnt antagonist, in the pathogenesis of postmenopausal osteoporosis, the detailed mechanisms how estrogen deficiency regulates sclerostin expression have not been well-elucidated. Bilateral ovariectomy or a sham operation in female C57BL/6 mice and BALB/c nude mice was performed when they were seven weeks of age. The C57BL/6 mice were intraperitoneally injected with phosphate-buffered serum (PBS), 5 μg/kg β-estradiol five times per week for three weeks, or 10 mg/kg TNF-α blocker three times per week for three weeks. Bony sclerostin expression was assessed by immunohistochemistry staining in their femurs. The activity and expression of myocyte enhancer factors 2 (MEF2), which is essential for the transcriptional activation of sclerostin, in rat UMR-106 osteosarcoma cells were determined by luciferase reporter assay and western blot analysis, respectively. Bony sclerostin expression was stimulated by estrogen deficiency and it was reversed by estradiol supplementation. When the UMR-106 cells were treated with well-known, estrogen-regulated cytokines, only TNF-α, but not IL-1 and IL-6, increased the MEF2 activity. Consistently, TNF-α also increased the nuclear MEF2 expression. Furthermore, the TNF-α blocker prevented the stimulation of bony sclerostin expression by ovariectomy. We also found that there was no difference in sclerostin expression between ovariectomized nude mice and sham-operated nude mice. In conclusion, these results suggest that TNF-α originating from T cells may be at least in part

  19. Tamoxifen induces regression of estradiol-induced mammary cancer in ACI.COP-Ept2 rat model

    OpenAIRE

    Ruhlen, Rachel L.; Willbrand, Dana M.; Besch-Williford, Cynthia L.; Ma, Lixin; Shull, James D.; Sauter, Edward R.

    2008-01-01

    The ACI rat is a unique model of human breast cancer in that mammary cancers are induced by estrogen without carcinogens, irradiation, xenografts or transgenic manipulations. We sought to characterize mammary cancers in a congenic variant of the ACI rat, the ACI.COP-Ept2. All rats with estradiol implants developed mammary cancers in 5–7 months. Rats bearing estradiol-induced mammary cancers were treated with tamoxifen for three weeks. Tamoxifen reduced tumor mass, measured by magnetic resonan...

  20. A tamoxifen inducible knock-in allele for investigation of E2A function

    Directory of Open Access Journals (Sweden)

    Kondo Motonari

    2009-10-01

    Full Text Available Abstract Background E-proteins are transcription factors important for the development of a variety of cell types, including neural, muscle and lymphocytes of the immune system. E2A, the best characterized E-protein family member in mammals, has been shown to have stage specific roles in cell differentiation, lineage commitment, proliferation, and survival. However, due to the complexity of E2A function, it is often difficult to separate these roles using conventional genetic approaches. Here, we have developed a new genetic model for reversible control of E2A protein activity at physiological levels. This system was created by inserting a tamoxifen-responsive region of the estrogen receptor (ER at the carboxyl end of the tcfe2a gene to generate E2AER fusion proteins. We have characterized and analyzed the efficiency and kinetics of this inducible E2AER system in the context of B cell development. Results B cell development has been shown previously to be blocked at an early stage in E2A deficient animals. Our E2AER/ER mice demonstrated this predicted block in B cell development, and E2AER DNA binding activity was not detected in the absence of ligand. In vitro studies verified rapid induction of E2AER DNA binding activity upon tamoxifen treatment. While tamoxifen treatment of E2AER/ER mice showed inefficient rescue of B cell development in live animals, direct exposure of bone marrow cells to tamoxifen in an ex vivo culture was sufficient to rescue and support early B cell development from the pre-proB cell stage. Conclusion The E2AER system provides inducible and reversible regulation of E2A function at the protein level. Many previous studies have utilized over-expression systems to induce E2A function, which are complicated by the toxicity often resulting from high levels of E2A. The E2AER model instead restores E2A activity at an endogenous level and in addition, allows for tight regulation of the timing of induction. These features make

  1. Polypoid endometriosis mimicking invasive cancer in an obese, postmenopausal tamoxifen user

    Directory of Open Access Journals (Sweden)

    William T. Jaegle

    2017-11-01

    Précis: Endometriosis is a benign estrogen dependent condition rarely problematic in a postmenopausal patient. Tamoxifen use in the setting of an obese patient may contribute to a proliferation of pre-existing endometriosis which resembles an aggressive late-stage gynecological malignancy.

  2. Use of dried blood spots for the determination of serum concentrations of tamoxifen and endoxifen

    NARCIS (Netherlands)

    Jager, N G L; Rosing, H; Schellens, J H M; Beijnen, J H; Linn, S C

    The anti-estrogenic effect of tamoxifen is suggested to be mainly attributable to its metabolite (Z)-endoxifen, and a minimum therapeutic threshold for (Z)-endoxifen in serum has been proposed. The objective of this research was to establish the relationship between dried blood spot (DBS) and serum

  3. Chemical Probes of Rapid Estrogen Signaling in Breast Cancer Treatment and Chemoprevention

    National Research Council Canada - National Science Library

    Weatherman, Rose V

    2007-01-01

    The goal of this project was to design new chemical tools to selectively probe the molecular mechanisms of action of rapid estrogen receptor action and their relevance to breast cancer drugs like tamoxifen...

  4. Novel Growth Factor as Prognostic Marker for Estrogen-Independence in Breast Cancer

    National Research Council Canada - National Science Library

    Serrero, Ginette

    2003-01-01

    The Concept Award focused on investigating the expression on the biomarker PCDGF/GP88 in breast cancer and its effect on the acquisition of estrogen independence and tamoxifen resistance, a hallmark...

  5. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    Directory of Open Access Journals (Sweden)

    Michael A Pazos

    Full Text Available Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  6. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    Science.gov (United States)

    Pazos, Michael A; Kraus, Thomas A; Muñoz-Fontela, César; Moran, Thomas M

    2012-01-01

    Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  7. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  8. Effects of estrogen antagonists on estradiol-enhanced radiation transformation in vitro

    International Nuclear Information System (INIS)

    Umans, R.S.; Kenneddy, A.R.

    1988-01-01

    We have previously reported that radiation and 17β-estrediol can induce transformation in vitro in C3H 10T1/2 cells. In the present series of experiments, we have observed that antagonists of estrogen action, such as c-AMP activating agents(Theophylinne and dibutylc-AMP) and the antiestrogens tamoxifen, suppress radiation/17β-estradiol enhanced transformation in vitro. None of these known estrogen antagonists had a significant effect on transformation induced by radiation alone. Our results with added dibutyl c-AMP, theophylline and tamoxifen suggest that estrogen receptor complex formation may play a role in estrogen-enhanced radiation transformation in vitro (author)

  9. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT expression in an ELISA-based system.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA, and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT is transcriptionally regulated by estrogen via estrogen receptor (ER. Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP, and di-n-butyl phthalate (DBP. Cells were exposed to either these plasticizers or 17β-estradiol (E2 in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9-10(-7M dose-dependently reduced COMT expression (p<0.05, which was blocked by ICI 182,780. Reduction of COMT expression was readily detectable in cells exposed to picomolar level of E2, comparable to other in vitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different

  10. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein

    NARCIS (Netherlands)

    Sotoca Covaleda, A.M.; Sollewijn Gelpke, M.D.; Boeren, S.; Ström, A.; Gustafsson, J.A.; Murk, A.J.; Rietjens, I.M.C.M.; Vervoort, J.J.M.

    2011-01-01

    The present study addresses, by transcriptomics and quantitative SILAC-based proteomics, the estrogen receptor alpha (ER) and beta (ERß)-mediated effects on gene and protein expression in T47D breast cancer cells exposed to the phytoestrogen genistein. Using the T47D human breast cancer cell line

  11. 131I labeling of tamoxifen and biodistribution studies in rats

    International Nuclear Information System (INIS)

    Biber Muftuler, F.Z.; Unak, P.; Teksoz, S.; Acar, C.; Yolcular, S.; Yuerekli, Y.

    2008-01-01

    Tamoxifen [TAM ([Z]-2-[4-(1,2-diphenyl-1-di-butenyl)-phenoxy]-N,N-dimethylethanamine)] has been used as an antiestrogen drug for treatment and prevention of human breast cancer. Tamoxifen was labeled with 131 I using iodogen as an oxidizing agent. Mass spectroscopy of the cold standard showed that the labeling occurs in ortho position to the phenyl ether position of TAM as expected. Quality control, radiochemical yield and stability were established using the radioelectrophoresis method. The radiolabeled compound maintained its stability throughout working period of 24 h. Scintigraphic imaging was performed and tissue distribution was determined in Albino Wistar rats. According to biodistribution and imaging experiments the radiolabeled compound presented estrogen receptor (ER) specificity and it was uptaken by endometrium as well as breast tissue

  12. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    Science.gov (United States)

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-a (ERa) stimulates neural firing of VMH neurons expressing ERa, and these ...

  13. Effect of Tamoxifen on Seminiferous Tubules Structure during Pregnancy in Adult Mice

    Directory of Open Access Journals (Sweden)

    J Soleimani Rad

    2016-03-01

    Full Text Available Introduction: Tamoxifen is a nonsteroidal drug which mainly treats breast cancer. It is also applied for stimulation of ovulation and remedy of infertility. Regarding the tamoxifen binding to estrogen receptors and the possible role of estrogens in spermatogenesis, the present study aimed to histologically evaluate spermatogenesis in the seminiferous ducts of mice, whose mothers had received tamoxifen during pregnancy. Methods: In the present study, 30 female and 15 male mice of NMRI race were selected for mating. Since 13th day of pregnancy, the experimental group received tamoxifen with the dosage of 5 mg/kg intra-peritoneally for 7 days, wherease the control group received normal saline. After childbirth of the mated mice, male infants were selected and monitored in the standard laboratory conditions. After reaching the age of puberty (6-8Weeks, adult mice were sacrificed by the cervical dislocation, and the testes were removed for histological evaluation of spermatogenesis. After routine histological processing, the samples were studied by the light microscope. Results: Histological studies showed that spermatogenic and Sertoli cells in the seminiferous tubules in control and experimental groups were significantly different, though no difference was observed in the number of Leydig cells in the both groups. Conclusion: The findings of the present study showed that tamoxifen exposure during development can cause histological changes in the seminiferous tubules, which can lead to infertility in the male rat.

  14. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism....

  15. APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Manikandan Periyasamy

    2015-10-01

    Full Text Available Estrogen receptor α (ERα is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER and to repair by non-homologous end-joining (NHEJ pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.

  16. Sex differences in selecting between food and cocaine reinforcement are mediated by estrogen.

    Science.gov (United States)

    Kerstetter, Kerry A; Ballis, Maya A; Duffin-Lutgen, Stevie; Carr, Amanda E; Behrens, Alexandra M; Kippin, Tod E

    2012-11-01

    Cocaine-dependent women, relative to their male counterparts, report shorter cocaine-free periods and report transiting faster from first use to entering treatment for addiction. Similarly, preclinical studies indicate that female rats, particularly those in the estrus phase of their reproductive cycle, show increased operant responding for cocaine under a wide variety of schedules. Making maladaptive choices is a component of drug dependence, and concurrent reinforcement schedules that examine cocaine choice offers an animal model of the conditions of human drug use; therefore, the examination of sex differences in decision-making may be critical to understanding why women display a more severe profile of cocaine addiction than men. Accordingly, we assessed sex and estrous cycle differences in choice between food (45 mg grain pellets) and intravenous cocaine (0.4 or 1.0 mg/kg per infusion) reinforcement in male, female (freely cycling), and ovariectomized (OVX) females treated with either estrogen benzoate (EB; 5 μg per day) or vehicle. At both cocaine doses, intact female rats choose cocaine over food significantly more than male rats. However, the estrous cycle did not impact the level of cocaine choice in intact females. Nevertheless, OVX females treated with vehicle exhibited a substantially lower cocaine choice compared with those receiving daily EB or to intact females. These results demonstrate that intact females have a greater preference for cocaine over food compared with males. Furthermore, this higher preference is estrogen-dependent, but does not vary across the female reproductive cycle, suggesting that ovarian hormones regulate cocaine choice. The present findings indicate that there is a biological predisposition for females to forgo food reinforcement to obtain cocaine reinforcement, which may substantially contribute to women experiencing a more severe profile of cocaine addiction than men.

  17. Epithelial-to-mesenchymal transition and estrogen receptor α mediated epithelial dedifferentiation mark the development of benign prostatic hyperplasia.

    Science.gov (United States)

    Shao, Rui; Shi, Jiandang; Liu, Haitao; Shi, Xiaoyu; Du, Xiaoling; Klocker, Helmut; Lee, Chung; Zhu, Yan; Zhang, Ju

    2014-06-01

    Epithelial-to-mesenchymal transition (EMT) has been reported involved in the pathogenesis of fibrotic disorders and associated with stemness characteristics. Recent studies demonstrated that human benign prostatic hyperplasia (BPH) development involves accumulation of mesenchymal-like cells derived from the prostatic epithelium. However, the inductive factors of EMT in the adult prostate and the cause-and-effect relationship between EMT and stemness characteristics are not yet resolved. EMT expression patterns were immunohistochemically identified in the human epithelia of normal/BPH prostate tissue and in a rat BPH model induced by estrogen/androgen (E2/T, ratio 1:100) alone or in the presence of the ER antagonist raloxifene. Gene expression profiles were analyzed in micro-dissected prostatic epithelia of rat stimulated by E2/T for 3 days. Two main morphological features both accompanied with EMT were observed in the epithelia of human BPH. Luminal cells undergoing EMT dedifferentiated from a cytokeratin (CK) CK18(+) /CK8(+) /CK19(+) to a CK18(-) /CK8(+) /CK19(-) phenotype and CK14 expression increased in basal epithelial cells. ERα expression was closely related to these dedifferentiated cells and the expression of EMT markers. A similar pattern of EMT events was observed in the E2/T induced rat model of BPH in comparison to the prostates of untreated rats, which could be prevented by raloxifene. Epithelial and mesenchymal phenotype switching is an important mechanism in the etiology of BPH. ERα mediated enhanced estrogenic effect is a crucial inductive factor of epithelial dedifferentiation giving rise to activation of an EMT program in prostate epithelium. © 2014 Wiley Periodicals, Inc.

  18. Functional characterization of estrogen receptor subtypes, ERα and ERβ, mediating vitellogenin production in the liver of rainbow trout

    International Nuclear Information System (INIS)

    Leanos-Castaneda, Olga; Kraak, Glen van der

    2007-01-01

    The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ERα and ERβ, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ERα selective agonist, methyl-piperidino-pyrazole (MPP) an ERα selective antagonist, and diarylpropionitrile (DPN) an ERβ selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbow trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [ 3 H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ERα could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ERβ. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ERα. On the other hand, once blocked ERα with MPP, the only manifestation of agonist activity of estradiol would be achieved via ERβ. In conclusion, the present results indicate that vitellogenin production is mainly mediated through ERβ, implying, furthermore

  19. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  20. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen

  1. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals

    DEFF Research Database (Denmark)

    Andersen, H R; Andersson, A M; Arnold, S F

    1999-01-01

    induced a strong estrogenic response in all test systems. Colchicine caused cytotoxicity only. Bisphenol A induced an estrogenic response in all assays. The results obtained for the remaining test compounds--tamoxifen, ICI 182.780, testosterone, bisphenol A dimethacrylate, 4-n-octylphenol, 4-n...

  2. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    International Nuclear Information System (INIS)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-01-01

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA 1c , triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA 1c , triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition

  3. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    Energy Technology Data Exchange (ETDEWEB)

    Hesselbarth, Nico; Pettinelli, Chiara [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Gericke, Martin [Institute of Anatomy, University of Leipzig, D-04103 Leipzig (Germany); Berger, Claudia [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany); Kunath, Anne [German Center for Diabetes Research (DZD), Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany)

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  4. Role of estrogen in lung cancer based on the estrogen receptor-epithelial mesenchymal transduction signaling pathways

    Directory of Open Access Journals (Sweden)

    Zhao XZ

    2015-10-01

    Full Text Available Xiao-zhen Zhao,1,* Yu Liu,1,* Li-juan Zhou,1,* Zhong-qi Wang,1 Zhong-hua Wu,2 Xiao-yuan Yang31Department of Tumor, Longhua Hospital, 2Center of Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 3Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workBackground/aim: Estrogen is reported to promote the occurrence and development of several human cancers. Increasing evidence shows that most human lung tumors exert estrogen receptor expression. In the present study, we investigated the underlying mechanism of estrogen effect in lung cancer through estrogen receptor-epithelial–mesechymal-transition signaling pathways for the first time.Materials and methods: A total of 36 inbred C57BL/6 mice (18 male and 18 female were injected subcutaneously with human lung adenocarcinoma cell line, Lewis. After the lung tumor model was established, mice with lung adenocarcinoma were randomly divided into three groups for each sex (n=6, such as vehicle group, estrogen group, and estrogen plus tamoxifen group. The six groups of mice were sacrificed after 21 days of drug treatment. Tumor tissue was stripped and weighed, and tumor inhibition rate was calculated based on average tumor weight. Protein and messenger RNA (mRNA expressions of estrogen receptor α (ERα, estrogen receptor β (ERβ, phosphatidylinositol 3'-kinase (PI3K, AKT, E-cadherin, and vimentin were detected in both tumor tissue and lung tissue by using immunohistochemistry and real-time reverse transcription-polymerase chain reaction.Results: 1 For male mice: in the estrogen group, estrogen treatment significantly increased ERα protein and mRNA expressions in tumor tissue and protein expression of PI3K, AKT, and vimentin in both tumor tissue and lung tissue compared with the vehicle-treated group. Besides, m

  5. Clinical evidence on the magnitude of change in growth pathway activity in relation to Tamoxifen resistance is required.

    Science.gov (United States)

    Mansouri, Sepideh; Farahmand, Leila; Teymourzadeh, Azin; Majidzadeh-A, Keivan

    2017-08-08

    Despite prolonged disease-free survival and overall survival rates in estrogen receptor (ER)-positive patients undergoing adjuvant treatment, Tamoxifen therapy tends to fail due to eventual acquisition of resistance. Although numerous studies have emphasized the role of receptor tyrosine kinases (RTKs) in the development of Tamoxifen resistance, inadequate clinical evidence is available regarding the alteration of biomarker expression during acquired resistance, thus undermining the validity of the findings. Results of two meta-analyses investigating the effect of HER2 status on the prognosis of Tamoxifen-receiving patients have demonstrated that despite HER2-negative patients having longer disease-free survival; there is no difference in overhaul survival between the two groups. Furthermore, due to the intricate molecular interactions among estrogen receptors including ERα36, ERα66, and also RTKs, it is not surprising that RTK suppression does not restore Tamoxifen sensitivity. In considering such a complex network, we speculate that by the time HER2/EGFR is suppressed via targeted therapies, activation of ERα66 and ERα36 initiate molecular signaling pathways downstream of RTKs, thereby enhancing cell proliferation even in the presence of both Tamoxifen and RTK inhibitors. Although clinical findings regarding the molecular pathways downstream of RTKs have been thoroughly discussed in this review, further clinical studies are required in determining a consistency between preclinical and clinical findings. Discovering the best targets in preventing tumor progression requires thorough comprehension of estrogen-dependent and estrogen-independent pathways during Tamoxifen resistance development. Indeed, exploring additional clinically-proven targets would allow for better characterized treatments being available for breast cancer patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Novel Carbonyl Analogues of Tamoxifen: Design, Synthesis, and Biological Evaluation

    Science.gov (United States)

    Kasiotis, Konstantinos M.; Lambrinidis, George; Fokialakis, Nikolas; Tzanetou, Evangelia N.; Mikros, Emmanuel; Haroutounian, Serkos A.

    2017-09-01

    Aim of this work was to provide tamoxifen analogues with enhanced estrogen receptor binding affinity. Hence, several derivatives were prepared using an efficient triarylethylenes synthetic protocol. The novel compounds bioactivity was evaluated through the determination of their receptor binding affinity and their agonist/antagonist activity against breast cancer tissue using a MCF-7 cell-based assay. Phenyl esters 6a,b and 8a,b exhibited binding affinity to both ERα and ERβ higher than 4-hydroxytamoxifen while compounds 13 and 14 have shown cellular antiestrogenic activity similar to 4-hydroxytamoxifen and the known estrogen receptor inhibitor ICI182,780. Theoretical calculations and molecular modelling were applied to investigate, support and explain the biological profile of the new compounds. The relevant data indicated an agreement between calculations and demonstrated biological activity allowing to extract useful structure-activity relationships. Results herein underline that modifications of tamoxifen structure still provide molecules with substantial activity, as portrayed in the inhibition of MCF-7 cells proliferation.

  7. The effect of tamoxifen on pubertal bone development in adolescents with pubertal gynecomastia.

    Science.gov (United States)

    Akgül, Sinem; Derman, Orhan; Kanbur, Nuray

    2016-01-01

    During puberty, estrogen has a biphasic effect on epiphyses; at low levels, it leads to an increase in height and bone mass, whereas at high levels, it leads to closure of the epiphysis. Tamoxifen is a selective estrogen receptor modulator that has been used in the treatment of pubertal gynecomastia. Although it has not been approved for this indication, studies have shown it to be both successful and safe. In males, the peak of pubertal bone development occurs during Tanner stage 3-4, which is also when pubertal gynecomastia reaches its highest prevalence. Thus tamoxifen treatment could potentially effect pubertal bone development. The aim of this study was to assess the effects of tamoxifen on bone mineral density (BMD) and skeletal maturation when used for pubertal gynecomastia. We evaluated 20 boys with pubertal gynecomastia receiving tamoxifen for at least 4 months. BMD was measured with dual-energy X-ray absorptiometry. Z-score and absolute BMD (g/cm(2)) was determined at baseline and 2 months after completing tamoxifen treatment. Bone age and height was evaluated before treatment and again one year later. Using absolute BMD (g/cm(2)), the mean difference from baseline was significant between the two groups both at spine (p=0.002) and femur (p=0.001), but not with the Z-score. This result was attributed to the expected increase during puberty according to sex and age. No significant effect on skeletal maturation was found (p=1.112). We conclude that when pubertal bone development is concerned, tamoxifen is safe for the treatment of pubertal gynecomastia as neither bone mineralization nor growth potential was affected.

  8. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States); Zhu, Hao [The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Department of Chemistry, Rutgers University, Camden, NJ (United States); Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia [NovaMechanics Ltd., Nicosia (Cyprus); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  9. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    International Nuclear Information System (INIS)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh; Zhu, Hao; Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R 2 = 0.71, STL R 2 = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R 2 = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results

  10. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer.

    Science.gov (United States)

    Jeyabalan, Jeyaprakash; Aqil, Farrukh; Munagala, Radha; Annamalai, Lakshmanan; Vadhanam, Manicka V; Gupta, Ramesh C

    2014-05-07

    Berries are gaining increasing importance lately for their chemopreventive and therapeutic potential against several cancers. In earlier studies, a blueberry-supplemented diet has shown protection against 17β-estradiol (E2)-mediated mammary tumorigenesis. This study tested both preventive and therapeutic activities of diet supplemented with whole blueberry powder (50:50 blend of Tifblue and Rubel). Animals received 5% blueberry diet, either 2 weeks prior to or 12 weeks after E2 treatment in preventive and therapeutic groups, respectively. Both interventions delayed the tumor latency for palpable mammary tumors by 28 and 37 days, respectively. Tumor volume and multiplicity were also reduced significantly in both modes. The effect on mammary tumorigenesis was largely due to down-regulation of CYP 1A1 and ER-α gene expression and also favorable modulation of microRNA (miR-18a and miR-34c) levels. These data suggest that the blueberry blend tested is effective in inhibiting E2-mediated mammary tumorigenesis in both preventive and therapeutic modes.

  11. Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms.

    Science.gov (United States)

    Grigoryants, Vladimir; Hannawa, Kevin K; Pearce, Charles G; Sinha, Indranil; Roelofs, Karen J; Ailawadi, Gorav; Deatrick, Kristopher B; Woodrum, Derek T; Cho, Brenda S; Henke, Peter K; Stanley, James C; Eagleton, Matthew J; Upchurch, Gilbert R

    2005-01-01

    Selective estrogen receptor modulators (SERMs), similar to estrogens, possess vasoprotective effects by reducing release of reactive oxygen species. Little is known about the potential effects of SERMs on the pathogenesis of abdominal aortic aneurysms (AAAs). This study's objective was to investigate the growth of experimental AAAs in the setting of the SERM tamoxifen. In the first set of experiments, adult male rats underwent subcutaneous tamoxifen pellet (delivering 10 mg/kg/day) implantation (n = 14) or sham operation (n = 16). Seven days later, all animals underwent pancreatic elastase perfusion of the abdominal aorta. Aortic diameters were determined at that time, and aortas were harvested 7 and 14 days after elastase perfusion for immunohistochemistry, real-time polymerase chain reaction, Western blot analysis, and zymography. In the second set of experiments, a direct irreversible catalase inhibitor, 3-amino-1,2,4-triazole (AT), was administered intraperitoneally (1 mg/kg) daily to tamoxifen-treated (n = 6) and control rats (n = 6), starting on day 7 after elastase perfusion. Aortic diameters were measured on day 14. In a third set of experiments, rats were perfused with catalase (150 mg/kg) after the elastase (n = 5), followed by daily intravenous injections of catalase (150 mg/kg/day) administered for 10 days. A control group of rats (n = 7) received 0.9% NaCl instead of catalase. Mean AAA diameters were approximately 50% smaller in tamoxifen-treated rats compared with sham rats 14 days after elastase perfusion (P = .002). The tamoxifen-treated group's aortas had a five-fold increase in catalase mRNA expression (P = .02) on day 7 and an eight-fold increase in catalase protein on day 14 (P = .04). Matrix metalloprotroteinase-9 activity was 2.4-fold higher (P = .01) on day 7 in the aortas of the controls compared to the tamoxifen-treated group's aortas. Tamoxifen-treated rats had approximately 40% fewer aortic polymorphonuclear neutrophils compared to

  12. Tamoxifen: an FDA approved drug with neuroprotective effects for spinal cord injury recovery

    Directory of Open Access Journals (Sweden)

    Jennifer M Colón

    2016-01-01

    Full Text Available Spinal cord injury (SCI is a condition without a cure, affecting sensory and/or motor functions. The physical trauma to the spinal cord initiates a cascade of molecular and cellular events that generates a non-permissive environment for cell survival and axonal regeneration. Among these complex set of events are damage of the blood-brain barrier, edema formation, inflammation, oxidative stress, demyelination, reactive gliosis and apoptosis. The multiple events activated after SCI require a multi-active drug that could target most of these events and produce a permissive environment for cell survival, regeneration, vascular reorganization and synaptic formation. Tamoxifen, a selective estrogen receptor modulator, is an FDA approved drug with several neuroprotective properties that should be considered for the treatment of this devastating condition. Various investigators using different animal models and injury parameters have demonstrated the beneficial effects of this drug to improve functional locomotor recovery after SCI. Results suggest that the mechanism of action of Tamoxifen administration is to modulate anti-oxidant, anti-inflammatory and anti-gliotic responses. A gap of knowledge exists regarding the sex differences in response to Tamoxifen and the therapeutic window available to administer this treatment. In addition, the effects of Tamoxifen in axonal outgrowth or synapse formation needs to be investigated. This review will address some of the mechanisms activated by Tamoxifen after SCI and the results recently published by investigators in the field.

  13. Estradiol affects liver mitochondrial function in ovariectomized and tamoxifen-treated ovariectomized female rats

    International Nuclear Information System (INIS)

    Moreira, Paula I.; Custodio, Jose B.A.; Nunes, Elsa; Moreno, Antonio; Seica, Raquel; Oliveira, Catarina R.; Santos, Maria S.

    2007-01-01

    Given the tremendous importance of mitochondria to basic cellular functions as well as the critical role of mitochondrial impairment in a vast number of disorders, a compelling question is whether 17β-estradiol (E2) modulates mitochondrial function. To answer this question we exposed isolated liver mitochondria to E2. Three groups of rat females were used: control, ovariectomized and ovariectomized treated with tamoxifen. Tamoxifen has antiestrogenic effects in the breast tissue and is the standard endocrine treatment for women with breast cancer. However, under certain circumstances and in certain tissues, tamoxifen can also exert estrogenic agonist properties. We observed that at basal conditions, ovariectomy and tamoxifen treatment do not induce any statistical alteration in oxidative phosphorylation system and respiratory chain parameters. Furthermore, tamoxifen treatment increases the capacity of mitochondria to accumulate Ca 2+ delaying the opening of the permeability transition pore. The presence of 25 μM E2 impairs respiration and oxidative phosphorylation system these effects being similar in all groups of animals studied. Curiously, E2 protects against lipid peroxidation and increases the production of H 2 O 2 in energized mitochondria of control females. Our results indicate that E2 has in general deleterious effects that lead to mitochondrial impairment. Since mitochondrial dysfunction is a triggering event of cell degeneration and death, the use of exogenous E2 must be carefully considered

  14. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells.

    Science.gov (United States)

    Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro

    2017-12-12

    Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.

  15. Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Joan S. [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States); Jordan, V. Craig [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States)]. E-mail: v.craig.jordan@fccc.edu

    2005-12-11

    Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17{beta}-estradiol (E{sub 2}), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ER{alpha} or ER{beta}, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.

  16. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  17. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  18. Physiologically-based pharmacokinetic modeling of tamoxifen and its metabolites in women of different CYP2D6 phenotypes provides new insight into the tamoxifen mass balance

    Directory of Open Access Journals (Sweden)

    Kristin eDickschen

    2012-05-01

    Full Text Available Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+ mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6. It is widely accepted that CYP2D6 poor metabolizers (PM exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers (EM. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved.In this context, physiologically-based pharmacokinetic (PBPK-modeling provides a useful tool to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy.It has long been thought that only a minor percentage of endoxifen is formed via 4-hydroxytamoxifen. However, the current investigation supports very recently published data that postulates a contribution of 4-hydroxytamoxifen above 20 % to total endoxifen formation. The developed PBPK-model describes tamoxifen PK in rats and humans. Moreover, tamoxifen metabolism in dependence of CYP2D6 phenotype in populations of European female individuals is well described, thus providing a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity or co-treatment with CYP2D6 inhibitors.

  19. Tamoxifen with ovarian function suppression versus tamoxifen alone as an adjuvant treatment for premenopausal breast cancer: a meta-analysis of published randomized controlled trials

    Science.gov (United States)

    Yan, Shunchao; Li, Kai; Jiao, Xin; Zou, Huawei

    2015-01-01

    Background Ovarian function suppression (OFS) significantly downregulates the concentration of plasma estrogens. However, it is unclear whether it offers any survival benefits if combined with adjuvant tamoxifen treatment in premenopausal women. This meta-analysis was designed to assess data from previous studies involving adjuvant tamoxifen treatment plus OFS in premenopausal breast cancer. Methods Electronic literature databases (PubMed, Embase, the Web of Science, and the Cochrane Library) were searched for relevant randomized controlled trials published prior to February 1, 2015. Only randomized controlled trials that compared tamoxifen alone with tamoxifen plus OFS for premenopausal women with breast cancer were selected. The evaluated endpoints were disease-free survival and overall survival. Results Four randomized controlled trials comprising 6,279 patients (OFS combination, n=3,133; tamoxifen alone, n=3,146) were included in the meta-analysis. There was no significant improvement in disease-free survival or overall survival with addition of OFS in either the whole population or the hormone receptor-positive subgroup. The risk of distant recurrence was not reduced with the addition of OFS in the whole population. A subgroup analysis showed that addition of OFS significantly improved overall survival in patients who were administered chemotherapy. Conclusion Based on the available studies, concurrent administration of OFS and adjuvant tamoxifen treatment for premenopausal women with breast cancer has no effect on prolonging disease-free survival and overall survival, excluding patients who were administered chemotherapy. It should not be widely recommended, except perhaps for women who were hormone-receptor positive and who were also administered adjuvant chemotherapy. PMID:26109867

  20. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    International Nuclear Information System (INIS)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-01-01

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  1. EMMPRIN-mediated induction of uterine and vascular matrix metalloproteinases during pregnancy and in response to estrogen and progesterone.

    Science.gov (United States)

    Dang, Yiping; Li, Wei; Tran, Victoria; Khalil, Raouf A

    2013-09-15

    Pregnancy is associated with uteroplacental and vascular remodeling in order to adapt for the growing fetus and the hemodynamic changes in the maternal circulation. We have previously shown upregulation of uterine matrix metalloproteinases (MMPs) during pregnancy. Whether pregnancy-associated changes in MMPs are localized to the uterus or are generalized in feto-placental and maternal circulation is unclear. Also, the mechanisms causing the changes in uteroplacental and vascular MMPs during pregnancy are unclear. MMPs expression, activity and tissue distribution were measured in uterus, placenta and aorta of virgin, mid-pregnant (mid-Preg) and late pregnant (late-Preg) rats. Western blots and gelatin zymography revealed increases in MMP-2 and -9 in uterus and aorta of late-Preg compared with virgin and mid-Preg rats. In contrast, MMP-2 and -9 were decreased in placenta of late-Preg versus mid-Preg rats. Extracellular MMP inducer (EMMPRIN) was increased in uterus and aorta of pregnant rats, but was less in placenta of late-Preg than mid-Preg rats. Prolonged treatment of uterus or aorta of virgin rats with 17β-estradiol and progesterone increased the amount of EMMPRIN, MMP-2 and -9, and the sex hormone-induced increases in MMPs were prevented by EMMPRIN neutralizing antibody. Immunohistochemistry revealed that MMP-2 and -9 and EMMPRIN increased in uterus and aorta of pregnant rats, but decreased in placenta of late-Preg versus mid-Preg rats. Thus pregnancy-associated upregulation of uterine MMPs is paralleled by increased vascular MMPs, and both are mediated by EMMPRIN and induced by estrogen and progesterone, suggesting similar role of MMPs in uterine and vascular tissue remodeling and function during pregnancy. The decreased MMPs and EMMPRIN in placenta of late-Preg rats suggests reduced role of MMPs in feto-placental circulation during late pregnancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination.

    Science.gov (United States)

    Xiao, Lin; Guo, Dazhi; Hu, Chun; Shen, Weiran; Shan, Lei; Li, Cui; Liu, Xiuyun; Yang, Wenjing; Zhang, Weidong; He, Cheng

    2012-07-01

    Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS). Copyright © 2012 Wiley Periodicals, Inc.

  3. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice.

    Science.gov (United States)

    Lu, Jun; Wu, Dong-Mei; Zheng, Yuan-Lin; Hu, Bin; Cheng, Wei; Zhang, Zi-Feng

    2012-02-01

    Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  4. Rapid Estrogen Receptor-Mediated Mechanisms Determine the Sexually Dimorphic Sensitivity of Ventricular Myocytes to 17β-Estradiol and the Environmental Endocrine Disruptor Bisphenol A

    Science.gov (United States)

    Belcher, Scott M.; Chen, Yamei; Yan, Sujuan

    2012-01-01

    Previously we showed that 17β-estradiol (E2) and/or the xenoestrogen bisphenol A (BPA) alter ventricular myocyte Ca2+ handing, resulting in increased cardiac arrhythmias in a female-specific manner. In the present study, the roles of estrogen receptors (ER) in mediating the rapid contractile and arrhythmogenic effects of estrogens were examined. Contractility was used as an index to assess the impact of E2 or BPA on Ca2+ handling in rodent ventricular myocytes. The concentration-response curve for the stimulatory effects of BPA and E2 on female myocyte was inverted-U shaped. Detectable effects for each compound were observed at 10−12 m, and the most efficacious concentrations for each were at 10−9 m. Sensitivity to E2 and BPA was not observed in male myocytes and was abolished in myocytes from ovariectomized females. Analysis using protein-conjugated E2 suggests that these rapid actions are induced by membrane-associated receptors. Analysis using selective ER agonists and antagonists and a genetic ERβ knockout mouse model showed that ERα and ERβ have opposing actions in myocytes and that the balance between ERβ and ERα signaling is the prime regulator of the sex-specific sensitivity toward estrogens. The response of female myocytes to E2 and BPA is dominated by the stimulatory ERβ-mediated signaling, and the absence of BPA and E2 responsiveness in males is due to a counterbalancing-suppressive action of ERα. We conclude that the sex-specific sensitivity of myocytes to estrogens and the rapid arrhythmogenic effects of BPA and estradiol in the female heart are regulated by the balance between ERα and ERβ signaling. PMID:22166976

  5. Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells

    Science.gov (United States)

    Wang, Qiang; Jiang, Jun; Ying, Guoguang; Xie, Xiao-Qing; Zhang, Xia; Xu, Wei; Zhang, Xuemin; Song, Erwei; Bu, Hong; Ping, Yi-Fang; Yao, Xiao-Hong; Wang, Bin; Xu, Shilei; Yan, Ze-Xuan; Tai, Yanhong; Hu, Baoquan; Qi, Xiaowei; Wang, Yan-Xia; He, Zhi-Cheng; Wang, Yan; Wang, Ji Ming; Cui, You-Hong; Chen, Feng; Meng, Kun; Wang, Zhaoyi; Bian, Xiu-Wu

    2018-01-01

    The 66 kDa estrogen receptor alpha (ERα66) is the main molecular target for endocrine therapy such as tamoxifen treatment. However, many patients develop resistance with unclear mechanisms. In a large cohort study of breast cancer patients who underwent surgery followed by tamoxifen treatment, we demonstrate that ERα36, a variant of ERα66, correlates with poor prognosis. Mechanistically, tamoxifen directly binds and activates ERα36 to enhance the stemness and metastasis of breast cancer cells via transcriptional stimulation of aldehyde dehydrogenase 1A1 (ALDH1A1). Consistently, the tamoxifen-induced stemness and metastasis can be attenuated by either ALDH1 inhibitors or a specific ERα36 antibody. Thus, tamoxifen acts as an agonist on ERα36 in breast cancer cells, which accounts for hormone therapy resistance and metastasis of breast cancer. Our study not only reveals ERα36 as a stratifying marker for endocrine therapy but also provides a promising therapeutic avenue for tamoxifen-resistant breast cancer. PMID:29393296

  6. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer.

