WorldWideScience

Sample records for tallo puccinia graminis

  1. Amplified Fragment Length Polymorphism of Puccinia graminis f. sp ...

    African Journals Online (AJOL)

    in its continued effort to minimize the impact of stem rust on wheat in Ethiopia. Keywords: AFLP, wheat, stem rust, ... as the main causes of crop losses in wheat. Of these, stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is the main ..... estimated losses in major food and cash crops. Amsterdam: Elsevier, 808 p. Ordonez ...

  2. Resistance to Puccinia graminis f. sp. avenae in Barley Is Associated with the Rpg5 Locus.

    Science.gov (United States)

    Dracatos, Peter; Singh, Davinder; Fetch, Tom; Park, Robert

    2015-04-01

    In barley, gene Rpg5 was first identified for providing resistance to the rye stem rust pathogen (Puccinia graminis f. sp. secalis). A subsequent study determined that Rpg5 is required for rpg4-mediated resistance to the wheat stem rust pathogen (P. graminis f. sp. tritici) including pathotype TTKSK ("Ug99"), which poses a major threat to global wheat and barley production. Based on the effectiveness of Rpg5 against P. graminis f. sp. tritici and P. graminis f. sp. secalis, we assessed whether it also conferred resistance to the oat stem rust pathogen (P. graminis f. sp. avenae). A barley F8 recombinant inbred line (RIL) population was produced by crossing 'Q21861' (Rpg1 and Rpg5) with '73-G1' (Rpg1), which is susceptible to P. graminis f. sp. avenae, P. graminis f. sp. secalis, and some pathotypes of P. graminis f. sp. tritici. Seedling tests were performed on the F8 RIL population using Australian pathotypes of P. graminis f. sp. tritici, P. graminis f. sp. secalis, P. graminis f. sp. avenae, and a putative somatic hybrid between P. graminis f. sp. tritici and P. graminis f. sp. secalis known as the 'Scabrum' rust. Segregation in the responses to all rust isolates for the RILs was identical (50 resistant: 52 susceptible), and fitted a 1:1 ratio (X2=0.039, P=0.843), indicating that resistance to all isolates was monogenetically inherited. Screening of the RILs and the parental lines with perfect markers for the functional Rpg1 and Rpg5 resistance alleles indicated that Rpg1 was fixed, while Rpg5 was positive in all resistant lines and negative in all susceptible lines. This suggests that different formae speciales of P. graminis may share common effectors, and that the Rpg5 locus confers resistance to both P. graminis f. sp. tritici and P. graminis f. sp. secalis and the heterologous formae speciales of P. graminis, P. graminis f. sp. avenae.

  3. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance

    Science.gov (United States)

    The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inocula...

  4. Effect of Weather on the Occurrence of Puccinia Graminis Subsp. Graminicola and Puccinia Coronata F. Sp. Lolii at Lolium Perenne L. and Deschampsia Caespitosa (L. P. B.

    Directory of Open Access Journals (Sweden)

    Monika Novotná

    2017-01-01

    Full Text Available Monitoring of Puccinia graminis subsp. graminicola and Puccinia coronata f. sp. lolii was carried out in Plant breeding station called Větrov. The pathogens were estimated on turf grass (Lolium perenne L., Deschampsia caespitosa (L. P. B. from 2009 to 2014. Puccinia graminis subsp. graminicola was detected in the increased level in 2009 and 2012. The highest amount of mixed infections was determined in 2014 because of the warmest winter from all monitored years and low precipitations. Significant differences were found out in the resistance of similar plant materials grown in different fields. Significant effect of weather conditions and supposed effect of different infectious pressure on various fields were reflected in these facts. At evaluated grasses, the highest (P < 0.05 occurence of Puccinia graminis subsp. graminicola. Lolium perenne L. was observed and the infection of Puccinia graminis subsp. graminicola (P < 0.05 was determined higher than in Deschampsia caespitosa (L. P. B.

  5. Physiologic specialization of Puccinia graminis f. sp. tritici in Kenya in 2011

    Science.gov (United States)

    A total of 12 collections of Puccinia graminis f. sp. tritici were obtained from Kenya during 2011. Collections were made around Mount Kenya and in wheat growing areas southwest towards Nakuru in the Rift Valley. Four collections were made from the international stem rust screening nursery in Njoro....

  6. Multiple genotypes within aecial clusters in Puccinia graminis and Puccinia coronata: improved understanding of the biology of cereal rust fungi.

    Science.gov (United States)

    Berlin, Anna; Samils, Berit; Andersson, Björn

    2017-01-01

    Cereal rust fungi ( Puccinia spp.) are among the most economically important plant pathogens. These fungi have a complex life cycle, including five spore stages and two hosts. They infect one grass host on which they reproduce clonally and cause the cereal rust diseases, while the alternate host is required for sexual reproduction. Although previous studies clearly demonstrate the importance of the alternate host in creating genetic diversity in cereal rust fungi, little is known about the amount of novel genotypes created in each successful completion of a sexual reproduction event. In this study, single sequence repeat markers were used to study the genotypic diversity within aecial clusters by genotyping individual aecial cups. Two common cereal rusts, Puccinia graminis causing stem rust and Puccinia coronata the causal agent of crown rust were investigated. We showed that under natural conditions, a single aecial cluster usually include several genotypes, either because a single pycnial cluster is fertilized by several different pycniospores, or because aecia within the cluster are derived from more than one fertilized adjoining pycnial cluster, or a combination of both. Our results imply that although sexual events in cereal rust fungi in most regions of the world are relatively rare, the events that occur may still significantly contribute to the genetic variation within the pathogen populations.

  7. Stem rust of small grains and grasses caused by Puccinia graminis.

    Science.gov (United States)

    Leonard, Kurt J; Szabo, Les J

    2005-03-01

    SUMMARY Stem rust has been a serious disease of wheat, barley, oat and rye, as well as various important grasses including timothy, tall fescue and perennial ryegrass. The stem rust fungus, Puccinia graminis, is functionally an obligate biotroph. Although the fungus can be cultured with difficulty on artificial media, cultures grow slowly and upon subculturing they develop abnormal ploidy levels and lose their ability to infect host plants [Bushnell and Bosacker (1982) Can. J. Bot. 60, 1827-1836]. P. graminis is a typical heteroecious rust fungus with the full complement of five distinct spore stages that occur during asexual reproduction on its gramineous hosts and sexual reproduction that begins in the resting spore stage and culminates on the alternate host, barberry (Berberis spp.). There appears to be little polymorphism for resistance/susceptibility in Berberis species, but complex polymorphisms of resistance/susceptibility and matching virulence/avirulence exist in gene-for-gene relationships between small grain species and the forms of P. graminis that infect them. Puccinia graminis is a rust fungus in the phylum Basidiomycota, class Urediniomycetes, order Uredinales, and family Pucciniaceae, which contains 17 genera and approximately 4121 species, of which the majority are in the genus Puccinia[Kirk et al. (2001) Ainsworth and Bisby's Dictionary of the Fungi. Wallingford, UK: CAB International]. Various subdivisions of P. graminis into subspecies, varieties and formae speciales have been proposed based on spore size and host range. Crossing studies and DNA sequence comparisons support the separation of at least two subspecies, but not the proposed separation based on spore size. The host range of P. graminis is very broad compared with that of most Puccinia spp.; it includes at least 365 species of cereals and grasses in 54 genera [Anikster (1984) The Cereal Rusts. Orlando, FL: Academic Press, pp. 115-130]. Wheat stem rust, P. graminis f. sp. tritici, was

  8. Genetic Diversity in Australian Populations of Puccinia graminis f. sp. avenae.

    Science.gov (United States)

    Keiper, F J; Haque, M S; Hayden, M J; Park, R F

    2006-01-01

    ABSTRACT Sequence-tagged microsatellite profiling was used to develop 110 microsatellites for Puccinia graminis f. sp. tritici (causal agent of wheat stem rust). Low microsatellite polymorphism was exhibited among 10 pathogenically diverse P. graminis f. sp. tritici isolates collected from Australian cereal growing regions over a period of at least 70 years, with two polymorphic loci detected, each revealing two alleles. Limited cross-species amplification was observed for the wheat rust pathogens, P. triticina (leaf rust) and P. striiformis f. sp. tritici (stripe rust). However, very high transferability was revealed with P. graminis f. sp. avenae (causal agent of oat stem rust) isolates. A genetic diversity study of 47 P. graminis f. sp. avenae isolates collected from an Australia-wide survey in 1999, and a historical group of 16 isolates collected from Australian cereal growing regions from 1971 to 1996, revealed six polymorphic microsatellite loci with a total of 15 alleles. Genetic analysis revealed the presence of several clonal lineages and subpopulations in the pathogen population, and wide dispersal of identical races and genotypes throughout Australian cereal-growing regions. These findings demonstrated the dynamic population structure of this pathogen in Australia and concur with the patterns of diversity observed in pathogenicity studies.

  9. Genetic mapping of stem rust resistance to Puccinia graminis f. sp. tritici race TRTTF in the Canadian wheat cultivar 'Harvest'

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.(Pgt), is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of Pgt in Africa have been detected and characterized. These include race T...

  10. Stem rust (Puccinia graminis ssp. graminicola Urban its hosts and harmfulness in grasses grown for seed

    Directory of Open Access Journals (Sweden)

    Maria Prończuk

    2013-12-01

    Full Text Available Stem rust development on four species of grasses was studied in field experiments conducted at Radzików in 1997-2001. Population of Puccinia graminis ssp. graminicola from different hosts was characterised and their harmfulness for grass grown for seed was estimated. The materials for study were ecotypes and strains of Lolium perenne, Festuca rubra, Poa pratensis and Deschampsia caespitosa collected in breeding nursery and cultivars and strains of L.perenne, F.rubra, P.pratensis cultivated for seed. It was found that the changes in environmental conditions during last years influenced earlier occurrence of stem rust on grasses in Poland. All examined species were the host of P.graminis ssp. graminicola, however the period of infection of particular hosts were different. L.perenne and D.caespitosa were infected in early summer but F.rubra and P.pratensis in late summer or in the autumn. Morphological analysis of spores of P.graminis ssp. graminicola have shoved significant differences between populations obtained from L.perenne and D.caespitosa. Some differences were found between populations from F.rubra and P.pratensis also, but they need more study. Every year occurrence of stem rust on L.perenne and D.caespitosa and its relation with spring temperature in Radzików indicated that populations of patogen could overwinter in local turf. Incidental appearance of stem rust on F.rubra and P.pratensis in centre of Poland allowed to suppose that spores of these forms might be transfer by wind from other regions. The investigation revealed that stem rust can be dangerous for L.perenne grown for seed when infection occurs at flowering time. It has been established that infection of F.rubra and P.pratensis in autumn should not be disregarded. Damages of leaves by P.graminis ssp. graminicola substantially limited plant heading in the next year.

  11. Detection of an elicitor on infection structures of Puccinia graminis using monoclonal antibodies.

    Science.gov (United States)

    Tiburzy, R; Rogner, U C; Fischer, R; Beissmann, B; Kreuzaler, F M; Reisener, H J

    1991-06-01

    The basidiomycetous fungus Puccinia graminis f. sp. tritici causes the stem rust disease of wheat. Resistance of wheat to the fungus is often associated with the hypersensitive reaction of infected host cells. A glycoprotein isolated from germ tube cell walls of the pathogen elicits a hypersensitive-like response when injected into wheat leaves. Infection structures morphologically identical to those grown on wheat were induced in the absence of the host plant, and indirect immunofluorescence together with specific monoclonal antibodies to the elicitor was employed to locate the antigen at fungal infection structures. No binding occurred to germ tubes or appressoria. The antibodies located the antigen only at that part of the fungal infection structure that develops endophytically in nature and, moreover, only at the youngest part of this structure. In rust-infected wheat leaves, the immunolabel appeared only at haustoria, the structures thought to be involved in specific recognition between host and parasite.

  12. Physiological Rances and Virulence Diversity of Puccinia graminis f. sp. tritici on Wheat in Ethiopia

    Directory of Open Access Journals (Sweden)

    B. Admassu

    2005-12-01

    Full Text Available The physiologic races of the rust fungus Puccinia graminis f. sp. tritici in the main wheat-growing regions of Ethiopia were determined on seedlings of the standard wheat stem rust differentials following the international system of nomenclature. Forty-four races were identified among the 75 isolates studied over a period of four years. The 16 isolates collected in 2001 all belonged to different race groups. The 33 isolates collected in 2002 belonged to 23 race groups, and, the 17 and nine rust isolates collected in 2003 and 2004 respectively belonged to eight and three race groups. Most of the rust samples collected from individual wheat fields belonged to different groups with only a few belonging to the same race group. The physiologic race breakdown differed greatly from year to year. TTR was the only race identified in all cropping seasons. Races such as TTT, TTR, PTT, PTR and TTQ showed relatively wider virulence spectra. Races such as TTR and TTT showed a relatively wider spatial distribution. Generally, P. graminis populations in Ethiopia appear to be highly variable, and this should be an important consideration when devising a breeding programme for this country.

  13. Vulnerability of Barley to African Pathotypes of Puccinia graminis f. sp. tritici and Sources of Resistance.

    Science.gov (United States)

    Steffenson, B J; Case, A J; Pretorius, Z A; Coetzee, V; Kloppers, F J; Zhou, H; Chai, Y; Wanyera, R; Macharia, G; Bhavani, S; Grando, S

    2017-08-01

    The emergence of widely virulent pathotypes (e.g., TTKSK in the Ug99 race group) of the stem rust pathogen (Puccinia graminis f. sp. tritici) in Africa threatens wheat production on a global scale. Although intensive research efforts have been advanced to address this threat in wheat, few studies have been conducted on barley, even though pathotypes such as TTKSK are known to attack the crop. The main objectives of this study were to assess the vulnerability of barley to pathotype TTKSK and identify possible sources of resistance. From seedling evaluations of more than 1,924 diverse cultivated barley accessions to pathotype TTKSK, more than 95% (1,844) were found susceptible. A similar high frequency (910 of 934 = 97.4%) of susceptibility was found for the wild progenitor (Hordeum vulgare subsp. spontaneum) of cultivated barley. Additionally, 55 barley lines with characterized or putative introgressions from various wild Hordeum spp. were also tested against pathotype TTKSK but none was found resistant. In total, more than 96% of the 2,913 Hordeum accessions tested were susceptible as seedlings, indicating the extreme vulnerability of the crop to the African pathotypes of P. graminis f. sp. tritici. In total, 32 (1.7% of accessions evaluated) and 13 (1.4%) cultivated and wild barley accessions, respectively, exhibited consistently highly resistant to moderately resistant reactions across all experiments. Molecular assays were conducted on these resistant accessions to determine whether they carried rpg4/Rpg5, the only gene complex known to be highly effective against pathotype TTKSK in barley. Twelve of the 32 (37.5%) resistant cultivated accessions and 11 of the 13 (84.6%) resistant wild barley accessions tested positive for a functional Rpg5 gene, highlighting the narrow genetic base of resistance in Hordeum spp. Other resistant accessions lacking the rpg4/Rpg5 complex were discovered in the evaluated germplasm and may possess useful resistance genes. Combining

  14. Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity.

    Science.gov (United States)

    Yin, Chuntao; Park, Jeong-Jin; Gang, David R; Hulbert, Scot H

    2014-03-01

    The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.

  15. Puccinia graminis and Blumeria graminis f.sp. tritici, Mycoses Present in Wheat and Barley in Macedonia

    OpenAIRE

    Karov, Ilija; Kovacevik, Biljana

    2008-01-01

    During May and June of 2006 and 2007, the health of wheat and barley crops in the Republic of Macedonia was examined. Monitoring was conducted in the Skopje, Stip, Kocani, Kumanovo, Probistip, St. Nikole and Bitola areas. During monitoring the presence of Puecinia graminis and Blumeria graminis f.sp. tritiei were noted as mycoses having the greatest economic importance. Puceinia gram inis (black rust) was recorded in 'Victory' wheat in the teli...

  16. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility.

    Directory of Open Access Journals (Sweden)

    Melania Figueroa

    Full Text Available Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr in wheat and barley, P. graminis f. sp. lolii (Pg-lo in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1 indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60-70% of germinated spores by 12 h post-inoculation (hpi under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of

  17. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility.

    Science.gov (United States)

    Figueroa, Melania; Alderman, Stephen; Garvin, David F; Pfender, William F

    2013-01-01

    Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr) in wheat and barley, P. graminis f. sp. lolii (Pg-lo) in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp) in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1) indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60-70% of germinated spores) by 12 h post-inoculation (hpi) under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae) had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of incompatiblity

  18. Markers Linked to Wheat Stem Rust Resistance Gene Sr11 Effective to Puccinia graminis f. sp. tritici Race TKTTF.

    Science.gov (United States)

    Nirmala, Jayaveeramuthu; Chao, Shiaoman; Olivera, Pablo; Babiker, Ebrahiem M; Abeyo, Bekele; Tadesse, Zerihun; Imtiaz, Muhammad; Talbert, Luther; Blake, Nancy K; Akhunov, Eduard; Pumphrey, Michael O; Jin, Yue; Rouse, Matthew N

    2016-11-01

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici, can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem rust resistance genes. P. graminis f. sp. tritici race TKTTF caused a severe epidemic in Ethiopia on Ug99-resistant 'Digalu' in 2013 and 2014. The gene Sr11 confers resistance to race TKTTF and is present in 'Gabo 56'. We identified seven single-nucleotide polymorphism (SNP) markers linked to Sr11 from a cross between Gabo 56 and 'Chinese Spring' exploiting a 90K Infinium iSelect Custom beadchip. Five SNP markers were validated on a 'Berkut'/'Scalavatis' population that segregated for Sr11, using KBioscience competitive allele-specific polymerase chain reaction (KASP) assays. Two of the SNP markers, KASP_6BL_IWB10724 and KASP_6BL_IWB72471, were predictive of Sr11 among wheat genetic stocks, cultivars, and breeding lines from North America, Ethiopia, and Pakistan. These markers can be utilized to select for Sr11 in wheat breeding and to detect the presence of Sr11 in uncharacterized germplasm.

  19. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance.

    Science.gov (United States)

    Nirmala, Jayaveeramuthu; Drader, Tom; Lawrence, Paulraj K; Yin, Chuntao; Hulbert, Scot; Steber, Camille M; Steffenson, Brian J; Szabo, Les J; von Wettstein, Diter; Kleinhofs, Andris

    2011-08-30

    The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation.

  20. Compatible Puccinia hordei infection in barley induces basal defense to subsequent infection by Blumeria graminis

    NARCIS (Netherlands)

    Aghnoum, R.; Niks, R.E.

    2012-01-01

    Rusts and powdery mildews employ different strategies to suppress defense during penetration. We observed that a compatible interaction of barley-Puccinia hordei induced increased penetration resistance to a challenge infection by powdery mildew. This induced resistance is local and its level is not

  1. Genetic Mapping of Stem Rust Resistance to Puccinia graminis f. sp. tritici Race TRTTF in the Canadian Wheat Cultivar Harvest.

    Science.gov (United States)

    Hiebert, Colin W; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Fetch, Tom

    2017-02-01

    Stem rust, caused by Puccinia graminis f. sp. tritici, is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of P. graminis f. sp. tritici in Africa have been detected and characterized. These include race TRTTF and the Ug99 group of races such as TTKSK. Several Canadian and U.S. spring wheat cultivars, including the widely grown Canadian cultivar 'Harvest', are resistant to TRTTF. However, the genetic basis of resistance to TRTTF in Canadian and U.S. spring wheat cultivars is unknown. The objectives of this study were to determine the number of Sr genes involved in TRTTF resistance in Harvest, genetically map the resistance with DNA markers, and use markers to assess the distribution of that resistance in a panel of Canadian cultivars. A doubled haploid (DH) population was produced from the cross LMPG-6S/Harvest. The DH population was tested with race TRTTF at the seedling stage. Of 92 DH progeny evaluated, 46 were resistant and 46 were susceptible which perfectly fit a 1:1 ratio indicating a single Sr gene was responsible for conferring resistance to TRTTF in Harvest. Mapping with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers placed the resistance gene distally on the chromosome 6AS genetic map, which corresponded to the location reported for Sr8. SSR marker gwm459 and 30 cosegregating SNP markers showed the closest linkage, mapping 2.2 cM proximal to the Sr gene. Gene Sr8a confers resistance to TRTTF and may account for the resistance in Harvest. Testing a panel of Canadian wheat cultivars with four SNP markers closely linked to resistance to TRTTF suggested that the resistance present in Harvest is present in many Canadian cultivars. Two of these SNP markers were also predictive of TRTTF resistance in a panel of 241 spring wheat lines from the United States, Canada, and Mexico.

  2. An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis.

    Science.gov (United States)

    Bartaula, Radhika; Melo, Arthur T O; Connolly, Bryan A; Jin, Yue; Hale, Iago

    2018-02-26

    Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat; and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here we demonstrate that Pg's far less-studied ancestral host, barberry (Berberis spp.), provides such a unique pathosystem. Characterization of a natural population of B. ×ottawensis (B×o), an interspecific hybrid of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. Artificial inoculation of a natural population of B×o accessions, verified via genotyping-by-sequencing to be first generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. Characterization of a B×o full-sib family excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg epidemiology and lays a novel foundation for the genetic dissection of NHR to one of agriculture's most studied pathogens.

  3. Sr36- and Sr5-Mediated Resistance Response to Puccinia graminis f. sp. tritici Is Associated with Callose Deposition in Wheat Guard Cells.

    Science.gov (United States)

    Wang, X; McCallum, B D; Fetch, T; Bakkeren, G; Saville, B J

    2015-06-01

    Race-specific resistance of wheat to Puccinia graminis f. sp. tritici is primarily posthaustorial and often involves the induction of a hypersensitive response (HR). The aim of this study was to investigate host defense responses induced in interactions between P. graminis f. sp. tritici races and wheat lines carrying different race-specific stem rust resistance (Sr) genes. In incompatible interactions between wheat lines carrying Sr36 in three genetic backgrounds (LMPG, Prelude, or W2691) and avirulent P. graminis f. sp. tritici races MCCFC or RCCDM, callose accumulated within 24 h in wheat guard cells contacted by a P. graminis f. sp. tritici appressorium, and P. graminis f. sp. tritici ingress was inhibited following appressorium formation. Accordingly, the expression of transcripts encoding a callose synthase increased in the incompatible interaction between LMPG-Sr36 and avirulent P. graminis f. sp. tritici race MCCFC. Furthermore, the inhibition of callose synthesis through the infiltration of 2-deoxy-D-glucose (DDG) increased the ability of P. graminis f. sp. tritici race MCCFC to infect LMPG-Sr36. A similar induction of callose deposition in wheat guard cells was also observed within 24 h after inoculation (hai) with avirulent P. graminis f. sp. tritici race HKCJC on LMPG-Sr5 plants. In contrast, this defense response was not induced in incompatible interactions involving Sr6, Sr24, or Sr30. Instead, the induction of an HR and cellular lignification were noted. The manifestation of the HR and cellular lignification was induced earlier (24 hai) and was more extensive in the resistance response mediated by Sr6 compared with those mediated by Sr24 or Sr30. These results indicate that the resistance mediated by Sr36 is similar to that mediated by Sr5 but different from those triggered by Sr6, Sr24, or Sr30. Resistance responses mediated by Sr5 and Sr36 are prehaustorial, and are a result of very rapid recognition of molecules derived from avirulent isolates of

  4. Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.

    Science.gov (United States)

    Figueroa, Melania; Upadhyaya, Narayana M; Sperschneider, Jana; Park, Robert F; Szabo, Les J; Steffenson, Brian; Ellis, Jeff G; Dodds, Peter N

    2016-01-01

    The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust

  5. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Melania eFigueroa

    2016-02-01

    Full Text Available The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt poses a threat to food security. These concerns have catalyzed an extensive global effort towards controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require simultaneous changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Towards this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens

  6. Localisation of genes for resistance against ¤Blumeria graminis¤ f.sp. ¤hordei¤ and ¤Puccinia graminis¤ in a cross between a barley cultivar and a wild barley (¤Hordeum vulgare¤ ssp. ¤spontaneum¤) line

    DEFF Research Database (Denmark)

    Backes, G.; Madsen, L.H.; Jaiser, H.

    2003-01-01

    The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley (Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley...

  7. Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, Sebastien; Cuomo, Christina A.; Lin, Yao-Cheng; Aerts, Andrea; Tisserant, Emilie; Veneault-Fourrey, Claire; Joly, David L.; Hacquard, Stephane; Amselem, Joelle; Cantarel, Brandi; Chiu, Readman; Couthinho, Pedro; Feau, Nicolas; Field, Matthew; Frey, Pascal; Gelhaye, Eric; Goldberg, Jonathan; Grabherr, Manfred; Kodira, Chinnappa; Kohler, Annegret; Kues, Ursula; Lindquist, Erika; Lucas, Susan; Mago, Rohit; Mauceli, Evan; Morin, Emmanuelle; Murat, Claude; Pangilinan, Jasmyn L.; Park, Robert; Pearson, Matthew; Quesneville, Hadi; Rouhier, Nicolas; Sakthikumar, Sharadha; Salamov, Asaf A.; Schmutz, Jeremy; Selles, Benjamin; Shapiro, Harris; Tangay, Philippe; Tuskan, Gerald A.; Peer, Yves Van de; Henrissat, Bernard; Rouze, Pierre; Ellis, Jeffrey G.; Dodds, Peter N.; Schein, Jacqueline E.; Zhong, Shaobin; Hamelin, Richard C.; Grigoriev, Igor V.; Szabo, Les J.; Martin1, Francis

    2011-04-27

    Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101 mega base pair genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89 mega base pair genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,841 predicted proteins of M. larici-populina to the 18,241 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic life-style include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins (SSPs), impaired nitrogen and sulfur assimilation pathways, and expanded families of amino-acid, oligopeptide and hexose membrane transporters. The dramatic upregulation of transcripts coding for SSPs, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells

  8. Constructing Physical and Genomic Maps for Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen, by Comparing Its EST Sequences to the Genomic Sequence of P. graminis f. sp. tritici, the Wheat Stem Rust Pathogen

    OpenAIRE

    Jinbiao Ma; Xianming Chen; Meinan Wang; Zhensheng Kang

    2009-01-01

    The wheat stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst), does not have a known alternate host for sexual reproduction, which makes it impossible to study gene linkages through classic genetic and molecular mapping approaches. In this study, we compared 4,219 Pst expression sequence tags (ESTs) to the genomic sequence of P. graminis f. sp. tritici (Pgt), the wheat stem rust fungus, using BLAST searches. The percentages of homologous genes varied greatly among different Pst libr...

  9. Genetic mapping of the stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn) resistance gene Sr13 in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Admassu, Belayneh; Perovic, Dragan; Friedt, Wolfgang; Ordon, Frank

    2011-02-01

    Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known for its high virulence variability and ability to evolve new virulence to resistance genes. Thus, pyramiding of several resistance genes in a single line is the best strategy for a sustainable control of wheat stem rust. Sr13 is one of the few resistance genes that are effective against wide ranging P. graminis f. sp. tritici races, including the pestilent race Ug99. Its effectiveness to Ug99 makes it a valuable source for resistance to stem rust. Molecular markers play a pivotal role in the genetic characterization of the new sources of resistance as well as in stacking two or more resistance genes in a single line. Therefore, the aim of this study was to develop molecular markers for Sr13 facilitating efficient pyramiding of Sr genes. Based on the 158 F(2) individuals derived from a cross of Khapstein/9*LMPG × Morocco and SSR analyses, the Sr13 locus was mapped on chromosome 6A of wheat, and a genetic map comprising about 90 cM was constructed with the closest marker barc37 being located 4.0 cM distally of Sr13. Of the nine mapped markers, barc37 amplified an allele specific for the presence of Sr13 as shown by testing different cultivars and breeding lines. These newly developed markers will increase the efficiency of incorporating Sr13 into cultivars that are widely adopted, but susceptible to hazardous Ug99 and/or assist for the development of new elite lines that are resistant to Ug99.

  10. Localisation of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line.

    Science.gov (United States)

    Backes, G; Madsen, L H; Jaiser, H; Stougaard, J; Herz, M; Mohler, V; Jahoor, A

    2003-01-01

    The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley ( Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley ( Hordeum vulgare ssp. spontaneum) line "1B-87" originating from Israel. The population consisted of 121 recombinant inbred lines. Resistance against leaf rust and powdery mildew was tested on detached leaves. The leaf rust isolate "I-80" and the powdery mildew isolate "Va-4", respectively, were used for the infection in this experiment. Moreover, powdery mildew disease severity was observed in the field at two different epidemic stages. In addition to other DNA markers, the map included 13 RGA (resistance gene analog) loci. The structure of the data demanded a non-parametric QTL-analysis. For each of the four observations, two QTLs with very high significance were localised. QTLs for resistance against powdery mildew were detected on chromosome 1H, 2H, 3H, 4H and 7H. QTLs for resistance against leaf rust were localised on 2H and 6H. Only one QTL was common for two of the powdery mildew related traits. Three of the seven QTLs were localised at the positions of the RGA-loci. Three of the five powdery mildew related QTLs are sharing their chromosomal position with known qualitative resistance genes. All detected QTLs behaved additively. Possible sources of the distorted segregation observed, the differences between the results for the different powdery mildew related traits and the relation between qualitative and quantitative resistance are discussed.

  11. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes.

    Science.gov (United States)

    Upadhyaya, Narayana M; Garnica, Diana P; Karaoglu, Haydar; Sperschneider, Jana; Nemri, Adnane; Xu, Bo; Mago, Rohit; Cuomo, Christina A; Rathjen, John P; Park, Robert F; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    The wheat stem rust fungus Puccinia graminis f. sp. tritici (Pgt) is one of the most destructive pathogens of wheat. In this study, a draft genome was built for a founder Australian Pgt isolate of pathotype (pt.) 21-0 (collected in 1954) by next generation DNA sequencing. A combination of reference-based assembly using the genome of the previously sequenced American Pgt isolate CDL 75-36-700-3 (p7a) and de novo assembly were performed resulting in a 92 Mbp reference genome for Pgt isolate 21-0. Approximately 13 Mbp of de novo assembled sequence in this genome is not present in the p7a reference assembly. This novel sequence is not specific to 21-0 as it is also present in three other Pgt rust isolates of independent origin. The new reference genome was subsequently used to build a pan-genome based on five Australian Pgt isolates. Transcriptomes from germinated urediniospores and haustoria were separately assembled for pt. 21-0 and comparison of gene expression profiles showed differential expression in ∼10% of the genes each in germinated spores and haustoria. A total of 1,924 secreted proteins were predicted from the 21-0 transcriptome, of which 520 were classified as haustorial secreted proteins (HSPs). Comparison of 21-0 with two presumed clonal field derivatives of this lineage (collected in 1982 and 1984) that had evolved virulence on four additional resistance genes (Sr5, Sr11, Sr27, SrSatu) identified mutations in 25 HSP effector candidates. Some of these mutations could explain their novel virulence phenotypes.

  12. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley.

    Science.gov (United States)

    Druka, Arnis; Potokina, Elena; Luo, Zewei; Bonar, Nicola; Druka, Ilze; Zhang, Ling; Marshall, David F; Steffenson, Brian J; Close, Timothy J; Wise, Roger P; Kleinhofs, Andris; Williams, Robert W; Kearsey, Michael J; Waugh, Robbie

    2008-07-01

    We previously mapped mRNA transcript abundance traits (expression-QTL or eQTL) using the Barley1 Affymetrix array and 'whole plant' tissue from 139 progeny of the Steptoe x Morex (St/Mx) reference barley mapping population. Of the 22,840 probesets (genes) on the array, 15,987 reported transcript abundance signals that were suitable for eQTL analysis, and this revealed a genome-wide distribution of 23,738 significant eQTLs. Here we have explored the potential of using these mRNA abundance eQTL traits as surrogates for the identification of candidate genes underlying the interaction between barley and the wheat stem rust fungus Puccinia graminis f. sp. tritici. We re-analysed quantitative 'resistance phenotype' data collected on this population in 1990/1991 and identified six loci associated with barley's reaction to stem rust. One of these coincided with the major stem rust resistance locus Rpg1, that we had previously positionally cloned using this population. Correlation analysis between phenotype values for rust infection and mRNA abundance values reported by the 22,840 GeneChip probe sets placed Rpg1, which is on the Barley1 GeneChip, in the top five candidate genes for the major QTL on chromosome 7H corresponding to the location of Rpg1. A second co-located with the rpg4/Rpg5 stem rust resistance locus that has been mapped in a different population and the remaining four were novel. Correlation analyses identified candidate genes for the rpg4/Rpg5 locus on chromosome 5H. By combining our data with additional published mRNA profiling data sets, we identify a putative sensory transduction histidine kinase as a strong candidate for a novel resistance locus on chromosome 2H and compile candidate gene lists for the other three loci.

  13. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.

    Science.gov (United States)

    Rutter, William B; Salcedo, Andres; Akhunova, Alina; He, Fei; Wang, Shichen; Liang, Hanquan; Bowden, Robert L; Akhunov, Eduard

    2017-04-12

    Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen

  14. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes

    Directory of Open Access Journals (Sweden)

    Narayana Mithur Upadhyaya

    2015-01-01

    Full Text Available The wheat stem rust fungus Puccinia graminis f. sp. tritici (Pgt, is one of the most destructive pathogens of wheat. In this study, a draft genome was built for a founder Australian Pgt isolate of pathotype (pt. 21-0 (collected in 1954 by next generation DNA sequencing. A combination of reference-based assembly using the genome of the previously sequenced American Pgt isolate CDL 75-36-700-3 (p7a and de novo assembly were performed resulting in a 92 Mbp reference genome for Pgt isolate 21-0. Approximately 13 Mbp of de novo assembled sequence in this genome is not present in the p7a reference assembly. This novel sequence is not specific to 21-0 as it is also present in three other Pgt rust isolates of independent origin.The new reference genome was subsequently used to build a pan-genome based on five Australian Pgt isolates. Transcriptomes from germinated urediniospores and haustoria were separately assembled for pt. 21-0 and comparison of gene expression profiles showed differential expression in ~10% of the genes each in germinated spores and haustoria. A total of 1,924 secreted proteins were predicted from the 21-0 transcriptome, of which 520 were classified as haustorial secreted proteins (HSPs. Comparison of 21-0 with two presumed clonal field derivatives of this lineage (collected in 1982 and 1984 that had evolved virulence on four additional resistance genes (Sr5, Sr11, Sr27, SrSatu identified mutations in 25 HSP effector candidates, some of which could explain their novel virulence phenotypes.

  15. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group.

    Science.gov (United States)

    Chen, Shisheng; Rouse, Matthew N; Zhang, Wenjun; Jin, Yue; Akhunov, Eduard; Wei, Yuming; Dubcovsky, Jorge

    2015-04-01

    The diploid wheat stem rust resistance gene Sr21 confers temperature-sensitive resistance to isolates of the Ug99 group and maps to the middle of the long arm of chromosome 2A (m). A race of Puccinia graminis f. sp. tritici, the causal pathogen of stem rust of wheat, known as Ug99, and its variants, are virulent to plants carrying stem rust resistance genes currently deployed in most wheat cultivars worldwide. Therefore, identification, mapping and deployment of effective resistance genes are critical to reduce this threat. Resistance gene Sr21 identified in diploid wheat T. monococcum can be effective against races from the Ug99 race group, but both susceptible and partial resistant reactions have been reported in previous studies. To clarify this conflicting information we screened four monogenic lines with Sr21 and four susceptible controls with 16 Pgt isolates including five isolates of the Ug99 race group under three different temperatures and three different photoperiods. We observed that, temperature influences the interaction between monogenic lines with Sr21 and Ug99 race group isolates, and may be one source of previous inconsistencies. This result indicates that, although Sr21 confers partial resistance against Ug99, its effectiveness can be modulated by environmental conditions and should not be deployed alone. Using two large diploid wheat-mapping populations (total 3,788 F2 plants) we mapped Sr21 approximately 50 cM from the centromere on the long arm of chromosome 2A(m) within a 0.20 cM interval flanked by sequence-based markers FD527726 and EX594406. The closely linked markers identified in this study will be useful to reduce the T. monococcum segments introgressed into common wheat, accelerate Sr21 deployment in wheat breeding programs, and facilitate the map-based cloning of this gene.

  16. Analyzing Genetic Diversity for Virulence and Resistance Phenotypes in Populations of Stem Rust (Puccinia graminis f. sp. secalis) and Winter Rye (Secale cereale).

    Science.gov (United States)

    Miedaner, Thomas; Schmitt, Ann-Kristin; Klocke, Bettina; Schmiedchen, Brigitta; Wilde, Peer; Spieß, Hartmut; Szabo, Lilla; Koch, Silvia; Flath, Kerstin

    2016-11-01

    Stem rust (Puccinia graminis f. sp. secalis) leads to considerable yield losses in rye-growing areas with continental climate, from Eastern Germany to Siberia. For implementing resistance breeding, it is of utmost importance to (i) analyze the diversity of stem rust populations in terms of pathotypes (= virulence combinations) and (ii) identify resistance sources in winter rye populations. We analyzed 323 single-uredinial isolates mainly collected from German rye-growing areas across 3 years for their avirulence/virulence on 15 rye inbred differentials. Out of these, 226 pathotypes were detected and only 56 pathotypes occurred more than once. This high diversity was confirmed by a Simpson index of 1.0, a high Shannon index (5.27), and an evenness index of 0.97. In parallel, we investigated stem rust resistance among and within 121 heterogeneous rye populations originating mainly from Russia, Poland, Austria, and the United States across 3 to 15 environments (location-year combinations). While German rye populations had an average stem rust severity of 49.7%, 23 nonadapted populations were significantly (P stem rust severity ranging from 3 to 40%. Out of these, two modern Russian breeding populations and two old Austrian landraces were the best harboring 32 to 70% fully resistant plants across 8 to 10 environments. These populations with the lowest disease severity in adult-plant stage in the field also displayed resistance in leaf segment tests. In conclusion, stem rust populations are highly diverse and the majority of resistances in rye populations seems to be race specific.

  17. Mutation to Wider Virulence in Puccinia graminis f. sp. tritici: Evidence for the Existence of Loci Which Allow the Fungus To Overcome Several Host Stem Rust Resistance Genes Simultaneously.

    Science.gov (United States)

    Gates, J E; Loegering, W Q

    1991-08-01

    Mutants of Puccinia graminis f. sp. tritici were obtained which were able to overcome simultaneously several host stem rust resistance (Sr) genes effective against the wild-type culture. These results suggest that, in addition to those Psr loci which relate specifically to host Sr genes in a "gene for gene" manner, one or more general loci may be present in this pathogen. The product(s) of these general genes may be necessary for the expression of various host Sr genes. The evolution of a super race capable of overcoming many Sr genes for resistance seems likely, as such a pathogen would not have to give up the many proteins predicted by the gene-for-gene relationship. Moreover, it appears that specificity in the wheat rust system is more complicated than suggested by the gene-for-gene concept.

  18. The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor.

    Science.gov (United States)

    Wang, X; Richards, J; Gross, T; Druka, A; Kleinhofs, A; Steffenson, B; Acevedo, M; Brueggeman, R

    2013-04-01

    The rpg4 gene confers recessive resistance to several races of wheat stem rust (Puccinia graminis f. sp. tritici) and Rpg5 provides dominant resistance against isolates of the rye stem rust (P. graminis f. sp. secalis) in barley. The rpg4 and Rpg5 genes are tightly linked on chromosome 5H, and positional cloning using high-resolution populations clearly separated the genes, unambiguously identifying Rpg5; however, the identity of rpg4 remained unclear. High-resolution genotyping of critical recombinants at the rpg4/Rpg5 locus, designated here as rpg4-mediated resistance locus (RMRL) delimited two distinct yet tightly linked loci required for resistance, designated as RMRL1 and RMRL2. Utilizing virus-induced gene silencing, each gene at RMRL1, i.e., HvRga1 (a nucleotide-binding site leucine-rich repeat [NBS-LRR] domain gene), Rpg5 (an NBS-LRR-protein kinase domain gene), and HvAdf3 (an actin depolymerizing factor-like gene), was individually silenced followed by inoculation with P. graminis f. sp. tritici race QCCJ. Silencing each gene changed the reaction type from incompatible to compatible, indicating that all three genes are required for rpg4-mediated resistance. This stem rust resistance mechanism in barley follows the emerging theme of unrelated pairs of genetically linked NBS-LRR genes required for specific pathogen recognition and resistance. It also appears that actin cytoskeleton dynamics may play an important role in determining resistance against several races of stem rust in barley.

  19. Constructing Physical and Genomic Maps for Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen, by Comparing Its EST Sequences to the Genomic Sequence of P. graminis f. sp. tritici, the Wheat Stem Rust Pathogen.

    Science.gov (United States)

    Ma, Jinbiao; Chen, Xianming; Wang, Meinan; Kang, Zhensheng

    2009-01-01

    The wheat stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst), does not have a known alternate host for sexual reproduction, which makes it impossible to study gene linkages through classic genetic and molecular mapping approaches. In this study, we compared 4,219 Pst expression sequence tags (ESTs) to the genomic sequence of P. graminis f. sp. tritici (Pgt), the wheat stem rust fungus, using BLAST searches. The percentages of homologous genes varied greatly among different Pst libraries with 54.51%, 51.21%, and 13.61% for the urediniospore, germinated urediniospore, and haustorial libraries, respectively, with an average of 33.92%. The 1,432 Pst genes with significant homology with Pgt sequences were grouped into physical groups corresponding to 237 Pgt supercontigs. The physical relationship was demonstrated by 12 pairs (57%), out of 21 selected Pst gene pairs, through PCR screening of a Pst BAC library. The results indicate that the Pgt genome sequence is useful in constructing Pst physical maps.

  20. Constructing Physical and Genomic Maps for Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen, by Comparing Its EST Sequences to the Genomic Sequence of P. graminis f. sp. tritici, the Wheat Stem Rust Pathogen

    Directory of Open Access Journals (Sweden)

    Jinbiao Ma

    2009-01-01

    Full Text Available The wheat stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst, does not have a known alternate host for sexual reproduction, which makes it impossible to study gene linkages through classic genetic and molecular mapping approaches. In this study, we compared 4,219 Pst expression sequence tags (ESTs to the genomic sequence of P. graminis f. sp. tritici (Pgt, the wheat stem rust fungus, using BLAST searches. The percentages of homologous genes varied greatly among different Pst libraries with 54.51%, 51.21%, and 13.61% for the urediniospore, germinated urediniospore, and haustorial libraries, respectively, with an average of 33.92%. The 1,432 Pst genes with significant homology with Pgt sequences were grouped into physical groups corresponding to 237 Pgt supercontigs. The physical relationship was demonstrated by 12 pairs (57%, out of 21 selected Pst gene pairs, through PCR screening of a Pst BAC library. The results indicate that the Pgt genome sequence is useful in constructing Pst physical maps.

  1. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces.

    Science.gov (United States)

    Montilla-Bascón, Gracia; Rispail, Nicolas; Sánchez-Martín, Javier; Rubiales, Diego; Mur, Luis A J; Langdon, Tim; Howarth, Catherine J; Prats, Elena

    2015-01-01

    Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker-assisted selection.

  2. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae and powdery mildew (Blumeria graminis f. sp. avenae resistance in an oat (Avena sativa collection of commercial varieties and landraces

    Directory of Open Access Journals (Sweden)

    Gracia eMontilla-Bascón

    2015-03-01

    Full Text Available Diseases caused by crown rust (Puccinia coronata f. sp. avenae and powdery mildew (Blumeria graminis f. sp. avenae are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat (SSR and 15,000 Diversity Arrays Technology (DArT markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker assisted selection.

  3. Microscopical observations of Sphaerellopsis filum, a parasite of Puccinia recondita

    Directory of Open Access Journals (Sweden)

    Agnieszka Płachecka

    2012-12-01

    Full Text Available Sphaerellopsis filum is a well-known parasite associated with many species of rust fungi. It is of frequent occurrence as parasite of cereal rusts: Puccinia recondita, P. coronata, P. graminis, P. hordei and P. striiformis. Uredial sori of Puccinia recondita f.sp. tritici infected with Sphaerellopsis filum were examined by light and scanning microscope to determine morphology of hyperparasite as well as the parasite-hyperparasite contact. The microscopical examination of infected uredinia clearly showed the intimate connection of S. filum with its rust host.

  4. Amplified fragment length polymorphism of Puccinia graminis f. sp ...

    African Journals Online (AJOL)

    The developed AFLP fingerprints for the Ethiopian Pgt isolates reported herein could support the breeding program to develop strategies for the deployment of resistance genes in its continued effort to minimize the impact of stem rust on wheat in Ethiopia. Keywords: AFLP, wheat, stem rust, genetic diversity, population ...

  5. ANALISIS FAKTOR PENENTU DALAM PENGELOLAAN BERKELANJUTAN ESTUARIA DAS TALLO

    Directory of Open Access Journals (Sweden)

    Muhammad Yusuf

    2016-06-01

    Full Text Available Peningkatan penduduk dapat menyebabkan terjadinya perubahan lahan secara drastis, terutama di daerah aliran sungai (DAS dan wilayah pesisir. Hal serupa terjadi pada estuaria DAS Tallo. Penelitian ini bertujuan untuk (1 menganalisis tingkat keberlanjutan pengelolaan estuaria DAS Tallo, dan (2 menganalisis variabel/atribut pengungkit dalam pengelolaan berkelanjutan estuaria DAS Tallo (3 pengembangan kebijakan pengelolaan berkelanjutan estuaria DAS Tallo. Hasil analisis menunjukkan bahwa status keberlanjutan pengelolaan estuaria DAS Tallo adalah kurang berkelanjutan (indeks keberlanjutan 49,20%. Indeks keberlanjutan dari masing-masing dimensi adalah; dimensi ekologi (46,51%, dimensi ekonomi (42,22%, dimensi sosial (43,90%, dimensi teknologi (45,99% dan dimensi kelembagaan (46,83%. Atribut pengungkit keberlanjutan pengelolaan estuaria DAS Tallo terdiri atas 12 (dua belas atribut meliputi; dimensi ekologi 2 atribut (vegetasi mangrove dan  laju konversi lahan, dimensi ekonomi 3 atribut ( akses terhadap sumber daya, marketable right dan pendapatan masyarakat, dimensi sosial 2 atribut (kepadatan penduduk dan tingkat partisipasi masyarakat, dimensi teknologi 3 atribut (teknologi budidaya perikanan/tambak, teknologi pemanfaatan sumber daya dan teknologi pertanian serta dimensi kelembagaan 2 atribut (property right dan kelengkapan kelembagaan. Arahan pengembangan kebijakan pengelolaan berkelanjutan estuaria DAS Tallo, meliputi, alternatif I yakni penguatan kelembagaan pengelola, dan alternatif II adalah pemanfaatan sumber daya secara berkelanjutan.

  6. Encefalitis del tallo cerebral y mielitis por Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Aracelly Castro

    2013-09-01

    Full Text Available La romboencefalitis por Listeria monocytogenes es una presentación poco común de la listeriosis del sistema nervioso central; sin embargo, es la presentación más común en personas inmunocompetentes. Aun más rara es la combinación de romboencefalitis con mielitis causada por L. monocytogenes; no obstante, en este artículo se reporta un caso de encefalitis del tallo y mielitis grave en un paciente sin compromiso del sistema inmunitario. Se presenta un paciente de 21 años de edad, sin deficiencias del sistema inmunitario, que consumió productos lácteos no pasteurizados y, posteriormente, presentó un cuadro de cefalea, vómito, deterioro de su estado general y, finalmente, alteración del estado de conciencia y muerte. Consultó al Instituto Neurológico de Colombia y se hizo diagnóstico de encefalitis del tallo y mielitis por L. monocytogenes. Se discuten las diferencias entre el caso presentado y los reportados en la literatura científica. Ante un paciente con signos de compromiso del tallo cerebral, de posible origen infeccioso, es prudente iniciar tratamiento antibiótico para L. monocytogenes y, en caso de poca respuesta, escalar rápidamente en dicho tratamiento. También lo es extender el estudio radiológico hacia la columna vertebral, con el fin de descartar compromiso de la médula espinal.   doi: http://dx.doi.org/10.7705/biomedica.v33i3.1482

  7. Estudio del valor nutritivo de las hojas y tallo del maíz híbrido de tallo azucarado E-10

    OpenAIRE

    Treviño, J.; Hernández, Mª T.; Caballero, R.

    2011-01-01

    Se ha realizado un estudio sobre el valor nutritivo de las hojas y tallos del maíz de tallo azucarado E-10, a dos diferentes estados de maduración de la planta: grano en estado pastoso y grano en estado maduro (35 % humedad).En las muestras se determinó: proteína bruta, extracto etéreo, fibra neutro y ácido detergentes, celulosa, lignina y azúcares solubles. A partir de los datos analíticos se estimó la digestibilidad de la materia orgánica aplicando la ecuación sumativa de VAN SOEST. El valo...

  8. Development of resistance to Puccinia graminis avenae in Avena sativa by mutagen treatment

    International Nuclear Information System (INIS)

    Martens, J.W.; Brown, P.D.; McKenzie, R.I.H.; Harder, D.E.

    1983-01-01

    The evaluation of over seven million M 2 oat plants derived from irradiated and chemical mutagen treated seeds (about 50,000) or low-level chronically irradiated growing plants produced no new sources of useful resistance. However, preliminary results indicate that the gene Pg-16 has been transferred from the tetraploid Avena barbata L. to the hexaploid A. sativa L. by irradiation of disomic alien addition lines and monosomic alien substitution lines. This gene is highly effective and confers resistance to all but two of the known races of stem rust occurring in North America. (author)

  9. Análisis de las hojas y tallos de Ilex Argentina Lillo. I. Xantinas

    OpenAIRE

    Filip, Rosana; Iglesias, Dora I. A. de; Rondina, Rubén Víctor Daniel; Coussio, Jorge Daniel

    1983-01-01

    Se analizaron separadamente hojas y tallos de Ilex argentina con el objeto de determinar su contenido en cafeína, teofilina y teobromina. Se utilizó para ello la cromatografía líquida de alta performance (CLAP). Con un límite de detección de 0.2 µg de xantina por gramo de material desecado, se comprobó solamente la presencia de teobromina en ambas muestras, con un contenido promedio por gramo de 5 µg para tallos y de 6 µg para hojas.

  10. Anatomía de Dicotiledóneas: tallos de hierbas terrestres medicinales rioplatenses (Buenos Aires, Argentina)

    OpenAIRE

    Ana M. Arambarri; María C. Novoa; Marcelo P. Hernández; Marta N. Colares; Vanesa G. Perrotta

    2013-01-01

    Se estudió la anatomía de los tallos de 37 hierbas terrestres pertenecientes a 19 familias usadas en la medicina popular de la región rioplatense. El objetivo fue elaborar una clave dicotómica para la determinación de los taxones a partir de los caracteres morfo-histológicos de los tallos, ya sea que este material se encuentre al estado entero o fragmentado. Se estudiaron tallos frescos y de ejemplares de herbario, mediante técnicas histológicas convencionales. Se realizó análisis histoquímic...

  11. Tracking down worldwide Puccinia psidii dispersal

    Science.gov (United States)

    Rodrigo Neves Graca; Amy Ross-Davis; Ned Klopfenstein; Mee Sook Kim; Tobin Peever; Phil Cannon; Janice Uchida; Acelino Couto Alfenas

    2011-01-01

    Puccinia psidii causes rust disease on many host species in the Myrtaceae [1]. First reported in 1884 on guava in Southern Brazil [2], the rust has since been detected on several myrtaceous in South America, Central America, Caribbean, Mexico, USA: in Florida, California, and Hawaii. More recently, P. psidii was reported in Japan infecting M. polymorpha[3]. Of special...

  12. Microsatellite characterisation of South African Puccinia striiformis ...

    African Journals Online (AJOL)

    Since the first appearance of wheat stripe rust in 1996 in South Africa, four Puccinia striiformis races have been described. The first detected race, 6E16A−, was proposed to be a foreign introduction from Central or Western Asia that subsequently gained additional virulence through step-wise mutations. Simple sequence ...

  13. Phenotypical Expression of Maize Seedlings from Lines with the “Tallos Gemelos” Trait

    Directory of Open Access Journals (Sweden)

    Ma. Lorena Meraz-Fonseca

    2015-01-01

    Full Text Available In the Colegio de Postgraduados in Mexico, we have generated lines of maize (Zea mays L. with the particularity that from a seed two or more stalks emerge and develop normally, calling that character “tallos gemelos.” This trait possibly modifies the proportions of the constituent tissues of the seed and could increase the nutritional and nutraceutical quality of the grain. The aim of this study was to evaluate the germination percentage and quantify and describe the types of phenotypic expression of seedling with twin stalks in the lines. 100 seeds of each of the 26 S5 lines tested were used. At 15 days after planting in a greenhouse, the seedlings were classified based on their morphology. The results showed that, on average, the lines had 81.3% of emergence and 51% of twin stalks. Eight types of phenotypic expression in seedlings were identified and described with the character “tallos gemelos”; Type II showed the highest proportion (59.5%. The phenotypical expressions identified in seedlings with the “tallos gemelos” trait are evidence of epigenetic mechanisms, since they present one of the features of epimutants, which is that they are reversible, that is; they can return to the original phenotype, in the present circumstance to normal plants (single stalk.

  14. Methoxylated fatty acids in Blumeria graminis conidia.

    Science.gov (United States)

    Muchembled, Jérôme; Sahraoui, Anissa Lounès-Hadj; Laruelle, Frédéric; Palhol, Fabien; Couturier, Daniel; Grandmougin-Ferjani, Anne; Sancholle, Michel

    2005-04-01

    The total fatty acids (FA) composition of Blumeria graminis f.sp. tritici conidia, the causal agent of wheat powdery mildew, was analyzed as a function of their age. A total of 19 FA (C12-C24 saturated and unsaturated) and unusual methoxylated fatty acids (mFA) were detected in young, intermediate and old conidia. Two very long chain methoxylated FA were identified by GC-MS as 3-methoxydocosanoic and 3-methoxytetracosanoic acids. Medium chain FA were predominant in young conidia (75%, including 13% of mFA) while very long chain fatty acids constituted the major compounds in old conidia (74%, including 30% of mFA). We have shown for the first time that the total FA composition is strongly correlated with the age of B. graminis f.sp. tritici (Bgt) conidia.

  15. Anatomía de Dicotiledóneas: tallos de hierbas terrestres medicinales rioplatenses (Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Ana M. Arambarri

    2013-07-01

    Full Text Available Se estudió la anatomía de los tallos de 37 hierbas terrestres pertenecientes a 19 familias usadas en la medicina popular de la región rioplatense. El objetivo fue elaborar una clave dicotómica para la determinación de los taxones a partir de los caracteres morfo-histológicos de los tallos, ya sea que este material se encuentre al estado entero o fragmentado. Se estudiaron tallos frescos y de ejemplares de herbario, mediante técnicas histológicas convencionales. Se realizó análisis histoquímico para la identificación de almidón, mucílagos, sustancias lipídicas y fenólicas. Entre los caracteres diagnóstico hallados se destacan: contorno de la sección transversal del tallo; presencia y los tipos de tricomas; posición de los estomas con respecto al nivel de las restantes células epidérmicas; presencia de hipodermis, de anillos fibrosos en la corteza y de dos ciclos vasculares en la eustela; presencia de endodermis conspicua; diferentes tipos de cristales y estructuras secretoras internas, con sustancias lipófilas, mucílagos y la presencia de almidón. Los caracteres morfo-histológicos de los tallos permitieron elaborar una clave de diferenciación.

  16. CARACTERIZACIÓN DEL TALLO ACEPTOR DEL tRNA MEDIANTE DESCRIPTORES LOCALES BASADOS EN CARGAS PARCIALES

    Directory of Open Access Journals (Sweden)

    Ray Marín

    2009-04-01

    Full Text Available En este trabajo se caracteriza la distribución de carga del tallo aceptor del tRNA, considerando todas las posibles combinaciones de pares Watson-Crick. El estudio se realizó con 256 fragmentos moleculares de 10 nucleótidos que modelan los tres primeros pares del tallo aceptor, la base diferenciadora y el extremo CCA. Para caracterizar los nucleótidos se proponen dos descriptores locales basados en la distribución de carga de las base nitrogenada de cada nucleótido, los cuales se calculan a partir de las cargas parciales de Mulliken obtenidas de cálculos HF/6-31G. La caracterización y clasificación de los tallos según estos descriptores mostró como la base diferenciadora tiene un comportamiento particular respecto a los demás nucleótidos del tallo y una fuerte influencia sobre el extremo CCA. La clasificación de nueve variaciones del tallo aceptor del tRNAAla mostró una buena relación estructura-actividad que pone en evidencia la bondad de los descriptores propuestos para caracterizar de manera local la distribución de carga de estas biomoléculas. 

  17. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection.

    Science.gov (United States)

    Gupta, Om Prakash; Permar, Vipin; Koundal, Vikas; Singh, Uday Dhari; Praveen, Shelly

    2012-02-01

    Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.

  18. Isolate specificity and polygenic inheritance of resistance in barley to the heterologous rust pathogen Puccinia graminis f. sp. avenae

    NARCIS (Netherlands)

    Dracatos, P.M.; Nansamba, M.; Berlin, A.; Park, R.F.; Niks, R.E.

    2016-01-01

    Barley is a near-nonhost to numerous heterologous (nonadapted) rust pathogens because a small proportion of genotypes are somewhat susceptible. We assessed 66 barley accessions and three mapping populations (Vada x SusPtrit, Cebada Capa x SusPtrit, and SusPtrit x Golden Promise) for response to

  19. Crown sheath rot of rice: host-range and varietal resistance to Gaeumannomyces graminis var. graminis

    Directory of Open Access Journals (Sweden)

    Cecília do Nascimento Peixoto

    2014-09-01

    Full Text Available Several gramineous plants occurring in rice fields show symptoms of crown sheath rot of rice, caused by Gaeumannomyces graminis var. graminis (Ggg, under natural conditions of infection. The pathogenicity of the Ggg-a 01 isolate, collected from rice, was tested on seven grass species and eight cereals, under greenhouse conditions, in order to get information on host-range and resistance of rice genotypes to crown sheath rot. The inoculation tests showed that the rice isolate was pathogenic to weeds such as Echinochloa crusgalli, Pennisetum setosum, Brachiaria sp., Digitaria horizontalis, Brachiaria plantaginea, Eleusine indica and Cenchrus echinatus, and that these species are potential hosts to the pathogen. Winter cereals such as wheat, oat, rye, barley and triticale, as well as sorghum, maize and millet, presented different degrees of susceptibility to the Ggg-a isolate. Significant differences were observed in relation to lesion height and production of hyphopodia and perithecia on culms. Perithecia were not observed on millet, sorghum, southern sandbur and maize. The resistance of 58 upland rice genotypes was tested, and the SCIA16 and SCIA08 genotypes presented lesion height significantly smaller, being considered resistant, when compared to the highly susceptible CNAS10351 genotype.

  20. Susceptibility to Rust (Puccinia Sp. in Cultivars of Italian and Perennial Ryegrass Grown in Two Locations of Italy

    Directory of Open Access Journals (Sweden)

    Luigi Russi

    2009-03-01

    Full Text Available A large set of foreign varieties of Italian ryegrass (Lolium multiflorum and perennial ryegrass (L. perenne were evaluated for their response to natural rust infection in two Italian locations (Lodi in the north; Perugia in the centre of the country at three-year intervals in 2001, 2004 and 2007, to acquire information on novel germplasm for Italy and verify any spatial and temporal variation in the varietal response to the disease. Crown rust (caused by Puccinia coronata on Italian ryegrass and stem rust (caused by P. graminis on perennial rygrass were consistently recorded in appreciable amount (average susceptibility score > 2.0 on a 1-9 scale. Vice-versa, crown rust on perennial and stem rust on Italian ryegrass seldom affected appreciably the crop. Strong interactions of variety response (to the prevailing pathogen with locations and years of evaluation were observed in both ryegrasses. Subsequently, the repeatability of results between locations, or between years within locations, as measured by rank correlations of variety scores, was sometimes only moderate or low. However, despite such interactions, a few promising varieties were identified in each species with consistently low susceptibility across evaluation environments, which deserve further investigation for a possible direct utilisation, or as donors of useful genes for breeding purposes.

  1. Susceptibility to Rust (Puccinia Sp. in Cultivars of Italian and Perennial Ryegrass Grown in Two Locations of Italy

    Directory of Open Access Journals (Sweden)

    Luciano Pecetti

    2011-02-01

    Full Text Available A large set of foreign varieties of Italian ryegrass (Lolium multiflorum and perennial ryegrass (L. perenne were evaluated for their response to natural rust infection in two Italian locations (Lodi in the north; Perugia in the centre of the country at three-year intervals in 2001, 2004 and 2007, to acquire information on novel germplasm for Italy and verify any spatial and temporal variation in the varietal response to the disease. Crown rust (caused by Puccinia coronata on Italian ryegrass and stem rust (caused by P. graminis on perennial rygrass were consistently recorded in appreciable amount (average susceptibility score > 2.0 on a 1-9 scale. Vice-versa, crown rust on perennial and stem rust on Italian ryegrass seldom affected appreciably the crop. Strong interactions of variety response (to the prevailing pathogen with locations and years of evaluation were observed in both ryegrasses. Subsequently, the repeatability of results between locations, or between years within locations, as measured by rank correlations of variety scores, was sometimes only moderate or low. However, despite such interactions, a few promising varieties were identified in each species with consistently low susceptibility across evaluation environments, which deserve further investigation for a possible direct utilisation, or as donors of useful genes for breeding purposes.