    Science.gov (United States)

    Thewes, Verena; Simon, Ronald; Schroeter, Petra; Schlotter, Magdalena; Anzeneder, Tobias; Büttner, Reinhard; Benes, Vladimir; Sauter, Guido; Burwinkel, Barbara; Nicholson, Robert I; Sinn, Hans-Peter; Schneeweiss, Andreas; Deuschle, Ulrich; Zapatka, Marc; Heck, Stefanie; Lichter, Peter

    2015-02-15

    Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer. ©2015 American Association for Cancer Research.

  7. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Charalambous, Christiana; Pitta, Chara A; Constantinou, Andreas I

    2013-01-01

    Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol enhances tamoxifen’s anti-tumor effect, and to identify the molecular mechanisms involved. For this purpose, we examined the individual and combined effects of equol and tamoxifen on the estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western blot analysis. We found that equol (>50 μM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the MCF-7 cell viability. Furthermore, the combination of equol (100 μM) and 4-OHT (10 μM) induced apoptosis more effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and α-fodrin cleavage, indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the intrinsic apoptotic pathway more efficiently than each compound alone. Consequently, equol may be used therapeutically in combination treatments and clinical studies to enhance tamoxifen’s effect by providing additional protection against estrogen-responsive breast cancers

  8. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity.

    Science.gov (United States)

    Zhang, Bing; Zhou, Wen-Jie; Gu, Chun-Jie; Wu, Ke; Yang, Hui-Li; Mei, Jie; Yu, Jia-Jun; Hou, Xiao-Fan; Sun, Jian-Song; Xu, Feng-Yuan; Li, Da-Jin; Jin, Li-Ping; Li, Ming-Qing

    2018-05-14

    Endometriosis (EMS) is an estrogen-dependent gynecological disease with a low autophagy level of ectopic endometrial stromal cells (eESCs). Impaired NK cell cytotoxic activity is involved in the clearance obstruction of the ectopic endometrial tissue in the abdominopelvic cavity. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides, which have profound biological functions, such as anti-cancer activities. However, the role and mechanism of ginsenosides and metabolites in endometriosis are completely unknown. Here, we found that the compounds PPD, PPT, ginsenoside-Rg3 (G-Rg3), ginsenoside-Rh2 (G-Rh2), and esculentoside A (EsA) led to significant decreases in the viability of eESCs, particularly PPD (IC50 = 30.64 µM). In vitro and in vivo experiments showed that PPD promoted the expression of progesterone receptor (PR) and downregulated the expression of estrogen receptor α (ERα) in eESCs. Treatment with PPD obviously induced the autophagy of eESCs and reversed the inhibitory effect of estrogen on eESC autophagy. In addition, eESCs pretreated with PPD enhanced the cytotoxic activity of NK cells in response to eESCs. PPD decreased the numbers and suppressed the growth of ectopic lesions in a mouse EMS model. These results suggest that PPD plays a role in anti-EMS activation, possibly by restricting estrogen-mediated autophagy regulation and enhancing the cytotoxicity of NK cells. This result provides a scientific basis for potential therapeutic strategies to treat EMS by PPD or further structural modification.

  9. ACE-2/Ang1-7/Mas cascade mediates ACE inhibitor, captopril, protective effects in estrogen-deficient osteoporotic rats.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-08-01

    The local role of the renin angiotensin system (RAS) was documented recently beside its conventional systemic functions. Studies showed that the effector angiotensin II (AngII) alters bone health, while inhibition of the angiotensin converting enzyme (ACE-1) preserved these effects. The newly identified Ang1-7 exerts numerous beneficial effects opposing the AngII. Thus, the current study examines the role of Ang1-7 in mediating the osteo-preservative effects of ACEI (captopril) through the G-protein coupled Mas receptor using an ovariectomized (OVX) rat model of osteoporosis. 8 weeks after the surgical procedures, captopril was administered orally (40mgkg -1 d -1 ), while the specific Mas receptor blocker (A-779) was delivered at infusion rate of 400ngkg -1 min -1 for 6 weeks. Bone metabolic markers were measured in serum and urine. Minerals concentrations were quantified in serum, urine and femoral bones by inductive coupled plasma mass spectroscopy (ICP-MS). Trabecular and cortical morphometry was analyzed in the right distal femurs using micro-CT. Finally, the expressions of RAS peptides, enzymes and receptors along with the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) were determined femurs heads. OVX animals markedly showed altered bone metabolism and mineralization along with disturbed bone micro-structure. Captopril significantly restored the metabolic bone bio-markers and corrected Ca 2+ and P values in urine and bones of estrogen deficient rats. Moreover, the trabecular and cortical morphometric features were repaired by captopril in OVX groups. Captopril also improved the expressions of ACE-2, Ang1-7, Mas and OPG, while abolished OVX-induced up-regulation of ACE-1, AngII, Ang type 1 receptor (AT1R) and RANKL. Inhibition of Ang1-7 cascade by A-779 significantly eradicated captopril protective effects on bone metabolism, mineralization and micro-structure. A-779 also restored OVX effects on RANKL expression and ACE-1/AngII/AT1R

  10. The evaluation of in vitro effect of daunorubicin and tamoxifen in ehrlich ascites tumour (EAT) cells

    International Nuclear Information System (INIS)

    Topcul, M.; Topcul, F.; Oezalpan, A.

    2001-01-01

    In the most countries, breast cancer is still the most important cancer among women. It is known that Ehrlich Ascites Tumour is experimental breast cancer model in animal. The cells used in the study are hyper diploid line of Ehrlich Ascites Tumour (EAT) cells, initially provided to us from Institute of Pathology, Koln University. In the present study, an hyper diploid line which is estrogen receptor positive was used. An anthracycline-derived antibiotic, Daunorubicin (DNR, Cerubidine) is one of the clinically used anticancer drugs. DNR has been used alone or in combination with other cytotoxic agents against a variety of animal and human tumours. In vitro cell culture studies show that DNR enters the cell nuclei, inhibits nucleic acid synthesis, and arrest cell division. Tamoxifen (TAM, Nolvadex) is a semi-synthetical estrogen antagonist, used in the management of pre and post menopausal breast cancer. This drug bind to intracellular estrogen receptors, and prevents endogenous estrogens from binding to their own receptors. It is known that Ehrlich Ascites Tumour is experimental breast cancer model in animal. The cells used in the study are hyper diploid line of EAT cells initially provided to us from Institute of Pathology, Koln University. In the present study, an hyper diploid line which is Estrogen Receptor (+) was used. Estrogen Receptor levels were studied by the methods of Lippman and Huff and Raynaud et al. with minor modifications. Estrogen Receptor activity as demonstrated by dextran-coated charcoal technique is closely correlated with the clinical ability of Tamoxifen to inhibit tumour growth

  11. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats.

    Science.gov (United States)

    Ebrahimzadeh-Bideskan, Ali Reza; Mansouri, Somaieh; Ataei, Mariam Lale; Jahanshahi, Mehrdad; Hosseini, Mahmoud

    2018-03-01

    The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.

  12. Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database.

    Science.gov (United States)

    Hwang, Ki-Tae; Kim, Eun-Kyu; Jung, Sung Hoo; Lee, Eun Sook; Kim, Seung Il; Lee, Seokwon; Park, Heung Kyu; Kim, Jongjin; Oh, Sohee; Kim, Young A

    2018-06-01

    To determine the prognostic role of tamoxifen therapy for patients with ductal carcinoma in situ (DCIS) according to molecular subtypes. Data of 14,944 patients with DCIS were analyzed. Molecular subtypes were classified into four categories based on expression of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Kaplan-Meier estimator was used for overall survival analysis while Cox proportional hazards model was used for univariate and multivariate analyses. Luminal A subtype (ER/PR+, HER2-) showed higher (P = .009) survival rate than triple-negative (TN) subtype. Tamoxifen therapy group showed superior (P < .001) survival than no-tamoxifen therapy group. It had survival benefit only for luminal A subtype (P = .001). Tamoxifen therapy resulted in higher survival rate in subgroups with positive ER (P = .006), positive PR (P = .009), and negative HER2 (P < .001). In luminal A subtype, tamoxifen therapy showed lower hazard ratio (HR) compared to no-tamoxifen therapy (HR, 0.420; 95% CI 0.250-0.705; P = .001). Tamoxifen therapy was a significant independent factor by multivariate analysis (HR, 0.538; 95% CI 0.306-0.946; P = .031) as well as univariate analysis. Tamoxifen therapy group showed superior prognosis than the no-tamoxifen therapy group. Its prognostic influence was only effective for luminal A subtype. Patients with luminal A subtype showed higher survival rate than those with TN subtype. Active tamoxifen therapy is recommended for DCIS patients with luminal A subtype, and routine tests for ER, PR, and HER2 should be considered for DCIS.

  13. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Chatterjee, Anwesha; Ronghe, Amruta M; Bhat, Nimee K; Bhat, Hari K

    2013-01-01

    Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1

  14. Nontranscriptional activation of PI3K/Akt signaling mediates hypotensive effect following activation of estrogen receptor β in the rostral ventrolateral medulla of rats

    Directory of Open Access Journals (Sweden)

    Wu Kay LH

    2012-08-01

    Full Text Available Abstract Background Estrogen acts on the rostral ventrolateral medulla (RVLM, where sympathetic premotor neurons are located, to elicit vasodepressor effects via an estrogen receptor (ERβ-dependent mechanism. We investigated in the present study nontranscriptional mechanism on cardiovascular effects following activation of ERβ in the RVLM, and delineated the involvement of phosphatidylinositol 3-kinase (PI3K/serine/threonine kinase (Akt signaling pathway in the effects. Methods In male Sprague–Dawley rats maintained under propofol anesthesia, changes in arterial pressure, heart rate and sympathetic neurogenic vasomotor tone were examined after microinjection bilaterally into RVLM of 17β-estradiol (E2β or a selective ERα or ERβ agonist. Involvement of ER subtypes and PI3K/Akt signaling pathway in the induced cardiovascular effects were studied using pharmacological tools of antagonists or inhibitors, gene manipulation with antisense oligonucleotide (ASON or adenovirus-mediated gene transfection. Results Similar to E2β (1 pmol, microinjection of ERβ agonist, diarylpropionitrile (DPN, 1, 2 or 5 pmol, into bilateral RVLM evoked dose-dependent hypotension and reduction in sympathetic neurogenic vasomotor tone. These vasodepressive effects of DPN (2 pmol were inhibited by ERβ antagonist, R,R-tetrahydrochrysene (50 pmol, ASON against ERβ mRNA (250 pmol, PI3K inhibitor LY294002 (5 pmol, or Akt inhibitor (250 pmol, but not by ERα inhibitor, methyl-piperidino-pyrazole (1 nmol, or transcription inhibitor, actinomycin D (5 or 10 nmol. Gene transfer by microinjection into bilateral RVLM of adenovirus encoding phosphatase and tensin homologues deleted on chromosome 10 (5 × 108 pfu reversed the vasodepressive effects of DPN. Conclusions Our results indicate that vasodepressive effects following activation of ERβ in RVLM are mediated by nongenomic activation of PI3K/Akt signaling pathway. This study provides new insight in the

  15. Novel Carbonyl Analogs of Tamoxifen: Design, Synthesis, and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Konstantinos M. Kasiotis

    2017-09-01

    Full Text Available Aim of this work was to provide tamoxifen analogs with enhanced estrogen receptor (ER binding affinity. Hence, several derivatives were prepared using an efficient triarylethylenes synthetic protocol. The novel compounds bioactivity was evaluated through the determination of their receptor binding affinity and their agonist/antagonist activity against breast cancer tissue using a MCF-7 cell-based assay. Phenyl esters 6a,b and 8a,b exhibited binding affinity to both ERα and ERβ higher than 4-hydroxytamoxifen while compounds 13 and 14 have shown cellular antiestrogenic activity similar to 4-hydroxytamoxifen and the known ER inhibitor ICI182,780. Theoretical calculations and molecular modeling were applied to investigate, support and explain the biological profile of the new compounds. The relevant data indicated an agreement between calculations and demonstrated biological activity allowing to extract useful structure-activity relationships. Results herein underline that modifications of tamoxifen structure still provide molecules with substantial activity, as portrayed in the inhibition of MCF-7 cells proliferation.

  16. Anti-Inflammatory Effects of Tanshinone IIA on Atherosclerostic Vessels of Ovariectomized ApoE-/- Mice are Mediated by Estrogen Receptor Activation and Through the ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-03-01

    Full Text Available Aims: Estrogen plays a protective role in atherosclerosis. Our preliminary work demonstrated that the active conformation of Tanshinone IIA(TanIIA is similar to the 17ß-estradiol and it can bind to the estrogen receptor. Here, we hypothesized that Tanshinone IIA might have anti-inflammatory and anti-oxidative effects in atherosclerosis, mediated through estrogen receptor activation. Methods: Subjects for this study were 120 apoE-/- female mice and 20 C57/BL female mice. The apoE-/- mice were ovariectomized (OVX and the C57/BL mice were sham ovariectomized. The sham OVX mice were maintained on a normal diet (NOR group. The OVX apoE-/- mice were fed a high fat diet and randomly divided into 6 groups: Model (MOD group which was fed a high fat diet only, E2 group were given estrogen (E2 0.13mg/kg/d; E2+ICI group were given E2:0.13mg/kg/d and ICI182780:65mg/kg/m; TLD group (TanIIA low dose were given TanIIA: 30mg/kg/d; THD group (TanIIA high dose were given TanIIA:60mg/kg/d; and TLD+ICI group were given TanIIA 30mg/kg/d and ICI182780 65mg/kg/m. After three months of treatment, the aorta and the blood of the mice from each group was collected. The aorta were used for testing the lipid deposition by using hematoxylin and eosin(HE and oil red O staining and for testing the expression of p-ERK1/2 by Western blot. The blood was used for testing the serum cholesterol, superoxide dismutase (SOD, methane dicarboxylic aldehyde (MDA, nuclear factor kappa (NF-κB, soluble intercellular cell adhesion molecule-1 (sICAM-1, activating protein-1 (AP-1, E-selectin and 17ß-estradiol in serum. Results: Tanshinone IIA significantly reduced the lipid deposition in aorta, decreased the levels of total cholesterol (TC, triglyceride (TG, low density lipoprotein (LDL, very low density lipoprotein (VLDL, MDA, NF-κB, sICAM-1, AP-1, and E-selectin in serum but increased the levels of high density lipoprotein (HDL and SOD in serum. Tanshinone IIA also suppressed the

  17. Differential effect of EGFR inhibitors on tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Oh, Soo Jin; Nam, Seok Jin; Lee, Jeong Eon

    2015-09-01

    Although tamoxifen is the most common and effective therapy for treatment of estrogen receptor-α (ER-α) breast cancer patients, resistance of endocrine therapy occurs, either de novo or acquired during therapy. Here, we investigated the clinical value of epidermal growth factor receptor (EGFR) in tamoxifen-resistant (TamR) patients and the differential effect of EGFR inhibitors, neratinib and gefitinib, on TamR breast cancer cell model. The morphology of TamR MCF7 cells showed mesenchymal phenotypes and did not induce cell death by tamoxifen treatment compared with tamoxifen‑sensitive (TamS) MCF7 cells. In addition, mesenchymal marker proteins, including N-cadherin (N-cad), fibronectin (FN), and Slug, significantly increased in TamR cells. In contrast, ER-α and E-cadherin (E-cad) were greatly decreased. We also found that the levels of EGFR and HER2 expression were increased in TamR cells. Furthermore, we observed that EGFR expression was directly involved with poor prognosis of tamoxifen-treated breast cancer patients using the GSE1378 date set. Thus, we treated TamR and TamS cells with EGFR inhibitors, neratinib and gefitinib, respectively. Interestingly, neratinib induced apoptotic cell death of TamR but not gefitinib. Cleaved PARP-1 expression was also increased by neratinib treatment in TamR cells. Therefore, we suggest that neratinib may be a potential therapeutic drug for treating TamR breast cancer.

  18. The role of the addition of ovarian suppression to tamoxifen in young women with hormone-sensitive breast cancer who remain premenopausal or regain menstruation after chemotherapy (ASTRRA): study protocol for a randomized controlled trial and progress

    International Nuclear Information System (INIS)

    Kim, Hyun-Ah; Ahn, Sei Hyun; Nam, Seok Jin; Park, Seho; Ro, Jungsil

    2016-01-01

    Ovarian function suppression (OFS) has been shown to be effective as adjuvant endocrine therapy in premenopausal women with hormone receptor-positive breast cancer. However, it is currently unclear if addition of OFS to standard tamoxifen therapy after completion of adjuvant chemotherapy results in a survival benefit. In 2008, the Korean Breast Cancer Society Study Group initiated the ASTRRA randomized phase III trial to evaluate the efficacy of OFS in addition to standard tamoxifen treatment in hormone receptor-positive breast cancer patients who remain or regain premenopausal status after chemotherapy. Premenopausal women with estrogen receptor-positive breast cancer treated with definitive surgery were enrolled after completion of neoadjuvant or adjuvant chemotherapy. Ovarian function was assessed at the time of enrollment and every 6 months for 2 years by follicular-stimulating hormone levels and bleeding history. If ovarian function was confirmed as premenopausal status, the patient was randomized to receive 2 years of goserelin plus 5 years of tamoxifen treatment or 5 years of tamoxifen alone. The primary end point will be the comparison of the 5-year disease-free survival rates between the OFS and tamoxifen alone groups. Patient recruitment was finished on March 2014 with the inclusion of a total of 1483 patients. The interim analysis will be performed at the time of the observation of the 187th event. This study will provide evidence of the benefit of OFS plus tamoxifen compared with tamoxifen only in premenopausal patients with estrogen receptor-positive breast cancer treated with chemotherapy

  19. Thioredoxin and thioredoxin reductase influence estrogen receptor α-mediated gene expression in human breast cancer cells

    OpenAIRE

    Rao, Abhi K; Ziegler, Yvonne S; McLeod, Ian X; Yates, John R; Nardulli, Ann M

    2009-01-01

    Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor α (ERα). Western analysis and...

  20. Viral Vector Mediated Over-Expression of Estrogen Receptor–α in Striatum Enhances the Estradiol-induced Motor Activity in Female Rats and Estradiol Modulated GABA Release

    Science.gov (United States)

    Schultz, Kristin N.; von Esenwein, Silke A.; Hu, Ming; Bennett, Amy L.; Kennedy, Robert T.; Musatov, Sergei; Toran-Allerand, C. Dominique; Kaplitt, Michael G.; Young, Larry J.; Becker, Jill B.

    2009-01-01

    Classical estrogen receptor signaling mechanisms involve estradiol binding to intracellular nuclear receptors (estrogen receptor-α (ERα) and estrogen receptor-β (ERβ)) to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K+- evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERα located on the membrane of medium spiny GABAergic neurons. This experiment examined whether over-expression of ERα in the striatum would enhance the effect of estradiol on rotational behavior and the K+- evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERα cDNA (AAV.ERα) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERα in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared to controls and exhibited behavioral sensitization of contralateral rotations induced by a low dose of amphetamine. ERα over-expression also enhanced the inhibitory effect of estradiol on K+- evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior. PMID:19211896

  1. Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release.

    Science.gov (United States)

    Schultz, Kristin N; von Esenwein, Silke A; Hu, Ming; Bennett, Amy L; Kennedy, Robert T; Musatov, Sergei; Toran-Allerand, C Dominique; Kaplitt, Michael G; Young, Larry J; Becker, Jill B

    2009-02-11

    Classical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K(+)-evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERalpha located on the membrane of medium spiny GABAergic neurons. This experiment examined whether overexpression of ERalpha in the striatum would enhance the effect of estradiol on rotational behavior and the K(+)-evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERalpha cDNA (AAV.ERalpha) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERalpha in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared with controls and exhibited behavioral sensitization of contralateral rotations induced by a low-dose of amphetamine. ERalpha overexpression also enhanced the inhibitory effect of estradiol on K(+)-evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior.

  2. Tamoxifen induces regression of estradiol-induced mammary cancer in the ACI.COP-Ept2 rat model.

    Science.gov (United States)

    Ruhlen, Rachel L; Willbrand, Dana M; Besch-Williford, Cynthia L; Ma, Lixin; Shull, James D; Sauter, Edward R

    2009-10-01

    The ACI rat is a unique model of human breast cancer in that mammary cancers are induced by estrogen without carcinogens, irradiation, xenografts or transgenic manipulations. We sought to characterize mammary cancers in a congenic variant of the ACI rat, the ACI.COP-Ept2. All rats with estradiol implants developed mammary cancers in 5-7 months. Rats bearing estradiol-induced mammary cancers were treated with tamoxifen for three weeks. Tamoxifen reduced tumor mass, measured by magnetic resonance imaging, by 89%. Tumors expressed estrogen receptors (ER), progesterone receptor (PR), and Erbb2. ERalpha and PR were overexpressed in tumor compared to adjacent non-tumor mammary gland. Thus, this model is highly relevant to hormone responsive human breast cancers.

  3. Global characterization of signalling networks associated with tamoxifen resistance in breast cancer

    DEFF Research Database (Denmark)

    Browne, Brigid C.; Hochgräfe, Falko; Wu, Jianmin

    2013-01-01

    R cells. Phosphorylation of the tyrosine kinase Yes and expression of the actin‐binding protein myristoylated alanine‐rich C‐kinase substrate (MARCKS) were increased two‐ and eightfold in TamR cells respectively, and these proteins were selected for further analysis. Knockdown of either protein in Tam......Acquired resistance to the anti‐estrogen tamoxifen remains a significant challenge in breast cancer management. In this study, we used an integrative approach to characterize global protein expression and tyrosine phosphorylation events in tamoxifen‐resistant MCF7 breast cancer cells (Tam...... was perturbed in TamR cells, together with pathways enriched for proteins associated with growth factor, cell–cell and cell matrix‐initiated signalling. Consistent with known roles for Ras/MAPK and PI3‐kinase signalling in tamoxifen resistance, tyrosine‐phosphorylated MAPK1, SHC1 and PIK3R2 were elevated in Tam...

  4. The Working Memory and Dorsolateral Prefrontal-Hippocampal Functional Connectivity Changes in Long-Term Survival Breast Cancer Patients Treated with Tamoxifen

    Science.gov (United States)

    Chen, Xingui; Tao, Longxiang; Li, Jingjing; Wu, Jiaonan; Zhu, Chunyan; Yu, Fengqiong; Zhang, Lei; Zhang, Jingjie; Qiu, Bensheng; Yu, Yongqiang; He, Xiaoxuan

    2017-01-01

    Abstract Background: Tamoxifen is the most widely used drug for treating patients with estrogen receptor-sensitive breast cancer. There is evidence that breast cancer patients treated with tamoxifen exhibit cognitive dysfunction. However, the underlying neural mechanism remains unclear. The present study aimed to investigate the neural mechanisms underlying working memory deficits in combination with functional connectivity changes in premenopausal women with breast cancer who received long-term tamoxifen treatment. Methods: A total of 31 premenopausal women with breast cancer who received tamoxifen and 32 matched healthy control participants were included. The participants completed n-back tasks and underwent resting-state functional magnetic resonance imaging, which measure working memory performance and brain functional connectivity, respectively. A seed-based functional connectivity analysis within the whole brain was conducted, for which the dorsolateral prefrontal cortex was chosen as the seed region. Results: Our results indicated that the tamoxifen group had significant deficits in working memory and general executive function performance and significantly lower functional connectivity of the right dorsolateral prefrontal cortex with the right hippocampus compared with the healthy controls. There were no significant changes in functional connectivity in the left dorsolateral prefrontal cortex within the whole brain between the tamoxifen group and healthy controls. Moreover, significant correlations were found in the tamoxifen group between the functional connectivity strength of the dorsolateral prefrontal cortex with the right hippocampus and decreased working memory performance. Conclusion: This study demonstrates that the prefrontal cortex and hippocampus may be affected by tamoxifen treatment, supporting an antagonistic role of tamoxifen in the long-term treatment of breast cancer patients. PMID:28177081

  5. FGFR2-Driven Signaling Counteracts Tamoxifen Effect on ERα-Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lukasz Turczyk

    2017-10-01

    Full Text Available Signaling mediated by growth factors receptors has long been suggested as one of the key factors responsible for failure of endocrine treatment in breast cancer (BCa. Herein we present that in the presence of tamoxifen, FGFs (Fibroblast Growth Factors promote BCa cell growth with the strongest effect being produced by FGF7. FGFR2 was identified as a mediator of FGF7 action and the FGFR2-induced signaling was found to underlie cancer-associated fibroblasts-dependent resistance to tamoxifen. FGF7/FGFR2-triggered pathway was shown to induce ER phosphorylation, ubiquitination and subsequent ER proteasomal degradation which counteracted tamoxifen-promoted ER stabilization. We also identified activation of PI3K/AKT signaling targeting ER-Ser167 and regulation of Bcl-2 expression as a mediator of FGFR2-promoted resistance to tamoxifen. Analysis of tissue samples from patients with invasive ductal carcinoma revealed an inversed correlation between expression of FGFR2 and ER, thus supporting our in vitro data. These results unveil the complexity of ER regulation by FGFR2-mediated signaling likely to be associated with BCa resistance to endocrine therapy.

  6. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer

    International Nuclear Information System (INIS)

    Loh, Yan Ni; Hedditch, Ellen L; Baker, Laura A; Jary, Eve; Ward, Robyn L; Ford, Caroline E

    2013-01-01

    Acquired resistance to Tamoxifen remains a critical problem in breast cancer patient treatment, yet the underlying causes of resistance have not been fully elucidated. Abberations in the Wnt signalling pathway have been linked to many human cancers, including breast cancer, and appear to be associated with more metastatic and aggressive types of cancer. Here, our aim was to investigate if this key pathway was involved in acquired Tamoxifen resistance, and could be targeted therapeutically. An in vitro model of acquired Tamoxifen resistance (named TamR) was generated by growing the estrogen receptor alpha (ER) positive MCF7 breast cancer cell line in increasing concentrations of Tamoxifen (up to 5 uM). Alterations in the Wnt signalling pathway and epithelial to mesenchymal transition (EMT) in response to Tamoxifen and treatment with the Wnt inhibitor, IWP-2 were measured via quantitative RT-PCR (qPCR) and TOP/FOP Wnt reporter assays. Resistance to Tamoxifen, and effects of IWP-2 treatment were determined by MTT proliferation assays. TamR cells exhibited increased Wnt signalling as measured via the TOP/FOP Wnt luciferase reporter assays. Genes associated with both the β-catenin dependent (AXIN2, MYC, CSNK1A1) and independent arms (ROR2, JUN), as well as general Wnt secretion (PORCN) of the Wnt signalling pathway were upregulated in the TamR cells compared to the parental MCF7 cell line. Treatment of the TamR cell line with human recombinant Wnt3a (rWnt3a) further increased the resistance of both MCF7 and TamR cells to the anti-proliferative effects of Tamoxifen treatment. TamR cells demonstrated increased expression of EMT markers (VIM, TWIST1, SNAI2) and decreased CDH1, which may contribute to their resistance to Tamoxifen. Treatment with the Wnt inhibitor, IWP-2 inhibited cell proliferation and markers of EMT. These data support the role of the Wnt signalling pathway in acquired resistance to Tamoxifen. Further research into the mechanism by which activated Wnt

  7. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    Science.gov (United States)

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  8. The selective estrogen receptor modulators in breast cancer prevention.

    Science.gov (United States)

    Li, Fangxuan; Dou, Jinli; Wei, Lijuan; Li, Shixia; Liu, Juntian

    2016-05-01

    Persistently increased blood levels of estrogens are associated with an increased risk of breast cancer. Selective estrogen receptor modulators (SERMs) are a class of compounds that act on the estrogen receptor (ER). Several clinical trials have demonstrated the effectiveness of its prophylactic administration. Incidence of invasive ER-positive breast cancer was reduced by SERMs treatment, especially for those women with high risk of developing breast cancer. In this study, we reviewed the clinical application of SERMs in breast cancer prevention. To date, four prospective randomized clinical trials had been performed to test the efficacy of tamoxifen for this purpose. Concerning on the benefit and cost of tamoxifen, various studies from different countries demonstrated that chemoprevention with tamoxifen seemed to be cost-effective for women with a high risk of invasive breast cancer. Based above, tamoxifen was approved for breast cancer prevention by the US Food and Drug Administration in 1998. Raloxifene was also approved for postmenopausal women in 2007 for breast cancer prevention which reduces the risk of invasive breast cancer with a lower risk of unwanted stimulation of endometrium. Thus, raloxifene is considered to have a better clinical possesses as prophylactic agent. Several other agents, such as arzoxifene and lasofoxifene, are currently being investigated in clinic. The American Society of Clinical Oncology and National Comprehensive Cancer Network had published guidelines on breast cancer chemoprevention by SERMs. However, use of tamoxifen and raloxifene for primary breast cancer prevention was still low. A broader educational effort is needed to alert women and primary care physicians that SERMs are available to reduce breast cancer risk.

  9. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  10. Tumor specific HMG-CoA reductase expression in primary pre-menopausal breast cancer predicts response to tamoxifen

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2011-01-31

    Abstract Introduction We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. Methods HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. Results HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive\\/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as

  11. The Possible Effect Of Tamoxifen Vs Whole Body Irradiation Treatment On Thyroid Hormones in Female Rats Bearing Mammary Tumors Chemically Induced

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.

    2012-01-01

    Breast cancer is the most common malignancy among women in most developed and developing regions of the world. In women, this drug has tissuespecific effects, acting as an estrogen antagonist on the breast, and as an estrogen agonist on bone, lipid metabolism (increasing high-density lipoprotein cholesterol and decreasing low-density lipoprotein cholesterol), and the endometrium. Thyroid hormones act on almost all organs throughout the body and regulate the basal metabolism of the organism. Thyroid hormone can also stimulate the proliferation in vitro of certain tumor cell lines. The aim of the present study is to evaluate the significant value of tamoxifen and/or irradiation treatment on thyroid hormones in breast cancer bearing female rats. Forty two female Sprague-Dawely rats randomly divided into seven groups and the effect of tamoxifen and post-irradiation was studied on breast cancer chemically induced. The results shows a T 4 and estradiol levels not T 3 were altered in different experimental groups. It could be concluded that irradiation-induced changes in the composition of the mammary microenvironment promote the expression of neoplastic potential by affecting both estradiol and thyroid hormones, and tamoxifen may alter the thyroid hormones. Irradiation and tamoxifen administration may have worth effects on T 4 and estradiol levels and it is recommended to further studies towards the bystander effect of radiation and tamoxifen on the tissue culture and molecular biology scale.

  12. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells.

    Science.gov (United States)

    Chen, Haiyan; Wang, Ji-Ping; Santen, Richard J; Yue, Wei

    2015-06-01

    Estrogens stimulate growth of hormone-dependent breast cancer but paradoxically induce tumor regress under certain circumstances. We have shown that long-term estrogen deprivation (LTED) enhances the sensitivity of hormone dependent breast cancer cells to estradiol (E2) so that physiological concentrations of estradiol induce apoptosis in these cells. E2-induced apoptosis involve both intrinsic and extrinsic pathways but precise mechanisms remain unclear. We found that exposure of LTED MCF-7 cells to E2 activated AMP activated protein kinase (AMPK). In contrast, E2 inhibited AMPK activation in wild type MCF-7 cells where E2 prevents apoptosis. As a result of AMPK activation, the transcriptional activity of FoxO3, a downstream factor of AMPK, was up-regulated in E2 treatment of LTED. Increased activity of FoxO3 was demonstrated by up-regulation of three FoxO3 target genes, Bim, Fas ligand (FasL), and Gadd45α. Among them, Bim and FasL mediate intrinsic and extrinsic apoptosis respectively and Gadd45α causes cell cycle arrest at the G2/M phase. To further confirm the role of AMPK in apoptosis, we used AMPK activator AICAR in wild type MCF-7 cells and examined apoptosis, proliferation and expression of Bim, FasL, and Gadd45α. The effects of AICAR on these parameters recapitulated those observed in E2-treated LTED cells. Activation of AMPK by AICAR also increased expression of Bax in MCF-7 cells and its localization to mitochondria, which is a required process for apoptosis. These results reveal that AMPK is an important factor mediating E2-induced apoptosis in LTED cells, which is implicative of therapeutic potential for relapsing breast cancer after hormone therapy.

  13. Compound list: tamoxifen [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available tamoxifen TMX 00054 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/tam...oxifen.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/tam...oxifen.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/tam...open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/tamoxifen.Rat.in_vivo.Liver.Repeat.zip ...

  14. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Woo Chul; Ham, Yong Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10`-`9M) and tamoxifen (10`-`5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  15. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    International Nuclear Information System (INIS)

    Noh, Woo Chul; Ham, Yong Ho

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10'-'9M) and tamoxifen (10'-'5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  16. Motivators and barriers of tamoxifen use as risk-reducing medication amongst women at increased breast cancer risk: a systematic literature review.

    Science.gov (United States)

    Meiser, B; Wong, W K T; Peate, M; Julian-Reynier, C; Kirk, J; Mitchell, G

    2017-01-01

    Selective estrogen receptor modulators, such as tamoxifen, reduce breast cancer risk by up to 50% in women at increased risk for breast cancer. Despite tamoxifen's well-established efficacy, many studies show that most women are not taking up tamoxifen. This systematic literature review aimed to identify the motivators and barriers to tamoxifen use 's amongst high-risk women. Using MEDLINE, PsycINFO, and Embase plus reviewing reference lists of relevant articles published between 1995 and 2016, 31 studies (published in 35 articles) were identified, which addressed high-risk women's decisions about risk-reducing medication to prevent breast cancer and were peer-reviewed primary clinical studies. A range of factors were identified as motivators of, and barriers to, tamoxifen uptake including: perceived risk, breast-cancer-related anxiety, health professional recommendation, perceived drug effectiveness, concerns about side-effects, knowledge and access to information about side-effects, beliefs about the role of risk-reducing medication, provision of a biomarker, preference for other forms of breast cancer risk reduction, previous treatment experience, concerns about randomization in clinical trial protocols and finally altruism. Results indicate that the decision for high-risk women regarding tamoxifen use or non-use as a risk-reducing medication is not straightforward. Support of women making this decision is essential and needs to encompass the full range of factors, both informational and psychological.

  17. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  18. Steroid receptor coactivators, HER-2 and HER-3 expression is stimulated by tamoxifen treatment in DMBA-induced breast cancer

    International Nuclear Information System (INIS)

    Moi, Line L Haugan; Flågeng, Marianne Hauglid; Gjerde, Jennifer; Madsen, Andre; Røst, Therese Halvorsen; Gudbrandsen, Oddrun Anita; Lien, Ernst A; Mellgren, Gunnar

    2012-01-01

    Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer. Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen 40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by real-time RT-PCR. Protein levels were further assessed by Western blotting. Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P = 0.035), SRC-2/TIF-2 (P = 0.002), HER-2 (P = 0.035) and HER-3 (P = 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2 (P ≤ 0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members (P < 0.05). Furthermore, SRC-3/AIB1 and HER-4 were positively correlated with each other and Ets-2 (P < 0.001). The expression of SRCs and HER-2 and -3 is stimulated

  19. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene.

    Science.gov (United States)

    Lee, M O; Liu, Y; Zhang, X K

    1995-08-01

    The lactoferrin gene is highly expressed in many different tissues, and its expression is controlled by different regulators. In this report, we have defined a retinoic acid response element (RARE) in the 5'-flanking region of the lactoferrin gene promoter. The lactoferrin-RARE is composed of two AGGTCA-like motifs arranged as a direct repeat with 1-bp spacing (DR-1). A gel retardation assay demonstrated that it bound strongly with retinoid X receptor (RXR) homodimers and RXR-retinoic acid receptor (RAR) heterodimers as well as chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan receptor. In CV-1 cells, the lactoferrin-RARE linked with a heterologous thymidine kinase promoter was strongly activated by RXR homodimers in response to 9-cis-retinoic acid (9-cis-RA) but not to all-trans-RA. When the COUP-TF orphan receptor was cotransfected, the 9-cis-RA-induced RXR homodimer activity was strongly repressed. A unique feature of the lactoferrin-RARE is that it has an AGGTCA-like motif in common with an estrogen-responsive element (ERE). The composite RARE/ERE contributes to the functional interaction between retinoid receptors and the estrogen receptor (ER) and their ligands. In CV-1 cells, cotransfection of the retinoid and estrogen receptors led to mutual inhibition of the other's activity, while an RA-dependent inhibition of ER activity was observed in breast cancer cells. Furthermore, the lactoferrin-RARE/ERE showed differential transactivation activity in different cell types. RAs could activate the lactoferrin-RARE/ERE in human leukemia HL-60 cells and U937 cells but not in human breast cancer cells. By gel retardation analyses, we demonstrated that strong binding of the endogenous COUP-TF in breast cancer cells to the composite element contributed to diminished RA response in these cells. Thus, the lactoferrin-RARE/ERE functions as a signaling switch module that mediates multihormonal responsiveness in the regulation of lactoferrin gene

  20. Effects of liarozole fumarate (R85246) in combination with tamoxifen on N-methyl-N-nitrosourea (MNU)-induced mammary carcinoma and uterus in the rat model

    International Nuclear Information System (INIS)

    Goss, Paul E; Strasser-Weippl, Kathrin; Qi, Shangle; Hu, Haiqing

    2007-01-01

    Liarozole fumarate (liarozole – R85246) is a novel compound with characteristics of both aromatase inhibitor (AI) and a retinoic acid metabolism blocking agent (RAMBA). Our objective was to determine the effects of liarozole alone or in combination with tamoxifen on the N-methyl-N-nitrosourea (MNU)-induced rat mammary carcinoma model, as well as on the uterus in ovariectomized immature rats. (1) Tumor burden experiments: Animals bearing one or more tumors greater than 10 mm in diameter were treated for 56 consecutive days with 20 mg/kg or 80 mg/kg of liarozole by oral gavage, tamoxifen 100 μg/kg by subcutaneous injection, or a combination of liarozole and tamoxifen. At the end of the treatment period, total cumulative tumor volume as well as retinoic acid levels were measured. (2) Uterotrophic assay and proliferation experiments: 21-day-old ovariectomized (OVX) Sprague-Dawley rats were treated with 20 mg/kg or 80 mg/kg of liarozole by oral gavage, tamoxifen 1 mg/kg by subcutaneous injection, and combination of both for 4 consecutive days. At the end of the treatment period, uterine weight, epithelial lining cell height and indices of proliferation cell nuclear antigen (PCNA) were measured. The tumor burden experiments in rats bearing estrogen receptor (ER) positive mammary tumours showed that liarozole has a marked anti-tumour effect. In combination with tamoxifen, liarozole had neither an additive nor an antagonistic effect. However, liarozole markedly reduced the uterotrophic effects induced by tamoxifen. Liarozole's antitumor effects on ER positive mammary tumors and its protective effect on the uterus merit further studies to confirm its clinical value in combination with tamoxifen in ER positive postmenopausal breast cancer. Liarozole and other retinomimetics might also be suitable chemoprevention drugs in combination with tamoxifen because of their favorable toxicity profile

  1. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  2. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability.

    Science.gov (United States)

    Jacobsson, S O; Rongård, E; Stridh, M; Tiger, G; Fowler, C J

    2000-12-15

    In the present study, the effects of the combination of tamoxifen ((Z)-2[p-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethylamine citrate) and three cannabinoids (Delta(9)-tetrahydrocannabinol [Delta(9)-THC], cannabidiol, and anandamide [AEA]) upon the viability of C6 rat glioma cells was assessed at different incubation times and using different culturing concentrations of foetal bovine serum (FBS). Consistent with previous data for human glioblastoma cells, the tamoxifen sensitivity of the cells was increased as the FBS content of the culture medium was reduced from 10 to 0.4 and 0%. The cells expressed protein kinase C alpha and calmodulin (the concentration of which did not change significantly as the FBS concentration was reduced), but did not express estrogen receptors. Delta(9)-THC and cannabidiol, but not AEA, produced a modest reduction in cell viability after 6 days of incubation in serum-free medium, whereas no effects were seen in 10% FBS-containing medium. There was no observed synergy between the effects of tamoxifen and the cannabinoids upon cell viability.

  3. Metabolism and transport of tamoxifen in relation to its effectiveness

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Damkier, Per; Lash, Timothy L

    2014-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review ta...

  4. A Non-Nuclear Role of the Estrogen Receptor Alpha in the Regulation of Cell-Cell Interactions

    National Research Council Canada - National Science Library

    Darimont, Beatrice D

    2006-01-01

    .... The actions of estrogens are mediated by the estrogen receptors ERalpha and ERbeta. These hormone-regulated transcription factors translate the presence of estrogen into changes in gene expression...

  5. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    Science.gov (United States)

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  6. “Iron-saturated” bovine lactoferrin improves the chemotherapeutic effects of tamoxifen in the treatment of basal-like breast cancer in mice

    International Nuclear Information System (INIS)

    Sun, Xueying; Jiang, Ruohan; Przepiorski, Aneta; Reddy, Shiva; Palmano, Kate P; Krissansen, Geoffrey W

    2012-01-01

    Tamoxifen is used in hormone therapy for estrogen-receptor (ER)-positive breast cancer, but also has chemopreventative effects against ER-negative breast cancers. This study sought to investigate whether oral iron-saturated bovine lactoferrin (Fe-Lf), a natural product which enhances chemotherapy, could improve the chemotherapeutic effects of tamoxifen in the treatment of ER-negative breast cancers. In a model of breast cancer prevention, female Balb/c mice treated with tamoxifen (5 mg/Kg) were fed an Fe-Lf supplemented diet (5 g/Kg diet) or the base diet. At week 2, 4T1 mammary carcinoma cells were injected into an inguinal mammary fat pad. In a model of breast cancer treatment, tamoxifen treatment was not started until two weeks following tumor cell injection. Tumor growth, metastasis, body weight, and levels of interleukin 18 (IL-18) and interferon γ (IFN-γ) were analyzed. Tamoxifen weakly (IC 50 ~ 8 μM) inhibited the proliferation of 4T1 cells at pharmacological concentrations in vitro. In the tumor prevention study, a Fe-Lf diet in combination with tamoxifen caused a 4 day delay in tumor formation, and significantly inhibited tumor growth and metastasis to the liver and lung by 48, 58, and 66% (all P < 0.001), respectively, compared to untreated controls. The combination therapy was significantly (all P < 0.05) more effective than the respective monotherapies. Oral Fe-Lf attenuated the loss of body weight caused by tamoxifen and cancer cachexia. It prevented tamoxifen-induced reductions in serum levels of IL-18 and IFN-γ, and intestinal cells expressing IL-18 and IFN-γ. It increased the levels of Lf in leukocytes residing in gut-associated lymphoid tissues. B, T and Natural killer (NK) cells containing high levels of Lf were identified in 4T1 tumors, suggesting they had migrated from the intestine. Similar effects of Fe-Lf and tamoxifen on tumor cell viability were seen in the treatment of established tumors. The results indicate that Fe-Lf is a potent

  7. “Iron-saturated” bovine lactoferrin improves the chemotherapeutic effects of tamoxifen in the treatment of basal-like breast cancer in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xueying [Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1005 (New Zealand); Department of General Surgery, The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 (China); Jiang, Ruohan; Przepiorski, Aneta; Reddy, Shiva [Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1005 (New Zealand); Palmano, Kate P [Fonterra Research Centre, Palmerston North, 4442 (New Zealand); Krissansen, Geoffrey W [Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1005 (New Zealand)

    2012-12-11

    Tamoxifen is used in hormone therapy for estrogen-receptor (ER)-positive breast cancer, but also has chemopreventative effects against ER-negative breast cancers. This study sought to investigate whether oral iron-saturated bovine lactoferrin (Fe-Lf), a natural product which enhances chemotherapy, could improve the chemotherapeutic effects of tamoxifen in the treatment of ER-negative breast cancers. In a model of breast cancer prevention, female Balb/c mice treated with tamoxifen (5 mg/Kg) were fed an Fe-Lf supplemented diet (5 g/Kg diet) or the base diet. At week 2, 4T1 mammary carcinoma cells were injected into an inguinal mammary fat pad. In a model of breast cancer treatment, tamoxifen treatment was not started until two weeks following tumor cell injection. Tumor growth, metastasis, body weight, and levels of interleukin 18 (IL-18) and interferon γ (IFN-γ) were analyzed. Tamoxifen weakly (IC{sub 50} ~ 8 μM) inhibited the proliferation of 4T1 cells at pharmacological concentrations in vitro. In the tumor prevention study, a Fe-Lf diet in combination with tamoxifen caused a 4 day delay in tumor formation, and significantly inhibited tumor growth and metastasis to the liver and lung by 48, 58, and 66% (all P < 0.001), respectively, compared to untreated controls. The combination therapy was significantly (all P < 0.05) more effective than the respective monotherapies. Oral Fe-Lf attenuated the loss of body weight caused by tamoxifen and cancer cachexia. It prevented tamoxifen-induced reductions in serum levels of IL-18 and IFN-γ, and intestinal cells expressing IL-18 and IFN-γ. It increased the levels of Lf in leukocytes residing in gut-associated lymphoid tissues. B, T and Natural killer (NK) cells containing high levels of Lf were identified in 4T1 tumors, suggesting they had migrated from the intestine. Similar effects of Fe-Lf and tamoxifen on tumor cell viability were seen in the treatment of established tumors. The results indicate that Fe-Lf is a

  8. Peroxidase activity as a marker for estrogenicity

    International Nuclear Information System (INIS)

    Levy, J.; Liel, Y.; Glick, S.M.

    1981-01-01

    We examined the possibility that peroxidase activity might be a marker for estrogen activity in established estrogen-dependent tissues: dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumours and human breast cancer. In DMBA-induced tumours undergoing regression after ovariectomy or tamoxifen treatment, tumour size decreased by 50%, estradiol receptors (ER) and progesterone receptors (PgR) decreased by 25 and 20%, respectively, but peroxidase activity paradoxically increased six- to sevenfold. In DMBA tumours stimulated by estradiol treatment or by the cessation of tamoxifen administration in intact rats, tumour size increased threefold. ER and PgR increased two- and threefold, respectively, while peroxidase activity decreased 50%. These data indicate an inverse relation between tumour growth, ER and PgR on the one hand, and peroxidase activity on the other. In the human breast cancers there was a singificant negative relation between the presence of ER and peroxidase activity. By using a calibrated Sephadex G-100 column it was shown that uterine peroxidase differs in molecular weight from the peroxidase of rat mammary tumours and that of human breast cancer. (author)

  9. Endocrine effects of adjuvant letrozole + triptorelin compared with tamoxifen + triptorelin in premenopausal patients with early breast cancer.

    Science.gov (United States)

    Rossi, Emanuela; Morabito, Alessandro; De Maio, Ermelinda; Di Rella, Francesca; Esposito, Giuseppe; Gravina, Adriano; Labonia, Vincenzo; Landi, Gabriella; Nuzzo, Francesco; Pacilio, Carmen; Piccirillo, Maria Carmela; D'Aiuto, Giuseppe; D'Aiuto, Massimiliano; Rinaldo, Massimo; Botti, Gerardo; Gallo, Ciro; Perrone, Francesco; de Matteis, Andrea

    2008-01-10

    To compare the endocrine effects of 6 months of adjuvant treatment with letrozole + triptorelin or tamoxifen + triptorelin in premenopausal patients with early breast cancer within an ongoing phase 3 trial (Hormonal Adjuvant Treatment Bone Effects study). Prospectively collected hormonal data were available for 81 premenopausal women, of whom 30 were assigned to receive tamoxifen + triptorelin and 51 were assigned letrozole + triptorelin +/- zoledronate. Serum 17-beta-estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), Delta4-androstenedione, testosterone, dehydroepiandrosterone-sulfate, progesterone, adrenocorticotropic hormone (ACTH), and cortisol were measured at baseline and after 6 months of treatment. For each hormone, 6-month values were compared between treatment groups by the Wilcoxon-Mann-Whitney exact test. Median age was 44 years for both groups of patients. Letrozole + triptorelin (+/- zoledronate) induced a stronger suppression of median E2 serum levels (P = .0008), LH levels (P = .0005), and cortisol serum levels (P < .0001) compared with tamoxifen + triptorelin. Median FSH serum levels were suppressed in both groups, but such suppression was lower among patients receiving letrozole, who showed significantly higher median FSH serum levels (P < .0001). No significant differences were observed for testosterone, progesterone, ACTH, androstenedione, and dehydroepiandrosterone between the two groups of patients. Letrozole in combination with triptorelin induces a more intense estrogen suppression than tamoxifen + triptorelin in premenopausal patients with early breast cancer.

  10. Computational method for discovery of estrogen responsive genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Tan, Sin Lam; Ramadoss, Suresh Kumar

    2004-01-01

    Estrogen has a profound impact on human physiology and affects numerous genes. The classical estrogen reaction is mediated by its receptors (ERs), which bind to the estrogen response elements (EREs) in target gene's promoter region. Due to tedious and expensive experiments, a limited number of hu...

  11. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    Science.gov (United States)

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  12. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chiara Lucchetti

    Full Text Available In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1, a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.

  13. miRNA-148a regulates the expression of the estrogen receptor through DNMT1-mediated DNA methylation in breast cancer cells

    Science.gov (United States)

    Xu, Yurui; Chao, Lin; Wang, Jianyu; Sun, Yonghong

    2017-01-01

    Breast cancer remains the most prevalent cancer among women worldwide. The expression of estrogen receptor-α (ER-α) is an important marker for prognosis. ER-α status may be positive or negative in breast cancer cells, although the cause of negative or positive status is not yet fully characterized. In the present study, the expression of ER-α and miRNA-148a was assessed in two breast cancer cell lines, HCC1937 and MCF7. An association between ER-α and miRNA-148a expression was identified. It was then demonstrated that DNA methyltransferase 1 (DNMT1) is a target of miRNA-148a, which may suppress the expression of ER-α via DNA methylation. Finally, an miRNA-148a mimic or inhibitor was transfected into MCF7 cells; the miRNA-148a mimic increased ER-α expression whereas the miRNA-148a inhibitor decreased ER-α expression. In conclusion, it was identified that miRNA-148a regulates ER-α expression through DNMT1-mediated DNA methylation in breast cancer cells. This may represent a potential miRNA-based strategy to modulate the expression of ER-α and provide a novel perspective for investigating the role of miRNAs in treating breast cancer. PMID:29085474

  14. Estradiol-mediated internalisation of the non-activated estrogen receptor from the goat uterine plasma membrane: identification of the proteins involved.

    Science.gov (United States)

    Sreeja, S; Thampan, Raghava Varman

    2004-04-01

    An indirect approach has been made to study the molecular details associated with the estradiol-induced internalisation of the non-activated estrogen receptor (naER) from the goat uterine plasma membrane. The internalisation of naER appears to be an energy dependent process. Exposure of the plasma membrane to estradiol results in the activation of a Mg2+ dependent ATPase associated with the membrane fraction. Presence of quercetin in the medium prevented the activation of the Mg2+ ATPase as well as the dissociation of naER from the plasma membrane. Using isolated plasma membrane preparations it has been possible to identify the proteins which interact with naER during various stages of its internalisation. The main proteins identified are: (1) a 58 kDa protein, p58, which apparently recognizes the nuclear localization signals on the naER and transports it to the nucleus: (2) hsp70: (3) hsp90, the functional roles of which remain unknown at this stage; (4) a 50 kDa protein associated with the clathrin coated vesicles, presumed to be involved in recognizing the tyrosine based internalisation signals on the naER; (5) actin which mediates the plasma membrane-to-nucleus movement of the naER-p58 complex.

  15. Mitochondria: Target organelles for estrogen action

    Directory of Open Access Journals (Sweden)

    Małgorzata Chmielewska

    2017-06-01

    Full Text Available Estrogens belong to a group of sex hormones, which have been shown to act in multidirectional way. Estrogenic effects are mediated by two types of intracellular receptors: estrogen receptor 1 (ESR1 and estrogen receptor 2 (ESR2. There are two basic mechanisms of estrogen action: 1 classical-genomic, in which the ligand-receptor complex acts as a transcriptional factor and 2 a nongenomic one, which is still not fully understood, but has been seen to lead to distinct biological effects, depending on tissue and ligand type. It is postulated that nongenomic effects may be associated with membrane signaling and the presence of classical nuclear receptors within the cell membrane. Estrogens act in a multidirectional way also within cell organelles. It is assumed that there is a mechanism which manages the migration of ESR into the mitochondrial membrane, wherein the exogenous estrogen affect the morphology of mitochondria. Estrogen, through its receptor, can directly modulate mitochondrial gene expression. Moreover, by regulating the level of reactive oxygen species, estrogens affect the biology of mitochondria. The considerations presented in this paper indicate the pleiotropic effects of estrogens, which represent a multidirectional pathway of signal transduction.

  16. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Mei-Fei Yueh

    Full Text Available Triclocarban (3,4,4'-trichlorocarbanilide, TCC is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs. To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR and estrogen receptor alpha (ERα activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR because no induction occurred in hUGT1Car(-/- mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for

  17. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17..beta..-estradiol (E/sub 2/) at both low (0.1 ..mu..g/kg) and high (20 ..mu..g/kg) doses confirmed its ability to increase the number of striatal /sup 3/H-Spiperone (/sup 3/H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E/sub 2/, to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity.

  18. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    International Nuclear Information System (INIS)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17β-estradiol (E 2 ) at both low (0.1 μg/kg) and high (20 μg/kg) doses confirmed its ability to increase the number of striatal 3 H-Spiperone ( 3 H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E 2 , to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity

  19. Memory enhancement by Tamoxifen on amyloidosis mouse model.

    Science.gov (United States)

    Pandey, Deepika; Banerjee, Sugato; Basu, Mahua; Mishra, Nibha

    2016-03-01

    Tamoxifen (TMX) is a selective estrogen receptor modulator (SERM) used in the treatment of breast cancer. Earlier studies show its neuroprotection via regulating apoptosis, microglial functions, and synaptic plasticity. TMX also showed memory enhancement in ovariectomized mice, and protection from amyloid induced damage in hippocampal cell line. These reports encouraged us to explore the role of TMX in relevance to Alzheimer's disease (AD). We report here, the effect of TMX treatment a) on memory, and b) levels of neurotransmitters (acetylcholine (ACh) and dopamine (DA)) in breeding-retired-female mice injected with beta amyloid1-42 (Aβ1-42). Mice were treated with TMX (10mg/kg, i.p.) for 15 days. In Morris water maze test, the TMX treated mice escape latency decreased during training trials. They also spent longer time in the platform quadrant on probe trial, compared to controls. In Passive avoidance test, TMX treated mice avoided stepping on the shock chamber. This suggests that TMX protects memory from Aβ induced toxicity. In frontal cortex, ACh was moderately increased, with TMX treatment. In striatum, dopamine was significantly increased, 3,4-dihydroxyphenylacetic acid (DOPAC) level and DOPAC/DA ratio was decreased post TMX treatment. Therefore, TMX enhances spatial and contextual memory by reducing dopamine metabolism and increasing ACh level in Aβ1-42 injected-breeding-retired-female mice. Copyright © 2015. Published by Elsevier Inc.

  20. Tamoxifen and CYP2D6

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P.; Damkier, Per

    2018-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2...

  1. Intratumoral estrogen production and actions in luminal A type invasive lobular and ductal carcinomas.

    Science.gov (United States)

    Takagi, Mayu; Miki, Yasuhiro; Miyashita, Minoru; Hata, Shuko; Yoda, Tomomi; Hirakawa, Hisashi; Sagara, Yasuaki; Rai, Yoshiaki; Ohi, Yasuyo; Tamaki, Kentaro; Ishida, Takanori; Suzuki, Takashi; Ouchi, Noriaki; Sasano, Hironobu

    2016-02-01

    The great majority of invasive lobular carcinoma (ILC) is estrogen-dependent luminal A type carcinoma but the details of estrogen actions and its intratumoral metabolism have not been well studied compared to invasive ductal carcinoma (IDC). We first immunolocalized estrogen-related enzymes including estrogen sulfotransferase (EST), estrogen sulfatase (STS), 17β-hydroxysteroid dehydrogenase (HSD) 1/2, and aromatase. We then evaluated the tissue concentrations of estrogens in ILC and IDC and subsequently estrogen-responsive gene profiles in these tumors in order to explore the possible differences and/or similarity of intratumoral estrogen environment of these two breast cancer subtypes. The status of STS and 17βHSD1 was significantly lower in ILCs than IDCs (p = 0.022 and p < 0.0001), but that of EST and 17βHSD2 vice versa (p < 0.0001 and p = 0.0106). In ILCs, tissue concentrations of estrone and estradiol were lower than those in IDCs (p = 0.0709 and 0.069). In addition, the great majority of estrogen response genes tended to be lower in ILCs. Among those genes above, FOXP1 was significantly higher in ILCs than in IDCs (p = 0.002). FOXP1 expression was reported to be significantly higher in relapse-free IDC patients treated with tamoxifen. Therefore, tamoxifen may be considered an option of endocrine therapy for luminal A type ILC patients. This is the first study to demonstrate the detailed and comprehensive status of intratumoral production and metabolism of estrogens and the status of estrogen response genes in luminal A-like ILC with comparison to those in luminal A-like IDCs.

  2. Tamoxifen from Failed Contraceptive Pill to Best-Selling Breast Cancer Medicine: A Case-Study in Pharmaceutical Innovation

    Directory of Open Access Journals (Sweden)

    Viviane M. Quirke

    2017-09-01

    Full Text Available Today, tamoxifen is one of the world's best-selling hormonal breast cancer drugs. However, it was not always so. Compound ICI 46,474 (as it was first known was synthesized in 1962 within a project to develop a contraceptive pill in the pharmaceutical laboratories of ICI (now part of AstraZeneca. Although designed to act as an anti-estrogen, the compound stimulated, rather than suppressed ovulation in women. This, and the fact that it could not be patented in the USA, its largest potential market, meant that ICI nearly stopped the project. It was saved partly because the team's leader, Arthur Walpole, threatened to resign, and pressed on with another project: to develop tamoxifen as a treatment for breast cancer. Even then, its market appeared small, because at first it was mainly used as a palliative treatment for advanced breast cancer. An important turning point in tamoxifen's journey from orphan drug to best-selling medicine occurred in the 1980s, when clinical trials showed that it was also useful as an adjuvant to surgery and chemotherapy in the early stages of the disease. Later, trials demonstrated that it could prevent its occurrence or re-occurrence in women at high risk of breast cancer. Thus, it became the first preventive for any cancer, helping to establish the broader principles of chemoprevention, and extending the market for tamoxifen and similar drugs further still. Using tamoxifen as a case study, this paper discusses the limits of the rational approach to drug design, the role of human actors, and the series of feedback loops between bench and bedside that underpins pharmaceutical innovation. The paper also highlights the complex evaluation and management of risk that are involved in all therapies, but more especially perhaps in life-threatening and emotion-laden diseases like cancer.

  3. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  4. Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6.

    Directory of Open Access Journals (Sweden)

    Joonhee Cho

    Full Text Available Immune-mediated, drug-induced liver injury (DILI triggered by drug haptens is more prevalent in women than in men. However, mechanisms responsible for this sex bias are not clear. Immune regulation by CD4+CD25+FoxP3+ regulatory T-cells (Tregs and 17β-estradiol is crucial in the pathogenesis of sex bias in cancer and autoimmunity. Therefore, we investigated their role in a mouse model of immune-mediated DILI.To model DILI, we immunized BALB/c, BALB/cBy, IL-6-deficient, and castrated BALB/c mice with trifluoroacetyl chloride-haptenated liver proteins. We then measured degree of hepatitis, cytokines, antibodies, and Treg and splenocyte function.BALB/c females developed more severe hepatitis (p<0.01 and produced more pro-inflammatory hepatic cytokines and antibodies (p<0.05 than did males. Castrated males developed more severe hepatitis than did intact males (p<0.001 and females (p<0.05. Splenocytes cultured from female mice exhibited fewer Tregs (p<0.01 and higher IL-1β (p<0.01 and IL-6 (p<0.05 than did those from males. However, Treg function did not differ by sex, as evidenced by absence of sex bias in programmed death receptor-1 and responses to IL-6, anti-IL-10, anti-CD3, and anti-CD28. Diminished hepatitis in IL-6-deficient, anti-IL-6 receptor α-treated, ovariectomized, or male mice; undetectable IL-6 levels in splenocyte supernatants from ovariectomized and male mice; elevated splenic IL-6 and serum estrogen levels in castrated male mice, and IL-6 induction by 17β-estradiol in splenocytes from naïve female mice (p<0.05 suggested that 17β-estradiol may enhance sex bias through IL-6 induction, which subsequently discourages Treg survival. Treg transfer from naïve female mice to those with DILI reduced hepatitis severity and hepatic IL-6.17β-estradiol and IL-6 may act synergistically to promote sex bias in experimental DILI by reducing Tregs. Modulating Treg numbers may provide a therapeutic approach to DILI.

  5. Identification of an estrogen response element in the 3'-flanking region of the murine c-fos protooncogene.

    Science.gov (United States)

    Hyder, S M; Stancel, G M; Nawaz, Z; McDonnell, D P; Loose-Mitchell, D S

    1992-09-05

    We have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyltransferase, linked to regions of mouse c-fos, to identify a specific estrogen response element (ERE) in this protooncogene. This element is located in the untranslated 3'-flanking region of the c-fos gene, 5 kilobases (kb) downstream from the c-fos promoter and 1.5 kb downstream of the poly(A) signal. This element confers estrogen responsiveness to chloramphenicol acetyltransferase reporters linked to both the herpes simplex virus thymidine kinase promoter and the homologous c-fos promoter. Deletion analysis localized the response element to a 200-base pair fragment which contains the element GGTCACCACAGCC that resembles the consensus ERE sequence GGTCACAGTGACC originally identified in Xenopus vitellogenin A2 gene. A synthetic 36-base pair oligodeoxynucleotide containing this c-fos sequence conferred estrogen inducibility to the thymidine kinase promoter. The corresponding sequence also induced reporter activity when present in the c-fos gene fragment 3 kb from the thymidine kinase promoter. Gel-shift experiments demonstrated that synthetic oligonucleotides containing either the consensus ERE or the c-fos element bind human estrogen receptor obtained from a yeast expression system. However, the mobility of the shifted band is faster for the fos-ERE-complex than the consensus ERE complex suggesting that the three-dimensional structure of the protein-DNA complexes is different or that other factors are differentially involved in the two reactions. When the 5'-GGTCA sequence present in the c-fos ERE is mutated to 5'-TTTCA, transcriptional activation and receptor binding activities are both lost. Mutation of the CAGCC-3' element corresponding to the second half-site of the c-fos sequence also led to the loss of receptor binding activity, suggesting that both half-sites of this element are involved in this function. The estrogen induction mediated by either the c-fos or

  6. TAMOXIFEN RETINOPATHY DURING TREATMENT OF AN INOPERABLE DESMOID TUMOR.

    Science.gov (United States)

    Furst, Meredith; Somogyi, Marie B; Wong, Robert W; Araujo, Dejka; Harper, Clio A

    2017-12-08

    To evaluate the clinical significance and rarity of tamoxifen retinopathy after a long-term tamoxifen treatment for an inoperable desmoid tumor. Case report. Tamoxifen retinopathy is a condition rarely observed in clinical practice. Although tamoxifen is typically a treatment for breast cancer patients, we present a 68-year-old woman taking tamoxifen for an inoperable desmoid tumor, an equally rare condition. She presented with bilaterally deteriorating vision over the course of a year. Fundoscopic examination revealed parafoveal deposits bilaterally. Spectral domain optical coherence tomography exhibited hyperreflective deposits in all layers of the retina. She had a cumulative treatment dose of 292 g of tamoxifen, and the medication was subsequently stopped. Her vision remained stable 3 months after the cessation of tamoxifen. The development of tamoxifen retinopathy in the treatment of a desmoid tumor makes this case a rare entity, and this is the first reported case of these two concomitant conditions to our knowledge. With the use of long-term tamoxifen as a primary treatment, we recommend screening at regular intervals by an ophthalmologist as an integral part of treatment.

  7. Diacylglycerol kinase α mediates 17-β-estradiol-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line through the G protein-coupled estrogen receptor GPR30.

    Science.gov (United States)

    Filigheddu, Nicoletta; Sampietro, Sara; Chianale, Federica; Porporato, Paolo E; Gaggianesi, Miriam; Gregnanin, Ilaria; Rainero, Elena; Ferrara, Michele; Perego, Beatrice; Riboni, Francesca; Baldanzi, Gianluca; Graziani, Andrea; Surico, Nicola

    2011-12-01

    Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effects of repeated administration of chemotherapeutic agents tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice

    Science.gov (United States)

    Foley, John J.; Clark-Vetri, Rachel; Raffa, Robert B.

    2011-01-01

    Rationale A number of cancer chemotherapeutic agents have been associated with a loss of memory in breast cancer patients although little is known of the causality of this effect. Objectives To assess the potential cognitive effects of repeated exposure to chemotherapeutic agents, we administered the selective estrogen receptor modulator tamoxifen or the antimetabolite chemotherapy, methotrexate, and 5-fluorouracil, alone and in combination to mice and tested them in a learning and memory assay. Methods Swiss-Webster male mice were injected with saline, 32 mg/kg tamoxifen, 3.2 or 32 mg/kg methotrexate, 75 mg/kg 5-fluorouracil, 3.2 or 32 mg/kg methotrexate in combination with 75 mg/kg 5-fluorouracil once per week for 3 weeks. On days 23 and 24, mice were tested for acquisition and retention of a nose-poke response in a learning procedure called autoshaping. In addition, the acute effects of tamoxifen were assessed in additional mice in a similar procedure. Results The chemotherapeutic agents alone and in combination reduced body weight relative to saline treatment over the course of 4 weeks. Repeated treatment with tamoxifen produced both acquisition and retention effects relative to the saline-treated group although acute tamoxifen was without effect except at a behaviorally toxic dose. Repeated treatment with methotrexate in combination with 5-fluorouracil produced effects on retention, but the magnitude of these changes depended on the methotrexate dose. Conclusions These data demonstrate that repeated administration of tamoxifen or certain combination of methotrexate and 5-fluorouracil may produce deficits in the acquisition or retention of learned responses which suggest potential strategies for prevention or remediation might be considered in vulnerable patient populations. PMID:21537942

  9. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yanhong Gao

    Full Text Available Osteogenic differentiation from mesenchymal progenitor cells (MPCs are initiated and regulated by a cascade of signaling events. Either Wnt/β-catenin or estrogen signaling pathway has been shown to play an important role in regulating skeletal development and maintaining adult tissue homeostasis. Here, we investigate the potential crosstalk and synergy of these two signaling pathways in regulating osteogenic differentiation of MPCs. We find that the activation of estrogen receptor (ER signaling by estradiol (E2 or exogenously expressed ERα in MPCs synergistically enhances Wnt3A-induced early and late osteogenic markers, as well as matrix mineralization. The E2 or ERα-mediated synergy can be effectively blocked by ERα antagonist tamoxifen. E2 stimulation can enhance endochondral ossification of Wnt3A-transduced mouse fetal limb explants. Furthermore, exogenously expressed ERα significantly enhances the maturity and mineralization of Wnt3A-induced subcutaneous and intramuscular ectopic bone formation. Mechanistically, we demonstrate that E2 does not exert any detectable effect on β-catenin/Tcf reporter activity. However, ERα expression is up-regulated within the first 48h in AdWnt3A-transduced MPCs, whereas ERβ expression is significantly inhibited within 24h. Moreover, the key enzyme for the biosynthesis of estrogens aromatase is modulated by Wnt3A in a biphasic manner, up-regulated at 24h but reduced after 48h. Our results demonstrate that, while ER signaling acts synergistically with Wnt3A in promoting osteogenic differentiation, Wnt3A may crosstalk with ER signaling by up-regulating ERα expression and down-regulating ERβ expression in MPCs. Thus, the signaling crosstalk and synergy between these two pathways should be further explored as a potential therapeutic approach to combating bone and skeletal disorders, such as fracture healing and osteoporosis.

  10. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    Directory of Open Access Journals (Sweden)

    Bruno M. Simões

    2015-09-01

    Full Text Available Breast cancers (BCs typically express estrogen receptors (ERs but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.

  11. Black cohosh (Cimicifuga racemosa) in tamoxifen-treated breast cancer patients with climacteric complaints - a prospective observational study.

    Science.gov (United States)

    Rostock, Matthias; Fischer, Julia; Mumm, Andreas; Stammwitz, Ute; Saller, Reinhard; Bartsch, Hans Helge

    2011-10-01

    The antihormonal therapy of breast cancer patients with the antiestrogen tamoxifen often induces or aggravates menopausal complaints. As estrogen substitution is contraindicated, herbal alternatives, e.g. extracts of black cohosh are often used. A prospective observational study was carried out in 50 breast cancer patients with tamoxifen treatment. All patients had had surgery, most of them had undergone radiation therapy (87%) and approximately 50% had received chemotherapy. Every patient was treated with an isopropanolic extract of black cohosh (1-4 tablets, 2.5 mg) for 6 months. Patients recorded their complaints before therapy and after 1, 3, and 6 months of therapy using the menopause rating scale (MRS II). The reduction of the total MRS II score under black cohosh treatment from 17.6 to 13.6 was statistically significant. Hot flashes, sweating, sleep problems, and anxiety improved, whereas urogenital and musculoskeletal complaints did not change. In all, 22 patients reported adverse events, none of which were linked with the study medication; 90% reported the tolerability of the black cohosh extract as very good or good. Black cohosh extract seems to be a reasonable treatment approach in tamoxifen treated breast cancer patients with predominantly psychovegetative symptoms.

  12. Estrogen receptor testing and 10-year mortality from breast cancer: A model for determining testing strategy

    Directory of Open Access Journals (Sweden)

    Christopher Naugler

    2012-01-01

    Full Text Available Background: The use of adjuvant tamoxifen therapy in the treatment of estrogen receptor (ER expressing breast carcinomas represents a major advance in personalized cancer treatment. Because there is no benefit (and indeed there is increased morbidity and mortality associated with the use of tamoxifen therapy in ER-negative breast cancer, its use is restricted to women with ER expressing cancers. However, correctly classifying cancers as ER positive or negative has been challenging given the high reported false negative test rates for ER expression in surgical specimens. In this paper I model practice recommendations using published information from clinical trials to address the question of whether there is a false negative test rate above which it is more efficacious to forgo ER testing and instead treat all patients with tamoxifen regardless of ER test results. Methods: I used data from randomized clinical trials to model two different hypothetical treatment strategies: (1 the current strategy of treating only ER positive women with tamoxifen and (2 an alternative strategy where all women are treated with tamoxifen regardless of ER test results. The variables used in the model are literature-derived survival rates of the different combinations of ER positivity and treatment with tamoxifen, varying true ER positivity rates and varying false negative ER testing rates. The outcome variable was hypothetical 10-year survival. Results: The model predicted that there will be a range of true ER rates and false negative test rates above which it would be more efficacious to treat all women with breast cancer with tamoxifen and forgo ER testing. This situation occurred with high true positive ER rates and false negative ER test rates in the range of 20-30%. Conclusions: It is hoped that this model will provide an example of the potential importance of diagnostic error on clinical outcomes and furthermore will give an example of how the effect of that

  13. Tamoxifen attenuates development of lithium-induced nephrogenic diabetes insipidus in rats

    DEFF Research Database (Denmark)

    Tingskov, Stine Julie; Hu, Shan; Frøkiær, Jorgen

    2018-01-01

    of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations...... on renal water homeostasis. Rats were treated for 14 days with lithium and TAM treatment was initiated one week after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which was ameliorated by TAM. Consistent with this, TAM attenuated downregulation...... of AQP2 and increased phosphorylation of the cAMP responsive element binding protein (CREB), which induced AQP2 expression, in freshly isolated inner medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated dose-dependently polyuria, impaired urine...

  14. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    Science.gov (United States)

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  15. Estrogen, Estrogen Receptor and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li-Han Hsu

    2017-08-01

    Full Text Available Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR, and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.

  16. A New Therapeutic Paradigm for Breast Cancer Exploiting Low Dose Estrogen-Induce Apoptosis

    Science.gov (United States)

    2008-09-01

    idoxifene has not been developed further because of concerns about uterine prolapse (299]. This side effect is not seen with tamoxifen 5.6.4 Droloxifene...various species (rat, mouse, mon- key, and dog ). Themajor route of excretion of radioactivitywas in the feces. The rat and dog were used to show that...identified in the dog [40]. This phenolic metabolite without the dimethylaminoethyl side chain is a full estrogen [47,49]. The dimethylaminoethoxy side

  17. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Science.gov (United States)

    Bhat-Nakshatri, Poornima; Song, Eun-Kyung; Collins, Nikail R; Uversky, Vladimir N; Dunker, A Keith; O'Malley, Bert W; Geistlinger, Tim R; Carroll, Jason S; Brown, Myles; Nakshatri, Harikrishna

    2013-06-11

    Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER

  18. Evidence that estrogen receptors play a limited role in mediating enhanced recovery of bile flow in female rats in the acute phase of liver ischemia reperfusion injury

    NARCIS (Netherlands)

    de Vries, Heleen A. H.; Ponds, Fraukje A. M.; Nieuwenhuijs, Vincent B.; Morphett, Arthur; Padbury, Robert T. A.; Barritt, Greg J.