  2. Developing clones of Eucalyptus cloeziana resistant to rust (Puccinia psidii)

    Science.gov (United States)

    Rafael F. Alfenas; Marcelo M. Coutinho; Camila S. Freitas; Rodrigo G. Freitas; Acelino C. Alfenas

    2012-01-01

    Besides its high resistance to Chrysoporthe cubensis canker, Eucalyptus cloeziana F. Muell. is a highly valuable tree species for wood production. It can be used for furniture, electric poles, fence posts, and charcoal. Nevertheless, it is highly susceptible to the rust caused by Puccinia psidii, which...

  3. Introduction of Ophiobolus graminis into new polders and its decline

    NARCIS (Netherlands)

    Gerlagh, M.

    1968-01-01

    After a short introductory chapter on the occurrence of Ophiobolus graminis (take-all disease) in the polders, in chapter 2 the course of the disease and the biology of the fungus are described. The third chapter deals with materials and methods. The following chapters deal with

  4. Evaluación neurofuncional del tallo cerebral Parte II: Reflejo mandibular = Neurofunctional evaluation of brain stem. II. Mandibular reflex

    Directory of Open Access Journals (Sweden)

    Leon Sarmiento, Fidias E.

    2011-09-01

    Full Text Available El reflejo mandibular o maseterino posee conexiones nerviosas únicas, diferentes de las exhi­bidas por otros reflejos monosinápticos humanos, y permite evaluar, de forma fácil y eficien­te, el tallo cerebral por medio de la estimulación mecánica, eléctrica o magnética. Diversos estudios han demostrado la participación en este reflejo de las interneuronas del tallo cerebral y su modulación por estructuras supraespinales, que hacen parte fundamental de su integra­ción motora. El reflejo mandibular es útil para evaluar la afectación trigémino-trigeminal en polineuropatías como la diabetes, neuromiopatías como la esclerosis múltiple y en pacientes con trastornos del movimiento, con o sin disfunción oromandibular. La evaluación neuro­funcional de este reflejo craneofacial ayuda a identificar la integración sensorimotora del tallo cerebral y las posibles alteraciones de estas vías reflejas, debidas a anormalidades del sistema nervioso central o del periférico. Su apropiada ejecución e interpretación, clínica y neurológica, permite aplicar de manera más personalizada diversos protocolos de neurorre­habilitación, con el fin de ayudar a mejorar la calidad de vida de los individuos con afectación de estas vías neurales.

  5. Crecimiento en longitud foliar y dinámica de población de tallos de cinco asociaciones de gramineas y leguminosa bajo pastoreo

    Directory of Open Access Journals (Sweden)

    Rigoberto Castro Rivera

    2013-01-01

    Full Text Available El objetivo del estudio fue determinar la elongación, crecimiento, senescencia, peso y dinámica de tallos de cinco asociaciones conformadas por dos gramíneas y una leguminosa sembradas en diferentes proporciones. Se evaluaron cinco tratamientos: 4:3:3; 4:6:0; 4:0:6; 4:4:2 y 4:2:4 de trébol blanco-ovillo-ballico perenne, los cuales se distribuyeron en 20 unidades experimentales de 104 m2 , en un diseño en bloques completos al azar. La mayor elongación y crecimiento neto de la hoja de las especies evaluadas fue en verano, con 7.1 y 6.53 cm tallo -1 d -1 , para el pasto ovillo, y 7 y 6.7 cm tallo -1 d -1 , para ballico perenne; en trébol blanco no existió diferencia en el recambio de tejido foliar y del peciolo en verano y primavera ( P>0.05. El mayor peso de tallos de ballico perenne y ovillo se registró en verano (0.38g -1 tallo - 1 y las mayores densidades en la época de invierno (9,961 y 10,423 tallos m-2 , respectivamente. El recambio de tejido de las especies evaluadas presentó marcada estacionalidad, siendo más dinámico en verano que en otoño. La asociación de tres especies permitió una mayor dinámica en comparación con la asociación de dos especies.

  6. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.

    Directory of Open Access Journals (Sweden)

    Dario Cantu

    Full Text Available BACKGROUND: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130. METHODOLOGY/PRINCIPAL FINDINGS: We obtained nearly 80 million high quality paired-end reads (>50x coverage that were assembled into 29,178 contigs (64.8 Mb, which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase. CONCLUSIONS/SIGNIFICANCE: The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for

  7. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis).

    Science.gov (United States)

    Menardo, Fabrizio; Praz, Coraline R; Wicker, Thomas; Keller, Beat

    2017-10-31

    Grass powdery mildew (Blumeria graminis, Ascomycota) is a major pathogen of cereal crops and has become a model organism for obligate biotrophic fungal pathogens of plants. The sequenced genomes of two formae speciales (ff.spp.), B.g. hordei and B.g. tritici (pathogens of barley and wheat), were found to be enriched in candidate effector genes (CEGs). Similar to other filamentous pathogens, CEGs in B. graminis are under positive selection. Additionally, effectors are more likely to have presence-absence polymorphisms than other genes among different strains. Here we identified effectors in the genomes of three additional host-specific lineages of B. graminis (B.g. poae, B.g. avenae and B.g. infecting Lolium) which diverged between 24 and 5 million years ago (Mya). We found that most CEGs in B. graminis are clustered in families and that most families are present in both reference genomes (B.g. hordei and B.g. tritici) and in the genomes of all three newly annotated lineages. We identified conserved protein domains including a novel lipid binding domain. The phylogenetic analysis showed that frequent gene duplications and losses shaped the diversity of the effector repertoires of the different lineages through their evolutionary history. We observed several lineage-specific expansions where large clades of CEGs originated in only one lineage from a single gene through repeated gene duplications. When we applied a birth-death model we found that the turnover rate (the rate at which genes are deleted and duplicated) of CEG families is much higher than for non-CEG families. The analysis of genomic context revealed that the immediate surroundings of CEGs are enriched in transposable elements (TE) which could play a role in the duplication and deletion of CEGs. The CEG repertoires of related pathogens diverged dramatically in short evolutionary times because of rapid turnover and of positive selection fixing non-synonymous mutations. While signatures of positive

  8. Evaluation of Puccinia carduorum for biological control of Carduus pycnocephalus in Tunisia

    Science.gov (United States)

    The rust fungus Puccinia carduorum is a candidate for biological control of Carduus pycnocephalus in the USA. In Tunisia, rusted C. pycnocephalus has been found in many fields during surveys conducted in the north of the country. The pathogenicity of Puccinia carduorum was evaluated under greenhou...

  9. Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley

    NARCIS (Netherlands)

    Aghnoum, R.; Niks, R.E.

    2010-01-01

    • The genetic basis of nonhost resistance of barley to nonadapted formae speciales of Blumeria graminis is not known, as there is no barley line that is susceptible to these nonadapted formae speciales, such as the wheat powdery mildew pathogen, Blumeria graminis f.sp. tritici (Bgt). • Barley

  10. Biolistic transformation of the obligate plant pathogenic fungus, Erysiphe graminis f.sp. hordei

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Knudsen, S.; Giese, H.

    1995-01-01

    Particle gun acceleration appears to be a possible way to transform mycelium cells of obligate plant parasites growing on host surfaces, GUS expression was obtained in E. graminis f.sp. hordei cells after bombardment with the GUS gene under the control of the E. graminis f.sp. hordei beta...

  11. Occurence of Puccinia bornmuelleri Magnus in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Jiří Müller

    2007-01-01

    Full Text Available Rust on Levisticum officinale was found on the foothill of “Velká Baba“ Hill north-west of Brno-Řečkovice on May 2006. It was identifity as Puccinia bornmuelleri Magnus. On the leaves there were a lot of uredinia and one group of spermogonia. The telia was found in September 2006. Probably, the rust occurs on more locations in Brno. The rust was found in Rumania a few years ago. These are the first two findings in Europe. The rust comes from Iran and Afghanistan. Spermogonia have been found together with uredia therefore P. bornmuelleri is brachypuccinia.

  12. Tissue localization of betacyanins in cactus stems Localización de betacianinas en tejido del tallo de cactus

    Directory of Open Access Journals (Sweden)

    Alessandro Mosco

    2012-06-01

    pigmentos. Este estudio tiene por objeto identificar los tejidos del tallo de los cactus en los cuales se acumulan las betacianinas. Esta acumulación se observó en tejidos tanto cultivados, como en la naturaleza. La localización de las betacianinas en los tallos de los cactus se observó en estudios de microscopía de luz en secciones transversales de tubérculos. Durante el trabajo de campo en la planicie mexicana en marzo, se observaron tallos rojizos en muchas especies de cactus de diferentes géneros. Los estudios en microscopía de luz mostraron que las betacianinas se acumulan en la hipodermis y en las capas más externas del clorénquima, donde pueden funcionar como pantalla, protegiendo los fotosistemas presentes en la capa subyacente, y posiblemente como antioxidante en la corteza.

  13. POLÍMERO HIDROFÍLICO COMBINADO CON SOLUCIONES PRESERVADORAS EN LA VIDA DE FLORERO DE TALLOS FLORALES DE ROSA Y HELICONIA

    Directory of Open Access Journals (Sweden)

    Otto Raul Leyva

    2011-11-01

    Full Text Available En la cadena de distribución de ornamentales, acciones sencillas pueden lograr un eficiente manejo poscosecha; sin embargo, su escaso conocimiento por los usuarios ha limitado su aplicación. El objetivo fue determinar el efecto del hidrogel Carbopol 940® y la adición de tres soluciones preservadoras sobre la vida en florero de rosa y heliconia. Se hicieron evaluaciones sobre la pérdida de humedad de los tallos en seis periodos de tiempo y observaciones de senescencia en cuatro momentos. Se observó una mayor pérdida de agua en los tallos en la combinación de hidrogel y soluciones, y una senescencia acelerada de las flores (33.5 %. La combinación de agua y soluciones tuvo la pérdida de humedad promedio más baja (19.2 %. En las primeras 24 h, los tallos de heliconia perdieron en promedio menos de 5 % de su peso y los de rosa más de 11 %. Los síntomas de senescencia se acentuaron desde las 168 h de iniciado el experimento. Las combinaciones del polímero Carbopol 940® y soluciones preservadoras no mostraron efectividad sobre la vida de florero de las especies utilizadas.

  14. Effect of black (stem rust (Puccinia Graminis F.SP. Tritici attack to the spike characteristics in Polish wheat (Triticum Polonicum L.

    Directory of Open Access Journals (Sweden)

    H. Stoyanov

    2015-03-01

    Full Text Available Abstract. The obtaining of high yields of crops is directly dependent on the cultivated varieties. In their creation it is essential the selected initial breeding material to possess certain qualities that lead to overcoming the effects of biotic and abiotic stress factors. Common winter wheat is characterized by great diversity of possibilities for combining initial breeding material due to phylogenetic similarity to many species of the genera Triticum, Aegilops, Secale. In creation of synthetic hexaploids (2n = 6x = 42, AABBDD, the choice of tetraploid component involved into the crosses is very important. The species Triticum polonicum (2n = 4x = 28, AABB possesses many valuable features related to its protein content, resistance to brown rust, powdery mildew and septoria leaf blight, but it is susceptible to varying levels of black rust attack. This is a prerequisite a correlation between the attack of the pathogen and some spike indicators that correlate with grain yield to be searched. To determine the relationship between the attack and the specific parameters, 52 accessions of the species Triticum polonicum have been studied in the financial 2012/2013 year, to the following indicators: length of spike, length of spike with awns, number of spikelets, weight of spike, weight of grains per spike, number of grains per spike, weight of 1000 grains, weight of spike after threshing. An evaluation of the infectious type of black rust attack on each accession is recorded according to 9-point scale, and correlation with the average values of each of the spike indicators is reported. To neutralize the influence of the factor 'accession' two specific indexes are calculated as a corrected value of the weight of 1000 grains. The highest and significant correlation was observed between the infectious type and both specific index (-43.2% and -44.6%, and less with the weight of 1000 grains (-41.9%. Insignificant or unreliable is the correlation of the other spike indicators with the infectious type. The lack of reliable and significant correlation of pathogen attack with the weight of grains per spike as an essential element of the yield, gives rise to claims that Triticum polonicum possesses a compensatory mechanisms to the effect of the black rust. This determines most of the studied accessions as a potential initial material for the creation of synthetic wheat or for inclusion into the selection programs of winter wheat.

  15. First Report of the Ug99 race group of Wheat Stem Rust, Puccinia graminis f. sp. tritici, in Egypt in 2014

    DEFF Research Database (Denmark)

    Patpour, Mehran; Hovmøller, Mogens; Shahin, Atef

    2016-01-01

    , Kenya, Ethiopia, Sudan, Tanzania, Eritrea, Rwanda, South Africa, Zimbabwe, Mozambique, Yemen, and Iran (Patpour et al. 2015). In the 2014 crop season, the presence of virulence to Sr31 in Egypt was suspected based on preliminary field observations of high infection on sources of Sr31 planted...

  16. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013-2014

    Science.gov (United States)

    A severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014 with yield losses close to 100% on the most widely grown wheat cultivar, 'Digalu'. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal...

  17. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  18. Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals.

    Science.gov (United States)

    Inuma, Takashi; Khodaparast, Seyed Akbar; Takamatsu, Susumu

    2007-08-01

    Blumeria graminis, a powdery mildew fungus, is an important plant pathogen that causes serious damage to a variety of cereal crops. In spite of the importance of the pathogen, information on phylogenetic structure within B. graminis is scarce. In this study we conducted phylogenetic analyses of B. graminis based on the DNA sequences of four different DNA regions (ITS, 28S rDNA, chitin synthase 1, and beta-tubulin). The analyses revealed that the protein-coding regions have higher amounts of phylogenetic signals than rDNA regions and are useful for phylogenetic analyses of B. graminis. The present phylogenetic analyses revealed nine distinct groups in the B. graminis isolates used in this study, a result which was commonly supported by all trees constructed from the four DNA regions. Isolates from a single host genus belonged to a single group except for isolates from Lolium and Bromus, in which the isolates were split into two and three groups, respectively. Isolates from Agropyron, Secale and Triticum formed a distinct clade (Triticum clade) with identical or similar DNA sequences. The Hordeum clade was a sister of the Triticum clade, and Poa and Avena clades were distantly related to the Triticum and Hordeum clades. This phylogenetic relationship of B. graminis is well concordant with the level of reproductive isolation between formae speciales and also with phylogeny inferred from a cytological study. Shimodaira-Hasegawa and Templeton tests using sequences of four different DNA regions significantly rejected the tree topology of plants. Therefore, possibility of co-speciation between B. graminis and its host plants was obscure in this study.

  19. Utilización del cultivo plurianual de pataca (Helianthus tuberosus L.) para la producción de hidratos de carbono fermentables a partir de los tallos

    OpenAIRE

    Sanz Gallego, Marina

    2012-01-01

    La pataca (Helianthus tuberosus L.) es una especie de cultivo con un alto potencial en la producción de hidratos de carbono de reserva en forma de polifructanos, especialmente inulina, que se acumulan temporalmente en los tallos en forma de polisacáridos para translocarse posteriormente a los tubérculos, donde son almacenados. Aunque tradicionalmente el producto de interés del cultivo son los tubérculos, que acumulan gran cantidad de hidratos de carbono fermentables (HCF) cuando se recogen al...

  20. A multiplex real-time PCR assay for the detection of Puccinia horiana and P. chrysanthemi on chrysanthemum

    Science.gov (United States)

    Puccinia horiana, the cause of chrysanthemum white rust, is a regulated fungal plant pathogen in the United States, while Puccinia chrysanthemi, the cause of chrysanthemum brown rust, is a widespread but less destructive pathogen. Accurate identification of these pathogens is essential to correctly ...

  1. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Frøkiær, Hanne; Hearty, Stephen

    2007-01-01

    The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine mAb-produci......The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine m......Ab-producing cell lines were cloned and their cross-reactivities characterised against a panel of airborne fungal spores representing genera commonly found in the same environment as Pst. Two specific mAbs were used to develop a competitive ELISA (Pst mAb4) and a subtractive inhibition ELISA (Pst mAb8). Standard...... curves for both assays had good intra- and interday reproducibility. The subtractive inhibition ELISA had greater sensitivity with a detection limit of 1.5 105 spores ml1. Cross-reactivity studies of Pst mAb8 in the subtractive inhibition ELISA, showed reaction with other Puccinia spores only, suggesting...

  2. Suppression of resistance to Erysiphe graminis f.sp. hordei conferred by the mlo5 barley powdery mildew resistance gene

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Carver, T.L.W.; Zeyen, R.J.

    1997-01-01

    . Additional suppression of mlo5 penetration resistance against the avirulent E. graminis isolate was achieved by using DDG, mannose, or glucose in combination with the phenylalanine ammonia lyase inhibitor alpha-aminooxy-beta-phenylpropionic acid (AOPP). A mlo virulent isolate of E. graminis was also tested...

  3. Cytological Evidence of an Active Role of Silicon in Wheat Resistance to Powdery Mildew (Blumeria graminis f. sp. tritici).

    Science.gov (United States)

    Bélanger, R R; Benhamou, Nicole; Menzies, J G

    2003-04-01

    ABSTRACT Silicon (Si) amendments in the form of exogenously supplied nutrient solution or calcium silicate slag protect wheat plants from powdery mildew disease caused by the fungus Blumeria graminis f. sp. tritici. The most striking difference between Si- and Si+ plants challenged with B. graminis f. sp. tritici was the extent of epidermal cell infection and colonization by B. graminis f. sp. tritici. Histological and ultrastructural analyses revealed that epidermal cells of Si+ plants reacted to B. graminis f. sp. tritici attack with specific defense reactions including papilla formation, production of callose, and release of electron-dense osmiophilic material identified by cytochemical labeling as glycosilated phenolics. Phenolic material not only accumulated along the cell wall but also was associated with altered integrity of haustoria in a manner similar to localized phytoalexins as reported from other pathosystems. These results strongly suggest that Si mediates active localized cell defenses against B. graminis f. sp. tritici attack.

  4. COMPORTAMIENTO FISIOLÓGICO POSTCOSECHA DE TALLOS FLORALES DE ROSA (Rosa hybrida L. EN RESPUESTA AL FÓSFORO APLICADO EN PRECOSECHA

    Directory of Open Access Journals (Sweden)

    Colinas-León MT

    2011-01-01

    Full Text Available Durante el crecimiento y desarro- llo de las flores, la nutrición fosforada es un factor que puede influir en la vida en flore- ro. El objetivo de este trabajo fue evaluar el efecto de cinco niveles de fósforo (P: 0, 0.5, 1.0, 1.5 y 2.0 me·L-1 de P aplicados en precosecha, mediante un sistema hidropóni- co abierto, en el comportamiento fisiológico postcosecha de tallos florales de rosa (Rosa hybrida L. ‘Classy’ y ‘Vega’. Las variables evaluadas durante la vida de florero de los tallos florales fueron: transpiración foliar y floral, potencial de turgencia foliar y de pétalos. Además, se evaluó la concentración de antocianinas en pétalos al momento de la cosecha. Las aplicaciones de P en precose- cha tuvieron efecto significativo únicamente en la transpiración foliar; sin embargo, se demostró que la mayor vida en florero (15.8 días de ‘Classy’ en comparación con ‘Vega’ (11.7 días estuvo directamente asociada con mayores potenciales de turgencia foliar y de pétalos, mayor tasa transpiratoria floral y menor tasa transpiratoria foliar en ‘Classy’.

  5. Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis.

    Science.gov (United States)

    Thomas, S W; Rasmussen, S W; Glaring, M A; Rouster, J A; Christiansen, S K; Oliver, R P

    2001-08-01

    Powdery mildew of barley is caused by the obligate fungal pathogen Blumeria graminis f. sp. hordei. Haploid conidia of B. graminis, landing on the barley leaf, germinate to form first a primary germ tube and then an appressorial germ tube. The appressorial germ tube differentiates into a mature appressorium from which direct penetration of host epidermis occurs. Here we present data on 4908 expressed sequence tags obtained from B. graminis conidia. The combined sequences represent 2676 clones describing 1669 individual genes. Comparison with sequences from other pathogenic and nonpathogenic fungi defines hypotheses on the genes required for pathogenicity and growth on the host. The putative roles of some of the identified genes are discussed. Copyright 2001 Academic Press.

  6. A Blumeria graminis f.sp. hordei BAC library - contig building and microsynteny studies

    DEFF Research Database (Denmark)

    Pedersen, C.; Wu, B.; Giese, H.

    2002-01-01

    A bacterial artificial chromosome (BAC) library of Blumeria graminis f.sp. hordei, containing 12,000 clones with an average insert size of 41 kb, was constructed. The library represents about three genome equivalents and BAC-end sequencing showed a high content of repetitive sequences, making...... contigs, at or close to avirulence loci, were constructed. Single nucleotide polymorphism (SNP) markers were developed from BAC-end sequences to link the contigs to the genetic maps. Two other BAC contigs were used to study microsynteny between B. graminis and two other ascomycetes, Neurospora crassa...

  7. Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE).

    Science.gov (United States)

    Thomas, Stephen W; Glaring, Mikkel A; Rasmussen, Søren W; Kinane, Julia T; Oliver, Richard P

    2002-08-01

    The fungal pathogen Blumeria graminis f. sp. hordei develops on the barley leaf via distinct, morphologically well-defined stages. After landing on a host plant, the conidia rapidly germinate to form a primary germ tube. Subsequently, an appressorial germ tube emerges from the conidium and differentiates an appressorium from which penetration of the host cell wall is attempted. We have used serial analysis of gene expression to provide a measurement of messenger RNA contents in ungerminated conidia, during conidial germination, and during appressorium formation. The resulting data provide a resource for the characterization of changes in transcript accumulation during early development of B. graminis.

  8. Identifying and utilizing resistance to Puccinia striiformis in wheat

    International Nuclear Information System (INIS)

    Line, R.F.; Allan, R.E.; Konzak, C.F.

    1976-01-01

    Resistance to Puccinia striiformis in wheat cultivars, breeding lines, and induced mutants, was studied on plants exposed to natural rust inoculum at field sites and on plants inoculated with specific races and grown under controlled temperatures. Based on infection types and disease intensity at various stages of plant growth throughout the duration of rust establishment, the following resistance-types (R-types) were identified: R-type 1, plants resistant or susceptible at all stages of growth and at both low and high temperatures throughout duration of rust establishment; R-type 2, plants initially resistant in the seedling stage but eventually become susceptible, plants resistant at later stages in the field; R-type 3, variable resistance in the seedling stage, high resistance in later growth stages; R-type 4, plants resistant in the eedling stage, but susceptible in late stages of growth; R-type 5, plants susceptible, but the pathogen is slow to sporulate and consequently, rust increases slower in the field; R-type 6, plants susceptible at low temperatures and resistant at high temperatures at all stages of growth; R-type 7, plants very susceptible at both low and high temperatures in the seedling stage and at low temperatures in later stages; when temperatures are high, plants become more resistant in later stages; R-type 8, plants susceptible at all stages, when rust intensity is low and when not under stress, but become more resistant when intensity is high or under moderate stress in the field. Combinations of the above types were also observed. Techniques for identifying resistance to stripe rust, race specificity of the resistance-types, relationship of plant growth habit and head characteristics to disease intensity, historical significance of various types of resistance in the United States, and methods of using the resistance-types are also discussed. (author)

  9. Genetic variability of Puccinia triticina Eriks. in Brazil

    Directory of Open Access Journals (Sweden)

    Vânia Bianchin

    2012-06-01

    Full Text Available Studies on the genetic variability of Puccinia triticina in inoculum collected in Brazil started in 1941 with Vallega (20. The pioneering work in Brazil dates from 1949 (16 at "Instituto Agronômico do Sul", Ministry of Agriculture (MA, in Pelotas, Rio Grande do Sul State (RS, and continued after 1975 at Embrapa Wheat in Passo Fundo, RS. In 2002, analyses for the identification of P. triticina races continued at OR Seed breeding, simultaneously to Embrapa's program, both in Passo Fundo. The investigators involved in the identification of races in Brazil were Ady Raul da Silva in Pelotas (MA, Eliza Coelho in Pelotas (MA and in Passo Fundo (Embrapa, Amarilis Labes Barcellos in Pelotas (MA and in Passo Fundo (Embrapa and OR, Camila Turra in Passo Fundo (OR and Marcia Chaves in Passo Fundo (Embrapa. From 1979 to 2010 growing season, 59 races were determined, according to the differentiation based on the expression of each Lr resistance gene. On average, one to three new races are detected per year. Research has focused on the use of vertical resistance; however, lately some institutes have searched more durable resistance, of the adult-plant type (horizontal, less race-specific. The uninterrupted monitoring of the wheat rust pathogenic population in Brazil during so many decades allowed the understanding of the evolution and virulence of races. The use of international nomenclature adopted by some programs has allowed the comparison of the fungus variability in Brazil with that in other countries, especially where frontiers are not barriers for spore transportation, confirmed by the occurrence of the same races all over one region.

  10. Resistance of Some Iraqi Bread Wheat Cultivars to Puccinia triticina

    Directory of Open Access Journals (Sweden)

    E.M. Al-Maaroof

    2005-12-01

    Full Text Available Brown rust (leaf rust caused by Puccinia triticina is one of the most serious diseases of wheat worldwide. In Iraq the occurrence and distribution of brown rust is more regular and uniform than that of other wheat rusts. with yield losses as high as 44% on susceptible wheat cultivars in commercial fields. Recently several promising wheat (Triticum aestivum cultivars with different levels of rust resistance have been released in Iraq. The present work was conducted to postulate the resistance genes in twenty-two Iraqi bread wheat cultivars by testing them with thirteen Mexican races of P. triticina. ‘Thatcher’ near-isogenic lines were used as testers for known resistance genes. Ten day old seedling sets were artificially inoculated with each race, and the infection type was recorded ten days later. Field reactions of the cultivars with the predominantly Iraqi races were determined under field conditions for three years. Results revealed that the Iraqi wheat cultivars possessed brown rust resistance genes Lr1, 3, 10, 13, 16, 17, 23 and 26, either alone or in various combinations. The presence of unknown resistance genes was also postulated in some cultivars. Lr23, derived from Triticum turgidum var. durum, was present in 23% of tested cultivars, whereas Lr13 was present in 18%. The presence of Lr26 in ‘Al-Nour’ and ‘Hashemia’ indicated that they carried the 1BL.1RS wheat-rye translocation. ‘Al-Melad’ displayed resistant reactions to all races used in the study. ‘Tamuz 3’ and ‘Al- Nour’ displayed high adult-plant resistance to P. triticina in the field.

  11. Differentiation Among Blumeria graminis f. sp. tritici Isolates Originating from Wild Versus Domesticated Triticum Species in Israel.

    Science.gov (United States)

    Ben-David, Roi; Parks, Ryan; Dinoor, Amos; Kosman, Evsey; Wicker, Thomas; Keller, Beat; Cowger, Christina

    2016-08-01

    Israel and its vicinity constitute a center of diversity of domesticated wheat species (Triticum aestivum and T. durum) and their sympatrically growing wild relatives, including wild emmer wheat (T. dicoccoides). We investigated differentiation within the forma specialis of their obligate powdery mildew pathogen, Blumeria graminis f. sp. tritici. A total of 61 B. graminis f. sp. tritici isolates were collected from the three host species in four geographic regions of Israel. Genetic relatedness of the isolates was characterized using both virulence patterns on 38 wheat lines (including 21 resistance gene differentials) and presumptively neutral molecular markers (simple-sequence repeats and single-nucleotide polymorphisms). All isolates were virulent on at least some genotypes of all three wheat species tested. All assays divided the B. graminis f. sp. tritici collection into two distinct groups, those from domesticated hosts and those from wild emmer wheat. One-way migration was detected from the domestic wheat B. graminis f. sp. tritici population to the wild emmer B. graminis f. sp. tritici population at a rate of five to six migrants per generation. This gene flow may help explain the overlap between the distinct domestic and wild B. graminis f. sp. tritici groups. Overall, B. graminis f. sp. tritici is significantly differentiated into wild-emmer and domesticated-wheat populations, although the results do not support the existence of a separate f. sp. dicocci.

  12. Multilocus genotypes indicate differentiation among Puccinia psidii populations from South America and Hawaii

    Science.gov (United States)

    R. N. Graca; A. C. Alfenas; A. L. Ross-Davis; Ned Klopfenstein; M. -S. Kim; T. L. Peever; P. G. Cannon; J. Y. Uchida; C. Y. Kadooka; R. D. Hauff

    2011-01-01

    Puccinia psidii is the cause of rust disease of many host species in the Myrtaceae family, including guava (Psidium spp.), eucalypt (Eucalyptus spp.), rose apple (Syzygium jambos), and 'ohi'a (Metrosideros polymorpha). First reported in 1884 on guava in Brazil, the rust has since been detected in South America (Argentina, Brazil, Colombia, Paraguay, Uruguay,...

  13. PCR-based assays for the detection of Puccinia horiana on chrysanthemums

    Science.gov (United States)

    Puccinia horiana, the causal agent of chrysanthemum white rust, is a pathogen of quarantine status in many countries where Chrysanthemum × morifolium cultivars are grown. Current identification protocols for white rust rely upon macroscopic symptom development and microscopic examination of infecte...

  14. Sporulation capacity and longevity of Puccinia horiana teliospores in infected chrysanthemum leaves

    Science.gov (United States)

    PUCCINIA HORIANA is a quarantine-significant fungal pathogen and causal agent of Chrysanthemum white rust, first discovered in the U.S. in 1977. The disease was eradicated and for many years successfully controlled by fungicides and strict regulatory measures. However, recently Chrysanthemum white r...

  15. 3-D imaging of temporal and spatial development of Puccinia striiformis haustoria in wheat

    DEFF Research Database (Denmark)

    Sørensen, Chris Khadgi; Justesen, Annemarie Fejer; Hovmøller, Mogens Støvring

    2012-01-01

    Differentiation of haustoria on primary infection hyphae of the fungal pathogen Puccinia striiformis was studied in wheat seedlings with two-photon microscopy in combination with a classical staining technique. Our results showed a significant increase in the average haustorium size 22, 44, 68, 9...

  16. Differential response by Melaleuca quinquenervia trees to attack by the rust fungus Puccinia psidii in Florida

    Science.gov (United States)

    Melaleuca quinquenervia (melaleuca, paperbark tree) is an exotic invasive tree in Florida, Hawaii, and some Caribbean islands. Puccinia psidii (guava rust-fungus) is a Neotropical rust fungus, reported to attack many species in the Myrtaceae and one genus in the Heteropyxidaceae, both members of the...

  17. Recent invasion of world-wide wheat growing areas by two aggressive strains of Puccinia striiformis

    DEFF Research Database (Denmark)

    Walter, Stephanie; Ali, Sajid; Justesen, Annemarie Fejer

    2012-01-01

    The ever more frequent and severe large-scale epidemics of wheat yellow/stripe rust disease (caused by Puccinia striiformis) pose a severe threat to the world’s wheat production (Hovmøller et al. 2010). The onset of a new series of world-wide wheat yellow rust epidemics in 2000 has been linked...

  18. Puccinia coronata f. sp. avenae: a threat to global oat production

    Science.gov (United States)

    Puccinia coronata f. sp. avenae causes crown rust disease in cultivated and wild oat. The significant yield losses inflicted by this pathogen makes crown rust the most devastating disease in the oat industry. P. coronata f. sp. avenae is a basidiomycete fungus with an obligate biotrophic lifestyle a...

  19. First Report of Orange Rust of Sugarcane caused by Puccinia kuehnii in Ecuador

    Science.gov (United States)

    Orange rust, Puccinia kuehnii (W. Krüger) E.J. Butler, is an important disease of sugarcane (complex hybrid of Saccharum L. species) that causes yield losses, and impacts breeding programs. Initially confined to the Asia-Oceania region (5), P. kuehnii was reported in Florida in June 2007 (2) and lat...

  20. An eQTL analysis of partial resistance to Puccinia hordei in barley

    NARCIS (Netherlands)

    Chen, Xinwei; Hackett, C.A.; Niks, R.E.; Hedley, P.E.; Booth, C.; Druka, A.; Marcel, T.C.; Vels, S.A.; Bayer, M.; Milne, I.; Morris, J.; Ramsay, L.; Marshall, D.; Cardle, L.; Waugh, R.

    2010-01-01

    Background - Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable

  1. Screening wild oat accessions from Morocco for resistance to Puccinia coronata

    Science.gov (United States)

    Here we report the screening of 338 new accessions of 11 different wild oat species (Avena) from the USDA Small Grains Collection for resistance to crown rust (Puccinia coronata). Wild oat species were originally collected in Morocco by C. Al Faiz, INRAT Rabat: Avena agadiriana, A. atlantica, A. bar...

  2. Prehaustorial resistance to the wheat leaf rust fungus, Puccinia triticina, in Triticum monococcum (s.s.)

    NARCIS (Netherlands)

    Anker, C.C.; Niks, R.E.

    2001-01-01

    Diploid wheat, Triticum monococcum s.l., is a host for the wheat leaf rust fungus, Puccinia triticina. Some accessions have been reported to show a high degree of prehaustorial resistance. This is non-hypersensitivity resistance, which acts before the formation of haustoria by the pathogen. To

  3. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, H; Prange, A; Hormes, J [CAMD, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806 (United States); Steiner, U; Oerke, E-C, E-mail: lichtenberg@lsu.ed [INRES-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn (Germany)

    2009-11-15

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  4. Two Dimensional Electrophoresis of Proteins from Cultures of Erysiphe graminis f.sp. hordei

    DEFF Research Database (Denmark)

    Torp, J.; Andersen, Brian

    1982-01-01

    Conidial proteins from barley powdery mildew, Erysiphe graminis f. sp. hordei, were separated by 2-dimensional electrophoresis in polyacrylamide slab gels. Isoelectric focusing was used in the first dimension and separation according to molecular weight in a gel containing sodium dodecyl sulphate...

  5. Hygienic assessment of risk caused by application of graminis ke and rinkor vg herbicides

    Directory of Open Access Journals (Sweden)

    M.M. Vasileva

    2017-12-01

    Full Text Available Our research goal was to perform hygienic assessment of risks caused by Graminis KE and Rinkor VG herbicides for people working with them. We applied sanitary-hygienic and toxicological research techniques in our work in full conformity with valid technical regulatory documents and guidelines. We set the following research tasks: to analyze literature and information sources; to perform primary toxicological assessment of preparatory herbicides and study their acute toxicity together with sensitizing effects at intragastric introduction, cutaneous application, and inhalation exposure on laboratory animals; to examine herbicides cumulative effects and calculation their cumulation coefficient; to examine working conditions during a natural experiment when Graminis KE and Rinkor VG herbicides were applied and calculate risks for workers; to work out scientifically grounded recommendations on their safety application in agriculture. The examined herbicides, Graminis KE and Rinkor VG, are classified as substances with the 3rd hazard degree as per their toxicometric parameters (moderately hazardous substances. Calculated risks of complex (inhalant and dermal exposure to Gramins KE and Rinkor VG herbicides for workers (operators who refills them and those who spray plants with them when they are applied in agriculture don't exceed acceptable levels (are less than 1. Our work results allow to enrich a set of plant protectors which are applied in the country and to use such preparations in agriculture which are the least harmful for health and the environment. Application of Graminis KE and Rinkor VG herbicides will help to increase crops productivity.

  6. Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up

    NARCIS (Netherlands)

    Villaverde, J.J.; Vlist, van der V.; Santos, S.A.O.; Haarmann, T.; Langfelder, K.; Pirttimaa, M.; Nyyssola, A.; Jylhä, S.; Tamminen, T.; Kruus, K.; Graaff, de L.H.; Pascoal Neto, C.; Simoes, M.M.Q.; Domingues, M.R.M.; Silvestre, A.J.D.; Eidner, J.; Buchert, J.

    2013-01-01

    Linoleic acid was converted into hydroperoxides by a Gaeumannomyces graminis tritici lipoxygenase produced recombinantly in Trichoderma reesei. Hydroperoxide production was optimized using a face-centred experimental design in order to study the effects of pH, temperature and time on the conversion

  7. Identification and selection of normalization controls for quantitative transcript analysis in Blumeria graminis.

    Science.gov (United States)

    Pennington, Helen G; Li, Linhan; Spanu, Pietro D

    2016-05-01

    The investigation of obligate biotrophic pathogens, for example Blumeria graminis, presents a number of challenges. The sensitivity of many assays is reduced because of the presence of host material. Furthermore, the fungal structures inside and outside of the plant possess very different characteristics. Normalization genes are used in quantitative real-time polymerase chain reaction (qPCR) to compensate for changes as a result of the quantity and quality of template material. Such genes are used as references against which genes of interest are compared, enabling true quantification. Here, we identified six potential B. graminis and five barley genes for qPCR normalization. The relative changes in abundance of the transcripts were assayed across an infection time course in barley epidermis, in B. graminis epiphytic structures and haustoria. The B. graminis glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT) and histone 3 (H3) genes and the barley GAPDH, ubiquitin (UBI) and α-tubulin 2B (TUBA2B) genes were optimal normalization controls for qPCR during the infection cycle. These genes were then used for normalization in the quantification of the members of a Candidate Secreted Effector Protein (CSEP) family 21, a conidia-specific gene and barley genes encoding putative interactors of CSEP0064. The analysis demonstrates the importance of identifying which reference genes are appropriate for each investigation. © 2015 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  8. Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley.

    Science.gov (United States)

    Aghnoum, Reza; Niks, Rients E

    2010-01-01

    The genetic basis of nonhost resistance of barley to nonadapted formae speciales of Blumeria graminis is not known, as there is no barley line that is susceptible to these nonadapted formae speciales, such as the wheat powdery mildew pathogen, Blumeria graminis f.sp. tritici (Bgt). Barley accessions with rudimentary susceptibility to an isolate of the nonadapted Bgt were identified. Those accessions were intercrossed in two cycles and two lines, called SusBgt(SC) and SusBgt(DC), with substantial susceptibility to Bgt at the seedling stage were selected. The quantitative variation among barley accessions and in the progenies after convergent crossing suggests a polygenic basis for this nonhost resistance. Both lines allowed an unusually high level of haustorium formation and colony development by Bgt. The SusBgt lines and their ancestor lines also allowed haustorium formation and conidiation by four out of seven isolates of other nonadapted B. graminis forms. Analysis of the infection process suggested that nonhost resistance factors are specific to the form and developmental stage of B. graminis. Resistances to establishment (first haustorium), colonization (subsequent haustoria) and conidiation are not associated. The lines developed will be of use in elucidating the genetic basis of nonhost resistance to Bgt in barley, and in gene expression and complementation studies on nonhost resistance.

  9. Evaluating fungicide sensitivity of regional Blumeria graminis f.sp. tritici populations in the United States

    Science.gov (United States)

    Blumeria graminis f.sp. tritici (Bgt), cause of wheat powdery mildew, has a high likelihood of developing fungicide resistance because of the large quantity of spores produced along with the mixed mode of reproduction. Additionally, once reduced sensitivity appears in a population it can influence n...

  10. Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis

    NARCIS (Netherlands)

    Aghnoum, R.

    2009-01-01

    In the barley-Blumeria interaction, resistance at penetration stage in association with papilla formation is a commonly occurring mechanism. This mechanism of defense reduces the infection severity by adapted powdery mildew pathogen (basal resistance to Blumeria graminis f.sp. hordei, Bgh) and fully

  11. Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis.

    Science.gov (United States)

    Eichmann, Ruth; Biemelt, Sophia; Schäfer, Patrick; Scholz, Uwe; Jansen, Carin; Felk, Angelika; Schäfer, Wilhelm; Langen, Gregor; Sonnewald, Uwe; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-04-01

    Different formae speciales of the grass powdery mildew fungus Blumeria graminis undergo basic-compatible or basic-incompatible (nonhost) interactions with barley. Background resistance in compatible interactions and nonhost resistance require common genetic and mechanistic elements of plant defense. To build resources for differential screening for genes that potentially distinguish a compatible from an incompatible interaction on the level of differential gene expression of the plant, we constructed eight dedicated cDNA libraries, established 13.000 expressed sequence tag (EST) sequences and designed DNA macroarrays. Using macroarrays based on cDNAs derived from epidermal peels of plants pretreated with the chemical resistance activating compound acibenzolar-S-methyl, we compared the expression of barley gene transcripts in the early host interaction with B. graminis f.sp. hordei or the nonhost pathogen B. graminis f.sp. tritici, respectively. We identified 102 spots corresponding to 94 genes on the macroarray that gave significant B. graminis-responsive signals at 12 and/or 24 h after inoculation. In independent expression analyses, we confirmed the macroarray results for 11 selected genes. Although the majority of genes showed a similar expression profile in compatible versus incompatible interactions, about 30 of the 94 genes were expressed on slightly different levels in compatible versus incompatible interactions.

  12. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis

    NARCIS (Netherlands)

    Trujillo, M.; Troeger, M.; Niks, R.E.; Kogel, K.H.; Huckelhoven, R.

    2004-01-01

    Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of

  13. Tartu meeriks pürgijad pakuvad - mis tooks ülikoolile Nobeli preemia / Ivar Tallo, Teet Jagomägi, Jüri Kumar, Malle Salupere...[jt.

    Index Scriptorium Estoniae

    2002-01-01

    Tartu linnapeakandidaadid Ivar Tallo, Teet Jagomägi, Jüri Kumar, Malle Salupere, Tõni Kauba, Tõnis Lukas ja Andrus Ansip vastavad küsimustele : Tartu Ülikooli arenguvõimalustest ja -vajadustest, konkurentsivõime suurendamisest / vahendasid Sander Silm, Priit Rajalo, Ivi Drikkit

  14. Rendimiento de plantas de tomate injertadas y efecto de la densidad de tallos en el sistema hidropónico Yield of tomato crop as a result of grafting and shoot density in hydroponic system

    Directory of Open Access Journals (Sweden)

    Roberta M.N. Peil

    2004-06-01

    Full Text Available El cultivo de tomate en primavera con baja densidad inicial de plantas y luego aumentar-se la densidad efectiva mediante el desarrollo de tallos laterales, cuando las integrales diarias de radiación son altas, parece ser una manera prometedora de incrementar el número de frutos m-2 y uniformizar el tamaño del fruto; y presenta la ventaja adicional de requerir-se un menor número de plantas para la superficie de cultivo. Por lo tanto, se ha llevado a cabo un ensayo cuyo objetivo ha sido evaluar los efectos de la densidad de tallos sobre el rendimiento y la uniformidad de los frutos de un cultivo de tomate injertado y no injertado. El cultivo se realizó de marzo a julio de 1998, en las condiciones de invernadero en Almería (sudeste español. La densidad inicial de plantación fue de 2,4 y 3,0 plantas m-2, en el caso de las plantas no injertadas, que presentaban un único tallo en el transplante; y 1,2 plantas m-2 en las plantas injertadas, que tenían dos tallos (2,4 tallos m-2. A partir del mes de abril, mediante el desarrollo de tallos laterales (cuando el tratamiento así lo exigía se pasó a tener las siguientes densidades: 2,4; 3,0 y 3,5 tallos m-2 (plantas injertadas y no injertadas; y 3,0 plantas no injertadas m-2 a un tallo durante todo el ciclo. Los resultados muestran que plantas de tomate injertadas y transplantadas a dos tallos tuvieron igual producción total, pero frutos de tamaño más uniforme, que plantas no injertadas transplantadas a un tallo y con doble densidad de plantas. Dentro del rango de 2,4 a 3,5 tallos m-2, una mayor densidad de tallos aumentó la producción precoz y dio un tamaño más uniforme de frutos, no afectando su peso promedio y la producción total. La adición de tallos laterales (3,0 tallos m-2 supuso una reducción de un 20% en el rendimiento total, pero vino acompañada por un ahorro de un 21% y de un 39% en el número de plantas no injertadas e injertadas, respectivamente, necesarias para la misma

  15. Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis.

    Science.gov (United States)

    Prats, Elena; Carver, Tim L W; Mur, Luis A J

    2008-01-01

    Nitric oxide (NO) is an important signal in plant resistance to pathogens. Here we report that NO is also generated by Blumeria graminis f.sp. hordei as a pathogenesis determinant on barley. Infection by B. graminis f.sp. hordei is dependent on appressorium formation in order to penetrate the host. Using fluorescent dye diaminofluorescein-2 diacetate (DAF-2DA) and confocal laser scanning microscopy, transient NO generation was detected within the B. graminis f.sp. hordei appressorium during its maturation. To confirm that NO was indeed being measured, DAF-2DA fluorescence was suppressed using a NO scavenger and a mammalian NO synthase inhibitor. Both chemicals affected the number of appressorial lobes produced by the fungus. These data indicate that NO plays a key role in formation of B. graminis f.sp. hordei appressoria.

  16. The effectiveness of funqicides in the control of white rust (Puccinia horiana P. Henn of Chrysanthemums

    Directory of Open Access Journals (Sweden)

    Cz. Zamorski

    2013-12-01

    Full Text Available The object of this study was to determine the effectiveness of some fungicides such as Dithane M-45 (mancozeb - 0.3%, Plantvax (oxycarboxin - 0.075%, Saprol (triforine - 0.1%, Calirus (benodanil - 0.3%, Bayleton 5 WP (triadimefon - 0.05%, Baycor (biloxazol - 0.1%, Vigilex (dichlobutrazol - 0.04% in the control of chrysanthemum white rust (Puccinia horiana. Tests were conducted in the period 1979-1980. Plants of four varieties were sprayed 8 times weekly. The disease was completely suppressed in the combinations with Plantvax, Saprol, Calirus, Bayleton 5 WP, Baycor and Vigilex. The disease index of Puccinia horiana infection on chrysanthemums was only slightly lower when Dithane M-45 was applied. Plantvax was phytotoxic for all tested varieties, Vigilex suppressed plant growth, treated plants were 3/4 shorter in comparison with plants of all the other combinations.

  17. Use of some chemical inducers to improve wheat resistance to Puccinia striiformis f. Sp. Tritici

    Directory of Open Access Journals (Sweden)

    Al-Maaroof Emad

    2014-01-01

    Full Text Available The effect of DL-β-aminobutyric acid (BABA, benzothiadiazole (BTH, indoleacetic acid (IAA and salicylic acid (SA on induced systemic resistance was investigated in moderately susceptible and susceptible wheat genotypes Tamuz-2 and AL-8/70 against Puccinia striiformis f. sp. tritici. Resistance was characterized by reduced infection of yellow rust disease (Yrd. Changes in peroxidase, phenylalanine ammonia-lyase activities and in total phenolic compound content demonstrated that the resistance to Puccinia striiformis can be induced by BABA, BTH, IAA and SA in these two wheat genotypes. Further studies are needed before a practical method using many analogue compounds, such as potassium phosphate and biotic agent for Yrd resistance in wheat is developed.

  18. Major Transcriptome Reprogramming Underlies Floral Mimicry Induced by the Rust Fungus Puccinia monoica in Boechera stricta

    OpenAIRE

    Cano, Liliana M.; Raffaele, Sylvain; Haugen, Riston H.; Saunders, Diane G. O.; Leonelli, Lauriebeth; MacLean, Dan; Hogenhout, Saskia A.; Kamoun, Sophien

    2013-01-01

    Puccinia monoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boechera stricta . Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P . monoica -induced pseudoflowers, this system...

  19. Analysis of simple sequence repeats in the Gaeumannomyces graminis var. tritici genome and the development of microsatellite markers.

    Science.gov (United States)

    Li, Wei; Feng, Yanxia; Sun, Haiyan; Deng, Yuanyu; Yu, Hanshou; Chen, Huaigu

    2014-11-01

    Understanding the genetic structure of Gaeumannomyces graminis var. tritici is essential for the establishment of efficient disease control strategies. It is becoming clear that microsatellites, or simple sequence repeats (SSRs), play an important role in genome organization and phenotypic diversity, and are a large source of genetic markers for population genetics and meiotic maps. In this study, we examined the G. graminis var. tritici genome (1) to analyze its pattern of SSRs, (2) to compare it with other plant pathogenic filamentous fungi, such as Magnaporthe oryzae and M. poae, and (3) to identify new polymorphic SSR markers for genetic diversity. The G. graminis var. tritici genome was rich in SSRs; a total 13,650 SSRs have been identified with mononucleotides being the most common motifs. In coding regions, the densities of tri- and hexanucleotides were significantly higher than in noncoding regions. The di-, tri-, tetra, penta, and hexanucleotide repeats in the G. graminis var. tritici genome were more abundant than the same repeats in M. oryzae and M. poae. From 115 devised primers, 39 SSRs are polymorphic with G. graminis var. tritici isolates, and 8 primers were randomly selected to analyze 116 isolates from China. The number of alleles varied from 2 to 7 and the expected heterozygosity (He) from 0.499 to 0.837. In conclusion, SSRs developed in this study were highly polymorphic, and our analysis indicated that G. graminis var. tritici is a species with high genetic diversity. The results provide a pioneering report for several applications, such as the assessment of population structure and genetic diversity of G. graminis var. tritici.

  20. Virulence Differences in Blumeria graminis f. sp. tritici from the Central and Eastern United States.

    Science.gov (United States)

    Cowger, Christina; Mehra, Lucky; Arellano, Consuelo; Meyers, Emily; Murphy, J Paul

    2018-03-01

    Wheat powdery mildew is a disease of global importance that occurs across a wide geographic area in the United States. A virulence survey of Blumeria graminis f. sp. tritici, the causal agent, was conducted by sampling 36 wheat fields in 15 U.S. states in the years 2013 and 2014. Using a hierarchical sampling protocol, isolates were derived from three separated plants at each of five separated sites within each field in order to assess the spatial distribution of pathotypes. In total, 1,017 isolates from those fields were tested individually on single-gene differential cultivars containing a total of 21 powdery mildew resistance (Pm) genes. Several recently introgressed mildew resistance genes from wild wheat relatives (Pm37, Pm53, MlAG12, NCAG13, and MlUM15) exhibited complete or nearly complete resistance to all local B. graminis f. sp. tritici populations from across the sampled area. One older gene, Pm4b, also retained at least some efficacy across the sampled area. The B. graminis f. sp. tritici population sampled from Arkansas and Missouri, on the western edge of the eastern soft red winter wheat region, had virulence profiles more similar to other soft wheat mildew populations than to the geographically closer population from hard wheat fields in the Plains states of Oklahoma, Nebraska, and Kansas. The Plains population differed in that it was avirulent to several Pm genes long defeated in the soft-wheat-growing areas. Virulence complexity was greatest east of the Mississippi River, and diminished toward the west. Several recently introgressed Pm genes (Pm25, Pm34, Pm35, and NCA6) that are highly effective against mildew in the field in North Carolina were unexpectedly susceptible to eastern-U.S. B. graminis f. sp. tritici populations in detached-leaf tests. Sampled fields displayed a wide range of pathotype diversity and spatial distribution, suggesting that epidemics are caused by varying numbers of pathotypes in all regions. The research confirmed that

  1. Induced accessibility and inaccessibility to ¤Blumeria graminis¤ f.sp. ¤hordei¤ in barley epidermal cells attacked by a compatible isolate

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Carver, T.L.W.

    1999-01-01

    First leaves of the barley line Riso-5678S were subjected to a double inoculation procedure ('inducer' followed by 'challenger') with conidia of a genetically compatible isolate of Blumeria graminis (DC.) Speer (Syn. Erysiphe graminis DC.). In control leaves, attacked by appressoria from a single...

  2. Modification of ¤mlo5¤ resistance to ¤Blumeria graminis¤ attack in barley as a consequence of induced accessibility and inaccessibility

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Carver, T.L.W.

    1999-01-01

    First leaves of barley line Riso 5678R, with the recessive mlo5 allele conditioning highly efficient, papilla-based penetration resistance to field isolates of Blumeria graminis (DC.) Speer (Syn. Erysiphe graminis DC.) were used. Leaves were subjected to a double inoculation procedure ("inducer...

  3. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM).

    Science.gov (United States)

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus; Ordon, Frank

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  4. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)

    Science.gov (United States)

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars. PMID:29370232

  5. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei and leaf rust (Puccinia hordei in barley using nested association mapping (NAM.

    Directory of Open Access Journals (Sweden)

    Thomas Vatter

    Full Text Available The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  6. Reaction of wheat cultivars and differential lines to Puccinia triticina races in detached leaves

    Directory of Open Access Journals (Sweden)

    Camila Turra

    2014-12-01

    Full Text Available The method of preserving detached wheat leaves in Petri dish was used for the inoculation and development of the fungus Puccinia triticina, the causal agent of wheat leaf rust. The reaction of 26 wheat cultivars was compared by using seedlings cultivated in pots (in vivo and detached leaves (in vitro inoculated with four physiological races of the pathogen. After inoculation, the material was kept in a growth chamber for 15 days. The reaction was evaluated on the 15th day after inoculation. Results for each race in the evaluated genotypes confirmed the efficiency of the detached leaf method in assessing the reaction of wheat cultivars.

  7. Approaches to predicting current and future distributions of Puccinia psidii in South America under climate change scenarios

    Science.gov (United States)

    N. B. Klopfenstein; J. W. Hanna; R. N. Graca; A. L. Ross-Davis; P. G. Cannon; A. C. Alfenas; M. -S. Kim

    2011-01-01

    Puccinia psidii is the cause of Eucalyptus/guava/myrtle rust disease of many host species in the Myrtaceae family, including guava (Psidium spp.), eucalypt (Eucalyptus spp.), rose apple (Syzygium jambos), and ohia (Metrosideros polymorpha) (Farr and Rossman 2010). First reported in 1884 on guava in Brazil (Maclachlan 1938), the rust has since been detected in other...

  8. Fungicide impact on in vitro germination of Basidiospores of Puccinia horiana, causal agent of Chrysanthemum white rust

    Science.gov (United States)

    Puccinia horiana is an actionable pathogen, which upon diagnosis triggers an eradication protocol combining destruction of symptomatic chrysanthemums and a strict fungicide regime for symptomless plants. Appearance of symptoms typically occurs during the fall just as growers are preparing to ship th...

  9. Tracking the distribution of Puccinia psidii genotypes that cause rust disease on diverse myrtaceous trees and shrubs

    Science.gov (United States)

    Amy L. Ross-Davis; Rodrigo N. Graca; Acelino C. Alfenas; Tobin L. Peever; Jack W. Hanna; Janice Y. Uchida; Rob D. Hauff; Chris Y. Kadooka; Mee-Sook Kim; Phil G. Cannon; Shigetou Namba; Nami Minato; Sofia Simeto; Carlos A. Perez; Min B. Rayamajhi; Mauricio Moran; D. Jean Lodge; Marcela Arguedas; Rosario Medel-Ortiz; M. Armando Lopez-Ramirez; Paula Tennant; Morag Glen; Ned B. Klopfenstein

    2014-01-01

    Puccinia psidii Winter (Basidiomycota, Uredinales) is a biotrophic rust fungus that was first reported in Brazil from guava in 1884 (Psidium guajava; Winter 1884) and later from eucalypt in 1912 (Joffily 1944). Considered to be of neotropical origin, the rust has also been reported to infect diverse myrtaceous hosts elsewhere in South America, Central America, the...

  10. Rust disease of eucalypts, caused by Puccinia psidii, did not originate via host jump from guava in Brazil

    Science.gov (United States)

    Rodrigo N. Graca; Amy L. Ross-Davis; Ned B. Klopfenstein; Mee-Sook Kim; Tobin L. Peever; Phil G. Cannon; Cristina P. Aun; Eduardo G. Mizubuti; Acelino C. Alfenas

    2013-01-01

    The rust fungus, Puccinia psidii, is a devastating pathogen of introduced eucalypts (Eucalyptus spp.) in Brazil where it was first observed in 1912. This pathogen is hypothesized to be endemic to South and Central America and to have first infected eucalypts via a host jump from native guava (Psidium guajava). Ten microsatellite markers were used to genotype 148 P....

  11. Haplotype divergence and multiple candidate genes at Rphq2, a partial resistance QTL of barley to Puccinia hordei

    NARCIS (Netherlands)

    Yeo Kuok San, Freddy; Wang, Y.; Vozabova, Tereza; Huneau, C.; Leroy, P.; Chalhoub, B.; Qi, X.Q.; Niks, R.E.; Marcel, T.C.

    2016-01-01

    Key message: Rphq2, a minor gene for partial resistance toPuccinia hordei, was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes ofrphq2andRphq2barley cultivars.Abstract: Partial and non-host resistances to rust fungi in barley (Hordeum vulgare) may be

  12. Determining if there are lines of guava rust (Puccinia psidii) that could seriously impact ohia (Metrosideros polymorpha), in Hawaii

    Science.gov (United States)

    Philip G. Cannon; Acelino Couto Alfenas; Rodrigo Neves Graca; Mee-Sook Kim; Tobin L. Peever; Ned B. Klopfenstein

    2010-01-01

    The rust, Puccinia psidii, was first found on the leaves, stems and fruit of guava in Brazil in 1894 (Winter, 1984). As a result, it was first called guava rust. It has subsequently been identified in other countries of the western hemisphere including Paraguay in 1884, Uruguay in 1989, Puerto Rico in 1913, Colombia in 1913, Cuba in 1926, Jamaica in 1936, Florida in...

  13. Effect of partial resistance to barley leaf rust, Puccinia hordei, on the yield of three barley cultivars

    NARCIS (Netherlands)

    Ochoa, J.; Parlevliet, J.E.

    2007-01-01

    Three barley cultivars, Shyri, Clipper and Terán, with different levels of partial resistance to barley leaf rust, caused by Puccinia hordei, were exposed to six levels of the pathogen. These levels were obtained by 5, 4, 3, 2, 1 and 0 fungicide (Propiconazol) applications respectively and occurred

  14. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L.

    NARCIS (Netherlands)

    Barbieri, M.; Marcel, T.C.; Niks, R.E.; Francia, E.; Pasquariello, M.; Mazzamurro, V.; Garvin, D.F.; Pecchioni, N.

    2012-01-01

    The potential of the model grass Brachypodium distachyon L. (Brachypodium) for studying grass–pathogen interactions is still underexploited. We aimed to identify genomic regions in Brachypodium associated with quantitative resistance to the false brome rust fungus Puccinia brachypodii. The inbred

  15. Host status of barley to Puccinia coronata from couch grass and P. striiformis from wheat and brome

    Science.gov (United States)

    The pathogenicity and identity of a field sample (PcE) of crown rust fungus Puccinia coronata collected in Hungary on wild couch grass (Elytrigia repens) and of a field sample (Psb) of stripe rust (P. striiformis) collected in the Netherlands on California brome (Bromus carinatus) was studied. We fo...

  16. Host status of barley to Puccinia coronata from couch grass and P. striiformis from wheat and brome

    NARCIS (Netherlands)

    Niks, R.E.; Heyzen, van S.; Szabo, L.J.; Alemu, S.K.

    2013-01-01

    The pathogenicity and identity was studied of a field sample (PcE) of crown rust fungus Puccinia coronata collected in Hungary on wild couch grass (Elymus repens) and of a field sample (Psb) of stripe rust (P. striiformis) collected in the Netherlands on California brome (Bromus carinatus). We

  17. Century-old Mystery of Puccinia striiformis Life History Solved with the Identification of Berberis as an Alternate Host

    Science.gov (United States)

    The life history of Puccinia striiformis remains a mystery because the alternate host has never been found. Inoculation of grasses using aeciospores from naturally infected Berberis chinensis and B. koreana resulted in infection on Poa pratensis, producing uredinia typical of stripe rust caused by P...

  18. Genetic differentiation of the wheat leaf rust fungus Puccinia triticina in Pakistan and genetic relationship to other worldwide populations

    Science.gov (United States)

    Collections of Puccinia triticina, the wheat leaf rust pathogen, were obtained from Pakistan in 2008, 2010, 2011, 2013, and 2014. Collections were also obtained from Bhutan in 2013. Single uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ fo...

  19. Genetic and molecular characterization of leaf rust resistance in two durum landraces against the durum- specific Puccinia triticina races

    Science.gov (United States)

    The Portuguese durum landraces, Aus26582 and Aus26579, showed resistance against two very different durum-specific Puccinia triticina (Pt) races CA 1.2 and ETH 12.5-2 collected from California and Ethiopia, respectively. Aus26582 and Aus26579 were crossed with a susceptible landrace Bansi to develop...

  20. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis.

    Science.gov (United States)

    Nowara, Daniela; Gay, Alexandra; Lacomme, Christophe; Shaw, Jane; Ridout, Christopher; Douchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Schweizer, Patrick

    2010-09-01

    Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.

  1. Sensitivity reduction in Blumeria graminis f. sp. hordei to triadimenol fungicide applied as barley seed treatment

    Directory of Open Access Journals (Sweden)

    Erlei Melo Reis

    2013-12-01

    Full Text Available Experiments were carried out in a growth chamber with controlled temperature and photoperiod to test two populations of Blumeria graminis f. sp. hordei from Guarapuava, Paraná State, and Passo Fundo, Rio Grande do Sul State, Brazil. Treatments consisted in application of the fungicide triadimenol (Baytan 150 SC® at three rates of its commercial formulation: 150, 250, 350 mL/100 Kg barley seeds. The experiments were conducted separately in a growth chamber for each population, adopting the same temperature and photoperiod. For inoculation, pots containing barley seedlings colonized by the fungus were placed among the plots. After emergence of the first symptoms, the disease severity was assessed at two-day intervals. The experiments were repeated twice for each fungus population. Data were expressed as area under the disease progress curve and as powdery mildew control by comparing the severity after the fungicide treatments to that of control. Data were subjected to analysis of variance and regression analysis; the area under the disease progress curve was also calculated. Comparing the data obtained in the present study with those reported in the literature and the control, the maximum value of 26.1% is considered insufficient to prevent the damages caused by the disease. The control response to the fungicide rate was significant. We can conclude that there was a reduction in the sensitivity of both B. graminis f.sp. hordei populations to the fungicide triadimenol, which explains the control failure observed in barley farms.

  2. A genetic map of Blumeria graminis based on functional genes, avirulence genes, and molecular markers.

    Science.gov (United States)

    Pedersen, Carsten; Rasmussen, Søren W; Giese, Henriette

    2002-04-01

    A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.