    2013-01-01

    Introduction. Female patients exhibit better survival and less hepatic damage from ischemia reperfusion (IR) injury following surgery. However, the effects of sex and estrogens on liver function in the acute phase of IR are not well understood. Objective. The aim was to investigate this question.

  19. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    International Nuclear Information System (INIS)

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-01-01

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E 2 ), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression

  20. One year of adjuvant tamoxifen compared with chemotherapy and tamoxifen in postmenopausal patients with stage II breast cancer

    DEFF Research Database (Denmark)

    Ejlertsen, Bent; Jensen, Maj-Britt; Elversang, Johanna

    2013-01-01

    We report the long-term results of a randomised trial comparing tamoxifen with tamoxifen plus cyclophosphamide, methotrexate and fluorouracil (CMF) in postmenopausal high-risk breast cancer patients. In addition, we analyse the prognostic and predictive value of centrally assessed subtypes....

  1. Effect of tamoxifen on fatty degeneration and atrophy of rotator cuff muscles in chronic rotator cuff tear: An animal model study.

    Science.gov (United States)

    Cho, Edward; Zhang, Yue; Pruznak, Anne; Kim, H Mike

    2015-12-01

    Fatty degeneration of the rotator cuff muscles is an irreversible change resulting from chronic rotator cuff tear and is associated with poor clinical outcomes following rotator cuff repair. We evaluated the effect of Tamoxifen, a competitive estrogen receptor inhibitor, on fatty degeneration using a mouse model for chronic rotator cuff tear. Sixteen adult mice were divided into two diet groups (Tamoxifen vs. Regular) and subjected to surgical creation of a large rotator cuff tear and suprascapular nerve transection in their left shoulder with the right shoulder serving as a control. The rotator cuff muscles were harvested at 16 weeks and subjected to histology and RT-PCR for adipogenic and myogenic markers. Histology showed substantially decreased atrophy and endomysial inflammation in Tamoxifen group, but no significant differences in the amount of intramuscular adipocytes and lipid droplets compared to the Regular group. With RT-PCR, the operated shoulders showed significant upregulation of myogenin and PPAR-γ, and downregulation of myostatin compared to the nonsurgical shoulder. No significant differences of gene expression were found between the two diet groups. Our study demonstrated that tamoxifen diet leads to decreased muscle atrophy and inflammatory changes following chronic rotator cuff tear, but has no apparent effect on adipogenesis. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. ATLAS: Adjuvant Tamoxifen Longer Against Shorter

    Science.gov (United States)

    1998-09-01

    largely tunaffected by other these 30 000 women during about 10 years of follow-up patient characteristics or treatments. were 21% (SD 3), 29% (SD 2...for both types of mosted to stop part of the eduon y epatient . most of them did stop, part of the reduction in the The right side of figure 4...patient characteristics (e.g. high/ low-risk, ER+/ER-, pre/post-menopausal) recorded at entry. Other trials of tamoxifen duration The Atlas collaboration

  3. Ribavirin restores ESR1 gene expression and tamoxifen sensitivity in ESR1 negative breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Sappok Anne

    2011-12-01

    Full Text Available Abstract Tumor growth is estrogen independent in approximately one-third of all breast cancers, which makes these patients unresponsive to hormonal treatment. This unresponsiveness to hormonal treatment may be explained through the absence of the estrogen receptor alpha (ESR1. The ESR1 gene re-expression through epigenetic modulators such as DNA methyltransferase inhibitors and/or histone deacetylase inhibitors restores tamoxifen sensitivity in ESR1 negative breast cancer cell lines and opens new treatment horizons in patients who were previously associated with a poor prognosis. In the study presented herein, we tested the ability of ribavirin, which shares some structural similarities with the DNA-methyltransferase inhibitor 5-azacytidine and which is widely known as an anti-viral agent in the treatment of hepatitis C, to restore ESR1 gene re-expression in ESR1 negative breast cancer cell lines. In our study we identified ribavirin to restore ESR1 gene re-expression alone and even more in combination with suberoylanilide hydroxamic acid (SAHA - up to 276 fold induction. Ribavirin and analogs could pave the way to novel translational research projects that aim to restore ESR1 gene re-expression and thus the susceptibility to tamoxifen-based endocrine treatment strategies.

  4. The Possible Therapeutic Role of Polyphenyl Constituents in Turmeric and Tamoxifen on Hepatocellular Carcinoma Chemically Induced in Rats

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.

    2017-01-01

    Tamoxifen is a drug wildly used for the adjuvant therapy in the treatment of women with estrogen receptor-positive breast tumors and has a low incidence of serious side-effects. Feeding turmeric ( Curcuma longa L .) to rats has no apparent side effects; reduced the types of inflammation that can cause liver cell damage, blockage and scarring. Turmeric delay the damage caused by progressive inflammatory liver disease. This study was carried out to study the possible therapeutic effect of polyphenyl constituents in turmeric and tamoxifen on hepatocarcinogenesis in rats chemically induced by diethylnitrosamine (DEN). Thirty five male rats were injected with DEN in a single dose i.p. (200mg/kg), 7 rats were sacrificed after ~6 months for histopathological examination for HCC nodules in different lobes and lobules, many nodules were observed by naked eye with a diameter of about ~2-3mm. The remaining 28 hepatoma (HCC) bearing rats chemically induced were randomized divided into 4 groups (each of 7rats): hepatoma bearing rats receiving the control diet; hepatoma bearing rats (supplemented with 4g/kg (wt/wt) turmeric (~200 μg curcumin /rat/day/4weeks; hepatoma bearing rats treated with 50mg/kg (wt/wt) tamoxifen dissolved in 0.1 ml dimethylsulfoxide and diluted with normal saline and drinking water; hepatoma bearing rats treated with 50mg/kg (wt/wt) tamoxifen in 0.1 ml dimethylsulfoxide and diluted with normal saline and drinking water and supplemented with 4g/ kg (wt/wt) turmeric(~200 μg curcumin /rat/day/4weeks; besides, 7 male rats serves as control group. By the end of the experiment at 4 weeks, rats in each group were sacrificed for examination.

  5. Estrogen receptor beta and 2-arachydonoylglycerol mediate the suppressive effects of estradiol on frequency of postsynaptic currents in gonadotropin-releasing hormone neurons of metestrous mice: an acute slice electrophysiological study

    Directory of Open Access Journals (Sweden)

    Flóra eBálint

    2016-03-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons are controlled by 17β-estradiol (E2 contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM on GnRH neurons in acute brain slices obtained from metestrous GnRH-GFP mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachydonoylglycerol (2-AG signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs in GnRH neurons (49. 62±7.6% which effect was abolished by application of the ERα/β blocker Faslodex (1 µM. Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1 inverse agonist AM251 (1 µM and intracellularly applied endocannabinoid synthesis blocker THL (10 µM significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of TTX indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM also significantly decreased the frequency of miniature postsynaptic currents (mPSCs in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 µM indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM or the membrane-associated G protein-coupled estrogen receptor (GPR30 agonist G1 (10 pM had no significant effect on the frequency of mPSCs in these neurons. AM251 and THL significantly abolished the effect of E2 whereas AM251 eliminated the action of DPN on the mPSCs. These

  6. Estrogens and aging skin

    OpenAIRE

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity...

  7. Estrogen-dependent downregulation of hairy and enhancer of split homolog-1 gene expression in breast cancer cells is mediated via a 3' distal element.

    Science.gov (United States)

    Müller, Patrick; Merrell, Kenneth W; Crofts, Justin D; Rönnlund, Caroline; Lin, Chin-Yo; Gustafsson, Jan-Ake; Ström, Anders

    2009-03-01

    Regulation of hairy and enhancer of split homologue-1 (HES-1) by estradiol and all-trans retinoic acid affects proliferation of human breast cancer cells. Here, we identify and characterize cis-regulatory elements involved in HES-1 regulation. In the distal 5' promoter of the HES-1 gene, we found a retinoic acid response element and in the distal 3' region, an estrogen receptor alpha(ER)alpha binding site. The ERalpha binding site, composed of an estrogen response element (ERE) and an ERE half-site, is important for both ERalpha binding and transcriptional regulation. Chromatin immunoprecipitation assays revealed that ERalpha is recruited to the ERE and associates with the HES-1 promoter. We also show recruitment of nuclear receptor co-regulators to the ERE in response to estradiol, followed by a decrease in histone acetylation and RNA polymerase II docking in the HES-1 promoter region. Our findings are consistent with a novel type of repressive estrogen response element in the distal 3' region of the HES-1 gene.

  8. The advantage of letrozole over tamoxifen in the BIG 1-98 trial is consistent in younger postmenopausal women and in those with chemotherapy-induced menopause

    DEFF Research Database (Denmark)

    Chirgwin, Jacquie; Sun, Zhuoxin; Smith, Ian

    2012-01-01

    subclinical ovarian estrogen production), and those with chemotherapy-induced menopause who may experience return of ovarian function. In these situations tamoxifen may be preferable to an aromatase inhibitor. Among 4,922 patients allocated to the monotherapy arms (5 years of letrozole or tamoxifen......) in the BIG 1-98 trial we identified two relevant subpopulations: patients with potential residual ovarian function, defined as having natural menopause, treated without adjuvant or neoadjuvant chemotherapy and age ≤ 55 years (n = 641); and those with chemotherapy-induced menopause (n = 105). Neither...... of the subpopulations examined showed treatment effects differing from the trial population as a whole (interaction P values are 0.23 and 0.62, respectively). Indeed, both among the 641 patients aged ≤ 55 years with natural menopause and no chemotherapy (HR 0.77 [0.51, 1.16]) and among the 105 patients...

  9. Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays

    NARCIS (Netherlands)

    Legler, J.; Dennekamp, M.; Vethaak, A.D.; Brouwer, A.; Koeman, J.H.; Burg, van der B.; Murk, A.J.

    2002-01-01

    Sediments may be the ultimate sink for persistent (xeno-) estrogenic compounds released into the aquatic environment. Sediment-associated estrogenic potency was measured with an estrogen receptor-mediated luciferase reporter gene (ER-CALUX) assay and compared with a recombinant yeast screen. The

  10. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction

    Science.gov (United States)

    Brain estrogen receptor-a (ERa) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERa expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic–pituitary–gonadal...

  11. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF and this process is inhibited by equine estrogens

    Directory of Open Access Journals (Sweden)

    Bhavnani Bhagu R

    2006-06-01

    Full Text Available Abstract Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate

  12. Phenotype anchoring in zebrafish reveals a potential role for matrix metalloproteinases (MMPs) in tamoxifen's effects on skin epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Bugel, Sean M., E-mail: Sean.Bugel@oregonstate.edu; Wehmas, Leah C., E-mail: wehmasl@onid.oregonstate.edu; La Du, Jane K., E-mail: Jane.LaDu@oregonstate.edu; Tanguay, Robert L., E-mail: Robert.Tanguay@oregonstate.edu

    2016-04-01

    The zebrafish is a powerful alternative model used to link phenotypes with molecular effects to discover drug mode of action. Using a zebrafish embryo-larval toxicity bioassay, we evaluated the effects of tamoxifen — a widely used anti-estrogen chemotherapeutic. Zebrafish exposed to ≥ 10 μM tamoxifen exhibited a unique necrotic caudal fin phenotype that was rapidly induced regardless of developmental life-stage when treatment was applied. To define tamoxifen's bioactivity resulting in this phenotype, targeted gene expression was used to evaluate 100 transcripts involved in tissue remodeling, calcium signaling, cell cycle and cell death, growth factors, angiogenesis and hypoxia. The most robustly misregulated transcripts in the tail were matrix metalloproteinases mmp9 and mmp13a, induced 127 and 1145 fold, respectively. Expression of c-fos, c-jun, and ap1s1 were also moderately elevated (3–7 fold), consistent with AP-1 activity — a transcription factor that regulates MMP expression. Immunohistochemistry confirmed high levels of induction for MMP13a in affected caudal fin skin epithelial tissue. The necrotic caudal fin phenotype was significantly attenuated or prevented by three functionally unique MMP inhibitors: EDTA (metal chelator), GM 6001 (broad MMP inhibitor), and SR 11302 (AP-1 transcription factor inhibitor), suggesting MMP-dependence. SR 11302 also inhibited induction of mmp9, mmp13a, and a putative MMP target, igfbp1a. Overall, our studies suggest that tamoxifen's effect is the result of perturbation of the MMP system in the skin leading to ectopic expression, cytotoxicity, and the necrotic caudal fin phenotype. These studies help advance our understanding of tamoxifen's non-classical mode of action and implicate a possible role for MMPs in tissues such as skin. - Highlights: • Tamoxifen rapidly induced a unique necrotic caudal fin phenotype in zebrafish. • Apoptosis co-localized temporally and spatially in the necrotic tail.

  13. Thrombosis of digital arteries associated with tamoxifen use: case report.

    Science.gov (United States)

    Hutchison, Richard L; Rayan, Ghazi M

    2012-02-01

    Arterial thrombosis in the upper extremity occurs often at the wrist. We report a unique case of thrombosis that involved multiple digital arteries, without radial or ulnar artery involvement, which developed only after using tamoxifen despite chronic occupational blunt percussive hand use. Revascularization was achieved after thrombectomy. Multiple digital arterial thromboses may complicate the use of tamoxifen. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Tamoxifen for women at high risk of breast cancer

    OpenAIRE

    Nazarali, Safia A; Narod, Steven A

    2014-01-01

    Safia A Nazarali, Steven A Narod Women's College Research Institute, Women's College Hospital, and The University of Toronto, Toronto, Ontario, Canada Abstract: Tamoxifen has been used as a treatment for women who have been diagnosed with breast cancer for roughly four decades and has been approved as chemoprevention for over ten years. Although tamoxifen has been proven to be beneficial in preventing breast cancer in high-risk women, its use has not been widely embraced. To ...

  15. Estrogen replacement therapy and cardioprotection: mechanisms and controversies

    Directory of Open Access Journals (Sweden)

    M.T.R. Subbiah

    2002-03-01

    Full Text Available Epidemiological and case-controlled studies suggest that estrogen replacement therapy might be beneficial in terms of primary prevention of coronary heart disease (CHD. This beneficial effect of estrogens was initially considered to be due to the reduction of low density lipoproteins (LDL and to increases in high density lipoproteins (HDL. Recent studies have shown that estrogens protect against oxidative stress and decrease LDL oxidation. Estrogens have direct effects on the arterial tissue and modulate vascular reactivity through nitric oxide and prostaglandin synthesis. While many of the effects of estrogen on vascular tissue are believed to be mediated by estrogen receptors alpha and ß, there is evidence for `immediate non-genomic' effects. The role of HDL in interacting with 17ß-estradiol including its esterification and transfer of esterified estrogens to LDL is beginning to be elucidated. Despite the suggested positive effects of estrogens, two recent placebo-controlled clinical trials in women with CHD did not detect any beneficial effects on overall coronary events with estrogen therapy. In fact, there was an increase in CHD events in some women. Mutations in thrombogenic genes (factor V Leiden, prothrombin mutation, etc. in a subset of women may play a role in this unexpected finding. Thus, the cardioprotective effect of estrogens appears to be more complicated than originally thought and requires more research.

  16. Limited predictive value of achieving beneficial plasma (Z)-endoxifen threshold level by CYP2D6 genotyping in tamoxifen-treated Polish women with breast cancer

    International Nuclear Information System (INIS)

    Hennig, Ewa E.; Piatkowska, Magdalena; Karczmarski, Jakub; Goryca, Krzysztof; Brewczynska, Elzbieta; Jazwiec, Radoslaw; Kluska, Anna; Omiotek, Robert; Paziewska, Agnieszka; Dadlez, Michal; Ostrowski, Jerzy

    2015-01-01

    Tamoxifen, the most frequently used drug for treating estrogen receptor-positive breast cancer, must be converted into active metabolites to exert its therapeutic efficacy, mainly through CYP2D6 enzymes. The objective of this study was to investigate the impact of CYP2D6 polymorphisms on (Z)-endoxifen-directed tamoxifen metabolism and to assess the usefulness of CYP2D6 genotyping for identifying patients who are likely to have insufficient (Z)-endoxifen concentrations to benefit from standard therapy. Blood samples from 279 Polish women with breast cancer receiving tamoxifen 20 mg daily were analyzed for CYP2D6 genotype and drug metabolite concentration. Steady-state plasma levels of tamoxifen and its 14 metabolites were measured by using the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. In nearly 60 % of patients, including over 30 % of patients with fully functional CYP2D6, (Z)-endoxifen concentration was below the predefined threshold of therapeutic efficacy. The most frequently observed CYP2D6 genotype was EM/PM (34.8 %), among which 83.5 % of patients had a combination of wild-type and *4 alleles. Plasma concentration of five metabolites was significantly correlated with CYP2D6 genotype. For the first time, we identified an association between decreased (E/Z)-4-OH-N-desmethyl-tamoxifen-β-D-glucuronide levels (r 2 = 0.23; p < 10 −16 ) and increased CYP2D6 functional impairment. The strongest correlation was observed for (Z)-endoxifen, whose concentration was significantly lower in groups of patients carrying at least one CYP2D6 null allele, compared with EM/EM patients. The CYP2D6 genotype accounted for plasma level variability of (Z)-endoxifen by 27 % (p < 10 −16 ) and for the variability of metabolic ratio indicating (Z)-endoxifen-directed metabolism of tamoxifen by 51 % (p < 10 −43 ). The majority of breast cancer patients in Poland may not achieve a therapeutic level of (Z)-endoxifen upon receiving a standard

  17. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Pajarillo, Edward; Johnson, James; Kim, Judong; Karki, Pratap; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2018-03-01

    Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Estrogens in breast cancer

    International Nuclear Information System (INIS)

    Terzieff, V.; Vázquez, A.

    2004-01-01

    The prolonged exposure to estrogen increases the risk of cancer breast, the precise role of estrogen in the carcinogenesis process is unclear. They are capable of inducing cell proliferation through different channels receptor Estrogen (ER) known, for example through MAPkinasa sensitivity the promoter of proliferation effect depends on the level of RE, or type to â, integrity (mutations may alter its function) and ligand. The different types of estrogens and related compounds have different profile of affinity for RE and effect end. The modulatory role of progestogens proliferation is very complex, and the interaction between the effector pathways of progestin’s, estrogens, EGF and IGF family - maybe others - determines the final effect .. Estrogens are mutagenic per se weak, but is now known for its hepatic metabolism occur highly reactive species such as quinones, and catechol, powerful mutagens in vitro. Direct or indirect genotoxicity probably explains Part of the effects of estrogen on tumor cells. The use of hormone replacement (HTR) increases the risk of CM, as proportional to the time of use. The combination with progestin seems to be increased risk (R R 2). It is unclear the role of phyto estrogens in the prevention the CM. In the male breast is known that the proliferative response to parenchymal different hormonal maneuvers is different. The effect is minimal castration are and maximum with the combination of estrogen and progesterone. It is unclear, however, the risk of the population exposed to hormone therapy for cancer prostate or otherwise

  19. In vivo imaging of brain estrogen receptors in rats : a 16α-18F-fluoro-17β-estradiol PET study

    NARCIS (Netherlands)

    Khayum, Mohammed A; de Vries, Erik F J; Glaudemans, Andor W J M; Dierckx, Rudi A J O; Doorduin, Janine

    UNLABELLED: The steroid hormone estrogen is important for brain functioning and is thought to be involved in brain diseases, such as Alzheimer disease and depression. The action of estrogen is mediated by estrogen receptors (ERs). To understand the role of estrogens in brain functioning, it is

  20. Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs)

    International Nuclear Information System (INIS)

    Schiff, Rachel; Chamness, Gary C; Brown, Powel H

    2003-01-01

    Intensive basic and clinical research over the past 20 years has yielded crucial molecular understanding into how estrogen and the estrogen receptor act to regulate breast cancer and has led to the development of more effective, less toxic, and safer hormonal therapy agents for breast cancer management and prevention. Selective potent aromatase inhibitors are now challenging the hitherto gold standard of hormonal therapy, the selective estrogen-receptor modulator tamoxifen. Furthermore, new selective estrogen-receptor modulators such as arzoxifene, currently under clinical development, offer the possibility of selecting one with a more ideal pharmacological profile for treatment and prevention of breast cancer. Two recent studies in preclinical model systems that evaluate mechanisms of action of these new drugs and suggestions about their optimal clinical use are discussed

  1. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S.; Rouchka, Eric C.; Hill, Bradford G.; Klinge, Carolyn M.

    2016-01-01

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  2. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S. [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Rouchka, Eric C. [Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292 (United States); Hill, Bradford G. [Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Klinge, Carolyn M., E-mail: carolyn.klinge@louisville.edu [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States)

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  3. Prognostic and Predictive Value of the 21-Gene Recurrence Score Assay in a Randomized Trial of Chemotherapy for Postmenopausal, Node-Positive, Estrogen Receptor-Positive Breast Cancer

    Science.gov (United States)

    Albain, Kathy S.; Barlow, William E.; Shak, Steven; Hortobagyi, Gabriel N.; Livingston, Robert B.; Yeh, I-Tien; Ravdin, Peter; Bugarini, Roberto; Baehner, Frederick L.; Davidson, Nancy E.; Sledge, George W.; Winer, Eric P.; Hudis, Clifford; Ingle, James N.; Perez, Edith A.; Pritchard, Kathleen I.; Shepherd, Lois; Gralow, Julie R.; Yoshizawa, Carl; Allred, D. Craig; Osborne, C. Kent; Hayes, Daniel F.

    2010-01-01

    SUMMARY Background The 21-gene Recurrence Score assay (RS) is prognostic for women with node-negative, estrogen receptor (ER)-positive breast cancer (BC) treated with tamoxifen. A low RS predicts little benefit of chemotherapy. For node-positive BC, we investigated whether RS was prognostic in women treated with tamoxifen alone and whether it identified those who might not benefit from anthracycline-based chemotherapy, despite higher recurrence risks. Methods The phase III trial S8814 for postmenopausal women with node-positive, ER-positive BC showed that CAF chemotherapy prior to tamoxifen (CAF-T) added survival benefit to tamoxifen alone. Optional tumor banking yielded specimens for RS determination by RT-PCR. We evaluated the effect of RS on disease-free survival (DFS) by treatment group (tamoxifen versus CAF-T) using Cox regression adjusting for number of positive nodes. Findings There were 367 specimens (40% of parent trial) with sufficient RNA (tamoxifen, 148; CAF-T, 219). The RS was prognostic in the tamoxifen arm (p=0.006). There was no CAF benefit in the low RS group (logrank p=0.97; HR=1.02, 95% CI (0.54,1.93)), but major DFS improvement for the high RS subset (logrank p=.03; HR=0.59, 95% CI (0.35, 1.01)), adjusting for number of positive nodes. The RS-by-treatment interaction was significant in the first 5 years (p=0.029), with no additional prediction beyond 5 years (p=0.58), though the cumulative benefit remained at 10 years. Results were similar for overall survival and BC-specific survival. Interpretation In this retrospective analysis, the RS is prognostic for tamoxifen-treated patients with positive nodes and predicts significant CAF benefit in tumors with a high RS. A low RS identifies women who may not benefit from anthracycline-based chemotherapy despite positive nodes. PMID:20005174

  4. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    Science.gov (United States)

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  5. Discrepancy between ultrasonography and hysteroscopy and histology of endometrium in postmenopausal breast cancer patients using tamoxifen

    NARCIS (Netherlands)

    Mourits, MJE; Van der Zee, AGJ; Willemse, PHB; Ten Hoor, KA; Hollema, H; De Vries, EGE

    Background. The increased risk of endometrial carcinoma following the use of tamoxifen has stimulated studies on endometrial diagnostic screening methods. In tamoxifen users the endometrial thickening observed with transvaginal ultrasonography (TVU) frequently cannot be confirmed by hysteroscopy or

  6. Cancer Care Coordinators to Improve Tamoxifen Persistence in Breast Cancer: How Heterogeneity in Baseline Prognosis Impacts on Cost-Effectiveness.

    Science.gov (United States)

    Nair, Nisha; Kvizhinadze, Giorgi; Blakely, Tony

    2016-12-01

    To assess the cost-effectiveness of a cancer care coordinator (CCC) in helping women with estrogen receptor positive (ER+) early breast cancer persist with tamoxifen for 5 years. We investigated the cost-effectiveness of a CCC across eight breast cancer subtypes, defined by progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, and local/regional spread. These subtypes range from excellent to poorer prognoses. The CCC helped in improving tamoxifen persistence by providing information, checking-in by phone, and "troubleshooting" concerns. We constructed a Markov macrosimulation model to estimate health gain (in quality-adjusted life-years or QALYs) and health system costs in New Zealand, compared with no CCC. Participants were modeled until death or till the age of 110 years. Some input parameters (e.g., the impact of a CCC on tamoxifen persistence) had sparse evidence. Therefore, we used estimates with generous uncertainty and conducted sensitivity analyses. The cost-effectiveness of a CCC for regional ER+/PR-/HER2+ breast cancer (worst prognosis) was NZ $23,400 (US $15,800) per QALY gained, compared with NZ $368,500 (US $248,800) for local ER+/PR+/HER2- breast cancer (best prognosis). Using a cost-effectiveness threshold of NZ $45,000 (US $30,400) per QALY, a CCC would be cost-effective only in the four subtypes with the worst prognoses. There is value in investigating cost-effectiveness by different subtypes within a disease. In this example of breast cancer, the poorer the prognosis, the greater the health gains from a CCC and the better the cost-effectiveness. Incorporating heterogeneity in a cost-utility analysis is important and can inform resource allocation decisions. It is also feasible to undertake in practice. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  7. Transcriptional Inhibition of Matrix Metal loproteinase 9 (MMP-9 Activity by a c-fos/Estrogen Receptor Fusion Protein is Mediated by the Proximal AP-1 Site of the MMP-9 Promoter and Correlates with Reduced Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    1999-10-01

    Full Text Available Tumor cell invasion of basement membranes is one of the hallmarks of malignant transformation. Tumor cells secrete proteolytic enzymes known as matrix metalloproteinases (MMPs which degrade extracellular matrix molecules. Increased expression of MMP-9 has been associated with acquisition of invasive phenotype in many tumors. However, multiple mechanisms for regulation of MMP-9 gene expression by tumor cell lines have been proposed. A number of transcription factor binding sites have been characterized in the upstream regulatory region of the MMP-9 gene, including those for AP-1. To determine how a specific AP-1 family member, c-fos, regulates MMP-9 promoter activity through these sites, we used an expression vector containing the c-fos coding region fused to the estrogen receptor (ER ligand binding domain. This construct is activated upon binding estradiol. Stable expression of this construct in ER negative squamous cell carcinoma (SCC lines produced an estradiol dependent decrease in the number of cells that migrated through a reconstituted basement membrane. This decreased invasiveness was accompanied by estradiol dependent downregulation of MMP-9 activity as determined by gelatin zymography. Estradiol also produced transcriptional downregulation of an MMP-9 promoter construct in cells transiently transfected with the c-fosER expression vector. This downregulation was mediated by the AP-1 site at —79 by in the MMP-9 promoter. We concluded that the proximal AP-1 site mediated the transcriptional downregulation of the MMP-9 promoter by a conditionally activated c-fos fusion protein.

  8. Adjuvant tamoxifen influences the lipid profile in breast cancer patients.

    Science.gov (United States)

    Lin, Che; Chen, Li-Sheng; Kuo, Shou-Jen; Chen, Dar-Ren

    2014-02-01

    Currently there is a debate regarding whether tamoxifen used in breast cancer has an impact on lipid profiles. The aim of this study was to determine whether tamoxifen has an impact on the serum lipid profile in Taiwanese women. Data of 109 patients were collected from the routine clinical follow-up for women with hormone receptor-positive breast cancer who were treated between July 2005 and March 2008. These patients were divided into 2 subgroups, based on their tumor grade and lymph node status. Subgroup 1 patients had tumor grade I/II and a negative lymph node status. Those patients with tumor grade III or a positive lymph node status were defined as subgroup 2. In the 109 patients, the mean serum total cholesterol (TC) levels after tamoxifen treatment, as well as the serum low-density lipoprotein cholesterol (LDL-C) levels, were lower than the baseline levels, with statistically significant differences. Treatment with tamoxifen lowered the serum TC and LDL-C levels in both subgroups. The results indicate that tamoxifen has an impact on the serum lipid profile of breast cancer patients in Taiwan. Physicians should follow up the lipid profile in these patients.

  9. Augmentation of Endoxifen Exposure in Tamoxifen-Treated Women Following SSRI Switch

    NARCIS (Netherlands)

    L. Binkhorst (Lisette); M. Bannink (Marjolein); P. de Bruijn (Peter); J.B. Ruit (Jos); J. Droogendijk (Jolanda); R.J. van Alphen (Robbert); T.D. den Boer (Tilly D.); M.H. Lam (Mei); A. Jager (Agnes); T. van Gelder (Teun); A.H.J. Mathijssen (Ron)

    2016-01-01

    textabstractBackground and Objective: The anti-oestrogen tamoxifen requires metabolic activation to endoxifen by cytochrome P450 (CYP) enzymes, predominantly CYP2D6. Potent CYP2D6-inhibiting antidepressants can seriously disrupt tamoxifen metabolism, probably influencing the efficacy of tamoxifen.

  10. Pak1, adjuvant tamoxifen therapy, and breast cancer recurrence risk in a Danish population-based study

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Cronin-Fenton, Deirdre P; Lash, Timothy L

    2016-01-01

    -/TAM - group. Pak1 cytoplasmic intensity was not associated with breast cancer recurrence in either group (ER+/TAM + ORadj for strong vs. no cytoplasmic staining = 0.91, 95% CI 0.57, 1.5; ER-/TAM - ORadj for strong vs. no cytoplasmic staining = 0.74, 95% CI 0.39, 1.4). Associations between Pak1 nuclear......Background Adjuvant tamoxifen therapy approximately halves the risk of estrogen receptor-positive (ER+) breast cancer recurrence, but many women do not respond to therapy. Observational studies nested in clinical trial populations suggest that overexpression or nuclear localization of p21-activated...... by immunohistochemical staining of primary breast tumors from recurrence cases and matched controls from two breast cancer populations; women diagnosed with ER-positive tumors who received at least one year of tamoxifen therapy (ER+/TAM+), and women diagnosed with ER-negative tumors who survived for at least one year...

  11. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.

    Science.gov (United States)

    Paik, Soonmyung; Shak, Steven; Tang, Gong; Kim, Chungyeul; Baker, Joffre; Cronin, Maureen; Baehner, Frederick L; Walker, Michael G; Watson, Drew; Park, Taesung; Hiller, William; Fisher, Edwin R; Wickerham, D Lawrence; Bryant, John; Wolmark, Norman

    2004-12-30

    The likelihood of distant recurrence in patients with breast cancer who have no involved lymph nodes and estrogen-receptor-positive tumors is poorly defined by clinical and histopathological measures. We tested whether the results of a reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of 21 prospectively selected genes in paraffin-embedded tumor tissue would correlate with the likelihood of distant recurrence in patients with node-negative, tamoxifen-treated breast cancer who were enrolled in the National Surgical Adjuvant Breast and Bowel Project clinical trial B-14. The levels of expression of 16 cancer-related genes and 5 reference genes were used in a prospectively defined algorithm to calculate a recurrence score and to determine a risk group (low, intermediate, or high) for each patient. Adequate RT-PCR profiles were obtained in 668 of 675 tumor blocks. The proportions of patients categorized as having a low, intermediate, or high risk by the RT-PCR assay were 51, 22, and 27 percent, respectively. The Kaplan-Meier estimates of the rates of distant recurrence at 10 years in the low-risk, intermediate-risk, and high-risk groups were 6.8 percent (95 percent confidence interval, 4.0 to 9.6), 14.3 percent (95 percent confidence interval, 8.3 to 20.3), and 30.5 percent (95 percent confidence interval, 23.6 to 37.4). The rate in the low-risk group was significantly lower than that in the high-risk group (P<0.001). In a multivariate Cox model, the recurrence score provided significant predictive power that was independent of age and tumor size (P<0.001). The recurrence score was also predictive of overall survival (P<0.001) and could be used as a continuous function to predict distant recurrence in individual patients. The recurrence score has been validated as quantifying the likelihood of distant recurrence in tamoxifen-treated patients with node-negative, estrogen-receptor-positive breast cancer. Copyright 2004 Massachusetts Medical Society.

  12. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment.

  13. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells

    International Nuclear Information System (INIS)

    Belkaid, Anissa; Duguay, Sabrina R.; Ouellette, Rodney J.; Surette, Marc E.

    2015-01-01

    To sustain cell growth, cancer cells exhibit an altered metabolism characterized by increased lipogenesis. Stearoyl-CoA desaturase-1 (SCD-1) catalyzes the production of monounsaturated fatty acids that are essential for membrane biogenesis, and is required for cell proliferation in many cancer cell types. Although estrogen is required for the proliferation of many estrogen-sensitive breast carcinoma cells, it is also a repressor of SCD-1 expression in liver and adipose. The current study addresses this apparent paradox by investigating the impact of estrogen on SCD-1 expression in estrogen receptor-α-positive breast carcinoma cell lines. MCF-7 and T47D mammary carcinomas cells and immortalized MCF-10A mammary epithelial cells were hormone-starved then treated or not with 17β-estradiol. SCD-1 activity was assessed by measuring cellular monounsaturated/saturated fatty acid (MUFA/SFA) ratios, and SCD-1 expression was measured by qPCR, immunoblot, and immunofluorescence analyses. The role of SCD-1 in cell proliferation was measured following treatment with the SCD-1 inhibitor A959372 and following SCD-1 silencing using siRNA. The involvement of IGF-1R on SCD-1 expression was measured using the IGF-1R antagonist AG1024. The expression of SREBP-1c, a transcription factor that regulates SCD-1, was measured by qPCR, and by immunoblot analyses. 17β-estradiol significantly induced cell proliferation and SCD-1 activity in MCF-7 and T47D cells but not MCF-10A cells. Accordingly, 17β-estradiol significantly increased SCD-1 mRNA and protein expression in MCF-7 and T47D cells compared to untreated cells. Treatment of MCF-7 cells with 4-OH tamoxifen or siRNA silencing of estrogen receptor-α largely prevented 17β-estradiol-induced SCD-1 expression. 17β-estradiol increased SREBP-1c expression and induced the mature active 60 kDa form of SREBP-1. The selective SCD-1 inhibitor or siRNA silencing of SCD-1 blocked the 17β-estradiol-induced cell proliferation and increase in

  14. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Paik, Soonmyung; Tang, Gong; Shak, Steven; Kim, Chungyeul; Baker, Joffre; Kim, Wanseop; Cronin, Maureen; Baehner, Frederick L; Watson, Drew; Bryant, John; Costantino, Joseph P; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman

    2006-08-10

    The 21-gene recurrence score (RS) assay quantifies the likelihood of distant recurrence in women with estrogen receptor-positive, lymph node-negative breast cancer treated with adjuvant tamoxifen. The relationship between the RS and chemotherapy benefit is not known. The RS was measured in tumors from the tamoxifen-treated and tamoxifen plus chemotherapy-treated patients in the National Surgical Adjuvant Breast and Bowel Project (NSABP) B20 trial. Cox proportional hazards models were utilized to test for interaction between chemotherapy treatment and the RS. A total of 651 patients were assessable (227 randomly assigned to tamoxifen and 424 randomly assigned to tamoxifen plus chemotherapy). The test for interaction between chemotherapy treatment and RS was statistically significant (P = .038). Patients with high-RS (> or = 31) tumors (ie, high risk of recurrence) had a large benefit from chemotherapy (relative risk, 0.26; 95% CI, 0.13 to 0.53; absolute decrease in 10-year distant recurrence rate: mean, 27.6%; SE, 8.0%). Patients with low-RS (< 18) tumors derived minimal, if any, benefit from chemotherapy treatment (relative risk, 1.31; 95% CI, 0.46 to 3.78; absolute decrease in distant recurrence rate at 10 years: mean, -1.1%; SE, 2.2%). Patients with intermediate-RS tumors did not appear to have a large benefit, but the uncertainty in the estimate can not exclude a clinically important benefit. The RS assay not only quantifies the likelihood of breast cancer recurrence in women with node-negative, estrogen receptor-positive breast cancer, but also predicts the magnitude of chemotherapy benefit.

  15. Bazedoxifene exhibits antiestrogenic activity in animal models of tamoxifen-resistant breast cancer: implications for treatment of advanced disease.