  3. In Planta Proteomics and Proteogenomics of the Biotrophic Barley Fungal Pathogen Blumeria graminis f. sp. hordei*

    Science.gov (United States)

    Bindschedler, Laurence V.; Burgis, Timothy A.; Mills, Davinia J. S.; Ho, Jenny T. C.; Cramer, Rainer; Spanu, Pietro D.

    2009-01-01

    To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. PMID:19602707

  4. Spectral Patterns Reveal Early Resistance Reactions of Barley Against Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Kuska, Matheus Thomas; Brugger, Anna; Thomas, Stefan; Wahabzada, Mirwaes; Kersting, Kristian; Oerke, Erich-Christian; Steiner, Ulrike; Mahlein, Anne-Katrin

    2017-11-01

    Differences in early plant-pathogen interactions are mainly characterized by using destructive methods. Optical sensors are advanced techniques for phenotyping host-pathogen interactions on different scales and for detecting subtle plant resistance responses against pathogens. A microscope with a hyperspectral camera was used to study interactions between Blumeria graminis f. sp. hordei and barley (Hordeum vulgare) genotypes with high susceptibility or resistance due to hypersensitive response (HR) and papilla formation. Qualitative and quantitative assessment of pathogen development was used to explain changes in hyperspectral signatures. Within 48 h after inoculation, genotype-specific changes in the green and red range (500 to 690 nm) and a blue shift of the red-edge inflection point were observed. Manual analysis indicated resistance-specific reflectance patterns from 1 to 3 days after inoculation. These changes could be linked to host plant modifications depending on individual host-pathogen interactions. Retrospective analysis of hyperspectral images revealed spectral characteristics of HR against B. graminis f. sp. hordei. For early HR detection, an advanced data mining approach localized HR spots before they became visible on the RGB images derived from hyperspectral imaging. The link among processes during pathogenesis and host resistance to changes in hyperspectral signatures provide evidence that sensor-based phenotyping is suitable to advance time-consuming and cost-expensive visual rating of plant disease resistances.

  5. The white barley mutant albostrians shows enhanced resistance to the biotroph Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Jain, Sanjay Kumar; Langen, Gregor; Hess, Wolfgang; Börner, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2004-04-01

    We performed cytological and molecular analyses of the interaction between the biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei and white and green leaves of the barley albostrians mutant. The leaves have the same nuclear genotype but differ from each other in respect to plastid differentiation. White leaves showed enhanced penetration resistance to B. graminis f. sp. hordei, associated with higher epidermal H2O2 accumulation beneath the appressorial germ tubes and protein cross-linking in papillae. Very low basal salicylic acid content was found in white leaves, which further confirmed that H2O2 accumulation and penetration resistance in barley are independent of salicylic acid. Expression analysis of stress and defense-related genes, including such being involved in reactive oxygen species production and cell death regulation, revealed stronger constitutive or pathogen-induced transcript accumulation in white leaves. We discuss the data on the basis of the finding that white albostrians leaves exhibit a supersusceptible interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana.

  6. In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Bindschedler, Laurence V; Burgis, Timothy A; Mills, Davinia J S; Ho, Jenny T C; Cramer, Rainer; Spanu, Pietro D

    2009-10-01

    To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity.

  7. Reducción de la fertilización sintética con composta y optimización del riego sobre la pudrición del tallo (Fusarium spp del maíz

    Directory of Open Access Journals (Sweden)

    Blanca E. López Valenzuela

    2014-01-01

    Full Text Available El maíz es el cultivo agrícola de grano más importante de México por ser sembrado con mayor superficie yser la base de la alimentación en toda la nación siendo Sinaloa el principal productor.La siembra repetitiva delcultivo efectuada a través de los años,ha favorecidola proliferación de enfermedades como la pudrición detallos y la pudrición de mazorcas, atribuidas principalmente aFusariumspp, las cuales representan unpotencial de riesgo y han alertado al productor a poner mucha atención en el manejo del cultivo. Con elobjetivo de evaluar el efecto de la fertilización sintética con composta y riego sobre la pudrición de tallos ymazorcas de maíz en elValle delFuerte; experimentos de campo se condujeron en el ciclo agrícola primavera-verano 2009en el INIFAP. El experimento fue diseñado en parcelas divididas en bloques completos al azarcon tres repeticiones; al final del ciclo se encontró que no hubo diferencias significativas del factorfertilización y riego respecto al rendimiento así como lasvariables fenológicas evaluadas. La incidencia depudrición de tallos evaluada a los 53 días después de la siembra fue de 100%. Sin embargo, se encontrarondiferencias significativas en cuanto a la severidad de mazorcas podridas donde se aplicaron menos riegos.Finalmente, el estudio morfológico mostro que el principal agente asociado en pudrición de tallos fueFusarium verticilliodesy en cuanto a pudrición de mazorcas se detectó una mayor diversidad de agentesasociados tales comoApergillus spp, Penicillum pinophilum,y con mayor incidenciaFusarium verticilliodes.

  8. VARIACIONES ISOENZIMÁTICA Y PATOGÉNICA DE Fusarium spp. ASOCIADAS CON LA PUDRICIÓN DE TALLO Y RAÍZ DE VAINILLA

    Directory of Open Access Journals (Sweden)

    Jacel Adame-García

    2011-11-01

    Full Text Available Se determinaron las variaciones patogénica e isoenzimática de aislamientos de Fusarium spp. asociadas con la pudrición de tallo y raíz de un cultivar de vainilla en la región del Totonacapan, Veracruz, México. Los patrones de patogenicidad y los perfiles de bandas esterasas de los aislamientos evaluados demostraron que no sólo existe variabilidad morfológica y patogénica, sino también un alto grado de variabilidad bioquímica dentro de los hongos causantes de la pudrición de tallo de Vanilla planifolia Jacks. ex Andrews. La producción de algunas esterasas (banda Rf = 0.75 al parecer está asociada con el grado de patogenicidad de los hongos, ya que no se detectó su presencia en los aislamientos que resultaron no patogénicos para este cultivo. Este marcador bioquímico podría ser una alternativa rápida, confiable y económica, con relación a otras tecnologías moleculares ya establecidas para evaluar el grado de patogenicidad de Fusarium spp. en V. planifolia, así como de otras especies o razas de este género, causantes de la pudrición de tallo y raíz en el cultivo.

  9. Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland.

    Science.gov (United States)

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten; Lefort, François

    2016-10-06

    We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture. Copyright © 2016 Crovadore et al.

  10. A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome

    Czech Academy of Sciences Publication Activity Database

    Parlange, Z.; Oberhaensli, S.; Breen, J.; Platzer, M.; Taudien, S.; Šimková, Hana; Wicker, T.; Doležel, Jaroslav; Keller, B.

    2011-01-01

    Roč. 11, č. 4 (2011), s. 671-677 ISSN 1438-793X R&D Projects: GA MŠk ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511 Keywords : Blumeria graminis * BAC library * BAC- end sequences Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.842, year: 2011

  11. Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens

    NARCIS (Netherlands)

    Hiddink, G.A.; Bruggen, van A.H.C.; Termorshuizen, A.J.; Raaijmakers, J.M.; Semenov, A.V.

    2005-01-01

    Organic management of soils is generally considered to reduce the incidence and severity of plant diseases caused by soil-borne pathogens. In this study, take-all severity on roots of barley and wheat, caused by Gaeumannomyces graminis var. tritici, was significantly lower in organically-managed

  12. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    NARCIS (Netherlands)

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion Bravo, Victor; Mora, María de la Luz; Pozo, María J.

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne

  13. Characterization of polymorphic microsatellite loci for Blumeria graminis f. sp. tritici, cause of powdery mildew of wheat

    Science.gov (United States)

    In many wheat–growing regions of the world, powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease that results in significant yield losses. Using a microsatellite enrichment protocol, we developed primers for 10 microsatellite DNA loci to aid in studies of B. g. tritici popu...

  14. Virulence of Egyptian blumeria graminis f. sp. tritici population and powdery mildew response of Egyptian wheat cultivars

    Science.gov (United States)

    Powdery mildew caused by Blumeria graminis (DC.) Speer f. sp. tritici (Em. Marchal) is a serious disease of wheat that can cause a severe reduction in yield. In Egypt, high powdery mildew severity has been observed in the past few years on many commercial cultivars of both bread and durum wheat. Lit...

  15. Expression profiling and functional analyses of BghPTR2, a peptide transporter from Blumeria graminis f. sp. hordei

    DEFF Research Database (Denmark)

    Droce, Aida; Holm, Kirsten B.; Olsson, Stefan

    2015-01-01

    The obligate ascomycete parasitic fungus Blumeria graminis f. sp. hordei (Bgh) has a unique lifestyle as it is completely dependent on living barley leaves as substrate for growth. Genes involved in inorganic nitrogen utilization are notably lacking, and the fungus relies on uptake of host...

  16. Caracterización de acelga fresca de Santiago del Estero (Argentina). Comparación del contenido de nutrientes en hoja y tallo. Evaluación de los carotenoides presentes

    OpenAIRE

    Costa,Sara Macías de; Montenegro,Mariana A.; Arregui,Teresa; Pinto,M. Inés Sánchez de; Nazareno,Mónica A.; Mishima,Beatriz López de

    2003-01-01

    Se realizaron estudios de caracterización integral de acelga (Beta vulgaris, var. cycla) cultivada en la Provincia de Santiago del Estero, Argentina. Por tratarse de un vegetal de importante consumo regional, se realizó la determinación de sus constituyentes básicos, minerales y pigmentos para conocer los valores nutricionales que aporta este alimento en nuestra región. Se analizaron comparando hoja y tallo: humedad, cenizas, proteínas, grasas, hidratos de carbono utilizables, fibra dietaria ...

  17. Baseline sensitivity to proquinazid in Blumeria graminis f. sp. tritici and Erysiphe necator and cross-resistance with other fungicides.

    Science.gov (United States)

    Genet, Jean-Luc; Jaworska, Grazyna

    2009-08-01

    Proquinazid is a new quinazolinone fungicide from DuPont registered in most European countries for powdery mildew control in cereals and vines. The aim of this paper is to present baseline sensitivity data in populations of Blumeria graminis f. sp. tritici EM Marchal and Erysiphe necator (Schw) Burr as well as results from cross-resistance studies with other fungicides. Proquinazid exhibited a high intrinsic activity on B. graminis f. sp. tritici isolates at rates ranging from 0.000078 to 0.02 mg L(-1). Erysiphe necator isolates were comparatively less sensitive to proquinazid, with EC(50) values ranging from 0.001 to 0.3 mg L(-1). Proquinazid controlled equally well B. graminis f. sp. tritici isolates sensitive and resistant or less sensitive to tebuconazole, fenpropimorph, fenpropidin, cyprodinil and kresoxim-methyl. A positive correlation (r = 0.617) between quinoxyfen and proquinazid sensitivities was found among 51 B. graminis f. sp. tritici isolates. Quinoxyfen-resistant B. graminis f. sp. tritici isolates were slightly less sensitive to proquinazid than the quinoxyfen-sensitive isolates; however, proquinazid remained much more active than quinoxyfen on these isolates. A stronger sensitivity relationship (r = 0.874) between proquinazid and quinoxyfen was found among 65 E. necator isolates tested in a leaf disc assay. The sensitivity values for proquinazid were significantly lower than those for quinoxyfen, confirming the higher intrinsic activity of proquinazid on both pathogens. Given the history of resistance development in powdery mildew and the observed sensitivity relationship with quinoxyfen, specifically in E. necator, we conclude that the risk of resistance developing to proquinazid might be influenced by the use of quinoxyfen. Based on these results, the authors recommend that proquinazid and quinoxyfen be managed together for resistance management.

  18. Estandarización de un medio de cultivo adecuado para la regeneración de tallos a partir de hojas, utilizando dos variedades colombianas de papa (Solanum tuberosum L..

    Directory of Open Access Journals (Sweden)

    Rodríguez Esperanza

    2000-06-01

    Full Text Available Este estudio reporta un sistema de regeneración simple y eficiente a partir de explantes de hoja de Diacol Capira (DC y Parda Pastusa (PP, dos variedades comerciales de papa cultivadas en Colombia. Un medio único de cultivo es usado tanto para la inducción de callos como para la regeneración de tallos. Se comparó el efecto de diferentes relaciones entre auxinas y citoquininas adicionadas a un medio selectivo para regenerar tallos (4.3 g/L de Sales de Murashige and Skoog (1962, 30 g/L sacarosa, 0.5g/L tiamina, 1 mg/L ácido giberélico, 40mg/L ácido ascórbico y 1.7 g/L fitagel pH 5.7 a partir de explantes de hoja. El análisis de los resultados demostró que todos los explantes de hojas de DC, tratados con zeatina ribósida- ZR (3mg/L, ácido indol -3- acético - AIA (1mg/L y todos los explantes de hojas de PP tratados con ZR (3 mg/L, regeneraron plántulas fuertes y morfológicamente normales. El medio fue utilizado en posteriores experimentos de transformación genética.

  19. Uji Ketahanan Beberapa Varietas Dan Pengaruh Jarak Tanam Terhadap Penyakit Karat Daun (Puccinia Polysora Underw) Pada Tanaman Jagung (Zea Mays L.)

    OpenAIRE

    Aditya, Sukma

    2013-01-01

    Sukma Aditya, "Some Resistance Test Plant Varieties and Influence Distance Against Disease Leaf Rust (Puccinia polysora Underw) In the Corn Plantation (Zea mays l.) In the Lowlands". Supervised by Dr. Ir. Hasanuddin, MS, and Ir. Mukhtar Pinem Iskandar, M. Agr. This study aims to determine the resistance of some varieties of maize (Zea mays L.) and plant spacing influence on leaf rust disease (Puccinia polysora Underw.) In the lowlands. Research conducted in the village of Tanjung Selamat, Med...

  20. Superoxide and hydrogen peroxide play different roles in the nonhost interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis.

    Science.gov (United States)

    Trujillo, Marco; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2004-03-01

    Nonhost resistance of cereals to inappropriate formae speciales of Blumeria graminis is little understood. However, on the microscopic level, nonhost defense to B. graminis is reminiscent of host defense preventing fungal development by penetration resistance and the hypersensitive cell death response (HR). We analyzed histochemically the accumulation of superoxide anion radicals (O2*-) and hydrogen peroxide (H2O2) at sites of B. graminis attack in nonhost barley and wheat. Superoxide visualized by subcellular reduction of nitroblue tetrazolium accumulated in association with successful fungal penetration in attacked cells and in cells neighboring HR. In contrast, H2O2 accumulated in cell wall appositions beneath fungal penetration attempts or in the entire epidermal cell during HR. The data provide evidence for different roles and sources of superoxide and H2O2 in the nonhost interaction of cereals with inappropriate formae speciales of B. graminis.

  1. Antifungal (Gaeumannomyces graminis var. tritici activity of various glycosides of medicagenic acid

    Directory of Open Access Journals (Sweden)

    Stefan Martyniuk

    2012-12-01

    Full Text Available Different concentrations of medicagenic acid and five glycosides of this acid isolated from alfalfa (Medicago sativa were added to agar medium (corn meal agar, CMA inoculated with cultures of Gaeumannomyces graminis var. tritici (Ggt. After 7 days of incubation at 25oC colony radius was measured and % of inhibition calculated in relation to the control medium (CMA enriched with the solvent of the tested compounds. Within the tested concentrations, only 3-O-β -D -glucopiranoside medicagenate (monoglucoside significantly reduced the growth of Ggt on CMA medium. This compound at 0.05 mM concentration completely inhibited the development of the fungus and the effect was shown to be fungi-toxic.

  2. A proteomic analysis of powdery mildew (Blumeria graminis f.sp. hordei) conidiospores.

    Science.gov (United States)

    Noir, Sandra; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Panstruga, Ralph

    2009-03-01

    Conidiospores are the asexual propagation units of many plant-pathogenic fungi. In this article, we report an annotated proteome map of ungerminated conidiospores of the ascomycete barley powdery mildew pathogen, Blumeria graminis f.sp. hordei. Using a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, we have identified the proteins in 180 spots, which probably represent at least 123 distinct fungal gene products. Most of the identified proteins have a predicted function in carbohydrate, lipid or protein metabolism, indicating that the spore is equipped for the catabolism of storage compounds as well as for protein biosynthesis and folding on germination.

  3. Of genes and genomes, needles and haystacks: Blumeria graminis and functionality.

    Science.gov (United States)

    Zhang, Z; Henderson, C; Perfect, E; Carver, T L W; Thomas, B J; Skamnioti, P; Gurr, S J

    2005-09-01

    SUMMARY Here, we consider the barley powdery mildew fungus, Blumeria graminis (DC Speer) f.sp. hordei (Marchal), and review recent research which has added to our understanding of the biology and molecular biology which underpins the asexual life cycle of this potentially devastating pathogen. We focus on the early stages of the host-pathogen interaction and report current understanding in the areas of leaf perception, fungal signal transduction and host-imposed oxidative stress management. Through this, it is becoming increasingly clear how closely and subtly both sides of the relationship are regulated. Collectively, however, this review highlights the high degree of complexity in working with an obligate parasite. Our experiences suggest that we would make more efficient progress towards understanding the basis of susceptibility and resistance to this true obligate biotroph if its genome sequence was available.

  4. Inhibition of Blumeria graminis germination and germling development within colonies of oat mildew

    DEFF Research Database (Denmark)

    Carver, T.L.W.; Roberts, P.C.; Thomas, B.J.

    2001-01-01

    Germination by Blumeria graminis. DC Speer ff. spp. avenae, hordei and tritici, was greatly suppressed when conidia fell within colonies of ff. spp. avenae or hordei established on susceptible oat or barley, respectively. On healthy oat or barley, and when distant from powdery mildew, colonies. all...... ff. spp. formed normal appressoria. This was also true When conidia germinated within established barley mildew colonies. Within barley mildew colonies, appressoria of f. sp. hordei penetrated epidermal cells formed haustoria more frequently than appressoria distant from colonies. Similarly, ff. spp....... avenae and tritici, normally unable to infect barley. frequently penetrated epidermal cells subtending established barley mildew colonies. Thus, colony, establishment induced barley epidermal cell accessibility, even to non-pathogenic ff. spp, In contrast. when all three ff. spp. germinated within...

  5. Appressorium morphogenesis and cell cycle progression are linked in the grass powdery mildew fungus Blumeria graminis.

    Science.gov (United States)

    Hansjakob, Anton; Riederer, Markus; Hildebrandt, Ulrich

    2012-08-01

    Conidial germination and differentiation - the so-called prepenetration processes - of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are essential prerequisites for facilitating penetration of the host cuticle. Although the cell cycle is known to be pivotal to cellular differentiation in several phytopathogenic fungi there is as yet no information available concerning the relationship between cell cycle and infection structure development in the obligate biotroph B. graminis. The timing of specific developmental events with respect to nuclear division and morphogenesis was followed on artificial and host leaf surfaces by 4',6-diamidino-2-phenylindole (DAPI) staining in combination with a pharmacological approach applying specific cell cycle inhibitors. It was found that the uninucleate conidia germinated and then underwent a single round of mitosis 5-6 h after inoculation. During primary germ tube formation the nucleus frequently migrated close to the site of primary germ tube emergence. This nuclear repositioning was distinctly promoted by very-long-chain aldehydes that are common host cuticular wax constituents known to induce conidial differentiation. The subsequent morphogenesis of the appressorial germ tube preceded mitosis that was spatially uncoupled from subsequent cytokinesis. Blocking of S-phase with hydroxyurea did not inhibit formation of the appressorial germ tube but prevented cytokinesis and appressorium maturation. Benomyl treatment that arrests the cell cycle in mitosis inhibited nuclear separation, cytokinesis, and formation of mature appressoria. Thus, we conclude that a completed mitosis is not a prerequisite for the formation and swelling of the appressorial germ tube, which normally provides the destination for one of the daughter nuclei, while appressorium maturation depends on mitosis. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis.

    Science.gov (United States)

    Trujillo, Marco; Troeger, Marcus; Niks, Rients E; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2004-09-01

    SUMMARY Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of single attacked cells. Penetration resistance and HR are also typical features of race-non-specific and race-specific resistance of barley to the appropriate Blumeria graminis f.sp. hordei (Bgh), raising the question of whether genotypic differences in the cellular response of barley to Bgt are detectable. First, we analysed fungal penetration frequencies and HR in different barley accessions known to show altered non-host resistance. In genotypes with limited resistance to inappropriate cereal rust fungi, we concomitantly detected low penetration resistance to Bgt and significant differences of HR rates during attack from Bgt. Second, we tested barley mutants known to show altered host responses to Bgh. The rar1-mutation that suppresses many types of race-cultivar-specific resistances did not influence the non-host response of the Bgt-isolate used in this study. However, mutants of Ror1 and Ror2, two genes required for full race non-specific penetration resistance of mlo-barley to barley powdery mildew fungus, exhibited altered defence response to Bgt, including higher frequencies of fungal penetration. On these mutants, growth of the inappropriate fungus was arrested subsequent to penetration by HR. Together, the data show that barley defence response to the wheat powdery mildew fungus is determined by similar factors as race-specific and race-non-specific resistance to appropriate Bgh.

  7. Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa

    DEFF Research Database (Denmark)

    Patpour, M.; Hovmøller, M. S.; Justesen, A. F.

    2016-01-01

    . Among the Kenyan samples, four collected from Njoro (Central Rift, cvs. Robin and Kwale) and two from Ntulumeti and Olgilai (South Rift, cv. Robin), were typed as TTKTK. Race TTKTK was similar to TTKSK except for additional virulence to SrTmp (Infection Type 4). An additional single-pustule isolate....... The identification of SrTmp virulence in the Ug99 race group in several countries in one year emphasizes the relevance of coordinated international surveillance efforts and utilization of diverse sources of resistance to control stem rust in wheat. Further studies are in progress to determine the detailed...

  8. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China.

    Science.gov (United States)

    Zhao, Jie; Wang, Long; Wang, Zhiyan; Chen, Xianming; Zhang, Hongchang; Yao, Juanni; Zhan, Gangming; Chen, Wen; Huang, Lili; Kang, Zhensheng

    2013-09-01

    ABSTRACT The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) population in China has been reported to be a distinct genetic group with higher diversity than those in many other countries. Genetic recombination in the P. striiformis f. sp. tritici population has been identified with molecular markers but whether sexual reproduction occurs in China is unknown. In this study, we surveyed barberry plants for infection by rust fungi in the stripe rust "hotspot" regions in Gansu, Sichuan, and Shaanxi provinces; collected barberry plants and inoculated plants of 20 Berberis spp. with germinated teliospores under controlled greenhouse conditions for susceptibility to P. striiformis f. sp. tritici; and tested P. striiformis f. sp. tritici isolates obtained from aecia on naturally infected barberry plants on the wheat genotypes used to differentiate Chinese P. striiformis f. sp. tritici races to determine virulence variations. Different Berberis spp. were widely distributed and most surveyed plants had pycnia and aecia of rust fungi throughout the surveyed regions. In total, 28 Berberis spp. were identified during our study. From 20 Berberis spp. tested with teliospores of P. striiformis f. sp. tritici from wheat plants, 18 species were susceptible under greenhouse conditions. Among 3,703 aecia sampled from barberry plants of three species (Berberis shensiana, B. brachypoda, and B. soulieana) under natural infections in Gansu and Shaanxi provinces, four produced P. striiformis f. sp. tritici uredinia on susceptible wheat 'Mingxian 169'. Sequence of the internal transcribed spacer (ITS) regions of the four isolates from barberry shared 99% identity with the P. striiformis f. sp. tritici sequences in the National Center for Biotechnology Information database. The four isolates had virulence patterns different from all previously reported races collected from wheat plants. Furthermore, 82 single-uredinium isolates obtained from the four barberry isolates had

  9. DNA polymorphism among barley NILs of cv. Pallas, carrying genes for resistance to powdery mildew (Blumeria graminis f. sp. hordei).

    Science.gov (United States)

    Czembor, Paweł Cz; Czembor, Jerzy H

    2004-01-01

    Barley powdery mildew, caused by the pathogen Blumeria graminis f. sp. hordei is an important disease of barley (Hordeum vulgare L.). The random amplified polymorphic DNA (RAPD) method was used to detect DNA polymorphism among 7 Pallas near-isogenic lines (NILs) carrying Mla3, Mla12, Mlk, Mlp, Mlat, Mlg and MlLa genes for resistance to B. graminis f. sp. hordei. From among 500 random 10-mer primers tested, 3 were specific for NIL P2 (Mla3), 1 for P10 (Mla12), 6 for P17 (Mlk), 46 for P19 (Mlp), 4 for P20 (Mlat), 6 for P21 (Mlg), and 4 for P23 (MlLa). The results of this study demonstrated that the RAPD technique is a useful tool for detecting DNA polymorphism among Pallas NILs.

  10. Genetic Diversity of Blumeria graminis f. sp hordei in Central Europe and Its Comparison with Australian Population

    OpenAIRE

    Komínková, E. (Eva); Dreiseitl, A.; Malečková, E. (Eva); Doležel, J. (Jaroslav); Valárik, M. (Miroslav)

    2016-01-01

    Population surveys of Blumeria graminis f. sp. hordei (Bgh), a causal agent of more than 50% of barley fungal infections in the Czech Republic, have been traditionally based on virulence tests, at times supplemented with non-specific Restriction fragment length polymorphism or Random amplified polymorphic DNA markers. A genomic sequence of Bgh, which has become available recently, enables identification of potential markers suitable for population genetics studies. Two major strategies relyin...

  11. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    OpenAIRE

    Paola Durán; Paola Durán; Milko Jorquera; Milko Jorquera; Sharon Viscardi; Sharon Viscardi; Victor J. Carrion; María de la Luz Mora; María J. Pozo

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence...

  12. Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen co-evolution.

    Science.gov (United States)

    Wyand, Rebecca A; Brown, James K M

    2003-05-01

    SUMMARY The grass powdery mildew fungus, Blumeria graminis is classified into eight formae speciales (ff.spp.) based on strict host specialization. However, evidence suggests that host ranges extend to more than one genus and are particularly diverse among samples from the Middle East, the proposed centre of origin and diversification of crop plants. This study investigated whether geographical origin, host species or both determine the genetic variation in B. graminis that is found in cereals, sampled from Europe, Asia and North America, and whether there is any evidence for co-evolution between pathogen and host. Phylogenetic analysis of nucleotide sequence variation within the ribosomal DNA Internal Transcribed Spacer (ITS) regions and the beta-tubulin (tub2) gene gives rise to two dendrograms with different topologies. In both trees, isolates of B. graminis from cultivated cereals are grouped according to their principal host genus. This grouping was supported by amplified fragment length polymorphism (AFLP) analysis and cross-infectivity tests. However, there was no evidence of co-evolution. There was far greater divergence between ff.spp. in tub2 sequences than ITS regions and a faster rate of mutation of tub2, especially in the third base position of exons. It is proposed that variation in the rDNA-ITS regions is constrained either by their functional role in the processing of rDNA precursor molecules or by concerted evolution, hence limiting their use in phylogenetic studies. AFLP data suggests an overall lack of correlation between geographical and genetic distances. This may be related to the long distance dispersal exhibited by B. graminis.

  13. Reconstructing the Evolutionary History of Powdery Mildew Lineages (Blumeria graminis) at Different Evolutionary Time Scales with NGS Data.

    Science.gov (United States)

    Menardo, Fabrizio; Wicker, Thomas; Keller, Beat

    2017-02-01

    Blumeria graminis (Ascomycota) includes fungal pathogens that infect numerous grasses and cereals. Despite its economic impact on agriculture and its scientific importance in plant-pathogen interaction studies, the evolution of different lineages with different host ranges is poorly understood. Moreover, the taxonomy of grass powdery mildew is rather exceptional: there is only one described species (B. graminis) subdivided in different formae speciales (ff.spp.), which are defined by their host range. In this study we applied phylogenomic and population genomic methods to whole genome sequence data of 31 isolates of B. graminis belonging to different ff.spp. and reconstructed the evolutionary relationships between different lineages. The results of the phylogenomic analysis support a pattern of co-evolution between some of the ff.spp. and their host plant. In addition, we identified exceptions to this pattern, namely host jump events and the recent radiation of a clade less than 280,000 years ago. Furthermore, we found a high level of gene tree incongruence localized in the youngest clade. To distinguish between incomplete lineage sorting and lateral gene flow, we applied a coalescent-based method of demographic inference and found evidence of horizontal gene flow between recently diverged lineages. Overall we found that different processes shaped the diversification of B. graminis, co-evolution with the host species, host jump and fast radiation. Our study is an example of how genomic data can resolve complex evolutionary histories of cryptic lineages at different time scales, dealing with incomplete lineage sorting and lateral gene flow. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Estimation of winter rye (Secale cereale L. susceptibility to infection by powdery mildew (Blumeria graminis F. sp. secalis

    Directory of Open Access Journals (Sweden)

    Henryk Bujak

    2013-10-01

    Full Text Available In cold and wet years, powdery mildew (Blumeria graminis causes losses in the yield of winter rye (Secale cerale L. amounting to 20%. In order to control the incidence of this disease and reduce the use of fungicides, it is recommendable to grow winter rye cultivars that are resistant or tolerant to infection by Blumeria graminis. The first step in the programmes of resistance-oriented cultivation of winter rye is the choice of adequate components for crossing. Such components should be characterized by resistance to powdery mildew infection, a trait which would be passed onto the new genotypes to be obtained. The paper discusses the outcome of research aimed at selecting inbred lines of winter rye distinguishable by the lowest susceptibility to infection by Blumeria graminis. The evaluation covered 233 winter rye genotypes which had been inoculated with a field population of the pathogen mentioned. The level of infection was defined in a five-point scale from 0 to 4 (the authors’ own scale. Next, the results were analyzed statistically. The genotypes under study were divided using Duncan’s test into homogeneous groups. Seven such groups were distinguished. The first homogeneous group, of the lowest level of infection, comprised five inbred lines of rye. These lines can serve as components for crossing experiments in programmes of resistance-oriented breeding.

  15. Isogamous, hermaphroditic inheritance of mitochondrion-encoded resistance to Qo inhibitor fungicides in Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Robinson, H L; Ridout, C J; Sierotzki, H; Gisi, U; Brown, J K M

    2002-07-01

    A mutation of glycine to alanine at position 143 in the mitochondrial cytochrome b amino acid sequence of Blumeria graminis f. sp. tritici cosegregated with the QoI-resistant phenotype in a ratio of 1:1 in a cross between a sensitive and a resistant isolate. This mutation was used as a mitochondrial marker to determine whether mitochondrial inheritance in B. graminis was anisogamous, as in heterothallic Neurospora sp., or isogamous and hermaphroditic, as in Aspergillus nidulans. Segregation of mitochondrial genotypes in B. graminis f. sp. tritici was consistent with inheritance of mitochondria being hermaphroditic and isogamous, in that all ascospores from an individual cleistothecium had the same mitochondrial genotype and that either parent could act as the maternal parent of a cleistothecium. Within each cleistothecium, nuclear segregation occurred independently of mitochondrial inheritance, as shown by segregation of resistance to the fungicide triadimenol and by segregation of avirulences to the wheat cultivars Galahad (Pm2), Armada (Pm4b), and Holger (Pm6).

  16. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici).

    Science.gov (United States)

    Mueth, Nicholas A; Ramachandran, Sowmya R; Hulbert, Scot H

    2015-09-21

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is a costly global disease that burdens farmers with yield loss and high fungicide expenses. This sophisticated biotrophic parasite infiltrates wheat leaves and develops infection structures inside host cells, appropriating nutrients while suppressing the plant defense response. Development in most eukaryotes is regulated by small RNA molecules, and the success of host-induced gene silencing technology in Puccinia spp. implies the existence of a functional RNAi system. However, some fungi lack this capability, and small RNAs have not yet been reported in rust fungi. The objective of this study was to determine whether P. striiformis carries an endogenous small RNA repertoire. We extracted small RNA from rust-infected wheat flag leaves and performed high-throughput sequencing. Two wheat cultivars were analyzed: one is susceptible; the other displays partial high-temperature adult plant resistance. Fungal-specific reads were identified by mapping to the P. striiformis draft genome and removing reads present in uninfected control libraries. Sequencing and bioinformatics results were verified by RT-PCR. Like other RNAi-equipped fungi, P. striiformis produces large numbers of 20-22 nt sequences with a preference for uracil at the 5' position. Precise post-transcriptional processing and high accumulation of specific sRNA sequences were observed. Some predicted sRNA precursors possess a microRNA-like stem-loop secondary structure; others originate from much longer inverted repeats containing gene sequences. Finally, sRNA-target prediction algorithms were used to obtain a list of putative gene targets in both organisms. Predicted fungal target genes were enriched for kinases and small secreted proteins, while the list of wheat targets included homologs of known plant resistance genes. This work provides an inventory of small RNAs endogenous to an important plant pathogen, enabling further exploration of gene

  17. The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Eichmann, Ruth; Schultheiss, Holger; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2004-05-01

    BAX inhibitor-1 (BI-1) proteins have been characterized as suppressors of programmed cell death in mammals and plants. The barley BI-1 is a suppressor of nonspecific background resistance and mlo-mediated penetration resistance to the biotrophic fungal pathogen Blumeria graminis f. sp. hordei when overexpressed in epidermal cells of barley. We report here that BI-1 expression is also slightly up-regulated during interaction with the inappropriate wheat pathogen Blumeria graminis f. sp. tritici. Significantly, overexpression of BI-1 in single epidermal cells of barley by microprojectile-mediated transformation rendered cells susceptible to penetration by inappropriate B. graminis f. sp. tritici. The degree of transgene-induced accessibility to B. graminis f. sp. tritici was thereby similar to the effect achieved by overexpression of the defense suppressor gene Mlo and could not be further enhanced by double expression of both BI-1 and Mlo. Confocal laser scanning microscopy was used to locate a functional green fluorescing GFP:BI-1 fusion protein in endomembranes and the nuclear envelope of barley epidermal cells. Together, enhanced expression of barley BI-1 suppresses penetration resistance to B. graminis f. sp. tritici, linking barley nonhost resistance with cell death regulation.

  18. Studies on resistance to Puccinia recondita tritici in wheat population after mutagenic treatments

    International Nuclear Information System (INIS)

    Borojevic, K.

    1977-01-01

    On testing mutant lines in M 12 , M 13 and M 14 generations derived from cultivar San Pastore, after treatment by gamma rays for the resistance to Puccinia recondita tritici, certain resistance was found which was expressed in lower severity, type of infection and modification of tolerance between and within the lines. The mutant lines of the resistance type 0/1, 0/4T and type 4 lines of moderate tolerance, were selected. The tolerance expressed as the kernel weight per spike on rusted/non-rusted plot, was about 1 for groups 0/1 and 0/4T compared with control which had a tolerance of 0.95. Group 4 had the same tolerance as control. The tolerance expressed by weight of 1000 kernels was 0.94 for group 0/1, 0.96 for group 0/4T, and 0.90 for control. For group 4, it was 0.87, the same as the control. On considering these results, it seems much easier and more efficient to select for type of resistance and low severity than for tolerance. (author)

  19. Quantitative Determination of Germinability of Puccinia striiformis f. sp. tritici Urediospores Using Near Infrared Spectroscopy Technology

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhao

    2015-01-01

    Full Text Available Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst is an important disease on wheat. In this study, quantitative determination of germinability of Pst urediospores was investigated by using near infrared reflectance spectroscopy (NIRS combined with quantitative partial least squares (QPLS and support vector regression (SVR. The near infrared spectra of the urediospore samples were acquired using FT-NIR MPA spectrometer and the germination rate of each sample was measured using traditional spore germination method. The best QPLS model was obtained with vector correction as the preprocessing method of the original spectra and 4000–12000 cm−1 as the modeling spectral region while the modeling ratio of the training set to the testing set was 4 : 1. The best SVR model was built when vector normalization was used as the preprocessing method, the modeling ratio was 5 : 1 and the modeling spectral region was 8000–11000 cm−1. The results showed that the effect of the best model built using QPLS or SVR was satisfactory. This indicated that quantitative determination of germinability of Pst urediospores using near infrared spectroscopy technology is feasible. A new method based on NIRS was provided for rapid, automatic, and nondestructive determination of germinability of Pst urediospores.

  20. Effect of age on the fatty acid content of Blumeria graminis conidia.

    Science.gov (United States)

    Muchembled, J; Sahraoui, A L; Grandmougin-Ferjani, A; Sancholle, M

    2000-12-01

    Blumeria (=Erysiphe) graminis f.sp. tritici (Bgt), the causal agent of wheat powdery mildew, is responsible for an important disease leading to considerable yield reductions in wheat worldwide. Conidia of the obligate plant pathogen Bgt were analysed for their total fatty acid (FA) composition as a function of their ontogeny. A total of 17 FAs were detected (C(12)-C(24) saturated and unsaturated ones), including the presence of unusual long-chain monoenoic FAs. In young conidia, the major FAs were C(18:2) (23%), C(16:0) (16%), C(18:0) (15.2%) and C(18:1) (14.3%). In old conidia, the main FAs were C(24:1) (20.7%), C(22:0) (15%), C(22:1) (13.5%) and C(24:0) (9.7%). The amount of total FA was about 39 microg.mg of dry weight(-1) in young conidia and decreased clearly to 18 microg.mg of dry weight(-1) in older conidia. For the first time, we have demonstrated that the FA composition of conidia changes greatly with age. Medium-chain FAs (C(12)-C(18)) are predominant in very young conidia (75%), whereas long-chain FAs (C(22)-C(24)) are the major compounds in old conidia (74%). This study showed a significant elongation of FAs and a drastic decrease in the total FA amount during the ontogeny of conidia.

  1. Proteomic analysis of the compatible interaction of wheat and powdery mildew (Blumeria graminis f. sp. tritici).

    Science.gov (United States)

    Li, Jie; Yang, Xiwen; Liu, Xinhao; Yu, Haibo; Du, Congyang; Li, Mengda; He, Dexian

    2017-02-01

    Proteome characteristics of wheat leaves with the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) infection were investigated by two-dimensional electrophoresis and tandem MALDI-TOF/TOF-MS. We identified 46 unique proteins which were differentially expressed at 24, 48, and 72 h post-inoculation. The functional classification of these proteins showed that most of them were involved in photosynthesis, carbohydrate and nitrogen metabolism, defense responses, and signal transduction. Upregulated proteins included primary metabolism pathways and defense responses, while proteins related to photosynthesis and signal transduction were mostly downregulated. As expected, more antioxidative proteins were activated at the later infection stage than the earlier stage, suggesting that the antioxidative system of host plays a role in maintaining the compatible interaction between wheat and powdery mildew. A high accumulation of 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase in infected leaves indicated the regulation of the TCA cycle and pentose phosphate pathway in parallel to the activation of host defenses. The downregulation of MAPK5 could be facilitated for the compatible interaction of wheat plants and Bgt. qRT-PCR analysis supported the data of protein expression profiles. Our results reveal the relevance of primary plant metabolism and defense responses during compatible interaction, and provide new insights into the biology of susceptible wheat in response to Bgt infection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Histochemical comparison of the nonhost tomato with resistant wheat against Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Hao, Chongzhao; Chen, Yanli; Zhang, Bing; Li, Yuefei; Zuo, Hai; Qi, Tuo; Ma, Qing

    2013-05-01

    The nonhost interaction of tomato-Blumeria graminis f. sp. tritici (Bgt) and resistant host interaction of wheat-Bgt were compared histochemically. The percentage of appressorium formation had no significant difference on tomato and wheat leaves. Papilla formation occurred earlier and more on host wheat than on nonhost tomato leaves, while the incidence of hypersensitive cell death was much higher in the nonhost interaction. Whole-cell H2O2 accumulation and hypersensitive cell death usually appeared in haustorium-invaded wheat epidermal cells. In contrast, the vast majority of non-haustorium epidermal cells were associated with H2O2 accumulation and hypersensitive cell death on tomato. Localized H2O2 accumulation and hypersensitive response were detected in effective papillae in both interactions. The peak percentage of haustorium formation was less than 7% in the nonhost interaction while reached 43% in the incompatible host interaction. These results indicate that hypersensitive cell death and papillae are likely to play an important role in preventing Bgt penetration and development on tomato and wheat leaves, both defense responses involving H2O2 accumulation. This study further implies that the nonhost and incompatible interactions share similar cytological mechanisms. Copyright © 2013 Wiley Periodicals, Inc.

  3. Quinoxyfen perturbs signal transduction in barley powdery mildew (Blumeria graminis f.sp. hordei).

    Science.gov (United States)

    Wheeler, Ian E; Hollomon, Derek W; Gustafson, Gary; Mitchell, Jon C; Longhurst, Chris; Zhang, Ziguo; Gurr, Sarah J

    2003-05-01

    SUMMARY Quinoxyfen is a protectant fungicide which controls powdery mildew diseases by interfering with germination and/or appressorium formation. Mutants of barley powdery mildew, Blumeria graminis f.sp. hordei, which are resistant to quinoxyfen produce fewer conidia, which germinate and form appressoria more promiscuously than do the prolific numbers of wild-type spores. This suggests that resistance bypasses host recognition signals. RT-PCR profiles of signal transduction genes, recorded during wild-type germling morphogenesis, reveals that quinoxyfen alters the accumulation of Protein Kinase C (pkc), pkc-like and catalytic subunit of Protein Kinase A (cpka) transcripts. Differential display-reverse transcription PCR identified a gene transcript in wild-type conidia that was absent, or much less abundant, in conidia from quinoxyfen-resistant mutants. This mRNA was not detectable 24 h after wild-type conidia were inoculated on to barley. It encodes a GTPase activating protein (GAP), which may interact with a small molecular weight Ras-type GTP binding protein. In the presence of quinoxyfen, the gap mRNA remains throughout germling morphogenesis. The involvement of GAP in resistance suggests that quinoxyfen inhibits mildew infection by disrupting early cell signalling events.

  4. Proteomic analysis of developing wheat grains infected by powdery mildew (Blumeria graminis f.sp. tritici).

    Science.gov (United States)

    Li, Jie; Yang, Xi-Wen; Li, Yong-Chun; Niu, Ji-Shan; He, De-Xian

    2017-08-01

    Blumeria graminis f.sp. tritici (Bgt) infection greatly interferes with the normal source-sink relationships and always causes tremendous loss of yield and quality in wheat. To better understand the impact of this pathogen on grain development, proteome characterization during grain development in susceptible wheat cultivar Xinong 979 infected by powdery mildew was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 111 differentially expressed protein spots representing 85 unique proteins and six expression patterns showed a chronological description of wheat grain formation. Comparative proteome profiles indicated that 43 protein spots displayed significant abundance change, which is mainly involved in stress/defense responses, primary metabolism, and storage protein. The down-regulation of defense response-related proteins including alpha-purothionin, lactoylglutathione lyase, and alpha-amylase inhibitor CM16 in infected grains compared to control during seed filling might be related to the susceptibility of wheat to Bgt, while the enhanced expression of beta-amylase and glyceraldehyde-3-phosphate dehydrogenase and the down-regulation of ADP glucose pyrophosphorylase in infected grains probably resulted in the negative effects on yield formation. Our data reveal the complex grain metabolism mechanisms and defense responses during compatible interactions of wheat and Bgt, and provide valuable information for further understanding of the underlying molecular processes which can possibly yield novel strategies for breeding resistant cultivars and protection strategies in the field. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Inoculación in vitro de la roya blanca (Puccinia horiana Hennings) en crisantemo (Dendranthema grandiflora Tzvelev)

    OpenAIRE

    Vences-Contreras, César; Vázquez García, Luis Miguel

    2006-01-01

    Inoculación in vitro de la roya blanca (Puccinia horiana Hennings) en crisantemo (Dendranthema grandiflora Tzvelev). El presente estudio tuvo como finalidad el desarrollar la técnica de inoculación in vitro de la roya blanca, con el objeto de ahorrar tiempo y espacio en la caracterización de los distintos cultivares de crisantemo respecto al grado de susceptibilidad o resistencia a este patógeno. En Tenancingo, Estado de México, en el periodo 2004-2005 se colectaron hojas de crisantemo que pr...

  6. Evidence for Increased Aggressiveness in a Recent Widespread Strain of Puccinia striiformis f. sp. tritici Causing Stripe Rust of Wheat

    DEFF Research Database (Denmark)

    Milus, Eugene A; Kristensen, Kristian; Hovmøller, Mogens S

    2009-01-01

    Stripe rust (yellow rust) of wheat, caused by Puccinia striiformis f. sp. tritici, has become more severe in eastern United States, Australia, and elsewhere since 2000. Recent research has shown that this coincided with a global spread of two closely related strains that were similar based...... to the warm temperature regime for all variables. Based on these results and previously published models for stripe rust epidemics, recent severe stripe rust epidemics were most likely enhanced by the pathogen's increased aggressiveness, especially at higher temperature. Furthermore, these results demonstrate...... that wheat rust fungi can adapt to warmer temperatures and cause severe disease in previously unfavorable environments...

  7. A novel fungal hyperparasite of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.

    Directory of Open Access Journals (Sweden)

    Gangming Zhan

    Full Text Available Puccinia striiformis f. sp. tritici (Pst, the causal fungus of wheat stripe rust, was previously reported to be infected by Lecanicillium lecanii, Microdochium nivale and Typhula idahoensis. Here, we report a novel hyperparasite on Pst. This hyperparasitic fungus was identified as Cladosporium cladosporioides (Fresen. GA de Vries based on morphological characteristics observed by light and scanning electron microscopy together with molecular data. The hyperparasite reduced the production and viability of urediniospores and, therefore, could potentially be used for biological control of wheat stripe rust.

  8. Expression of resistance to Blumeria graminis f.sp. tritici in 'Chinese Spring' wheat addition lines containing chromosomes from Hordeum vulgare and H. chilense.

    Science.gov (United States)

    Rubiales, D; Carver, T W; Martín, A

    2001-01-01

    Blumeria graminis f.sp. tritici (syn. Erysiphe graminis f.sp. tritici) causes an important disease of wheat (powdery mildew) to which Hordeum vulgare and H. chilense are resistant. The study of chromosomal addition lines of H. vulgare and H. chilense in wheat showed that they possessed resistance to wheat powdery mildew. This was expressed as a reduction of disease severity but it was not associated with increased macroscopically visible necrosis. The resistance is of broad genetic basis, conferred by gene(s) present on different chromosomes of both H. vulgare and H. chilense. The feasibility of transferring this resistance to wheat is discussed.

  9. à l'infection par Blumeria graminis f.sp.tritici agent causal de l'oïdium

    African Journals Online (AJOL)

    Des travaux, en serre semi- contrôlée, ont été réalisés dans le but de présenter un état des différents mécanismes liés à la résistance de deux génotypes de blé dur (Triticum durum Desf.) à l'oïdium (Blumeria graminis f.sp. tritici). Des plants de blé ont été inoculés au stade six feuilles avec un inoculum provenant d'un ...

  10. Evidence for Systemic Infection by Puccinia horiana, Causal Agent of Chrysanthemum White Rust, in Chrysanthemum.

    Science.gov (United States)

    Bonde, M R; Murphy, C A; Bauchan, G R; Luster, D G; Palmer, C L; Nester, S E; Revell, J M; Berner, D K

    2015-01-01

    Puccinia horiana, causal agent of the disease commonly known as chrysanthemum white rust (CWR), is a quarantine-significant fungal pathogen of chrysanthemum in the United States and indigenous to Asia. The pathogen was believed to have been eradicated in the United States but recently reappeared on several occasions in northeastern United States. The objective of the study presented here was to determine whether P. horiana could systemically infect chrysanthemum plants, thus providing a means of survival through winters. Scanning and transmission electron microscopy revealed the development of P. horiana on the surface and within leaves, stems, or crowns of inoculated chrysanthemum plants artificially exposed to northeastern U.S. winter temperatures. P. horiana penetrated leaves directly through the cuticle and then colonized the mesophyll tissue both inter- and intracellularly. An electron-dense material formed at the interface between fungal and host mesophyll cells, suggesting that the pathogen adhered to the plant cells. P. horiana appeared to penetrate mesophyll cell walls by enzymatic digestion, as indicated by the absence of deformation lines in host cell walls at penetration sites. The fungus was common in vascular tissue within the infected crown, often nearly replacing the entire contents of tracheid cell walls. P. horiana frequently passed from one tracheid cell to an adjacent tracheid cell by penetration either through pit pairs or nonpitted areas of the cell walls. Individual, presumed, fungal cells in mature tracheid cells of the crown and stems arising from infected crowns suggested that the pathogen might have been moving at least partially by means of the transpiration stream. The demonstration that chrysanthemum plants can be systemically infected by P. horiana suggests that additional disease control measures are required to effectively control CWR.

  11. Multiple displacement amplification of whole genomic DNA from urediospores of Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Zhang, R; Ma, Z H; Wu, B M

    2015-05-01

    Biotrophic fungi, such as Puccinia striiformis f. sp. tritici, because they cannot be cultured on nutrient media, to obtain adequate quantity of DNA for molecular genetic analysis, are usually propagated on living hosts, wheat plants in case of P. striiformis f. sp. tritici. The propagation process is time-, space- and labor-consuming and has been a bottleneck to molecular genetic analysis of this pathogen. In this study we evaluated multiple displacement amplification (MDA) of pathogen genomic DNA from urediospores as an alternative approach to traditional propagation of urediospores followed by DNA extraction. The quantities of pathogen genomic DNA in the products were further determined via real-time PCR with a pair of primers specific for the β-tubulin gene of P. striiformis f. sp. tritici. The amplified fragment length polymorphism (AFLP) fingerprints were also compared between the DNA products. The results demonstrated that adequate genomic DNA at fragment size larger than 23 Kb could be amplified from 20 to 30 urediospores via MDA method. The real-time PCR results suggested that although fresh urediospores collected from diseased leaves were the best, spores picked from diseased leaves stored for a prolonged period could also be used for amplification. AFLP fingerprints exhibited no significant differences between amplified DNA and DNA extracted with CTAB method, suggesting amplified DNA can represent the pathogen's genomic DNA very well. Therefore, MDA could be used to obtain genomic DNA from small precious samples (dozens of spores) for molecular genetic analysis of wheat stripe rust pathogen, and other fungi that are difficult to propagate.

  12. Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat.

    Directory of Open Access Journals (Sweden)

    Myron eBruce

    2014-01-01

    Full Text Available Wheat leaf rust, caused by the basidiomycete Puccinia triticina, can cause yield losses of up to 20% in wheat producing regions. During infection, the fungus forms haustoria that secrete proteins into the plant cell and effect changes in plant transcription, metabolism and defense. It is hypothesized that new races emerge as a result of overcoming plant resistance via changes in the secreted effector proteins. To understand gene expression during infection and find genetic differences associated with races, RNA from wheat leaves infected with six different rust races, at six days post inoculation, was sequenced using Illumina. As P. triticina is an obligate biotroph, RNA from both the host and fungi were present and separated by alignment to the P. triticina genome and a wheat EST reference. A total of 222,571 rust contigs were assembled from 165 million reads. An examination of the resulting contigs revealed 532 predicted secreted proteins among the transcripts. Of these, 456 were found in all races. Fifteen genes were found with amino acid changes, corresponding to putative avirulence effectors potentially recognized by 11 different leaf rust resistance (Lr genes. Thirteen of the potential avirulence effectors have no homology to known genes. One gene had significant similarity to cerato-platanin, a known fungal elicitor, and another showed similarity to fungal tyrosinase, an enzyme involved in melanin synthesis. Temporal expression profiles were developed for these genes by qRT-PCR and show that the 15 genes share similar expression patterns from infection initiation to just prior to spore eruption.

  13. Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.

    Science.gov (United States)

    Gill, Upinder S; Uppalapati, Srinivasa R; Nakashima, Jin; Mysore, Kirankumar S

    2015-05-08

    Switchgrass rust, caused by Puccinia emaculata, is an important disease of switchgrass, a potential biofuel crop in the United States. In severe cases, switchgrass rust has the potential to significantly affect biomass yield. In an effort to identify novel sources of resistance against switchgrass rust, we explored nonhost resistance against P. emaculata by characterizing its interactions with six monocot nonhost plant species. We also studied the genetic variations for resistance among Brachypodium inbred accessions and the involvement of various defense pathways in nonhost resistance of Brachypodium. We characterized P. emaculata interactions with six monocot nonhost species and identified Brachypodium distachyon (Bd21) as a suitable nonhost model to study switchgrass rust. Interestingly, screening of Brachypodium accessions identified natural variations in resistance to switchgrass rust. Brachypodium inbred accessions Bd3-1 and Bd30-1 were identified as most and least resistant to switchgrass rust, respectively, when compared to tested accessions. Transcript profiling of defense-related genes indicated that the genes which were induced in Bd21after P. emaculata inoculation also had higher basal transcript abundance in Bd3-1 when compared to Bd30-1 and Bd21 indicating their potential involvement in nonhost resistance against switchgrass rust. In the present study, we identified Brachypodium as a suitable nonhost model to study switchgrass rust which exhibit type I nonhost resistance. Variations in resistance response were also observed among tested Brachypodium accessions. Brachypodium nonhost resistance against P. emaculata may involve various defense pathways as indicated by transcript profiling of defense related genes. Overall, this study provides a new avenue to utilize novel sources of nonhost resistance in Brachypodium against switchgrass rust.

  14. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis.

    Science.gov (United States)

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Teixidó, Neus; Figge, Marian J; Abadias, Maribel

    2013-06-01

    The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are "competitive with" or "antagonistic to" potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici.

    Directory of Open Access Journals (Sweden)

    Lirong Yang

    Full Text Available Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt, is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs were identified with 2,107 (65% being 2-fold up-regulated and 1,151 (35% being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots.

  16. Extratos de Lentinula edodes e Agaricus blazei sobre Bipolaris sorokiniana e Puccinia recondita f. sp. tritici, in vitro Extracts of Lentinula edodes and Agaricus blazei on Bipolaris sorokiniana and Puccinia recondita f. sp. tritici., in vitro

    Directory of Open Access Journals (Sweden)

    Ana Cristina Grade Fiori-Tutida

    2007-09-01

    Full Text Available Com o objetivo de buscar medidas alternativas para o controle de Bipolaris sorokiniana e Puccinia recondita f. sp. tritici testou-se o efeito fungitóxico in vitro dos cogumelos Lentinula edodes e Agaricus blazei sobre esses fungos. Os extratos brutos aquosos de ambos os cogumelos não tiveram efeito significativo tanto no crescimento micelial quanto na germinação de esporos de B. sorokiniana. Por outro lado, os extratos dos cogumelos inibiram a germinação de esporos de P. recondita f. sp. tritici, com destaque para o isolado LE 96/17 de L. edodes que apresentou inibição da ordem de 52,4%.With the purpose of finding alternative ways to control Bipolaris sorokiniana and Puccinia recondita f. sp. triciti, the fungitoxic effect in vitro of Lentinula edodes and Agaricus blazei mushrooms was tested on these fungi. The aqueous crude extract of both mushrooms did not have significant effect on mycelial growth and spore germination of B. sorokiniana . On the other hand, the mushroom extracts inhibited the germination of P. recondita f. sp. tritici uredospores, particularly on the L. edodes (96/17, which exhibited the largest inhibition of spore germination (52,38%.

  17. Label-Free Quantitative Proteomic Analysis of Puccinia psidii Uredospores Reveals Differences of Fungal Populations Infecting Eucalyptus and Guava.

    Directory of Open Access Journals (Sweden)

    Maria Carolina Quecine

    Full Text Available Puccinia psidii sensu lato (s.l. is the causal agent of eucalyptus and guava rust, but it also attacks a wide range of plant species from the myrtle family, resulting in a significant genetic and physiological variability among populations accessed from different hosts. The uredospores are crucial to P. psidii dissemination in the field. Although they are important for the fungal pathogenesis, their molecular characterization has been poorly studied. In this work, we report the first in-depth proteomic analysis of P. psidii s.l. uredospores from two contrasting populations: guava fruits (PpGuava and eucalyptus leaves (PpEucalyptus. NanoUPLC-MSE was used to generate peptide spectra that were matched to the UniProt Puccinia genera sequences (UniProt database resulting in the first proteomic analysis of the phytopathogenic fungus P. psidii. Three hundred and fourty proteins were detected and quantified using Label free proteomics. A significant number of unique proteins were found for each sample, others were significantly more or less abundant, according to the fungal populations. In PpGuava population, many proteins correlated with fungal virulence, such as malate dehydrogenase, proteossomes subunits, enolases and others were increased. On the other hand, PpEucalyptus proteins involved in biogenesis, protein folding and translocation were increased, supporting the physiological variability of the fungal populations according to their protein reservoirs and specific host interaction strategies.

  18. Label-Free Quantitative Proteomic Analysis of Puccinia psidii Uredospores Reveals Differences of Fungal Populations Infecting Eucalyptus and Guava

    Science.gov (United States)

    Bini, Andressa Peres; Regiani, Thais; Franceschini, Lívia Maria; Budzinski, Ilara Gabriela Frasson; Marques, Felipe Garbelini; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Moon, David Henry; Labate, Carlos Alberto

    2016-01-01

    Puccinia psidii sensu lato (s.l.) is the causal agent of eucalyptus and guava rust, but it also attacks a wide range of plant species from the myrtle family, resulting in a significant genetic and physiological variability among populations accessed from different hosts. The uredospores are crucial to P. psidii dissemination in the field. Although they are important for the fungal pathogenesis, their molecular characterization has been poorly studied. In this work, we report the first in-depth proteomic analysis of P. psidii s.l. uredospores from two contrasting populations: guava fruits (PpGuava) and eucalyptus leaves (PpEucalyptus). NanoUPLC-MSE was used to generate peptide spectra that were matched to the UniProt Puccinia genera sequences (UniProt database) resulting in the first proteomic analysis of the phytopathogenic fungus P. psidii. Three hundred and fourty proteins were detected and quantified using Label free proteomics. A significant number of unique proteins were found for each sample, others were significantly more or less abundant, according to the fungal populations. In PpGuava population, many proteins correlated with fungal virulence, such as malate dehydrogenase, proteossomes subunits, enolases and others were increased. On the other hand, PpEucalyptus proteins involved in biogenesis, protein folding and translocation were increased, supporting the physiological variability of the fungal populations according to their protein reservoirs and specific host interaction strategies. PMID:26731728

  19. short communication sources of stem rust resistance in ethiopian ...

    African Journals Online (AJOL)

    Administrator

    Stem or black rust of wheat caused by the fungus Puccinia graminis f. sp. tritici Ericks and Henn (Pgt) is an important disease on wheat ... for their response to stem rust (Puccinia graminis f. sp. trictici) infection under greenhouse condition at Kulumsa. Agricultural .... are the phenotypic expression of host-pathogen interaction.

  20. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  1. Spontaneous loss of Yr2 avirulence in two lineages of Puccinia striiformis did not affect pathogen fitness

    DEFF Research Database (Denmark)

    Sørensen, Chris Khadgi; Justesen, Annemarie Fejer; Hovmøller, Mogens Støvring

    2013-01-01

    Fitness costs associated with the emergence of virulence (loss of avirulence) have been a subject of much debate in plant pathology. Here, differences in fitness between two pairs of wild types and spontaneous virulence mutants in Puccinia striiformis were studied. The mutants differed from...

  2. Genetic Differentiation within the Puccinia triticina Population in South America and Comparison with the North American Population Suggests Common Ancestry and Intercontinental Migration

    Science.gov (United States)

    Leaf rust, caused by Puccinia triticina is the most prevalent and widespread disease of wheat in South America. The objective of this study was to determine the number of genetically differentiated groups of P. triticina that are currently present in South America, and to compare the South American ...

  3. Virulence and SSR marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana

    Science.gov (United States)

    Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, is highly variable. The fungal pathogen produces new races overcoming resistance in wheat cultivars. A recently identified race, V26 with virulence to Yr26 and many other stripe rust resistance genes, has a high potent...

  4. De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust

    Science.gov (United States)

    Oat crown rust, caused by the fungus Puccinia coronata f. sp. avenae (Pca), is a devastating disease that impacts worldwide oat production. For much of its life cycle Pca is dikaryotic with two separate haploid nuclei that may vary in virulence genotypes, which highlights the importance of understan...

  5. Recovery and virulence phenotyping of the historic 'Stubbs Collection' of the yellow rust fungus Puccinia striiformis from wheat

    DEFF Research Database (Denmark)

    Thach, T.; Ali, S.; Justesen, A. F.

    2015-01-01

    A unique collection of spore samples of Puccinia striiformis, often referred to as the ‘Stubbs collection’, has been stored in liquid nitrogen from 18 to 45 years. A subset of samples representing 35 countries and 28 years was investigated to assess recovery rate, race identity and previously und...

  6. Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants.

    Science.gov (United States)

    Both, Maike; Eckert, Sabine E; Csukai, Michael; Müller, Elisabeth; Dimopoulos, George; Spanu, Pietro D

    2005-02-01

    High-density cDNA microarrays (2,027 unigenes) were used to analyze transcript profiles of the plant-pathogenic fungus Blumeria graminis f. sp. hordei throughout its asexual life cycle and development of infection. RNA was obtained from four stages preceding penetration and four stages after penetration of the host cells. The microarray data was validated by comparing the expression of a plasma membrane H+-ATPase and fructose-1,6-bis phosphatase with the data obtained from a quantitative polymerase chain reaction (PCR) assay. The results showed that there was a global switch in expression between the pre- and postpenetrative stages. This was largely due to accumulation of RNA encoding protein biosynthesis genes in the late stages. Other functional clusters, such as virulence-related genes and sterol metabolism genes, are up-regulated in pre- and postpenetration stages, respectively. A group of RNAs whose abundance correlated with the expression of cap20, a gene known to be required for virulence in Colletotrichum gloeosporioides, identified genes that are strong candidates for pathogenicity factors in B. graminis.