    Science.gov (United States)

    Wardell, Suzanne E; Nelson, Erik R; Chao, Christina A; McDonnell, Donald P

    2013-05-01

    There is compelling evidence to suggest that drugs that function as pure estrogen receptor (ER-α) antagonists, or that downregulate the expression of ER-α, would have clinical use in the treatment of advanced tamoxifen- and aromatase-resistant breast cancer. Although such compounds are currently in development, we reasoned, based on our understanding of ER-α pharmacology, that there may already exist among the most recently developed selective estrogen receptor modulators (SERM) compounds that would have usage as breast cancer therapeutics. Thus, our objective was to identify among available SERMs those with unique pharmacologic activities and to evaluate their potential clinical use with predictive models of advanced breast cancer. A validated molecular profiling technology was used to classify clinically relevant SERMs based on their impact on ER-α conformation. The functional consequences of these observed mechanistic differences on (i) gene expression, (ii) receptor stability, and (iii) activity in cellular and animal models of advanced endocrine-resistant breast cancer were assessed. The high-affinity SERM bazedoxifene was shown to function as a pure ER-α antagonist in cellular models of breast cancer and effectively inhibited the growth of both tamoxifen-sensitive and -resistant breast tumor xenografts. Interestingly, bazedoxifene induced a unique conformational change in ER-α that resulted in its proteasomal degradation, although the latter activity was dispensable for its antagonist efficacy. Bazedoxifene was recently approved for use in the European Union for the treatment of osteoporosis and thus may represent a near-term therapeutic option for patients with advanced breast cancer. ©2013 AACR.

  16. Aromatase and estrogen receptors in male reproduction.

    Science.gov (United States)

    Carreau, Serge; Delalande, Christelle; Silandre, Dorothée; Bourguiba, Sonia; Lambard, Sophie

    2006-02-26

    Aromatase is a terminal enzyme which transforms irreversibly androgens into estrogens and it is present in the endoplasmic reticulum of numerous tissues. We have demonstrated that mature rat germ cells express a functional aromatase with a production of estrogens equivalent to that of Leydig cells. In humans in addition to Leydig cells, we have shown the presence of aromatase in ejaculated spermatozoa and in immature germ cells. In most tissues, high affinity estrogen receptors, ERalpha and/or ERbeta, mediate the role of estrogens. Indeed, in human spermatozoa, we have successfully amplified ERbeta mRNA but the protein was not detectable. Using ERalpha antibody we have detected two proteins in human immature germ cells: one at the expected size 66 kDa and another at 46 kDa likely corresponding to the ERalpha isoform lacking exon 1. In spermatozoa only the 46 kDa isoform was present, and we suggest that it may be located on the membrane. In addition, in men genetically deficient in aromatase, it is reported that alterations of spermatogenesis occur both in terms of the number and motility of spermatozoa. All together, these observations suggest that endogenous estrogens are important in male reproduction.

  17. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  18. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-01-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  19. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.

    Science.gov (United States)

    Trenti, Annalisa; Tedesco, Serena; Boscaro, Carlotta; Trevisi, Lucia; Bolego, Chiara; Cignarella, Andrea

    2018-03-15

    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.

  20. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice.

    Science.gov (United States)

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei

    2015-12-01

    For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can

  1. Tamoxifen added to radiotherapy and surgery for the treatment of ductal carcinoma in situ of the breast: A meta-analysis of 2 randomized trials

    International Nuclear Information System (INIS)

    Petrelli, Fausto; Barni, Sandro

    2011-01-01

    Background: Surgical excision with adequate margins is the treatment of choice for ductal, in situ carcinoma of the breast (DCIS). The addition of radiotherapy (RT) halved local in situ and invasive recurrence. The purpose of our meta-analysis is to evaluate the reduction in recurrence (in situ or invasive) with the addition of tamoxifen (T), in particular in patients with DCIS treated with surgery + RT. Patients and methods: The eligible studies (NSABP-B24 and UK ANZ DCIS trials) included prospective, randomized, controlled trials in which the addition of T had been compared with surgery + RT without T in women with DCIS of the breast. Relative risks (RRs) with 95% confidence intervals (CIs) were calculated for both in situ and invasive recurrence (local and controlateral). Results: Tamoxifen does not reduce breast cancer-specific or overall mortality when added to loco-regional therapy for DCIS of the breast (surgery plus or minus RT). Tamoxifen reduces overall breast cancer recurrence by 29% in all patients and by 33% in those treated with both surgery and RT. Only ipsilateral invasive (RR 0.61 [95% CI 0.41, 0.92]; p = 0.02) and controlateral in situ relapses (RR 0.40 [95% CI 0.16, 0.96]; p = 0.04) are significantly lowered when T is added to RT. Tamoxifen seems to exert a local synergistic effect with RT. Both young and older women ( 50 years) achieve some benefit from the addition of T (RR 0.6 and 0.74, respectively). Conclusion: The addition of T to surgery and RT for DCIS of the breast reduces the risk of local invasive and controlateral in situ relapses, but not the survival. The benefit is independent of age. In conclusion, surgery associated with RT and T is the treatment of choice for patients with (estrogen-receptor positive) DCIS of the breast.

  2. Side effects associated with ultrarapid cytochrome P450 2D6 genotype among women with early stage breast cancer treated with tamoxifen.

    Science.gov (United States)

    Rolla, R; Vidali, M; Meola, S; Pollarolo, P; Fanello, M R; Nicolotti, C; Saggia, C; Forti, L; Agostino, F D; Rossi, V; Borra, G; Stratica, F; Alabiso, O; Bellomo, G

    2012-01-01

    The side effects of tamoxifen, a drug widely used for the treatment and the prevention of recurrence in patients with estrogen receptor positive breast cancers (ER+), have been reported in clinical trials, but to date no information is available on their possible association with an increased enzymatic activity of CYP2D6 (ultra-metabolizers, UMs). The aim of this study was therefore to evaluate the association between the presence of multiple functional CYP2D6 alleles and the occurrence of side effects. 61 women with ER+ breast cancer receiving tamoxifen monotherapy were investigated in order to assess the relationships between CYP2D6 UM phenotype and side effects. Genotyping of 16 CYP2D6 polymorphisms was performed using a new DNA microarray technology. A highly significant difference was detected (41.2% of difference, 95% CI 6 - 61%, Fisher's exact test, p = 0.030) between the numbers of Ultrarapid Metabolizer patients (UM; high activity) with two or more adverse drug reactions to tamoxifen (7/9; 77.8%), compared to the number of Extensive Metabolizers (EM; normal activity), Intermediate Metabolizers (IM; reduced activity), and Poor Metabolizers (PM; no activity) with at least two side effects (19/52, 36.5%). A similar difference was also observed comparing the two groups (UM vs EM-IM-PM) for the number of side effects (median and inter quartile range, IQR: AM/EM/IM 1, IQR 0-2 vs. ULTRA 2, IQR 2-4; Mann-Whitney p = 0.005). Our results suggest a new association between CYP2D6 gene duplication and side effects to tamoxifen, indicating a possible role of CYP2D6 in their occurrence.

  3. Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation.

    Science.gov (United States)

    Wu, Zhidi; Ou, Ling; Wang, Chaopeng; Yang, Li; Wang, Panpan; Liu, Hengrui; Xiong, Yingquan; Sun, Kehuan; Zhang, Ronghua; Zhu, Xiaofeng

    2017-10-01

    Icaritin (ICT), a hydrolytic product of icariin from the genus Epimedium, has many indicated pharmacological and biological activities. Several studies have shown that ICT has potential osteoprotective effects, including stimulation of osteoblast differentiation and inhibition of osteoclast differentiation. However, the molecular mechanism for this anabolic action of ICT remains largely unknown. Here, we found that ICT could enhance MC3T3-E1 subclone 14 preosteoblastic cell differentiation associated with increased mRNA levels and protein expression of the differentiation markers alkaline phosphatase (ALP), type 1 collagen (COL1), osteocalcin (OC), osteoponin (OPN) and runt-related transcription factor 2 (RUNX2), and improved mineralization, confirmed by bone nodule formation and collagen synthesis. To characterize the underlying mechanisms, we examined the effect of ICT on estrogen receptor (ER) and mitogen-activated protein kinase (MAPK) signaling. ICT treatment induced p38 kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) activation, but it demonstrated at the same time point no effect on activation of c-Jun N-terminal kinase (JNK). ER antagonist ICI182780, p38 antagonist SB203580 and ERK1/2 antagonist PD98059 markedly inhibited the ICT-induced the mRNA expression of ALP, COL1, OC and OPN. ICI182780 attenuated the ICT-induced phosphorylation of p38 and ERK1/2. These observations indicate a potential mechanism of osteogenic effects of ICT involving the ERK1/2 and p38 pathway activation through the ER. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway

    International Nuclear Information System (INIS)

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► Cathepsins B and D were markedly enhanced by octylphenol (OP) in MCF-7 cells. ► OP may accelerate breast cancer cell growth and cathepsins via ER-mediated signaling. ► Breast cancer cells exposed with OP to mouse model were more aggressive. ► OP can promote metastasis through the amplification of cathepsins B and D via ER-mediated signaling pathway. -- Abstract: Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48 h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10 −6 M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of

  5. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc)

    Science.gov (United States)

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. For example, children have circulating E2concentrations rang...

  7. Effect of paclitaxel, epirubicin and tamoxifen on labelling index in cultured ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Arican, G. Oe.; Oezalpan, A.

    2001-01-01

    The effect of Paclitaxel (PAC), Epirubicin (EPR) and Tamoxifen (TAM) on ''3H-thymidine labelling index (''3H-TdR LI) of Ehrlich ascites tumor cells (EAT) was investigated in cultured. In the present study, an estrogen receptor positive ER(+) hyper diploid cell lines were studied. We used optimum doses of PAC, EPR and TAM (12 mg/ml, 12 mg/ml and 2 mg/ml, respectively). Cells were treated with these doses for 0, 4, 8, 16 and 32 hours. At the end of these periods, both control and treated cells were labelled for 5 mCi/ml 3H-thymidine for 30 minutes. The results showed that inhibition of DNA synthesis in cultured EAT cells were increased in the combined treatment of two drugs when compared to the treatment of a single drug (p<0.01). In the treatment of three drugs, however, this effect reached a maximum (p<0.001). As a result, PAC+EPR+TAM treatment's had a maximum synergistic effect at 4 hours treatment

  8. Apolipoprotein D expression does not predict breast cancer recurrence among tamoxifen-treated patients

    DEFF Research Database (Denmark)

    Klebaner, Daniella; Hamilton-Dutoit, Stephen; Ahern, Thomas P

    2017-01-01

    confounding using logistic regression. RESULTS: Cytoplasmic ApoD expression was seen in 68% of ER+ tumors, in 66% of ER- tumors, and in 66% of controls across both groups. In women with ER+ tumors, the associations of cytoplasmic ApoD expression with recurrence (OR = 1.0; 95% CI = 0.7 to 1.4) and increasing...... cytoplasmic expression with recurrence (OR = 1.0; 95% CI = 0.996 to 1.003) were null, as were those for women with ER- tumors. Associations for nuclear ApoD expression and combined nuclear and cytoplasmic expression were similarly near-null. CONCLUSION: ApoD expression is likely not a predictor of recurrence......BACKGROUND: Apolipoprotein D (ApoD) has been proposed as a predictor of breast cancer recurrence among estrogen receptor-positive (ER+), tamoxifen-treated patients. METHODS: We conducted a population-based case-control study nested in a population of 11,251 women aged 35-69 years at diagnosis...

  9. Adenosarcoma of the uterus following tamoxifen treatment for breast cancer

    NARCIS (Netherlands)

    Mourits, MJE; Hollema, H; Willemse, PHB; De Vries, EGE; Aalders, JG; Van der Zee, AGJ

    1998-01-01

    A 71-year-old patient developed an uterine adenosarcoma two months after two years of tamoxifen adjuvant treatment for early breast cancer. After curettage for postmenopausal bleeding, the patient underwent a total abdominal hysterectomy with bilateral salpingo-oophorectomy and pelvic

  10. Tamoxifen treatment and gynecologic side effects : A review

    NARCIS (Netherlands)

    Mourits, MJE; De Vries, EGE; Willemse, PHB; Ten Hoor, KA; Hollema, H; Van der Zee, AGJ

    Objective: To review the literature on tamoxifen side effects on the female genital tract and psychosexual function in premenopausal and postmenopausal women. Data Sources: We used the English-language literature in MEDLINE and reference lists from selected articles. Search terms included:

  11. Detection of tamoxifen metabolites by GC-MSD.

    Science.gov (United States)

    Báez, H; Camargo, C; Osorio, H; Umpiérrez, F

    2004-01-01

    Tamoxifen is an antiestrogen used in the adjuvant endocrine therapy of early breast cancer and malignant breast disorders. It is also used in women with anovulatory infertility caused by its stimulating effect on the secretion of the pituitary gonadotrophic hormones. In males it could increase the endogenous production of androgens. Because of these properties tamoxifen may be misused in some sports to treat the androgens suppression caused by the extensive abuse of anabolic androgenic steroids. A method for identification and confirmation of tamoxifen metabolites is described. Hydroxymetoxytamoxifen is detected in urine by gas chromatography and mass spectrometry in a selective ion monitoring method followed by the routine postrun in the screening of anabolic steroids. Once the hydroxymetoxytamoxifen is detected, confirmation of reported metabolites could be performed with a 5973 mass selective detector in the scan mode after solid-phase extraction by cationic exchange. This study also reports an excretion profile for a single dose of tamoxifen equivalent to 40 mg administrated orally to two males volunteers.

  12. Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates

    OpenAIRE

    Acevedo, Mari Luz; Kraus, W. Lee

    2003-01-01

    Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromat...

  13. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    Science.gov (United States)

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.

  14. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    Science.gov (United States)

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  15. Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models

    International Nuclear Information System (INIS)

    Park, Min-Ah; Hwang, Kyung-A; Lee, Hye-Rim; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► BP-1 induced cell growth was reversed by an ER antagonist in BG-1 cells. ► BP-1 up-regulated the mRNA expression of cyclin D1. ► Up-regulation of cyclin D1 by BP-1 was reversed by an ER antagonist. ► BP-1 is a potential endocrine disruptor that exerts estrogenic effects. - Abstract: 2,4-Dihydroxybenzophenone (benzophenone-1; BP-1) is an UV stabilizer primarily used to prevent polymer degradation and deterioration in quality due to UV irradiation. Recently, BP-1 has been reported to bioaccumulate in human bodies by absorption through the skin and has the potential to induce health problems including endocrine disruption. In the present study, we examined the xenoestrogenic effect of BP-1 on BG-1 human ovarian cancer cells expressing estrogen receptors (ERs) and relevant xenografted animal models in comparison with 17-β estradiol (E2). In in vitro cell viability assay, BP-1 (10 −8 –10 −5 M) significantly increased BG-1 cell growth the way E2 did. The mechanism underlying the BG-1 cell proliferation was proved to be related with the up-regulation of cyclin D1, a cell cycle progressor, by E2 or BP-1. Both BP-1 and E2 induced cell growth and up-regulation of cyclin D1 were reversed by co-treatment with ICI 182,780, an ER antagonist, suggesting that BP-1 may mediate the cancer cell proliferation via an ER-dependent pathway like E2. On the other hand, the expression of p21, a regulator of cell cycle progression at G 1 phase, was not altered by BP-1 though it was down-regulated by E2. In xenograft mouse models transplanted with BG-1 cells, BP-1 or E2 treatment significantly increased the tumor mass formation compared to a vehicle (corn oil) within 8 weeks. In histopathological analysis, the tumor sections of E2 or BP-1 group displayed extensive cell formations with high density and disordered arrangement, which were supported by the increased number of BrdUrd positive nuclei and the over-expression of cyclin D1 protein. Taken together, these

  16. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPK{sub ERK}

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, Mohamed A.; El-Gowelli, Hanan M.; El-Gowilly, Sahar M.; El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com

    2015-12-15

    We have previously reported that estrogen (E2) exacerbates the depressant effect of chronic nicotine on arterial baroreceptor activity in female rats. Here, we tested the hypothesis that this nicotine effect is modulated by nitric oxide synthase (NOS) and/or heme oxygenase (HO) and their downstream soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling. We investigated the effects of (i) inhibition or facilitation of NOS or HO on the interaction of nicotine (2 mg/kg/day i.p., 2 weeks) with reflex bradycardic responses to phenylephrine in ovariectomized (OVX) rats treated with E2 or vehicle, and (ii) central pharmacologic inhibition of sGC, PI3K, or MAPKs on the interaction. The data showed that the attenuation by nicotine of reflex bradycardia in OVXE2 rats was abolished after treatment with hemin (HO inducer) or L-arginine (NOS substrate). The hemin or L-arginine effect disappeared after inhibition of NOS (Nω-Nitro-L-arginine methyl ester hydrochloride, L-NAME) and HO (zinc protoporphyrin IX, ZnPP), respectively, denoting the interaction between the two enzymatic pathways. E2-receptor blockade (ICI 182,780) reduced baroreflexes in OVXE2 rats but had no effect on baroreflex improvement induced by hemin or L-arginine. Moreover, baroreflex enhancement by hemin was eliminated following intracisternal (i.c.) administration of wortmannin, ODQ, or PD98059 (inhibitors of PI3K, sGC, and extracellular signal-regulated kinases, MAPK{sub ERK}, respectively). In contrast, the hemin effect was preserved after inhibition of MAPK{sub p38} (SB203580) or MAPK{sub JNK} (SP600125). Overall, NOS/HO interruption underlies baroreflex dysfunction caused by nicotine in female rats and the facilitation of NOS/HO-coupled sGC/PI3K/MAPK{sub ERK} signaling might rectify the nicotine effect. - Highlights: • Hemin or L-arginine blunts baroreflex dysfunction caused by nicotine in OVXE2 rats. • NO/CO crosstalk mediates

  17. Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of tamoxifen, anastrozole, and letrozole in human plasma and its application to a clinical study.

    Science.gov (United States)

    Beer, Beate; Schubert, Birthe; Oberguggenberger, Anne; Meraner, Verena; Hubalek, Michael; Oberacher, Herbert

    2010-10-01

    There is substantial evidence that circulating estrogens promote the proliferation of breast cancer. Consequently, adjuvant hormonal treatment strategies targeting estrogen action have been established. Such hormonal therapies include selective estrogen receptor modulators, such as tamoxifen, which interfere at the estrogen receptors directly, or non-steroidal aromatase inhibitors, such as anastrozole and letrozole, which inhibit estrogen synthesis through blocking the aromatase, a key enzyme of estrogen production. Despite considerable therapeutic success, in several cases, the use of these drugs is limited by side effects that have been described to significantly impair the adherence of patients to endocrine treatment. However, objective data concerning patient adherence and its clinical relevance are limited. One promising approach to check patient-reported adherence is drug monitoring in human plasma. Therefore, a liquid chromatography-tandem mass spectrometry method to determine the plasma concentrations of tamoxifen, anastrozole, and letrozole has been developed and fully validated according to guidelines for clinical and forensic toxicology. The validation criteria evaluated were selectivity, linearity, accuracy and precision, limit of quantification, recovery and matrix effects, sample stability, and carryover. The six-point calibration curves showed linearity over the range of concentrations from 25 to 500 ng/ml for tamoxifen, 5 to 200 ng/ml for anastrozole, and 10 to 300 ng/ml for letrozole. The intra- and inter-day precision and accuracies were always better than 15%. The validated procedure was successfully applied to a clinical study (Patient-Reported Outcomes in Breast Cancer Patients undergoing Endocrine Therapy, PRO-BETh). A major aim of PRO-BETh study is the comprehensive evaluation of adherence to treatment in pre- and post-menopausal women with breast cancer. Plasma samples of 310 breast cancer patients undergoing anti-estrogen therapy were

  18. Feature of amenorrhea in postoperative tamoxifen users with breast cancer.

    Science.gov (United States)

    Kim, Hoon; Han, Wonshik; Ku, Seung Yup; Suh, Chang Suk; Kim, Seok Hyun; Choi, Young Min

    2017-03-01

    Tamoxifen has been used to prevent the recurrence of breast cancer. However, tamoxifen-users frequently experience amenorrhea and it can be confused from that caused by other hormonal abnormalities. In amenorrheic patients without breast cancer, clinicians usually measure the sex hormone levels that are known to be associated with ovarian or menstrual function. This study aimed to investigate the feature of female sex hormones in premenopausal breast cancer patients undergoing tamoxifen treatment. The medical records of fifty-nine premenopausal breast cancer patients who underwent tamoxifen treatment were reviewed retrospectively. The study population consisted of amenorrheic patients (n=36) and patients with menstruation (n=23). Serum hormone levels were measured either specifically between cycle days 2 and 5 in menstruating patients or at any time in amenorrheic participants. Serum levels of lutenizing hormone and estradiol were not statistically different according to the presence of menstruation. Serum follicle stimulating hormone level was significantly higher in amenorrheic patients (8.1±5.7 mIU/mL) than those in menstruating subjects (5.1±2.2 mIU/mL) (p=0.01). Serum concentration of thyroid stimulating hormone was lower in patients with amenorrhea (1.5±0.9 vs. 2.3±2.2 μIU/mL, p=0.04), although the prevalence of hypo- or hyperthyroidism was not different according to the pattern of menstruation. Menstruation status and hormone levels can be influenced by tamoxifen use in reproductive age breast cancer patients. Physicians should be attentive to the alteration of pituitary hormone levels in addition to sex steroid hormones in this population. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  19. Functional adaptation in female rats: the role of estrogen signaling.

    Directory of Open Access Journals (Sweden)

    Susannah J Sample

    Full Text Available Sex steroids have direct effects on the skeleton. Estrogen acts on the skeleton via the classical genomic estrogen receptors alpha and beta (ERα and ERβ, a membrane ER, and the non-genomic G-protein coupled estrogen receptor (GPER. GPER is distributed throughout the nervous system, but little is known about its effects on bone. In male rats, adaptation to loading is neuronally regulated, but this has not been studied in females.We used the rat ulna end-loading model to induce an adaptive modeling response in ovariectomized (OVX female Sprague-Dawley rats. Rats were treated with a placebo, estrogen (17β-estradiol, or G-1, a GPER-specific agonist. Fourteen days after OVX, rats underwent unilateral cyclic loading of the right ulna; half of the rats in each group had brachial plexus anesthesia (BPA of the loaded limb before loading. Ten days after loading, serum estrogen concentrations, dorsal root ganglion (DRG gene expression of ERα, ERβ, GPER, CGRPα, TRPV1, TRPV4 and TRPA1, and load-induced skeletal responses were quantified. We hypothesized that estrogen and G-1 treatment would influence skeletal responses to cyclic loading through a neuronal mechanism. We found that estrogen suppresses periosteal bone formation in female rats. This physiological effect is not GPER-mediated. We also found that absolute mechanosensitivity in female rats was decreased, when compared with male rats. Blocking of adaptive bone formation by BPA in Placebo OVX females was reduced.Estrogen acts to decrease periosteal bone formation in female rats in vivo. This effect is not GPER-mediated. Gender differences in absolute bone mechanosensitivity exist in young Sprague-Dawley rats with reduced mechanosensitivity in females, although underlying bone formation rate associated with growth likely influences this observation. In contrast to female and male rats, central neuronal signals had a diminished effect on adaptive bone formation in estrogen-deficient female rats.

  20. In situ aromatase expression in primary tumor is associated with estrogen receptor expression but is not predictive of response to endocrine therapy in advanced breast cancer

    DEFF Research Database (Denmark)

    Lykkesfeldt, Anne E; Henriksen, Katrine L; Rasmussen, Birgitte B

    2009-01-01

    BACKGROUND: New, third-generation aromatase inhibitors (AIs) have proven comparable or superior to the anti-estrogen tamoxifen for treatment of estrogen receptor (ER) and/or progesterone receptor (PR) positive breast cancer. AIs suppress total body and intratumoral estrogen levels. It is unclear...... whether in situ carcinoma cell aromatization is the primary source of estrogen production for tumor growth and whether the aromatase expression is predictive of response to endocrine therapy. Due to methodological difficulties in the determination of the aromatase protein, COX-2, an enzyme involved...... of advanced breast cancer. Semi-quantitative immunohistochemical (IHC) analysis was performed for ER, PR, COX-2 and aromatase using Tissue Microarrays (TMAs). Aromatase was also analyzed using whole sections (WS). Kappa analysis was applied to compare association of protein expression levels. Univariate...

  1. A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer.

    Science.gov (United States)

    Wang, Xiaoyou; Chen, Xianhui; Yang, Xiucong; Gao, Wei; He, Bing; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Dai, Zhifei; Zhang, Qiang

    2016-02-01

    Though combination chemotherapy or antitumor nanomedicine is extensively investigated, their combining remains in infancy. Additionally, enhanced delivery of estrogen or its analogs to tumor with highly-expressed estrogen-receptor (ER) is seldom considered, despite its necessity for ER-positive breast cancer treatment. Here, nanomedicine based combination therapy using QLPVM conjugated liposomal tamoxifen (TAM) and doxorubicin (DOX) was designed and testified, where the penta-peptide was derived from Ku70 Bax-binding domain. Quantitative, semi-quantitative and qualitative approaches demonstrated the enhanced endocytosis and cytotoxicity of QLPVM conjugated sterically stabilized liposomes (QLPVM-SSLs) in vitro and in vivo. Mechanism studies of QLPVM excluded the possible electrostatic, hydrophobic or receptor-ligand interactions. However, as a weak cell-penetrating peptide, QLPVM significantly induced drug release from QLPVM-SSLs during their interaction with cells, which was favorable for drug internalization. These findings suggested that the nanomedicine based combination therapy using QLPVM-SSL-TAM and QLPVM-SSL-DOX might provide a rational strategy for Luminal A breast cancer. Breast cancer remains a leading cause of mortality in women worldwide. Although combined therapy using hormonal antagonist and chemotherapy is the norm nowadays, the use of these agents together in a single delivery system has not been tested. Here, the authors investigated this approach using QLPVM conjugated liposomes in in-vitro and in-vivo models. The positive findings may provide a novel direction for breast cancer treatment in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  3. Estrogen inhibits Dlk1/FA1 production: A potential mechanism for estrogen effects on bone turnover

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Bay-Jensen, Anne-Christine; Srinivasan, Bhuma

    2011-01-01

    We have recently identified delta-like 1/fetal antigen 1 (Dlk1/FA1) as a novel regulator of bone mass that functions to mediate bone loss under estrogen deficiency in mice. In this report, we investigated the effects of estrogen (E) deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s......-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (serum cross-linked C-telopeptide [s-CTX] and serum osteocalcin) were measured in two cohorts: a group of pre- and postmenopausal women (n = 100) and a group of postmenopausal women, where half had received...... estrogen-replacement therapy (ERT, n = 166). s-Dlk1/FA1 and s-CTX were elevated in postmenopausal E-deficient women compared with premenopausal E-replete women (both p ...

  4. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  5. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease.

    Science.gov (United States)

    Simpkins, J W; Green, P S; Gridley, K E; Singh, M; de Fiebre, N C; Rajakumar, G

    1997-09-22

    cells from the neurotoxic effects of serum deprivation and hypoglycemia in human neuroblastoma cell lines. We have also observed that 17-alpha-estradiol (alpha-E2), a weak estrogen, shows neuroprotective efficacy in the SK-N-SH cell line at concentrations equivalent to beta-E2. Finally, we have observed that tamoxifen, a classic estrogen antagonist, blocks only one-third of the neuroprotective effects of either alpha-E2 or beta-E2. Collectively, these results indicate that estrogen is behaviorally active in tests of learning/ memory; activates basal forebrain cholinergic neurons and neurotrophin expression; and is neuroprotective for human neuronal cultures. We conclude that estrogen may be a useful therapy for AD and other neurodegenerative diseases.

  6. Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor.

    Science.gov (United States)

    LaFrate, Andrew L; Gunther, Jillian R; Carlson, Kathryn E; Katzenellenbogen, John A

    2008-12-01

    Most patients with hormone-responsive breast cancer eventually develop resistance to traditional antiestrogens such as tamoxifen, and this has become a major obstacle in their treatment. We prepared and characterized the activity of a series of 16 guanylhydrazone small molecules that are designed to block estrogen receptor (ER) activity through a non-traditional mechanism, by directly interfering with coactivator binding to agonist-liganded ER. The inhibitory activity of these compounds was determined in cell-based transcription assays using ER-responsive reporter gene and mammalian two-hybrid assays. Several of the compounds gave IC(50) values in the low micromolar range. Two secondary assays were used to confirm that these compounds were acting through the proposed non-traditional mode of estrogen inhibitory action and not as conventional antagonists at the ligand binding site.

  7. MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial-mesenchymal transition, decreased ER alpha expression and AKT activation

    NARCIS (Netherlands)

    Liang, Yuan-Ke; Zeng, De; Xiao, Ying-Sheng; Wu, Yang; Ouyang, Yan-Xiu; Chen, Min; Li, Yao-Chen; Lin, Hao-Yu; Wei, Xiao-Long; Zhang, Yong-Qu; Kruyt, Frank A. E.; Zhang, Guo-Jun

    2017-01-01

    Tamoxifen resistance presents a prominent clinical challenge in endocrine therapy for hormone sensitive breast cancer. However, the underlying mechanisms that contribute to tamoxifen resistance are not fully understood. In this study, we established a tamoxifen resistant MCF-7 cell line

  8. Estrogenic effects of marijuana smoke condensate and cannabinoid compounds

    International Nuclear Information System (INIS)

    Lee, Soo Yeun; Oh, Seung Min; Chung, Kyu Hyuck

    2006-01-01

    Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related to the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect

  9. Effects of tamoxifen on neuronal morphology, connectivity and biochemistry of hypothalamic ventromedial neurons: Impact on the modulators of sexual behavior.

    Science.gov (United States)

    Sá, Susana I; Teixeira, Natércia; Fonseca, Bruno M

    2018-01-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator, widely used in the treatment and prevention of estrogen-dependent breast cancer. Although with great clinical results, women on TAM therapy still report several side effects, such as sexual dysfunction, which impairs quality of life. The anatomo-functional substrates of the human sexual behavior are still unknown; however, these same substrates are very well characterized in the rodent female sexual behavior, which has advantage of being a very simple reflexive response, dependent on the activation of estrogen receptors (ERs) in the ventrolateral division of the hypothalamic ventromedial nucleus (VMNvl). In fact, in the female rodent, the sexual behavior is triggered by increasing circulation levels of estradiol that changes the nucleus neurochemistry and modulates its intricate neuronal network. Therefore, we considered of notice the examination of the possible neurochemical alterations and the synaptic plasticity impairment in VMNvl neurons of estradiol-primed female rats treated with TAM that may be in the basis of this neurological disorder. Accordingly, we used stereological and biochemical methods to study the action of TAM in axospinous and axodendritic synaptic plasticity and on ER expression. The administration of TAM changed the VMNvl neurochemistry by reducing ERα mRNA and increasing ERβ mRNA expression. Furthermore, present results show that TAM induced neuronal atrophy and reduced synaptic connectivity, favoring electrical inactivity. These data suggest that these cellular and molecular changes may be a possible neuronal mechanism of TAM action in the disruption of the VMNvl network, leading to the development of behavioral disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Tamoxifen-elicited uterotrophy: cross-species and cross-ligand analysis of the gene expression program

    Directory of Open Access Journals (Sweden)

    Forgacs Agnes L

    2009-04-01

    Full Text Available Abstract Background Tamoxifen (TAM is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level in vivo.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge. Results A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns. Conclusion Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.

  11. Monitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Asghar Butt, Sadia; Søgaard, Lise V.; Ardenkjær-Larsen, Jan Henrik

    2015-01-01

    Purpose: To use dynamic magnetic resonance spectroscopy (MRS) of hyperpolarized 13C-pyruvate to follow the progress over time in vivo of breast cancer metabolism in the MMTV-PymT model, and to follow the response to the anti-estrogen drug tamoxifen. Methods: Tumor growth was monitored by anatomical...... significantly in the treated group. Conclusion: These hyperpolarized 13C MRS findings indicate that tumor metabolic changes affects kP. The measured kp did not relate to treatment response to the same extent as did tumor growth, histological evaluation, and in vitro determination of LDH activity. © 2014 Wiley...

  12. Radiolytic oxidation of tamoxifen using the free radicals .OH and (or) HO2

    International Nuclear Information System (INIS)

    Leguene, C.; Clavere, P.; Jore, D.; Gardes-Albert, M.

    2001-01-01

    Tamoxifen is the most widely used antiestrogen in the treatment of breast cancer. In this work, we have studied its antioxidant properties. We have investigated the ability of tamoxifen to scavenge, in vitro, . OH and (or) HO 2 . free radicals that are produced by water radiolysis. Aqueous solutions of tamoxifen of concentrations ranging between 10 -5 and 2.5 x 10 -5 M have been irradiated (γ 137 Cs) in aerated acidic medium (H 3 PO 4 10 -3 M or HCOOH 10 -1 M). The results show that tamoxifen reacts quantitatively with . OH free radicals but does not react with HO 2 . free radicals under our experimental conditions. (author)

  13. Caveolin-1 enhances resveratrol-mediated cytotoxicity and transport in a hepatocellular carcinoma model

    Directory of Open Access Journals (Sweden)

    Yang Hui-ling

    2009-03-01

    Full Text Available Abstract Background Resveratrol (RES, an estrogen analog, is considered as a potential cancer chemo-preventive agent. However, it remains unclear how RES is transported into cells. In this study, we observed that Caveolin-1(CAV1 expression can increase the cytotoxic and pro-apoptotic activity of RES in a dose- and time-dependent manner both in vitro and in vivo in a Hepatocellular Carcinoma animal model. Methods High performance liquid chromatography (HPLC demonstrated that RES intra-cellular concentration is increased about 2-fold in cells stably expressing CAV1 or CAVM1 (a scaffolding domain (81-101AA-defective CAV1 mutant compared to the untransduced human Hepatoblastoma cell line (HepG2 or after transduction with the green fluorescent protein (GFP control vector. The increased intra-cellular transport of RES was abolished in cells stably expressing CAVM2 (a cholesterol shuttle domain (143-156AA-defective CAV1 mutant or CAVRNAi. In order to further characterize CAV1-dependent RES transport, we synthesized RES-dansyl chloride derivatives as fluorescent probes to visualize the transport process, which demonstrated a distribution consistent with that of CAV1 in HepG2 cells. Results In addition, RES endocytosis was not mediated by estrogen receptor (ER α and β, as suggested by lack of competitive inhibition by estrogen or Tamoxifen. Pathway analysis showed that RES can up-regulate the expression of endogenous CAV1; this activates further the MAPK pathway and caspase-3 expression. Discussion This study provides novel insights about the role played by CAV1 in modulating cellular sensitivity to RES through enhancement of its internalization and trafficking.

  14. Anaerobic biotransformation of estrogens

    International Nuclear Information System (INIS)

    Czajka, Cynthia P.; Londry, Kathleen L.

    2006-01-01

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-α-ethynylestradiol (EE2) and 17-β-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 μg L -1 day -1 ), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-α-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-α-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments

  15. Mammographic density changes following discontinuation of tamoxifen in premenopausal women with oestrogen receptor-positive breast cancer.

    Science.gov (United States)

    Kim, Won Hwa; Cho, Nariya; Kim, Young-Seon; Yi, Ann

    2018-04-06

    To evaluate the changes in mammographic density after tamoxifen discontinuation in premenopausal women with oestrogen receptor-positive breast cancers and the underlying factors METHODS: A total of 213 consecutive premenopausal women with breast cancer who received tamoxifen treatment after curative surgery and underwent three mammograms (baseline, after tamoxifen treatment, after tamoxifen discontinuation) were included. Changes in mammographic density after tamoxifen discontinuation were assessed qualitatively (decrease, no change, or increase) by two readers and measured quantitatively by semi-automated software. The association between % density change and clinicopathological factors was evaluated using univariate and multivariate regression analyses. After tamoxifen discontinuation, a mammographic density increase was observed in 31.9% (68/213, reader 1) to 22.1% (47/213, reader 2) by qualitative assessment, with a mean density increase of 1.8% by quantitative assessment compared to density before tamoxifen discontinuation. In multivariate analysis, younger age (≤ 39 years) and greater % density decline after tamoxifen treatment (≥ 17.0%) were independent factors associated with density change after tamoxifen discontinuation (p density change with a mean density increase of 1.8%, which was associated with younger age and greater density change after tamoxifen treatment. • Increased mammographic density after tamoxifen discontinuation can occur in premenopausal women. • Mean density increase after tamoxifen discontinuation was 1.8%. • Density increase is associated with age and density decrease after tamoxifen.