  7. In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei).

    Science.gov (United States)

    Kusch, Stefan; Ahmadinejad, Nahal; Panstruga, Ralph; Kuhn, Hannah

    2014-10-02

    Compared to other ascomycetes, the barley powdery mildew pathogen Blumeria graminis f.sp. hordei (Bgh) has a large genome (ca. 120 Mbp) that harbors a relatively small number of protein-coding genes (ca. 6500). This genomic assemblage is thought to be the result of numerous gene losses, which likely represent an evolutionary adaptation to a parasitic lifestyle in close association with its host plant, barley (Hordeum vulgare). Approximately 8% of the Bgh genes are predicted to encode virulence effectors that are secreted into host tissue and/or cells to promote pathogenesis; the remaining proteome is largely uncharacterized at present. We provide a comparative analysis of the conceptual Bgh proteome, with an emphasis on proteins with known roles in fungal development and pathogenicity, for example heterotrimeric G proteins and G protein coupled receptors; components of calcium and cAMP signaling; small monomeric GTPases; mitogen-activated protein cascades and transcription factors. The predicted Bgh proteome lacks a number of proteins that are otherwise conserved in filamentous fungi, including two proteins that are required for the formation of anastomoses (somatic hyphal connections). By contrast, apart from minor modifications, all major canonical signaling pathways are retained in Bgh. A family of kinases that preferentially occur in pathogenic species of the fungal clade Leotiomyceta is unusually expanded in Bgh and its close relative, Blumeria graminis f.sp. tritici. Our analysis reveals characteristic features of the proteome of a fungal phytopathogen that occupies an extreme habitat: the living plant cell.

  8. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides.

    Science.gov (United States)

    Wyand, R A; Brown, J K M

    2005-08-01

    Resistance to sterol 14alpha-demethylase inhibiting fungicides (DMIs) has been correlated with mutations in the CYP51 gene, which encodes the target enzyme eburicol 14alpha-demethylase. To test the hypothesis that variation in the CYP51 gene explains variation for DMI sensitivity in barley and wheat powdery mildew species, this gene was sequenced from isolates of Blumeria graminis f.sp. hordei (Bgh) and f.sp. tritici (Bgt), respectively, which differed in their responses to DMIs in agricultural populations in the UK. Two single-nucleotide mutations in the CYP51 gene, which resulted in the amino acid substitutions Y136F and K147Q, were detected. K147Q is a novel mutation present only in Bgh isolates expressing very high levels of resistance. Sequence analysis of the CYP51 gene from the progeny of a cross between DMI-sensitive and resistant Bgh isolates showed that both mutations segregate with resistance, which is consistent with CYP51 controlling a major portion of DMI resistance. However, genetic analysis of resistance to the DMI triadimenol indicates that mutation of the CYP51 gene is not the only mechanism of resistance operating in B. graminis.

  9. Analysis of the structure and inheritance of a linear plasmid from the obligate biotrophic fungus Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Giese, H; Lyngkjaer, M F; Stummann, B M; Grell, M N; Christiansen, S K

    2003-08-01

    A linear plasmid is widespread among isolates of the obligate biotrophic fungus Blumeria graminis f.sp. hordei (synonym Erysiphe graminis) (Bgh), the organism that causes the disease powdery mildew on barley. We cloned and sequenced the entire plasmid of 7965 bp. The plasmid contains two identical terminal inverted repeats (TIR) of 610 bp. Two ORFs are present on opposite strands, one encoding a phage-type DNA polymerase and the other a phage-type RNA polymerase. Two large transcripts of approximately 4.2 and 5.6 kb were identified in conidia, germinating conidia and Bgh -infected barley leaves, indicating that the polymerases are transcribed at most stages of the lifecycle. The transcription start sites were localised within the TIR regions, where a putative 11-bp ARS consensus sequence was also identified. To follow the sexual transmission of the plasmid we screened 27 Bgh isolates for mitochondrial polymorphisms. One polymorphism allowed us to carry out a cross between two isolates that differed in both mitochondrial genotype and presence/absence of the Bgh plasmid. The plasmid was transmitted independently of the origin of the mitochondria. No transfer of the plasmid was observed between two Bgh isolates that were co-cultivated for 1.5 years on a common susceptible barley variety. The plasmid appears to be an autonomous replicon with no phenotypic effect on Bgh.

  10. HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen Blumeria graminis[W][OA

    Science.gov (United States)

    Nowara, Daniela; Gay, Alexandra; Lacomme, Christophe; Shaw, Jane; Ridout, Christopher; Douchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Schweizer, Patrick

    2010-01-01

    Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens. PMID:20884801

  11. Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis.

    Science.gov (United States)

    Zhu, Mo; Riederer, Markus; Hildebrandt, Ulrich

    2017-08-01

    Asexually produced conidia of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt) are known to perceive cuticular very-long-chain aldehydes as signal substances strongly stimulating germination and differentiation of infection structures in a concentration- and chain-length-dependent manner. Conidial germination and appressorium formation are widely prevented by the presence of free water on the host surface. However, sexually produced ascospores can differentiate immersed in water. Applying a Formvar ® -based in vitro-system showed that ascospore appressorium formation was strongly induced by the presence of wheat leaf cuticular wax. Similar to conidia, ascospore appressorium formation is triggered by the presence of very-long-chain aldehydes in a chain-length-dependent manner with n-octacosanal as the most inducing aldehyde. Surface hydrophobicity positively affected ascospore germination but not appressorium formation. Ascospores required significantly more time to complete the differentiation of appressoria and exhibited a more distinct dependence on the availability of free water than their conidial counterparts. Unlike conidia, ascospores showed a more variable germination and differentiation pattern even with a single germ tube differentiating an appressorium. Despite these differences our results demonstrate that a host surface recognition principle based on cuticular very-long-chain aldehydes is a common feature of B. graminis f. sp. tritici ascospores and conidia. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Respiratory burst oxidase homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Trujillo, Marco; Altschmied, Lothar; Schweizer, Patrick; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-01-01

    Reactive oxygen intermediates (ROI) are closely related to defence reactions of plants against pathogens. A prominent role in the production of ROI has been attributed to the plant respiratory burst oxidase homologues (RBOH) of the human phagocyte GP91(phox). A barley RBOH, which encodes a putative superoxide (O2*-)) producing NADPH oxidase, is described here. Histochemical analysis of the barley-Blumeria graminis f. sp. hordei (Bgh) interaction showed that O(2*-) is produced locally at the site of penetration. In contrast, hydrogen peroxide (H2O2) is produced in non-penetrated cell wall appositions. A barley RBOHA cDNA was isolated and a minor induction of expression of RBOHA was observed during the interactions of barley with Bgh. Transient RNA interference-mediated gene silencing of HvRBOHA during the penetration process of Bgh led to an increase of basal penetration resistance. The results support a potential role of HvRBOHA in cellular accessibility to Blumeria graminis.

  13. Tratamiento de las fracturas periprotésicas de cadera tipos B2 y B3 con tallos no cementados de fijación distal. [Treatment of types B2 and B3 periprosthetic hip fractures with distal fixation cementless stem].

    Directory of Open Access Journals (Sweden)

    Sebastian Pereira

    2016-11-01

    Full Text Available Introducción: La fractura periprotésica se encuentra en tercer lugar como causa mas frecuente de revisión de cadera por detrás del aflojamiento aséptico y la infección. Aquellas que se presentan asociadas a un tallo flojo (B2 o a un déficit de capital óseo (B3, deben ser tratadas con la revisión femoral. Materiales y Método: Se estudiaron retrospectivamente 38 pacientes con fracturas periprotésicas de fémur B2 y B3 tratadas con tallos no cementados de fijación distal sin injerto óseo ni placas de osteosíntesis. El tiempo de seguimiento promedio fue de 2.5 años (rango, 1.5 a10. Resultados: El puntaje promedio alcanzado en el HHS fue de 69 puntos (rango, 57-91. En todos los casos (100% se logró la consolidación ósea. La sobrevida libre de revisión fue del 94.8%. Las complicaciones fueron; 1 (2.6% hundimiento del tallo mayor a 5mm, 1 (2.6% luxación, 2 (5.2% infecciones , 1 (2.6% hematoma de la herida. Conclusiones: La técnica de revisión con tallos no cementados de fijación distal sin el aporte de injerto óseo  ha demostrados ser un método eficaz para el tratamiento de las fracturas periprotésicas de  cadera B2 y B3.

  14. Mechanisms involved in control of ¤Blumeria graminis¤ f.sp. ¤hordei¤ in barley treated with mycelial extracts from cultured fungi

    DEFF Research Database (Denmark)

    Haugaard, H.; Collinge, D.B.; Lyngkjær, Michael Foged

    2002-01-01

    Treatment with mycelial extracts, prepared from liquid cultures of Bipolaris oryzae , Pythium ultimum and Rhizopus stolonifer , protected barley (Hordeum vulgare ) against powdery mildew disease caused by the fungus Blumeria graminis f.sp. hordei . The mechanisms of this protection were studied u...

  15. Onderzoekingen over Ophiobolus graminis Sacc. en Ophiobolus herpotrichus (Fr.) Sacc. en over de door deze fungi veroorzaakte ziekten van Triticum vulgare Vill. en andere Gramineae

    NARCIS (Netherlands)

    Laar, van de J.H.J.

    1931-01-01

    Due to the increasing importance of the wheat disease 'tarwehalmdoder' in the Netherlands, research was started on its occurrence and cause. An extensive literature review proved the identity of 'tarwehalmdoder' with take-all or whiteheads, which were caused by 0. graminis. The symptoms of the

  16. Appearance of Powdery Mildew of Wheat (caused by Blumeria graminis f. sp. Tritici) on Pm17-bearing Cultivars in North Carolina

    Science.gov (United States)

    Pm17 is a gene for resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici) that was first confirmed in the wheat-rye translocation cultivar Amigo (1). In Amigo, the translocation is T1AL-1RS, and the 1RS arm has the gene Pm17. In the Mid-Atlantic USA, at least two widely deployed...

  17. Blumeria graminis interactions with barley conditioned by different single R genes demonstrate a temporal and spatial relationship between stomatal dysfunction and cell death.

    Science.gov (United States)

    Prats, Elena; Gay, Alan P; Roberts, Peter C; Thomas, Barry J; Sanderson, Ruth; Paveley, Neil; Lyngkjaer, Michael F; Carver, Tim L W; Mur, Luis A J

    2010-01-01

    Hypersensitive response (HR) against Blumeria graminis f. sp. hordei infection in barley (Hordeum vulgare) was associated with stomata "lock-up" leading to increased leaf water conductance (g(l)). Unique spatio-temporal patterns of HR formation occurred in barley with Mla1, Mla3, or MlLa R genes challenged with B. graminis f. sp. hordei. With Mla1, a rapid HR, limited to epidermal cells, arrested fungal growth before colonies initiated secondary attacks. With Mla3, mesophyll HR preceded that in epidermal cells whose initial survival supported secondary infections. With MlLa, mesophyll survived and not all attacked epidermal cells died immediately, allowing colony growth and secondary infection until arrested. Isolines with Mla1, Mla3, or MlLa genes inoculated with B. graminis f. sp. hordei ranging from 1 to 100 conidia mm(2) showed abnormally high g(l) during dark periods whose timing and extent correlated with those of each HR. Each isoline showed increased dark g(l) with the nonpathogen B. graminis f. sp. avenae which caused a single epidermal cell HR. Guard cell autofluorescence was seen only after drying of epidermal strips and closure of stomata suggesting that locked open stomata were viable. The data link stomatal lock-up to HR associated cell death and has implications for strategies for selecting disease resistant genotypes.

  18. Two sides of a leaf blade: Blumeria graminis needs chemical cues in cuticular waxes of Lolium perenne for germination and differentiation.

    Science.gov (United States)

    Ringelmann, Anna; Riedel, Michael; Riederer, Markus; Hildebrandt, Ulrich

    2009-06-01

    Plant surface characteristics were repeatedly shown to play a pivotal role in plant-pathogen interactions. The abaxial leaf surface of perennial ryegrass (Lolium perenne) is extremely glossy and wettable compared to the glaucous and more hydrophobic adaxial surface. Earlier investigations have demonstrated that the abaxial leaf surface was rarely infected by powdery mildew (Blumeria graminis), even when the adaxial surface was densely colonized. This led to the assumption that components of the abaxial epicuticular leaf wax might contribute to the observed impairment of growth and development of B. graminis conidia on abaxial surfaces of L. perenne. To re-assess this hypothesis, we analyzed abundance and chemical composition of L. perenne ab- and adaxial epicuticular wax fractions. While the adaxial epicuticular waxes were dominated by primary alcohols and esters, the abaxial fraction was mainly composed of n-alkanes and aldehydes. However, the major germination and differentiation inducing compound, the C26-aldehyde n-hexacosanal, was not present in the abaxial epicuticular waxes. Spiking of isolated abaxial epicuticular Lolium waxes with synthetically produced n-hexacosanal allowed reconstituting germination and differentiation rates of B. graminis in an in vitro germination assay using wax-coated glass slides. Hence, the absence of the C26-aldehyde from the abaxial surface in combination with a distinctly reduced surface hydrophobicity appears to be primarily responsible for the failure of normal germling development of B. graminis on the abaxial leaf surfaces of L. perenne.

  19. Structure and regional differences in U.S. Blumeria graminis f. sp. tritici populations: divergence, migration, fungicide sensitivity, and virulence patterns

    Science.gov (United States)

    Several aspects of the biology of USA populations of wheat powdery mildew (Blumeria graminis f. sp. tritici, or Bgt) have been investigated for their importance to the integrated management of this widespread and potentially damaging pathogen. For example, the virulence profiles of U.S. Bgt populat...

  20. New Insights into the Life Cycle of the Wheat Powdery Mildew: Direct Observation of Ascosporic Infection in Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Jankovics, Tünde; Komáromi, Judit; Fábián, Attila; Jäger, Katalin; Vida, Gyula; Kiss, Levente

    2015-06-01

    Although Blumeria graminis is an intensively studied pathogen, an important part of its life cycle (namely, the way ascospores initiate primary infections on cereal leaves) has not yet been explored in detail. This study reports, for the first time, the direct observation of this process in B. graminis f. sp. tritici using light and confocal laser-scanning microscopy. All the germinated ascospores produced a single germ tube type both in vitro and on host plant surfaces; therefore, the ascosporic and conidial germination patterns are markedly different in this fungus, in contrast to other powdery mildews. Germinated ascospores penetrated the epidermal cells of wheat leaves and produced haustoria as known in the case of conidial infections. This work confirmed earlier studies reporting that B. graminis chasmothecia collected from the field do not contain mature ascospores, only asci filled with protoplasm; ascospore development is induced by moist conditions and is a fast process compared with other powdery mildews. Although ascosporic infections are frequent in B. graminis f. sp. tritici in the field, as shown by this study and other works as well, a recent analysis of the genomes of four isolates revealed the signs of clonal or near-clonal reproduction. Therefore, chasmothecia and ascospores are probably more important as oversummering structures than genetic recombination factors in the life cycle of this pathogen.

  1. Genetic variation in Danish populations of Erysiphe graminis f.sp. hordei: estimation of gene diversity and effective population size using RFLP data

    DEFF Research Database (Denmark)

    Damgaard, C.; Giese, Nanna Henriette

    1996-01-01

    Genetic variation of the barley powdery mildew fungus (Erysiphe graminis f.sp. hordei) was estimated in three Danish local populations. Genetic variation was estimated from the variation amongst clones of Egh, and was therefore an estimate of the maximum genetic variation in the local populations...

  2. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp tritici

    Directory of Open Access Journals (Sweden)

    Han Qingmei

    2008-05-01

    Full Text Available Abstract Background Puccinia striiformis f. sp. tritici is an obligate biotrophic pathogen that causes leaf stripe rust on wheat. Although it is critical to understand molecular mechanisms of pathogenesis in the wheat stripe rust fungus for developing novel disease management strategies, little is known about its genome and gene functions due to difficulties in molecular studies with this important pathogen. To identify genes expressed during early infection stages, in this study we constructed a cDNA library with RNA isolated from urediniospores of P. striiformis f. sp. tritici germinated for 10 h. Results A total of 4798 ESTs were sequenced from the germinated urediniospore library and assembled into 315 contigs and 803 singletons. About 23.9% and 13.3% of the resulting 1118 unisequences were homologous to functionally characterized proteins and hypothetical proteins, respectively. The rest 62.8% unisequences had no significant homologs in GenBank. Several of these ESTs shared significant homology with known fungal pathogenicity or virulence factors, such as HESP767 of the flax rust and PMK1, GAS1, and GAS2 of the rice blast fungus. We selected six ESTs (Ps28, Ps85, Ps87, Ps259, Ps261, and Ps159 for assaying their expression patterns during urediniospore germination and wheat infection by quantitative real-time PCR. All of them had the highest transcript level in germinated urediniospores and a much less transcript level in un-germinated urediniospores and infected wheat tissues (1–7 dpi. The transcript level of Ps159 increased at later infection stages (6–7 dpi. Our data indicated that these genes were highly expressed in germinated urediniospores and may play important roles in fungal-plant interactions during early infection stages in the wheat stripe rust fungus. Conclusion Genes expressed in germinated urediniospores of P. striiformis f. sp. tritici were identified by EST analysis. Six of them were confirmed by quantitative real

  3. Structure and Migration in U.S. Blumeria graminis f. sp. tritici Populations.

    Science.gov (United States)

    Cowger, Christina; Parks, Ryan; Kosman, Evsey

    2016-03-01

    While wheat powdery mildew occurs throughout the south-central and eastern United States, epidemics are especially damaging in the Mid-Atlantic states. The structure of the U.S. Blumeria graminis f. sp. tritici population was assessed based on a sample of 238 single-spored isolates. The isolates were collected from 16 locations in 12 states (18 site-years) as chasmothecial samples in 2003 or 2005, or as conidial samples in 2007 or 2010. DNA was evaluated using nine single nucleotide polymorphism (SNP) markers in four housekeeping genes, and 10 simple sequence repeat (SSR) markers. The SSR markers were variably polymorphic, with allele numbers ranging from 3 to 39 per locus. Genotypic diversity was high (210 haplotypes) and in eight of the site-years, every isolate had a different SSR genotype. SNP haplotypic diversity was lower; although 15 haplotypes were identified, the majority of isolates possessed one of two haplotypes. The chasmothecial samples showed no evidence of linkage disequilibrium (P = 0.36), while the conidial samples did (P = 0.001), but the two groups had nearly identical mean levels of genetic diversity, which was moderate. There was a weakly positive relationship between genetic distance and geographic distance (R(2) = 0.25, P = 0.001), indicating modest isolation by distance. Most locations in the Mid-Atlantic and Great Lakes regions clustered together genetically, while Southeast locations formed a distinct but adjacent cluster; all of these were genetically separated from Southern Plains locations and an intermediate location in Kentucky. One-way migration was detected at a rate of approximately five individuals per generation from populations west of the Appalachian Mountains to those to the east, despite the fact that the Atlantic states experience more frequent and damaging wheat mildew epidemics. Overall, the evidence argues for a large-scale mosaic of overlapping populations that re-establish themselves from local sources, rather than

  4. Sitobion graminis Takahashi, 1950 (Hemiptera, Aphididae: first record in Brazil, biological and morphometric parameters Sitobion graminis Takahashi, 1950 (Hemiptera, Aphididae: primeiro registro para o Brasil, parâmetros biológicos e morfométricos

    Directory of Open Access Journals (Sweden)

    Josiane Teresinha Cardoso

    2006-03-01

    Full Text Available The species Sitobion graminis Takahashi, 1950 (Hemiptera, Aphididae was first detected in Brazil in 1998, in Curitiba, Paraná state, associated with the grass species Erianthus sp., Calamagrotis sp. and Paspalum urvilei. Both the field-collected and laboratory-reared specimens presented a noticeable intrapopulational variation in body and appendix length and in dorso-abdominal sclerotization. This species has been recorded in Malaysia, New Guinea, India, Philippines and Africa, where it colonizes several species of Poaceae. S. graminis differs from other Sitobion species from Brazil associated with grasses, as it presents black cauda and siphunculi and exhibits a constriction in the base of the last rostral segment. Biological data were obtained in the laboratory by rearing newborn nymphs on the inflorescence of the host plants. They passed through four nymphal instars. The mean duration of the nymphal stage was of 11.4 days, with a mortality ratio of 36.5%. The mean pre-larviposition period was of 1.8 days; mean longevity of the females was 25.2 days; and mean fecundity was 18.7 nymphs/female, ranging from 2 to 41 nymphs/female.A espécie Sitobion graminis Takahashi, 1950 (Hemiptera, Aphididae foi detectada no Brasil pela primeira vez em 1998, em Curitiba, PR, associada às gramíneas Erianthus sp., Calamagrotis sp. e Paspalum urvilei. Os espécimes coletados e criados apresentavam uma notável variação intrapopulacional no comprimento do corpo e apêndices e na esclerotinização dorso-abdominal. Esta espécie é reconhecida na Malásia, Nova Guiné, Índia, Filipinas e África, colonizando várias espécies de Poaceae. S. graminis diferencia-se das demais espécies do gênero Sitobion associadas a gramíneas no Brasil, por apresentar a cauda e sifúnculos negros e o último segmento rostral constrito na base. Dados de biologia foram obtidos em laboratório, onde ninfas recém-nascidas criadas sobre as inflorescências das gram

  5. Producción de materia seca en tallos y hojas de caña de azúcar, según épocas de plantación y edades de corte

    Directory of Open Access Journals (Sweden)

    Félix Valladares Arrocha

    2015-05-01

    Full Text Available RESUMEN El objetivo principal del estudio fue evaluar la producción de biomasa seca, en tallos y hojas de caña de azúcar, a través de diferentes edades de corte y ciclos de plantación. En la región Centro-Oriental de Cuba (Estación Experimental de Investigaciones de Caña de Azúcar de Camagüey-INICA se valoraron durante tres años en los ciclos de primavera y frío en dos ensayos de campo con los cultivares: C1051-73, My5514 y C86-12. La biomasa seca se evaluó en caña planta por un período de 11 meses. Los experimentos se sembraron en un diseño de bloques al azar con tres réplicas. En el análisis de la información se utilizó un ANOVA paramétrico (factorial y prueba de Tukey. Los resultados en la comparación de medias mostraron que el peso seco de los tallos se incrementó desde 278 (9.3 meses hasta 465 días (15.5 meses. Los máximos valores se obtuvieron en el ciclo de frío, entre 371(12,4 meses y 489 días (16,3 meses. En frío los contenidos de materia seca de las hojas fueron significativamente superiores (p≤ 0.01 a los de primavera a edades que van desde los 278 (9.3 meses y hasta los 403 días (13.4 meses. Los resultados son promisorios y el contenido de materia seca un indicador de utilidad en investigaciones para la mejor comprensión del crecimiento y productividad de la caña de azúcar en las condiciones propias de Cuba. Production of dry weight in stalks and leaves of sugarcane, through different crop ages and two plantation cycles. ABSTRACT The main objective of this study was to evaluate the production of dry weight (biomass, in stalks and leaves of sugarcane, through different crop ages, and two plantation cycles. Two field trials in spring and winter were conducted during three years in the center-east region of Cuba (Experimental Station of Sugarcane Research, Camagüey - INICA, with the varieties: C1051-73, My5514 and C86-12. Dry biomass was evaluated over period of 11 months in the plant-cane cycle. The

  6. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade®ASO (Bacillus subtilis strain QST713)

    DEFF Research Database (Denmark)

    Reiss, Antje; Jørgensen, Lise Nistrup

    2017-01-01

    Yellow rust (Puccinia striiformis f. sp. tritici) is an important disease in wheat causing significant yield reductions, if not effectively controlled. The biofungicide Bacillus subtilis strain QST 713 suspension concentrate (Serenade®ASO) was investigated for its potential for yellow rust control...... in winter wheat field trials. Serenade®ASO reduced severity of yellow rust significantly, providing up to 60% control at BBCH growth stage 65–69, under moderate disease pressure. Under high disease pressure reductions were more variable and provided less than 30% control. An increase in the number......, but responses to biofungicide were only significant in a few cases, and in all cases the level of control and yield responses were significantly lower compared with using prothioconazole as chemical control. An outdoor pot trial using artificial inoculation tested preventive and curative application of Serenade...

  7. Inheritance and molecular mapping of a gene conferring seedling resistance against Puccinia hordei in the barley cultivar Ricardo.

    Science.gov (United States)

    Sandhu, K S; Forrest, K L; Kong, S; Bansal, U K; Singh, D; Hayden, M J; Park, R F

    2012-11-01

    Genetic studies were undertaken to determine the inheritance and genomic location of uncharacterised seedling resistance to leaf rust, caused by Puccinia hordei, in the barley cultivar Ricardo. The resistance was shown to be conferred by a single dominant gene, which was tentatively designated RphRic. Bulk segregant analysis (BSA) and genetic mapping of an F(3) mapping population using multiplex-ready SSR genotyping and Illumina GoldenGate SNP assay located RphRic in chromosome 4H. Given that this is the first gene for leaf rust resistance mapped on chromosome 4H, it was designated Rph21. The presence of an additional gene, Rph2, in Ricardo, was confirmed by the test of allelism. The seedling gene Rph21 has shown effectiveness against all Australian pathotypes of P. hordei tested since at least 1992 and hence represents a new and useful source of resistance to this pathogen.

  8. Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust.

    Science.gov (United States)

    Rochi, Lucia; Diéguez, María José; Burguener, Germán; Darino, Martín Alejandro; Pergolesi, María Fernanda; Ingala, Lorena Romina; Cuyeu, Alba Romina; Turjanski, Adrián; Kreff, Enrique Domingo; Sacco, Francisco

    2018-03-01

    Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Recombination at the Ml-a Locus in Barley Conditioning Resistance to Erysiphe Graminis F.Sp. Hordei

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Moseman, J. G.

    1972-01-01

    Attempts were made to recombine the dominant or semidominant resistance genes Ml-a, Ml-a3, Ml-a8 and Ml-a9 from the barley varieties Algerian Ricardo, Heil's Hanna and Monte Cristo, respectively. No recombinants with two resistance genes in the coupling phase were found in a total of 3117 test......-cross seedlings from four crosses studied. The true recombination percentages between the genes Ml-a/Ml-a3, Ml-a/Ml-a8, Ml-a/Ml-a9 and Ml-a8/Ml-a9 are between zero and 0.5. One possible recombinant susceptible to Erysiphe graminis f. sp. hordei suggests that the recombination percentage between the recessive...

  10. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franko

    2011-01-01

    Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites for marker assisted...... selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible to bacterial wilt were compared at four time points after Xtg infection. A cDNA microarray developed from a perennial ryegrass (Lolium perenne) expressed sequence tag set consisting of 9,990 unique...... genes was used for transcriptome analysis in Italian ryegrass. An average of 4,487 (45%) of the perennial ryegrass sequences spotted on the cDNA microarray were detected by cross-hybridisation to Italian ryegrass. Transcriptome analyses of the resistant versus the susceptible genotype revealed...

  11. Expression and sequence analysis of the Blumeria graminis mitogen-activated protein kinase genes, mpk1 and mpk2.

    Science.gov (United States)

    Zhang, Z; Gurr, S J

    2001-03-21

    Mitogen-activated protein (MAP) kinases represent a group of serine/threonine kinases which play a pivotal role in signal transduction processes in eukaryotic cells. Using degenerate PCR primer design based on published and aligned MAP kinase sequences we have cloned and characterised two MAP kinase genes from the barley powdery mildew fungus, Blumeria graminis. We have utilised 'step down' PCR to attain the full length mildew genomic clones. The single-copy genes, named mpk1 and mpk2, encode putative proteins of 356 and 410 amino acids and carry three and four introns, respectively. Expression studies, using RT-PCR, reveal a differing pattern of tissue gene expression with mpk1 and mpk2 during germling morphogenesis and this is compared with the constitutive expression of the 'control' beta-tubulin gene.

  12. Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen.

    Science.gov (United States)

    Both, Maike; Csukai, Michael; Stumpf, Michael P H; Spanu, Pietro D

    2005-07-01

    cDNA microarrays of Blumeria graminis f sp hordei transcript profiles during the asexual development cycle reveal the dynamics of global gene expression as the fungus germinates, penetrates, feeds on its host, and produces masses of conidia for dispersal. The expression profiles of genes encoding enzymes involved in primary metabolism show that there is a striking degree of coordinate regulation of some of the genes in the same pathway. In one example, genes encoding several glycolytic enzymes are significantly upregulated as mature appressoria form and also in infected epidermis, which contain fungal haustoria. In another example, mRNAs for lipid degrading enzymes are initially expressed at high levels in the conidia and the early germination stages and decrease significantly later. We discuss these results and draw inferences on the metabolic status of this obligate biotrophic fungus as it infects its host and completes its life cycle.

  13. Heterologous expression of the CYP51 gene of the obligate fungus Blumeria graminis in the necrotrophic fungus Botrytis cinerea.

    Science.gov (United States)

    Yan, Lei-Yan; Chen, Yan-Feng; Yang, Qian-Qian; Ma, Zhong-Hua

    2012-01-01

    As it is extremely difficult to make DNA transformation for the obligate fungus, Blumeria graminis f. sp. tritici (Bgt), we developed a heterologous expression system for characterization of a Bgt gene, CYP51, which encodes 14α-demethylase. The CYP51 gene from Bgt was transformed into the necrotrophic fungus, Botrytis cinerea. Reverse transcription polymerase chain reaction showed that the Bgt CYP51 was transcribed in B. cinerea. Green fluorescence was observed in the transformants of B. cinerea carrying the Bgt CYP51-GFP fusion cassette, suggesting that its translation was successful. Fungicide sensitivity tests revealed that B. cinerea transformed with Bgt CYP51 showed reduced sensitivity to a sterol demethylation inhibitor triadimefon, but not to a benzimidazole fungicide carbendazim. These results indicated that this heterologous expression system can be used for functional analysis of other Bgt genes. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  14. Fungal suppression of resistance against inappropriate ¤Blumeria graminis formae speciales¤ in barley, oat and wheat

    DEFF Research Database (Denmark)

    Olesen, K.L.; Carver, T.L.W.; Lyngkjær, Michael Foged

    2003-01-01

    When barley, wheat or oat leaf epidermal cells were attacked by their appropriate forma specialis (f.sp.) of Blumeria graminis DC. Speer (f.sp. hordei, tritici and avenae, respectively), many attempted penetrations succeeded, functional haustoria were formed and very few plant cells died. When...... attacked by either of the two possible inappropriate ff.spp., penetration attempts failed in association with papilla deposition by epidermal cells, attacked cells died, or if visible haustoria were formed the plant cell died very soon afterwards. Double inoculation experiments were performed where each...... the inducer haustorium, evident to some extent in adjacent cells, but undetectable at two cells distance. Suppression of penetration resistance allowed most challenger attacks, even by inappropriate ff.spp., to form a haustorium. Furthermore, death of penetrated epidermal cells was also suppressed so...

  15. Molecular and genetic study of wheat rusts | Le Maitre | African ...

    African Journals Online (AJOL)

    Molecular and genetic study of wheat rusts. ... Puccinia triticina, Puccinia graminis and Puccinia striiformis cause leaf, stem and yellow rust, respectively. Wheat rusts can cause ... Breeding resistant cultivars is a long process and requires an accurate picture of the current and future pathogen population. Differentiation of ...

  16. Molecular and genetic study of wheat rusts | Le Maitre | African ...

    African Journals Online (AJOL)

    Puccinia triticina, Puccinia graminis and Puccinia striiformis cause leaf, stem and yellow rust, respectively. Wheat rusts can cause losses as high as 70%. The rusts ability to evolve fungicide resistance has resulted in the use of resistant cultivars as the primary method of control. Breeding resistant cultivars is a long process ...

  17. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation

    Directory of Open Access Journals (Sweden)

    Fan-Song Zeng

    2017-06-01

    Full Text Available Conidia of the obligate biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt play a vital role in its survival and rapid dispersal. However, little is known about the genetic basis for its asexual reproduction. To uncover the primary metabolic and regulatory events during conidiation, we sequenced the transcriptome of Bgt epiphytic structures at 3 (vegetative hyphae growth, 4 (foot cells initiation, and 5 (conidiophore erection days post-inoculation (dpi. RNA-seq analyses identified 556 and 404 (combined 685 differentially expressed genes (DEGs at 4 and 5 dpi compared with their expression levels at 3 dpi, respectively. We found that several genes involved in the conversion from a variety of sugars to glucose, glycolysis, the tricarboxylic acid cycle (TAC, the electron transport chain (ETC, and unsaturated fatty acid oxidation were activated during conidiation, suggesting that more energy supply is required during this process. Moreover, we found that glucose was converted into glycogen, which was accumulated in developing conidiophores, indicating that it could be the primary energy storage molecule in Bgt conidia. Clustering for the expression profiles of 91 regulatory genes showed that calcium (Ca2+, H2O2, and phosphoinositide (PIP signaling were involved in Bgt conidiation. Furthermore, a strong accumulation of H2O2 in developing conidiophores was detected. Application of EGTA, a Ca2+ chelator, and trifluoperazine dihydrochloride (TFP, a calmodulin (CaM antagonist, markedly suppressed the generation of H2O2, affected foot cell and conidiophore development and reduced conidia production significantly. These results suggest that Ca2+ and H2O2 signaling play important roles in conidiogenesis and a crosslink between them is present. In addition to some conidiation-related orthologs known in other fungi, such as the velvet complex components, we identified several other novel B. graminis-specific genes that have not been previously

  18. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation

    Science.gov (United States)

    Zeng, Fan-Song; Menardo, Fabrizio; Xue, Min-Feng; Zhang, Xue-Jiang; Gong, Shuang-Jun; Yang, Li-Jun; Shi, Wen-Qi; Yu, Da-Zhao

    2017-01-01

    Conidia of the obligate biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt) play a vital role in its survival and rapid dispersal. However, little is known about the genetic basis for its asexual reproduction. To uncover the primary metabolic and regulatory events during conidiation, we sequenced the transcriptome of Bgt epiphytic structures at 3 (vegetative hyphae growth), 4 (foot cells initiation), and 5 (conidiophore erection) days post-inoculation (dpi). RNA-seq analyses identified 556 and 404 (combined 685) differentially expressed genes (DEGs) at 4 and 5 dpi compared with their expression levels at 3 dpi, respectively. We found that several genes involved in the conversion from a variety of sugars to glucose, glycolysis, the tricarboxylic acid cycle (TAC), the electron transport chain (ETC), and unsaturated fatty acid oxidation were activated during conidiation, suggesting that more energy supply is required during this process. Moreover, we found that glucose was converted into glycogen, which was accumulated in developing conidiophores, indicating that it could be the primary energy storage molecule in Bgt conidia. Clustering for the expression profiles of 91 regulatory genes showed that calcium (Ca2+), H2O2, and phosphoinositide (PIP) signaling were involved in Bgt conidiation. Furthermore, a strong accumulation of H2O2 in developing conidiophores was detected. Application of EGTA, a Ca2+ chelator, and trifluoperazine dihydrochloride (TFP), a calmodulin (CaM) antagonist, markedly suppressed the generation of H2O2, affected foot cell and conidiophore development and reduced conidia production significantly. These results suggest that Ca2+ and H2O2 signaling play important roles in conidiogenesis and a crosslink between them is present. In addition to some conidiation-related orthologs known in other fungi, such as the velvet complex components, we identified several other novel B. graminis-specific genes that have not been previously found to

  19. Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis.

    Science.gov (United States)

    Douchkov, Dimitar; Johrde, Annika; Nowara, Daniela; Himmelbach, Axel; Lueck, Stefanie; Niks, Rients; Schweizer, Patrick

    2011-01-01

    Pathogen attack triggers a multifaceted defence response in plants that includes the accumulation of pathogenesis-related proteins and their corresponding transcripts. One of these transcripts encodes for WIR1, a small glycine- and proline-rich protein of unknown function that appears to be specific to grass species. Here we describe members of the HvWIR1 multigene family of barley with respect to phylogenetic relationship, transcript regulation, co-localization with quantitative trait loci for resistance to the barley powdery mildew fungus Blumeria graminis (DC.) E.O. Speer f.sp. hordei, the association of single nucleotide polymorphisms or gene haplotypes with resistance, as well as phenotypic effects of gene silencing by RNAi. HvWIR1 is encoded by a multigene family of moderate complexity that splits up into two major clades, one of those being also represented by previously described cDNA sequences from wheat. All analysed WIR1 transcripts accumulated in response to powdery mildew attack in leaves and all mapped WIR1 genes were associated with quantitative trait loci for resistance to B. graminis. Moreover, single nucleotide polymorphisms or haplotypes of WIR1 members were associated with quantitative resistance of barley to B. graminis, and transient WIR1 gene silencing affected the interaction of epidermal cells with the pathogen. The presented data provide convergent evidence for a role of the HvWIR1a gene and possibly other family members, during the interaction of barley with B. graminis. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. In vitro Antagonistic Mechanisms of Trichoderma spp. and Talaromyces flavus to Control Gaeumannomyces graminis var. tritici the Causal Agent of Wheat Take-all Disease

    Directory of Open Access Journals (Sweden)

    Seddighe Mohammadi

    2015-07-01

    Full Text Available Wheat take-all disease caused by Gaeumannomyces graminis var. tritici has recently been detected in different regions of Iran. With respect to biocontrol effect of Trichoderma spp. on many pathogenic fungi, seven isolates of Trichoderma and four isolates of Talaromyces were in vitro evaluated in terms of their biological control against the disease causal agent. In dual culture test the five isolates showed efficient competition for colonization against pathogenic fungus and the highest percentages of inhibition belonging to Talaromyces flavus 60 and Talaromyces flavus 136 were 59.52 and 57.61%, respectively. Microscopic investigations showed that in regions where antagonistic isolates and Gaeumannomyces graminis var. tritici coincide, hyphal contact, penetration and fragmentation of Gaeumannomyces graminis var. tritici were observed. Investigating the effect of volatile and non-volatile compounds at 10 ml concentration showed that the highest inhibition percentage on mycelium growth of the pathogen caused by T. harzianum (44.76% and T. longibrachiatum (52.38% respectively.

  1. RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Proels, Reinhard K; Oberhollenzer, Kathrin; Pathuri, Indira Priyadarshini; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2010-09-01

    Plant respiratory burst oxidase homologs are prominent sources of reactive oxygen species (ROS) in signal transduction and in interaction with microbes. However, the function of respiratory burst oxidase homologue (RBOH) genes in interaction with microbes might differ for certain plant and pathogen species. We produced transgenic barley knock down (KD) for the HvRBOHF2 isoform of NADPH oxidases. Young HvRBOHF2 KD shoots did not show obvious morphological alterations from the wild type but adult HvRBOHF2 KD plants developed fewer tillers, were less fertile, and showed spontaneous cell death in leaf mesophyll. Additionally, HvRBOHF2 KD plants were unable to contain wound-induced cell death. Before developmental failure became obvious, young HvRBOHF2 KD seedlings were much more susceptible to penetration by the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Strikingly, the B. graminis f. sp. hordei-induced cell-wall-associated oxidative burst was not substantially attenuated in HvRBOHF2 KD plants but enhanced susceptibility apparently influenced the subcellular site of hydrogen peroxide accumulation. Taken together, misexpression of HvRBOHF2 caused failure of barley to normally develop penetration resistance to B. graminis f. sp. hordei and to control leaf cell death.

  2. Ganglioglioma de tallo cerebral en mujer adolescente

    Directory of Open Access Journals (Sweden)

    Alfonso Marhx-Bracho

    2015-08-01

    Full Text Available Niña de 12 años de edad con padecimiento de un mes de evolución caracterizado por cefalea, mareo, vómito y marcha atáxica. Días antes de su internamiento fue operada por presentar cuadro de abdomen agudo secundario a una apendicitis aguda. Después de recuperarse de esa cirugía la paciente tuvo somnolencia, bradipsiquia, bradilalia, diplopia y nistagmo, motivo por el cual acudió a nuestra institución.

  3. Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana.

    Science.gov (United States)

    Felle, Hubert H; Herrmann, Almut; Schäfer, Patrick; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2008-01-01

    Using ion-selective microprobes, interactive signalling between barley and Blumeria graminis or Bipolaris sorokiniana has been investigated. The question was raised whether a biotrophically growing fungus manipulates the electrical driving forces (membrane potential, transmembrane pH), required for H+ cotransport of energy-rich compounds. Electrodes were positioned in the substomatal cavity of open stomata or on the leaf surface, and pH was measured continuously up to several days during fungal development. We demonstrate that surface and apoplastic fluids are electrically coupled and respond in a similar manner to stimuli. Apoplastic pH, monitored from the moment of inoculation with conidia, reveals several phases: 2-4h after inoculation of the barley leaf with either fungus, the host displays rapid transient responses after its first contact with the fungal cell wall; apoplastic pH and pCa increases, cytoplasmic pH and pCa decreases. About 1 day after inoculation, the apoplastic pH increases by up to 2 pH units, which is thought to reflect a resistance response against the intruder. Whereas barley leaf cells possess a membrane potential of -152+/-5 mV, hyphae of B. graminis yield -251+/-8 mV, indicative of a substantial driving force advantage for the fungus. Although the resting membrane potential of barley remains constant during the first days after inoculation, leaves infected with B. sorokiniana get confronted with an energy problem, indicated by a retarded repolarization following a "light-off" stimulus. Five days after inoculation, apoplastic pH has increased to 5.97+/-0.47 (n=11) and does no longer respond to "light-off" when measured within lesions. In contrast, it stays at near normal values outside the lesions and responds to "light-off". It is concluded that biotrophically growing fungi do not manipulate the cotransport driving forces since (i) any change in apoplastic pH would be experienced by both partners; (ii) the resting membrane potential is

  4. Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Felle, Hubert H; Herrmann, Almut; Hanstein, Stefan; Hückelhoven, Ralph; Kogel, Karl-Heinz

    2004-01-01

    To investigate apoplastic responses of barley (Hordeum vulgare L.) to the barley powdery mildew fungus Blumeria graminis f. sp. hordei, noninvasive microprobe techniques were employed. H(+)- and Ca(2+)-selective microprobes were inserted into open stomata of barley leaves inoculated with Blumeria graminis f. sp. hordei race A6 conidia. Resistance gene-mediated responses of barley genotype Ingrid (susceptible parent line) and the near-isogenic resistant Ingrid backcross lines (I-mlo5, I-Mla12, and I-Mlg) were continuously monitored from 20 min to 4 days after inoculation. The main events were categorized as short-term responses around 2 h after inoculation (hai), intermediate responses around 8 and 12 hai, and long-term responses starting between 21 and 24 hai. Short-term responses were rapid transient decreases of apoplastic H(+)- and Ca2+ activities that lasted minutes only. Kinetics were similar for all genotypes tested, and thus, these short-term responses were attributed as nonspecific first encounters of fungal surface material with the host plasma membrane. This is supported by the observation that a microinjected chitin oligomer (GlcNAc)8 yielded similar apoplastic alkalinization. Intermediate responses are trains of H+ (increase) spikes that, being different in susceptible Ingrid and penetration-resistant I-mlo5 (or I-Mlg), were interpreted as accompanying specific events of papillae formation. Long-term events were massive slow and long-lasting alkalinizations up to two pH units above control. Since these latter changes were only observed with near-isogenic hypersensitive reaction (HR)-mounting genotypes I-Mla12 and I-Mlg but not with I-mlo5 or, to a smaller extent, with susceptible Ingrid, both lacking significant rates of HR, they were rated as cell death specific. It is concluded that apoplastic pH changes are important indicators of host-pathogen interactions that correlate with both the different stages of fungal development and the different types of

  5. Roles of the actin cytoskeleton and an actin-binding protein in wheat resistance against Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Song, Xiaohe; Ma, Qing; Hao, Xinyuan; Li, Hongli

    2012-01-01

    Elucidating resistance mechanisms of plant cells against pathogens is essential to develop novel strategies of disease control. The actin cytoskeleton was found intimately involved in plant defense. In order to reveal how actin would be involved in the interaction between wheat and the stripe rust Puccinia striiformis f. sp. tritici, prior to fungal inoculation, wheat leaves were treated with cytochalasin A, an inhibitor of actin polymerization. Our results showed reduced incidence of hypersensitive cell death and delayed accumulation of H(2)O(2) in wheat leaves treated with cytochalasin A compared to the control. We also found that the TaPRO profilin gene exhibited significantly different expression levels in host leaves when comparing compatible and incompatible interactions. Real-time PCR analysis revealed that the expression transcript of TaPRO was lower at each time point in incompatible interactions when compared to compatible ones, and the largest difference between the two interactions occurred at 12 h post-inoculation. Both pharmacological and gene expression results collectively support the notion that the compromise of the actin microfilament is linked to the compatible interaction between the stripe rust fungus and the leaves of its wheat host.

  6. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L.

    Science.gov (United States)

    Barbieri, Mirko; Marcel, Thierry C; Niks, Rients E; Francia, Enrico; Pasquariello, Marianna; Mazzamurro, Valentina; Garvin, David F; Pecchioni, Nicola

    2012-02-01

    The potential of the model grass Brachypodium distachyon L. (Brachypodium) for studying grass-pathogen interactions is still underexploited. We aimed to identify genomic regions in Brachypodium associated with quantitative resistance to the false brome rust fungus Puccinia brachypodii . The inbred lines Bd3-1 and Bd1-1, differing in their level of resistance to P. brachypodii, were crossed to develop an F(2) population. This was evaluated for reaction to a virulent isolate of P. brachypodii at both the seedling and advanced growth stages. To validate the results obtained on the F(2), resistance was quantified in F(2)-derived F(3) families in two experiments. Disease evaluations showed quantitative and transgressive segregation for resistance. A new AFLP-based Brachypodium linkage map consisting of 203 loci and spanning 812 cM was developed and anchored to the genome sequence with SSR and SNP markers. Three false brome rust resistance QTLs were identified on chromosomes 2, 3, and 4, and they were detected across experiments. This study is the first quantitative trait analysis in Brachypodium. Resistance to P. brachypodii was governed by a few QTLs: two acting at the seedling stage and one acting at both seedling and advanced growth stages. The results obtained offer perspectives to elucidate the molecular basis of quantitative resistance to rust fungi.

  7. Rust disease of eucalypts, caused by Puccinia psidii, did not originate via host jump from guava in Brazil.

    Science.gov (United States)

    Graça, Rodrigo N; Ross-Davis, Amy L; Klopfenstein, Ned B; Kim, Mee-Sook; Peever, Tobin L; Cannon, Phil G; Aun, Cristina P; Mizubuti, Eduardo S G; Alfenas, Acelino C

    2013-12-01

    The rust fungus, Puccinia psidii, is a devastating pathogen of introduced eucalypts (Eucalyptus spp.) in Brazil where it was first observed in 1912. This pathogen is hypothesized to be endemic to South and Central America and to have first infected eucalypts via a host jump from native guava (Psidium guajava). Ten microsatellite markers were used to genotype 148 P. psidii samples from eucalypts and guava plus five additional myrtaceous hosts across a wide geographic range of south-eastern Brazil and Uruguay. Principal coordinates analysis, a Bayesian clustering analysis and a minimum-spanning network revealed two major genetic clusters among the sampled isolates, one associated with guava and another associated with eucalypts and three additional hosts. Multilocus genotypes infecting guava differed by multiple mutational steps at eight loci compared with those infecting eucalypts. Approximate Bayesian computation revealed that evolutionary scenarios involving a coalescence event between guava- and eucalypt-associated pathogen populations within the past 1000 years are highly unlikely. None of the analyses supported the hypothesis that eucalypt-infecting P. psidii in Brazil originated via host jump from guava following the introduction of eucalypts to Brazil approximately 185 years ago. The existence of host-associated biotypes of P. psidii in Brazil indicates that this diversity must be considered when assessing the invasive threat posed by this pathogen to myrtaceous hosts worldwide. © 2013 John Wiley & Sons Ltd.

  8. Resistance to rust ( Puccinia psidii Winter) in eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers.

    Science.gov (United States)

    Junghans, D T; Alfenas, A C; Brommonschenkel, S H; Oda, S; Mello, E J; Grattapaglia, D

    2003-12-01

    Rust is one of the most-damaging eucalypt diseases in Brazil and is considered a potential threat to eucalypt plantations worldwide. To determine the mode of inheritance of resistance in the Eucalyptus grandis- Puccinia psidii pathosystem, ten full-sib families, generated from crosses between susceptible and resistant trees, were inoculated with a single-pustule isolate of the pathogen and rust severity was scored. The observed segregation ratios in segregating families suggested major gene control of rust resistance, although clearly incomplete penetrance, variable expressivity and minor genes are also involved in the global rust-resistance response. To identify markers linked to the resistance locus, screening of RAPD polymorphisms was conducted using bulked segregant analysis in a large full-sib family. A linkage group was built around the Ppr1 gene ( P. psidii resistance gene 1) encompassing six RAPD markers, with a genetic window spanning 5 cM with the two most-closely linked flanking markers. Besides these two flanking markers, RAPD marker AT9/917 co-segregated with Ppr1 without a single recombinant in 994 meioses. This tightly linked marker should prove useful for marker-assisted introgression and will provide an initial lead for a positional cloning effort of this resistance allele. This is the first report of a disease resistance gene identified in Eucalyptus, and one of the few examples of the involvement of a major gene in a non-coevolved pathosystem.

  9. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici.

    Directory of Open Access Journals (Sweden)

    Yuheng Yang

    Full Text Available Glycerol-3-phosphate (G3P is a proposed regulator of plant defense signaling in basal resistance and systemic acquired resistance (SAR. The GLY1-encoded glycerol-3-phosphate dehydrogenase (G3PDH and GLI1-encoded glycerol kinase (GK are two key enzymes involved in the G3P biosynthesis in plants. However, their physiological importance in wheat defense against pathogens remains unclear. In this study, quantification analysis revealed that G3P levels were significantly induced in wheat leaves challenged by the avirulent Puccinia striiformis f. sp. tritici (Pst race CYR23. The transcriptional levels of TaGLY1 and TaGLI1 were likewise significantly induced by avirulent Pst infection. Furthermore, knocking down TaGLY1 and TaGLI1 individually or simultaneously with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS inhibited G3P accumulation and compromised the resistance in the wheat cultivar Suwon 11, whereas the accumulation of salicylic acid (SA and the expression of the SA-induced marker gene TaPR1 in plant leaves were altered significantly after gene silencing. These results suggested that G3P contributes to wheat systemic acquired resistance (SAR against stripe rust, and provided evidence that the G3P function as a signaling molecule is conserved in dicots and monocots. Meanwhile, the simultaneous co-silencing of multiple genes by the VIGS system proved to be a powerful tool for multi-gene functional analysis in plants.

  10. Genetic effects for controlling stripe rust (Puccinia striiformis f. sp. tritici resistance in wheat through joint segregation analysis

    Directory of Open Access Journals (Sweden)

    Kalim Ullah

    2016-06-01

    Full Text Available Mixed inheritance analysis using joint segregation analysis (JSA for stripe rust (Puccinia striiformis f. sp. tritici resistance was carried out in six basic populations (P1, F1, P2, BC1, BC2 and F2 of four wheat crosses (Hashim-08 × LU-26, Farid-06 × Shafaq, Parula × Blue Silver, TD-1 × D-97603 during crop season 2009 to 2012. Genes controlling stripe rust resistance were assessed by using area under disease progress curve (AUDPC. The AUDPC was controlled by mixed two additive-dominant-epistatic major genes plus additive-dominant-epistasis of polygenes in cross Hashim-08 × LU-26 (model E, while in Farid-06 × Shafaq, it was controlled by mixed two major additive-dominant genes plus additive-dominant polygenes (model E-2. In cross Parula × Blue Silver, the AUDPC was managed by additive, dominance and epistasis of two major genes (model B-1, however, it was controlled by mixed one major gene and additive dominant polygenes in cross TD-1 × D-97603 (model D-1. Genetic variation and heritability was higher in major genes than polygene for all the crosses showing that AUDPC was mainly controlled by major genes. The genetic behavior of the AUDPC revealed that stripe rust resistance was controlled by mixed interaction of one to two major genes plus polygenes.

  11. Ultrastructure of the Rust Fungus Puccinia miscanthi in the Teliospore Stage Interacting with the Biofuel Plant Miscanthus sinensis

    Directory of Open Access Journals (Sweden)

    Ki Woo Kim

    2015-09-01

    Full Text Available Interaction of the the rust fungus Puccinia miscanthi with the biofuel plant Miscanthus sinensis during the teliospore phase was investigated by light and electron microscopy. P. miscanthi telia were oval-shaped and present on both the adaxial and abaxial leaf surfaces. Teliospores were brown, one-septate (two-celled, and had pedicels attached to one end. Transmission electron microscopy revealed numerous electron-translucent lipid globules in the cytoplasm of teliospores. Extensive cell wall dissolution around hyphae was not observed in the host tissues beneath the telia. Hyphae were found between mesophyll cells in the leaf tissues as well as in host cells. Intracellular hyphae, possibly haustoria, possessed electron-dense fungal cell walls encased by an electron-transparent fibrillar extrahaustorial sheath that had an electron-dense extrahaustorial membrane. The infected host cells appeared to maintain their membrane-bound structures such as nuclei and chloroplasts. These results suggest that the rust fungus maintains its biotrophic phase with most mesophyll cells of M. sinensis. Such a nutritional mode would permit the rust fungus to obtain food reserves for transient growth in the course of host alteration.

  12. Biocontrol Ability of Puccinia abrupta var. partheniicola on Different Growth Stages of Parthenium Weed (Parthenium hysterophorus L.

    Directory of Open Access Journals (Sweden)

    MOHAMAD TAUFIK FAUZI

    2009-09-01

    Full Text Available A research was conducted to investigate the biological control ability of Puccinia abrupta var. partheniicola infected to parthenium weed (Parthenium hysterophorus L. at different stages of growth in a glasshouse. The study also investigated the combined effect of the infection and the competitor plant, i.e. buffel grass (Cenchrus ciliaris L., a pasture species usually found in the weed habitat in Central Queensland. The 2 × 3 factorial experiment was arranged in a completely randomized design with six replicates in each treatment. The parthenium weeds were planted with or without buffel grass. The plants were inoculated with P. abrupta var. partheniicola urediniospores either at the rosette, flowering or mature growth stage of development. As controls, an additional six non inoculated plants with and without buffel grass were planted. The results showed that P. abrupta var. partheniicola affected more on the younger plants than on the older ones. Its infection decreased the plant height. A higher reduction in plant above ground biomass was recorded because of the rust when the plants were inoculated at the rosette growth stage of development in the presence of competition. The impact of the rust was greatest on the ability of parthenium to produce seeds.

  13. Identification of genes in a partially resistant genotype of Avena sativa expressed in response to Puccinia coronata infection

    Directory of Open Access Journals (Sweden)

    Yolanda eLoarce

    2016-05-01

    Full Text Available Cultivated oat (Avena sativa, an important crop in many countries, can suffer significant losses through infection by the fungus Puccinia coronata, the causal agent of crown rust disease. Understanding the molecular basis of existing partial resistance to this disease might provide targets of interest for crop improvement programs. A suppressive subtractive hybridization (SSH library was constructed using cDNA from the partially resistant oat genotype MN841801-1 after inoculation with the pathogen. A total of 929 genes returned a BLASTx hit and were annotated under different GO terms, including 139 genes previously described as participants in mechanisms related to the defense response and signal transduction. Among these were genes involved in pathogen recognition, cell-wall modification, oxidative burst/ROS scavenging, and abscisic acid biosynthesis, as well genes related to inducible defense responses mediated by salicylic and jasmonic acid (although none of which had been previously reported involved in strong responses. These findings support the hypothesis that basal defense mechanisms are the main systems operating in oat partial resistance to P. coronata. When the expression profiles of 20 selected genes were examined at different times following inoculation with the pathogen, the partially resistant genotype was much quicker in mounting a response than a susceptible genotype. Additionally, a number of genes not previously described in oat transcriptomes were identified in this work, increasing our molecular knowledge of this crop.

  14. Identification of Genes in a Partially Resistant Genotype of Avena sativa Expressed in Response to Puccinia coronata Infection

    Science.gov (United States)

    Loarce, Yolanda; Navas, Elisa; Paniagua, Carlos; Fominaya, Araceli; Manjón, José L.; Ferrer, Esther

    2016-01-01

    Cultivated oat (Avena sativa), an important crop in many countries, can suffer significant losses through infection by the fungus Puccinia coronata, the causal agent of crown rust disease. Understanding the molecular basis of existing partial resistance to this disease might provide targets of interest for crop improvement programs. A suppressive subtractive hybridization (SSH) library was constructed using cDNA from the partially resistant oat genotype MN841801-1 after inoculation with the pathogen. A total of 929 genes returned a BLASTx hit and were annotated under different GO terms, including 139 genes previously described as participants in mechanisms related to the defense response and signal transduction. Among these were genes involved in pathogen recognition, cell-wall modification, oxidative burst/ROS scavenging, and abscisic acid biosynthesis, as well genes related to inducible defense responses mediated by salicylic and jasmonic acid (although none of which had been previously reported involved in strong responses). These findings support the hypothesis that basal defense mechanisms are the main systems operating in oat partial resistance to P. coronata. When the expression profiles of 20 selected genes were examined at different times following inoculation with the pathogen, the partially resistant genotype was much quicker in mounting a response than a susceptible genotype. Additionally, a number of genes not previously described in oat transcriptomes were identified in this work, increasing our molecular knowledge of this crop. PMID:27303424

  15. Genetic Diversity of Blumeria graminis f. sp. hordei in Central Europe and Its Comparison with Australian Population.

    Directory of Open Access Journals (Sweden)

    Eva Komínková

    Full Text Available Population surveys of Blumeria graminis f. sp. hordei (Bgh, a causal agent of more than 50% of barley fungal infections in the Czech Republic, have been traditionally based on virulence tests, at times supplemented with non-specific Restriction fragment length polymorphism or Random amplified polymorphic DNA markers. A genomic sequence of Bgh, which has become available recently, enables identification of potential markers suitable for population genetics studies. Two major strategies relying on transposable elements and microsatellites were employed in this work to develop a set of Repeat junction markers, Single sequence repeat and Single nucleotide polymorphism markers. A resolution power of the new panel of markers comprising 33 polymorphisms was demonstrated by a phylogenetic analysis of 158 Bgh isolates. A core set of 97 Czech isolates was compared to a set 50 Australian isolates on the background of 11 diverse isolates collected throughout the world. 73.2% of Czech isolates were found to be genetically unique. An extreme diversity of this collection was in strong contrast with the uniformity of the Australian one. This work paves the way for studies of population structure and dynamics based on genetic variability among different Bgh isolates originating from geographically limited regions.

  16. Genetic Diversity of Blumeria graminis f. sp. hordei in Central Europe and Its Comparison with Australian Population.

    Science.gov (United States)

    Komínková, Eva; Dreiseitl, Antonín; Malečková, Eva; Doležel, Jaroslav; Valárik, Miroslav

    2016-01-01

    Population surveys of Blumeria graminis f. sp. hordei (Bgh), a causal agent of more than 50% of barley fungal infections in the Czech Republic, have been traditionally based on virulence tests, at times supplemented with non-specific Restriction fragment length polymorphism or Random amplified polymorphic DNA markers. A genomic sequence of Bgh, which has become available recently, enables identification of potential markers suitable for population genetics studies. Two major strategies relying on transposable elements and microsatellites were employed in this work to develop a set of Repeat junction markers, Single sequence repeat and Single nucleotide polymorphism markers. A resolution power of the new panel of markers comprising 33 polymorphisms was demonstrated by a phylogenetic analysis of 158 Bgh isolates. A core set of 97 Czech isolates was compared to a set 50 Australian isolates on the background of 11 diverse isolates collected throughout the world. 73.2% of Czech isolates were found to be genetically unique. An extreme diversity of this collection was in strong contrast with the uniformity of the Australian one. This work paves the way for studies of population structure and dynamics based on genetic variability among different Bgh isolates originating from geographically limited regions.

  17. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities.

    Science.gov (United States)

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J; Mora, María de la Luz; Pozo, María J

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  18. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    Directory of Open Access Journals (Sweden)

    Paola Durán

    2017-08-01

    Full Text Available Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt. In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous “Mapuche” communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  19. Reduction of Growth and Reproduction of the Biotrophic Fungus Blumeria graminis in the Presence of a Necrotrophic Pathogen.

    Science.gov (United States)

    Orton, Elizabeth S; Brown, James K M

    2016-01-01

    Crops are attacked by many potential pathogens with differing life-history traits, which raises the question of whether or not the outcome of infection by one pathogen may be modulated by a change in the host environment brought on by infection by another pathogen. We investigated the host-mediated interaction between the biotroph Blumeria graminis f.sp. tritici (Bgt), the powdery mildew pathogen of wheat, and the necrotroph Zymoseptoria tritici, which has a long latent, endophytic phase following which it switches to a necrotrophic phase, resulting in the disease symptoms of Septoria tritici blotch. Both diseases are potentially severe in humid temperate climates and are controlled by fungicides and by growing wheat varieties with partial resistance. The compatible interaction between Z. tritici and the host reduced the number, size, and reproductive capacity of mildew colonies that a normally virulent Bgt isolate would produce but did not significantly alter the early development of Bgt on the leaf. The effect on virulent Bgt was elicited only by viable spores of Z. tritici. Notably, this effect was seen before the necrotic foliar symptoms induced by Z. tritici were visible, which implies there is a physiological interaction during the latent, endophytic period of Z. tritici, which either takes place directly between this fungus and Bgt or is mediated by the wheat leaf. Information on how different pathogens interact in host plants may allow plant breeders and others to improve the design of screening trials and selection of germplasm.

  20. Expression profiling and functional analyses of BghPTR2, a peptide transporter from Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Droce, Aida; Holm, Kirsten B; Olsson, Stefan; Frandsen, Rasmus J N; Sondergaard, Teis Esben; Sørensen, Jens Laurids; Giese, Henriette

    2015-07-01

    The obligate ascomycete parasitic fungus Blumeria graminis f. sp. hordei (Bgh) has a unique lifestyle as it is completely dependent on living barley leaves as substrate for growth. Genes involved in inorganic nitrogen utilization are notably lacking, and the fungus relies on uptake of host-derived peptides and amino acids. The PTR2 transporter family takes up di- and tri- peptides in a proton coupled process and filamentous fungi typically have two or more di/tri peptide transporters. Here we show that Bgh appear to have one PTR2 that can restore dipeptide uptake in a Saccharomyces cerevisiae PTR2 deletion strain. The Bgh PTR2 gene is expressed in conidia and germinating conidia. During Bgh infection of barley the expression level of the BghPTR2 gene is high in the appressorial germ tube, low in the haustoria and high again during conidiation and secondary infection in the compatible and intermediate resistant interactions. BghPTR2 appears to be important for the initial establishment of fungal infection but not for uptake of di-tri-peptides at the haustorial interface. Based on the expression profile we suggest that BghPTR2 is active in internal transport of nutrient reserves and/or uptake of break down products from the plant surface during the early infection stages. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis.

    Science.gov (United States)

    Hückelhoven, Ralph; Dechert, Cornelia; Kogel, Karl-Heinz

    2003-04-29

    Cell death regulation is linked to pathogen defense in plants and animals. Execution of apoptosis as one type of programmed cell death in animals is irreversibly triggered by cytochrome c release from mitochondria via pores formed by BAX proteins. This type of programmed cell death can be prevented by expression of BAX inhibitor 1 (BI-1), a membrane protein that protects cells from the effects of BAX by an unknown mechanism. In barley, a homologue of the mammalian BI-1 is expressed in response to inoculation with the barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). We found differential expression of BI-1 in response to Bgh in susceptible and resistant plants. Chemical induction of resistance to Bgh by soil drench treatment with 2,6-dichloroisonicotinic acid led to down-regulation of the expression level of BI-1. Importantly, single-cell transient overexpression of BI-1 in epidermal leaf tissue of susceptible barley cultivar Ingrid led to enhanced accessibility, resulting in a higher penetration efficiency of Bgh on BI-1-transformed cells. In Bgh-resistant mlo5 genotypes, which do not express the negative regulator of defense and cell death MLO, overexpression of BI-1 almost completely reconstituted susceptibility to fungal penetration. We suggest that BI-1 is a regulator of cellular defense in barley sufficient to substitute for MLO function in accessibility to fungal parasites.

  2. Proteogenomics and in silico structural and functional annotation of the barley powdery mildew Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Bindschedler, Laurence V; McGuffin, Liam J; Burgis, Timothy A; Spanu, Pietro D; Cramer, Rainer

    2011-08-01

    Blumeria graminis is an economically important obligate plant-pathogenic fungus, whose entire genome was recently sequenced and manually annotated using ab initio in silico predictions (Spanu et al. 2010, Science 330, 1543-1546). Employing large scale proteogenomic analysis we are now able to verify independently the existence of proteins predicted by ∼24% of open reading frame models. We compared the haustoria and sporulating hyphae proteomes and identified 71 proteins exclusively in haustoria, the feeding and effector-delivery organs of the pathogen. These proteins are significantly smaller than the rest of the protein pool and predicted to be secreted. Most do not share any similarities with Swiss-Prot or Trembl entries nor possess any identifiable Pfam domains. We used a novel automated prediction pipeline to model the 3D structures of the proteins, identify putative ligand binding sites and predict regions of intrinsic disorder. This revealed that the protein set found exclusively in haustoria is significantly less disordered than the rest of the identified Blumeria proteins or random (and representative) protein sets generated from the yeast proteome. For most of the haustorial proteins with unknown functions no good templates could be found, from which to generate high quality models. Thus, these unknown proteins present potentially new protein folds that can be specific to the interaction of the pathogen with its host. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Reduction of growth and reproduction of the biotrophic fungus Blumeria graminis in the presence of a necrotrophic pathogen

    Directory of Open Access Journals (Sweden)

    Elizabeth S. Orton

    2016-05-01

    Full Text Available Crops are attacked by many potential pathogens with differing life-history traits, which raises the question of whether or not the outcome of infection by one pathogen may be modulated by a change in the host environment brought on by infection by another pathogen. We investigated the host-mediated interaction between the biotroph Blumeria graminis f.sp. tritici (Bgt, the powdery mildew pathogen of wheat, and the necrotroph Zymoseptoria tritici, which has a long latent, endophytic phase following which it switches to a necrotrophic phase, resulting in the disease symptoms of Septoria tritici blotch. Both diseases are potentially severe in humid temperate climates and are controlled by fungicides and by growing wheat varieties with partial resistance. The compatible interaction between Z. tritici and the host reduced the number, size and reproductive capacity of mildew colonies that a normally virulent Bgt isolate would produce but did not significantly alter the early development of Bgt on the leaf. The effect on virulent Bgt was elicited only by viable spores of Z. tritici. Notably, this effect was seen before the necrotic foliar symptoms induced by Z. tritici were visible, which implies there is a physiological interaction during the latent, endophytic period of Z. tritici, which either takes place directly between this fungus and Bgt or is mediated by the wheat leaf. Information on how different pathogens interact in host plants may allow plant breeders and others to improve the design of screening trials and selection of germplasm.

  4. Proteomic analysis of the defense response of wheat to the powdery mildew fungus, Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan

    2014-12-01

    Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.

  5. Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence.

    Science.gov (United States)

    Zhang, Ziguo; Henderson, Catherine; Gurr, Sarah Jane

    2004-11-01

    SUMMARY The obligate biotrophic fungal pathogen of barley, Blumeria graminis f.sp. hordei (Bgh), elicits a burst of H(2)O(2) in its host barley at sites of germ tube invasion. To evaluate whether this specialized pathogen has any antioxidant response to this oxidative burst, the Bgh catB gene was characterized and transcript-profiled together with other genes implicated in the management of oxidative stress (catalase-peroxidase, cpx; glutathione peroxidase, gpx; superoxide dismutase, sod1) and in comparison with the constitutively expressed Bghbeta-tubulin and elongation factor1 (ef1) genes. Gel-based and real-time RT-PCR revealed enhanced numbers of catB transcripts at mature primary germ tube and appressorium germ tube (AGT) stages in a susceptible host. Moreover, an anti-CATB polyclonal antibody, from Aspergillus fumigatus, which recognizes both native and recombinant Bgh CATB, revealed an intense circle of immunofluorescence at the host-pathogen interface at the AGT tip and within the halo area surrounding the host papilla. A new diaminobenzidine-based 'scavenger' assay revealed areas of H(2)O(2) clearing at sites of fungal invasion, provoking speculation that Bgh catalase activity may contribute to pathogenicity in Bgh.

  6. A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome.

    Science.gov (United States)

    Parlange, Francis; Oberhaensli, Simone; Breen, James; Platzer, Matthias; Taudien, Stefan; Simková, Hana; Wicker, Thomas; Doležel, Jaroslav; Keller, Beat

    2011-12-01

    Powdery mildew of wheat (Triticum aestivum L.) is caused by the ascomycete fungus Blumeria graminis f.sp. tritici. Genomic approaches open new ways to study the biology of this obligate biotrophic pathogen. We started the analysis of the Bg tritici genome with the low-pass sequencing of its genome using the 454 technology and the construction of the first genomic bacterial artificial chromosome (BAC) library for this fungus. High-coverage contigs were assembled with the 454 reads. They allowed the characterization of 56 transposable elements and the establishment of the Blumeria repeat database. The BAC library contains 12,288 clones with an average insert size of 115 kb, which represents a maximum of 7.5-fold genome coverage. Sequencing of the BAC ends generated 12.6 Mb of random sequence representative of the genome. Analysis of BAC-end sequences revealed a massive invasion of transposable elements accounting for at least 85% of the genome. This explains the unusually large size of this genome which we estimate to be at least 174 Mb, based on a large-scale physical map constructed through the fingerprinting of the BAC library. Our study represents a crucial step in the perspective of the determination and study of the whole Bg tritici genome sequence.

  7. Physcion, a natural anthraquinone derivative, enhances the gene expression of leaf-specific thionin of barley against Blumeria graminis.

    Science.gov (United States)

    Ma, Xingxia; Yang, Xiaojun; Zeng, Fansong; Yang, Lijun; Yu, Dazhao; Ni, Hanwen

    2010-07-01

    Physcion is a key active ingredient of the ethanol extract from roots of Chinese rhubarb (Rheum officinale Baill.) that has been commercialised in China for controlling powdery mildews. The biological mechanism of action of physcion against the barley powdery mildew pathogen was studied using bioassay and microarray methods. Bioassay indicated that physcion did not directly affect conidial germination of Blumeria graminis Speer f. sp. hordei Marchal, but significantly inhibited conidial germination in vivo. Challenge inoculation indicated that physcion induced localised resistance rather than systemic resistance against powdery mildew. Gene expression profiling of physcion-treated barley leaves detected four upregulated and five downregulated genes (ratio >or= 2.0 and P-value < 0.05) by using an Affymetrix Barley GeneChip. The five upregulated probe sequences blasted to the same barley leaf-specific thionin gene, with significant changes varying from 4.26 to 19.91-fold. All downregulated genes were defence-related, linked to peroxidase, oxalate oxidase, bsi1 protein and a pathogenesis-related protein. These changes varied from - 2.34 to - 2.96. Quantitative real-time PCR data confirmed that physcion enhanced the gene expression of leaf-specific thionin of barley. Results indicated that physcion controls powdery mildew mainly through changing the expression of defence-related genes, and especially enhancing expression of leaf-specific thionin in barley leaves. Copyright (c) 2010 Society of Chemical Industry.

  8. A Blumeria graminis gene family encoding proteins with a C-terminal variable region with homologues in pathogenic fungi.

    Science.gov (United States)

    Grell, Morten N; Mouritzen, Peter; Giese, Henriette

    2003-06-05

    In a study aimed at characterising, at the molecular level, the obligate biotrophic fungus Blumeria graminis f. sp. hordei (Bgh), we have identified a novel group of genes, the Egh16H genes, and shown that two of these are up-regulated during primary infection of barley leaves. The genes have partial homology to a previously characterised Bgh gene family, Egh16. Egh16 and Egh16H are subfamilies of a larger multigene family with presently about 15 members identified in Bgh. Egh16H has about ten members, and we show that five of these are expressed as highly conserved mRNAs that are predicted to encode proteins with a C-terminal variable region. Egh16H has high homology to sequences in Magnaporthe grisea and other plant pathogenic fungi, as well as sequences of both the insect pathogen Metarhizium anisopliae and the human pathogen Aspergillus fumigatus. No close homologues of Egh16H were found in the non-pathogenic fungi Neurospora crassa and Aspergillus nidulans. We predict that Egh16H plays a general role in the interaction between pathogenic fungi and their hosts. At present, the large number of gene family members with C-terminal variation appears to be unique for Bgh, and the Egh16/Egh16H gene family is to our knowledge the largest gene family so far characterised in this fungus.

  9. Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2011-01-01

    Full Text Available Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1 and xylitol dehydrogenase (XYL2 genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR and xylose dehydrogenase (XDH were 32%~41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose.

  10. Caracterización taxonómica y análisis de la variabilidad del agente causal del cancro del tallo de la soja en Buenos Aires (2005/2007

    Directory of Open Access Journals (Sweden)

    GRIJALBA, P.E

    2011-12-01

    Full Text Available ResumenEl complejo Diaporthe/Phomopsis es un importante grupo de hongos patógenos de la soja. Dentro del mismo, Diaporthe phaseolorum var. caulivora es uno de los agentes causales del cancro del tallo. Veintitrés aislamientos de este hongo, provenientes de diferentes zonas geográficas de la provincia de Buenos Aires, fueron caracterizados morfológica y genéticamente. Los criterios morfológicos fueron tipo y color de micelio; formación del teleomorfo y/o del anamorfo. La identificación molecular fue llevada a cabo utilizando una técnica de restricción de fragmentos de amplificación (PCR-RFLP de la región ITS de ADN ribosomal. Adicionalmente, los productos de amplificación fueron secuenciados y comparados con la información de bancos de datos. Los aislamientos presentaron características morfológicas y patogénicas propias de la variedad, y los patrones de restricción con la enzima Alu I fueron concordantes con la identificación morfológica y con la información de secuencias disponibles. Las reconstrucciones filogenéticas apoyan la idea de que D. meridionalis y D. caulivora son entidades biológicamente aisladas. Los resultados obtenidos confirmaron la utilidad del uso del método de PCR-RFLP para la identificación precisa y rápida de D. caulivora. Por sus características, este método puede ser implementado para análisis de rutina en laboratorios de pequeña y mediana escala.AbstractDiaporthe/Phomopsis is an important group of soybean pathogens. Diaporthe phaseolorum var. caulivora is one of the causal agents of stem canker. Twenty three isolates from different regions from the Province of Buenos Aires were morphologically and genetically characterized and assigned to different taxa within the Diaporthe/Phomopsis complex; diagnostic morphological traits were: mycelium type and color, teleomorph/anamorph occurrence. Molecular characterization was carried out using RFLP analyses of PCR-amplified DNA (PCRRFLP for the

  11. Crude extracts of Drimys winteri bark to inhibit growth of Gaeumannomyces graminis var. tritici Inhibición del crecimiento de Gaeumannomyces graminis var. tritici empleando extractos obtenidos de corteza de Drimys winteri

    Directory of Open Access Journals (Sweden)

    Nelson Zapata

    2011-03-01

    Full Text Available The aim of this study was to assess the effect of Drimys winteri J.R. Forst. & G. Forst. bark and its extracts, obtained sequentially with n-hexane, acetone, and methanol, against Gaeumannomyces graminis var. tritici (Ggt. Ground bark of D. winteri was mixed with potato dextrose agar growth media at concentrations of 250, 500, 1000, 2000, and 4000 mg L-1 in Petri plates. Each extract was mixed at concentrations of 100, 200, 400, and 800 mg L-1. Petri plates were inoculated in the center with a 5-mm mycelium disk and were incubated at 24 ± 1 ºC. Daily measurements of mycelium radial growth were taken to determine growth rate and growth inhibition (%. A ground bark concentration of 978 mg L-1 was needed to inhibit Ggt growth by 50%, while extracts obtained with n-hexane and acetone only required 198 and 234 mg L-1, respectively. The methanol extract only inhibited Ggt growth by 33% when tested at the highest concentration. In conclusion, ground bark and crude extracts, obtained sequentially with n-hexane, acetone, and methanol, from D. winteri bark inhibit Ggt growth when applied in vitro. The n-hexane extract showed the highest inhibitory growth activity.El objetivo de esta investigación fue evaluar la actividad de la corteza de Drimys winteri J.R Forst. & G. Forst. y sus extractos obtenidos secuencialmente con n-hexano, acetona y metanol sobre el crecimiento in vitro de Gaeumannomyces graminis var. tritici (Ggt. Con este propósito se mezclaron en placas Petri, corteza molida de D. winteri con medio de crecimiento agar papa dextrosa a concentraciones de 250, 500, 1000, 2000 y 4000 mg L-1. Cada extracto fue mezclado a concentraciones de 100, 200, 400 y 800 mg L-1. Las placas se inocularon en su centro con un disco de 5 mm de micelio de Ggt y se incubaron a 24 ± 1 ºC. Diariamente se midió el crecimiento radial del micelio, se determinó velocidad de crecimiento e índice de inhibición del crecimiento (%. Para inhibir el crecimiento de Ggt

  12. An important role for secreted esterase in disease establishment of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Feng, Jie; Wang, Feng; Hughes, Geoff R; Kaminskyj, Susan; Wei, Yangdou

    2011-03-01

    The activity of esterase secreted by conidia of wheat powdery mildew fungus, Blumeria graminis f. sp. tritici, was assayed using indoxyl acetate hydrolysis, which generates indigo blue crystals. Mature, ungerminated, and germinating conidia secrete esterase(s) on artificial media and on plant leaf surfaces. The activity of these esterases was inhibited by diisopropyl fluorophosphate, which is selective for serine esterases. When conidia were inoculated on wheat leaves pretreated with diisopropyl fluorophosphate, both appressorial germ tube differentiation and symptom development were significantly impaired, indicating an important role of secreted serine esterases in wheat powdery mildew disease establishment.

  13. Genetic variation in Danish populations of Erysiphe graminis f.sp. hordei: estimation of gene diversity and effective population size using RFLP data

    DEFF Research Database (Denmark)

    Damgaard, C.; Giese, Nanna Henriette

    1996-01-01

    . The average gene diversity, (H) over cap was estimated as 0.84. The effective population size was estimated as: log(10) ((N) over cap(e)) = 0.64 - log(10)(mu), or 4.4 x 10(9), assuming a nucleotide mutation rate (mu) of 10(-9) per base per generation. There was no significant genetic differentiation between......Genetic variation of the barley powdery mildew fungus (Erysiphe graminis f.sp. hordei) was estimated in three Danish local populations. Genetic variation was estimated from the variation amongst clones of Egh, and was therefore an estimate of the maximum genetic variation in the local populations...

  14. Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination.

    Science.gov (United States)

    De Backer, M; Bonants, P; Pedley, K F; Maes, M; Roldan-Ruiz, I; Van Bockstaele, E; Heungens, K; van der Lee, T

    2013-11-01

    The obligate biotrophic pathogen Puccinia horiana is the causal agent of chrysanthemum white rust. Although P. horiana is a quarantine organism, it has been able to spread to most chrysanthemum-producing regions in the world since the 1960s; however, the transfer routes are largely obscure. An extremely low level of allelic diversity was observed in a geographically diverse set of eight isolates using complexity reduction of polymorphic sequences (CRoPS) technology. Only 184 of the 16,196 contigs (1.1%) showed one or more single-nucleotide polymorphisms (SNPs). Thirty-two SNPs and one simple-sequence repeat were translated into molecular markers and used to genotype 45 isolates originating from North and South America, Asia, and Europe. In most cases, phylogenetic clustering was related to geographic origin, indicating local establishment. The European isolates mostly grouped in two major populations that may relate to the two historic introductions previously reported. However, evidence of recent geographic transfer was also observed, including transfer events between Europe and South America and between Southeast Asia and Europe. In contrast with the presumed clonal propagation of this microcyclic rust, strong indications of marker recombination were observed, presumably as a result of anastomosis, karyogamy, and somatic meiosis. Recombination and transfer also explain the geographic dispersal of specific markers. A near-to-significant correlation between the genotypic data and previously obtained pathotype data was observed and one marker was associated with the most virulent pathotype group. In combination with a fast SNP detection method, the markers presented here will be helpful tools to further elucidate the transfer pathways and local survival of this pathogen.

  15. Nitric oxide and reactive oxygen species coordinately regulate the germination of Puccinia striiformis f. sp. tritici urediniospores

    Directory of Open Access Journals (Sweden)

    Shuining eYin

    2016-02-01

    Full Text Available Nitric oxide (NO and reactive oxygen species (ROS function as signaling molecules in a number of critical signal transduction pathways in plants, including plant biotic interactions. In addition to the role of plant-derived NO and ROS in plant resistance, which has been well documented, pathogen-produced NO and ROS have recently emerged as important players in fungal development and pathogenesis. However, the effects of pathogenic fungi-derived NO and ROS on signaling pathways during fungal pre-infection development remain unknown. Here, using a combination of pharmacological approaches and confocal microscopy, we investigated the roles of NO and ROS during the germination of Puccinia striiformis Westend f. sp. tritici (Pst the wheat stripe rust pathogen. Both NO and ROS have a crucial role in uredinial germination. The scavengers of NO and ROS delayed spore germination and decreased the lengths of germ tubes. A similar phenotype was produced after treatment with the promoter. However, the spores germinated and grew normally when the levels of NO and ROS were simultaneously elevated by the application of a promoter of NO and a donor of ROS. Confocal laser microscopy indicated that both NO and ROS preferentially localized at the germ pores and apexes of growing germ tubes when the ROS/NO ratio in the spores was maintained in a specific range. We concluded that both NO and ROS are critical signaling molecules in the pre-infection development of Pst and that the polar growth of the germ tube is coordinately regulated by NO and ROS.

  16. TaSYP71, a Qc-SNARE, Contributes to Wheat Resistance against Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Minjie eLiu

    2016-04-01

    Full Text Available N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs are involved in plant resistance; however, the role of SYP71 in the regulation of plant–pathogen interactions is not well known. In this study, we characterized a plant-specific SNARE in wheat, TaSYP71, which contains a Qc-SNARE domain. Three homologues are localized on chromosome 1AL, 1BL and 1DL. Using Agrobacterium-mediated transient expression, TaSYP71 was localized to the plasma membrane in Nicotiana benthamiana. Quantitative real-time PCR assays revealed that TaSYP71 homologues was induced by NaCl, H2O2 stress and infection by virulent and avirulent Puccinia striiformis f. sp. tritici (Pst isolates. Heterologous expression of TaSYP71 in Schizosaccharomyces pombe elevated tolerance to H2O2. Meanwhile, H2O2 scavenging gene (TaCAT was downregulated in TaSYP71 silenced plants treated by H2O2 compared to that in control, which indicated that TaSYP71 enhanced tolerance to H2O2 stress possibly by influencing the expression of TaCAT to remove the excessive H2O2 accumulation. When TaSYP71 homologues were all silenced in wheat by the virus-induced gene silencing system, wheat plants were more susceptible to Pst, with larger infection area and more haustoria number, but the necrotic area of wheat mesophyll cells were larger, one possible explanation that minor contribution of resistance to Pst was insufficient to hinder pathogen extension when TaSYP71were silenced, and the necrotic area was enlarged accompanied with the pathogen growth. Of course, later cell death could not be excluded. In addition, the expression of pathogenesis-related genes were down-regulated in TaSYP71 silenced wheat plants. These results together suggest that TaSYP71 play a positive role in wheat defence against Pst.

  17. Effect of Low Temperature and Wheat Winter-Hardiness on Survival of Puccinia striiformis f. sp. tritici under Controlled Conditions.

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    Full Text Available Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst, is one of the most important diseases of wheat worldwide. Understanding the survival of Pst during the overwintering period is critical for predicting Pst epidemics in the spring. Real-time quantitative PCR (qPCR methods quantifying Pst DNA and RNA (cDNA were developed and compared for the ability to quantify viable Pst in leaf tissues. Both qPCR of DNA and RNA can provide reliable measurement of viable Pst in plant tissues prior to the late sporulation stage for which qPCR of DNA gave a much higher estimate of fungal biomass than qPCR of RNA. The percentage of Pst biomass that was viable in detached and attached leaves under low temperatures decreased over time. Pst survived longer on attached leaves than on detached leaves. The survival of Pst in cultivars with strong winter-hardiness at 0°C and -5°C was greater than those with weak winter-hardiness. However, such differences in Pst survival among cultivars were negligible at -10, -15 and -20°C. Results indicated that Pst mycelia inside green leaves can also be killed by low temperatures rather than through death of green leaves under low temperatures. The relationship of Pst survival in attached leaves with temperature and winter-hardiness was well described by logistic models. Further field evaluation is necessary to assess whether inclusion of other factors such as moisture and snow cover could improve the model performance in predicting Pst overwintering potential, and hence the epidemic in spring.

  18. Virulence Structure of Blumeria graminis f. sp. tritici and Its Genetic Diversity by ISSR and SRAP Profiling Analyses.

    Directory of Open Access Journals (Sweden)

    Na Liu

    Full Text Available Blumeria graminis f. sp. tritici, which causes wheat powdery mildew, is an obligate biotrophic pathogen that can easily genetically adapt to its host plant. Understanding the virulence structure of and genetic variations in this pathogen is essential for disease control and for breeding resistance to wheat powdery mildew. This study investigated 17 pathogenic populations in Sichuan, China and classified 109 isolates into two distinct groups based on pathogenicity analysis: high virulence (HV, 92 isolates and low virulence (LV, 17 isolates. Populations from Yibin (Southern region, Xichang (Western region, and Meishan (Middle region showed lower virulence frequencies than populations from other regions. Many of the previously known resistance genes did not confer resistance in this study. The resistance gene Pm21 displayed an immune response to pathogenic challenge with all populations in Sichuan, and Pm13, Pm5b, Pm2+6, and PmXBD maintained resistance. AMOVA revealed significantly higher levels of variation within populations and lower levels of variation among populations within regions. High levels of gene flow were detected among populations in the four regions. Closely related populations within each region were distinguished by cluster analyses using ISSR and SRAP alleles. Both ISSR and SRAP allele profiling analyses revealed high levels of genetic diversity among pathogenic populations in Sichuan. Although ISSR and SRAP profiling analysis showed similar resolutions, the SRAP alleles appeared to be more informative. We did not detect any significant association between these alleles and the virulence or pathogenicity of the pathogen. Our results suggest that ISSR and SRAP alleles are more efficient for the characterization of small or closely related populations versus distantly related populations.

  19. Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f.sp. hordei.

    Science.gov (United States)

    Pathuri, Indira Priyadarshini; Reitberger, Ines E; Hückelhoven, Ralph; Proels, Reinhard K

    2011-06-01

    Plant primary energy metabolism is profoundly reorganized under biotic stress conditions and there is increasing evidence for a role for the fermentative pathway in biotic interactions. However, the mechanisms regulating metabolic reprogramming are not well understood despite its critical function in the biotic stress response. Here the function of alcohol dehydrogenase (ADH) in the interaction of barley with the parasitic fungus Blumeria graminis f.sp. hordei (Bgh) is addressed. Challenge of susceptible barley leaves with Bgh resulted in transcriptional activation of HvADH1 and an induction of ADH enzyme activity starting 24 h after infection and reaching a clear-cut effect 4 d after infection. This increase in ADH enzyme activity was not observed in the resistant near-isogenic mlo5 line. Moreover, an induction of ADH enzyme activity by Bgh was enhanced in the presence of sucrose in hydroponically grown seedlings. Transient knock-down or overexpression of HvADH1 in barley epidermal cells mediated a decrease or increase in the penetration success of Bgh, respectively. Inhibition of ADH activity by pyrazole resulted in a delay in symptoms. The pyrazole effect could be overcome by adding glucose to the incubation medium, pinpointing a nutritional effect of ADH in the barley-Bgh interaction. Taken together, misexpression of pathogen-inducible HvADH1 or variation of ADH activity modulates the pathogen response of barley to the biotrophic fungal parasite Bgh. In this way, ADH knock-down/inhibition results in reduced fungal success. The possibility is discussed that ADH activity supports biotrophy by maintaining glycolytic metabolism in pathogen-stressed barley.

  20. Analysis of differential transcriptional profiling in wheat infected by Blumeria graminis f. sp. tritici using GeneChip.

    Science.gov (United States)

    Wang, Jun-Mei; Liu, Hong-Yan; Xu, Hong-Ming; Li, Min; Kang, Zhen-Sheng

    2012-01-01

    Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease of wheat. The use of wheat cultivars resistant to powdery mildew provides an effective, economical, and environmentally friendly method to control the disease. Previously, we identified a dominant resistance gene, temporarily named Pmhym, from the wheat cultivar Hongyoumai. In order to screen differential transcripts related to Pmhym-mediated resistance, four F3 homozygous resistant and four susceptible progenies derived from the Hongyoumai/Yumai13 cross were selected to construct two different pools, respectively, representing an incompatible and compatible interaction with Bgt. Pre-inoculated control and the pathogen-inoculated treatments at 24 h post inoculation (hpi) were used. Three groups of differential genes were categorized from three comparisons as pre- and post-induced, respectively, in two interactions, and post-induced between incompatible and compatible interaction. It was found that salicylic acid (SA), jasmonate (JA), and ethylene (ET) signaling-related genes were differentially expressed, thus suggesting that they are involved in the defensive response against Bgt infection. In compatible interactions, the genes involved in the abscisic acid (ABA) signaling pathway might be inhibitory to the above-mentioned three pathways, resulting in a susceptible reaction. Genes involved in disease/defense, signal transduction, and reactive oxygen species (ROS) metabolism were up-regulated in incompatible interactions, implying a role in resistant response. The results of qRT-PCR analysis on several candidate genes were consistent in their expression patterns as revealed by microarray analysis. The differential expression analyses in the present study are good candidates for further elucidation of wheat defensive response to powdery mildew.

  1. Virulence Structure of Blumeria graminis f. sp. tritici and Its Genetic Diversity by ISSR and SRAP Profiling Analyses.

    Science.gov (United States)

    Liu, Na; Liu, Z Lewis; Gong, Guoshu; Zhang, Min; Wang, Xu; Zhou, You; Qi, Xiaobo; Chen, Huabao; Yang, Jizhi; Luo, Peigao; Yang, Chunping

    2015-01-01

    Blumeria graminis f. sp. tritici, which causes wheat powdery mildew, is an obligate biotrophic pathogen that can easily genetically adapt to its host plant. Understanding the virulence structure of and genetic variations in this pathogen is essential for disease control and for breeding resistance to wheat powdery mildew. This study investigated 17 pathogenic populations in Sichuan, China and classified 109 isolates into two distinct groups based on pathogenicity analysis: high virulence (HV, 92 isolates) and low virulence (LV, 17 isolates). Populations from Yibin (Southern region), Xichang (Western region), and Meishan (Middle region) showed lower virulence frequencies than populations from other regions. Many of the previously known resistance genes did not confer resistance in this study. The resistance gene Pm21 displayed an immune response to pathogenic challenge with all populations in Sichuan, and Pm13, Pm5b, Pm2+6, and PmXBD maintained resistance. AMOVA revealed significantly higher levels of variation within populations and lower levels of variation among populations within regions. High levels of gene flow were detected among populations in the four regions. Closely related populations within each region were distinguished by cluster analyses using ISSR and SRAP alleles. Both ISSR and SRAP allele profiling analyses revealed high levels of genetic diversity among pathogenic populations in Sichuan. Although ISSR and SRAP profiling analysis showed similar resolutions, the SRAP alleles appeared to be more informative. We did not detect any significant association between these alleles and the virulence or pathogenicity of the pathogen. Our results suggest that ISSR and SRAP alleles are more efficient for the characterization of small or closely related populations versus distantly related populations.

  2. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions.

    Science.gov (United States)

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Anguera, Marina; Altisent, Rosa; Abadias, Maribel

    2013-04-01

    Recently, we reported that the application of the strain CPA-7 of Pseudomonas graminis, previously isolated from apple, could reduce the population of foodborne pathogens on minimally processed (MP) apples and peaches under laboratory conditions. Therefore, the objective of the present work was to find an antioxidant treatment and a packaging atmosphere condition to improve CPA-7 efficacy in reducing a cocktail of four Salmonella and five Listeria monocytogenes strains on MP apples under simulated commercial processing. The effect of CPA-7 application on apple quality and its survival to simulated gastric stress were also evaluated. Ascorbic acid (2%, w/v) and N-acetyl-l-cysteine (1%, w/v) as antioxidant treatments reduced Salmonella, L. monocytogenes and CPA-7 recovery, meanwhile no reduction was observed with NatureSeal(®) AS1 (NS, 6%, w/v). The antagonistic strain was effective on NS-treated apple wedges stored at 10 °C with or without modified atmosphere packaging (MAP). Then, in a semi-commercial assay, efficacy of CPA-7 inoculated at 10(5) and 10(7) cfu mL(-1) against Salmonella and L. monocytogenes strains on MP apples with NS and MAP and stored at 5 and 10 °C was evaluated. Although high CPA-7 concentrations/populations avoided Salmonella growth at 10 °C and lowered L. monocytogenes population increases were observed at both temperatures, the effect was not instantaneous. No effect on apple quality was detected and CPA-7 did not survived to simulated gastric stress throughout storage. Therefore, CPA-7 could avoid pathogens growth on MP apples during storage when use as part of a hurdle technology in combination with disinfection techniques, low storage temperature and MAP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Caracterización de acelga fresca de Santiago del Estero (Argentina. Comparación del contenido de nutrientes en hoja y tallo. Evaluación de los carotenoides presentes Characterization of fresh Beta vulgaris from Santiago del Estero (Argentina. Nutrient and caroteniod content of stem and leaves

    Directory of Open Access Journals (Sweden)

    Sara Macías de Costa

    2003-04-01

    Full Text Available Se realizaron estudios de caracterización integral de acelga (Beta vulgaris, var. cycla cultivada en la Provincia de Santiago del Estero, Argentina. Por tratarse de un vegetal de importante consumo regional, se realizó la determinación de sus constituyentes básicos, minerales y pigmentos para conocer los valores nutricionales que aporta este alimento en nuestra región. Se analizaron comparando hoja y tallo: humedad, cenizas, proteínas, grasas, hidratos de carbono utilizables, fibra dietaria total, contenido de clorofila y carotenoides. En cuanto a minerales, se determinaron calcio, magnesio, sodio, potasio, manganeso, zinc, hierro, fósforo y boro. Se encontraron diferencias en los aportes de minerales, proteínas, grasas y fibra entre hoja y tallo, así como también el contenido de carotenoides exclusivamente en las hojas. Los resultados marcan importantes diferencias en el contenido energético y en su valor provitamínico A entre la hoja y el tallo de este vegetal, mostrando que este último es una parte aprovechable de la planta, recomendable en dietas hipocalóricas.An integrated characterization study of Swiss chard grown in Santiago del Estero, Argentina, was carried out. As Swiss chard is a vegetable of important regional consumption, the determination of its basic constituents, minerals and pigments was done to appraise the nutritional value offered by this food in our area. Moisture, ash content, proteins, fats, available carbohydrates, total dietary fiber, chlorophylls and carotenoids were analysed, comparing the leaves and the stems. As to minerals, calcium, magnesium, sodium, manganese, zinc, iron, phosphorous, potassium, and boron were determined. Differences in the concentration of minerals, proteins, fats and fiber between the leaves and the stems were found, as well as the carotenoid content mainly in the leaves. These findings revealed important differences in energy content and provitamin A value, showing that the stem

  4. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust.

    Science.gov (United States)

    Torres, David Eduardo; Rojas-Martínez, Reyna Isabel; Zavaleta-Mejía, Emma; Guevara-Fefer, Patricia; Márquez-Guzmán, G Judith; Pérez-Martínez, Carolina

    2017-01-01

    Puccinia horiana Hennings, the causal agent of chrysanthemum white rust, is a worldwide quarantine organism and one of the most important fungal pathogens of Chrysanthemum × morifolium cultivars, which are used for cut flowers and as potted plants in commercial production regions of the world. It was previously reported to be controlled by Lecanicillium lecanii, Cladosporium sphaerospermum, C. uredinicola and Aphanocladium album, due to their antagonistic and hyperparasitic effects. We report novel antagonist species on Puccinia horiana. Fungi isolated from rust pustules in a commercial greenhouse from Villa Guerrero, México, were identified as Cladosporium cladosporioides and Cladosporium pseudocladosporioides based upon molecular analysis and morphological characters. The antagonism of C. cladosporioides and C. pseudocladosporioides on chrysanthemum white rust was studied using light and electron microscopy in vitro at the host/parasite interface. Cladosporium cladosporioides and C. pseudocladosporioides grew towards the white rust teliospores and colonized the sporogenous cells, but no direct penetration of teliospores was observed; however, the structure and cytoplasm of teliospores were altered. The two Cladosporium spp. were able to grow on media containing laminarin, but not when chitin was used as the sole carbon source; these results suggest that they are able to produce glucanases. Results from the study indicate that both Cladosporium species had potential as biological control agents of chrysanthemum white rust.

  5. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust.

    Directory of Open Access Journals (Sweden)

    David Eduardo Torres

    Full Text Available Puccinia horiana Hennings, the causal agent of chrysanthemum white rust, is a worldwide quarantine organism and one of the most important fungal pathogens of Chrysanthemum × morifolium cultivars, which are used for cut flowers and as potted plants in commercial production regions of the world. It was previously reported to be controlled by Lecanicillium lecanii, Cladosporium sphaerospermum, C. uredinicola and Aphanocladium album, due to their antagonistic and hyperparasitic effects. We report novel antagonist species on Puccinia horiana. Fungi isolated from rust pustules in a commercial greenhouse from Villa Guerrero, México, were identified as Cladosporium cladosporioides and Cladosporium pseudocladosporioides based upon molecular analysis and morphological characters. The antagonism of C. cladosporioides and C. pseudocladosporioides on chrysanthemum white rust was studied using light and electron microscopy in vitro at the host/parasite interface. Cladosporium cladosporioides and C. pseudocladosporioides grew towards the white rust teliospores and colonized the sporogenous cells, but no direct penetration of teliospores was observed; however, the structure and cytoplasm of teliospores were altered. The two Cladosporium spp. were able to grow on media containing laminarin, but not when chitin was used as the sole carbon source; these results suggest that they are able to produce glucanases. Results from the study indicate that both Cladosporium species had potential as biological control agents of chrysanthemum white rust.

  6. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici.

    Science.gov (United States)

    Zhang, D D; Guo, X J; Wang, Y J; Gao, T G; Zhu, B C

    2017-12-01

    Take-all is a severe root disease of wheat worldwide that is caused by the soilborne fungal pathogen Gaeumannomyces graminis var. tritici (Ggt). In this study, 272 Bacillus isolates were screened for their antifungal activity in vitro to Ggt. Of the 128 strains that demonstrated an antagonistic action, 24 of these exhibited at least three of the four plant growth promotion parameters (i.e. indole acetic acid and siderophore production, inorganic phosphorus solubilization and organic phosphorus solubilization) that were tested in wheat plants. The most effective strain found was Bacillus subtilis Pnf-12; its disease reduction effect reached 69%. Pnf-12 also caused a significant improvement (P  0·05). The mechanism for this disease control may be linked to the production of the antifungal lipopeptides surfactin, iturin and fengycin production, all of which were detected in the cell-free supernatant of Pnf-12. Take-all, which is caused by the soilborne fungal pathogen Gaeumannomyces graminis var. tritici (Ggt), is one of the most widespread and devastating root diseases of wheat plants. This study focuses on a novel screening strategy of Bacillus isolates to evaluate their potential biological control capacity for suppressing wheat take-all. The joint assessment of antifungal activities, growth promotion factors and variety of antibiotic synthesis genes, in addition to greenhouse experiments, allowed for the identification and demonstration of the Bacillus isolate Pnf-12 as an effective disease control agent. © 2017 The Society for Applied Microbiology.

  7. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat.

    Science.gov (United States)

    Halterman, D; Zhou, F; Wei, F; Wise, R P; Schulze-Lefert, P

    2001-02-01

    The barley Mla locus confers multiple resistance specificities to the obligate fungal biotroph, Blumeria (= Erysiphe) graminis f. sp. hordei. Interspersed within the 240 kb Mla complex are three families of resistance gene homologs (RGHs). Probes from the Mla-RGH1 family were used to identify three classes of cDNAs. The first class is predicted to encode a full-length CC-NBS-LRR protein and the other two classes contain alternatively spliced, truncated variants. Utilizing a cosmid that contains a gene corresponding to the full-length candidate cDNA, two single-cell expression assays were used to demonstrate complementation of AvrMla6-dependent, resistance specificity to B. graminis in barley and wheat. The first of these assays was also used to substantiate previous genetic data that the Mla6 allele requires the signaling pathway component, Rar1, for function. Computational analysis of MLA6 and the Rar1-independent, MLA1 protein reveals 91.2% identity and shows that the LRR domain is subject to diversifying selection. Our findings demonstrate that highly related CC-NBS-LRR proteins encoded by alleles of the Mla locus can dictate similar powdery mildew resistance phenotypes yet still require distinct downstream signaling components.

  8. Complementation of the Magnaporthe grisea deltacpkA mutation by the Blumeria graminis PKA-c gene: functional genetic analysis of an obligate plant pathogen.

    Science.gov (United States)

    Bindslev, L; Kershaw, M J; Talbot, N J; Oliver, R P

    2001-12-01

    Obligate plant-pathogenic fungi have proved extremely difficult to characterize with molecular genetics because they cannot be cultured away from host plants and only can be manipulated experimentally in limited circumstances. Previously, in order to characterize signal transduction processes during infection-related development of the powdery mildew fungus Blumeria graminis (syn. Erysiphe graminis) f. sp. hordei, we described a gene similar to the catalytic subunit of cyclic AMP-dependent protein kinase A (here renamed Bka1). Functional characterization of this gene has been achieved by expression in a deltacpkA mutant of the nonobligate pathogen Magnaporthe grisea. This nonpathogenic M. grisea deltacpkA mutant displays delayed and incomplete appressorium development, suggesting a role for PKA-c in the signal transduction processes that control the maturation of infection cells. Transformation of the deltacpkA mutant with the mildew Bka1 open reading frame, controlled by the M. grisea MPG1 promoter, restored pathogenicity and appressorium maturation kinetics. The results provide, to our knowledge, the first functional genetic analysis of pathogenicity in an obligate pathogen and highlight the remarkable conservation of signaling components regulating infection-related development in pathogenic fungi.

  9. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner.

    Science.gov (United States)

    Hansjakob, Anton; Bischof, Sebastian; Bringmann, Gerhard; Riederer, Markus; Hildebrandt, Ulrich

    2010-12-01

    Surface properties of aerial plant organs have been shown to affect the interaction of fungal plant pathogens and their hosts. Conidial germination and differentiation - the so-called prepenetration processes - of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are known to be triggered by n-hexacosanal (C(26)-aldehyde), a minor constituent of barley leaf wax. In order to analyze the differentiation-inducing capabilities of typical aldehyde wax constituents on conidia of wheat and barley powdery mildew, synthetic even-numbered very-long-chain aldehydes (C(22)-C(30)) were assayed, applying an in vitro system based on Formvar(®)/n-hexacosane-coated glass slides. n-Hexacosanal was the most effective aldehyde tested. Germination and differentiation rates of powdery mildew conidia increased with increasing concentrations of very-long-chain aldehydes. Relative to n-hexacosanal, the other aldehyde compounds showed a gradual decrease in germination- and differentiation-inducing capabilities with both decreasing and increasing chain length. In addition to n-hexacosanal, several other ubiquitous very-long-chain aldehyde wax constituents were capable of effectively stimulating B. graminis prepenetration processes in a dose- and chain length-dependent manner. Other wax constituents, such as n-alkanes, primary alcohols (with the exception of n-hexacosanol), fatty acids and alkyl esters, did not affect fungal prepenetration. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  10. Analysis of a Blumeria graminis-secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development.

    Science.gov (United States)

    Feng, Jie; Wang, Feng; Liu, Guosheng; Greenshields, David; Shen, Wenyun; Kaminskyj, Susan; Hughes, Geoff R; Peng, Youliang; Selvaraj, Gopalan; Zou, Jitao; Wei, Yangdou

    2009-12-01

    The biotrophic powdery mildew fungus Blumeria graminis releases extracellular materials to the surface of fungal infection structures that facilitate anchoring them to hydrophobic plant surfaces prior to infection; however, the chemistry of fungal adhesives and the mechanism of adhesion remain largely unclear. Expressed sequence tag analysis led to identification of a secreted lipase, Lip1, from B. graminis. Expression of LIP1 is dramatically upregulated during the early stages of fungal development. Lip1, secreted to the surface of fungal cell walls, possesses lipolytic activity against a broad range of glycerides and releases alkanes and primary fatty alcohols from the epicuticular wax of wheat leaves. Of the epicuticular wax components released by Lip1 activity, long-chain alkanes are the most efficient cues for triggering appressorium formation. Pretreatment of wheat leaves with Lip1, thereby removing leaf surface wax, severely compromises components of fungal pathogenicity, including conidial adhesion, appressorium formation, and secondary hypha growth. Our data suggest that Lip1 activity releases cues from the host surface to promote pathogen development and infection.

  11. Transient over-expression of barley BAX Inhibitor-1 weakens oxidative defence and MLA12-mediated resistance to Blumeria graminis f.sp. hordei.

    Science.gov (United States)

    Eichmann, Ruth; Dechert, Cornelia; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-11-01

    SUMMARY BAX Inhibitor-1 (BI-1) is a conserved cell death suppressor protein. In barley, BI-1 (HvBI-1) expression is induced upon powdery mildew infection and when over-expressed in epidermal cells of barley, HvBI-1 induces susceptibility to the biotrophic fungal pathogen Blumeria graminis. We co-expressed mammalian pro-apoptotic BAX together with HvBI-1, and the mammalian BAX antagonist BCL-X(L) in barley epidermal cells. BAX expression led to cessation of cytoplasmic streaming and collapse of the cytoplasm while co-expression of HvBI-1 and BCL-X(L) partially or completely, respectively, rescued cells from BAX lethality. When B. graminis was attacking epidermal cells, a green fluorescent protein fusion of HvBI-1 accumulated at the site of attempted penetration and was also present around haustoria. Over-expression of HvBI-1 in epidermal cells weakened a cell-wall-associated local hydrogen peroxide burst in a resistant mlo-mutant genotype and supported haustoria accommodation in race-specifically resistant MLA12-barley. HvBI-1 is a cell death regulator protein of barley with the potential to suppress host defence reactions.

  12. Phenotypic and molecular genetic characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum

    DEFF Research Database (Denmark)

    Wichmann, F; Hug, B Müller; Widmer, F

    2011-01-01

    Bacterial wilt of forage grasses, caused by the pathogen Xanthomonas translucens pv. graminis (Xtg), is a major disease of forage grasses such as Italian ryegrass (Lolium multiflorum). The plant genotype-bacterial isolate interaction was analysed to elucidate the existence of race-specific respon...

  13. Genetic differentiation of Puccinia triticina populations in the Middle East and genetic similarity with populations in Central Asia.

    Science.gov (United States)

    Kolmer, J A; Ordoñez, M E; Manisterski, J; Anikster, Y

    2011-07-01

    Leaf rust of wheat, caused by Puccinia triticina, is a common and widespread disease in the Middle East. The objective of this study was to determine whether genetically differentiated groups of P. triticina are present in the Middle East region and to compare the population from the Middle East with the previously characterized population from Central Asia to determine whether genetically similar groups of isolates are found in the two regions. In total, 118 isolates of P. triticina collected from common wheat and durum wheat in Egypt, Israel, Turkey, Ethiopia, and Kenya were tested for virulence on 20 lines of wheat with single genes for leaf rust resistance and for molecular genotypes with 23 simple-sequence repeat (SSR) markers. After removal of isolates with identical virulence and SSR genotype in each country, 103 isolates were retained for further analysis. Clustering of SSR genotypes based on two-dimensional principal coordinates and virulence to wheat differential lines grouped the isolates into four Middle East (ME) groups. The two largest ME groups had virulence phenotypes typical of isolates collected from common wheat and two smaller ME groups had virulence typical of isolates collected from durum wheat. All pairs of ME groups were significantly differentiated for SSR genotype based on R(ST) and F(ST) statistics, and for virulence phenotype based on Φ(PT). All ME groups had observed values of heterozygosity greater than expected and significant fixation indices that indicated the clonal reproduction of urediniospores in the overall population. Linkage disequilibria for SSR genotypes was high across the entire population. The overall values of R(ST) and F(ST) were lower when isolates were grouped by country of origin that indicated the likely migration of isolates within the region. Although the two ME groups with virulence typical of isolates from common wheat were not differentiated for SSR genotype from groups of isolates from Central Asia based on

  14. Capacidade de combinação e heterose para resistência a Puccinia polysora Underw. em milho

    Directory of Open Access Journals (Sweden)

    Silva Herberte Pereira da

    2001-01-01

    Full Text Available A resistência genética é o método mais eficiente de controle das doenças foliares da cultura do milho. Para avaliar a capacidade específica e geral de combinação (CEC e CGC, respectivamente e heterose para resistência a Puccinia polysora, nove linhagens e seus 36 híbridos F1 foram utilizados em experimentos conduzidos em três ambientes. A severidade da doença foi avaliada na planta inteira (PI e na folha posicionada no ponto de inserção da espiga principal (AFA. O delineamento experimental utilizado foi em blocos casualizados com três repetições e a parcela experimental foi representada por uma fileira de 5 m de comprimento. A análise da variância para as reações a ferrugem polissora foram feitas usando a análise II do método de Gardner & Eberhart, associado ao método 4, modelo I de Griffing. A análise dialélica em diferentes ambientes mostrou efeitos altamente significativos (P<0,01 entre ambientes (E, CGC e CGC x E, para os dois métodos de avaliação. O efeito de CEC foi significativo para PI mas não significativo para AFA. A interação CEC x E não foi significativa para os dois métodos de avaliação. A CGC foi mais importante que CEC nas nove linhagens avaliadas, sugerindo que efeitos genéticos aditivos são mais importantes como fonte de variação para resistência a P. polysora. Foram encontrados efeitos heteróticos para resistência tanto em cruzamentos entre linhagens resistentes como entre suscetíveis, embora nestes últimos os efeitos tenham sido maiores. Identificaram-se combinações híbridas específicas entre linhagens com alto potencial para o controle genético deste patógeno.

  15. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification.

    Science.gov (United States)

    Manjunatha, C; Sharma, Sapna; Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C; Aggarwal, Rashmi

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in

  16. Identification of expressed genes during compatible interaction between stripe rust (Puccinia striiformis and wheat using a cDNA library

    Directory of Open Access Journals (Sweden)

    Huang Lili

    2009-12-01

    Full Text Available Abstract Background Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst, is one of the most destructive diseases of wheat worldwide. To establish compatibility with the host, Pst forms special infection structures to invade the plant with minimal damage to host cells. Although compatible interaction between wheat and Pst has been studied using various approaches, research on molecular mechanisms of the interaction is limited. The aim of this study was to develop an EST database of wheat infected by Pst in order to determine transcription profiles of genes involved in compatible wheat-Pst interaction. Results Total RNA, extracted from susceptible infected wheat leaves harvested at 3, 5 and 8 days post inoculation (dpi, was used to create a cDNA library, from which 5,793 ESTs with high quality were obtained and clustered into 583 contigs and 2,160 singletons to give a set of 2,743 unisequences (GenBank accessions: GR302385 to GR305127. The BLASTx program was used to search for homologous genes of the unisequences in the GenBank non-redundant protein database. Of the 2,743 unisequences, 52.8% (the largest category were highly homologous to plant genes; 16.3% to fungal genes and 30% of no-hit. The functional classification of all ESTs was established based on the database entry giving the best E-value using the Bevan's classification categories. About 50% of the ESTs were significantly homologous to genes encoding proteins with known functions; 20% were similar to genes encoding proteins with unknown functions and 30% did not have significant homology to any sequence in the database. The quantitative real-time PCR (qRT-PCR analysis determined the transcription profiles and their involvement in the wheat-Pst interaction for seven of the gene. Conclusion The cDNA library is useful for identifying the functional genes involved in the wheat-Pst compatible interaction, and established a new database for studying Pst pathogenesis genes

  17. Omics approaches to understand the nature of virulence in Puccinia striiformis f.sp. tritici

    DEFF Research Database (Denmark)

    Walter, Stephanie; Kemen, Eric; Brown, James K. M.

    2009-01-01

    New genomic and transcriptomic methods greatly facilitate the study of the biology and evolution of fungal plant pathogens. The obligate biotrophic and asexually reproducing rust fungus Puccinia striiformis f.sp. tritici (Pst) forms haustoria during plant infection and delivers proteins and other...... effector molecules into the plant cell. Rust effectors take a key function in the rust-host interaction: on the one hand they are target of the plant resistance protein system and on the other hand they mediate virulence as subjects of diversifying selection. The virulence of Pst also depends...... on the presence and rapid evolution of such effectors. Pst causes yellow rust on wheat, one of the also depends on the presence and rapid evolution of such effectors. causes yellow rust on wheat, one of the most devastating diseases worldwide, and poses an imminent danger to previously resistant wheat varieties...

  18. Characterization of the Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) Fungal Effector Candidate PEC6 and Its Corresponding Host Targets

    DEFF Research Database (Denmark)

    Liu, Changhai

    Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important fungal diseases on wheat worldwide and a serious threat to wheat production. Understanding the plant-microbe interaction mechanism is the basic step to assist future plant breeding aiming at increasing...... disease resistance. Based on the sequenced stripe rust fungus genome, several hundreds of small, secreted candidates for effector proteins are predicted. Effectors are believed to be pivotal for fungal pathogenicity with key roles in suppressing host defense. Thus, identifying key effectors...... and understanding their mechanisms of action is fundamentally important to guide future fights against the stripe rust disease. In this PhD project, I studied the potential function of six stripe rust fungal effector candidates which are highly expressed in haustoria, by employing the Pseudomonas fluorescens Et...

  19. New races of Puccinia striiformis found in Europe reveal race-specificity of long-term effective adult plant resistance in wheat

    DEFF Research Database (Denmark)

    Sørensen, Chris Khadgi; Hovmøller, Mogens Støvring; Leconte, Marc

    2014-01-01

    esistance to Puccinia striiformis was examined in nine wheat recombinant inbred lines (RILs) from a cross between ‘Camp Rémy’ (resistant parent) and ‘Récital’ (susceptible parent) using an isolate of a strain common to the northwestern European population before 2011 (old) and two additional......, the three isolates gave highly contrasting results for infection type, latent period, lesion length, and diseased leaf area. The PstS2 isolate revealed Yr genes and QTL which conferred complete resistance in adult plants. Six QTL had additive effects against the old isolate whereas the effects of these QTL...... were significantly lower for the new isolate. Furthermore, the new isolate revealed previously undetected resistance in the susceptible parent. Disease severity under field conditions agreed with greenhouse results, except for Camp Rémy being fully resistant to the new isolate and for two RILs being...

  20. Resitência de Eucalyptus globulus e Eucalyptus nitens à ferrugem (Puccinia psidii Resistance of Eucalyptus globulus and E. nitens to rust

    Directory of Open Access Journals (Sweden)

    Adelica Aparecida Xavier

    2007-08-01

    Full Text Available Avaliou-se a resistência das espécies de Eucalyptus globulus e Eucalyptus nitens inoculadas com um isolado uredinospórico monopustular de Puccinia psidii origininário de plantio de Eucalypstus grandis (UFV-2 em Itapetininga, SP. A avaliação foi realizada aos 12 dias após a inoculação, e quantificou-se a doença por meio de uma escala de notas com quatro classes de severidade da doença (S0, S1, S2 e S3. Em média, aproximadamente 60% das plantas de E. globulus e 50% de E. nitens foram resistentes a P. psidii. A variabilidade intra-específica nos materiais estudados indica ser possível a clonagem de genótipos resistentes para plantio comercial ou para uso em programas de melhoramento genético.Eucalyptus globulus and Eucalyptus nitens were evaluated for resistance to rust caused by Puccinia psidii. Seedlings were inoculated with a single urediniosporic pustule isolate of P. psidii (UFV-2 obtained from E. grandis from Itapetininga, SP. Disease assessment was carried out 12 days after inoculation based on a rust rating scale with four class of severity (S0, S1, S2 and S3. Percentages of resistant plants were 60% and 50% for E. globulus and E. nitens, respectively. The high intra-specific variability found in this study allows using the clonal propagation of resistant genotypes in commercial plantations or in breeding programs.

  1. Characterization of a novel nitrilase, BGC4, from Paraburkholderia graminis showing wide-spectrum substrate specificity, a potential versatile biocatalyst for the degradation of nitriles.

    Science.gov (United States)

    Fan, Haiyang; Chen, Lifeng; Sun, Huihui; Wang, Hualei; Liu, Qinghai; Ren, Yuhong; Wei, Dongzhi

    2017-11-01

    To investigate the biodegradation of nitriles via the nitrilase-mediated pathway. A novel nitrilase, BGC4, was identified from proteobacteria Paraburkholderia graminis CD41M and its potential for use in biodegradation of toxic nitriles in industrial effluents was studied. BGC4 was overexpressed in Escherichia coli BL21 (DE3), the recombinant protein was purified and its enzymatic properties analysed. Maximum activity of BGC4 nitrilase was at 30 °C and pH 7.6. BGC4 has a broad substrate activity towards aliphatic, heterocyclic, and aromatic nitriles, as well as arylacetonitriles. Iminodiacetonitrile, an aliphatic nitrile, was the optimal substrate but comparable activities were also observed with phenylacetonitrile and indole-3-acetonitrile. BGC4-expressing cells degraded industrial nitriles, such as acrylonitrile, adiponitrile, benzonitrile, mandelonitrile, and 3-cyanopyridine, showing good tolerance and conversion rates. BGC4 nitrilase has wide-spectrum substrate specificity and is suitable for efficient biodegradation of toxic nitriles.

  2. Gene Expression Profiles of Blumeria graminis Indicate Dynamic Changes to Primary Metabolism during Development of an Obligate Biotrophic PathogenW⃞

    Science.gov (United States)

    Both, Maike; Csukai, Michael; Stumpf, Michael P.H.; Spanu, Pietro D.

    2005-01-01

    cDNA microarrays of Blumeria graminis f sp hordei transcript profiles during the asexual development cycle reveal the dynamics of global gene expression as the fungus germinates, penetrates, feeds on its host, and produces masses of conidia for dispersal. The expression profiles of genes encoding enzymes involved in primary metabolism show that there is a striking degree of coordinate regulation of some of the genes in the same pathway. In one example, genes encoding several glycolytic enzymes are significantly upregulated as mature appressoria form and also in infected epidermis, which contain fungal haustoria. In another example, mRNAs for lipid degrading enzymes are initially expressed at high levels in the conidia and the early germination stages and decrease significantly later. We discuss these results and draw inferences on the metabolic status of this obligate biotrophic fungus as it infects its host and completes its life cycle. PMID:15951491

  3. Infection of barley with the parasitic fungus Blumeria graminis f.sp. hordei results in the induction of HvADH1 and HvADH2.

    Science.gov (United States)

    Proels, Reinhard K; Westermeier, Wolfgang; Hückelhoven, Ralph

    2011-10-01

    Besides the established functions of alcohol dehydrogenase (ADH) in the flooding response and in seed and pollen metabolism there is increasing evidence for a role of the fermentative pathway in biotic interactions. We have recently shown that barley ADH may be involved in susceptibility to the parasitic fungus Blumeria graminis f.sp. hordei (Bgh). Here, the transcriptional regulation of the barley ADH genes HvADH1 and HvADH2 after challenge of susceptible barley leaves with Bgh is addressed. Bgh infection results in an induction of HvADH1 and HvADH2, whereas HvADH3 expression was not detectable in leaves. With the use of native polyacrylamide gels the iso-enzyme composition with and without challenge by Bgh was analyzed, showing an activation of HvADH1 and HvADH2 in Bgh treated leaves.

  4. Métodos de preservação in vitro de urediniósporos de Puccinia kuehnii

    Directory of Open Access Journals (Sweden)

    Fabiana Tibolla

    2012-09-01

    Full Text Available Com o objetivo de avaliar métodos de preservação de urediniósporos de Puccinia kuehnii, conduziram-se dois bioensaios sendo o primeiro (B1 com diferentes métodos de desidratação e o segundo (B2, com diferentes métodos de reidratação. Em B1 foi adicionado um grânulo de sílica gel para preservação dos urediniósporos nos tubos de microcentrífuga. Foram coletadas folhas com sintomas de ferrugem alaranjada, P. kuehnii, da cultivar de cana-de-açúcar SP89 1115. Os urediniósporos do agente causal de ferugem foram extraídos das folhas com o auxílio de bomba a vácuo. Posteriormente, estes foram acondicionados em tubos de microcentrífuga. Os tratamentos para B1 foram: l- desidratação em sílica gel, liofilização e sem desidratação; ll- temperatura ambiente (20ºC, geladeira (5ºC, congelador (-20ºC e deep-freezer (-80ºC. Para B2 os tratamentos foram: l- desidratação em sílica gel e sem desidratação; ll- temperatura ambiente (20ºC, geladeira (5ºC, congelador (-20ºC e deep-freezer (-80ºC; lll- com reidratação e sem reidratação nas avaliações. Para ambos os bioensaios foi realizada a germinação inicial, outras aos 15 e 30 dias de armazenamento e posteriormente a cada 30 dias, até 180 dias. Prepararam-se suspensões de urediniósporos em água e uma alíquota de 0,1 mL foi transferida para placas de Petri contendo meio ágar-água (15g L-1. Essas permaneceram a 20ºC, no escuro. Para a avaliação da viabilidade, procedeu-se a contagem de 200 urediniósporos por placa. Os dados foram submetidos à análise de variância não paramétrica de Kruskal-Wallis e complementadas com o teste de Dunn. Os resultados demonstraram que a viabilidade decresceu em função do tempo, sendo que os melhores tratamentos atingiram 27,6% e 6,6% aos 30 dias, e 12,0% e 1,9% aos 60 dias, para B1 e B2, respectivamente. O método da desidratação em sílica gel seguido do armazenamento a -80ºC foi o único que apresentou uredini

  5. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  6. Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Prats, Elena; Mur, Luis A J; Sanderson, Ruth; Carver, Timothy L W

    2005-01-01

    SUMMARY Nonspecific penetration resistance due to papilla formation and race-specific hypersensitive response (HR) can both contribute to Blumeria graminis resistance in barley. Some effective papillae form even in the susceptible cv. Pallas and the isoline P01 carries the additional Mla1 allele conditioning HR. The NO-specific stain DAF-2DA (4,5-diaminofluorescein-2-diacetate) revealed a transient NO generation burst commencing 10 h after inoculation (h.a.i.) in close association with sites of papilla formation in both barley lines. In P01 a burst of NO production throughout some attacked cells was initiated around 10-12 h.a.i. and this preceded whole-cell autofluorescence indicative of HR. The specificity of DAF-2DA staining was demonstrated by the suppression of staining following application of the NO scavenger C-PTIO (1H-imidazol-1-yloxy-2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-3-oxide). In addition, C-PTIO application increased penetration frequencies in both barley lines, indicating a role for NO in papilla-based resistance. Furthermore, C-PTIO application slightly delayed HR in P01 whereas, conversely, application of an NO donor, sodium nitroprusside, slightly accelerated HR in P01 and increased cell death frequency in Pallas. Thus, NO generation is one of the earliest responses of barley epidermal cell defence against B. graminis attack and may be important in both the initiation and the development of effective papillae and cell death due to HR.

  7. IPM strategies and their dilemmas including an introduction to www.Eurowheat.org

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Hovmøller, Mogens Støvring; Hansen, Jens Grønbech

    2014-01-01

    , but also rust diseases (Puccinia striiformis and Puccinia triticina), powdery mildew (Blumeria graminis) and Fusarium head blight (Fusarium spp.) were seen as serious disease problems. Examples of current IPM strategies in different countries have been reported. Disease management and fungicide use...

  8. Inheritance and bulked segregant analysis of leaf rust and stem rust resistance genes in eight durum wheat genotypes

    Science.gov (United States)

    Leaf rust, caused by Puccinia triticina (Pt) and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to Pt-race BBBQJ and stem rust resistance (Sr) genes to Pg...

  9. A mutagenesis-derived broad-spectrum disease resistance locus in wheat

    Science.gov (United States)

    Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. The most effective and widely uti...

  10. Patterns of Urediospore Movement and Monitoring Epidemics of ...

    African Journals Online (AJOL)

    Abstract: Stem rust caused by Puccinia graminis f.sp.tritici is a significant wheat production constraint in southeastern Ethiopia. Burkard 7-days volumetric spore trap was mounted in a field at Sinana Agricultural Research Center to examine the seasonal movement of urediospores of P. graminis f.sp.tritici during the cropping ...

  11. A baseline analysis of the distribution, host-range, and severity of the rust Puccinia Psidii in the Hawaiian islands, 2005-2010

    Science.gov (United States)

    Anderson, Robert C.

    2012-01-01

    Puccinia psidii was first described by Winter (1884) on guava (Psidium guajava L.) in Brazil. The rust is still a major pest of native guava in Brazil and is often referred to as “guava rust” internationally. It is unusual among rust fungi because of its broad and ever-expanding host-range within the Myrtaceae plant family (Simpson et al. 2006). The pathogen is regarded as a major threat to Eucalyptus plantations and other Myrtaceae worldwide (Coutinho et al. 1998, Grgurinovic et al. 2006, Glen et al. 2007). Infections of leaves and meristems are particularly severe on susceptible seedlings, cuttings, young trees, and coppice, causing plants to be stunted and multi-branched, inhibiting normal growth and development, and sometimes causing death to young seedlings (Booth et al. 2000, Rayachhetry et al. 2001). The fungus has expanded its host-range in Brazil, affecting both native and introduced Myrtaceae (Coutinho et al. 1998). Since its discovery in 1884, P. psidii has continually been discovered to have an expanding host-range within the Myrtaceae, affecting hosts throughout much of South and Central America and the Caribbean. Spreading out originally from Brazil in 1884, the fungus has been reported on hosts in the following countries (first record in parentheses): Paraguay (1884), Uruguay (1889), Ecuador (1891), Colombia (1913), Puerto Rico (1913), Cuba (1926), Dominican Republic (1933), Venezuela (1934), Jamaica (1936), Argentina (1946), Dominica (1948), Trinidad and Tobago (1951), Guatemala (1968), United States (Florida; 1977), Mexico (1981), El Salvador (1987), and Costa Rica (1998) (Simpson et al. 2006). It is possible that P. psidii was present in El Salvador and Costa Rica prior to 1980, but was not reported until 1987 and 1998, respectively. Until recently, Puccinia psidii was restricted to the Neotropics, Mexico, and the state of Florida in the United States. While the rust has been present in Florida for over 30 years, only recently has it spread

  12. Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat

    OpenAIRE

    Singh, A.; Pandey, M. P.; Singh, A. K.; Knox, R. E.; Ammar, K.; Clarke, J. M.; Clarke, F. R.; Singh, R. P.; Pozniak, C. J.; DePauw, R. M.; McCallum, B. D.; Cuthbert, R. D.; Randhawa, H. S.; Fetch, T. G.

    2012-01-01

    Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf ...

  13. Virulent ¤Blumeria graminis¤ infection induces penetration susceptibility and suppresses race-specific hypersensitive resistance against avirulent attack in ¤Mla1¤-barley

    DEFF Research Database (Denmark)

    Lyngkjær, M.L.; Carver, T.L.W.; Zeyen, R.J.

    2001-01-01

    . It appears that suppressive factors released during virulent inducer infection prevented the hypersensitive epidermal cell death that normally is induced by the race-specific avirulence elicitor. However, suppression of Mla1 race-specific resistance vas confined to the epidermis. The presence of successful...... avirulent fungus infection of the epidermis often: led to the death of the underlying mesophyll cells, thus generating a novel cellular response phenotype in B. graminis attacked Mla1 barley. (C) 2001 Academic Press.......Leaves of near isogenic barley lines containing the race-specific resistance alleles. Mla1 or mla1 were subjected to double inoculation treatments with virulent and avirulent Blumeria graminis isolates. Attack by the avirulent isolate alone frequently caused hypersensitive death of individual Mla1...

  14. Utilização de análise de segregantes agrupados na identificação de marcadores ligados a genes que controlam a resistência à ferrugem (Puccinia psidii Winter em Eucalyptus sp. Use of bulked segregant analysis in identification of molecular markers linked to resistance to rust (Puccinia psidii winter in Eucalyptus sp.

    Directory of Open Access Journals (Sweden)

    Karina Carnieli Zamprogno

    2008-09-01

    Full Text Available Devido a grande importância da cultura de Eucalyptus no Brasil, empresas do setor florestal têm buscado através de programas de melhoramento genético, reduzir as perdas de produção e atender a demanda do mercado de papel e celulose. Um exemplo, é a busca por genes de resistência a doenças, principalmente a ferrugem causada por Puccinia psidii Winter, que resulta em redução da produtividade em plantas altamente suscetíveis. No presente trabalho, mudas de Eucalyptus pertencentes a uma geração F1, provenientes do cruzamento controlado entre parentais híbridos E. grandis X E. urophylla, sendo eles resistente e suscetível, foram inoculadas com Puccinia psidii em casa de vegetação e acompanhadas até o aparecimento dos sintomas da ferrugem. Foram classificadas, em dois grupos: resistentes (ausência de sintomas e suscetíveis (presença de sintomas e esporulação. As amostras de DNA foram comparadas com o uso de marcadores moleculares associado ao método de BSA (Bulked Segregant Analysis. O polimorfismo entre os grupos foi geneticamente relacionado ao loco que determina a característica de resistência ou sucetibilidade. Dentre os 720 "primers" testados, 19 foram polimórficos, porém, apenas o marcador AK 01 manteve-se presente, quando testado em todos os indivíduos da população, mostrando-se a uma distância genética estimada de 20 cM em repulsão ao gene de resistência.Due to the great importance of the Eucalyptus crop in Brazil, companies in the forest sector have aimed, through genetic breeding programs, to reduce yield losses and meet the demands of the paper and cellulosis market. One example is the search for genes for resistance to diseases, especially the rust caused by Puccinia psidii Winter, which results in reduced productivity in highly susceptible plants. On the present study, seedlings of Eucalyptus from an F1 generation, bred from controlled crossing between parents C0 (resistant and VR (susceptible, were

  15. Effect of Puccinia silphii on Yield Components and Leaf Physiology in Silphium integrifolium: Lessons for the Domestication of a Perennial Oilseed Crop

    Directory of Open Access Journals (Sweden)

    M. Kathryn Turner

    2018-03-01

    Full Text Available New crops with greater capacity for delivering ecosystem services are needed to increase agricultural sustainability. However, even in these crops, seed yield is usually the main criteria for grain domestication. This focus on yield can cause unintended structural and functional changes. Leaves of selected plants tend to be more vulnerable to infection, which can reduce performance, assimilates, and ultimately yield. Our objectives were to determine the impact of rust (caused by Puccinia silphii on yield and leaf function in selected Silphium integrifolium (Asteraceae plants. We tested the effect of a fungicide treatment on rust severity and yield, compared the rust infection of individuals in a population selected for yield, and related this to chemical changes at the leaf level. We also estimated heritability for rust resistance. We found that productivity indicators (head number and weight, leaf weight and leaf processes (photosynthetic capacity, water use efficiency were reduced when silphium leaves and stems were more heavily infected by P. silphii. Leaf resin content increased when susceptible plants were infected. Fungicide treatments were effective at reducing rust infection severity, but were ineffective at preventing yield losses. We propose that disease resistance should be included early in the selection process of new perennial crops.

  16. Characterization and Genetic Analysis of Rice Mutantcrr1Exhibiting Compromised Non-host Resistance toPuccinia striiformisf. sp.tritici(Pst).

    Science.gov (United States)

    Zhao, Jing; Yang, Yuheng; Yang, Donghe; Cheng, Yulin; Jiao, Min; Zhan, Gangming; Zhang, Hongchang; Wang, Junyi; Zhou, Kai; Huang, Lili; Kang, Zhensheng

    2016-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most devastating diseases of wheat in China. Rapid change to virulence following release of resistant cultivars necessitates ongoing discovery and exploitation of new resistance resources. Considerable effort has been directed at non-host resistance (NHR) which is believed to be durable. In the present study we identified rice mutant crr1 (compromised resistance to rust 1) that exhibited compromised NHR to Pst . Compared with wild type rice variety Nipponbare, crr1 mutant displayed a threefold increase in penetration rate by Pst , and enhanced hyphal growth. The pathogen also developed haustoria in crr1 mesophyll cells, but failed to sporulate. The response to the adapted rice pathogen Magnaporthe oryzae was unchanged in crr1 relative to the wild type. Several defense-related genes involved in the SA- and JA-mediated defense pathways response and in phytoalexin synthesis (such as OsPR1a , OsLOX1 , and OsCPS4 ) were more rapidly and strongly induced in infected crr1 leaves than in the wild type, suggesting that other layers of defense are still in effect. Genetic analysis and mapping located the mutant loci at a region between markers ID14 and RM25792, which cover about 290 kb genome sequence on chromosome 10. Further fine mapping and cloning of the locus should provide further insights into NHR to rust fungi in rice, and may reveal new strategies for improving rust resistance in wheat.

  17. An economic approach to assessing import policies designed to prevent the arrival of invasive species: the case of Puccinia psidii in Hawai'i

    Science.gov (United States)

    Burnett, Kimberly; D'Evelyn, Sean; Loope, Lloyd; Wada, Christopher A.

    2012-01-01

    Since its first documented introduction to Hawai‘i in 2005, the rust fungus Puccinia psidii has already severely damaged Syzygium jambos (Indian rose apple) trees and the federally endangered Eugenia koolauensis (nioi). Fortunately, the particular strain has yet to cause serious damage to Metrosideros polymorpha (‘ōhi‘a), which comprises roughly 80% of the state's native forests and covers 400,000 ha. Although the rust has affected less than 5% of Hawaii's ‘ōhi‘a trees thus far, the introduction of more virulent strains and the genetic evolution of the current strain are still possible. Since the primary pathway of introduction is Myrtaceae plant material imported from outside the state, potential damage to ‘ōhi‘a can be minimized by regulating those high-risk imports. We discuss the economic impact on the state's florist, nursery, landscaping, and forest plantation industries of a proposed rule that would ban the import of non-seed Myrtaceae plant material and require a 1-year quarantine of seeds. Our analysis suggests that the benefits to the forest plantation industry of a complete ban on non-seed material would likely outweigh the costs to other affected sectors, even without considering the reduction in risk to ‘ōhi‘a. Incorporating the value of ‘ōhi‘a protection would further increase the benefit–cost ratio in favor of an import ban.

  18. Functional Characterization of Calcineurin Homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici Using a Host-Induced RNAi System

    Science.gov (United States)

    Zhang, Hong; Guo, Jun; Voegele, Ralf T.; Zhang, Jinshan; Duan, Yinghui; Luo, Huaiyong; Kang, Zhensheng

    2012-01-01

    Calcineurin plays a key role in morphogenesis, pathogenesis and drug resistance in most fungi. However, the function of calcineurin genes in Puccinia striiformis f. sp. tritici (Pst) is unclear. We identified and characterized the calcineurin genes PsCNA1 and PsCNB1 in Pst. Phylogenetic analyses indicate that PsCNA1 and PsCNB1 form a calcium/calmodulin regulated protein phosphatase belonging to the calcineurin heterodimers composed of subunits A and B. Quantitative RT-PCR analyses revealed that both PsCNA1 and PsCNB1 expression reached their maximum in the stage of haustorium formation, which is one day after inoculation. Using barely stripe mosaic virus (BSMV) as a transient expression vector in wheat, the expression of PsCNA1 and PsCNB1 in Pst was suppressed, leading to slower extension of fungal hyphae and reduced production of urediospores. The immune-suppressive drugs cyclosporin A and FK506 markedly reduced the germination rates of urediospores, and when germination did occur, more than two germtubes were produced. These results suggest that the calcineurin signaling pathway participates in stripe rust morphogenetic differentiation, especially the formation of haustoria during the early stage of infection and during the production of urediospores. Therefore PsCNA1 and PsCNB1 can be considered important pathogenicity genes involved in the wheat-Pst interaction. PMID:23139840

  19. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Chen Xianming

    2007-06-01

    Full Text Available Abstract Background Puccinia striiformis is a plant pathogenic fungus causing stripe rust, one of the most important diseases on cereal crops and grasses worldwide. However, little is know about its genome and genes involved in the biology and pathogenicity of the pathogen. We initiated the functional genomic research of the fungus by constructing a full-length cDNA and determined functions of the first group of genes by sequence comparison of cDNA clones to genes reported in other fungi. Results A full-length cDNA library, consisting of 42,240 clones with an average cDNA insert of 1.9 kb, was constructed using urediniospores of race PST-78 of P. striiformis f. sp. tritici. From 196 sequenced cDNA clones, we determined functions of 73 clones (37.2%. In addition, 36 clones (18.4% had significant homology to hypothetical proteins, 37 clones (18.9% had some homology to genes in other fungi, and the remaining 50 clones (25.5% did not produce any hits. From the 73 clones with functions, we identified 51 different genes encoding protein products that are involved in amino acid metabolism, cell defense, cell cycle, cell signaling, cell structure and growth, energy cycle, lipid and nucleotide metabolism, protein modification, ribosomal protein complex, sugar metabolism, transcription factor, transport metabolism, and virulence/infection. Conclusion The full-length cDNA library is useful in identifying functional genes of P. striiformis.

  20. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici).

    Science.gov (United States)

    Ling, Peng; Wang, Meinan; Chen, Xianming; Campbell, Kimberly Garland

    2007-06-04

    Puccinia striiformis is a plant pathogenic fungus causing stripe rust, one of the most important diseases on cereal crops and grasses worldwide. However, little is know about its genome and genes involved in the biology and pathogenicity of the pathogen. We initiated the functional genomic research of the fungus by constructing a full-length cDNA and determined functions of the first group of genes by sequence comparison of cDNA clones to genes reported in other fungi. A full-length cDNA library, consisting of 42,240 clones with an average cDNA insert of 1.9 kb, was constructed using urediniospores of race PST-78 of P. striiformis f. sp. tritici. From 196 sequenced cDNA clones, we determined functions of 73 clones (37.2%). In addition, 36 clones (18.4%) had significant homology to hypothetical proteins, 37 clones (18.9%) had some homology to genes in other fungi, and the remaining 50 clones (25.5%) did not produce any hits. From the 73 clones with functions, we identified 51 different genes encoding protein products that are involved in amino acid metabolism, cell defense, cell cycle, cell signaling, cell structure and growth, energy cycle, lipid and nucleotide metabolism, protein modification, ribosomal protein complex, sugar metabolism, transcription factor, transport metabolism, and virulence/infection. The full-length cDNA library is useful in identifying functional genes of P. striiformis.

  1. Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum)

    Science.gov (United States)

    Bulli, Peter; Rynearson, Sheri; Chen, Xianming; Pumphrey, Michael

    2017-01-01

    Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding. PMID:28591221

  2. Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system.

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    Full Text Available Calcineurin plays a key role in morphogenesis, pathogenesis and drug resistance in most fungi. However, the function of calcineurin genes in Puccinia striiformis f. sp. tritici (Pst is unclear. We identified and characterized the calcineurin genes PsCNA1 and PsCNB1 in Pst. Phylogenetic analyses indicate that PsCNA1 and PsCNB1 form a calcium/calmodulin regulated protein phosphatase belonging to the calcineurin heterodimers composed of subunits A and B. Quantitative RT-PCR analyses revealed that both PsCNA1 and PsCNB1 expression reached their maximum in the stage of haustorium formation, which is one day after inoculation. Using barely stripe mosaic virus (BSMV as a transient expression vector in wheat, the expression of PsCNA1 and PsCNB1 in Pst was suppressed, leading to slower extension of fungal hyphae and reduced production of urediospores. The immune-suppressive drugs cyclosporin A and FK506 markedly reduced the germination rates of urediospores, and when germination did occur, more than two germtubes were produced. These results suggest that the calcineurin signaling pathway participates in stripe rust morphogenetic differentiation, especially the formation of haustoria during the early stage of infection and during the production of urediospores. Therefore PsCNA1 and PsCNB1 can be considered important pathogenicity genes involved in the wheat-Pst interaction.

  3. A rapid genotyping method for an obligate fungal pathogen, Puccinia striiformis f.sp. tritici, based on DNA extraction from infected leaf and Multiplex PCR genotyping

    Directory of Open Access Journals (Sweden)

    Enjalbert Jérôme

    2011-07-01

    Full Text Available Abstract Background Puccinia striiformis f.sp. tritici (PST, an obligate fungal pathogen causing wheat yellow/stripe rust, a serious disease, has been used to understand the evolution of crop pathogen using molecular markers. However, numerous questions regarding its evolutionary history and recent migration routes still remains to be addressed, which need the genotyping of a large number of isolates, a process that is limited by both DNA extraction and genotyping methods. To address the two issues, we developed here a method for direct DNA extraction from infected leaves combined with optimized SSR multiplexing. Findings We report here an efficient protocol for direct fungal DNA extraction from infected leaves, avoiding the costly and time consuming step of spore multiplication. The genotyping strategy we propose, amplified a total of 20 SSRs in three Multiplex PCR reactions, which were highly polymorphic and were able to differentiate different PST populations with high efficiency and accuracy. Conclusion These two developments enabled a genotyping strategy that could contribute to the development of molecular epidemiology of yellow rust disease, both at a regional or worldwide scale.

  4. Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States.

    Science.gov (United States)

    Xia, Chongjing; Wan, Anmin; Wang, Meinan; Jiwan, Derick A; See, Deven R; Chen, Xianming

    2016-05-01

    Single nucleotide polymorphism (SNP) is a powerful molecular marker technique that has been widely used in population genetics and molecular mapping studies for various organisms. However, the technique has not been used for studying Puccinia striiformis f. sp. tritici (Pst), the wheat stripe rust pathogen. In this study, we developed over a hundred secreted protein gene-derived SNP (SP-SNP) markers and used 92 markers to study the population structure of Pst. From 352 isolates collected in the United States, we identified 242 multi-locus genotypes. The SP-SNP genotypes had a moderate, but significant correlation with the virulence phenotype data. Clustering of the multi-locus genotypes was consistent by various analyses, revealing distinct genetic groups. Analysis of molecular variance detected significant differences between the eastern and western US Pst populations. High heterozygosity was found in the US population with significant differences identified among epidemiological regions. Analysis of population differentiation revealed that populations between the eastern and western US were highly differentiated while moderate differentiation was found in populations within the western or eastern US. Isolates from the western US were more diverse than isolates from the eastern US. The information is useful for guiding the disease management in different epidemiological regions. Published by Elsevier Ltd.

  5. [Construction and analysis of the SSH library with the resistant wheat near-isogenic line and its susceptible parent infected by Puccinia striiformis Westend. f. sp. tritici].

    Science.gov (United States)

    Shu, Wei; Chen, Xiao-Hong; Niu, Yong-Chun

    2011-09-01

    To analyze the differentially expressed genes between resistant and susceptible wheat near-isogenic lines infected by Puccinia striiformis Westend. f. sp. tritici, a subtractive library containing about 1300 clones was constructed using suppression subtractive hybridization (SSH) in which the cDNA from resistant Yr4/6 × Taichung 29 seedlings inoculated with race CY26 was used as the tester, and the corresponding cDNA from susceptible Taichung 29 as the driver. Six hundred clones from the library were analyzed with reverse Northern blot. The positive clones were further tested by Northern blotting analysis. Twelve clones were verified and showed significant difference. By means of sequencing and BlastX analysis, six function-known differentially expressed sequences were detected, and their putative products were leucine-rich repeat protein, catalase, thioredoxin H-type, RNA binding protein, ascorbate peroxidase, and heat shock protein, respectively. Among them, leucine-rich repeat protein belongs to signal transduction protein, and others belong to defense response protein.

  6. TaWIR1 contributes to post-penetration resistance to Magnaporthe oryzae, but not Blumeria graminis f. sp. tritici, in wheat.

    Science.gov (United States)

    Tufan, Hale A; McGrann, Graham R D; MacCormack, Ruth; Boyd, Lesley A

    2012-09-01

    Members of the Wheat-Induced Resistance 1 (TaWIR1) gene family are highly induced in response to a wide range of pathogens. Homologues have been identified in barley, but not in Brachypodium, whereas, in rice, only distant WIR1 candidates are known. Phylogenetic analysis placed TaWIR1a and TaWIR1b within a distinct clade of wheat transcripts, whereas TaWIR1c clustered with HvWIR1 genes. Transcripts of all three TaWIR1 genes were strongly induced by a wheat-adapted isolate of Magnaporthe oryzae. Virus-induced gene silencing of the TaWIR1 gene family had no effect on the initial penetration of epidermal cells by M. oryzae. However, following the establishment of an infection site, the fungus was able to grow more extensively within the leaf tissue, relative to control leaves, indicating a role for the TaWIR1 gene family in the cell-to-cell movement of M. oryzae. In contrast, the silencing of TaWIR1 transcripts had no effect on epidermal cell penetration by a wheat-adapted isolate of Blumeria graminis, or on the subsequent growth of hyphae. Differential transcription of TaWIR1 genes was also seen in epidermal peels, relative to the remaining leaf tissue, following inoculation with M. oryzae. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  7. Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target.

    Science.gov (United States)

    Schmidt, Sarah M; Kuhn, Hannah; Micali, Cristina; Liller, Corinna; Kwaaitaal, Mark; Panstruga, Ralph

    2014-08-01

    Filamentous phytopathogens, such as fungi and oomycetes, secrete effector proteins to establish successful interactions with their plant hosts. In contrast with oomycetes, little is known about effector functions in true fungi. We used a bioinformatics pipeline to identify Blumeria effector candidates (BECs) from the obligate biotrophic barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). BEC1-BEC5 are expressed at different time points during barley infection. BEC1, BEC2 and BEC4 have orthologues in the Arabidopsis thaliana-infecting powdery mildew fungus Golovinomyces orontii. Arabidopsis lines stably expressing the G. orontii BEC2 orthologue, GoEC2, are more susceptible to infection with the non-adapted fungus Erysiphe pisi, suggesting that GoEC2 contributes to powdery mildew virulence. For BEC3 and BEC4, we identified thiopurine methyltransferase, a ubiquitin-conjugating enzyme, and an ADP ribosylation factor-GTPase-activating protein (ARF-GAP) as potential host targets. Arabidopsis knockout lines of the respective HvARF-GAP orthologue (AtAGD5) allowed higher entry levels of E. pisi, but exhibited elevated resistance to the oomycete Hyaloperonospora arabidopsidis. We hypothesize that ARF-GAP proteins are conserved targets of powdery and downy mildew effectors, and we speculate that BEC4 might interfere with defence-associated host vesicle trafficking. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  8. Barley susceptibility factor RACB modulates transcript levels of signalling protein genes in compatible interaction with Blumeria graminis f.sp. hordei.

    Science.gov (United States)

    Schnepf, Vera; Vlot, A Corina; Kugler, Karl; Hückelhoven, Ralph

    2018-02-01

    RHO (rat sarcoma homologue) GTPases (guanosine triphosphatases) are regulators of downstream transcriptional responses of eukaryotes to intracellular and extracellular stimuli. For plants, little is known about the function of Rho-like GTPases [called RACs (rat sarcoma-related C botulinum substrate) or ROPs (RHO of plants)] in transcriptional reprogramming of cells. However, in plant hormone response and innate immunity, RAC/ROP proteins influence gene expression patterns. The barley RAC/ROP RACB is required for full susceptibility of barley to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). We compared the transcriptomes of barley plants either silenced for RACB or over-expressing constitutively activated RACB with and without inoculation with Bgh. This revealed a large overlap of the barley transcriptome during the early response to Bgh and during the over-expression of constitutively activated RACB. Global pathway analyses and stringent analyses of differentially expressed genes suggested that RACB influences, amongst others, the expression of signalling receptor kinases. Transient induced gene silencing of RACB-regulated signalling genes (a leucine-rich repeat protein, a leucine-rich repeat receptor-like kinase and an S-domain SD1-receptor-like kinase) suggested that they might be involved in RACB-modulated susceptibility to powdery mildew. We discuss the function of RACB in regulating the transcriptional responses of susceptible barley to Bgh. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Chowdhury, Jamil; Henderson, Marilyn; Schweizer, Patrick; Burton, Rachel A; Fincher, Geoffrey B; Little, Alan

    2014-11-01

    In plants, cell walls are one of the first lines of defence for protecting cells from successful invasion by fungal pathogens and are a major factor in basal host resistance. For the plant cell to block penetration attempts, it must adapt its cell wall to withstand the physical and chemical forces applied by the fungus. Papillae that have been effective in preventing penetration by pathogens are traditionally believed to contain callose as the main polysaccharide component. Here, we have re-examined the composition of papillae of barley (Hordeum vulgare) attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) using a range of antibodies and carbohydrate-binding modules that are targeted to cell wall polysaccharides. The data show that barley papillae induced during infection with Bgh contain, in addition to callose, significant concentrations of cellulose and arabinoxylan. Higher concentrations of callose, arabinoxylan and cellulose are found in effective papillae, compared with ineffective papillae. The papillae have a layered structure, with the inner core consisting of callose and arabinoxylan and the outer layer containing arabinoxylan and cellulose. The association of arabinoxylan and cellulose with penetration resistance suggests new targets for the improvement of papilla composition and enhanced disease resistance. © 2014 University of Adelaide. New Phytologist © 2014 New Phytologist Trust.

  10. Efficacy of Pseudomonas graminis CPA-7 against Salmonella spp. and Listeria monocytogenes on fresh-cut pear and setting up of the conditions for its commercial application.

    Science.gov (United States)

    Iglesias, M B; Abadias, M; Anguera, M; Viñas, I

    2018-04-01

    Pseudomonas graminis CPA-7 has been reported to control foodborne pathogens on fresh-cut apple, peach and melon. The first aim of this study was to assess its antagonistic activity against Salmonella spp. and L. monocytogenes on fresh-cut pear. CPA-7 was able to control both pathogens on fresh-cut pear stored in air conditions at 5, 10 and 20 °C. However, when CPA-7 antagonistic effect was tested by simulating commercial application (with antioxidant solution and passive modified atmosphere packaging), its effect decreased and no reductions of foodborne pathogens were reported at 10 °C. Therefore, the second aim was to optimise the antioxidant solution and the packaging in order to retain its antagonistic capacity. The selected antioxidant solution was 2% ascorbic acid +2% sodium citrate +1% CaCl 2 according to growth and effect of CPA-7. Film permeability, which affects gas composition inside fruit packages, influenced CPA-7 efficacy. If the biopreservative strain is used, film has to be sufficiently gas permeable to allow CPA-7 function and at the same time to maintain product quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Life Table Parameters and Consumption Rate of Cydnodromus picanus Ragusa, Amblyseius graminis Chant, and Galendromus occidentalis (Nesbitt on Avocado Red Mite Oligonychus yothersi (McGregor (Acari: Phytoseiidae, Tetranychidae Parámetros de Tabla de Vida y Tasa de Consumo de Cydnodromus picanus Ragusa, Amblyseius graminis Chant y Galendromus occidentalis (Nesbitt, sobre la Arañita Roja del Palto Oligonychus yothersi (McGregor (Acari: Phytoseiidae, Tetranychidae

    Directory of Open Access Journals (Sweden)

    Tommy Rioja S

    2009-06-01

    Full Text Available The avocado red mite Oligonychus yothersi (McGregor is the major leaf pest in Chile’s avocado orchards. Itaffects leaf physiology and makes it necessary to seek new natural enemies to interact with low population densities of O. yothersi. The potentiality of three predator mites: Cydnodromus picanus Ragusa, Amblyseius graminis Chant, and Galendromus occidentalis (Nesbitt was evaluated under laboratory conditions (27 ± 1.93ºC, 87 ± 3.61% H.R. and 16:8 (L:D photoperiod on avocado leaf disks Persea americana Mill. var. Hass (Ø = 5 cm by separately feeding eggs, immature, and adult females of O. yothersi, and registering postembryonic development, consumption, as well as life table parameters. The postembryonic development of C. picanus was significantly lower (5.46 days compared to both A. graminis (7.33 days and G. occidentalis (8.69 days which were fed with immature O. yothersi. The life table parameters of C. picanus were net reproductive rate R0 = 25.41, finite rate of increase λ = 1.29, and Mean Generation Time T = 12.46. The Net Intrinsic Rate of Increase (r m was significantly higher for C. picanus (r m = 0.25 in contrast with G. occidentalis (r m = 0.19, while A. graminis showed r m = -0.06 indicating that its population didn’t have descendants. Under laboratory conditions, r m registered by C. picanus is an indicator of its predatory potential to control O. Yothersi. It can be assumed that the pest population reduction pattern could be maintained under field conditions.En Chile la arañita roja del palto Oligonychus yothersi (McGregor es la plaga más importante a nivel foliar en huertos comerciales afectando la fisiología de la hoja, siendo necesario la búsqueda de nuevos enemigos naturales que interactúen a bajas densidades poblacionales de O. yothersi. Se evaluó en condiciones de laboratorio (27±1,93ºC, 87±3,61 % H.R. y un fotoperíodo de 16:8 (L:O sobre discos de hojas de palto Persea americana Mill. var. Hass (Ø = 5

  12. Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia.

    Science.gov (United States)

    Morin, Louise; Aveyard, Ruth; Lidbetter, Jonathan R; Wilson, Peter G

    2012-01-01

    The exotic rust fungus Puccinia psidii sensu lato was first detected in Australia in April 2010. This study aimed to determine the host-range potential of this accession of the rust by testing its pathogenicity on plants of 122 taxa, representative of the 15 tribes of the subfamily Myrtoideae in the family Myrtaceae. Each taxon was tested in two separate trials (unless indicated otherwise) that comprised up to five replicates per taxon and six replicates of a positive control (Syzygium jambos). No visible symptoms were observed on the following four taxa in either trial: Eucalyptus grandis×camaldulensis, E. moluccana, Lophostemon confertus and Sannantha angusta. Only small chlorotic or necrotic flecks without any uredinia (rust fruiting bodies) were observed on inoculated leaves of seven other taxa (Acca sellowiana, Corymbia calophylla 'Rosea', Lophostemon suaveolens, Psidium cattleyanum, P. guajava 'Hawaiian' and 'Indian', Syzygium unipunctatum). Fully-developed uredinia were observed on all replicates across both trials of 28 taxa from 8 tribes belonging to the following 17 genera: Agonis, Austromyrtus, Beaufortia, Callistemon, Calothamnus, Chamelaucium, Darwinia, Eucalyptus, Gossia, Kunzea, Leptospermum, Melaleuca, Metrosideros, Syzygium, Thryptomene, Tristania, Verticordia. In contrast, the remaining 83 taxa inoculated, including the majority of Corymbia and Eucalyptus species, developed a broad range of symptoms, often across the full spectrum, from fully-developed uredinia to no visible symptoms. These results were encouraging as they indicate that some levels of genetic resistance to the rust possibly exist in these taxa. Overall, our results indicated no apparent association between the presence or absence of disease symptoms and the phylogenetic relatedness of taxa. It is most likely that the majority of the thousands of Myrtaceae species found in Australia have the potential to become infected to some degree by the rust, although this wide host range may

  13. Genetic differentiation within the Puccinia triticina population in South America and comparison with the North American population suggests common ancestry and intercontinental migration.

    Science.gov (United States)

    Ordoñez, M E; Germán, S E; Kolmer, J A

    2010-04-01

    Leaf rust, caused by Puccinia triticina, is the most prevalent and widespread disease of wheat in South America. The objective of this study was to determine whether genetically differentiated groups of P. triticina are currently present in South America and to compare the South American population with the previously characterized population in North America. In total, 130 isolates of P. triticina from the wheat-growing regions of Argentina, Brazil, Chile, Peru, and Uruguay, mostly from the 1990s to 2008, were tested for virulence on 20 lines of wheat with single genes for leaf rust resistance and for molecular genotypes with 23 simple-sequence repeat (SSR) markers. After removal of isolates with identical virulence and SSR genotypes, 99 isolates were included for further analysis. Principal coordinate analysis plots indicated five different groups of isolates based on SSR genotypes that also differed for virulence to leaf rust resistance genes. All pairs of groups, except for one pair, were significantly differentiated for SSR genotypes according to R(ST) statistics. All but two pairs of groups were significantly differentiated for virulence phenotype according to Phi(PT) statistics. Isolates in all five groups had high values of fixation index for SSR alleles and linkage disequilibrium was high across all isolates that indicated the clonal reproduction of urediniospores. Only one of the five P. triticina groups from South America was differentiated for SSR genotypes from all of the six P. triticina groups from North America. The high degree of similarity for SSR genotype of isolates from both South America and North America suggested a common European origin of P. triticina that was introduced to both continents. The emergence of the same P. triticina virulence phenotypes with highly related SSR genotypes in the United States in 1996 and in Uruguay in 1999 indicated the likely intercontinental migration of these genotypes from Mexico to both South America and

  14. A summary of information on the rust Puccinia psidii Winter (guava rust) with emphasis on means to prevent introduction of additional strains to Hawaii

    Science.gov (United States)

    Loope, Lloyd

    2010-01-01

    The neotropical rust fungus Puccinia psidii(P. psidii) was originally described from the host common guava in its native Brazil but has been found since on hosts throughout the myrtle family (Myrtaceae), including a dramatic host jump to nonnative Eucalyptus plantations. Most rust fungi are able to live only on a very narrow range of host species. P. psidii is unusual both for having a broad host range and for the intensity of its damage to susceptible young growth. This rust first got a foothold in the United States in Florida more than three decades ago. The U.S. Department of Agriculture (USDA) has since considered it a nonactionable, nonreportable pest. Hawaii and Florida are the only two states with native species in the myrtle family. Over a period of 30 years, this rust has done little damage to any of the scattered native Myrtaceae in Florida, although the host range of the rust has gradually grown to about 30 mostly nonnative species in the family, apparently because of increasing genetic variety of the rust by repeated introductions. However, Florida’s native Myrtaceae are among the roughly 1,100 neotropical species that are largely resistant to P. psidii. The 3,000 species of non-neotropical Myrtaceae of the Pacific, Australia, Asia, and Africa are expected to prove much more vulnerable to P. psidii. Little is known about the genetics or genetic strains of P. psidii, although existing literature shows that there are numerous strains that have differential ability to infect suites of host plants.

  15. Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia.

    Directory of Open Access Journals (Sweden)

    Louise Morin

    Full Text Available The exotic rust fungus Puccinia psidii sensu lato was first detected in Australia in April 2010. This study aimed to determine the host-range potential of this accession of the rust by testing its pathogenicity on plants of 122 taxa, representative of the 15 tribes of the subfamily Myrtoideae in the family Myrtaceae. Each taxon was tested in two separate trials (unless indicated otherwise that comprised up to five replicates per taxon and six replicates of a positive control (Syzygium jambos. No visible symptoms were observed on the following four taxa in either trial: Eucalyptus grandis×camaldulensis, E. moluccana, Lophostemon confertus and Sannantha angusta. Only small chlorotic or necrotic flecks without any uredinia (rust fruiting bodies were observed on inoculated leaves of seven other taxa (Acca sellowiana, Corymbia calophylla 'Rosea', Lophostemon suaveolens, Psidium cattleyanum, P. guajava 'Hawaiian' and 'Indian', Syzygium unipunctatum. Fully-developed uredinia were observed on all replicates across both trials of 28 taxa from 8 tribes belonging to the following 17 genera: Agonis, Austromyrtus, Beaufortia, Callistemon, Calothamnus, Chamelaucium, Darwinia, Eucalyptus, Gossia, Kunzea, Leptospermum, Melaleuca, Metrosideros, Syzygium, Thryptomene, Tristania, Verticordia. In contrast, the remaining 83 taxa inoculated, including the majority of Corymbia and Eucalyptus species, developed a broad range of symptoms, often across the full spectrum, from fully-developed uredinia to no visible symptoms. These results were encouraging as they indicate that some levels of genetic resistance to the rust possibly exist in these taxa. Overall, our results indicated no apparent association between the presence or absence of disease symptoms and the phylogenetic relatedness of taxa. It is most likely that the majority of the thousands of Myrtaceae species found in Australia have the potential to become infected to some degree by the rust, although this

  16. Combining a Climatic Niche Model of an Invasive Fungus with Its Host Species Distributions to Identify Risks to Natural Assets: Puccinia psidii Sensu Lato in Australia

    Science.gov (United States)

    Kriticos, Darren J.; Morin, Louise; Leriche, Agathe; Anderson, Robert C.; Caley, Peter

    2013-01-01

    Puccinia psidii sensu lato (s.l.) is an invasive rust fungus threatening a wide range of plant species in the family Myrtaceae. Originating from Central and South America, it has invaded mainland USA and Hawai'i, parts of Asia and Australia. We used CLIMEX to develop a semi-mechanistic global climatic niche model based on new data on the distribution and biology of P. psidii s.l. The model was validated using independent distribution data from recently invaded areas in Australia, China and Japan. We combined this model with distribution data of its potential Myrtaceae host plant species present in Australia to identify areas and ecosystems most at risk. Myrtaceaeous species richness, threatened Myrtaceae and eucalypt plantations within the climatically suitable envelope for P. psidii s.l in Australia were mapped. Globally the model identifies climatically suitable areas for P. psidii s.l. throughout the wet tropics and sub-tropics where moist conditions with moderate temperatures prevail, and also into some cool regions with a mild Mediterranean climate. In Australia, the map of species richness of Myrtaceae within the P. psidii s.l. climatic envelope shows areas where epidemics are hypothetically more likely to be frequent and severe. These hotspots for epidemics are along the eastern coast of New South Wales, including the Sydney Basin, in the Brisbane and Cairns areas in Queensland, and in the coastal region from the south of Bunbury to Esperance in Western Australia. This new climatic niche model for P. psidii s.l. indicates a higher degree of cold tolerance; and hence a potential range that extends into higher altitudes and latitudes than has been indicated previously. The methods demonstrated here provide some insight into the impacts an invasive species might have within its climatically suited range, and can help inform biosecurity policies regarding the management of its spread and protection of valued threatened assets. PMID:23704988

  17. Variability generation in sugar cane for resistance to mosaic viruses and rusts (puccinia melanocephala) by means of the cultivation of explants and irradiated callus

    International Nuclear Information System (INIS)

    Ventura Gonzalez, Morella Fuchs; Castroni, Sonia; Diaz, Ezequiel

    1997-01-01

    With the purpose to generate sugar cane variability in vitro, in order the obtain genotypes resistant to the mosaic viruses and to the rusts (Puccinia melanocephala), callus coming from cultivars susceptible to the mosaic viruses (B 6749, B 7987 and PR 62258) and to the rusts (B 4362 and PR 641791) were irradiated with different gamma radiation dose. The IVIC cobalt source was used, being applied two, four, eight and twelve krads. The effect of irradiation on the percentage of regeneration of plants for each dose and variety was evaluated. The regenerated plants were taken to shelter, where they were inoculated with the mosaic viruses B (SCMB-B). The asymptomatic subclons were transplanted to field in August of 1992, to evaluate the presence of symptoms of mosaic and rusts. A high proportion of the plants didn't show symptoms of illnesses, being obtained 2,35% of sick plants coming from cultivar B 6749 and 0,72 from cultivar PR 62258. This low incidence of infection remained stable up to the following year of evaluation. The genetic variation was studied through isoenzymatics pattern, peroxidase specifically. This analysis allowed to detect variation in the number and intensity of the bands among the subclons and in the original variety. 229 subclons were selected from cultivar B 6749 and they were incorporated to the program of cultivation improvement. Among them 60 subclons, with good agronomic and productivity characteristics, were chosen and continue being evaluated to be incorporated to the regional essays, last phase of the selection process [es

  18. Changes of Nitric Oxide and Its Relationship with H2O2 and Ca2+ in Defense Interactions between Wheat and Puccinia Triticina.

    Directory of Open Access Journals (Sweden)

    Mei Qiao

    Full Text Available In this research, the wheat cultivar 'Lovrin 10' and Puccinia triticina races 165 and 260 were used to constitute compatible and incompatible combinations to investigate the relationship between NO and H2O2 and between NO and calcium (Ca(2+ signaling in the cell defense process by pharmacological means. The specific fluorescent probe DAF-FM DA was coupled with confocal laser scanning microscopy and used to label intracellular nitric oxide (NO and monitoring the real-time NO dynamics during the processes of wheat defense response triggered by P. triticina infection. The results showed that at 4 h after inoculation, weak green fluorescence was observed in the stomatal guard cells at the P. triticina infection site in the incompatible combination, which indicates a small amount of NO production. Twelve hours after inoculation, the fluorescence of NO in- cell adjacent to the stomata gradually intensified, and the NO fluorescent area also expanded continuously; the green fluorescence primarily occurred in the cells undergoing a hypersensitive response (HR at 24-72 h after inoculation. For the compatible combination, however, a small amount of green fluorescence was observed in stomata where the pathogenic contact occurred at 4 h after inoculation, and fluorescence was not observed thereafter. Injections of the NO scavenger c-PTIO prior to inoculation postponed the onset of NO production to 48 h after inoculation and suppressed HR advancement. The injection of imidazole, a NADPH oxidase inhibitor, or EGTA, an extracellular calcium chelator, in the leaves prior to inoculation, delayed the onset of NO production in the incompatible combination and suppressed HR advancement. Combined with our previous results, it could be concluded that, Ca(2+ and hydrogen peroxide (H2O2 are involved in upstream of NO production to induce the HR cell death during P. triticina infection, and Ca(2+, NO and H2O2 are jointly involved in the signal transduction process of HR

  19. The effect of Puccinia komarovii Tranzsch. infection on characters of Impatiens parviflora DC. in Galio sylvatici-Carpinetum (R. Tx. 1937 Oberd. 1957 forest association

    Directory of Open Access Journals (Sweden)

    Renata Piskorz

    2011-01-01

    Full Text Available The aim of the present study was to determine how internal diversity of oak-hornbeam forest modifies the course and effects of infestation of small-flowered balsam (Impatiens parviflora with rust Puccinia komarovii. The study investigated the effect of the disease on the demography of the population, and the habit and biomass allocation of the infested specimens, as well as the initiation of non-specific defense mechanisms. It was shown that: 1 the percentage of infected specimens was independent of the undergrowth-coverage rate and of the I. parviflora density; 2 infected populations differ from healthy ones in the seasonal dynamics of abundance changes; 3 high mortality is observed as early as May and the first part of June, i.e. it pertains to specimens, which did not begin reproduction; 4 the presence of infection and its intensity stimulate the growth of the stem and the hypocotyl; 5 fresh weight of infected specimens is by almost 30% lower in comparison to the weight of uninfected plants; the weight of badly infected plants decreases by 20% in comparison to the less severely infected balsam plants; the weight of generative organs drops most significantly, even by over 50%; 6 biomass allocation does not fluctuate considerably; 7 reproduction effort expressed by the ratio of the weight of fruits (or only seeds to the total biomass shows a distinct downward trend; 8 the environmental factor does not affect the force of defense mechanisms, the strength of biochemical response of diseased plants depends on the degree of their infestation.

  20. Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Xia, Chongjing; Wang, Meinan; Cornejo, Omar E; Jiwan, Derick A; See, Deven R; Chen, Xianming

    2017-01-01

    Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76 . We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst . The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst , which will enable us to understand molecular mechanisms

  1. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.).

    Science.gov (United States)

    Naruoka, Y; Garland-Campbell, K A; Carter, A H

    2015-06-01

    Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.

  2. Molecular implications from ssr markers for stripe rust (puccinia striiformis F.Sp. tritici) resistance gene in bread wheat line N95175

    International Nuclear Information System (INIS)

    Ali, M.; Ji, W.G.; Hu, Y.G; Zhong, H.; Wang, C.Y.; Baloch, G.M.

    2010-01-01

    Stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most devastating diseases of wheat in China as well as in Pakistan. In the present studies F2 population was established by crossing N95175 resistant to stripe rust race CYR32 with two susceptible lines Huixianhong and Abbondanza to molecularly tag resistance gene existing in wheat line N95175. The segregation of phenotype was accorded with an expected 3:1 ratio in both combinations studied and fit the model of a single dominant gene controlling stripe rust resistance in N95175. Thirty five SSR primer pairs were screened on the parents and bulks and also on individuals since resistance gene to be located in chromosome 1B. The result indicated that most of resistant plants amplified same band as resistant parent while susceptible plants amplified same as susceptible parents studied and considered that markers co-segregated with resistant loci in N95175. This yellow rust resistance gene was considered to be Yr26 originally thought to be also located in chromosome arm 1BS linked to marker loci Xgwm273 and Xgwm11 with genetic distances ranging from 1.075cM to 2.74cM in both combinations studied. However, the closest loci were observed 2.67cM for Xgwm273 and 1.075cM for Xgwm11 in Huixianhong XN95175 and Abbondanza XN95175 crosses respectively. Hence, it has been concluded that the PCR-based micro satellite markers Xgwm273 and Xgwm11 located in chromosome 1B were shown to be very effective for the detection of Yr26 gene in segregating population and can be applied in future wheat breeding strategies. (author)

  3. Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat.

    Science.gov (United States)

    Panwar, Vinay; Jordan, Mark; McCallum, Brent; Bakkeren, Guus

    2018-05-01

    Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T 2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops. © 2017 Her Majesty the Queen in Right of Canada. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. In vivo sensitivity reduction of Puccinia triticina races, causal agent of wheat leaf rust, to DMI and QoI fungicides

    Directory of Open Access Journals (Sweden)

    Gisele da Silva Arduim

    2012-12-01

    Full Text Available Experiments were carried out to determine in vivo the IC50 and the IC90 for demethylation-inhibitor fungicides (DMIs, triazoles and quinone outside inhibitors (QoIs, strobilurins to the five most frequent races of Puccinia triticina in 2007 growing season in Southern Brazil. The tests were done in a greenhouse with wheat seedlings. DMI fungicides were tested at the concentrations, in mg/L, 0.0; 0.02; 0.2; 2.0; 20.0; 100.0 and 200.0, and QoIs at the concentrations 0.0; 0.0001; 0.001; 0.01; 0.1; 1 and 10.0 mg of active ingredient/L water. Fungicides were preventively applied at 24 hours before the inoculation of seedlings with the fungal spores. The effect of treatments was assessed based on the number of uredia/cm². The lowest IC50 (inhibitory concentration for DMI fungicides determined for MCG-MN, sensitive race, ranged from 0.33 to 0.91 mg/L, while the highest values for MDP-MR, MDT-MR, MDK-MR, MFH-HT races, varied from 9.63 to 85.64 mg/L (suspected insensitivity. QoI fungicide presented an IC50 varying from 0.0018 to 0.14 mg/L. The sensitivity reduction factor for DMIs varied from 8.8 to 238.8, and for QoIs from 0.3 to 1.5 mg/L. Sensitivity reduction was confirmed for the races MDP-MR, MDT-MR, MDK-MR, MFH-HT to DMIs, as well as their sensitivity to QoI fungicides.

  5. Transcriptome-based analyses of phosphite-mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes.

    Science.gov (United States)

    Gill, Upinder S; Sun, Liang; Rustgi, Sachin; Tang, Yuhong; von Wettstein, Diter; Mysore, Kirankumar S

    2018-03-01

    Phosphite (Phi) is used commercially to manage diseases mainly caused by oomycetes, primarily due to its low cost compared with other fungicides and its persistent control of oomycetous pathogens. We explored the use of Phi in controlling the fungal pathogens Puccinia emaculata and Phakopsora pachyrhizi, the causal agents of switchgrass rust and Asian soybean rust, respectively. Phi primes host defenses and efficiently inhibits the growth of P. emaculata, P. pachyrhizi and several other fungal pathogens tested. To understand these Phi-mediated effects, a detailed molecular analysis was undertaken in both the host and the pathogen. Transcriptomic studies in switchgrass revealed that Phi activates plant defense signaling as early as 1 h after application by increasing the expression of several cytoplasmic and membrane receptor-like kinases and defense-related genes within 24 h of application. Unlike in oomycetes, RNA sequencing of P. emaculata and P. pachyrhizi did not exhibit Phi-mediated retardation of cell wall biosynthesis. The genes with reduced expression in either or both rust fungi belonged to functional categories such as ribosomal protein, actin, RNA-dependent RNA polymerase, and aldehyde dehydrogenase. A few P. emaculata genes that had reduced expression upon Phi treatment were further characterized. Application of double-stranded RNAs specific to P. emaculata genes encoding glutamate N-acetyltransferase and cystathionine gamma-synthase to switchgrass leaves resulted in reduced disease severity upon P. emaculata inoculation, suggesting their role in pathogen survival and/or pathogenesis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  6. Barberry rust survey – developing tools for diagnosis, analysis and data management

    DEFF Research Database (Denmark)

    Justesen, Annemarie Fejer; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring

    Barberry (Berberis spp.) may serve as alternate host of several Puccinia species including Puccinia graminis and P. striiformis causing stem and yellow rust on cereals and grasses, respectively. In order to study the importance of barberry in the epidemiology of Puccinia species in the CWANA regi...... a rust survey was initiated. The aim was to 1) develop a surveillance protocol 2) develop molecular diagnostic tools for identifying Puccinia spp. from aecial samples, and 3) develop a data management and display system of results as part of the Wheat Rust ToolBox (http...

  7. Genetic and molecular characterization of a locus involved in avirulence of Blumeria graminis f. sp. tritici on wheat Pm3 resistance alleles.

    Science.gov (United States)

    Parlange, Francis; Roffler, Stefan; Menardo, Fabrizio; Ben-David, Roi; Bourras, Salim; McNally, Kaitlin E; Oberhaensli, Simone; Stirnweis, Daniel; Buchmann, Gabriele; Wicker, Thomas; Keller, Beat

    2015-09-01

    Wheat powdery mildew is caused by the obligate biotrophic fungus Blumeria graminis f. sp. tritici. The allelic series of the wheat Pm3 gene conferring race-specific resistance against powdery mildew has been well characterized functionally, and recently the corresponding avirulence gene AvrPm3a/f triggering the specific recognition by Pm3a and Pm3f alleles was cloned. Here, we describe the genetic and molecular analysis of two additional Blumeria loci involved in the resistance mediated by the Pm3c and Pm3f alleles. We genetically identified the two loci and mapped at high resolution one locus involved in the avirulence towards both Pm3c and Pm3f. The single candidate gene Bcg1 was identified in a physical target interval of 26kb defined by flanking genetic markers. Bcg1 encodes a small secreted protein sharing structural homology with ribonucleases and belongs to a family of clustered putative effector genes under diversifying selection. We found a very good, but not complete, correlation of Bcg1 haplotypes with the phenotypes of natural isolates. Two mutants were generated that were affected in their phenotypes towards Pm3a and Pm3f but did not show any sequence polymorphism in Bcg1. Our results suggest that avirulence to Pm3 in Blumeria is determined by a complex network of genes, in which Bcg1 might have a central role as a modifier of the Pm3/AvrPm3 interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Deriving isolates of powdery mildew (Blumeria graminis DC. f.sp. avenae Em. Marchal. in common oat (Avena sativa L. and using them to identify selected resistance genes

    Directory of Open Access Journals (Sweden)

    Sylwia Okoń

    2012-12-01

    Full Text Available Powdery mildew in common oat is caused by Blumeria graminis DC. f.sp. avenae Em. Marchal. Host-pathogen tests are commonly used to identify and locate resistance genes to powdery mildew in cereals. The aim of the study was to determine the virulence of powdery mildew isolates obtained from powdery mildew populations harvested in Poland and to identify OMR1, OMR2 and OMR3 resistance genes to powdery mildew in F2 populations of inter-cultivar hybrids of common oat: Bruno × Fuchs, Jumbo × Fuchs and Mostyn × Fuchs. On the basis of the analysis conducted, isolates enabling division of the studied populations into groups of resistant and susceptible plants were selected. M10 and M14 isolates were chosen for the population which was obtained from crossbreeding of ‘Bruno’ with ‘Fuchs’; these isolates demonstrated avirulence to Bruno cultivar containing OMR1 gene. In order to divide population obtained from crossbreeding of ‘Jumbo’ with ‘Fuchs’, M13 and M16 isolates were chosen; they demonstrated avirulence to the cultivar Jumbo containing the OMR2 gene. On the basis of the tests conducted, it was impossible to select isolates characterised by avirulence to the OMR3 gene. In the F2 population of Bruno × Fuchs and Jumbo × Fuchs hybrids, a division was made into resistant and susceptible plants. The obtained results were verified by the 2 test; the proportion in the dispersion matching model was found to be 3 resistant plants: 1 sensitive plant both in the Bruno × Fuchs and Jumbo × Fuchs populations. Such dispersion indicated that the resistance to powdery mildew in the studied cultivars Bruno and Jumbo was conditioned by single dominant genes.

  9. Changes in lipid composition of Blumeria graminis f.sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid.

    Science.gov (United States)

    Muchembled, Jérôme; Sahraoui, Anissa Lounès-Hadj; Grandmougin-Ferjani, Anne; Sancholle, Michel

    2006-06-01

    Treatment of wheat leaves with heptanoyl salicylic acid (HS) and trehalose at concentrations of 0.1 and 15 g l(-1), prior to fungal inoculation, resulted in 40% and 60% protection, respectively, against powdery mildew. The total lipid composition of Blumeria graminis f.sp. tritici (Bgt) conidia, the causal agent of wheat powdery mildew, was compared when produced on wheat leaves, respectively, untreated and treated with the two elicitors, HS and trehalose. An obvious effect was observed on lipid composition (sterol and fatty acid (FA)) of Bgt conidia produced on wheat leaves treated with HS. A total of 16 FA (C12-C24 saturated and unsaturated) as well as unusual methoxylated Fatty Acids (mFA) (3-methoxydocosanoic and 3-methoxytetracosanoic acids) were detected in the conidia. Medium chain FA were predominant in HS treated conidia (64.65%) while long chain fatty acids constituted the major compounds in untreated conidia (62%). The long chain/medium chain FA ratio decreased from 1.8 in the conidia produced on untreated leaves to 0.5 in the conidia obtained from HS treated leaves. When comparing the sterol composition of Bgt conidia produced on leaves treated with HS versus conidia obtained from untreated ones, very important changes within the two major classes can be seen. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and 24-methylcholesta-7,24-dien were reduced by about 82% whereas 24-ethylsterols, e.g., 24-ethylcholesterol and 24-ethylcholesta-5,22-dienol were increased by about 85%. The 24-methylsterols/24-ethylsterols ratio was reduced by ninefold in the conidia produced from HS treated leaves.

  10. Characterisation of early transcriptional changes involving multiple signalling pathways in the Mla13 barley interaction with powdery mildew ( Blumeria graminis f. sp. hordei).

    Science.gov (United States)

    Hein, Ingo; Campbell, Edward I; Woodhead, Mary; Hedley, Peter E; Young, Vanessa; Morris, Wayne L; Ramsay, Luke; Stockhaus, Joerg; Lyon, Gary D; Newton, Adrian C; Birch, Paul R J

    2004-03-01

    Suppression subtractive hybridisation was used to isolate 21 cDNAs ( bmi1- bmi21) up-regulated 1-5 h post-inoculation (hpi) in a barley ( Hordeum vulgare L. cv. Pallas) near-isogenic line (NIL) P11 ( Mla13) challenged with either avirulent or virulent isolates of Blumeria graminis f. sp. hordei. Transcriptional changes at these time-points are crucial for the Mla-mediated hypersensitive response [W.R. Bushnell and Z. Liu (1994) Physiol Mol Plant Pathol 44:389-402]. Seven sequences were up-regulated by 1 hpi, when the pathogen has formed only the primary germ tube. Some transcripts were similar to genes with a role in regulating programmed cell death in animals, including NF kappaB and oxysterol-binding protein. Moreover, bmi7, similar to rice resistance gene Xa21, was rapidly up-regulated in both compatible and incompatible interactions, but was then down-regulated by 5 hpi in the virulent interaction. Only nine of the transcripts were up-regulated in mlo5 resistance in cv. Pallas NIL P22, confirming differential pathway induction between Mla13 and mlo5. However, eight sequences up-regulated in the Mla13 response in P11 were already highly elevated in uninoculated mlo5 mutant P22, suggesting that they may be negatively regulated by wild-type Mlo. Regulation of bmi sequences was investigated using salicylic acid, methyl jasmonate, ethylene, H(2)O(2), abscisic acid, wounding and a glucan elicitor. No single stimulus up-regulated all genes, suggesting either combinations of these stimuli, or additional stimuli, are involved in early Mla13 and mlo5 resistances. Whereas H(2)O(2) up- or down-regulated 17 of the transcripts detected in Northern analyses, salicylic acid stimulated only down-regulation of 5 transcripts.

  11. Identification of physiological races of Blumeria graminis f. sp. tritici and evaluation of powdery mildew resistance in wheat cultivars in Sistan province, Iran.

    Science.gov (United States)

    Salari, M; Okhovat, S M; Sharifi-Tehrani, A; Hedjaroude, Gh A; Zad, S J; Mohammadi, M

    2003-01-01

    Powdery mildew of wheat caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important fungal diseases in Iran. During the years 1998-2001, wheat fields in Sistan province were surveyed and powdery mildew infected samples were collected from various areas and transferred to the laboratory. In the greenhouse, fungal spores were purified and inoculated onto susceptible wheat cultivars using single pustule and single spore procedures. Selected pure isolates were inoculated onto the first leaves of eight differential wheat varieties for identifying physiological races. The results showed the existence of Bgt races 5, 11, 14, 19, 21, 24, 27, 28, 31, 32, 44, 50, 53, 58, 66, 73 and 84 in Sistan. These races were new to Sistan province and Iran as a whole. Among 17 races studied, races 11, 53 and 73 were important dominant races thus constituting 40% of total population. Race 53 constituted 16% of all isolates and was the dominant race in the area with 62.5% pathogenicity. Therefore, this race was introduced as the most virulent race during the period of this study. This study showed that Bgt isolates were compatible with host plant genes pm8, pm3 and pm3b but incompatible with gene pm4b. Powdery mildew resistance was evaluated using race 11 on 70 wheat cultivars during seedling stage as well as adult plant under both greenhouse and field conditions between 1999 and 2001. Among wheat lines tested for resistance against powdery mildew, cultivar Hirmand resembled the differential line Weihenst M1 in that both may possess gene pm4b and showed no symptoms under the greenhouse and field conditions. Cultivar Chamran was found to be highly resistant whereas Sorkhtokhm was susceptible. Other cutivars showed partial and gradual resistance against the powdery mildew disease.

  12. Genetics of avirulence genes in Blumeria graminis f.sp. hordei and physical mapping of AVR(a22) and AVR(a12).

    Science.gov (United States)

    Skamnioti, Pari; Pedersen, Carsten; Al-Chaarani, Ghias R; Holefors, Anna; Thordal-Christensen, Hans; Brown, James K M; Ridout, Christopher J

    2008-03-01

    Powdery mildew fungi are parasites that cause disease on a wide range of important crops. Plant resistance (R) genes, which induce host defences against powdery mildews, encode proteins that recognise avirulence (AVR) molecules from the parasite in a gene-for-gene manner. To gain insight into how virulence evolves in Blumeria graminis f.sp. hordei, associations between segregating AVR genes were established. As a prerequisite to the isolation of AVR genes, two loci were selected for further analysis. AVR(a22) is located in a tightly linked cluster comprising AVR(a10) and AVR(k1) as well as up to five other AVR genes. The ratio between physical and genetic distance in the cluster ranged between 0.7 and 35 kB/cM. The AVR(a22) locus was delimited by the previously isolated gene AVR(a10) and two cleaved amplified polymorphic sequence (CAPS) markers, 19H12R and 74E9L. By contrast, AVR(a12) was not linked to other AVR genes in two crosses. Bulk segregant analysis of over 100,000 AFLP fragments yielded two markers, ETAMTG-285 and PAAMACT-473, mapping 10 and 2cM from AVR(a12), respectively, thus delimiting AVR(a12) on one side. All markers obtained for AVR(a12) mapped proximal to it, indicating that the gene is located at the end of a chromosome. Three more AVR(a10) paralogues were identified at the locus interspersed among genes for metabolic enzymes and abundant repetitive elements, especially those homologous to the CgT1 class of retrotransposons. The flanking and close markers obtained will facilitate the isolation of AVR(a22) and AVR(a12) and provide useful tools for studies of the evolution of powdery mildew fungi in agriculture and nature.

  13. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis.

    Science.gov (United States)

    Prats, Elena; Gay, Alan P; Mur, Luis A J; Thomas, Barry J; Carver, Timothy L W

    2006-01-01

    Blumeria graminis f.sp. hordei (Bgh) attack disrupted stomatal behaviour, and hence leaf water conductance (g(l)), in barley genotypes Pallas and Risø-S (susceptible), P01 (with Mla1 conditioning a hypersensitive response; HR), and P22 and Risø-R (with mlo5 conditioning papilla-based penetration resistance). Inoculation caused some stomatal closure well before the fungus attempted infection. Coinciding with epidermal cell penetration, stomatal opening in light was also impeded, although stomata of susceptible and mlo5 lines remained largely able to close in darkness. Following infection, in susceptible lines stomata closed in darkness but opening in light was persistently impeded. In Risø-R, stomata recovered nearly complete function by approximately 30 h after inoculation, i.e. after penetration resistance was accomplished. In P01, stomata became locked open and unable to close in darkness shortly after epidermal cells died due to HR. In the P22 background, mlo5 penetration resistance was often followed by consequential death of attacked cells, and here too stomata became locked open, but not until approximately 24 h after pathogen attack had ceased. The influence of epidermal cell death was localized, and only affected stomata within one or two cells distance. These stomata were unable to close not only in darkness but also after application of abscisic acid and in wilted leaves suffering drought. Thus, resistance to Bgh based on HR or associated with cell death may have previously unsuspected negative consequences for the physiological health of apparently 'disease-free' plants. The results are discussed in relation to the control of stomatal aperture in barley by epidermal cells.