  16. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  17. Lumpectomy Plus Tamoxifen or Anastrozole With or Without Whole Breast Irradiation in Women With Favorable Early Breast Cancer

    International Nuclear Information System (INIS)

    Poetter, Richard; Gnant, Michael; Kwasny, Werner; Tausch, Christoph; Handl-Zeller, Leonore; Pakisch, Brigitte; Taucher, Susanne; Hammer, Josef; Luschin-Ebengreuth, Gero; Schmid, Marianne; Sedlmayer, Felix; Stierer, Michael; Reiner, Georg; Kapp, Karin; Hofbauer, Friedrich; Rottenfusser, Andrea; Poestlberger, Sabine; Haider, Karin; Draxler, Wolfgang; Jakesz, Raimund

    2007-01-01

    Purpose: In women with favorable early breast cancer treated by lumpectomy plus tamoxifen or anastrazole, it remains unclear whether whole breast radiotherapy is beneficial. Methods and Material: Between January 1996 and June 2004, the Austrian Breast and Colorectal Cancer Study Group (ABCSG) randomly assigned 869 women to receive breast radiotherapy ± boost (n 414) or not (n = 417) after breast-conserving surgery (ABCSG Study 8A). Favorable early breast cancer was specified as tumor size <3 cm, Grading 1 or 2, negative lymph nodes, positive estrogen and/or progesterone receptor status, and manageable by breast-conserving surgery. Breast radiotherapy was performed after lumpectomy with 2 tangential opposed breast fields with mean 50 Gy, plus boost in 71% of patients with mean 10 Gy, in a median of 6 weeks. The primary endpoint was local relapse-free survival; further endpoints were contralateral breast cancer, distant metastases, and disease-free and overall survival. The median follow-up was 53.8 months. Results: The mean age was 66 years. Overall, there were 21 local relapses, with 2 relapses in the radiotherapy group (5-y rate 0.4%) vs. 19 in the no-radiotherapy group (5.1%), respectively (p = 0.0001, hazard ratio 10.2). Overall relapses occurred in 30 patients, with 7 events in the radiotherapy group (5-y rate 2.1%) vs. 23 events in the no-radiotherapy group (6.1%) (p = 0.002, hazard ratio 3.5). No significant differences were found for distant metastases and overall survival. Conclusion: Breast radiotherapy ± boost in women with favorable early breast cancer after lumpectomy combined with tamoxifen/anastrazole leads to a significant reduction in local and overall relapse

  18. Selective Estrogen Receptor Modulators regulate reactive microglia after penetrating brain injury

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2014-06-01

    Full Text Available Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In the present study, we have assessed whether raloxifene and tamoxifen are able to affect microglia activation after brain injury in young and aged animals in time points relevant to clinics, which is hours after brain trauma. Volume fraction of MHC-II+ microglia was estimated according to the point-counting method of Weibel within a distance of 350 μm from the lateral border of the wound, and cellular morphology was measured by fractal analysis. Two groups of animals were studied: 1 young rats, ovariectomized at 2 months of age; and 2 aged rats, ovariectomized at 18 months of age. Fifteen days after ovariectomy animals received a stab wound brain injury and the treatment with estrogenic compounds. Our findings indicate that raloxifene and tamoxifen reduced microglia activation in both young and aged animals. Although the volume fraction of reactive microglia was found lower in aged animals, this was accompanied by important changes in cell morphology, where aged microglia assume a bushier and hyperplasic aspect when compared to young microglia. These data suggest that early regulation of microglia activation provides a mechanism by which SERMs may exert a neuroprotective effect in the setting of a brain trauma.

  19. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  20. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  1. Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Muchtaridi Muchtaridi

    2017-10-01

    Full Text Available Tamoxifen is the most frequently used anti-estrogen adjuvant treatment for estrogen receptor-positive breast cancer. However, it is associated with an increased risk of several serious side–effects, such as uterine cancer, stroke, and pulmonary embolism. The 2′,4′-dihydroxy-6-methoxy-3,5-dimethylchalcone (ChalcEA from plant leaves of Eugenia aquea, has been found to inhibit the proliferation of MCF-7 human breast cancer cells in a dose-dependent manner, with an IC50 of 74.5 μg/mL (250 μM. The aim of this work was to study the molecular interactions of new ChalcEA derivatives formed with the Estrogen Receptor α (ERα using computer aided drug design approaches. Molecular docking using Autodock 4.2 was employed to explore the modes of binding of ChalcEA derivatives with ERα. The 3D structure-based pharmacophore model was derived using LigandScout 4.1 Advanced to investigate the important chemical interactions of the ERα-tamoxifen complex structure. The binding energy and the tamoxifen-pharmacophore fit score of the best ChalcEA derivative (HNS10 were −12.33 kcal/mol and 67.07 kcal/mol, respectively. The HNS10 interacted with Leu346, Thr347, Leu349, Ala350, Glu353, Leu387, Met388, Leu391, Arg394, Met421, and Leu525. These results suggest that the new ChalcEA derivatives could serve as the lead compound for potent ERα inhibitor in the fight against breast cancer.

  2. Targeted functional imaging of estrogen receptors with 99mTc-GAP-EDL

    International Nuclear Information System (INIS)

    Takahashi, Nobukazu; Yang, David J.; Kohanim, Saady; Oh, Chang-Sok; Yu, Dong-Fang; Azhdarinia, Ali; Kurihara, Hiroaki; Kim, E.E.; Zhang, Xiaochun; Chang, Joe Y.

    2007-01-01

    To evaluate the feasibility of using 99m Tc-glutamate peptide-estradiol in functional imaging of estrogen receptor-positive [ER(+)] diseases. 3-Aminoethyl estradiol (EDL) was conjugated to glutamate peptide (GAP) to yield GAP-EDL. Cellular uptake studies of 99m Tc-GAP-EDL were conducted in ER(+) cell lines (MCF-7, 13762 and T47D). To demonstrate whether GAP-EDL increases MAP kinase activation, Western blot analysis of GAP-EDL was performed in 13762 cells. Biodistribution was conducted in nine rats with 13762 breast tumors at 0.5-4 h. Each rat was administered 99m Tc-GAP-EDL. Two animal models (rats and rabbits) were created to ascertain whether tumor uptake of 99m Tc-GAP-EDL was via an ER-mediated process. In the tumor model, breast tumor-bearing rats were pretreated with diethylstilbestrol (DES) 1 h prior to receiving 99m Tc-GAP-EDL. In the endometriosis model, part of the rabbit uterine tissue was dissected and grafted to the peritoneal wall. The rabbit was administered with 99m Tc-GAP-EDL. There was a 10-40% reduction in uptake of 99m Tc-GAP-EDL in cells treated with DES or tamoxifen compared with untreated cells. Western blot analysis showed an ERK1/2 phosphorylation process with GAP-EDL. Biodistribution studies showed that tumor uptake and tumor-to-muscle count density ratio in 99m Tc-GAP-EDL groups were significantly higher than those in 99m Tc-GAP groups at 4 h. Among 99m Tc-GAP-EDL groups, region of interest analysis of images showed that tumor-to muscle ratios were decreased in blocking groups. In the endometriosis model, the grafted uterine tissue could be visualized by 99m Tc-GAP-EDL. Cellular or tumor uptake of 99m Tc-GAP-EDL occurs via an ER-mediated process. 99m Tc-GAP-EDL is a useful agent for imaging functional ER(+) disease. (orig.)

  3. Targeted functional imaging of estrogen receptors with {sup 99m}Tc-GAP-EDL

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobukazu; Yang, David J.; Kohanim, Saady; Oh, Chang-Sok; Yu, Dong-Fang; Azhdarinia, Ali; Kurihara, Hiroaki; Kim, E.E. [The University of Texas M.D. Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); Zhang, Xiaochun; Chang, Joe Y. [The University of Texas M.D. Anderson Cancer Center, Division of Radiation Oncology, Houston, TX (United States)

    2007-03-15

    To evaluate the feasibility of using {sup 99m}Tc-glutamate peptide-estradiol in functional imaging of estrogen receptor-positive [ER(+)] diseases. 3-Aminoethyl estradiol (EDL) was conjugated to glutamate peptide (GAP) to yield GAP-EDL. Cellular uptake studies of {sup 99m}Tc-GAP-EDL were conducted in ER(+) cell lines (MCF-7, 13762 and T47D). To demonstrate whether GAP-EDL increases MAP kinase activation, Western blot analysis of GAP-EDL was performed in 13762 cells. Biodistribution was conducted in nine rats with 13762 breast tumors at 0.5-4 h. Each rat was administered {sup 99m}Tc-GAP-EDL. Two animal models (rats and rabbits) were created to ascertain whether tumor uptake of {sup 99m}Tc-GAP-EDL was via an ER-mediated process. In the tumor model, breast tumor-bearing rats were pretreated with diethylstilbestrol (DES) 1 h prior to receiving {sup 99m}Tc-GAP-EDL. In the endometriosis model, part of the rabbit uterine tissue was dissected and grafted to the peritoneal wall. The rabbit was administered with {sup 99m}Tc-GAP-EDL. There was a 10-40% reduction in uptake of {sup 99m}Tc-GAP-EDL in cells treated with DES or tamoxifen compared with untreated cells. Western blot analysis showed an ERK1/2 phosphorylation process with GAP-EDL. Biodistribution studies showed that tumor uptake and tumor-to-muscle count density ratio in {sup 99m}Tc-GAP-EDL groups were significantly higher than those in {sup 99m}Tc-GAP groups at 4 h. Among {sup 99m}Tc-GAP-EDL groups, region of interest analysis of images showed that tumor-to muscle ratios were decreased in blocking groups. In the endometriosis model, the grafted uterine tissue could be visualized by {sup 99m}Tc-GAP-EDL. Cellular or tumor uptake of {sup 99m}Tc-GAP-EDL occurs via an ER-mediated process. {sup 99m}Tc-GAP-EDL is a useful agent for imaging functional ER(+) disease. (orig.)

  4. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer

    DEFF Research Database (Denmark)

    Regan, Meredith M; Leyland-Jones, Brian; Bouzyk, Mark

    2012-01-01

    Adjuvant tamoxifen therapy is effective for postmenopausal women with endocrine-responsive breast cancer. Cytochrome P450 2D6 (CYP2D6) enzyme metabolizes tamoxifen to clinically active metabolites, and CYP2D6 polymorphisms may adversely affect tamoxifen efficacy. In this study, we investigated...

  5. Identification of a putative protein-profile associating with tamoxifen therapy-resistance in breast cancer

    NARCIS (Netherlands)

    A. Umar (Arzu); J.W.M. Martens (John); J.A. Foekens (John); L. Paša-Tolić (Ljiljana); H. Kang; A.M. Timmermans (Mieke); M.P. Look (Maxime); M.E. Meijer van Gelder (Marion); N. Jaitly (Navdeep); M.A. den Bakker (Michael)

    2009-01-01

    textabstractTamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical parameters can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards

  6. Tamoxifen therapy for the management of pubertal gynecomastia: a systematic review

    NARCIS (Netherlands)

    Lapid, Oren; van Wingerden, Jan J.; Perlemuter, Leon

    2013-01-01

    Objective: A systematic review to assess the efficacy of tamoxifen in the management of idiopathic pubertal gynecomastia. Data sources: Searches were conducted using the databases of Medline (search engine PubMed) and Web of Science (R). Study selection: Studies reporting the use of Tamoxifen for

  7. Mitotically Active Leiomyoma of the Uterus in a Postmenopausal Breast Cancer Patient Receiving Tamoxifen

    Directory of Open Access Journals (Sweden)

    I-Feng Liu

    2006-06-01

    Conclusion: Endometrial cancer is rarely noted in breast cancer patients taking tamoxifen. Further, none have reported mitotically active leiomyoma of the uterus. From this case, endometrial proliferation and mitotically active leiomyoma of the uterus may be related to tamoxifen therapy, and should not be neglected in breast cancer patients.

  8. Dextromethorphan as a phenotyping test to predict endoxifen exposure in patients on tamoxifen treatment

    NARCIS (Netherlands)

    Graan, A.J. de; Teunissen, S.F.; Vos, F.Y. de; Loos, W.J.; Schaik, R.H. van; Jongh, F.E. de; Vos, A.I. de; Alphen, R.J. van; Holt, B. van der; Verweij, J.; Seynaeve, C.; Beijnen, J.H.; Mathijssen, R.H.

    2011-01-01

    PURPOSE: Tamoxifen, a widely used agent for the prevention and treatment of breast cancer, is mainly metabolized by CYP2D6 and CYP3A to form its most abundant active metabolite, endoxifen. Interpatient variability in toxicity and efficacy of tamoxifen is substantial. Contradictory results on the

  9. Dextromethorphan as a phenotyping test to predict endoxifen exposure in patients on tamoxifen treatment.

    Science.gov (United States)

    de Graan, Anne-Joy M; Teunissen, Sebastiaan F; de Vos, Filip Y F L; Loos, Walter J; van Schaik, Ron H N; de Jongh, Felix E; de Vos, Aad I; van Alphen, Robbert J; van der Holt, Bronno; Verweij, Jaap; Seynaeve, Caroline; Beijnen, Jos H; Mathijssen, Ron H J

    2011-08-20

    Tamoxifen, a widely used agent for the prevention and treatment of breast cancer, is mainly metabolized by CYP2D6 and CYP3A to form its most abundant active metabolite, endoxifen. Interpatient variability in toxicity and efficacy of tamoxifen is substantial. Contradictory results on the value of CYP2D6 genotyping to reduce the variable efficacy have been reported. In this pharmacokinetic study, we investigated the value of dextromethorphan, a known probe drug for both CYP2D6 and CYP3A enzymatic activity, as a potential phenotyping probe for tamoxifen pharmacokinetics. In this prospective study, 40 women using tamoxifen for invasive breast cancer received a single dose of dextromethorphan 2 hours after tamoxifen intake. Dextromethorphan, tamoxifen, and their respective metabolites were quantified. Exposure parameters of all compounds were estimated, log transformed, and subsequently correlated. A strong and highly significant correlation (r = -0.72; P dextromethorphan (0 to 6 hours) and endoxifen (0 to 24 hours). Also, the area under the plasma concentration-time curve of dextromethorphan (0 to 6 hours) and daily trough endoxifen concentration was strongly correlated (r = -0.70; P dextromethorphan exposure. Dextromethorphan exposure after a single administration adequately predicted endoxifen exposure in individual patients with breast cancer taking tamoxifen. This test could contribute to the personalization and optimization of tamoxifen treatment, but it needs additional validation and simplification before being applicable in future dosing strategies.

  10. Dried blood spots voor het bepalen van de serumconcentratie van tamoxifen en zijn actieve metaboliet endoxifen

    NARCIS (Netherlands)

    Jager, Nynke G L; Rosing, Hilde; Schellens, Jan H M; Beijnen, Jos H.; Linn, Sabine C.

    2016-01-01

    OBJECTIVE To establish the relationship between dried blood spot (DBS) and serum concentrations of tamoxifen and endoxifen in order to allow the use of DBS sampling, a simple and patient-friendly alternative to venous sampling, in clinical practice. The antiestrogenic effect of tamoxifen is

  11. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20.

    Science.gov (United States)

    Mamounas, Eleftherios P; Tang, Gong; Fisher, Bernard; Paik, Soonmyung; Shak, Steven; Costantino, Joseph P; Watson, Drew; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman

    2010-04-01

    The 21-gene OncotypeDX recurrence score (RS) assay quantifies the risk of distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor (ER)-positive breast cancer. We investigated the association between RS and risk for locoregional recurrence (LRR) in patients with node-negative, ER-positive breast cancer from two National Surgical Adjuvant Breast and Bowel Project (NSABP) trials (NSABP B-14 and B-20). RS was available for 895 tamoxifen-treated patients (from both trials), 355 placebo-treated patients (from B-14), and 424 chemotherapy plus tamoxifen-treated patients (from B-20). The primary end point was time to first LRR. Distant metastases, second primary cancers, and deaths before LRR were censored. In tamoxifen-treated patients, LRR was significantly associated with RS risk groups (P 30). There were also significant associations between RS and LRR in placebo-treated patients from B-14 (P = .022) and in chemotherapy plus tamoxifen-treated patients from B-20 (P = .028). In multivariate analysis, RS was an independent significant predictor of LRR along with age and type of initial treatment. Similar to the association between RS and risk for distant recurrence, a significant association exists between RS and risk for LRR. This information has biologic consequences and potential clinical implications relative to locoregional therapy decisions for patients with node-negative and ER-positive breast cancer.

  12. Ten Years of Tamoxifen Reduces Breast Cancer Recurrences, Improves Survival

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... Nearly 7,000 women with early-stage, estrogen receptor-positive breast cancer were enrolled in the trial ...

  13. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    Science.gov (United States)

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-05-01

    With increased life expectancy, women will spend over three decades of life postmenopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  14. Poly(amidoamine-Cholesterol Conjugate Nanoparticles Obtained by Electrospraying as Novel Tamoxifen Delivery System

    Directory of Open Access Journals (Sweden)

    R. Cavalli

    2011-01-01

    Full Text Available A new poly(amidoamine-cholesterol (PAA-cholesterol conjugate was synthesized, characterized and used to produce nanoparticles by the electrospraying technique. The electrospraying is a method of liquid atomization that consists in the dispersion of a solution into small charged droplets by an electric field. Tuning the electrospraying process parameters spherical PAA-chol nanoparticles formed. The PAA-cholesterol nanoparticles showed sizes lower than 500 nm and spherical shape. The drug incorporation capacity was investigated using tamoxifen, a lipophilic anticancer drug, as model drug. The incorporation of the tamoxifen did not affect the shape and sizes of nanoparticles showing a drug loading of 40%. Tamoxifen-loaded nanoparticles exhibited a higher dose-dependent cytotoxicity than free tamoxifen, while blank nanoparticles did not show any cytotoxic effect at the same concentrations. The electrospray technique might be proposed to produce tamoxifen-loaded PAA-chol nanoparticle in powder form without any excipient in a single step.

  15. Production and Investigation of Controlled Drug Release Properties of Tamoxifen Loaded Alginate-Gum Arabic Microbeads

    Directory of Open Access Journals (Sweden)

    Rukiye Yavaşer

    2016-08-01

    Full Text Available The entrapment of tamoxifen onto alginate-gum arabic beads and the production of controlled drug release was investigated in this study. The polymeric system that would provide the controlled release of tamoxifen was formed using alginate and gum arabic. In the first phase of the study, the optimization of the alginate-gum arabic beads production was conducted; then the study continued with drug entrapment experiments. Tamoxifen entrapment yield was found to be approximately 90% of initial tamoxifen concentration. In vitro drug release experiments were performed in simulated gastric juice and intestinal fluid where the tamoxifen release was 20% and 53% of the initial drug present, respectively. As a result of this study, it is expected that a valuable contribution to the field of controlled drug release system production is realized.

  16. Risk of skin cancer following tamoxifen treatment in more than 16,000 breast cancer patients

    DEFF Research Database (Denmark)

    Præstegaard, Camilla; Kjaer, Susanne K.; Andersson, Michael

    2016-01-01

    Background: Women with breast cancer are at increased risk of developing skin cancer. Little is known about how tamoxifen affects this risk. We aimed to investigate whether tamoxifen treatment following breast cancer is associated with skin cancer. Methods: A cohort consisting of 44,589 women...... diagnosed with breast cancer during 1977–2007 from the nationwide clinical database of the Danish Breast Cancer Cooperative Group, was followed for a primary skin cancer [basal cell carcinoma (BCC), squamous cell carcinoma (SCC) or melanoma] in the Danish Cancer Registry supplemented by data on BCC and SCC...... from the Danish Pathology Register. We investigated incidence of skin cancer among 16,214 women treated with tamoxifen compared to 28,375 women not treated with tamoxifen by calculating incidence rate ratios (IRRs) in Cox regression models. Results: Tamoxifen users were followed for a median of 2...

  17. Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data

    Directory of Open Access Journals (Sweden)

    Parvin Jeffrey

    2010-12-01

    Full Text Available Abstract Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2 were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM. A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes and targeted TFs (25% of common TFs. The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to

  18. Estrogen receptor-α36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer.

    Directory of Open Access Journals (Sweden)

    Chi Pan

    Full Text Available Pterostilbene (trans-3,5-dimethoxy-4'-hudroxystilbene is an antioxidant primarily found in blueberries. It also inhibits breast cancer regardless of conventional estrogen receptor (ER-α66 status by inducing both caspase-dependent and caspase-independent apoptosis. However, the pterostilbene-induced apoptosis rate in ER-α66-negative breast cancer cells is much higher than that in ER-α66-positive breast cancer cells. ER-α36, a variant of ER-α66, is widely expressed in ER-α66-negative breast cancer, and its high expression mediates the resistance of ER-α66-positive breast cancer patients to tamoxifen therapy. The aim of the present study is to determine the relationship between the antiproliferation activity of pterostilbene and ER-α36 expression in breast cancer cells. Methyl-thiazolyl-tetrazolium (MTT assay, apoptosis analysis, and an orthotropic xenograft mouse model were used to examine the effects of pterostilbene on breast cancer cells. The expressions of ER-α36 and caspase 3, the activation of ERK and Akt were also studied through RT-PCR, western blot analysis, and immunohistochemical (IHC staining. ER-α36 knockdown was found to desensitize ER-α66-negative breast cancer cells to pterostilbene treatment both in vitro and in vivo, and high ER-α36 expression promotes pterostilbene-induced apoptosis in breast cancer cells. Western blot analysis data indicate that MAPK/ERK and PI3K/Akt signaling in breast cancer cells with high ER-α36 expression are mediated by ER-α36, and are inhibited by pterostilbene. These results suggest that ER-α36 is a therapeutic target in ER-α36-positive breast cancer, and pterostilbene is an inhibitor that targets ER-α36 in the personalized therapy against ER-α36-positive breast cancer.

  19. Estrogen and the female heart.

    Science.gov (United States)

    Knowlton, A A; Korzick, D H

    2014-05-25

    Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system. Published by Elsevier Ireland Ltd.

  20. Modeling the interaction of binary and ternary mixtures of estradiol and bisphenol A or its analogues in an in vitro estrogen mediated transcriptional activation assay (T47D-KBlue).

    Science.gov (United States)

    Bisphenol A is a ubiquitous monomer used to manufacture polycarbonate plastics. Exposure ofhuman and wildlife populations to bisphenol A and its analogs is widespread and well documented. Bisphenol A is hypothesized to be estrogenic in both in vivo and in vitro studies and has be...

  1. RNA Regulation of Estrogen

    Science.gov (United States)

    2010-08-01

    Berglund, Rodger Voelker, Paul Barber and Julien Diegel 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...estrogen  receptors  [reviewed  in  (3,  4)],  also   functions   by  interacting  directly  with  RNA  to  alter  RNA...Mog myelin oligodendrocyte glycoprotein 6.06 207115_x_at mbtd1 mbt domain containing 1 6.06 208004_at Prol1 proline rich, lacrimal 1 6.06 205247_at

  2. A misdiagnosed Riedel's thyroiditis successfully treated by thyroidectomy and tamoxifen.

    Science.gov (United States)

    Wang, Chih-Jung; Wu, Ta-Jen; Lee, Chung-Ta; Huang, Shih-Ming

    2012-12-01

    Riedel's thyroiditis, known as invasive fibrous thyroiditis, is a very rare form of chronic thyroiditis. It is hard to make the diagnosis without surgical biopsy. We present a case of Riedel's thyroiditis in a 52-year-old female with past history of Hashimoto's thyroiditis. She suffered from bilateral neck pain, which radiated to both lower jaws. The erythrocyte sedimentation rate was 125 mm/hour. Subacute thyroiditis superimposed on Hashimoto's thyroiditis was diagnosed and treated with steroid. However the response was poor and she had a history of severe peptic ulcer. To avoid inducing the peptic ulcer by steroid, she received bilateral subtotal thyroidectomy. During surgery, the thyroid had severe adhesion to surrounding soft tissue and the pathology showed Riedel's thyroiditis. The neck pain improved after thyroidectomy. Tamoxifen has been given for 8 months and the size of remnant thyroid decreased to 8 mm. We concluded that combined thyroidectomy and tamoxifen successfully cured a patient with Riedel's thyroiditis. Copyright © 2012. Published by Elsevier B.V.

  3. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  4. Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover

    Science.gov (United States)

    Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.

    2011-01-01

    We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814

  5. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  6. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  7. The role of P450 metabolism in the estrogenic activity of bifenthrin in fish.

    Science.gov (United States)

    DeGroot, Breanna C; Brander, Susanne M

    2014-11-01

    Bifenthrin, a pyrethroid pesticide, is estrogenic in vivo in fishes. However, bifenthrin is documented to be anti-estrogenic in vitro, in the ER-CALUX (estrogen receptor) cell line. We investigated whether metabolite formation is the reason for this incongruity. We exposed Menidia beryllina (inland silversides) to 10ng/l bifenthrin, 10ng/l 4-hydroxy bifenthrin, and 10ng/l bifenthrin with 25μg/l piperonyl butoxide (PBO) - a P450 inhibitor. Metabolite-exposed juveniles had significantly higher estrogen-mediated protein levels (choriogenin) than bifenthrin/PBO-exposed, while bifenthrin alone was intermediate (not significantly different from either). This suggests that metabolites are the main contributors to bifenthrin's in vivo estrogenicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [Bone metabolism and cardiovascular function update. Estrogen and its therapeutic potential for bone and vascular health].

    Science.gov (United States)

    Ohta, Hiroaki

    2014-07-01

    Despite its long-standing role as a "guardian angel" for the female body, estrogen has recently been dethroned from its status as an "elixir" and its use has been restricted due to its oncogenic potential as well as its coagulation system-associated risk. However, it is recognized that estrogen not only works against bone resorption but also improves vascular function. In this regard, it is suggested that estrogen may have a role in improving deteriorated bone quality through its antioxidant action, while this same effect with the SERMs, which may be accounted for by the presence of estrogen, remains yet to be established. Not only evidence needs to be accumulated to support the vascular effects of the SERMs, but their pleiotropic, rather than extra-skeletal, effects, as likely mediated by the estrogen receptors distributed throughout the body, remain to be elucidated.

  9. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Imaobong Etti

    2016-06-01

    Full Text Available The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of −12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8–6.9 µM in comparison to a reference standard Tamoxifen (18.9–24.1 µM within the tested time point (24–72 h. The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules.

  10. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments

    International Nuclear Information System (INIS)

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2004-01-01

    Women who have undergone a full-term pregnancy before the age of 20 have one-half the risk of developing breast cancer compared with women who have never gone through a full-term pregnancy. This protective effect is observed universally among women of all ethnic groups. Parity in rats and mice also protects them against chemically induced mammary carcinogenesis. Seven-week-old virgin Lewis rats were given N-methyl-N-nitrosourea. Two weeks later the rats were treated with natural or synthetic estrogens and progestins for 7–21 days by subcutaneous implantation of silastic capsules. In our current experiment, we demonstrate that short-term sustained exposure to natural or synthetic estrogens along with progestins is effective in preventing mammary carcinogenesis in rats. Treatment with 30 mg estriol plus 30 mg progesterone for 3 weeks significantly reduced the incidence of mammary cancer. Short-term exposure to ethynyl estradiol plus megesterol acetate or norethindrone was effective in decreasing the incidence of mammary cancers. Tamoxifen plus progesterone treatment for 3 weeks was able to confer only a transient protection from mammary carcinogenesis, while 2-methoxy estradiol plus progesterone was effective in conferring protection against mammary cancers. The data obtained in the present study demonstrate that, in nulliparous rats, long-term protection against mammary carcinogenesis can be achieved by short-term treatments with natural or synthetic estrogen and progesterone combinations

  11. Uptake of tamoxifen in consecutive premenopausal women under surveillance in a high-risk breast cancer clinic.

    Science.gov (United States)

    Donnelly, L S; Evans, D G; Wiseman, J; Fox, J; Greenhalgh, R; Affen, J; Juraskova, I; Stavrinos, P; Dawe, S; Cuzick, J; Howell, A

    2014-04-02

    Randomised trials of tamoxifen versus placebo indicate that tamoxifen reduces breast cancer risk by approximately 33%, yet uptake is low. Approximately 10% of women in our clinic entered the IBIS-I prevention trial. We assess the uptake of tamoxifen in a consecutive series of premenopausal women not in a trial and explore the reasons for uptake through interviews. All eligible women between 33 and 46 years at ≥17% lifetime risk of breast cancer and undergoing annual mammography in our service were invited to take a 5-year course of tamoxifen. Reasons for accepting (n=15) or declining (n=15) were explored using semi-structured interviews. Of 1279 eligible women, 136 (10.6%) decided to take tamoxifen. Women >40 years (74 out of 553 (13.4%)) and those at higher non-BRCA-associated risk were more likely to accept tamoxifen (129 out of 1109 (11.6%)). Interviews highlighted four themes surrounding decision making: perceived impact of side effects, the impact of others' experience on beliefs about tamoxifen, tamoxifen as a 'cancer drug', and daily reminder of cancer risk. Tamoxifen uptake was similar to previously ascertained uptake in a randomised controlled trial (IBIS-I). Concerns were similar in women who did or did not accept tamoxifen. Decision making appeared to be embedded in the experience of significant others.

  12. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  13. Urinary estrogen metabolites and self-reported infertility in women infected with Schistosoma haematobium.

    Directory of Open Access Journals (Sweden)

    Júlio Santos

    metabolic pathways. In view of the statistically significant association between catechol-estrogens/ DNA adducts and self-reported infertility, we propose that an estrogen-DNA adduct mediated pathway in S. haematobium-induced ovarian hormonal deregulation could be involved. In addition, the catechol-estrogens/ DNA adducts described here represent potential biomarkers for schistosomiasis haematobia.

  14. Estrogen and gastrointestinal malignancy.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    The concept that E2 exerts an effect on the gastrointestinal tract is not new and its actions on intestinal mucosa have been investigated for at least three decades. An attempt to consolidate results of these investigations generates more questions than answers, thus suggesting that many unexplored avenues remain and that the full capabilities of this steroid hormone are far from understood. Evidence of its role in esophageal, gastric and gallbladder cancers is confusing and often equivocal. The most compelling evidence regards the protective role conferred by estrogen (or perhaps ERbeta) against the development and proliferation of colon cancer. Not only has the effect been described but also many mechanisms of action have been explored. It is likely that, along with surgery, chemotherapy and radiotherapy, hormonal manipulation will play an integral role in colon cancer management in the very near future.

  15. Breast cancer case using tamoxifen during pregnancy: a case report ...

    African Journals Online (AJOL)

    This is a case of 32 years old nulliparous female who was diagnosed in November 2004 as a case of carcinoma of the right breast , luminal A , (Estrogen Receptor positive Progesterone receptor negative, Her 2 negative, Ki67 10 %), poorly differentiated invasive ductal cancer, TNM stage,T2 N0 MO. She had a wide local ...

  16. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    Science.gov (United States)

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  17. Tool Weighs Benefits, Risks of Raloxifene or Tamoxifen to Prevent Breast Cancer

    Science.gov (United States)

    Researchers have developed a benefit-risk index to help guide decisions on whether postmenopausal women at increased risk of developing breast cancer should take raloxifene or tamoxifen to reduce that risk.

  18. MicroRNA‑663b mediates TAM resistance in breast cancer by modulating TP73 expression.

    Science.gov (United States)

    Jiang, Hua; Cheng, Lin; Hu, Pan; Liu, Renbin

    2018-05-23

    Breast cancer is the second leading cause of cancer‑associated mortalities in women. Tamoxifen (TAM) is an endocrine therapy commonly used in the treatment of patients with breast cancer expressing estrogen receptor α. However, treatment often ends in failure due to the emergence of drug resistance. MicroRNAs (miRNAs), a family of small non‑coding RNAs, serve critical roles in the regulation of gene expression and cell events. To date, whether miRNA‑663b could mediate TAM resistance in breast cancer remains unknown. Therefore, the aim of the present study was to investigate the role of miRNA‑663b in TAM resistance in breast cancer. The results demonstrated that miRNA‑663b was upregulated in breast cancer with TAM resistance. Tumor protein 73 (TP73) was a direct target of miRNA‑663b, and was negatively regulated by miRNA‑663b in MCF‑7 cells. Furthermore, it was identified that downregulation of miRNA‑663b inhibited cell proliferation ability and promoted cell apoptosis, resulting in enhanced TAM sensitivity. In addition, these findings suggested that TP73 silencing may have eliminated the effects of miRNA‑663b inhibitor on breast cancer cells. In conclusion, the present study verified a novel molecular link between miRNA‑663b and TP73, and indicated that miRNA‑663b may be a critical therapeutic target in breast cancer.

  19. Selective estrogen receptor modulators (SERM: A new choice for postmenopausal women and physicians who worry on cancer

    Directory of Open Access Journals (Sweden)

    Ali Baziad

    2001-09-01

    Full Text Available The postmenopausal state is characterized by the cessation of menstruation, loss of ovarian function, and a dramatic decrease in the level of circulating estrogen. This state of estrogen deficiency contributes to the acceleration of several age-related health problems in women, including cardiovascular disease, osteoporosis, and dementia. Estrogen replacement is clearly effective in the short-term and long-term treatment and prevention of postmenopausal symptoms. However, until now, the amount of HRT user is still very low. Fear of breast cancer and endometrial cancer are the most common concern in using hormone replacement therapy (HRT, although the relationship between long-term HRT and breast cancer remains controversial. For physicians or patients, who worry on cancer, the ideal drug is now available i.e. the selective estrogen receptor modulators (SERM, with the generic name raloxifine. (Med J Indones 2001; 10: 187-90Keywords: HRT, raloxifine, osteoporosis, CVD, tamoxifen

  20. Tamoxifen treatment in hamsters induces protection during taeniosis by Taenia solium.

    Science.gov (United States)

    Escobedo, Galileo; Palacios-Arreola, M Isabel; Olivos, Alfonso; López-Griego, Lorena; Morales-Montor, Jorge

    2013-01-01

    Human neurocysticercosis by Taenia solium is considered an emergent severe brain disorder in developing and developed countries. Discovery of new antiparasitic drugs has been recently aimed to restrain differentiation and establishment of the T. solium adult tapeworm, for being considered a central node in the disease propagation to both pigs and humans. Tamoxifen is an antiestrogenic drug with cysticidal action on Taenia crassiceps, a close relative of T. solium. Thus, we evaluated the effect of tamoxifen on the in vitro evagination and the in vivo establishment of T. solium. In vitro, tamoxifen inhibited evagination of T. solium cysticerci in a dose-time dependent manner. In vivo, administration of tamoxifen to hamsters decreased the intestinal establishment of the parasite by 70%, while recovered tapeworms showed an 80% reduction in length, appearing as scolices without strobilar development. Since tamoxifen did not show any significant effect on the proliferation of antigen-specific immune cells, intestinal inflammation, and expression of Th1/Th2 cytokines in spleen and duodenum, this drug could exert its antiparasite actions by having direct detrimental effects upon the adult tapeworm. These results demonstrate that tamoxifen exhibits a strong cysticidal and antitaeniasic effect on T. solium that should be further explored in humans and livestock.

  1. Tamoxifen with and without radiation after partial mastectomy in patients with involved nodes

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Andrew L; Perera, Francisco; Fisher, Barbara; Opeitum, Abiola; Yu, Norman

    1995-02-15

    Purpose: To determine the effect of tamoxifen on local control after partial mastectomy with and without adjuvant breast irradiation. Methods and Materials: A retrospective study of 97 node positive patients identified from the records of the London Regional Cancer Center included 44 patients who received tamoxifen and breast irradiation (40 or 50 Gy plus booster dose) after partial mastectomy, and 53 patients who received tamoxifen only after partial mastectomy. Base line characteristics of the two groups were similar. Results: At 39 months actuarial follow-up there was a breast tumor recurrence (BTR) in 5% vs. 21% of patients when radiation was omitted (p = 0.0388), but there was no difference in the cause-specific mortality of the two treatment groups. Cox Regression analysis (on only 10 BTR) showed age and adjuvant radiation as significant predictors of BTR. In patients not receiving radiation, no BTR was seen in 22 patients {>=}70 years of age at diagnosis vs. 8 BTR in 31 patients <70 years (p = 0.0130). All BTR occurred while patients were receiving tamoxifen. Conclusion: Tamoxifen alone with omission of radiation after partial mastectomy provides inferior breast tumor control in node positive patients. This is especially true for patients under 70 years of age. Patients aged 70 years or older at the time of diagnosis of breast cancer who receive tamoxifen have a low rate of breast tumor recurrence when radiation is omitted. These patients represent a group for whom radiation might not be necessary.

  2. Therapeutic Effects of a Traditional Chinese Medicine Formula Plus Tamoxifen vs. Tamoxifen for the Treatment of Mammary Gland Hyperplasia: A Meta-Analysis of Randomized Trials

    Science.gov (United States)

    Li, Hao-Tian; Liu, Hong-Hong; Yang, Yu-Xue; Wang, Tao; Zhou, Xue-Lin; Yu, Yang; Li, Su-Na; Zheng, Yi; Zhang, Ping; Wang, Rui-Lin; Li, Jian-Yu; Wei, Shi-Zhang; Li, Kun; Li, Peng-Yan; Qian, Li-Qi

    2018-01-01

    As a common disorder that accounts for over 70% of all breast disease cases, mammary gland hyperplasia (MGH) causes a severe problem for the quality of patients' life, and confers an increased risk of breast carcinoma. However, the etiology and pathogenesis of MGH remain unclear, and the safety and efficacy of current western drug therapy for MGH still need to be improved. Therefore, a meta-analysis was conducted by our team to determine whether a TCM formula named Ru-Pi-Xiao in combination with tamoxifen or Ru-Pi-Xiao treated alone can show more prominent therapeutic effects against MGH with fewer adverse reactions than that of tamoxifen. Studies published before June 2017 were searched based on standardized searching rules in several mainstream medical databases. A total of 27 articles with 4,368 patients were enrolled in this meta-analysis. The results showed that the combination of Ru-Pi-Xiao and tamoxifen could exhibit better therapeutic effects against MGH than that of tamoxifen (OR: 3.79; 95% CI: 3.09–4.65; P < 0.00001) with a lower incidence of adverse reactions (OR: 0.35; 95% CI: 0.28–0.43; P < 0.00001). The results also suggested that this combination could improve the level of progesterone (MD: 2.22; 95% CI: 1.72–2.71; P < 0.00001) and decrease the size of breast lump (MD: −0.67; 95% CI: −0.86 to −0.49; P < 0.00001) to a greater extent, which might provide a possible explanation for the pharmacodynamic mechanism of Ru-Pi-Xiao plus tamoxifen. In conclusion, Ru-Pi-Xiao and related preparations could be recommended as auxiliary therapy combined tamoxifen for the treatment of MGH. PMID:29456506

  3. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    Science.gov (United States)

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  4. Estrogen-dependent changes in serum iron levels as a translator of the adverse effects of estrogen during infection: a conceptual framework.

    Science.gov (United States)

    Hamad, Mawieh; Awadallah, Samir

    2013-12-01

    Elevated levels of estrogen often associate with increased susceptibility to infection. This has been attributed to the ability of estrogen to concomitantly enhance the growth and virulence of pathogens and suppress host immunity. But the exact mechanism of how estrogen mediates such effects, especially in cases where the pathogen and/or the immune components in question do not express estrogen receptors, has yet to be elucidated. Here we propose that translating the adverse effects of estrogen during infection is dependent to a significant degree upon its ability to manipulate iron homeostasis. For elevated levels of estrogen alter the synthesis and/or activity of several factors involved in iron metabolism including hypoxia inducible factor 1α (HIF-1α) and hepcidin among others. This leads to the inhibition of hepcidin synthesis in hepatocytes and the maintenance of ferroportin (FPN) integrity on the surface of iron-releasing duodenal enterocytes, hepatocytes, and macrophages. Intact FPN permits the continuous efflux of dietary and stored iron into the circulation, which further enhances pathogen growth and virulence on the one hand and suppresses host immunity on the other. This new conceptual framework may help explain a multitude of disparate clinical and experimental observations pertinent to the relationship between estrogen and infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Central estrogenic pathways protect against the depressant action of acute nicotine on reflex tachycardia in female rats

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; Fouda, Mohamed A.; El-gowilly, Sahar M.; Saad, Evan I.

    2012-01-01

    We have previously shown that acute exposure of male rats to nicotine preferentially attenuates baroreceptor-mediated control of reflex tachycardia in contrast to no effect on reflex bradycardia. Here, we investigated whether female rats are as sensitive as their male counterparts to the baroreflex depressant effect of nicotine and whether this interaction is modulated by estrogen. Baroreflex curves relating reflex chronotropic responses evoked by i.v. doses (1–16 μg/kg) of phenylephrine (PE) or sodium nitroprusside (SNP), were constructed in conscious freely moving proestrus, ovariectomized (OVX), and estrogen (50 μg/kg/day s.c., 5 days)-replaced OVX (OVXE 2 ) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRS PE and BRS SNP ). Nicotine (100 μg/kg i.v.) reduced BRS SNP in OVX rats but not in proestrus or OVXE 2 rats. The attenuation of reflex tachycardia by nicotine was also evident in diestrus rats, which exhibited plasma estrogen levels similar to those of OVX rats. BRS PE was not affected by nicotine in all rat preparations. Experiments were then extended to determine whether central estrogenic receptors modulate the nicotine–BRS SNP interaction. Intracisteral (i.c.) treatment of OVX rats with estrogen sulfate (0.2 μg/rat) abolished the BRS SNP attenuating effect of i.v. nicotine. This protective effect of estrogen disappeared when OVX rats were pretreated with i.c. ICI 182,780 (50 μg/rat, selective estrogen receptor antagonist). Together, these findings suggest that central neural pools of estrogen receptors underlie the protection offered by E 2 against nicotine-induced baroreceptor dysfunction in female rats. -- Highlights: ► Estrogen protects against the depressant effect of nicotine on reflex tachycardia. ► The baroreflex response and estrogen status affect the nicotine–BRS interaction. ► The protection offered by estrogen is mediated via central estrogen receptors.

  6. Estrogen and Breast Cancer

    National Research Council Canada - National Science Library

    Russo, Jose

    2004-01-01

    .... MCFlOF cells is ER-alpha negative, although, they ER-beta positive that could indicate that the response of the cells to growth and form colonies in agar methocel could be mediated by this receptor...

  7. Potent inhibition of rhabdoid tumor cells by combination of flavopiridol and 4OH-tamoxifen

    International Nuclear Information System (INIS)

    Cimica, Velasco; Smith, Melissa E; Zhang, Zhikai; Mathur, Deepti; Mani, Sridhar; Kalpana, Ganjam V

    2010-01-01

    Rhabdoid Tumors (RTs) are highly aggressive pediatric malignancies with poor prognosis. There are currently no standard or effective treatments for RTs in part because treatments are not designed to specifically target these tumors. Our previous studies indicated that targeting the cyclin/cdk pathway is a novel therapeutic strategy for RTs and that a pan-cdk inhibitor, flavopiridol, inhibits RT growth. Since the toxicities and narrow window of activity associated with flavopiridol may limit its clinical use, we tested the effect of combining flavopiridol with 4-hydroxy-Tamoxifen (4OH-Tam) in order to reduce the concentration of flavopiridol needed for inhibition of RTs. The effects of flavopiridol, 4OH-Tam, and their combination on RT cell cycle regulation and apoptosis were assessed by: i) cell survival assays, ii) FACS analysis, iii) caspase activity assays, and iv) immunoblot analysis. Furthermore, the role of p53 in flavopiridol- and 4OH-Tam-mediated induction of cell cycle arrest and apoptosis was characterized using RNA interference (siRNA) analysis. The effect of p53 on flavopiridol-mediated induction of caspases 2, 3, 8 and 9 was also determined. We found that the combination of flavopiridol and 4OH-Tam potently inhibited the growth of RT cells. Low nanomolar concentrations of flavopiridol induced G 2 arrest, which was correlated to down-modulation of cyclin B1 and up-regulation of p53. Addition of 4OH-Tam did not affect flavopiridol-mediated G 2 arrest, but enhanced caspase 3,7-mediated apoptosis induced by the drug. Abrogation of p53 by siRNA abolished flavopiridol-induced G 2 arrest, but enhanced flavopiridol- (but not 4OH-Tam-) mediated apoptosis, by enhancing caspase 2 and 3 activities. Combining flavopiridol with 4OH-Tam potently inhibited the growth of RT cells by increasing the ability of either drug alone to induce caspases 2 and 3 thereby causing apoptosis. The potency of flavopiridol was enhanced by abrogation of p53. Our results warrant further

  8. Potent inhibition of rhabdoid tumor cells by combination of flavopiridol and 4OH-tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Cimica, Velasco; Smith, Melissa E; Zhang, Zhikai; Mathur, Deepti [Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 (United States); Mani, Sridhar [Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 (United States); Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 (United States); Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 (United States); Kalpana, Ganjam V [Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 (United States); Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 (United States)

    2010-11-19

    Rhabdoid Tumors (RTs) are highly aggressive pediatric malignancies with poor prognosis. There are currently no standard or effective treatments for RTs in part because treatments are not designed to specifically target these tumors. Our previous studies indicated that targeting the cyclin/cdk pathway is a novel therapeutic strategy for RTs and that a pan-cdk inhibitor, flavopiridol, inhibits RT growth. Since the toxicities and narrow window of activity associated with flavopiridol may limit its clinical use, we tested the effect of combining flavopiridol with 4-hydroxy-Tamoxifen (4OH-Tam) in order to reduce the concentration of flavopiridol needed for inhibition of RTs. The effects of flavopiridol, 4OH-Tam, and their combination on RT cell cycle regulation and apoptosis were assessed by: i) cell survival assays, ii) FACS analysis, iii) caspase activity assays, and iv) immunoblot analysis. Furthermore, the role of p53 in flavopiridol- and 4OH-Tam-mediated induction of cell cycle arrest and apoptosis was characterized using RNA interference (siRNA) analysis. The effect of p53 on flavopiridol-mediated induction of caspases 2, 3, 8 and 9 was also determined. We found that the combination of flavopiridol and 4OH-Tam potently inhibited the growth of RT cells. Low nanomolar concentrations of flavopiridol induced G{sub 2} arrest, which was correlated to down-modulation of cyclin B1 and up-regulation of p53. Addition of 4OH-Tam did not affect flavopiridol-mediated G{sub 2} arrest, but enhanced caspase 3,7-mediated apoptosis induced by the drug. Abrogation of p53 by siRNA abolished flavopiridol-induced G{sub 2} arrest, but enhanced flavopiridol- (but not 4OH-Tam-) mediated apoptosis, by enhancing caspase 2 and 3 activities. Combining flavopiridol with 4OH-Tam potently inhibited the growth of RT cells by increasing the ability of either drug alone to induce caspases 2 and 3 thereby causing apoptosis. The potency of flavopiridol was enhanced by abrogation of p53. Our results

  9. Potent inhibition of rhabdoid tumor cells by combination of flavopiridol and 4OH-tamoxifen

    Directory of Open Access Journals (Sweden)

    Mani Sridhar

    2010-11-01

    Full Text Available Abstract Background Rhabdoid Tumors (RTs are highly aggressive pediatric malignancies with poor prognosis. There are currently no standard or effective treatments for RTs in part because treatments are not designed to specifically target these tumors. Our previous studies indicated that targeting the cyclin/cdk pathway is a novel therapeutic strategy for RTs and that a pan-cdk inhibitor, flavopiridol, inhibits RT growth. Since the toxicities and narrow window of activity associated with flavopiridol may limit its clinical use, we tested the effect of combining flavopiridol with 4-hydroxy-Tamoxifen (4OH-Tam in order to reduce the concentration of flavopiridol needed for inhibition of RTs. Methods The effects of flavopiridol, 4OH-Tam, and their combination on RT cell cycle regulation and apoptosis were assessed by: i cell survival assays, ii FACS analysis, iii caspase activity assays, and iv immunoblot analysis. Furthermore, the role of p53 in flavopiridol- and 4OH-Tam-mediated induction of cell cycle arrest and apoptosis was characterized using RNA interference (siRNA analysis. The effect of p53 on flavopiridol-mediated induction of caspases 2, 3, 8 and 9 was also determined. Results We found that the combination of flavopiridol and 4OH-Tam potently inhibited the growth of RT cells. Low nanomolar concentrations of flavopiridol induced G2 arrest, which was correlated to down-modulation of cyclin B1 and up-regulation of p53. Addition of 4OH-Tam did not affect flavopiridol-mediated G2 arrest, but enhanced caspase 3,7-mediated apoptosis induced by the drug. Abrogation of p53 by siRNA abolished flavopiridol-induced G2 arrest, but enhanced flavopiridol- (but not 4OH-Tam- mediated apoptosis, by enhancing caspase 2 and 3 activities. Conclusions Combining flavopiridol with 4OH-Tam potently inhibited the growth of RT cells by increasing the ability of either drug alone to induce caspases 2 and 3 thereby causing apoptosis. The potency of flavopiridol was

  10. Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features.

    Science.gov (United States)

    Jambal, Purevsuren; Badtke, Melanie M; Harrell, J Chuck; Borges, Virginia F; Post, Miriam D; Sollender, Grace E; Spillman, Monique A; Horwitz, Kathryn B; Jacobsen, Britta M

    2013-01-01

    Mucinous breast cancer (MBC) is mainly a disease of postmenopausal women. Pure MBC is rare and augurs a good prognosis. In contrast, MBC mixed with other histological subtypes of invasive disease loses the more favorable prognosis. Because of the relative rarity of pure MBC, little is known about its cell and tumor biology and relationship to invasive disease of other subtypes. We have now developed a human breast cancer cell line called BCK4, in which we can control the behavior of MBC. BCK4 cells were derived from a patient whose poorly differentiated primary tumor was treated with chemotherapy, radiation and tamoxifen. Malignant cells from a recurrent pleural effusion were xenografted in mammary glands of a nude mouse. Cells from the solid tumor xenograft were propagated in culture to generate the BCK4 cell line. Multiple marker and chromosome analyses demonstrate that BCK4 cells are human, near diploid and luminal, expressing functional estrogen, androgen, and progesterone receptors. When xenografted back into immunocompromised cycling mice, BCK4 cells grow into small pure MBC. However, if mice are supplemented with continuous estradiol, tumors switch to invasive lobular carcinoma (ILC) with mucinous features (mixed MBC), and growth is markedly accelerated. Tamoxifen prevents the expansion of this more invasive component. The unexpected ability of estrogens to convert pure MBC into mixed MBC with ILC may explain the rarity of the pure disease in premenopausal women. These studies show that MBC can be derived from lobular precursors and that BCK4 cells are new, unique models to study the phenotypic plasticity, hormonal regulation, optimal therapeutic interventions, and metastatic patterns of MBC.

  11. Two years of tamoxifen or no adjuvant systemic therapy for patients with high-risk breast cancer

    DEFF Research Database (Denmark)

    Jensen, Maj-Britt; Krarup, Jens Fabricius; Palshof, Torben

    2018-01-01

    randomly assigned to two years of daily placebo or tamoxifen. Survival statistics was collected from the Danish Civil Registration System. RESULTS: The five-year invasive breast cancer recurrence (BCR) rate was 43.2% in the placebo arm and 31.9% in the tamoxifen arm. Compared with the placebo arm...... the hazard ratio for a BCR event was 0.73 in the tamoxifen arm (p = .07). With an estimated median follow-up on overall survival of 40.9 years, 154 and 145 patients had died in the placebo and tamoxifen arm, respectively. After adjustment for baseline characteristics a significant reduction in mortality...

  12. RESPONSE OF JAPANESE MEDAKA TO 17B-ESTRADIOL: A TIME COURSE OF ENDOCRINE-MEDIATED EFFECTS

    Science.gov (United States)

    Estrogenic compounds have been measured in the aquatic environment in concentrations subsequently found to affect reproduction and development in fish. Further investigations have described several endocrine-mediated events that indicate exposure of organisms to estrogens and/or ...

  13. Association Between the 21-Gene Recurrence Score Assay and Risk of Locoregional Recurrence in Node-Negative, Estrogen Receptor–Positive Breast Cancer: Results From NSABP B-14 and NSABP B-20

    Science.gov (United States)

    Mamounas, Eleftherios P.; Tang, Gong; Fisher, Bernard; Paik, Soonmyung; Shak, Steven; Costantino, Joseph P.; Watson, Drew; Geyer, Charles E.; Wickerham, D. Lawrence; Wolmark, Norman

    2010-01-01

    Purpose The 21-gene OncotypeDX recurrence score (RS) assay quantifies the risk of distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor (ER)–positive breast cancer. We investigated the association between RS and risk for locoregional recurrence (LRR) in patients with node-negative, ER-positive breast cancer from two National Surgical Adjuvant Breast and Bowel Project (NSABP) trials (NSABP B-14 and B-20). Patients and Methods RS was available for 895 tamoxifen-treated patients (from both trials), 355 placebo-treated patients (from B-14), and 424 chemotherapy plus tamoxifen-treated patients (from B-20). The primary end point was time to first LRR. Distant metastases, second primary cancers, and deaths before LRR were censored. Results In tamoxifen-treated patients, LRR was significantly associated with RS risk groups (P 30). There were also significant associations between RS and LRR in placebo-treated patients from B-14 (P = .022) and in chemotherapy plus tamoxifen–treated patients from B-20 (P = .028). In multivariate analysis, RS was an independent significant predictor of LRR along with age and type of initial treatment. Conclusion Similar to the association between RS and risk for distant recurrence, a significant association exists between RS and risk for LRR. This information has biologic consequences and potential clinical implications relative to locoregional therapy decisions for patients with node-negative and ER-positive breast cancer. PMID:20065188

  14. Rapid effects of estrogens on short-term memory: Possible mechanisms.

    Science.gov (United States)

    Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena

    2018-06-01

    Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Tamoxifen-loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies.

    Science.gov (United States)

    Cavallaro, Gennara; Maniscalco, Laura; Licciardi, Mariano; Giammona, Gaetano

    2004-11-20

    Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of Tamoxifen-loaded polymeric micelles showed a significantly higher antiproliferative activity in comparison with free drug, probably attributable to fluidification of cellular membranes, caused by amphiphilic copolymers, that allows a higher penetration of the drug into tumoral cells. To gain preliminary information about the potential use of prepared micelles as Tamoxifen drug delivery systems, studies evaluating drug release ability of micelle systems in media mimicking biological fluids (buffer solutions at pH 7.4 and 5.5) and in human plasma were carried out. These studies, performed evaluating the amount of Tamoxifen that remains in solution as a function of time, showed that at pH 7.4, as well as in plasma, PHEA-C(16) polymeric micelles were able to release lower drug amounts than PHEA-PEG(5000)-C(16) ones, while at pH 5.5, the behavior difference between two kind of micelles was less pronounced.

  16. Effect of tamoxifen on the coronary vascular reactivity of spontaneously hypertensive female rats

    Directory of Open Access Journals (Sweden)

    M.V. Borgo

    2011-08-01

    Full Text Available Tamoxifen has been associated with a reduction in the incidence of myocardial infarction. However, the effects of tamoxifen on coronary reactivity have not been fully elucidated. The objective of this study was to determine the effects of chronic treatment with tamoxifen on coronary vascular reactivity in spontaneously hypertensive rats (SHR. Female SHR were divided into four groups (N = 7 each: sham-operated (SHAM, sham-operated and treated with tamoxifen (10 mg/kg by gavage for 90 days (TAMOX, ovariectomized (OVX, and ovariectomized and treated with tamoxifen (OVX+TAMOX. Mean arterial pressure (MAP, heart rate (HR, coronary perfusion pressure (CPP, and coronary vascular reactivity were measured. MAP and HR were reduced (9.42 and 11.67%, respectively in the OVX+TAMOX group compared to the OVX group (P < 0.01. The coronary vascular reactivity of the OVX+TAMOX group presented smaller vasoconstrictor responses to acetylcholine (2-64 µg when compared to the OVX group (P < 0.01 and this response was similar to that of the SHAM group. The adenosine-induced vasodilator response was greater in the TAMOX group compared to the SHAM and OVX groups (P < 0.05. Baseline CPP was higher in OVX+TAMOX and TAMOX groups (136 ± 3.6 and 130 ± 1.5 mmHg than in OVX and SHAM groups (96 ± 2 and 119 ± 2.3 mmHg; P < 0.01. Tamoxifen, when combined with OVX, attenuated the vasoconstriction induced by acetylcholine and increased the adenosine-induced vasodilatory response, as well as reducing the MAP, suggesting beneficial effects of tamoxifen therapy on coronary vascular reactivity after menopause.

  17. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  18. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients

    International Nuclear Information System (INIS)

    Wegman, Pia; Vainikka, Linda; Stål, Olle; Nordenskjöld, Bo; Skoog, Lambert; Rutqvist, Lars-Erik; Wingren, Sten

    2005-01-01

    Tamoxifen is widely used as endocrine therapy for oestrogen-receptor-positive breast cancer. However, many of these patients experience recurrence despite tamoxifen therapy by incompletely understood mechanisms. In the present report we propose that tamoxifen resistance may be due to differences in activity of metabolic enzymes as a result of genetic polymorphism. Cytochrome P450 2D6 (CYP2D6) and sulfotransferase 1A1 (SULT1A1) are polymorphic and are involved in the metabolism of tamoxifen. The CYP2D6*4 and SULT1A1*2 genotypes result in decreased enzyme activity. We therefore investigated the genotypes of CYP2D6 and SULT1A1 in 226 breast cancer patients participating in a trial of adjuvant tamoxifen treatment in order to validate the benefit from the therapy. The patients were genotyped using PCR followed by cleavage with restriction enzymes. Carriers of the CYP2D6*4 allele demonstrated a decreased risk of recurrence when treated with tamoxifen (relative risk = 0.28, 95% confidence interval = 0.11–0.74, P = 0.0089). A similar pattern was seen among the SULT1A1*1 homozygotes (relative risk = 0.48, 95% confidence interval = 0.21–1.12, P = 0.074). The combination of CYP2D6*4 and/or SULT1A1*1/*1 genotypes comprised 60% of the patients and showed a 62% decreased risk of distant recurrence with tamoxifen (relative risk = 0.38, 95% confidence interval = 0.19–0.74, P = 0.0041). The present study suggests that genotype of metabolic enzymes might be useful as a guide for adjuvant endocrine treatment of postmenopausal breast cancer patients. However, results are in contradiction to prior hypotheses and the present sample size is relatively small. Findings therefore need to be confirmed in a larger cohort

  19. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  20. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    Highlights: • This is the first report on the putative promoter sequence of a molluscan ER gene. • The gene promoter contains putative binding sites for direct and indirect interaction with ER. • E2 upregulates ER gene expression in the ovary in vitro and in vivo. • E2-induced gene expression may require a novel ligand-dependent receptor. • The ER proximal promoter is hypomethylated regardless of gene expression levels. - Abstract: In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5′-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5′-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary

  1. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action.

    Science.gov (United States)

    Bhavnani, Bhagu R; Stanczyk, Frank Z

    2014-07-01

    Oral conjugated equine estrogens (CEE) are the most used estrogen formulation for postmenopausal hormone therapy either alone or in combination with a progestin. CEE is most commonly used for the management of early menopausal symptoms such as hot flashes, vaginitis, insomnia, and mood disturbances. Additionally, if used at the start of the menopausal phase (age 50-59 years), CEE prevents osteoporosis and may in some women reduce the risk of cardiovascular disease (CVD) and Alzheimer's disease (AD). There appears to be a common mechanism through which estrogens can protect against CVD and AD. CEE is a natural formulation of an extract prepared from pregnant mares' urine. The product monogram lists the presence of only 10 estrogens consisting of the classical estrogens, estrone and 17β-estradiol, and a group of unique ring B unsaturated estrogens such as equilin and equilenin. The ring B unsaturated estrogens are formed by an alternate steroidogenic pathway in which cholesterol is not an obligatory intermediate. Both the route of administration and structure of these estrogens play a role in the overall pharmacology of CEE. In contrast to 17β-estradiol, ring B unsaturated estrogens express their biological effects mainly mediated by the estrogen receptor β and not the estrogen receptor α. All estrogen components of CEE are antioxidants, and some ring B unsaturated estrogens have several fold greater antioxidant activity than estrone and 17β-estradiol. The cardioprotective and neuroprotective effects of CEE appear to be, to some extent, due to its ability to prevent the formation of oxidized LDL and HDL, and by inhibiting or modulating some of the key proteases involved in programmed cell death (apoptosis) induced by the excess neurotransmitter glutamate and other neurotoxins. Selective combinations of ring B unsaturated estrogens have the potential of being developed as novel therapeutic agents for the prevention of cardiovascular disease and Alzheimer

  2. Mixture interactions of xenoestrogens with endogenous estrogens.

    Science.gov (United States)

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. These environmental estrogens originate from various sources including concentrated animal feedlot operations (CAFO), m...

  3. Estrogen receptor beta in prostate cancer: friend or foe?

    Science.gov (United States)

    Nelson, Adam W; Tilley, Wayne D; Neal, David E; Carroll, Jason S

    2014-08-01

    Prostate cancer is the commonest, non-cutaneous cancer in men. At present, there is no cure for the advanced, castration-resistant form of the disease. Estrogen has been shown to be important in prostate carcinogenesis, with evidence resulting from epidemiological, cancer cell line, human tissue and animal studies. The prostate expresses both estrogen receptor alpha (ERA) and estrogen receptor beta (ERB). Most evidence suggests that ERA mediates the harmful effects of estrogen in the prostate, whereas ERB is tumour suppressive, but trials of ERB-selective agents have not translated into improved clinical outcomes. The role of ERB in the prostate remains unclear and there is increasing evidence that isoforms of ERB may be oncogenic. Detailed study of ERB and ERB isoforms in the prostate is required to establish their cell-specific roles, in order to determine if therapies can be directed towards ERB-dependent pathways. In this review, we summarise evidence on the role of ERB in prostate cancer and highlight areas for future research. © 2014 Society for Endocrinology.

  4. Differential regulation of the human progesterone receptor gene through an estrogen response element half site and Sp1 sites.

    Science.gov (United States)

    Petz, Larry N; Ziegler, Yvonne S; Schultz, Jennifer R; Kim, Hwajin; Kemper, J Kim; Nardulli, Ann M

    2004-02-01

    The progesterone receptor (PR) gene is regulated by estrogen in normal reproductive tissues and in MCF-7 human breast cancer cells. Although it is generally thought that estrogen responsiveness is mediated by interaction of the ligand-occupied estrogen receptor (ER) with estrogen response elements (EREs) in target genes, the human progesterone receptor (PR) gene lacks a palindromic ERE. Promoter A of the PR gene does, however, contain an ERE half site upstream of two adjacent Sp1 sites from +571 to +595, the +571 ERE/Sp1 site. We have examined the individual contributions of the ERE half site and the two Sp1 sites in regulating estrogen responsiveness. Transient transfection assays demonstrated that both Sp1 sites were critical for estrogen-mediated activation of the PR gene. Interestingly, rather than decreasing transcription, mutations in the ERE half site increased transcription substantially suggesting that this site plays a role in limiting transcription. Chromatin immunoprecipitation assays demonstrated that Sp1 was associated with the +571 ERE/Sp1 site in the endogenous PR gene in the absence and in the presence of estrogen, but that ERalpha was only associated with this region of the PR gene after MCF-7 cells had been treated with estrogen. Our studies provide evidence that effective regulation of transcription through the +571 ERE/Sp1 site requires the binding of ERalpha and Sp1 to their respective cis elements and the appropriate interaction of ERalpha and Sp1 with other coregulatory proteins and transcription factors.

  5. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1-7 cells.

    Science.gov (United States)

    Varju, Patricia; Chang, Ken C; Hrabovszky, Erik; Merchenthaler, István; Liposits, Zsolt

    2009-02-01

    The long-term cellular effects of estrogens are mediated by nuclear estrogen receptors which act as transcription factors to regulate gene expression. Hypothalamic targets of estrogen action include luteinizing hormone-releasing hormone-secreting neurons controlling reproduction in vertebrates. Microarray analysis and qRT-PCR studies were performed on GT1-7, immortalized LHRH neurons after 17beta-estradiol treatment to reveal the nature of estrogen-regulated genes and the time course of changes in their expression profile. More than 1000 transcripts showed robust responses to estrogen treatment and the majority of responding genes were up-regulated. Early-responding genes showed altered expression 0.5-2h after estrogen exposure, whereas late-responding genes changed after 24-48h treatment. Up-regulated genes encoded transcription factors, molecules involved in cellular movement, cell death, immune response, neurotransmitter and neuropeptide receptors, ion channels and transporters. The 17beta-estradiol modulation of 12 genes - representing characteristic gene clusters - has been confirmed by qRT-PCR. Our studies highlighted diverse gene networks, cell regulatory mechanisms and metabolic pathways through which estrogen may alter gene expression in immortalized LHRH neurons. The findings also support the notion that genomic effects of estrogen targeting in vivo directly the LHRH neuronal network of mammals play an important role in the central feedback regulation of the reproductive axis by estrogen.

  6. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1.

    Science.gov (United States)

    Scarlatti, Francesca; Bauvy, Chantal; Ventruti, Annamaria; Sala, Giusy; Cluzeaud, Françoise; Vandewalle, Alain; Ghidoni, Riccardo; Codogno, Patrice

    2004-04-30

    The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.

  7. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.

    Science.gov (United States)

    Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina

    2016-03-01

    A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.

  8. Tamoxifen treatment for pubertal gynecomastia in two siblings with partial androgen insensitivity syndrome.

    Science.gov (United States)

    Saito, Reiko; Yamamoto, Yukiyo; Goto, Motohide; Araki, Shunsuke; Kubo, Kazuyasu; Kawagoe, Rinko; Kawada, Yasusada; Kusuhara, Koichi; Igarashi, Maki; Fukami, Maki

    2014-01-01

    Although tamoxifen has been shown to be fairly safe and effective for idiopathic pubertal gynecomastia, it remains unknown whether it is also beneficial for gynecomastia associated with endocrine disorders. Here, we report the effect of tamoxifen on pubertal gynecomastia in 2 siblings with partial androgen insensitivity syndrome (PAIS). Cases 1 and 2 presented with persistent pubertal gynecomastia at 13 and 16 years of age, respectively. Physical examinations revealed breast of Tanner stage 3 and normal male-type external genitalia in both cases. Clinical features such as female-type pubic hair and borderline small testis indicated mildly impaired masculinization. Molecular analysis identified a previously reported p.Arg789Ser mutation in the androgen receptor gene (AR) in the 2 cases. Two months of oral administration of tamoxifen ameliorated gynecomastia to Tanner stage 2 with no adverse events. Additional treatment with testosterone enanthate showed negligible effects on body hair and penile length. Hormone values of the 2 cases during tamoxifen treatment remained similar to those in previously reported untreated patients with PAIS. The results indicate that tamoxifen was effective in treating pubertal gynecomastia in these 2 patients with PAIS and may be considered as a therapeutic option in this situation pending further studies.

  9. Incidence of new primary cancers after adjuvant tamoxifen therapy and radiotherapy for early breast cancer

    International Nuclear Information System (INIS)

    Andersson, M.; Storm, H.H.; Mouridsen, H.T.

    1991-01-01

    The incidence of new primary cancers was evaluated in 3538 postmenopausal patients who had received surgical treatment for primary breast cancer. Of these patients, 1828 with a low risk of recurrence received no further treatment. High-risk patients were randomly assigned to one of two groups. The first group (n = 846) received postoperative radiotherapy, while the second group (n = 864) received radiotherapy plus tamoxifen at a dose of 30 mg given daily for 48 weeks. The median observation time was 7.9 years. In comparison with the number of new cancers in the general population, the number of new cancers in the three groups was elevated mostly due to a high number of cancers of the contralateral breast and of colorectal cancers in the high-risk groups. The cumulative risk of nonlymphatic leukemia was increased among patients who received postoperative radiotherapy (P = .04). Cancer incidence in the high-risk tamoxifen-treated group relative to that in the high-risk group not treated with tamoxifen was not significant (1.3). No protective effect of tamoxifen on the opposite breast was seen (rate ratio for breast cancer = 1.1), but a tendency to an elevated risk of endometrial cancer was observed (rate ratio = 3.3; 95% confidence interval = 0.6-32.4). Continued and careful follow-up of women treated with tamoxifen is necessary to clarify the potential cancer-suppressive or cancer-promoting effects of this drug

  10. Mullerian adenosarcoma of the uterus associated with tamoxifen treatment for breast cancer

    Directory of Open Access Journals (Sweden)

    Yasin Ceylan

    2015-12-01

    Full Text Available Mullerian adenosarcoma following tamoxifen therapy is a rare condition. Our aim was to report the youngest patient in the literature with uterine mullerian adenosarcoma who was undergoing tamoxifen therapy for breast cancer. A premenopausal woman aged 38 years who was undergoing tamoxifen therapy for breast cancer, was admitted with symptoms of lower abdominal pain and irregular vaginal bleeding and malodorous vaginal discharge that had continued for at least 6 months. A pelvic examination revealed a large and malodorous polypoid mass protruding through the cervix and an enlarged uterus. A biopsy from the protruding polypoid mass was reported as a large area of necrosis with neoplastic mesenchymal cells. The patient underwent a total abdominal hysterectomy, bilateral salpingo-oopherectomy, pelvic-paraaortic lymph node dissection, and omentectomie. The histologic diagnosis was Mullerian adenosarcoma. As a result, she was discharged to the oncology department. The woman is alive and her chemoradiotherapy treatment is ongoing. The role of tamoxifen therapy in the development of endometrial neoplasms remains unclear, but all cases of endometrial thickening and vaginal bleeding must be investigated for Mullerian adenosarcoma in tamoxifen users.

  11. Analysis of the Ki-67 index in the vaginal epithelium of castrated rats treated with tamoxifen

    Directory of Open Access Journals (Sweden)

    Afif Rieth Nery-Aguiar

    2016-02-01

    Full Text Available OBJECTIVES: Vaginal atrophy and breast cancer are common conditions in postmenopausal women and tamoxifen is the standard endocrine treatment for hormone-sensitive tumors. The present study aimed to assess the effect of tamoxifen on Ki-67 protein expression in the vaginal epithelium of castrated rats. MATERIAL AND METHODS: Forty Wistar-Hannover adult, virgin, castrated rats were randomly divided into two groups, group I (control, n=20 and group II (tamoxifen, n=20, receiving 0.5 ml of propylene glycol and 250 µg of tamoxifen diluted in 0.5 ml of propylene glycol, respectively, daily by gavage for 30 days. On the 31st day, the rats were euthanized and their vaginas were removed and fixed in 10% buffered formalin for the immunohistochemical study of Ki-67 protein expression. Data were analyzed by the Levene and Student’s t tests (p<0.05. RESULTS: The mean index of Ki-67 expression in the rat vagina of groups I and II was 4.04±0.96 and 26.86±2.19, respectively (p<0.001. CONCLUSIONS: According to the results of the present study, tamoxifen, at the dose and treatment length used, induced a significant increase in the cell proliferation of the vaginal mucosa in castrated rats, as evaluated by Ki-67 protein expression.

  12. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Ayako Casanova-Nakayama

    2018-03-01

    from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.

  13. Estrogenic and pregnancy interceptory effects of Achyranthes ...

    African Journals Online (AJOL)

    ... the dose of 200 mg/kg body weight also exhibited estrogenic activity. Histological studies of the uterus were carried out to confirm this estrogenic activity. Keywords: Achyranthes aspera; antifertility; anti-implantation; estrogenic; uterotropic. The African Journal of Traditional, Complementary and Alternative Medicines Vol.

  14. Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy

    DEFF Research Database (Denmark)

    Elias, D; (Hansen) Vever, Henriette; Lænkholm, A-V

    2015-01-01

    To elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analyses and identified 366 genes with altered expression in four unique tamoxifen-resistant (TamR) cell lines vs the parental tamoxifen-sensitive MCF-7/S0.5 cell line. Most of these genes were...

  15. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    International Nuclear Information System (INIS)

    Shao, Chunlin; Folkard, Melvyn; Held, Kathryn D; Prise, Kevin M

    2008-01-01

    Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. The observation of bystander responses in breast tumour cells may offer new potential targets for radiation

  16. Relationship of ZNF423 and CTSO with breast cancer risk in two randomised tamoxifen prevention trials.

    Science.gov (United States)

    Brentnall, Adam R; Cuzick, Jack; Byers, Helen; Segal, Corrinne; Reuter, Caroline; Detre, Simone; Sestak, Ivana; Howell, Anthony; Powles, Trevor J; Newman, William G; Dowsett, Mitchell

    2016-08-01

    A case-control study from two randomised breast cancer prevention trials of tamoxifen and raloxifene (P-1 and P-2) identified single-nucleotide polymorphisms (SNPs) in or near genes ZNF423 and CTSO as factors which predict which women will derive most anti-cancer benefit from selective oestrogen receptor modulator (SERM) therapy. In this article, we further examine this question using blood samples from two randomised tamoxifen prevention trials: the International Breast Cancer Intervention Study I (IBIS-I) and the Royal Marsden trial (Marsden). A nested case-control study was designed with 2:1 matching in IBIS-I and 1:1 matching in Marsden. The OncoArray was used for genotyping and included two SNPs previously identified (rs8060157 in ZNF423 and rs10030044 near CTSO), and 102 further SNPs within the same regions. Overall, there were 369 cases and 662 controls, with 148 cases and 268 controls from the tamoxifen arms. Odds ratios were estimated by conditional logistic regression, with Wald 95 % confidence intervals. In the tamoxifen arms, the per-allele odds ratio for rs8060157 was 0.99 (95 %CI 0.73-1.34) and 1.00 (95 %CI 0.76-1.33) for rs10030044. In the placebo arm, the odds ratio was 1.10 (95 %CI 0.87-1.40) for rs8060157 and 1.01 (95 %CI 0.79-1.29) for rs10030044. There was no evidence to suggest that other SNPs in the surrounding regions of these SNPs might predict response to tamoxifen. Results from these two prevention trials do not support the earlier findings. rs8060157 in ZNF423 and rs10030044 near CTSO do not appear to predict response to tamoxifen.