  14. Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation.

    Science.gov (United States)

    Moriura, Nobuyuki; Matsuda, Yoshinori; Oichi, Wataru; Nakashima, Shinya; Hirai, Tatsuo; Sameshima, Takeshi; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Higashi, Katsuhide; Toyoda, Hideyoshi

    2006-01-01

    Conidial formation and secession by living conidiophores of Blumeria graminis f. sp. hordei on barley leaves were consecutively monitored using a high-fidelity digital microscopic technique combined with electrostatic micromanipulation to trap the released conidia. Conidial chains formed on conidiophores through a series of septum-mediated division and growth of generative cells. Apical conidial cells on the conidiophores were abstricted after the conidial chains developed ten conidial cells. The conidia were electrically conductive, and a positive charge was induced in the cells by a negatively polarized insulator probe (ebonite). The electrostatic force between the conidia and the insulator was used to attract the abstricted conidia from the conidiophores on leaves. This conidium movement from the targeted conidiophore to the rod was directly viewed under the digital microscope, and the length of the interval between conidial septation and secession, the total number of the conidia produced by a single conidiophore, and the modes of conidiogenesis were clarified. During the stage of conidial secession, the generative cells pushed new conidial cells upwards by repeated division and growth. The successive release of two apical conidia was synchronized with the successive septation and growth of a generative cell. The release ceased after 4-5 conidia were released without division and growth of the generative cell. Thus, the life of an individual conidiophore (from the erection of the conidiophore to the release of the final conidium) was shown to be 107 h and to produce an average of 33 conidia. To our knowledge, this is the first report on the direct estimation of life-long conidial production by a powdery mildew on host leaves.

  15. Present status of Zymoseptoria tritici (Mycospharella graminicola /Fuckel/ Schroter of the wheat cultures in the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    I. Karov

    2017-09-01

    Full Text Available Abstract. In the Republic of Macedonia, wheat is a very important crop and it is grown on an area of around 250.000 ha. The most important regions for wheat growing are: Bitola, Kumanovo, Sveti Nikole, Skopje, Probistip, Kocani, Veles and Stip. The most important deseases on wheat are: Tapesia yallundae Wallwork and Spooner with its anamorphic stage Pseudocercosporella herpotrichoides (Fron Deighton causer of the desease „eyespot“ on barley and wheat; Puccinia graminis f. spp. tritici; Puccinia racondita f. spp. tritici; Gaeumannomyces graminis var. tritici; Bipolaris sorokiniana (Sacc. Shoemaker; Blumeria graminis var. tritici and Zymoseptoria tritici (Mycospharella graminicola (Fuckel Schroter. Many new diseases on wheat causing significant economic damage to producers are observed in Macedonia. The main aim of this article is to present the symptoms, morphology and protective measures of Zymoseptoria tritici (Mycospharella graminicola, the most widely spread fungal pathogens on wheat in the Republic of Macedonia. In the period between 2014 and 2016, the pathogen fungi on wheat with the highest intensity were: Zymoseptoria tritici, Tapesia yallundae, Puccinia graminis, Puccinia recondita, Gaeumannomyces graminis, Bipolaris sorokiniana, Blumeria graminis. The intensity of the diseases and the damages – yield losses of wheat, differed from year to year and between regions, depended on the sensitivity of the wheat varieties. The smallest yield loss was identified in wheat producers who treated the wheat with pesticides at least twice for vegetation season.

  16. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Wang, Xiaojie; Tang, Chunlei; Zhang, Gang; Li, Yingchun; Wang, Chenfang; Liu, Bo; Qu, Zhipeng; Zhao, Jie; Han, Qingmei; Huang, Lili; Chen, Xianming; Kang, Zhensheng

    2009-06-30

    Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Of the total 54,912 transcript derived fragments (TDFs) obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2%) displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40%) had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%), signal transduction (5.4%), disease/defence (5.9%) and metabolism (5% of the sequenced TDFs). BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5%) genes revealed by the cDNA-AFLP technique. The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the stripe rust pathogen were identified and their

  17. [Application of near infrared spectroscopy to qualitative identification and quantitative determination of Puccinia strii formis f. sp. tritici and P. recondita f. sp. tritici].

    Science.gov (United States)

    Li, Xiao-Long; Ma, Zhan-Hong; Zhao, Long-Lian; Li, Jun-Hui; Wang, Hai-Guang

    2014-03-01

    To realize qualitative identification and quantitative determination of Puccinia strii formis f. sp. tritici (Pst) and P. recondita f. sp. tritici (Prt), a qualitative identification model was built using near infrared reflectance spectroscopy (NIRS) combined with distinguished partial least squares (DPLS), and a quantitative determination model was built using NIRS combined with quantitative partial least squares (QPLS). In this study, 100 pure samples including 50 samples of Pst and 50 samples of Prt were obtained, and 120 mixed samples including three replicates of mixed urediospores of the two kinds of pathogen in different proportions (the content of Pst was within the range of 2. 5% 100% with 2. 5% as the gradient) were obtained. Then the spectra of the samples were collected using MPA spectrometer, respectively. Both pure samples and mixed samples were divided into training set and testing set with the ratio equal to 2:1. Qualitative identification model and quantitative determination model were built using internal cross-validation method in the spectral region 4,000--10,000 cm(-1) based on the training sets from pure samples and mixed samples, respectively. The results showed that the identification rates of the Pst-Prt qualitative identification model for training set and testing set were both up to 100. 00% when scatter correction was used as the preprocessing method of the spectra and the number of principal components was 3. When 'range normalization + scatter correction' was used as the preprocessing method of the spectra and the number of principal components was 6, determination coefficient (RZ), standard error of calibration (SEC) and average absolute relative deviation(AARD) of the Pst-Prt quantitative determination model for training set were 99.36%, 2.31% and 8.94%, respectively, and R2, standard error of prediction (SEP) and AARD for testing set were 99.37%, 2.29% and 5. 0%, respectively. The results indicated that qualitative identification

  18. De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust.

    Science.gov (United States)

    Miller, Marisa E; Zhang, Ying; Omidvar, Vahid; Sperschneider, Jana; Schwessinger, Benjamin; Raley, Castle; Palmer, Jonathan M; Garnica, Diana; Upadhyaya, Narayana; Rathjen, John; Taylor, Jennifer M; Park, Robert F; Dodds, Peter N; Hirsch, Cory D; Kianian, Shahryar F; Figueroa, Melania

    2018-02-20

    Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae , is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenae IMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae , which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae , resources to study the

  19. An analysis of the risk of introduction of additional strains of the rust puccinia psidii Winter ('Ohi'a Rust) to Hawai'i

    Science.gov (United States)

    Loope, Lloyd; La Rosa, Anne Marie

    2010-01-01

    In April 2005, the rust fungus Puccinia psidii (most widely known as guava rust or eucalyptus rust) was found in Hawai'i. This was the first time this rust had been found outside the Neotropics (broadly-defined, including subtropical Florida, where the rust first established in the 1970s). First detected on a nursery-grown 'ohi'a plant, it became known as ''ohi'a rust'in Hawai'i. The rust spread rapidly and by August 2005 had been found throughout the main Hawaiian Islands. The rust probably reached Hawai'i via the live plant trade or via the foliage trade. In Hawai'i, the rust has infected three native plant species and at least eight non-native species. Effects have been substantial on the endangered endemic plant Eugenia koolauensis and the introduced rose apple, Syzygium jambos. Billions of yellow, asexual urediniospores are produced on rose apple, but a complete life cycle (involving sexual reproduction) has not yet been observed. The rust is autoecious (no alternate host known) on Myrtaceae. The strain introduced into Hawai'i is found sparingly on 'ohi'a (Metrosideros polymorpha), the dominant tree of Hawai'i's forests, with sporadic damage detected to date. The introduction of a rust strain that causes widespread damage to 'ohi'a would be catastrophic for Hawai'i's native biodiversity. Most imports of material potentially contaminated with rust are shipped to Hawai'i from Florida and California (from which P. psidii was reported in late 2005 by Mellano, 2006). Florida is known to have multiple strains. The identity of the strain or strains in California is unclear, but one of them is known to infect myrtle, Myrtus communis, a species commonly imported into Hawai'i. It is important to ecosystem conservation and commercial forestry that additional rust strains or genotypes be prevented from establishing in Hawai'i. The purpose of this analysis of risk is to evaluate the need for an interim rule by the Hawai'i Department of Agriculture to regulate plant

  20. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Huang Lili

    2009-06-01

    Full Text Available Abstract Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2% displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40% had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%, signal transduction (5.4%, disease/defence (5.9% and metabolism (5% of the sequenced TDFs. BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5% genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the

  1. Avaliação da resistência de espécies de eucalipto à ferrugem (Puccinia psidii Winter

    Directory of Open Access Journals (Sweden)

    Diene Elen Miranda da Silva

    2014-03-01

    Full Text Available A incidência da ferrugem ocorre em mudas no viveiro e em plantas jovens no campo, essa doença causada por Puccinia psidii é uma das mais severas do eucalipto. O presente trabalho teve como objetivo quantificar a resistência parcial das espécies de Eucalyptus propinqua, E. citriodora, E. grandis, E. urophylla, E. microcorys, E. urograndis (E. grandis x E. urophylla, E. robusta, E. saligna, E. dunnie, E. phaeotricha à ferrugem do eucalipto. Para isso foi conduzido experimento em casa de vegetação no Departamento de Entomologia e Fitopatologia da UFRRJ. Foram utilizadas 100 mudas de eucalipto com três meses de idade, obtidas a partir de sementes. O delineamento experimental utilizado foi inteiramente casualizado, com dez tratamentos e dez repetições, sendo uma planta por repetição. A inoculação foi realizada por meio da atomização de folhas com suspensão de uredósporos na concentração de 2x10(4 esporos/mL, obtidos a partir de pústulas frescas. Em seguida, as mudas foram incubadas em câmara úmida e escura por 48h. Foram avaliados os parâmetros de resistência: número médio de pústulas por folíolo, severidade, período latente médio e AACPD. Os dados obtidos foram transformados em e arcsen , e submetidos à análise de variância e à comparação de médias pelo teste de Scott-Knott ao nível de 5% de probabilidade, por meio do software SAEG. Foram encontradas diferenças significativas entre as espécies de eucalipto para os parâmetros estudados. Eucalyptus urograndis (E. grandis x E. urophylla apresentou um menor número médio de pústulas por folíolo, menor severidade, maior período latente médio e valores menores da área abaixo da curva do progresso da doença, tendo dessa forma maior resistência parcial à ferrugem.

  2. Efeito de indutores bióticos e abióticos na atividade de quitinase e peroxidase e no controle da ferrugem causada por Puccinia psidii em eucalipto Effect of biotic and abiotic inducers on the activities of chitinase and peroxidase and rust control caused by Puccinia psidii on Eucalyptus

    Directory of Open Access Journals (Sweden)

    Leonardo Pires Boava

    2010-06-01

    Full Text Available Verificou-se o efeito de indutores de resistência bióticos e abióticos nas atividades de quitinase e peroxidase e na redução da severidade da ferrugem do eucalipto causada por Puccinia psidii. Para isso, mudas de dois clones de eucalipto (Eucalyptus grandis x E. urophylla denominados VR e C0, com sessenta dias de idade, mantidas em casa de vegetação, receberam tratamentos com Bion® (Acibenzolar-S-metil-ASM, Agro-Mos®, Dipel®, Ecolife40®, Crop-set® e uma preparação obtida a partir de Saccharomyces cerevisiae, 5 dias antes da inoculação com o patógeno. Uma suspensão de uredósporos de P. psidii, coletados a partir de plantas naturalmente infectadas, foi calibrada para 5 x 10(4 uredósporos/ mL. A inoculação foi realizada na face abaxial das folhas e a avaliação se deu 15 dias após, estimando-se a severidade da doença por meio de escala de notas. Os tratamentos ASM, preparado de S. cerevisiae e Ecolife® apresentaram os melhores resultados de controle da doença e os demais tratamentos não se mostraram eficazes para o controle. O aumento de atividade das enzimas quitinase e peroxidase foi observado em ambos os clones, previamente tratados com os indutores(ASM e S. cerevisiae, 48 horas após a inoculação com o fungo.This study was aimed at verifying the effect of biotic and abiotic resistance inducers on the activities of chitinase and peroxidase as well as on the reduction of rust caused by Puccinia psidii in eucalyptus. Thus, seedlings of two 60-day eucalyptus clones were kept in a greenhouse and treated with Bion® (Acibenzolar-S-methyl, ASM, Agro-Mos®, Saccharomyces cerevisiae, Dipel®, Ecolife 40®, and Crop-set®, at 5 days before the pathogen inoculation. A suspension of P. psidii uredospores, collected from naturally infected plants, was adjusted to 5 x 10(4 uredospores/mL. Inoculation was carried out onto the dorsal leaf surface and 15 days later the disease severity was assessed according to a grading scale. ASM

  3. Fungicidas, doses e volumes de calda no controle químico da ferrugem da folha da aveia (Puccinia coronata f. sp. avenae Fungicides, rates and spray volumes in the chemical control of oats crown rust (Puccinia coronata f. sp. avenae

    Directory of Open Access Journals (Sweden)

    Ana R. de Oliveira

    2007-01-01

    Full Text Available A ferrugem da folha (Puccinia coronata f. sp. avenae é a doença mais destrutiva da aveia, e aplicações de fungicidas com volumes baixos de calda podem reduzir a eficácia do controle químico. O objetivo do trabalho foi avaliar a eficiência técnica e econômica de fungicidas, doses e volumes de calda no controle da ferrugem da folha da aveia. O experimento foi conduzido no ano de 2003, na área experimental da FAMV/UPF, com a cultivar de aveia UPFA-20. Os tratamentos foram compostos pelas combinações entre dois fungicidas (tebuconazole, Folicur, 0,75 L ha-1 e epoxiconazole + piraclostrobim, Opera, 0,5 L ha-1, quatro doses (40; 60; 80 e 100% da dose recomendada e dois volumes de calda (100 e 200 L ha-1. O delineamento experimental foi o de blocos casualizados, com esquema fatorial (2x4x2 e quatro repetições. Avaliaram-se a severidade, o controle da ferrugem, a massa do hectolitro, a massa de mil grãos e o rendimento de grãos, realizando-se análise econômica. O volume de calda de 200 L ha-1 proporcionou maiores níveis de controle da doença. As aplicações dos fungicidas com volume de 200 L ha-1 e meia dose ou com 100 L ha-1 e dose cheia proporcionam níveis de controle da ferrugem equivalentes. O resultado econômico difere entre fungicidas e independe do volume de calda. Os efeitos de doses dependem do fungicida.Crown rust (Puccinia coronata f. sp. avenae is the most important disease of oats in Brazil. In susceptible oat cultivars, fungicides are needed to control the disease efficiently. However, spray at low volumes may reduce fungicide performance significantly. A field experiment with the oat cultivar UPFA-20 was carried out at the FAMV/UPF to evaluate the influence of fungicides, rates, and spray volumes on the efficacy of the chemical control for crown rust. The tested treatments combined two fungicides (tebuconazole, Folicur, 0,75 L ha-1; epoxiconazole + pyraclostrobin, Opera, 0,5 L ha-1, four rates (40; 60; 80 and 100

  4. In vivo sensitivity reduction of Puccinia triticina races, causal agent of wheat leaf rust, to DMI and QoI fungicides Redução da sensibilidade de raças de Puccinia triticina, agente causal da ferrugem da folha do trigo, aos fungicidas DMI e QoI, in vivo

    Directory of Open Access Journals (Sweden)

    Gisele da Silva Arduim

    2012-12-01

    Full Text Available Experiments were carried out to determine in vivo the IC50 and the IC90 for demethylation-inhibitor fungicides (DMIs, triazoles and quinone outside inhibitors (QoIs, strobilurins to the five most frequent races of Puccinia triticina in 2007 growing season in Southern Brazil. The tests were done in a greenhouse with wheat seedlings. DMI fungicides were tested at the concentrations, in mg/L, 0.0; 0.02; 0.2; 2.0; 20.0; 100.0 and 200.0, and QoIs at the concentrations 0.0; 0.0001; 0.001; 0.01; 0.1; 1 and 10.0 mg of active ingredient/L water. Fungicides were preventively applied at 24 hours before the inoculation of seedlings with the fungal spores. The effect of treatments was assessed based on the number of uredia/cm². The lowest IC50 (inhibitory concentration for DMI fungicides determined for MCG-MN, sensitive race, ranged from 0.33 to 0.91 mg/L, while the highest values for MDP-MR, MDT-MR, MDK-MR, MFH-HT races, varied from 9.63 to 85.64 mg/L (suspected insensitivity. QoI fungicide presented an IC50 varying from 0.0018 to 0.14 mg/L. The sensitivity reduction factor for DMIs varied from 8.8 to 238.8, and for QoIs from 0.3 to 1.5 mg/L. Sensitivity reduction was confirmed for the races MDP-MR, MDT-MR, MDK-MR, MFH-HT to DMIs, as well as their sensitivity to QoI fungicides.Experimentos foram conduzidos para determinar, in vivo a IC50 e CI90 para fungicidas inibidores da demetilação (IDM(triazois e inibidores da quinona externa (IQe (estrobilurinas a cinco raças de Puccinia triticina mais frequentes na safra 2007, no Sul do Brasil. Os experimentos foram realizados em câmara de crescimento com plântulas de trigo. Os fungicidas IDMs foram testados nas concentrações em mg/L de 0,0; 0,02; 0,2; 2,0; 20,0; 100,0 e 200,0 e os IQes nas concentrações de 0,0; 0,0001; 0,001; 0,01; 0,1, 1 e 10,0 mg de ingrediente activo/L de água. Os fungicidas foram aplicados preventivamente 24 horas antes da inoculação das plântulas com os esporos do fungo. O efeito

  5. Induction of cellular accessibility and inaccessibility and suppression and potentiation of cell death in oat attacked by ¤Blumeria graminis¤ f.sp. ¤avenae¤

    DEFF Research Database (Denmark)

    Carver, T.L.W.; Lyngkjær, M.F.; Neyron, L.

    1999-01-01

    , suggesting that induced changes in (in)accessibility may be a common consequence of B. graminis attack in cereals. As expected, in Maldwyn, cell death was a consistent but infrequent response to attack (5-20%, of attacks caused cell death in controls). Here, the successful formation of an inducer haustorium......, or of a papilla due to failed attack, totally suppressed the cell death response to later challenge attack on D0 cells, but had less effect on neighbouring cells. Conversely, death of a Maldwyn epidermal cell due to inducer attack potentiated cell death in adjacent cells where up to 80% of challenge attacks...... caused death. This effect was transmitted to some extent to two cells distance. (C) 1999 Academic Press....

  6. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis.

    Science.gov (United States)

    Kong, Lingyao; Chang, Cheng

    2018-01-01

    Wheat TaCDK8 interacts with TaWIN1 to regulate very-long-chain aldehyde biosynthesis required for efficient germination of Blumeria graminis f.sp. tritici. Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) is a devastating disease of common wheat (Triticum aestivum L.). Bgt infection initiates with its conidia germination on the aerial surface of wheat. In this study, we isolated the cyclin-dependent kinase 8 (TaCDK8) from wheat cultivar Jing411 and found that silencing of TaCDK8 impeded Bgt germination. The biochemical and molecular-biological assays revealed that TaCDK8 interacts with and phosphorylates the wheat transcription factor wax inducer 1 (TaWIN1) to stimulate the TaWIN1-dependent transcription. Bgt conidia on the leaves of TaWIN1-silenced plants also showed reduced germination. Gas chromatographic analysis revealed that knockdown of TaCDK8 or TaWIN1 resulted in decreases of wax components and cutin monomers in wheat leaves. Moreover, Bgt germination on leaves of TaCDK8 or TaWIN1 silenced plants could be fully restored by application of wild-type cuticular wax. In vitro studies demonstrated that very-long-chain aldehydes absent from the cuticular wax of the TaCDK8 or TaWIN1 silenced plants were capable of chemically stimulating Bgt germination. These results implicated that the suppression of TaCDK8/TaWIN1 interaction negatively affects Bgt germination by interfering with very-long-chain aldehyde biosynthesis required for efficient fungal germination.

  7. Влияние регуляторов роста на зараженность растений озимой ржи Puccinia recondite и Blumeria graminis F. sp. Secalis

    OpenAIRE

    Смолин, Николай; Савельев, Андрей

    2007-01-01

    В работе представлены данные полевых исследований влияния регуляторов роста на зараженность растений озимой ржи

  8. Over-summering of wheat stripe rust (Puccinia striiformis f.sp. tritici in the California Central valley: A case study Supervivencia estival de la roya estriada (Puccinia striiformis f.sp. tritici del trigo en el Valle Central de California: Estudio de caso

    Directory of Open Access Journals (Sweden)

    Huib Tollenaar

    2012-12-01

    Full Text Available To study the over-summering of wheat stripe rust (Puccinia striiformis f.sp. tritici in the California Central Valley (CCV, temperature records from various locations in the CCV during the period 1950-2009 were examined for the occurrence of lethal maximum temperatures for the uredinia and uredinio-mycelium of this fungus. The lethal upper threshold temperature for the uredinial stage of P.s. tritici, estimated to be 40.5 °C on the basis of data published elsewhere, and the sum, accumulated during ten consecutive days, of the respective lethal temperature quotients (ALTQio, accounting for the partial lethal effect of the daily ambient temperatures between 30 and 40.5 °C on the uredinial stage of P.s. tritici, were used as yardsticks for thermal lethality. The results indicate that, in these 60 yr, the uredinia and the uredinio-mycelium of P.s. tritici could not possibly have over-summered at any of the locations studied. The Sierra Nevada Mountains, together with the Tulelake Basin and the coastal zone of the Pacific Ocean are the only two areas in California with appropriate environmental conditions for the summer-survival of the uredinial stage of stripe rust. Therefore, it is presumed that the inoculum for the initial infections of P.s. tritici in wheat fields in the CCV during the following growing season originates in either one or both of these areas, although, a potential third source of inoculum for the initial infections of stripe rust in the CCV could also be involved. Namely, the possible presence of telia with viable teliospores of P.s. tritici in autumn on straw of the threshed wheat fields or on volunteer wheat plants in the CCV, in conjunction with the accidental concurrence of nearby stripe rust susceptible barberry (Berberis spp., could lead to the development of alternative, endogenous sources of inoculum in the CCV.Para estudiar la supervivencia estival de la roya estriada (Puccinia striiformis f.sp. tritici del trigo

  9. Herança da resistência à ferrugem da folha da aveia (Puccinia coronata f. sp. avenae Fraser & Led. em genótipos brasileiros de aveia branca Inheritance of oat leaf rust (Puccinia coronata f. sp. avenae Fraser & Led. resistance in white oat brazilian genotypes

    Directory of Open Access Journals (Sweden)

    Eduardo Alano Vieira

    2006-02-01

    Full Text Available A ferrugem da folha da aveia é a moléstia mais importante que ataca a cultura da aveia, ocorrendo em praticamente todas as áreas em que a aveia é cultivada. A forma mais indicada para o seu controle é a utilização de cultivares resistentes. Contudo, para que seja alcançada a resistência durável ao patógeno, é necessário que se conheça a genética da resistência à ferrugem da folha em aveia. O objetivo foi determinar a forma de herança da resistência a três isolados de Puccinia coronata f. sp. avenae Fraser & Led., (coletados no sul do Brasil em genótipos brasileiros de aveia branca. Para a determinação da herança da resistência a cada um dos três isolados, foram utilizadas populações F2 geradas por meio de cruzamentos artificiais, entre genótipos resistentes (R e suscetíveis (S e entre genótipos resistentes (R. Desta forma, foram utilizadas populações F2 dos cruzamentos artificiais entre: i URPEL 15 (R x UFRGS 7 (S, UPF 16 (R x UFRGS 7 (S e URPEL 15 (R x UPF 16 (R, para a determinação da herança da resistência ao isolado um (1; ii URPEL 15 (R x UFRGS 7 (S, UPF 18 (R x UFRGS 7 (S e URPEL 15 (R x UPF 18 (R, para a determinação da herança da resistência ao isolado dois (2; iii URPEL 15 (R x UFRGS 7 (S e URPEL 15 (R x UPF 18 (S, para a determinação da herança da resistência ao isolado três (3. Os resultados obtidos evidenciaram que o genótipo URPEL 15 apresenta genes dominantes de resistência aos três isolados de ferrugem da folha da aveia avaliados, que o cultivar UPF 16 apresenta um gene recessivo de resistência ao isolado 1 e o cultivar UPF 18 apresenta um gene recessivo de resistência ao isolado 2. E que os genes de resistência apresentados pelos genótipos URPEL 15, UPF 16 e UPF 18, segregam de forma independente.Oat crown rust is the most important disease for the oat crop, occurring in practically all the areas where oat is cultivated. The most indicated form of control for this disease is

  10. Puccinia kuehnii urediniospores viability and its germination influenced by aqueous extracts of leaves of sugarcaneViabilidade de urediniósporos de Puccinia kuehnii e sua germinação influenciada por extratos aquosos de folhas de cana-de-açúcar

    Directory of Open Access Journals (Sweden)

    Fabiana Tibolla

    2013-10-01

    Full Text Available Rusts contribute to yield losses in crops of sugarcane. The present study was to evaluate the viability urediniospores of Puccinia kuehnii over time and the influence of aqueous extracts in vitro germination. Leaves with symptoms orange rust, cultivar SP89 1115 and RB72 454, were collected for the first bioassay (B1. These were stored in a humid chamber, to date evaluations. Urediniospores were collected from the leaves, and suspended in distilled water 0.1 ml was prepared they were transferred to Petri dishes containing agar-water, maintained at 20°C in the dark for 24 hours. Evaluations were made at 0, 1, 2, 4, 8 and 16 days after harvest of the sheets, with five replicates for evaluation. In the second bioassay (B2 the urediniospores were collected from leaves with symptoms of orange rust cultivar SP89 1115 of sugarcane. Suspension was prepared in distilled water, aliquot of 0.1 ml were transferred to Petri dishes containing agar-water, and 1 ml of aqueous extract of leaves of sugarcane. Treatments consisted of two aqueous extracts of leaves of sugarcane: susceptible RB72 454 and resistant RB86 7515 in dilutions of 1:1, 10-1, 10-2, 10-3, with four replications. For both bioassays were evaluated germination of 200 urediniospores/plate. The results showed that B1 for variety SP89 1115 germination percentage was significantly lower than the RB72 454, respectively 26.4% and 93.1% at the time of collection of the field and 24.8% and 32.4% to 16 days after collection. In B2 the germination of urediniospores receiving the aqueous suspension of the resistant variety, was on average 7.6 percentage points lower than those who received the aqueous suspension of susceptible variety.As ferrugens contribuem para perdas de rendimentos na cultura da cana-de-açúcar. O presente estudo teve como objetivo avaliar o período de viabilidade dos urediniósporos de Puccinia kuehnii e a influência de extratos aquosos em sua germinação in vitro. Para o primeiro

  11. Superação da resistência qualitativa da cultivar de trigo "BRS 194" por uma nova raça de Puccinia triticina Breakdown of qualitative leaf rust resistance in the wheat cultivar 'BRS 194' by a new race of Puccinia triticina

    Directory of Open Access Journals (Sweden)

    Márcia Soares Chaves

    2009-02-01

    Full Text Available A população de Puccinia triticina, agente causal da ferrugem da folha do trigo, é extremamente dinâmica na região do Cone Sul da América do Sul, onde o surgimento de novas raças é freqüente. A cultivar de trigo "BRS 194" foi a segunda variedade com maior disponibilidade de sementes para plantio no Rio Grande do Sul e em Santa Catarina em 2005, por apresentar características como rusticidade, elevado rendimento de grãos e resistência qualitativa a todas as raças de P. triticina ocorrentes no Brasil e em outros países da América do Sul. Em 2005, pústulas de ferrugem da folha foram observadas sobre plantas desta cultivar, tanto em lavouras quanto em campos experimentais, indicando a possível superação de sua resistência. O objetivo deste trabalho foi identificar a raça de P. triticina presente em amostras oriundas de "BRS 194" e verificar se esta se tratava de uma nova virulência do patógeno, a qual teria superado sua resistência. Oito amostras de ferrugem provenientes da cultivar "BRS 194" foram enviadas em 2005 à Embrapa Trigo, Passo Fundo, Rio Grande do Sul, para isolamento e identificação por meio da Série Internacional de Hospedeiros Diferenciais específica para este patógeno. Todas as amostras apresentaram a mesma combinação de virulência, a qual correspondeu ao código MFP-CT, conforme o Sistema Norte-Americano de nomenclatura do patógeno. Esta foi a primeira vez que este código foi detectado no Brasil, caracterizando o surgimento de uma nova raça de P. triticina virulenta à "BRS 194". Outras cultivares de trigo, também amplamente semeadas, foram inoculadas com a nova raça, sendo que algumas foram suscetíveis e outras resistentes. Entre as cultivares resistentes estão "Fundacep 30" e "IPR 84", as quais permanecem também resistentes a todas as raças do patógeno ocorrentes no Brasil.The population of Puccinia triticina, the causal agent of wheat leaf rust, is extremely dynamic in the South Cone

  12. Genetic characterisation of novel resistance alleles to stem rust and stripe rust in wheat-alien introgression lines

    OpenAIRE

    Rahmatov, Mahbubjon

    2016-01-01

    Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important food crops world-wide, but is attacked by many diseases and pests that cause significant yield losses. Globally, stem rust (Sr) (Puccinia graminis f. sp. tritici Erikss & E. Henning), stripe rust (Yr) (Puccinia striiformis Westend. f. sp. tritici Eriks) and leaf rust (Lr) (Puccinia triticina Eriks) are a great threat to wheat production. The majority of the Sr, Yr and Lr resistance genes are already defeated...

  13. Possibility of cereals protection against rusts by resistant breeding method

    Directory of Open Access Journals (Sweden)

    Czesław Zamorski

    2013-12-01

    Full Text Available In the years 1999-2001 field trials were run on susceptibility of wheat and triticale genotypes to infection by three rust fungi (Puccinia recondita, Puccinia graminis, Puccinia striiformis. The results of the observation of the infection level in following years have been similar. Among genotypes of winter wheat, breeding lines susceptible to Puccinia striiformis infection were rare, but among spring wheat 50% of genotypes were susceptible to yellow rust infection. A much higher level of sensitivity than in the case of winter wheat has been found in winter triticale genotypes. Wheat genotypes were distinguished by the high sensitivity to Puccinia graminis infection, only a few breeding lines were resistant to stem rust. The susceptibility of wheat to brown rust (Puccinia recondita was a common feature. Triticale genotypes compared to wheat were affected significantly less and majority of them exhibited high level of resistant to brown rust. The use of the breeding method has justification in control yellow rust of winter wheat. Recommended cultivars are almost all fully resistant to Puccinia striiformis infection. The application of this method in selection of spring wheat and triticale is in large past limited. Some of the registered cultivars of spring wheat and triticale are very susceptible to yellow rust. Using the breeding method to protect wheat from stem rust and brown rust is of little practical benefit in our county at this moment. But it can be effecive to control stem and brown rusts of triticale.

  14. Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion.

    Science.gov (United States)

    Hückelhoven, R; Fodor, J; Trujillo, M; Kogel, K H

    2000-12-01

    The pathogenesis-related accumulation of superoxide radical anions (O2*-) and hydrogen peroxide (H2O2) was comparatively analyzed in a barley line (Hordeum vulgare L. cv Sultan-5) carrying the powdery mildew (Blumeria graminis f.sp. hordei, Speer, Bgh) resistance gene Mla12, and in susceptible mutants defective in Mla12 or in genes "required for Mla12-specified disease resistance" (Rar1 and Rar2). In-situ localization of reactive oxygen intermediates was performed both by microscopic detection of azide-insensitive nitroblue tetrazolium (NBT) reduction or diaminobenzidine (DAB) polymerization, and by an NBT-DAB double-staining procedure. The Mla12-mediated hypersensitive cell death occurred either in attacked epidermal cells or adjacent mesophyll cells of wild-type plants. Whole-cell H2O2 accumulation was detected in dying cells, while O2*- emerged in adjacent cells. Importantly, all susceptible mutants lacked these reactions. An oxalate oxidase, which is known to generate H2O2 and has been implicated in barley resistance against the powdery mildew fungus, was not differentially expressed between the wild type and all mutants. The results demonstrate that the Rar1 and Rar2 gene products, which are control elements of R-gene-mediated programmed cell death, also control accumulation of reactive oxygen intermediates but not the pathogenesis-related expression of oxalate oxidase.

  15. Direct Effects of Physcion, Chrysophanol, Emodin, and Pachybasin on Germination and Appressorium Formation of the Barley ( Hordeum vulgare L.) Powdery Mildew Fungus Blumeria graminis f. sp. hordei (DC.) Speer.

    Science.gov (United States)

    Hildebrandt, Ulrich; Marsell, Alexander; Riederer, Markus

    2018-04-04

    Several anthraquinone derivatives are active components of fungicidal formulations particularly effective against powdery mildew fungi. The antimildew effect of compounds such as physcion and chrysophanol is largely attributed to host plant defense induction. However, so far a direct fungistatic/fungicidal effect of anthraquinone derivatives on powdery mildew fungi has not been unequivocally demonstrated. By applying a Formvar-based in vitro system we demonstrate a direct, dose-dependent effect of physcion, chrysophanol, emodin, and pachybasin on conidial germination and appressorium formation of Blumeria graminis f. sp. hordei (DC.) Speer, the causative agent of barley ( Hordeum vulgare L.) powdery mildew. Physcion was the most effective among the tested compounds. At higher doses, physcion mainly inhibited conidial germination. At lower rates, however, a distinct interference with appressorium formation became discernible. Physcion and others may act by modulating both the infection capacity of the powdery mildew pathogen and host plant defense. Our results suggest a specific arrangement of substituents at the anthraquinone backbone structure being crucial for the direct antimildew effect.

  16. Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Chowdhury, Jamil; Schober, Michael S; Shirley, Neil J; Singh, Rohan R; Jacobs, Andrew K; Douchkov, Dimitar; Schweizer, Patrick; Fincher, Geoffrey B; Burton, Rachel A; Little, Alan

    2016-10-01

    The recent characterization of the polysaccharide composition of papillae deposited at the barley cell wall during infection by the powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh), has provided new targets for the generation of enhanced disease resistance. The role of callose in papilla-based penetration resistance of crop species is largely unknown because the genes involved in the observed callose accumulation have not been identified unequivocally. We have employed both comparative and functional genomics approaches to identify the functional orthologue of AtGsl5 in the barley genome. HvGsl6 (the barley glucan synthase-like 6 gene), which has the highest sequence identity to AtGsl5, is the only Bgh-induced gene among the HvGsls examined in this study. Through double-stranded RNA interference (dsRNAi)-mediated silencing of HvGsl6, we have shown that the down-regulation of HvGsl6 is associated with a lower accumulation of papillary and wound callose and a higher susceptibility to penetration of the papillae by Bgh, compared with control lines. The results indicate that the HvGsl6 gene is a functional orthologue of AtGsl5 and is involved in papillary callose accumulation in barley. The increased susceptibility of HvGsl6 dsRNAi transgenic lines to infection indicates that callose positively contributes to the barley fungal penetration resistance mechanism. © 2016 University of Adelaide. New Phytologist © 2016 New Phytologist Trust.

  17. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis.

    Science.gov (United States)

    Jensen, Michael K; Hagedorn, Peter H; de Torres-Zabala, Marta; Grant, Murray R; Rung, Jesper H; Collinge, David B; Lyngkjaer, Michael F

    2008-12-01

    ATAF1 is a member of a largely uncharacterized plant-specific gene family encoding NAC transcription factors, and is induced in response to various abiotic and biotic stimuli in Arabidopsis thaliana. Previously, we showed that a mutant allele of ATAF1 compromises penetration resistance in Arabidopsis with respect to the non-host biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we have used genome-wide transcript profiling to characterize signalling perturbations in ataf1 plants following Bgh inoculation. Comparative transcriptomic analyses identified an over-representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner, and that the ABA biosynthetic mutant aao3 showed increased penetration resistance to Bgh compared to wild-type plants. Furthermore, we show that ataf1 plants show ABA-hyposensitive phenotypes during seedling development and germination. Our data support a negative correlation between ABA levels and penetration resistance, and identify ATAF1 as a new stimuli-dependent attenuator of ABA signalling for the mediation of efficient penetration resistance in Arabidopsis upon Bgh attack.

  18. Resistance to Stem Rust Pathotype TTKSK Maps to the Rgp4/Rpg5 Complex of Chromosome 5H of Barley

    Science.gov (United States)

    The wheat stem rust (Puccinia graminis f. sp. tritici) pathotype TTKSK (original isolate synonym Ug99) is a serious threat to both wheat and barley production worldwide because of its wide virulence on many cultivars and rapid spread from eastern Africa. Line Q21861 is one of the most resistant bar...

  19. Molecular Characterization of wheat stem rust races in Kenya

    Science.gov (United States)

    Stem or black rust caused by Puccinia graminis f. sp. tritici (Pgt) Erikss. & Henning causes severe losses to wheat (Triticum aestivum L.), historically threatening global wheat production. Characterizing prevalent isolates of Pgt would enhance the knowledge of population dynamics and evolution of t...

  20. Sources of stem rust resistance in wheat-alien introgression lines

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most devastating diseases of wheat and the novel highly virulent race of TTKSK and its lineage are threatening wheat production worldwide. The objective of the study was to identify new sources of resistance in wheat-alien introgre...

  1. Sequencing Ug99 and Other Stem Rust Races: Progress and Results

    Science.gov (United States)

    Over the last decade a number of different molecular methods have been used to characterize genetic diversity in Puccinia graminis. Multilocus DNA fingerprinting methods (AFLPs, RAPDs, SAMs and S-SAPs) have proven to be useful, but limited to phenotypic analysis due to the dikaryotic nature of rust ...

  2. [Derivatives of 4-nitroso-aminopyrazole as antifungal agents].

    Science.gov (United States)

    Giori, P; Mazzotta, D; Vertuani, G; Guarneri, M; Pancaldi, D; Brunelli, A

    1981-12-01

    The synthesis of 4-nitroso-5-amminopyrazoles and of 4-nitroso-5-pyrazolylurethans and -ureas is described. The chemicals were tested for antifungal activity against Erysiphe graminis, Erysiphe cichoracearum, Puccinia recondita, Septoria apii and Rhizoctonia solani. A number of the described compounds showed some antifungal activity.

  3. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects

    Science.gov (United States)

    Yellow rust (Puccinia striiformis f. sp. Tritici), powdery mildew (Blumeria graminis) and wheat aphid (Sitobion avenae F.) infestation are three serious conditions that have a severe impact on yield and grain quality of winter wheat worldwide. Discrimination among these three stressors is of practic...

  4. New Records for Pathogenic Fungi on Weedy or Non-Indigenous Plants

    Science.gov (United States)

    A rust fungus, Puccinia jaceae, is reported for the first time in the United States on spotted knapweed, Centaurea stoebe. Powdery mildew (Blumeria graminis) of bulbous bluegrass, Poa bulbosa, is reported for the first time in western North America. Ramularia nivosa on Penstemon palmeri, Albugo c...

  5. The BIOEXPLOIT Project

    NARCIS (Netherlands)

    Goverse, A.; Smant, G.; Bouwman-Smits, L.; Bakker, E.H.; Bakker, J.

    2009-01-01

    The EU Framework 6 Integrated Project BIOEXPLOIT concerns the exploitation of natural plant biodiversity for the pesticide-free production of food. It focuses on the pathogens Phytophthora infestans, Septoria tritici, Blumeria graminis, Puccinia spp. and Fusarium spp. and on the crops wheat, barley,

  6. East African Journal of Sciences - Vol 3, No 2 (2009)

    African Journals Online (AJOL)

    Puccinia graminis f.sp.tritici) on Durum Wheat in Southeastern Ethiopia · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. K Tadesse, B Hundie. http://dx.doi.org/10.4314/eajsci.v3i2.53531 ...

  7. Author Details

    African Journals Online (AJOL)

    Tadesse, K. Vol 3, No 2 (2009) - Articles Patterns of Urediospore Movement and Monitoring Epidemics of Stem Rust (Puccinia graminis f.sp.tritici) on Durum Wheat in Southeastern Ethiopia Abstract. ISSN: 1992-0407. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  8. Genes for resistance to wheat powdery mildew in derivatives of Triticum Timopheevi and T. Carthlicum

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, C. J.

    1972-01-01

    and/or Ml designated genes; a temporary designation, Ml f ,is proposed for this gene. Gene Ml f is closely associated with a gene conditioning resistance to the stem rust fungus (Puccinia graminis f. sp. tritici), probably gene Sr9c. The winter wheat line TP 229 derived from Triticum carthlicum has...

  9. Epidemiological analysis of the damage potential of Pgt-Ug99 in Central East, North East Africa; Iran and Punjab (India)

    NARCIS (Netherlands)

    Nagarajan, S.; Kogel, K.H.; Zadoks, J.C.

    2014-01-01

    In the Rift valley Epidemiological Zone that falls in the predicted Puccinia graminis tritici-Ug99 spread route from Uganda to India, is the presence of bi-modular annual rainy season, absence of a hot dry summer and the practice of two wheat growing seasons (the green bridge). This ensures the

  10. Wheat stem rust in South Africa: Current status and future research ...

    African Journals Online (AJOL)

    . In South Africa, stem rust caused by Puccinia graminis Pers. f. sp. tritici. Eriks. & E. Henn. (Pgt) is an important disease of wheat. Records of stem rust occurrence in South Africa date back to the late 1720's, when it was first discovered in the ...

  11. stem rust seedling resistance genes in ethiopian wheat cultivars

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Stem rust caused by Puccinia graminis f. sp. tritici is one of the major biotic limiting factors for wheat production in Ethiopia. Host plant resistance is the best option to manage stem rust from its economic and environmental points of view. Wheat cultivars are released for production without carrying race specific tests against ...

  12. A genome-wide association study of field and seedling response to stem rust pathogen races reveals combinations of race-specific resistance genes in North American spring wheat

    Science.gov (United States)

    Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in conventional North American spring wheat, genome-wide association analysis (GWAS) was conducted on a...

  13. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698

    Science.gov (United States)

    Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...

  14. Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates

    Science.gov (United States)

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn, can incur yield losses on susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Though several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effec...

  15. Development of wheat germplasm for stem rust resistance in eastern ...

    African Journals Online (AJOL)

    Wheat (Triticum aestivum) rust outbreak is the primary production constraint in Eastern Africa. Ethiopia, Kenya and Uganda are hot spots for the epidemic of rusts, due to higher rates of evolution of new pathogen races, especially of the virulent stem rust (Puccinia graminis) race, Ug99. The objective of this study was to ...

  16. Rust scoring guide

    NARCIS (Netherlands)

    Anonymous,

    1986-01-01

    This brief guide for identifying rust diseases of smaill grain cereals contains color photos depicting the growth stages of small grain cereal crops and provides instructions for recording rust severity and field response for stripe rust (Puccinia striiformis), stem rust (P. graminis), and leaf rust

  17. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    Science.gov (United States)

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...

  18. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

    Science.gov (United States)

    The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a serious threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 in addition to virulent rac...

  19. Sources of stem rust resistance in Ethiopian tetraploid wheat ...

    African Journals Online (AJOL)

    Stem or black rust of wheat caused by the fungus Puccinia graminis f. sp. tritici Ericks and Henn (Pgt) is an important disease on wheat worldwide. Pgt is an obligate biotroph, heteroceous in its life cycle and heterothallic in mating type. Seedlings of 41 emmer (Triticum dicoccum), 56 durum (T. durum) wheat accessions were ...

  20. Stem rust seedling resistance genes in Ethiopian wheat cultivars ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f. sp. tritici is one of the major biotic limiting factors for wheat production in Ethiopia. Host plant resistance is the best option to manage stem rust from its economic and environmental points of view. Wheat cultivars are released for production without carrying race specific tests against ...

  1. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum

    Science.gov (United States)

    The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the TTKSK (Ug99) race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat ...

  2. Genomic dissection of nonhost resistance to wheat stem rust in Brachypodium distachyon

    Science.gov (United States)

    Wheat stem rust caused by the fungus Puccinia graminis f.sp. tritici (Pgt) is a devastating disease that has largely been controlled for decades by the deployment of resistance genes. However, new races of this pathogen have emerged that overcome many important wheat stem rust resistance genes used ...

  3. Wheat rusts in the United States in 2016

    Science.gov (United States)

    In 2016, wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United State...

  4. Rust scoring guide

    OpenAIRE

    Anonymous

    1986-01-01

    This brief guide for identifying rust diseases of smaill grain cereals contains color photos depicting the growth stages of small grain cereal crops and provides instructions for recording rust severity and field response for stripe rust (Puccinia striiformis), stem rust (P. graminis), and leaf rust (P. recondita).

  5. Molecular and cytogenetic characterization of wheat introgression lines carrying the stem rust resistance gene Sr39.

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis Pers.:Pers. f.sp. tritici Eriks. and Henn., poses a serious threat to global wheat production because of the emergence of Pgt-TTKSK (Ug99). The TTKSK resistant gene Sr39 was derived from Aegilops speltoides through chromosome translocation. In this study, we ch...

  6. development of wheat germplasm for stem rust resistance in eastern ...

    African Journals Online (AJOL)

    ACSS

    especially of the virulent stem rust (Puccinia graminis) race, Ug99. The objective of this study was to identify sources of resistance to the major pathotypes of stem rust prevalent in some countries of Eastern Africa. Three hundred and six elite breeding lines, selected and advanced at the Wheat Regional Centre of Excellence ...

  7. An assessment of Japanese barberry in northern U.S. forests

    Science.gov (United States)

    Cassandra M. Kurtz; Mark H. Hansen

    2018-01-01

    Japanese barberry (Berberis thunbergii), a member of the barberry family (Berberidaceae), is a low-growing perennial shrub. This ornamental shrub was sent to Boston from Russia in 1875 as a substitute for common barberry, a nuisance plant that harbors black stem rust (Puccinia graminis), which affects several cereal crops (...

  8. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici.

    Directory of Open Access Journals (Sweden)

    Junjuan Wang

    Full Text Available WRKY transcription factors (TFs play crucial roles in plant resistance responses to pathogens. Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst, is a destructive disease of wheat (Triticum aestivum worldwide. In this study, the two WRKY genes TaWRKY49 and TaWRKY62 were originally identified in association with high-temperature seedling-plant resistance to Pst (HTSP resistance in wheat cultivar Xiaoyan 6 by RNA-seq. Interestingly, the expression levels of TaWRKY49 and TaWRKY62 were down- and up-regulated, respectively, during HTSP resistance in response to Pst. Silencing of TaWRKY49 enhanced whereas silencing TaWRKY62 reduced HTSP resistance. The enhanced resistance observed on leaves following the silencing of TaWRKY49 was coupled with increased expression of salicylic acid (SA- and jasmonic acid (JA-responsive genes TaPR1.1 and TaAOS, as well as reactive oxygen species (ROS-associated genes TaCAT and TaPOD; whereas the ethylene (ET-responsive gene TaPIE1 was suppressed. The decreased resistance observed on leaves following TaWRKY62 silencing was associated with increased expression of TaPR1.1 and TaPOD, and suppression of TaAOS and TaPIE1. Furthermore, SA, ET, MeJA (methyl jasmonate, hydrogen peroxide (H2O2 and abscisic acid (ABA treatments increased TaWRKY62 expression. On the other hand, MeJA did not affect the expression of TaWRKY49, and H2O2 reduced TaWRKY49 expression. In conclusion, TaWRKY49 negatively regulates while TaWRKY62 positively regulates wheat HTSP resistance to Pst by differential regulation of SA-, JA-, ET and ROS-mediated signaling.

  9. The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei.

    Science.gov (United States)

    Opalski, Krystina S; Schultheiss, Holger; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2005-01-01

    Cytoskeleton remodelling is a crucial process in determining the polarity of dividing and growing plant cells, as well as during interactions with the environment. Nothing is currently known about the proteins, which regulate actin remodelling during interactions with invading pathogens. The biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) invades susceptible barley (Hordeum vulgare L.) by penetrating epidermal cells, which remain intact during fungal development. In contrast, resistant host plants prevent infection by inhibiting penetration through apoplastic mechanisms, which require focusing defence reactions on the site of attack. We stained actin filaments in a susceptible Mlo-genotype and a near-isogenic race-non-specifically resistant barley mlo5-mutant genotype using fluorescence-labelled phalloidin after chemical fixation. This revealed that the actin cytoskeleton is differentially reorganized in susceptible and resistant hosts challenged by Bgh. Actin filaments were polarized towards the sites of attempted penetration in the resistant host, whereas when susceptible hosts were penetrated, a more subtle reorganization took place around fungal haustoria. Strong actin filament focusing towards sites of fungal attack was closely associated with successful prevention of penetration. Actin focusing was less frequent and seemingly delayed in susceptible wild-type barley expressing the susceptibility factor MLO. Additionally, single cell overexpression of a constitutively activated RAC/ROP G-protein, CA RACB, another potential host susceptibility factor and hypothetical actin cytoskeleton regulator, partly inhibited actin reorganization when under attack from Bgh, whereas knockdown of RACB promoted actin focusing. We conclude that RACB and, potentially, MLO are host proteins involved in the modulation of actin reorganization and cell polarity in the interaction of barley with Bgh.

  10. Host perception and signal transduction studies in wild-type Blumeria graminis f. sp. hordei and a quinoxyfen-resistant mutant implicate quinoxyfen in the inhibition of serine esterase activity.

    Science.gov (United States)

    Lee, Susannah; Gustafson, Gary; Skamnioti, Pari; Baloch, Roobina; Gurr, Sarah

    2008-05-01

    Quinoxyfen is a potent and effective fungicide, hitherto considered to control powdery mildew disease by perturbing signal transduction during early germling differentiation. The aim of this paper is to understand the mode of action of quinoxyfen by comparing the perception of host-derived signals and signal relay in a wild-type Blumeria graminis f. sp. hordei EM Marchal (Bgh) (WT/IM82) and a quinoxyfen-resistant field isolate (QR/2B11). QR/2B11 germinates more promiscuously on host-like and artificial surfaces than the quinoxyfen-sensitive WT/IM82. The pivotal role of host cuticle deprivation in the formation of hooked appressorial germ tubes (hAGTs) in WT/IM82 and a dramatic drop in germling differentiation in the presence of the mildewicide are demonstrated. QR/2B11 strain shows a dependence on host cuticle-like features for hAGT formation but no significant difference between germling differentiation in the presence or absence of quinoxyfen. PKC-inhibitor Ro 318220 induces morphological changes similar to those seen in quinoxyfen-treated germlings. PKC1 transcript accumulation is equivalently upregulated by quinoxyfen in QR/2B11 and WT/IM82 strains, but Bgh cutinase CUT1 transcript is 8 times more abundant in QR/2B11 conidia than in WT/IM82 conidia. Quinoxyfen inhibits serine esterase activity in WT/IM82, but not in QR/2B11. Collectively, these data suggest that quinoxyfen interferes with the perception of host-derived signals required for full germling differentiation, and that QR/2B11 bypasses the need for such signals. Moreover, quinoxyfen appears to target serine esterase activity, with a downstream perturbation in signal transduction; this represents the first demonstrable biochemical difference between the quinoxyfen-resistant and -sensitive isolates. Copyright (c) 2008 Society of Chemical Industry.

  11. Assessing a sustainable sugar cane production system in Tucumán, Argentina: Part 2: Soil water and thermal regime, stalk population dynamics and sugarcane production Evaluación de un sistema sustentable de producción de caña de azúcar en Tucumán, R. Argentina: Parte II: Contenido de humedad y temperatura del suelo, dinámica de la población de tallos y producción de caña de azúcar

    Directory of Open Access Journals (Sweden)

    Patricia A. Digonzelli

    2011-12-01

    ("mulching" y b sin cobertura de residuos de cosecha (residuo quemado. Se establecieron macroparcelas en un lote comercial implantado con el cultivar LCP 85-384, en Albarracín, Cruz Alta, Tucumán, R. Argentina. El diseño experimental fue de parcelas divididas con tres repeticiones, estando cada parcela formada por cinco surcos de 30 m. Se evaluaron dos ciclos agrícolas: 2006/2007 y 2007/2008. A partir de la cosecha, se determinaron periódicamente la humedad del suelo a 20 cm y 40 cm de profundidad, la temperatura de suelo a 15 cm de profundidad, la infiltración básica y el número de tallos. Al momento de cosecha, se determinaron número y peso de tallos, a partir de los cuales se estimaron las toneladas de caña por surco y por hectárea. La humedad del suelo resultó mayor en el tratamiento con cobertura de residuos para el ciclo 2007/2008, no así para el ciclo 2006/2007, donde no hubo diferencias entre tratamientos. Este comportamiento dependió de la cantidad y distribución de las lluvias. La temperatura del suelo fue mayor en el tratamiento sin cobertura, situación que se mantuvo hasta el cierre del cañaveral. La dinámica de la población de tallos mostró un número de tallos mayor para el tratamiento con cobertura en el pico del macollaje. A cosecha se mantuvo esta tendencia, pero la diferencia solo fue significativa en 2007/2008. La producción de caña por hectárea fue un 12% y un 55% mayor en el tratamiento con cobertura en 2006/2007 y 2007/2008, respectivamente.

  12. TaDIR1-2, a Wheat Ortholog of Lipid Transfer Protein AtDIR1 Contributes to Negative Regulation of Wheat Resistance againstPuccinia striiformisf. sp.tritici.

    Science.gov (United States)

    Ahmed, Soyed M; Liu, Peng; Xue, Qinghe; Ji, Changan; Qi, Tuo; Guo, Jia; Guo, Jun; Kang, Zhensheng

    2017-01-01

    Very few LTPs have been shown to act through plasma membrane receptors or to be involved in the hypersensitive response (HR). DIR1, a new type of plant LTP interacts with lipids in vitro , moves to distant tissues during systemic acquired resistance (SAR) and therefore is thought to be involved in long-distance signaling during SAR. However, the exact functions of DIR1 orthologs in cereal species under biotic and abiotic stresses have not been thoroughly defined. In this study, a novel wheat ortholog of the DIR1 gene, TaDIR1-2, was isolated from Suwon11, a Chinese cultivar of wheat and functionally characterized. Phylogenetic analysis indicated that TaDIR1-2 is clustered within the nsLTP-Type II group and shows a closer relationship with DIR1 orthologs from monocots than from eudicots. TaDIR1-2 was localized in the cytoplasm and the cell membrane of wheat mesophyll protoplast. Transcription of TaDIR1-2 was detected in wheat roots, stems and leaves. TaDIR1-2 transcript was significantly induced during the compatible interaction of wheat with the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst). Treatments with salicylic acid (SA) and low temperature significantly up-regulated the expression of TaDIR1-2. Transient overexpression of TaDIR1-2 did not induce cell death or suppress Bax-induced cell death in tobacco leaves. Knocking down the expression of TaDIR1-2 through virus-induced gene silencing increased wheat resistance to Pst accompanied by HR, increased accumulation of H 2 O 2 and SA, increased expression of TaPR1, TaPR2, TaPAL, and TaNOX, and decreased expression of two reactive oxygen species (ROS) scavenging genes TaCAT and TaSOD. Our results suggest that TaDIR1-2 acts as a negative regulator in wheat resistance to Pst by modulating ROS and/or SA-induced signaling.

  13. Re-organization of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew pathogen, Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Takemoto, Daigo; Jones, David A; Hardham, Adrienne R

    2006-11-01

    SUMMARY Plant cells attacked by microorganisms rapidly translocate cytoplasm to the site of pathogen penetration, a response that usually involves rearrangement of actin microfilaments. In this study, we monitored re-organization of green fluorescent protein (GFP)-labelled actin microfilaments, microtubules and endoplasmic reticulum (ER) during infection by the powdery mildew pathogen Blumeria graminis f. sp. hordei in non-host Arabidopsis and in the Arabidopsis penetration 1-1 (pen1-1) mutant, which shows increased penetration susceptibility to non-adapted pathogens. Comparison of pen1-1 with wild-type Arabidopsis showed that the actin, microtubule and ER networks all responded in the pen1-1 mutant as they do in wild-type plants. Actin microfilaments became focused on the penetration site and ER accumulated at the penetration site while the overall arrangement of microtubule arrays was largely unaffected. These results indicate that the block in vesicle secretion conferred by the pen1-1 mutation does not interfere with cytoplasmic aggregation or recruitment of actin or ER to the infection site. In the pen1-1 mutant, the higher rate of successful penetration by the non-adapted pathogen results in an increased incidence of hypersensitive cell death. In dying cells, the structure of the ER was rapidly destroyed, in contrast to actin microfilaments and microtubules which remained for a longer time after the initiation of cell death. In Arabidopsis with GFP-tagged tubulin, fluorescent vesicle-like structures appeared near the cell surface during the initiation of cell death. In both wild-type and pen1-1 mutant plants, in cells surrounding the dying cell, bundles of actin microfilaments focused on the anticlinal walls adjacent to the dead cell and ER accumulated in the cortical cytoplasm near the dead cell. These observations suggest that the neighbouring, non-infected cells use actin-based transport to secrete material at the surface adjacent to the dead cell. They

  14. Barberry rust survey – developing tools for diagnosis, analysis and data management

    DEFF Research Database (Denmark)

    Justesen, Annemarie Fejer; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring

    Barberry (Berberis spp.) may serve as alternate host of several Puccinia species including Puccinia graminis and P. striiformis causing stem and yellow rust on cereals and grasses, respectively. In order to study the importance of barberry in the epidemiology of Puccinia species in the CWANA regi...... a rust survey was initiated. The aim was to 1) develop a surveillance protocol 2) develop molecular diagnostic tools for identifying Puccinia spp. from aecial samples, and 3) develop a data management and display system of results as part of the Wheat Rust ToolBox (http....... arrhenatheri and P. striiformoides on barberry species. Survey and DNA sample maps with species designation were displayed in the Wheat Rust ToolBox. The future aim is to integrate barberry rust survey data based on molecular diagnostics and infection assays from research groups world-wide in order to gain...

  15. Blumeria graminis f.sp. trit

    African Journals Online (AJOL)

    AISA

    molecules of fungal or plant origin that could enhance resistance to powdery mildew in wheat as an alternative to chemical fungicides. The protection ... association avec un fongicide anti-oïdium. (Hukkanen et al., 2007) ; des polysaccharides ..... être à l'origine d'un signal d'activation des réactions de défense reconnu ...

  16. Maandatud pinged igavas provintsiriigis - Arnold Rüütli viis aastat Kadriorus / Ivar Tallo

    Index Scriptorium Estoniae

    Tallo, Ivar, 1964-

    2006-01-01

    Avaliku halduse ekspert analüüsib president Arnold Rüütli tegevust. Võrdlus president Lennart Meriga. Presidendi kantseleist. Samas ka: Eesti Vabariigi president on meie põhiseaduse järgi Eesti riigipea, kellel on 20 konkreetset ametiülesannet. Lisad: Rüütel ja tema kümme käsku; President Rüütli tähtsamad abilised esimesel ametiajal. Graafikud: Gini-koefitsent Eestis; Presidendi kantselei eelarvestatud kulud

  17. Synthesis and antifungal activities of N-aryl-4-phenyl-3-(4-phenoxyphenyl)butanamides.

    Science.gov (United States)

    Lee, S H; Kim, I O; Cheong, C S; Chung, B Y

    1999-10-01

    Various N-aryl-4-phenyl-3-(4-phenoxyphenyl)butanamides (2 and 3) were tested for fungicidal activities against Pyricularia oryzae, Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia recondita, and Erysiphe graminis in vivo. Butanamides (2 and 3a) that have an electron withdrawing group (Cl, F) attached to the meta position of the phenyl ring showed good to excellent activities against Pyricularia oryzae, Puccinia recondita, and Erysiphe graminis in high concentration while those that have a strong electron withdrawing group (CN, NO2) or electron donating group (OCH3, CH3) attached to the meta position did not show good activities against all test fungi at 250 mg L-1. The antifungal activities of the compounds synthesized were compared with reference compounds such as Tricyclazole, Moncozeb, and Benomyl.

  18. Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors

    OpenAIRE

    Sperschneider, Jana; Ying, Hua; Dodds, Peter N.; Gardiner, Donald M.; Upadhyaya, Narayana M.; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2014-01-01

    Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with targe...

  19. Stem Rust Resistance in a Geographically Diverse Collection of Spring Wheat Lines Collected from Across Africa

    OpenAIRE

    Prins, Ren?e; Dreisigacker, Susanne; Pretorius, Zakkie; van Schalkwyk, Hester; Wessels, Elsabet; Smit, Corneli; Bender, Cornel; Singh, Davinder; Boyd, Lesley A.

    2016-01-01

    Following the emergence of the Ug99 lineage of Puccinia graminis f. sp. tritici (Pgt) a collective international effort has been undertaken to identify new sources of wheat stem rust resistance effective against these races. Analyses were undertaken in a collection of wheat genotypes gathered from across Africa to identify stem rust resistance effective against the Pgt races found in Eastern and Southern Africa. The African wheat collection consisted of historic genotypes collected in Kenya, ...

  20. [Amides of amino acids and peptides as antifungal agents].

    Science.gov (United States)

    Giori, P; Vertuani, G; Mazzotta, D; Guarneri, M; Pancaldi, D; Brunelli, A

    1982-07-01

    The synthesis of pyrazolyl-amides of aminoacids and peptides is described. The chemicals were tested for antifungal activity against wheat powdery mildew (Erysiphe graminis DC.), cucumber powdery mildew (Erysiphe cichoracearum DC.), wheat brown rust (Puccinia recondita Rob. ex Desm. f. sp. tritici Erikss et Henn.), celery leaf spot (Septoria Apii Briosi ed Cav. Chest.) and collar rot (Rhizoctonia solani Kuhn). Some of these compounds showed antifungal activity.

  1. Sources of resistance to yellow rust and stem rust in wheat-alien introgressions

    OpenAIRE

    Rahmatov, Mahbubjon

    2013-01-01

    Wheat is the staple food and the main source of caloric intake in most developing countries, and thereby an important source in order to maintain food security for the growing populations in those countries. Stem rust Puccinia graminis f. sp. tritici, and yellow rust P. striiformis f. sp. tritici of wheat continues to cause severe damage locally and globally, thereby contributing to food insecurity. In this paper biology and taxonomy of stem rust and yellow rust, breeding for resistance, util...

  2. The rpg4/Rpg5 stem rust resistance locus in barley: resistance genes and cytoskeleton dynamics.

    Science.gov (United States)

    Brueggeman, Robert; Steffenson, Brian J; Kleinhofs, Andris

    2009-04-01

    Two closely linked resistance genes, rpg4 and Rpg5, conferring resistance to several races of Puccinia graminis, were cloned and characterized. The Rpg5 gene confers resistance to an isolate of Puccinia graminis f. sp. secalis (Pgs), while rpg4 confers resistance to Puccinia graminis f. sp. tritici (Pgt). Rpg5 is a novel gene containing nucleotide binding site-leucine rich repeat domains in combination with a serine threonine protein kinase domain. High-resolution mapping plus allele and recombinant sequencing identified the rpg4 gene, which encodes an actin depolymerizing factor-like protein (ADF2). Resistance against the Pgt races QCCJ, MCCF, TTKSK (aka Ug99) and RCRS requires both Rpg5 and rpg4, while Rpg5 alone confers resistance to Pgs isolate 92-MN-90. The dependency on the actin modifying protein ADF2 indicates cytoskeleton reorganization or redirection plays a role in pathogen-host interactions. Rpg5 may interact with ADF2 to activate or deactivate its function in the resistance response. Alternatively, Rpg5 could initiate signal transduction leading to resistance in response to detecting ADF2 protein modification. Pgt may redirect the actin cytoskeleton by inducing modifications of ADF2. The redirection of actin could possibly enable the pathogen to develop a haustoria-plant cell cytoskeleton interface for acquisition of nutrients.

  3. "Royas" (Fungi, Uredinales colectadas sobre Gramineae en el departamento de Antioquia, depositadas en las colecciones de MEDEL y MMUNM

    Directory of Open Access Journals (Sweden)

    Pardo Cardona Víctor Manuel

    1995-11-01

    Full Text Available Sixteen species of rust-Iungi (Uredinales are registered parasitizing species of eighteen Genera of Graminicolous plants at the Antioquia Department, Colombia, South America. The sixteen species are deposited in medel and mmum's Herbaries. Eleven species of Puccinia Persoon, three of Uromyces (Link Unger and two 01 Genus-form Uredo were studied. Uromyces clignyi Patouillard & Hariot collected on Dichantium annulatum Stapf. and Uredo melinidis Kern collected on Melinis minutiflora Beauvois are registe red for the lirst time lor Colombia. Calamagrostis pittieri Hack. is a new host lor Puccinia graminis Persoon.Fueron estudiadas dieciséis especies de "royas" (Fungi, Uredinales que parasitan dieciocho géneros de gramineae colectadas en el Departamento de Antioquia, Colombia, las cuales hacen parte de las colecciones de los Herbarios MEDEL y MMUNM. Los registros comprenden once especies dentro del género Puccinia Persoon, tres dentro de Uromyces (Link Unger y dos dentro del Género-forma Uredo. Uromyces clignyi Patouillard & Hariot y Uredo melinidis Kern colectadas sobre Dichantium annulatum Stapf. y Melinis minutiflora Beauvois respectivamente se registran por primera vez para Colombia. Calamagrostis pittieri Hack. es nuevo hospedante para Puccinia graminis Persoon.

  4. Біологічні та екологічні аспекти механізму прояву Blumeria graminis (DC.) f. sp. tritici Speer у фітоценозах представників триби Тriticeae

    OpenAIRE

    Ключевич, М. М.; Москалець, Т. З.; Москалець, В. В.; Рибальченко, В. К.; Kluchevich, M.; Moskalets, T.; Moskalets, V.; Rybalchenko, V.; Москалец, Т. З.; Москалец, В. В.; Рыбальченко, В. К.

    2015-01-01

    Досліджено біологічні та екологічні особливості прояву Blumeria graminis (DC.) f. sp. tritici Speer у фітоценозах триби Triticeae в умовах різних екотипів України. Исследованы биологические и экологические особенности проявления Blumeria graminis (DC.) f. sp. tritici Speer в фитиценозах триби Triticeae в условиях разных экотопов Украины. The purpose of research – find out biological and ecological aspects of the mechanism of manifestation of Blumeria graminis (DC.) F. sp. tritici Speer ...

  5. Säästva renoveerimise meistrikursused : SRIK-Tallinn (Väike-Patarei 3, Tallinn) / Toomas Tallo

    Index Scriptorium Estoniae

    Tallo, Toomas, 1940-

    2005-01-01

    Rein Tedrekulli koolitustsükkel (loengud Väike-Patarei 3, töötoad Liivalaia 19a): vanade uste restaureerimine - 1. III loeng, 5. III töötuba; vanade akende restaureerimine - 8. III loeng, 12. III töötuba; vana mööbli restaureerimine - 15. III loeng, 19. III töötuba. Siidimaali sissejuhatav kursus: 18. III Väike-Patarei 3 töötuba, mida juhendab kunstnik Evi Vares

  6. Estomas en hojas y anatomía de xilema en tallo de lima Persa en diferentes portainjertos

    OpenAIRE

    Berdeja Arbeu, Raúl

    2012-01-01

    En cítricos existen pocos trabajos en donde se estudia el efecto de los portainjertos en las características estomáticas en hojas de lima 'Persa' y anatomía de xilema de los portainjertos y lima 'Persa' y su correlación con vigor de planta, por lo que se realizaron dos experimentos. En el primero se estudió la combinación lima 'Persa' en 11 portainjertos cítricos (citranges 'C32', 'C35', 'Benton', 'Carrizo', 'Florida' y 'Morton', los mandarinos 'Amblicarpa' y 'Cleopatra', limón 'Volkamerian...

  7. Puccinia scillae (Uredinales, a new species for Poland

    Directory of Open Access Journals (Sweden)

    Małgorzata Ruszkiewicz-Michalska

    2014-08-01

    Full Text Available The paper presents a rust species new for Poland, that affects the ornamental plant Scilla siberica Haw. The distribution of the fungus and its host plants, both introduced and native in Europe, have been investigated. The data from neighbouring countries indicate that the parasite has been probably overlooked in Poland till now. There is a possibility, however, that the species is currently spreading in central and north-eastern Europe.

  8. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hearty, Stephen

    2007-01-01

    The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine mAb-produci...

  9. Genetic studies in wheat for leaf rust resistance (Puccinia recondita)

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... Additive and dominance, as well as epistatic genetic effects, are involved in the inheritance of leaf rust resistance. However, the narrow sense heritability estimates were low, which also exhibited the presence of epistatic genetic effects. Thus, selection of resistant adult plant in later segregating generations ...

  10. Mutations induced by ultraviolet radiation affecting virulence in Puccinia striiformis

    International Nuclear Information System (INIS)

    Shang Hongsheng; Jing Jinxue; Li Zhenqi

    1994-01-01

    Uredospores of parent culture, cy 29-1, were treated by ultraviolet radiation and mutations to virulent were tested on resistant wheat cultivars inoculated with treated spores. 7 mutant cultures virulent to the test cultivars were developed with estimated mutation rate 10~6~10~4. The virulence of mutant cultures was different from the all known races of stripe rust. Resistance segregation to mutant cultures was detected in two test cultivars. The results suggested that mutation was important mechanism of virulence variation operative in asexual population of rust fungi

  11. Genetic analysis and location of a resistance gene to Puccinia ...

    Indian Academy of Sciences (India)

    Administrator

    Electrophoresis was carried out at 1400. V for 1.0 - 1.5 h. Gel staining and visualization was done as previously described (Chen et al. 1998). Polymorphic markers were used to genotype the F2 population. Genotype data were used to construct a genetic map and locate the resistance gene. Mapping and Data analysis.

  12. Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans

    NARCIS (Netherlands)

    Heshof, R.; Schayck, van J.P.; Tamayo Ramos, J.A.; Graaff, de L.H.

    2014-01-01

    Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain

  13. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew.

    Science.gov (United States)

    Kim, Jin-Cheol; Choi, Gyung Ja; Lee, Seon-Woo; Kim, Jin-Seog; Chung, Kyu Young; Cho, Kwang Yun

    2004-08-01

    Methanol extracts of fresh materials of 183 plants were screened for in vivo antifungal activity against Magnaporthe grisea, Corticium sasaki, Botrytis cinerea, Phytophthora infestans, Puccinia recondita and Erysiphe graminis f sp hordei. Among them, 33 plant extracts showed disease-control efficacy of more than 90% against at least one of six plant diseases. The methanol extracts of Achyranthes japonica (whole plant) and Rumex crispus (roots) at concentrations greater than 11 g fresh weight of plant tissue per litre of aqueous Tween 20 solution effectively controlled the development of barley powdery mildew caused by E graminis f sp hordei in an in vivo assay using plant seedlings. At a concentration of 300 g fresh weight of plant tissue per litre of Tween 20 solution, the two extracts were as efficient as the fungicide fenarimol (30 mg litre(-1)) and more active than the fungicide polyoxin B (100 and 33 mg litre(-1)) against Sphaerotheca fuliginea on cucumber plants in glasshouse trials.

  14. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99.

    Science.gov (United States)

    Periyannan, Sambasivam; Moore, John; Ayliffe, Michael; Bansal, Urmil; Wang, Xiaojing; Huang, Li; Deal, Karin; Luo, Mingcheng; Kong, Xiuying; Bariana, Harbans; Mago, Rohit; McIntosh, Robert; Dodds, Peter; Dvorak, Jan; Lagudah, Evans

    2013-08-16

    Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici, afflicts bread wheat (Triticum aestivum). New virulent races collectively referred to as "Ug99" have emerged, which threaten global wheat production. The wheat gene Sr33, introgressed from the wild relative Aegilops tauschii into bread wheat, confers resistance to diverse stem rust races, including the Ug99 race group. We cloned Sr33, which encodes a coiled-coil, nucleotide-binding, leucine-rich repeat protein. Sr33 is orthologous to the barley (Hordeum vulgare) Mla mildew resistance genes that confer resistance to Blumeria graminis f. sp. hordei. The wheat Sr33 gene functions independently of RAR1, SGT1, and HSP90 chaperones. Haplotype analysis from diverse collections of Ae. tauschii placed the origin of Sr33 resistance near the southern coast of the Caspian Sea.

  15. RFLP markers linked to the durable stem rust resistance gene Rpg1 in barley.

    Science.gov (United States)

    Kilian, A; Steffenson, B J; Saghai Maroof, M A; Kleinhofs, A

    1994-01-01

    The gene, Rpg1, conferring stable resistance in barley to the wheat stem rust pathogen (Puccinia graminis f. sp. tritici) was mapped using two doubled haploid populations. Rpg1 mapped to the extreme subteleomeric region of barley chromosome 1P 0.3 and 1.1 cM proximal from the molecular markers ABG704 and plastocyanin (Plc), respectively, and 2.2 cM distal from MWG036B. The closest marker, ABG704, was sequenced and PCR-based markers were developed.

  16. Effect of Ethrel treatment of wheat on the effectiveness of some fungicides used as seed dressing

    Directory of Open Access Journals (Sweden)

    Marian Michniewicz

    2013-12-01

    Full Text Available The grain of winter wheat cv. Grana was treated with the following seed dressings: Baytan 17.5 WS, Oxalin K and Vincit WP and sown in experimental plots. In spring after the appearance of the first node the plants were sprayed with Ethrel solution at a concentration of 1000 mg/dm3. It was stated that Ethrel enhanced the fungistatic effect of the seed dressings with regard to Cercosporella herpotrichoides, Erysiphe graminis and species of the genus Fusarium, while it increased plant infection by Puccinia triticina.

  17. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi.

    Science.gov (United States)

    Kim, Young-Mi; Lee, Chi-Hoon; Kim, Hyo-Gyung; Lee, Hoi-Seon

    2004-10-06

    The fungicidal activities of Cassia tora extracts and their active principles were determined against Botrytis cineria, Erysiphe graminis, Phytophthora infestans, Puccinia recondita, Pyricularia grisea, and Rhizoctonia solani using a whole plant method in vivo and were compared with synthetic fungicides and three commercially available anthraquinones. The responses varied with the plant pathogen tested. At 1 g/L, the chloroform fraction of C. tora showed a strong fungicidal activity against B. cinerea, E. graminis, P. infestans, and R. solani. Emodin, physcion, and rhein were isolated from the chloroform fraction using chromatographic techniques and showed strong and moderate fungicidal activities against B. cinerea, E. graminis, P. infestans, and R. solani. Furthermore, aloe-emodin showed strong and moderate fungicidal activities against B. cinerea and R. solani, respectively, but did not inhibit the growth of E. graminis, P. infestans, P. recondita, and Py. grisea. Little or no activity was observed for anthraquinone and anthraquinone-2-carboxylic acid when tested at 1 g/L. Chlorothalonil and dichlofluanid as synthetic fungicides were active against P. infestans and B. cinerea at 0.05 g/L, respectively. Our results demonstrate the fungicidal actions of emodin, physcion, and rhein from C. tora.

  18. EFFECT OF CHRONIC RADIATION ON PLANT-PATHOGEN INTERACTIONS IN 30-KM CHERNOBYL ZONE

    Directory of Open Access Journals (Sweden)

    Dmitriev A.

    2012-08-01

    Full Text Available It was established in pot experiments that infection with powdery mildew (Erysiphe graminis DC. f. sp. tritici Em. Marchal and brown rust (Puccinia triticana Erikss. & Henn. of three wheat (Triticum aestivum L. cultivars ('Mironovskaya 808', 'Polesskay 70', and 'Kiyanka' grown from seeds, collected in the Chernobyl exclusion zone, was 1.5–2.0 times higher than that of plants grown from control seeds. On filed plots in the Chernobyl zone, wheat plant resistance to biotic stress was reduced. At artificial infection with brown rusts, the disease development was enhanced on plots with increased radiation background. One of the mechanisms of declined phytoimmunity potential under the action of low doses of chronic irradiation is evidently a reduced activity of plant proteinase inhibitors. Thus, in wheat and rye (Secale cereale L., cv. ‘Saratovskaya’ kernels, their activity reduced by 35–60% as compared to control. Active form and race formation in the population of the grass stem rust causal agent (Puccinia graminis Pers. was observed in the Chernobyl zone. A “new” population of this fungus with high frequency of more virulent clones than in other Ukraine regions was distinguished. The results obtained independently in greenhouse and field trials performed in the Chernobyl zone demonstrated radiation stress influence on the pathogen–plant system. They indicate a necessity of monitoring the microevolutionary processes occurring in both plants and their pathogens under conditions of technogenic stresses.

  19. Molecular genetic variability of Australian isolates of five cereal rust pathogens.

    Science.gov (United States)

    Keiper, Felicity J; Hayden, Matthew J; Park, Robert F; Wellings, Colin R

    2003-05-01

    Rust fungi cause economically important diseases of cereals, and their ability to rapidly evolve new virulent races has hindered attempts to control them by genetic resistance. PCR-based molecular tools may assist in understanding the genetic structure of pathogen populations. The high multiplex DNA fingerprinting techniques, amplified fragment length polymorphisms (AFLP), selectively amplified microsatellites (SAM) and sequence-specific amplification polymorphisms (S-SAP) were assessed for their potential in investigations of the genetic relationships among isolates of the wheat rust pathogens, Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and P. striiformis f. sp. tritici (Pst), the oat stem rust pathogen P. graminis f. sp. avenae (Pga), and a putative new P. striiformis special form tentatively designated Barley grass yellow rust (Bgyr). Marker information content, as indicated by the number of species-specific fragments, polymorphic fragments among pathotypes, percentage of polymorphic loci, and the marker index, was highest for the SAM assay, followed by the AFLP and S-SAP assays. UPGMA analysis revealed that all marker types efficiently discriminated the five different taxa and Mantel tests revealed significant correlations between the marker types. Within pathogen groups, the marker types differed in the amount of variation detected among isolates; however, the major differences were consistent and polymorphism was generally low. This was reflected by the AMOVA analysis that significantly partitioned 90% of the genetic variation between taxa. Of the three marker types, SAMS were the most informative, and have the potential for the development of locus-specific microsatellites.

  20. Prospects for advancing defense to cereal rusts through genetical genomics.

    Science.gov (United States)

    Ballini, Elsa; Lauter, Nick; Wise, Roger

    2013-01-01

    Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99), was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis) have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL) analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals.

  1. Genetic analysis of rust resistance genes in global wheat cultivars: an overview

    International Nuclear Information System (INIS)

    Aktar-Uz-Zaman, Md; Tuhina-Khatun, Mst; Hanafi, Mohamed Musa; Sahebi, Mahbod

    2017-01-01

    Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding

  2. Large-Scale Atmospheric Dispersal Simulations Identify Likely Airborne Incursion Routes of Wheat Stem Rust Into Ethiopia.

    Science.gov (United States)

    Meyer, M; Burgin, L; Hort, M C; Hodson, D P; Gilligan, C A

    2017-10-01

    In recent years, severe wheat stem rust epidemics hit Ethiopia, sub-Saharan Africa's largest wheat-producing country. These were caused by race TKTTF (Digalu race) of the pathogen Puccinia graminis f. sp. tritici, which, in Ethiopia, was first detected at the beginning of August 2012. We use the incursion of this new pathogen race as a case study to determine likely airborne origins of fungal spores on regional and continental scales by means of a Lagrangian particle dispersion model (LPDM). Two different techniques, LPDM simulations forward and backward in time, are compared. The effects of release altitudes in time-backward simulations and P. graminis f. sp. tritici urediniospore viability functions in time-forward simulations are analyzed. Results suggest Yemen as the most likely origin but, also, point to other possible sources in the Middle East and the East African Rift Valley. This is plausible in light of available field surveys and phylogenetic data on TKTTF isolates from Ethiopia and other countries. Independent of the case involving TKTTF, we assess long-term dispersal trends (>10 years) to obtain quantitative estimates of the risk of exotic P. graminis f. sp. tritici spore transport (of any race) into Ethiopia for different 'what-if' scenarios of disease outbreaks in potential source countries in different months of the wheat season.

  3. Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes.

    Science.gov (United States)

    Aoun, Meriem; Kolmer, James A; Rouse, Matthew N; Chao, Shiaoman; Bulbula, Worku Denbel; Elias, Elias M; Acevedo, Maricelis

    2017-12-01

    Leaf rust, caused by Puccinia triticina, and stem rust, caused by P. graminis f. sp. tritici, are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to P. triticina race BBBQJ and stem rust resistance (Sr) genes to P. graminis f. sp. tritici race TTKSK in durum accessions. Eight leaf-rust-resistant genotypes were used to develop biparental populations. Accessions PI 192051 and PI 534304 were also resistant to P. graminis f. sp. tritici race TTKSK. The resulting progenies were phenotyped for leaf rust and stem rust response at seedling stage. The Lr and Sr genes were mapped in five populations using single-nucleotide polymorphisms and bulked segregant analysis. Five leaf-rust-resistant genotypes carried single dominant Lr genes whereas, in the remaining accessions, there was deviation from the expected segregation ratio of a single dominant Lr gene. Seven genotypes carried Lr genes different from those previously characterized in durum. The single dominant Lr genes in PI 209274, PI 244061, PI387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. The Sr gene in PI 534304 mapped to 6AL and is most likely Sr13, while the Sr gene in PI 192051 could be uncharacterized in durum.

  4. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse.

    Science.gov (United States)

    Kim, Moo-Key; Choi, Gyung-Ja; Lee, Hoi-Seon

    2003-03-12

    Fungicidal activity of Curcuma longa rhizome-derived materials against Botrytis cineria, Erysiphe graminis, Phytophthora infestans, Puccinia recondita, Pyricularia oryzae, and Rhizoctonia solani was tested using a whole plant method in vivo. It was compared with synthetic fungicides and four commercially available compounds derived from C. longa. The response varied with the tested plant pathogen. At 1000 mg/L, the hexane extract of C. longa showed fungicidal activities against E.graminis, P. infestans, and R. solani, and the ethyl acetate extract of C. longa showed fungicidal activities against B. cineria, P. infestans, Pu. recondita, and R. solani. Curcumin was isolated from the ethyl acetate fraction using chromatographic techniques and showed fungicidal activities against P. infestans, Pu. recondita, and R. solani with 100, 100, and 63% control values at 500 mg/L and 85, 76, and 45% control values at 250 mg/L, respectively. In the test with components derived from C. longa, turmerone exhibited weak activity against E. graminis, but no activity was observed from treatments with borneol, 1,8-cineole, sabinene, and turmerone. In comparison, potent fungicidal activity with chlorothalonil against P. infestans at 50 mg/L and dichlofluanid against B. cinerea at 50 mg/L was exhibited. These results may be an indication of at least one of the fungicidal actions of curcumin derived from C. longa.

  5. Use of Guadua angustifolia stems in the particleboard production; Utilizacion de tallos de Guadua angustifolia en la fabricacion de tableros de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, P. A.; Garay, D. A.; Duran, J. A.; Styles, V. W.; Trejo, S. S.

    2010-07-01

    The industry agglomerated panels incorporated into its manufacturing process tree species of both conifers and hardwoods, today, many companies operate at half of its production capacity for the continued lack of raw material due to depletion of main species or operational restriction. The main objective of this paper was to determine the technological feasibility of Guadua angustifolia as raw material for the production of particleboard at two levels of theoretical density (nominal) of 600 kg/m{sup 3} and 800 kg/m{sup 3} with urea formaldehyde resin content of 12%. The physical and mechanical properties of the boards were determined according to German Norms DIN 52361, 52362, 52364 and 52365, and Venezuelan Covenin Norm 847-91 for flat platen-pressed particleboard. The mechanical properties were static bending (MOR), and tension perpendicular to the board surface (internal adhesion); the physical properties were water absorption and thickness variation by water soaking absorption tests at 2 and 24 hours. The results of this study indicated that the boards manufactured with this species showed values in the physical and mechanical properties that comply with the ones specified by the norms. The presence of the stem external cuticle negatively influenced the water absorption and the tension perpendicular to the board surface of the boards with a density of 600 kg/m{sup 3}. (Author) 12 refs.

  6. Functional neurological evaluation of the brainstem. Part I: the blink reflex Evaluación neurofuncional del tallo cerebral. Parte I: Reflejo del parpadeo

    Directory of Open Access Journals (Sweden)

    Jaime Bedoya

    2009-11-01

    Full Text Available

    The blink reflex is the neural response elicited in the orbicular oculi muscle after single or paired supraorbital nerve stimulation, by either electrical, mechanical, acoustic, thermal, chemical or magnetic stimulation. It is made up of three responses called R1, R2 and R3. R1 is an early response that follows A beta fibers, and does not habituate. R2 is a middle-latency response that follows A beta and A delta fibers, tends to habituate and is modulated by sensorimotor suprasegmental structures.

    R3 is a long-latency response, generated by stimulation of a multisynaptic chain of neurons that involve type C fibers belonging to a complex pontothalamic-amigdalo-cerebellar pathway. It is also possible to record three silent periods if the blink reflex is obtained while the subject makes a voluntary facial muscle effort.

    The functional study of this reflex allows to define with certainty whether the lesion is in afferent or efferent pathways or if it involves an abnormal sensorimotor integration due to disorders of the central, autonomic or peripheral nervous systems. A correct execution of these studies, and their appropriate interpretation, based on the underlying mechanisms of neural plasticity, will guide toward better neurorehabilitation protocols.

    El reflejo de parpadeo es la respuesta neural que se obtiene en el músculo orbicular de los ojos, luego de estimular el nervio trigeminal, bien sea de manera simple o pareada, por medios eléctricos, mecánicos, acústicos, térmicos, químicos o magnéticos; cuando se estimula dicho nervio se obtienen tres respuestas llamadas R1, R2 y R3. R1 tiene latencia corta, viaja por fibras A beta y no se habitúa.

    R2 es de latencia mediana, viaja por fibras A beta o A delta, tiende a habituarse y la modulan estructuras suprasegmentales sensorimotoras. R3 es de latencia larga, se genera al estimular vías multisinápticas que involucran fibras tipo C, en una ruta compleja ponto-amígdalo-talámico-cerebelar.

    También se pueden registrar tres períodos silentes cuando el reflejo del parpadeo se obtiene mientras el individuo hace una contracción voluntaria muscular facial. El estudio funcional de este reflejo permite identificar con certeza si la lesión está en las vías aferentes o en las eferentes o si involucra una integración anormal sensorimotora debida a trastornos de los sistemas nerviosos central, autonómico o periférico. La ejecución correcta de estos estudios, así como su interpretación apropiada, con base en los mecanismos subyacentes de plasticidad neural, son guías para orientar mejor los protocolos de neurorrehabilitación.

     

  7. Fractura por fatiga de un tallo de revisión femoral modular cónico estriado de fijación distal.

    Directory of Open Access Journals (Sweden)

    Martin Buttaro

    2013-03-01

    Full Text Available 1. Engelbrecht E, Heinert K. Klassifikation und Behandlungsrichtlinien von Knochensubsanzverlusten bei Revisionsoperationen am Huftgelenk mittelfrsige Ergebnisse. Primare und Revisionsalloarthroplastik Hrsg-Endo-Klinik, Hamburg: Springer-Verlag, Berlin; 1987:189. 2. Merle d’Aubigné R, Postel M. Functional results of hip arthroplasty with acrylic prosthesis. J Bone Joint Surg Am 1954;36:451. 3. Hood RW, Wright TM, Burstein AH. Retrieval analysis of total knee prostheses: a method and its application to 48 total condylar prostheses. J Biomed Mat Res 1983;17:829. 4. Carlsson AS, Gentz CF, Stenport J. Fracture of the femoral prosthesis in total hip replacement according to Charnley. Acta Orthop Scand 1977;48:650-5. 5. Chao EYS, Coventry MB. Fracture of the femoral component after total hip replacement. An analysis of fifty-eight cases. J Bone Joint Surg Am 1981;63:1078-94. 6. Charnley J. Fracture of femoral prostheses in total hip replacement. A clinical study. Clin Orthop 1975;111:105. 7. Buttaro M, Mayor M, Van Citters D, Piccaluga F. Fracture of a proximally modular, distally fluted uncemented implant with diaphyseal fixation. J Arthroplasty 2007;22(5:780-3. 8. Bohm P, Bischel O. Femoral revision with the Wagner SL revision stem: evaluation of one hundred and twenty-nine revisions followed for a mean of 4.8 years. J Bone Joint Surg Am 2001;83(7:1023. 9. Woolson ST, Milbauer JP, Bobyn JD, Yue S, Maloney WJ. Fatigue fracture of a forged cobalt-chromium-molybdenum femoral component inserted with cement. A report of ten cases. J Bone Joint Surg Am 1997;79(12:1842.

  8. Estudio fitoquímico y biológico preliminar de la corteza (tallo de vismia cayennensis proveniente del estado Amazonas, Venezuela

    Directory of Open Access Journals (Sweden)

    Marín, Karina

    2017-09-01

    Full Text Available A chemical and biological preliminary study of the species Vismia cayennensis, collected in the Amazonas state, Venezuela. The antibacterial test of plant bark extract showed significant inhibition in Escherichia coli, Shigella sp and Staphylococcus aureus. In addition, three of the five soluble fractions of different polarity solvents, specifically those of chloroform, acetone and water, maintained moderately active against Shigella sp strain. The hydroalcoholic extract of the plant and the fraction soluble in chloroform, exhibited a significant antiinflammatory effect. Cytotoxicity tests performed by the methods of (3-(4,5-dimetiltiazol-2-yl-5-(3-carboximetoxifenil-2-(4-sulfophenyl-2H-tetrazolium/phenazine methosulfate of (MTS/PMS and sulforhodamine B , revealed that only has water soluble cytotoxic effect. Additionally, a study phytochemical obtained information on the presence of some families of secondary metabolites such as flavonoids, saponins, tannins, polyphenols, anthraquinones, triterpenes and sterols. It can be inferred that the stem bark of the plant V. cayennensis, is a promising source of bioactive secondary metabolites

  9. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum

    Directory of Open Access Journals (Sweden)

    Ahmad H. Sallam

    2017-10-01

    Full Text Available Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1, losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB and foreign (TTKSK aka isolate Ug99 pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici, Pgt and one isolate (92-MN-90 of the rye stem rust pathogen (P. graminis f. sp. secalis, Pgs. Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis. A genome-wide association study (GWAS was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley.

  10. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum.

    Science.gov (United States)

    Sallam, Ahmad H; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J; Hulse, Alex; Steffenson, Brian J

    2017-10-05

    Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1 , losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum ) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen ( Puccinia graminis f. sp. tritici , Pgt ) and one isolate (92-MN-90) of the rye stem rust pathogen ( P. graminis f. sp. secalis , Pgs ). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. Copyright © 2017 Sallam et al.

  11. CONTROL OF SOME PATHOGENS BY USING SPECIAL FOLIAR FERTILIZERS

    Directory of Open Access Journals (Sweden)

    I OROIAN

    2004-04-01

    Full Text Available The present work points out to the interdisciplinary experimental results, obtained in the experimental fields of the Plant Protection and Soil Science Department, as well as at data which stress upon the interdependency between the satisfaction of the trophically needs of the wheat plants and the aggressiveness of the pathogens which cause the disease. The experimental results underline the fact that the attack level expressed through intensity and attack degree is different, both with the “out of root” fertilized variants and with the soil fertilization variants. The conclusions which come off the study of the obtained data point out at the fact that the fertilizer application, no matter the method, determines the growth or the regress of the attack degree. They also have an influence upon the Puccinia striformis f.sp. tritici, Blumeria graminis and, Septoria spp. fungus manifestation.

  12. Demonstration of pathotype specificity in stem rust of perennial ryegrass.

    Science.gov (United States)

    Pfender, W

    2009-10-01

    Rust diseases cause significant damage in forage and seed crops of perennial ryegrass (Lolium perenne), which is highly heterozygous and heterogeneous and thus presents difficulty in genetic analysis. There has been no definitive demonstration of the existence of pathotypes for stem rust or other rusts of perennial ryegrass, although experiments with crown rust (Puccinia coronata) of this host are strongly suggestive of pathotype specificity. We made single-pustule isolates of P. graminis subsp. graminicola, and applied them individually to a set of genetically diverse, clonally propagated individuals of L. perenne. There were clear examples of different patterns of virulence among isolates across the different plant clones, including qualitative and quantitative differences in resistance. These data demonstrate the existence of pathotype specificity in stem rust of L. perenne, information which will be useful in breeding for disease resistance.

  13. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group.

    Science.gov (United States)

    Saintenac, Cyrille; Zhang, Wenjun; Salcedo, Andres; Rouse, Matthew N; Trick, Harold N; Akhunov, Eduard; Dubcovsky, Jorge

    2013-08-16

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating disease that can cause severe yield losses. A previously uncharacterized Pgt race, designated Ug99, has overcome most of the widely used resistance genes and is threatening major wheat production areas. Here, we demonstrate that the Sr35 gene from Triticum monococcum is a coiled-coil, nucleotide-binding, leucine-rich repeat gene that confers near immunity to Ug99 and related races. This gene is absent in the A-genome diploid donor and in polyploid wheat but is effective when transferred from T. monococcum to polyploid wheat. The cloning of Sr35 opens the door to the use of biotechnological approaches to control this devastating disease and to analyses of the molecular interactions that define the wheat-rust pathosystem.

  14. Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping.

    Science.gov (United States)

    Letta, Tesfaye; Maccaferri, Marco; Badebo, Ayele; Ammar, Karim; Ricci, Andrea; Crossa, Jose; Tuberosa, Roberto

    2013-05-01

    Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is a devastating disease of durum wheat. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few of them have remained effective against Ug99 (TTKSK race) and other durum-specific Ethiopian races. An association mapping (AM) approach based on 183 diverse durum wheat accessions was utilized to identify resistance loci for stem rust response in Ethiopia over four field-evaluation seasons and artificial inoculation with Ug99 and a mixture of durum-specific races. The panel was profiled with simple sequence repeat, Diversity Arrays Technology and sequence-tagged site markers (1,253 in total). The resistance turned out to be oligogenic, with twelve QTL-tagging markers that were significant (P stem rust resistance under field conditions.

  15. WHEAT PATHOGEN RESISTANCE AND CHITINASE PROFILE

    Directory of Open Access Journals (Sweden)

    Zuzana Gregorová

    2015-02-01

    Full Text Available The powdery mildew and leaf rust caused by Blumeria graminis and Puccinia recondita (respectively are common diseases of wheat throughout the world. These fungal diseases greatly affect crop productivity. Incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. We have evaluated resistance of four bread wheat (Triticum aestivum and four spelt wheat (Triticum spelta cultivars. Chitinases occurrence as well as their activity was determined in leaf tissues. There was no correlation between resistance rating and activity of chitinase. The pattern of chitinases reveals four isoforms with different size in eight wheat cultivars. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.

  16. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    Science.gov (United States)

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Trigo EMBRAPA 41: Nova cultivar para Minas Gerais, Goiás e Distrito Federal Wheat cultivar EMBRAPA 41 recommended to Minas Gerais, Goiás and Distrito Federal, Brazil

    Directory of Open Access Journals (Sweden)

    Julio Cesar Albrecht

    1999-08-01

    Full Text Available A cultivar de trigo (Triticum aestivum L. EMBRAPA 41 foi criada pela Embrapa-Centro de Pesquisa Agropecuária dos Cerrados (CPAC, em Planaltina, DF. Essa cultivar é o resultado da seleção realizada na descendência do cruzamento entre PF 813 e Polo 1; foi avaliada na fase experimental como linhagem CPAC 88118. A nova cultivar foi recomendada, pela Comissão Centro-Brasileira de Pesquisa de Trigo, para cultivo irrigado durante a estação seca, em 1995, nos estados de Minas Gerais e Goiás e no Distrito Federal. Essa cultivar destaca-se por apresentar estatura média, ciclo precoce, alto potencial de rendimento e por sua superior qualidade industrial. Nas avaliações de resistência a enfermidades, apresentou reação de resistência em relação à ferrugem-do-colmo, causada por Puccinia graminis tritici.The wheat (Triticum aestivum L. cultivar EMBRAPA 41 was developed by Embrapa-Centro de Pesquisa Agropecuária dos Cerrados (CPAC, in Planaltina, DF, Brazil. This cultivar is the result of a cross between PF 813 and Polo 1 and it was evaluated in variety trials as CPAC 88118. The new cultivar was recommended by the National Commission for Wheat Research for use under irrigation during the dry season, in the states of Minas Gerais and Goiás and the Federal District. It has intermediate height, early maturity, high grain yield potential and superior industrial quality. It showed resistance to the stem rust, Puccinia graminis tritici.

  18. Real-time PCR detection of Puccinia chrysanthemi causing brown rust of chrysanthemum

    Science.gov (United States)

    Fungi responsible for rust diseases are among the most challenging organisms to identify, as many identification keys are based on host identity. In the U.S., numerous rust fungi are quarantine-significant plant pathogens. As such, accurate identification is crucial to prevent the inadvertent introd...

  19. First Report of Garlic Rust Caused by Puccinia allii on Allium sativum in Minnesota

    Science.gov (United States)

    In July 2010, Allium sativum, cultivar German Extra Hardy Porcelain plants showing foliar symptoms typical of rust infection were brought to the Plant Disease Clinic at the University of Minnesota by a commercial grower from Fillmore county Minnesota. Infected leaves showed circular to oblong lesio...

  20. Quantitative Trait Loci from Two Genotypes of Oat (Avena sativa) Conditioning Resistance to Puccinia coronata.

    Science.gov (United States)

    Babiker, Ebrahiem M; Gordon, Tyler C; Jackson, Eric W; Chao, Shiaoman; Harrison, Stephen A; Carson, Martin L; Obert, Don E; Bonman, J Michael

    2015-02-01

    Developing oat cultivars with partial resistance to crown rust would be beneficial and cost-effective for disease management. Two recombinant inbred-line populations were generated by crossing the susceptible cultivar Provena with two partially resistant sources, CDC Boyer and breeding line 94197A1-9-2-2-2-5. A third mapping population was generated by crossing the partially resistant sources to validate the quantitative trait locus (QTL) results. The three populations were evaluated for crown rust severity in the field at Louisiana State University (LSU) in 2009 and 2010 and at the Cereal Disease Laboratory (CDL) in St. Paul, MN, in 2009, 2010, and 2011. An iSelect platform assay containing 5,744 oat single nucleotide polymorphisms was used to genotype the populations. From the 2009 CDL test, linkage analyses revealed two QTLs for partial resistance in the Provena/CDC Boyer population on chromosome 19A. One of the 19A QTLs was also detected in the 2009 LSU test. Another QTL was detected on chromosome 12D in the CDL 2009 test. In the Provena/94197A1-9-2-2-2-5 population, only one QTL was detected, on chromosome 13A, in the CDL 2011 test. The 13A QTL from the Provena/94197A1-9-2-2-2-5 population was validated in the CDC Boyer/94197A1-9-2-2-2-5 population in the CDL 2010 and 2011 tests. Comparative analysis of the significant marker sequences with the rice genome database revealed 15 candidate genes for disease resistance on chromosomes 4 and 6 of rice. These genes could be potential targets for cloning from the two resistant parents.

  1. Evaluation of spray and point inoculation methods for the phenotyping of Puccinia striiformis on wheat

    DEFF Research Database (Denmark)

    Sørensen, Chris Khadgi; Thach, Tine; Hovmøller, Mogens Støvring

    2016-01-01

    flexible application procedure for spray inoculation and it gave highly reproducible results for virulence phenotyping. Six point inoculation methods were compared to find the most suitable for assessment of pathogen aggressiveness. The use of Novec 7100 and dry dilution with Lycopodium spores gave...... for the assessment of quantitative epidemiological parameters. New protocols for spray and point inoculation of P. striiformis on wheat are presented, along with the prospect for applying these in rust research and resistance breeding activities....

  2. The influence of mountain meadow management on the occurence of Puccinia perplexans Plow

    Czech Academy of Sciences Publication Activity Database

    Voženílková, B.; Marková, J.; Klimeš, F.; Květ, Jan; Mašková, Z.

    2008-01-01

    Roč. 115, č. 4 (2008), s. 167-171 ISSN 1861-3829 R&D Projects: GA ČR(CZ) GA206/99/1410 Institutional research plan: CEZ:AV0Z60870520 Keywords : Alopecurus pratensis * fallow stand * mown stand * mulched stand * rust fungi Subject RIV: EF - Botanics Impact factor: 0.566, year: 2008

  3. Effective genes for resistance to stripe rust and virulence of Puccinia ...

    African Journals Online (AJOL)

    The results revealed that stripe rust resistance genes Yr3, Yr5, Yr10, Yr15, Yr26, YrSP and YrCV were resistant, while Yr18 showed moderate susceptibility at all locations. Genes YrA-, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27 and gene combinations Opata (Yr27+Yr18) and Super Kauz (Yr9, Yr27, Yr18) were found susceptible.

  4. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    Directory of Open Access Journals (Sweden)

    Liliana M Cano

    Full Text Available Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments and terpenoid biosynthesis (major floral volatile compounds were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

  5. A new rust disease on wild coffee (Psychotria nervosa) caused by Puccinia mysuruensis sp. nov

    Science.gov (United States)

    Psychotria nervosa, commonly called wild coffee (Rubiaceae) is an important ethno-medicinal plant in India. In 2010 a new rust disease of P. nervosa was observed in three regions of Mysore District, Karnataka (India) with disease incidence ranging from 58% to 63%. Typical symptoms of rust disease we...

  6. Tanggap Genotipe Kacang Tanah Terhadap Penyakit Bercak Daun Cercospora dan Karat Daun Puccinia

    Directory of Open Access Journals (Sweden)

    Alfi Inayati

    2016-03-01

    Full Text Available Leaf spot and rust are two important diseases on groundnut. Both diseases are frequently found at the same time that influence the growth and reduce the yield of groundnut. This study was conducted to evaluate thirteen groundnut genotypes resistance to leaf spot and rust disease.  The experiment was conducted using a split plot design and three replications, with inoculated and uninoculated treatment as main plot, and  groundnut genotypes as the sub plot.  Disease assessment was conducted by counting number of pustules per leaf, the number of spots per leaf, rust disease intensity, the intensity of leaf spot disease, and leaf area index. Yield components including stover weight, number of pods per plant, number of empty pods, number of chipo pods, and weight of pods per plant were recorded for both inoculated and uninoculated plants. The result showed that leaf spot disease developed earlier than rust disease. Only one genotype was susceptible to rust and the other 12 genotypes were very susceptible, whereas all genotypes tested were very susceptible to leaf spot. The intensity of rust and leaf spot diseases was negatively correlated with yield (r = - 0.1 – (0.4. Rust and leaf spot diseases reduced the yield components including stover weight (73.2%, number of pods (68%, and weight of pods (72.5%. The number of empty pods and chipo pods were increase to 81% and 56.4% respectively. 

  7. An experimental genetic system using Berberis vulgaris confirms sexual recombination in Puccinia striiformis

    DEFF Research Database (Denmark)

    Rodriguez Algaba, Julian; Walter, Stephanie; Sørensen, Chris Khadgi

    , the use of B. vulgaris plants originating from nature reserves in Sweden and Denmark proved to be successful for infection and selfing a European Pst isolate in the Danish laboratory in 2013. The progeny isolates in the S1 generation were genotyped with microsatellite markers to confirm parental origin...... and to study genotypic diversity. The markers confirmed the parental origin and markers that were heterozygous in the parent generally segregated in the S1 progenies. A largest number of multilocus genotypes observed among the progeny isolates confirmed successful sexual recombination. Segregation...

  8. Disparate sequence characteristics of the Erysiphe graminis f.sp. hordei glyceraldehyde-3-phosphate dehydrogenase gene

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Justesen, A.F.; Giese, H.

    1997-01-01

    , Egh falls into the group of Ascomycetes located at a basal position. The regulatory region of the Egh gpd gene has no homology to corresponding sequences in other filamentous Ascomycetes. Codon usage was determined for the four characterized Egh genes (tub2, Egh7, Egh16 and gpd) and found...

  9. Management of resistance to the fungicide fenpropimorph in Erysiphe graminis f.sp tritici

    NARCIS (Netherlands)

    Engels, A.J.G.

    1998-01-01

    In the last three decades, plant disease control has become heavily dependent on fungicides. This practice increased yield significantly but had also negative side-effects on the environment. In many countries, integrated control programs have been initiated in order to reduce pesticide use

  10. Differentiation among Israeli Blumeria graminis f. sp. tritici isolates originating from wild vs. domesticated Triticum species

    Science.gov (United States)

    Israel and its vicinity constitute a center of diversity of domesticated wheat species (Triticum aestivum and T. durum) and their sympatrically growing wild relatives, including wild emmer wheat (T. dicoccoides). The present study explored differentiation within the forma specialis of their obligat...

  11. Virulence spectra determination in selected Blumeria graminis f. sp. hordei isolates

    Directory of Open Access Journals (Sweden)

    Antonín Dreiseitl

    2010-01-01

    Full Text Available Virulence spectra for 14 isolates of the barley powdery mildew pathogen considered to be added to the pathogen genebank were determined. The isolates were obtained from a sample of aerial pathogen population collected across the Czech Republic in 2009. The spectra were determined on 28 barley varieties, possessing mostly specific resistance genes and inoculated with the isolates exa­mi­ned. Based on differentiation among each other, all 14 isolates showed their originality. None of the isolates exhibited increased pathogenicity to a variety with the non-specific resistance gene mlo9. All isolates were virulent on varieties carrying specific resistance genes Mla8 and Mlra, and in contrast, none of the isolates was virulent on a variety with the gene Mla23 and with a combination of genes Mla3, MlaTu2. Required characters, such as virulence on the resistance Lv or avirulence on the gene Mlh, were confirmed in some isolates. The results represent a significant step toward obtaining a complete set of information about every isolate before its including in the working genebank of the pathogen.

  12. Inhibition of Blumeria graminis f. sp. tritici Germination and Partial Enhancement of Wheat Defenses by Milsana.

    Science.gov (United States)

    Randoux, Béatrice; Renard, Delphine; Nowak, Emmanuel; Sanssené, Jean; Courtois, Josiane; Durand, Roger; Reignault, Philippe

    2006-11-01

    ABSTRACT The prophylactic efficiency of Milsana against powdery mildew was evaluated on wheat (Triticum aestivum). A single short spraying on 10-day-old plantlets reduced the infection level by 85% and two long sprayings led to the total restriction of the disease. Although microscopic studies showed that Milsana treatments enhance hydrogen peroxide accumulation at the fungal penetration site, biochemical analysis did not allow us to correlate this accumulation with the activation of several enzyme activities involved in active oxygen species (AOS) metabolism. Only lipoxygenase activity, which is involved in both AOS metabolism and lipid peroxidation, showed a 26 to 32% increase 48-h posttreatment in leaves infiltrated with Milsana. This weak effect of Milsana on wheat lipid metabolism was confirmed at the lipid peroxidation level, which surprisingly, was shown to decrease in treated plants. In order to explain the high efficacy of Milsana, the fungistatic effect on conidia germination was also examined. In planta, we showed that a Milsana treatment resulted in a higher proportion of abnormally long appressorial germ tubes, whereas in vitro, it dramatically inhibited fungal conidia germination. The partial activity of Milsana in terms of defense response induction in the wheat/powdery mildew pathosystem and its newly described direct fungistatic activity are discussed.

  13. Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast

    NARCIS (Netherlands)

    Castroagudín, V.L.; Moreira, S.I.; Pereira, D.A.S.; Moreira, S.S.; Brunner, P.C.; Maciel, J.L.N.; Crous, P.W.; McDonald, B.A.; Alves, E.; Ceresini, P.C.

    2016-01-01

    Pyricularia oryzae is a species complex that causes blast disease on more than 50 species of poaceous plants. Pyricularia oryzae has a worldwide distribution as a rice pathogen and in the last 30 years emerged as an important wheat pathogen in southern Brazil. We conducted phylogenetic analyses

  14. Wheat Induced Resistance to Powdery Mildew (Blumeria graminis f. sp. tritici) by Means of Biological Preparations

    Czech Academy of Sciences Publication Activity Database

    Věchet, L.; Vrchotová, Naděžda; Hanazalová, J.

    2012-01-01

    Roč. 15, SI (2012), s. 61-62 ISSN 1335-258X Institutional support: RVO:67179843 Keywords : wheat * powdery mildew * inducers of plant origin * inducers of chemical origin Subject RIV: EH - Ecology, Behaviour

  15. Control of Blumeria graminis f.sp. hordei by treatment with mycelial extracts from cultured fungi

    DEFF Research Database (Denmark)

    Haugaard, H.; Jørgensen, H.J.L.; Lyngkjær, M.F.

    2001-01-01

    colonies that developed on treated leaves were generally smaller and showed reduced spore production. Protection was limited to the area of the leaves treated with mycelial extracts and a systemic effect could not be detected. No differences in the protection level were observed when treatment...

  16. Molecular mapping of stem and leaf rust resistance in wheat.

    Science.gov (United States)

    Khan, R R; Bariana, H S; Dholakia, B B; Naik, S V; Lagu, M D; Rathjen, A J; Bhavani, S; Gupta, V S

    2005-09-01

    Stem rust caused by Puccinia graminis f. sp. tritici Eriks and Henn and leaf rust caused by Puccinia triticina Rob. ex Desm. are major constraints to wheat production worldwide. In the present study, F(4)-derived SSD population, developed from a cross between Australian cultivars 'Schomburgk' and 'Yarralinka', was used to identify molecular markers linked to rust resistance genes Lr 3 a and Sr 22. A total of 1,330 RAPD and 100 ISSR primers and 33 SSR primer pairs selected ob the basis of chromosomal locations of these genes were used. The ISSR marker UBC 840(540) was found to be linked with Lr 3 a in repulsion at a distance of 6.0 cM. Markers cfa 2019 and cfa 2123 flanked Sr 22 at a distance of 5.9 cM (distal) and 6.0 cM (proximal), respectively. The use of these markers in combination would predict the presence or absence of Sr 22 in breeding populations. A previously identified PCR-based diagnostic marker STS 638 linked to Lr 20 was validated in this population. This marker showed a recombination value of 7.1 cM with Lr 20.

  17. Breeding wheat for disease resistance in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.; Kinyua, M.G.; Karanja, L.; Maling'a, J.

    2001-01-01

    Yellow rust caused by Puccinia striformis and stem rust caused by Puccinia graminis tritici are most destructive diseases in Kenya. In wheat improvement, development of varieties of wheat with resistance to these diseases has been among the foremost contributions in wheat breeding. In breeding programs each disease is considered as a separate problem. Attention has been given to varieties resistant to stem rust, yellow rust and leaf rust among other diseases. In the year 2001 program stem rust and yellow rust were recorded in all the sites where NPT was performed. Breeding for resistance for the two diseases is approached through the Introductions and Hybridisation. The Doubled Haploid Technique is used to quicken the time of homozygous lines production. The introduction and the homozygous lines are then evaluated for yield and disease resistance in the field under preliminary yield trials and the National Performance Trials (NPT) in 2001, 18 lines and 2 check varieties were included in the NPT. The results show that there were some differences in reaction to the three diseases where lines R946, K7972-1 and R899 had the lowest score of the diseases in all sites. In the commercial variety trial the results show that all the varietieshave become susceptible to stem rust and so the need to develop new cultivars which will be resistance to the rusts. Yombi a newly developed variety showed a substantially high level resistance. (author)

  18. A mutagenesis-derived broad-spectrum disease resistance locus in wheat.

    Science.gov (United States)

    Campbell, Jackie; Zhang, Hongtao; Giroux, Michael J; Feiz, Leila; Jin, Yue; Wang, Meinan; Chen, Xianming; Huang, Li

    2012-07-01

    Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. Breeding durable disease resistance cultivars rely largely on continually introgressing new resistance genes, especially the genes with different defense mechanisms, into adapted varieties. Here, we describe a new resistance gene obtained by mutagenesis. The mutant, MNR220 (mutagenesis-derived new resistance), enhances resistance to three rusts and powdery mildew, with the characteristics of delayed disease development at the seedling stage and completed resistance at the adult plant stage. Genetic analysis demonstrated that the resistance in MNR220 is conferred by a single semidominant gene mapped on the short arm of chromosome 2B. Gene expression profiling of several pathogenesis-related genes indicated that MNR220 has an elevated and rapid pathogen-induced response. In addition to its potential use in breeding for resistance to multiple diseases, high-resolution mapping and cloning of the disease resistance locus in MNR220 may lead to a better understanding of the regulation of defense responses in wheat.

  19. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism

    Science.gov (United States)

    Weinstein, L. H.; Osmeloski, J. F.; Wettlaufer, S. H.; Galston, A. W.

    1987-01-01

    In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.

  20. In situ detection of a fungal glycoprotein-elicitor in stem rust-infected susceptible and resistant wheat using immunogold electron microscopy.

    Science.gov (United States)

    Marticke, K H; Reisener, H J; Fischer, R; Hippe-Sanwald, S

    1998-08-01

    Immunoelectron microscopy (IEM) was used to analyze the compatible and incompatible host-pathogen interaction between the obligate, biotroph stem rust (Puccinia graminis f.sp. tritici; Pgt) and primary leaves of wheat (Triticum aestivum L.). The investigation was focused on the subcellular localization of a fungal elicitor glycoprotein of stem rust (Pgt-elicitor). Uredospores as well as fungal infection structures of stem rust on wheat leaves were probed with a specific monoclonal antibody, in order to determine the in situ distribution pattern of the antigen. Binding to the anti-elicitor antibody was observed over the cell wall and the germ pore of germinating uredospores. Immunogold staining was found over the infection structures of stem rust within the wheat leaf tissue of both the compatible and incompatible plant-pathogen interaction. Distinct cell wall layers of the intercellular mycelium, of the haustorial mother cells, as well as of the haustoria were clearly labeled. Gold particles were also detected over the intercellular space and the extrahaustorial matrix in between the extrahaustorial membrane and the haustorial cell wall which indicated a release of elicitor molecules from the fungal cell wall. No labeling was observed over the host cell cytoplasm of the compatible and incompatible interaction, respectively. The immunocytochemical detection of elicitor epitopes over the hyphal cell walls of in vitro grown axenic cultures of P. graminis f.sp. tritici confirmed the occurrence of elicitor molecules in young hyphal material. Elicitor molecules were released by the hyphae of axenic cultures of stem rust in vitro.

  1. Identification of genes involved in stem rust resistance from wheat mutant D51 with the cDNA-AFLP technique.

    Science.gov (United States)

    Yin, Jing; Wang, Guangjin; Xiao, Jialei; Ma, Fengming; Zhang, Hongji; Sun, Yan; Diao, Yanling; Huang, Jinghua; Guo, Qiang; Liu, Dongjun

    2010-02-01

    Wheat (Triticum aestivum L.) stem rust caused by Puccinia graminis f. sp. tritici is one of the main diseases of wheat worldwide. Wheat mutant line D51, which was derived from the highly susceptible cultivar L6239, shows resistance to the prevailing races 21C3CPH, 21C3CKH, and 21C3CTR of P. graminis f. sp. tritici in China. In this study, we used the cDNA-AFLP technology to identify the genes that are likely involved in the stem rust resistance. EcoRI/MseI selective primers were used to generate approximately 1920 DNA fragments. Seventy five differentially transcribed fragments (3.91%) were identified by comparing the samples of 21C3CPH infected D51 with infected L6239 or uninfected D51. Eleven amplified cDNA fragments were sequenced. Eight showed significant similarity to known genes, including TaLr1 (leaf rust resistance gene), wlm24 (wheat powdery mildew resistance gene), stress response genes and ESTs of environment stress of tall fescue. These identified genes are involved in plant defense response and stem rust resistance and need further research to determine their usefulness in breeding new resistance cultivars.

  2. Mapping of SrTm4, a Recessive Stem Rust Resistance Gene from Diploid Wheat Effective to Ug99.

    Science.gov (United States)

    Briggs, Jordan; Chen, Shisheng; Zhang, Wenjun; Nelson, Sarah; Dubcovsky, Jorge; Rouse, Matthew N

    2015-10-01

    Race TTKSK (or Ug99) of Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, is a serious threat to wheat production worldwide. Diploid wheat, Triticum monococcum (genome Am), has been utilized previously for the introgression of stem rust resistance genes Sr21, Sr22, and Sr35. Multipathotype seedling tests of biparental populations demonstrated that T. monococcum accession PI 306540 collected in Romania contains a recessive resistance gene effective to all P. graminis f. sp. tritici races screened, including race TTKSK. We will refer to this gene as SrTm4, which is the fourth stem rust resistance gene characterized from T. monococcum. Using two mapping populations derived from crosses of PI 272557×PI 306540 and G3116×PI 306540, we mapped SrTm4 on chromosome arm 2AmL within a 2.1 cM interval flanked by sequence-tagged markers BQ461276 and DR732348, which corresponds to a 240-kb region in Brachypodium chromosome 5. The eight microsatellite and nine sequence-tagged markers linked to SrTm4 will facilitate the introgression and accelerate the deployment of SrTm4-mediated Ug99 resistance in wheat breeding programs.

  3. Subcellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase Rpg1.

    Science.gov (United States)

    Nirmala, Jayaveeramuthu; Brueggeman, Robert; Maier, Christina; Clay, Christine; Rostoks, Nils; Kannangara, C Gamini; von Wettstein, Diter; Steffenson, Brian J; Kleinhofs, Andris

    2006-05-09

    The Rpg1 gene confers resistance to many pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici and has protected barley from serious disease losses for over 60 years. Rpg1 encodes a constitutively expressed protein with two tandem kinase domains. Fractionation by differential centrifugation and aqueous two-phase separation of the microsome proteins located Rpg1 mainly in the cytosol but also in the plasma membrane and intracellular membranes. Recombinant Rpg1 autophosphorylates in vitro intramolecularly only serine and threonine amino acids with a preference for Mn(2+) cations and a K(m) of 0.15 and a V(max) of 0.47 nmol.min(-1).mg(-1) protein. The inability of wild-type Rpg1 to transphosphorylate a recombinant Rpg1 inactivated by site-directed mutation confirmed that Rpg1 autophosphorylation proceeds exclusively via an intramolecular mechanism. Site-directed mutagenesis of the two adjacent lysine residues in the ATP anchor of the two-kinase domains established that the first of the two tandem kinase domains is nonfunctional and that lysine 461 of the second domain is the catalytically active residue. Transgenic barley, expressing Rpg1 mutated in either the kinase 1 or 2 domains, were fully susceptible to P. graminis f. sp. tritici revealing requirement of both kinase domains for resistance. In planta-expressed Rpg1 mutant protein confirmed that mutation in domain 2, but not 1, rendered the protein incapable of autophosphorylation.

  4. [Antifungal activity of aqueous extracts from the leaf of cowparsnip and comfrey].

    Science.gov (United States)

    Karavaev, V A; Solntsev, M K; Iurina, T P; Iurina, E V; Poliakova, I B; Kuznetsov, A M

    2001-01-01

    We found that extracts from the leaves of medicinal comfrey and cowparsnip strongly inhibit the germination of Erysiphe graminis conidia and uredospores of Puccinia graminis. Spraying wheat seedlings with these extracts, in contrast to the irrigation of soil, markedly diminished infection in plants with powdery mildew. Antifungal activity in vitro and protective activity (when plants were sprayed) correlated with the level of phenolic compounds in these extracts. Experiments with healthy plants have demonstrated that the photosynthetic apparatus of wheat plants is stimulated by extracts. Spraying seedlings with the extracts resulted in an increased rate of O2 evolution calculated per unit of chlorophyll, an increase in the ratio (FM-FT)/FT in the experiments that recorded slow fluorescence induction, an increase in the relative light intensity of band A, and a decrease of relative intensity of band C in experiments with thermoluminescence of wheat leaves. These results provide evidence that the protective activity of comfrey and cowparsnip extracts is associated with their action on the pathogenic fungus and with the activation of natural defense reactions of the host plant.

  5. Nature of induced mutations affecting disease reaction in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1977-01-01

    Three genes, Lr20, Sr15 and Pml conferring resistance to some strains of Puccinia recondita, P. graminis tritici and Erysiphe graminis tritici, respectively, have never been observed to undergo genetic recombination. Since genotypes possessing one of the alleles always possessed the other two, the hypothesis of one gene with pleiotropic effects was tested. Seeds of a homozygous line possessing the gene(s) in coupling with a recessive chlorophyll marker, cn-Ala, were treated with three levels of EMS. Very high rates of mutation were observed. Changes with respect to Pml were independent of changes with respect to Lr20 and Sr15 indicating molecular independence of the product of the Pml allele. On the other hand, all instances of change with respect to Lr20 were associated with changes of Sr15. With both Lr20 and Sr15 a range of variation in infection types produced by the mutant lines was established but the rankings of the degree of change monitored by the respective pathogens were not identical. It is suggested that the same host gene product is recognized by the products of the avirulence alleles of the two rust pathogens. Screening with virulent counterparts of the three pathogens failed to detect instances of obvious mutations producing new resistances. The results are considered in relation to the gene-for-gene hypothesis. (author)

  6. Prospects for Advancing Defense to Cereal Rusts through Genetical Genomics

    Directory of Open Access Journals (Sweden)

    Elsa eBallini

    2013-05-01

    Full Text Available Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99, was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina and stripe rust (Puccinia striiformis have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals.

  7. Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci

    Directory of Open Access Journals (Sweden)

    Christina A. Cuomo

    2017-02-01

    Full Text Available Three members of the Puccinia genus, Puccinia triticina (Pt, P. striiformis f.sp. tritici (Pst, and P. graminis f.sp. tritici (Pgt, cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt. We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs/kb] nearly twice the level detected in Pt (2.57 SNPs/kb and that previously reported for Pgt. Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3 mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS of the HD and STE3 alleles reduced wheat host infection.

  8. Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat.

    Science.gov (United States)

    Singh, A; Pandey, M P; Singh, A K; Knox, R E; Ammar, K; Clarke, J M; Clarke, F R; Singh, R P; Pozniak, C J; Depauw, R M; McCallum, B D; Cuthbert, R D; Randhawa, H S; Fetch, T G

    2013-02-01

    Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.

  9. Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley.

    Science.gov (United States)

    Steffenson, B J; Jin, Y; Brueggeman, R S; Kleinhofs, A; Sun, Y

    2009-10-01

    Race TTKSK (Ug99) of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici) is a serious threat to both wheat and barley production worldwide because of its wide virulence on many cultivars and rapid spread from eastern Africa. Line Q21861 is one of the most resistant barleys known to this race. To elucidate the genetics of resistance in this line, we evaluated the Q21861/SM89010 (Q/SM) doubled-haploid population for reaction to race TTKSK at the seedling stage. Segregation for resistance:susceptibility in Q/SM doubled-haploid lines fit a 1:1 ratio (58:71 with chi2=1.31 and P=0.25), indicating that a single gene in Q21861 confers resistance to race TTKSK. In previous studies, a recessive gene (rpg4) and a partially dominant gene (Rpg5) were reported to control resistance to P. graminis f. sp. tritici race QCCJ and P. graminis f. sp. secalis isolate 92-MN-90, respectively, in Q21861. These resistance genes co