  17. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  18. Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice : Relationships to monoaminergic, cholinergic, and spinal projection systems

    NARCIS (Netherlands)

    VanderHorst, VGJM; Gustafsson, JA; Ulfhake, B

    2005-01-01

    For many populations of estrogen-sensitive neurons it remains unknown how they are associated with central nervous system circuitries that mediate estrogen-induced modulation of behavioral components. With the use of double-labeling immunohistochemistry and tracing techniques, the relationships of

  19. In situ aromatase expression in primary tumor is associated with estrogen receptor expression but is not predictive of response to endocrine therapy in advanced breast cancer

    International Nuclear Information System (INIS)

    Lykkesfeldt, Anne E; Henriksen, Katrine L; Rasmussen, Birgitte B; Sasano, Hironobu; Evans, Dean B; Møller, Susanne; Ejlertsen, Bent; Mouridsen, Henning T

    2009-01-01

    New, third-generation aromatase inhibitors (AIs) have proven comparable or superior to the anti-estrogen tamoxifen for treatment of estrogen receptor (ER) and/or progesterone receptor (PR) positive breast cancer. AIs suppress total body and intratumoral estrogen levels. It is unclear whether in situ carcinoma cell aromatization is the primary source of estrogen production for tumor growth and whether the aromatase expression is predictive of response to endocrine therapy. Due to methodological difficulties in the determination of the aromatase protein, COX-2, an enzyme involved in the synthesis of aromatase, has been suggested as a surrogate marker for aromatase expression. Primary tumor material was retrospectively collected from 88 patients who participated in a randomized clinical trial comparing the AI letrozole to the anti-estrogen tamoxifen for first-line treatment of advanced breast cancer. Semi-quantitative immunohistochemical (IHC) analysis was performed for ER, PR, COX-2 and aromatase using Tissue Microarrays (TMAs). Aromatase was also analyzed using whole sections (WS). Kappa analysis was applied to compare association of protein expression levels. Univariate Wilcoxon analysis and the Cox-analysis were performed to evaluate time to progression (TTP) in relation to marker expression. Aromatase expression was associated with ER, but not with PR or COX-2 expression in carcinoma cells. Measurements of aromatase in WS were not comparable to results from TMAs. Expression of COX-2 and aromatase did not predict response to endocrine therapy. Aromatase in combination with high PR expression may select letrozole treated patients with a longer TTP. TMAs are not suitable for IHC analysis of in situ aromatase expression and we did not find COX-2 expression in carcinoma cells to be a surrogate marker for aromatase. In situ aromatase expression in tumor cells is associated with ER expression and may thus point towards good prognosis. Aromatase expression in cancer

  20. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer

    Directory of Open Access Journals (Sweden)

    Resmi Mustarichiei

    2014-03-01

    Full Text Available Background: Based on data from the Hospital Information System (HIS in 2007, breast cancer is the top ranked diagnosed cancer in Indonesia. Estrogen receptor alpha (ERα is associated with breast cancer because it is found in high levels in cancer tissues. Curcumol, curcumenol, isocurcumenol of white tumeric rhizomes (Curcuma zedoaria (Christm. Roscoe, and β-sitosterol from seeds of pumpkin (Cucurbita pepo L. have been reported to have inhibitory activity against cancer cells. This study presents the in silico study of these compounds as inhibitors of ERα.Methods: Docking simulations are carried out in this paper to visualize molecular-level interactions between the four compounds with ERα. Docking simulations between estradiol and tamoxifen on ERα are carried out as well.Results: Docking results indicated that curcumol, curcumenol, isocurcumenol, and β-sitosterol showed inhibitory activity againts estrogen receptor alpha (ERα.  The order of potency is shown consecutively by isocurcumenol, curcumol, curcumenol, and β-sitosterol with values 0.584 M, 1.36 M, 1.61 M, and 7.35 M respectively. Curcumenol and estradiol interacts with ERα through hydrogen bonds and hydrophobic interactions, whereas curcumol, isocurcumenol, β-sitosterol and tamoxifen through hydrophobic interactions in succession. Conclusion: Natural products containing all four compounds have the potential to be used as drugs or adjuvant drugs in breast cancer therapy.Keywords: β-sitosterol, breast cancer, curcumol, curcumenol, estradiol, ERα, isocurcumenol

  1. Principles of management of recurrence of breast cancer after tamoxifen therapy (abstract)

    International Nuclear Information System (INIS)

    Rasool, I.

    1999-01-01

    The management of recurrence of breast cancer after Tamoxifen therapy needs special attention. The recurrence can be local or distant. The patient, should be thoroughly investigated to find out exact sites of recurrences. Local recurrence is managed by excision, skin grafting or various types of flaps. If extensive radiation is administrated or if not given previously. The distant recurrence in patients who have had adjuvant menopausal status, sites of recurrence while life threatening or not and previous response. The patients who are post menopausal have responded to previous Tamoxifen therapy, long DFI and soft tissues and bony metastasis are best managed by Aromatase inhibitors i.e. Letrozole. (author)

  2. Influence of testosterone on synaptic transmission in the rat medial vestibular nuclei: estrogenic and androgenic effects.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Di Mauro, M; Pettorossi, V E

    2010-12-15

    In brainstem slices of young male rat, we investigated the influence of the neuroactive steroid testosterone (T) on the synaptic responses by analyzing the field potential evoked in the medial vestibular nucleus (MVN) by vestibular afferent stimulation. T induced three distinct and independent long-term synaptic changes: fast long-lasting potentiation (fLP), slow long-lasting potentiation (sLP) and long-lasting depression (LD). The fLP was mediated by 17β-estradiol (E(2)) since it was abolished by blocking the estrogen receptors (ERs) or the enzyme converting T to E(2). Conversely, sLP and LD were mediated by 5α-dihydrotestosterone (DHT) since they were prevented by blocking the androgen receptors (ARs) or the enzyme converting T to DHT. Therefore, the synaptic effects of T were mediated by its androgenic or estrogenic metabolites. The pathways leading to estrogenic and androgenic conversion of T might be co-localized since, the occurrence of fLP under block of androgenic pathway, and that of sLP and LD under estrogenic block, were higher than those observed without blocks. In case of co-localization, the effect on synaptic transmission should depend on the prevailing enzymatic activity. We conclude that circulating and neuronal T can remarkably influence synaptic responses of the vestibular neurons in different and opposite ways, depending on its conversion to estrogenic or androgenic metabolites. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. HDAC2 and HDAC5 Up-Regulations Modulate Survivin and miR-125a-5p Expressions and Promote Hormone Therapy Resistance in Estrogen Receptor Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Tsung Huang

    2017-12-01

    Full Text Available Intrinsic or acquired resistance to hormone therapy is frequently reported in estrogen receptor positive (ER+ breast cancer patients. Even though dysregulations of histone deacetylases (HDACs are known to promote cancer cells survival, the role of different HDACs in the induction of hormone therapy resistance in ER+ breast cancer remains unclear. Survivin is a well-known pro-tumor survival molecule and miR-125a-5p is a recently discovered tumor suppressor. In this study, we found that ER+, hormone-independent, tamoxifen-resistant MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC5, and survivin, but show decreased expression of miR-125a-5p, as compared to the parental tamoxifen-sensitive MCF7 breast cancer cells. Molecular down-regulations of HDAC2, HDAC5, and survivin, and ectopic over-expression of miR-125a-5p, increased the sensitivity of MCF7-TamC3 cells to estrogen deprivation and restored the sensitivity to tamoxifen. The same treatments also further increased the sensitivity to estrogen-deprivation in the ER+ hormone-dependent ZR-75-1 breast cancer cells in vitro. Kaplan–Meier analysis and receiver operating characteristic curve analysis of expression cohorts of breast tumor showed that high HDAC2 and survivin, and low miR-125a-5p, expression levels correlate with poor relapse-free survival in endocrine therapy and tamoxifen-treated ER+ breast cancer patients. Further molecular analysis revealed that HDAC2 and HDAC5 positively modulates the expression of survivin, and negatively regulates the expression miR-125a-5p, in ER+ MCF7, MCF7-TamC3, and ZR-75-1 breast cancer cells. These findings indicate that dysregulations of HDAC2 and HDAC5 promote the development of hormone independency and tamoxifen resistance in ERC breast cancer cells in part through expression regulation of survivin and miR-125a-5p.

  4. Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System

    Czech Academy of Sciences Publication Activity Database

    Valný, Martin; Honsa, Pavel; Kirdajová, Denisa; Kameník, Zdeněk; Anděrová, Miroslava

    2016-01-01

    Roč. 10, ost (2016), s. 243 ISSN 1662-5102 R&D Projects: GA ČR(CZ) GA16-10214S; GA ČR(CZ) GA15-02760S Institutional support: RVO:68378041 ; RVO:61388971 Keywords : tamoxifen * brain metabolism * fate-mapping Subject RIV: FH - Neurology; EE - Microbiology, Virology (MBU-M) Impact factor: 4.555, year: 2016

  5. Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu Jie; Ward, Jerrold M.; Diwan, Bhalchandra A.

    2006-01-01

    Pregnant CD1 mice received 85 ppm arsenite in the drinking water from gestation day 8 to 18, groups (n = 35) of male offspring were subsequently injected on postpartum days 1 through 5 with diethylstilbestrol (DES; 2 μg/pup/day) or tamoxifen (TAM; 10 μg/pup/day), and tumor formation was assessed over 90 weeks. Arsenic alone increased hepatocellular carcinoma (14%), adenoma (23%) and total tumors (31%) compared to control (0, 2 and 2%, respectively). Arsenic alone also increased lung adenocarcinoma, adrenal cortical adenoma and renal cystic tubular hyperplasia compared to control. Compared to arsenic alone, arsenic plus DES increased liver tumor incidence in mice at risk 2.2-fold and increased liver tumor multiplicity (tumors/liver) 1.8-fold. The treatments alone did not impact urinary bladder carcinogenesis, but arsenic plus TAM significantly increased formation of urinary bladder transitional cell tumors (papilloma and carcinoma; 13%) compared to control (0%). Urinary bladder proliferative lesions (combined tumors and hyperplasia) were also increased by arsenic plus TAM (40%) or arsenic plus DES (43%) compared to control (0%) or the treatments alone. Urinary bladder proliferative lesions occurred in the absence of any evidence of uroepithelial cytotoxic lesions. Urinary bladder lesions and hepatocellular carcinoma induced by arsenic plus TAM and/or DES overexpressed estrogen receptor-α, indicating that aberrant estrogen signaling may have been a factor in the enhanced carcinogenic response. Thus, in male CD1 mice, gestational arsenic exposure alone induced liver adenoma and carcinoma, lung adenocarcinoma, adrenal adenoma and renal cystic hyperplasia. Furthermore, DES enhanced transplacental arsenic-induced hepatocarcinogenesis. In utero arsenic also initiated urinary bladder tumor formation when followed by postnatal TAM and uroepithelial proliferative lesions when followed by TAM or DES

  6. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media

    International Nuclear Information System (INIS)

    Oberley, T.D.; Lauchner, L.J.; Pugh, T.D.; Gonzalez, A.; Goldfarb, S.; Li, S.A.; Li, J.J.

    1989-01-01

    It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17β-estradiol or diethylstilbestrol. A similar 3-fold increase in cell number was also seen at 1 nM 17β-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17β-estradiol. The proliferation effect of estrogens on proximal tubular cell growth appears to be species specific since 17β-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17β-estradiol, [ 3 H]thymidine labeling of hamster tubular cells was enhanced 3-fold. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney

  7. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    International Nuclear Information System (INIS)

    Ingermann, R.L.

    1989-01-01

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion

  8. Preliminary genetic imaging study of the association between estrogen receptor-α gene polymorphisms and harsh human maternal parenting.

    Science.gov (United States)

    Lahey, Benjamin B; Michalska, Kalina J; Liu, Chunyu; Chen, Qi; Hipwell, Alison E; Chronis-Tuscano, Andrea; Waldman, Irwin D; Decety, Jean

    2012-09-06

    A failure of neural changes initiated by the estrogen surge in late pregnancy to reverse the valence of infant stimuli from aversive to rewarding is associated with dysfunctional maternal behavior in nonhuman mammals. Estrogen receptor-α plays the crucial role in mediating these neural effects of estrogen priming. This preliminary study examines associations between estrogen receptor-α gene polymorphisms and human maternal behavior. Two polymorphisms were associated with human negative maternal parenting. Furthermore, hemodynamic responses in functional magnetic resonance imaging to child stimuli in neural regions associated with social cognition fully mediated the association between genetic variation and negative parenting. This suggests testable hypotheses regarding a biological pathway between genetic variants and dysfunctional human maternal parenting. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Lack of evidence from HPLC 32P-post-labelling for tamoxifen-DNA adducts in the human endometrium.

    Science.gov (United States)

    Carmichael, P L; Sardar, S; Crooks, N; Neven, P; Van Hoof, I; Ugwumadu, A; Bourne, T; Tomas, E; Hellberg, P; Hewer, A J; Phillips, D H

    1999-02-01

    Tamoxifen is associated with an increased incidence of endometrial cancer in women. It is also a potent carcinogen in rat liver and forms covalent DNA adducts in this tissue. A previous study exploring DNA adducts in human endometria, utilizing thin layer chromatography 32P-postlabelling, found no evidence for adducts in tamoxifen-treated women [Carmichael,P.L., Ugwumadu,A.H.N., Neven,P., Hewer,A.J., Poon,G.K. and Phillips,D.H. (1996) Cancer Res., 56, 1475-1479]. However, subsequent work utilizing HPLC 32P-post-labelling [Hemminki,K., Ranjaniemi,H., Lindahl,B. and Moberger,B. (1996) Cancer Res., 56, 4374-4377] suggested that very low levels could be detected. We have sought to investigate this question further by reproducing the HPLC methodology at two centres, and analysing endometrial DNA from 20 patients treated with 20 mg/day tamoxifen for between 22 and 65 months. Liver DNA isolated from tamoxifen-treated rats was used as a positive control. We found no convincing evidence for tamoxifen-derived DNA adducts in human endometrium. HPLC elution profiles of post-labelled DNA from tamoxifen-treated women were indistinguishable from those obtained with DNA from 14 untreated women and from six women taking toremifene, an analogue of tamoxifen.

  10. Inhibition of Androgen-Independent Prostate Cancer by Estrogenic Compounds Is Associated with Increased Expression of Immune-Related Genes

    Directory of Open Access Journals (Sweden)

    Ilsa M. Coleman

    2006-10-01

    Full Text Available The clinical utility of estrogens for treating prostate cancer (CaP was established in the 1940s by Huggins. The classic model of the anti-CaP activity of estrogens postulates an indirect mechanism involving the suppression of androgen production. However, clinical, preclinical studies have shown that estrogens exert growth-inhibitory effects on CaP under low-androgen conditions, suggesting additional modes whereby estrogens affect CaP cells and/or the microenvironment. Here we have investigated the activity of 17β estradiol (E2 against androgen-independent CaP, identified molecular alterations in tumors exposed to E2. E2 treatment inhibited the growth of all four androgen-independent CaP xenografts studied (LuCaP 35V, LuCaP 23.1AI, LuCaP 49, LuCaP 58 in castrated male mice. The molecular basis of growth suppression was studied by cDNA microarray analysis, which indicated that multiple pathways are altered by E2 treatment. Of particular interest are changes in transcripts encoding proteins that mediate immune responses, regulate androgen receptor signaling. In conclusion, our data show that estrogens have powerful inhibitory effects on CaP in vivo in androgendepleted environments, suggest novel mechanisms of estrogen-mediated antitumor activity. These results indicate that incorporating estrogens into CaP treatment protocols could enhance therapeutic efficacy even in cases of advanced disease.

  11. Expression of estrogen-related gene markers in breast cancer tissue predicts aromatase inhibitor responsiveness.

    Directory of Open Access Journals (Sweden)

    Irene Moy

    Full Text Available Aromatase inhibitors (AIs are the most effective class of drugs in the endocrine treatment of breast cancer, with an approximate 50% treatment response rate. Our objective was to determine whether intratumoral expression levels of estrogen-related genes are predictive of AI responsiveness in postmenopausal women with breast cancer. Primary breast carcinomas were obtained from 112 women who received AI therapy after failing adjuvant tamoxifen therapy and developing recurrent breast cancer. Tumor ERα and PR protein expression were analyzed by immunohistochemistry (IHC. Messenger RNA (mRNA levels of 5 estrogen-related genes-AKR1C3, aromatase, ERα, and 2 estradiol/ERα target genes, BRCA1 and PR-were measured by real-time PCR. Tumor protein and mRNA levels were compared with breast cancer progression rates to determine predictive accuracy. Responsiveness to AI therapy-defined as the combined complete response, partial response, and stable disease rates for at least 6 months-was 51%; rates were 56% in ERα-IHC-positive and 14% in ERα-IHC-negative tumors. Levels of ERα, PR, or BRCA1 mRNA were independently predictive for responsiveness to AI. In cross-validated analyses, a combined measurement of tumor ERα and PR mRNA levels yielded a more superior specificity (36% and identical sensitivity (96% to the current clinical practice (ERα/PR-IHC. In patients with ERα/PR-IHC-negative tumors, analysis of mRNA expression revealed either non-significant trends or statistically significant positive predictive values for AI responsiveness. In conclusion, expression levels of estrogen-related mRNAs are predictive for AI responsiveness in postmenopausal women with breast cancer, and mRNA expression analysis may improve patient selection.

  12. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Xinyu Wu

    Full Text Available The purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4 in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2 in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression. Proliferation, migration, anchorage-independent growth and apoptosis were used as biological end points. Effects on mRNA expression and signal transduction pathways were also monitored. A meta-analysis of public gene expression databases indicated that ACSL4 expression is positively correlated with a unique subtype of triple negative breast cancer (TNBC, characterized by the absence of androgen receptor (AR and therefore referred to as quadruple negative breast cancer (QNBC. Results of experiments in breast cancer cell lines suggest that simultaneous expression of ACSL4 and a receptor is associated with hormone resistance. Forced expression of ACSL4 in ACSL4-negative, estrogen receptor α (ER-positive MCF-7 cells resulted in increased growth, invasion and anchorage independent growth, as well as a loss of dependence on estrogen that was accompanied by a reduction in the levels of steroid hormone receptors. Sensitivity to tamoxifen, triacsin C and etoposide was also attenuated. Similarly, when HER2-positive, ACSL4-negative, SKBr3 breast cancer cells were induced to express ACSL4, the proliferation rate increased and the apoptotic effect of lapatinib was reduced. The growth stimulatory effect of ACSL4 expression was also observed in vivo in nude mice when MCF-7 control and ACSL4-expressing cells were utilized to induce tumors. Our data strongly suggest that ACSL4 can serve as both a biomarker for, and mediator of, an aggressive breast cancer phenotype.

  13. Effect of long-term treatment with steroid hormones or tamoxifen on the progesterone receptor and androgen receptor in the endometrium of ovariectomized cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Cline J Mark

    2003-02-01

    Full Text Available Abstract The progesterone receptor (PR and androgen receptor (AR belong to the nuclear receptor superfamily. Two isoforms of PR (A and B have been identified with different functions. The expression of AR, each isoform of PR and their involvement in long-term effects on the endometrium after hormonal replacement therapy (HRT or tamoxifen (TAM treatment is not known. The aims of this study were to determine PR(A+B, PRB and AR distribution by immunohistochemistry in the macaque (Macaca fascicularis endometrium. Ovariectomized (OVX animals were orally treated continuously for 35 months with either conjugated equine estrogens (CEE; medroxyprogesterone acetate (MPA; the combination of CEE/MPA; or TAM. Treatment with CEE/MPA tended to down-regulate PR in the superficial glands, but increased it in the stroma. TAM treatment increased both the PR and PRB levels in the stroma. Overall, less than 20% of the cells were positive for the PRB isoform and less variation was observed after steroid treatment. AR was found in the stroma, mainly distributed in the basal layer of the endometrium in the OVX and steroid treated groups, but was absent in the TAM treated group. No AR was found in the glandular epithelium. The present data show that long-term hormone treatment affects the PR level, and also the ratio between PRA and PRB in the endometrium.

  14. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    The effects of estradiol and tamoxifen (TAM) on the estrogen-dependent human breast cancer cell line MCF-7 grown in vitro and in nude mice were compared. The effect on growth was determined by cell number in vitro and by tumor growth curves in nude mice. The effects on the cell cycle kinetics were...... determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... in the G1 phase from 60% to 75%. In nude mice, MCF-7 only formed tumors in estradiol-supplemented mice. No differences were observed in growth and cell kinetics between 0.1 and 1.0 mg of estradiol. Daily i.p. injections of TAM resulted in tumor growth inhibition with shrinkage of tumors. The flow...

  15. Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities.

    Science.gov (United States)

    Stires, Hillary; Heckler, Mary M; Fu, Xiaoyong; Li, Zhao; Grasso, Catherine S; Quist, Michael J; Lewis, Joseph A; Klimach, Uwe; Zwart, Alan; Mahajan, Akanksha; Győrffy, Balázs; Cavalli, Luciane R; Riggins, Rebecca B

    2018-08-15

    Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Construction of a Nanodiamond–Tamoxifen Complex as a Breast Cancer Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Linda-Lucila Landeros-Martínez

    2016-01-01

    Full Text Available According to the World Health Organization, breast cancer represents 16% of all cancer cases in women and is the second most common cancer. In the past decades, the mortality among patients with metastasis breast cancer has been reduced significantly via drug delivery by means of nanodiamond therapies, which are both biocompatible and scalable. In this study, we determined a theoretical pathway for the construction of a nanodiamond–tamoxifen complex that will act as a drug delivery vehicle for targeting tumor tissues of breast cancer. The tamoxifen pharmacophore was defined and the binding zone was identified for the electrostatic interaction between tamoxifen and a functionalized site of a nanodiamond particle allowing for attachment of the payload (this drug to the surface of the nanodiamond particle. In addition, an analysis of the intermolecular interaction between the nanodiamond and tamoxifen was conducted, showing three hydrogen bonds complying fully with Lipinski’s rule of five, which states that a compound should have five or fewer hydrogen bonds to be permeating and easily absorbed by the body (qualitative prediction. All calculations were performed using the conceptual Density Functional Theory with the M06 functional and the basis set 6-31G(d. The solvent effect has been taken into account by an implicit model, the conductor like polarizable continuum model.

  17. Estrogen Treatment in Multiple Sclerosis

    OpenAIRE

    Gold, Stefan M; Voskuhl, Rhonda R

    2009-01-01

    Currently available treatments for multiple sclerosis reduce inflammatory lesions on MRI and decrease clinical relapses but have limited effects on disability. Novel treatment options that target both the inflammatory as well as the neurodegenerative component of the disease are therefore needed. A growing body of evidence from basic science and clinical studies supports the therapeutic potential of estrogens in MS. Mechanisms of action include both immunomodulatory and directly neuroprotecti...

  18. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils.

    Science.gov (United States)

    Tamaki, Mami; Konno, Yasunori; Kobayashi, Yoshiki; Takeda, Masahide; Itoga, Masamichi; Moritoki, Yuki; Oyamada, Hajime; Kayaba, Hiroyuki; Chihara, Junichi; Ueki, Shigeharu

    2014-07-01

    Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  20. Receptor-based high-throughput screening and identification of estrogens in dietary supplements using bioaffinity liquid-chromatography ion mobility mass spectrometry.

    Science.gov (United States)

    Aqai, Payam; Blesa, Natalia Gómez; Major, Hilary; Pedotti, Mattia; Varani, Luca; Ferrero, Valentina E V; Haasnoot, Willem; Nielen, Michel W F

    2013-11-01

    A high-throughput bioaffinity liquid chromatography-mass spectrometry (BioMS) approach was developed and applied for the screening and identification of recombinant human estrogen receptor α (ERα) ligands in dietary supplements. For screening, a semi-automated mass spectrometric ligand binding assay was developed applying (13)C2, (15) N-tamoxifen as non-radioactive label and fast ultra-high-performance-liquid chromatography-electrospray ionisation-triple-quadrupole-MS (UPLC-QqQ-MS), operated in the single reaction monitoring mode, as a readout system. Binding of the label to ERα-coated paramagnetic microbeads was inhibited by competing estrogens in the sample extract yielding decreased levels of the label in UPLC-QqQ-MS. The label showed high ionisation efficiency in positive electrospray ionisation (ESI) mode, so the developed BioMS approach is able to screen for estrogens in dietary supplements despite their poor ionisation efficiency in both positive and negative ESI modes. The assay was performed in a 96-well plate, and all these wells could be measured within 3 h. Estrogens in suspect extracts were identified by full-scan accurate mass and collision-cross section (CCS) values from a UPLC-ion mobility-Q-time-of-flight-MS (UPLC-IM-Q-ToF-MS) equipped with a novel atmospheric pressure ionisation source. Thanks to the novel ion source, this instrument provided picogram sensitivity for estrogens in the negative ion mode and an additional identification point (experimental CCS values) next to retention time, accurate mass and tandem mass spectrometry data. The developed combination of bioaffinity screening with UPLC-QqQ-MS and identification with UPLC-IM-Q-ToF-MS provides an extremely powerful analytical tool for early warning of ERα bioactive compounds in dietary supplements as demonstrated by analysis of selected dietary supplements in which different estrogens were identified.

  1. Distinct Effects of Estrogen on Mouse Maternal Behavior: The Contribution of Estrogen Synthesis in the Brain

    Science.gov (United States)

    Murakami, Gen

    2016-01-01

    Estrogen surge following progesterone withdrawal at parturition plays an important role in initiating maternal behavior in various rodent species. Systemic estrogen treatment shortens the latency to onset of maternal behavior in nulliparous female rats that have not experienced parturition. In contrast, nulliparous laboratory mice show rapid onset of maternal behavior without estrogen treatment, and the role of estrogen still remains unclear. Here the effect of systemic estrogen treatment (for 2 h, 1 day, 3 days, and 7 days) after progesterone withdrawal was examined on maternal behavior of C57BL/6 mice. This estrogen regimen led to different effects on nursing, pup retrieval, and nest building behaviors. Latency to nursing was shortened by estrogen treatment within 2 h. Moreover, pup retrieval and nest building were decreased. mRNA expression was also investigated for estrogen receptor α (ERα) and for genes involved in regulating maternal behavior, specifically, the oxytocin receptor (OTR) and vasopressin receptor in the medial amygdala (MeA) and medial preoptic area (MPOA). Estrogen treatment led to decreased ERα mRNA in both regions. Although OTR mRNA was increased in the MeA, OTR and vasopressin receptor mRNA were reduced in the MPOA, showing region-dependent transcription regulation. To determine the mechanisms for the actions of estrogen treatment, the contribution of estrogen synthesis in the brain was examined. Blockade of estrogen synthesis in the brain by systemic letrozole treatment in ovariectomized mice interfered with pup retrieval and nest building but not nursing behavior, indicating different contributions of estrogen synthesis to maternal behavior. Furthermore, letrozole treatment led to an increase in ERα mRNA in the MeA but not in the MPOA, suggesting that involvement of estrogen synthesis is brain region dependent. Altogether, these results suggest that region-dependent estrogen synthesis leads to differential transcriptional activation due

  2. Inhibition of neointima formation by local delivery of estrogen receptor alpha and beta specific agonists

    NARCIS (Netherlands)

    Krom, Y.D.; Pires, N.M.M.; Jukema, J.W.; Vries, M.R. de; Frants, R.R.; Havekes, L.M.; Dijk, K.W. van; Quax, P.H.A.

    2007-01-01

    Objective: Neointima formation is the underlying mechanism of (in-stent) restenosis. 17β-Estradiol (E2) is known to inhibit injury-induced neointima formation and post-angioplasty restenosis. Estrogen receptor alpha (ERα) has been demonstrated to mediate E2 anti-restenotic properties. However, the

  3. Estrogen Receptor Folding Modulates cSrc Kinase SH2 Interaction via a Helical Binding Mode

    NARCIS (Netherlands)

    Nieto, Lidia; Tharun, Inga M; Balk, Mark; Wienk, Hans; Boelens, Rolf; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc

    2015-01-01

    The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this

  4. Estrogen receptor folding modulates cSrc kinase SH2 interaction via a helical binding mode

    NARCIS (Netherlands)

    Nieto, L.; Tharun, I.M.; Balk, M.; Wienk, H.; Boelens, R.; Ottmann, C.; Milroy, L.-G.; Brunsveld, L.

    2015-01-01

    The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this

  5. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis.

    Science.gov (United States)

    Martin, Olwenn V; Shialis, Tassos; Lester, John N; Scrimshaw, Mark D; Boobis, Alan R; Voulvoulis, Nikolaos

    2008-02-01

    Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The hypothesis that in utero exposure to estrogenic agents could induce these disorders was first proposed in 1993. The only quantitative summary estimate of the association between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago, and other systematic reviews of the association between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-alpha-mediated mode of action was specifically explored. We included in this meta-analysis eight studies investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. The doubling of the risk ratios for all three end points investigated after DES exposure is consistent with a shared etiology and the TDS hypothesis but does not constitute evidence of an estrogenic mode of action. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population.

  6. Estrogenic activity, estrogens, and calcium in runoff post-layer litter application from rainfall simulated events

    Science.gov (United States)

    Estrogens in runoff from fields fertilized with animal wastes have been implicated as endocrine disruptors of fish in recipient surface waters. The goal of this study was to measure estrogenic activity in runoff post-application of animal waste with the greatest potential for estrogenic activity - ...

  7. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  8. Estrogens and Cognition: Friends or Foes?

    Science.gov (United States)

    Korol, Donna L.; Pisani, Samantha L.

    2015-01-01

    Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings that show the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. PMID:26149525

  9. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  10. Estrogen effects on angiotensin receptors are modulated by pituitary in female rats

    International Nuclear Information System (INIS)

    Douglas, J.G.

    1987-01-01

    The present studies were designed to test the hypothesis that changes in angiotensin II (ANG II) receptors might modulate the layered target tissue responsiveness accompanying estradiol administration. Estradiol was infused continuously in oophorectomized female rats. Aldosterone was also infused in control and experimental animals to avoid estrogen-induced changes in renin and ANG II. ANG II binding constants were determined in radioreceptor assays. Estradiol increased binding site concentration in adrenal glomerulosa by 76% and decreased binding sites of uterine myometrium and glomeruli by 45 and 24%, respectively. There was an accompanying increase in the affinity of ANG II binding to adrenal glomerulosa and uterine myometrium. Because estrogen is a potent stimulus of prolactin release from the pituitary of rodents, studies were also designed to test the hypothesis that prolactin may mediate some or all of the estrogen-induced effects observed. Hypophysectomy abolished estradiol stimulation of prolactin release and most ANG II receptor changes. Prolactin administration to pituitary intact rats was associated with a 50% increase in receptor density of adrenal glomerulosa simulating estradiol administration. However, the changes in glomeruli and uterine myometrium were opposite in that both tissues also increased receptor density, suggesting that prolactin was not the sole mediator of the estrogen-induced receptor changes. In conclusion, regulation of ANG II receptors in a number of diverse target tissues by estradiol is complex with contributions from estrogens and pituitary factors, which include but do not exclusively involve prolactin

  11. Radiolytic oxidation of tamoxifen using the free radicals {sup .}OH and (or) HO{sub 2}{sup .}; Oxydation radiolytique du tamoxifene par les radicaux libres {sup .}OH et (ou) HO{sub 2}{sup .}

    Energy Technology Data Exchange (ETDEWEB)

    Leguene, C. [Lab. de Chimie-Physique, Centre national de la recherche scientifique, CNRS, Univ. Rene Descartes, Paris (France); Clavere, P. [Service de Radiotherapie et d' Oncologie, Centre hospitalier universitaire, CHU, Dupuytren, Limoges (France); Jore, D.; Gardes-Albert, M. [Lab. de Chimie-Physique, Centre national de la recherche scientifique, CNRS, Univ. Rene Descartes, Paris (France)

    2001-02-01

    Tamoxifen is the most widely used antiestrogen in the treatment of breast cancer. In this work, we have studied its antioxidant properties. We have investigated the ability of tamoxifen to scavenge, in vitro, {sup .}OH and (or) HO{sub 2}{sup .} free radicals that are produced by water radiolysis. Aqueous solutions of tamoxifen of concentrations ranging between 10{sup -5} and 2.5 x 10{sup -5} M have been irradiated ({gamma} {sup 137}Cs) in aerated acidic medium (H{sub 3}PO{sub 4} 10{sup -3} M or HCOOH 10{sup -1} M). The results show that tamoxifen reacts quantitatively with {sup .}OH free radicals but does not react with HO{sub 2}{sup .} free radicals under our experimental conditions. (author)

  12. Is tamoxifen associated with an increased risk for thromboembolic complications in patients undergoing microvascular breast reconstruction? [Ist die Einnahme von Tamoxifen zum Zeitpunkt der mikrovaskulären Brustrekonstruktion mit einer erhöhten Rate an thrombembolischen Komplikationen assoziiert?

    Directory of Open Access Journals (Sweden)

    Krämer, Robert

    2013-02-01

    Full Text Available [english] Introduction: Tamoxifen is associated with a twofold increased risk of thromboembolic events. Third generation aromatase inhibitors (AIs, such as letrozole, anastrozole, and exemestane have therefore replaced tamoxifen in the adjuvant therapy of hormone receptor-positive breast cancer. A retrospective review was performed in patients who underwent delayed microvascular breast reconstruction and received tamoxifen at the time of surgery in order to assess the risk of both minor and major flap complications including thromboembolic events.Patients and methods: Twenty-nine patients who underwent delayed microsurgical breast reconstruction with autologous tissue between 2006 and 2012 were included in the study. The overall complication rates were compared between patients who did versus those who did not receive tamoxifen at the time of microsurgical breast reconstruction. Results: Breast reconstruction was performed with a DIEP flap in and with a TRAM flap in 4 patients. Overall, the complication rate was 37.9% (n=11 consisting of 5 major (including one total flap loss and 6 minor complications. In patients receiving tamoxifen (n=5, we observed one minor complication and one major complication with a total flap loss due to thrombus formation at the anastomosis site. In one patient pulmonary embolism occurred without association to tamoxifen. The number of thromboembolic events was equivalent in both groups (p=0.642. No increase of major (p=0.858 or minor (p=0.967 complications in the tamoxifen group could be observed. Taking the overall complication rate into account there was no statistically difference between the two groups (p=0.917.Conclusion: In our study we could not observe an increased risk for thromobembolic events in patients receiving tamoxifen while undergoing autologous microvascular breast reconstruction.[german] Aromatasehemmer der dritten Generation haben mittlerweile Tamoxifen in der neoadjuvanten und adjuvanten Therapie

  13. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    Science.gov (United States)

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    Directory of Open Access Journals (Sweden)

    Hiscox Stephen

    2012-10-01

    Full Text Available Abstract Background Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression or MCF7 cells (± transfection with the CD44 gene were treated with the CD44 ligand, hyaluronon (HA, or heregulin and their in vitro growth (MTT, migration (Boyden chamber and wound healing and invasion (Matrigel transwell migration determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2

  15. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    International Nuclear Information System (INIS)

    Hiscox, Stephen; Gee, Julia; Baruha, Bedanta; Smith, Chris; Bellerby, Rebecca; Goddard, Lindy; Jordan, Nicola; Poghosyan, Zaruhi; Nicholson, Robert I; Barrett-Lee, Peter

    2012-01-01

    Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration

  16. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas.

    Science.gov (United States)

    Li, Yan; He, Hai; Jia, Xinru; Lu, Wan-Liang; Lou, Jinning; Wei, Yen

    2012-05-01

    A pH-sensitive dual-targeting drug carrier (G4-DOX-PEG-Tf-TAM) was synthesized with transferrin (Tf) conjugated on the exterior and Tamoxifen (TAM) in the interior of the fourth generation PAMAM dendrimers for enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. It was found that, on average, 7 doxorubicine (DOX) molecules, over 30 PEG(1000) and PEG(2000) chains and one Tf group were bonded on the periphery of each G4 PAMAM dendrimer, while 29 TAM molecules were encapsulated into the interior of per dendrimer. The pH-triggered DOX release was 32% at pH 4.5 and 6% at pH 7.4, indicating a comparatively fast drug release at weak acidic condition and stable state of the carrier at physiological environment. The in vitro assay of the drug transport across the BBB model showed that G4-DOX-PEG-Tf-TAM exhibited higher BBB transportation ability with the transporting ratio of 6.06% in 3 h. The carrier was internalized into C6 glioma cells upon crossing the BBB model by the coactions of TfR-mediated endocytosis and the inhibition effect of TAM to the drug efflux transports. Moreover, it also displayed the in vitro accumulation of DOX in the avascular C6 glioma spheroids made the tumor volume effectively reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Vanparys, Caroline, E-mail: caroline.vanparys@ua.ac.be [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Depiereux, Sophie; Nadzialek, Stephanie [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); Robbens, Johan; Blust, Ronny [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Kestemont, Patrick [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); De Coen, Wim [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); European Chemicals Agency (ECHA), Helsinki (Finland)

    2010-09-15

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC{sub 50} value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R{sup 2} = 0.98), the estrogen receptor (ER) binding (R{sup 2} = 0.84) and the ER transcription activation assay (R{sup 2} = 0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies

  18. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples

    International Nuclear Information System (INIS)

    Vanparys, Caroline; Depiereux, Sophie; Nadzialek, Stephanie; Robbens, Johan; Blust, Ronny; Kestemont, Patrick; De Coen, Wim

    2010-01-01

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC 50 value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R 2 = 0.98), the estrogen receptor (ER) binding (R 2 = 0.84) and the ER transcription activation assay (R 2 = 0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked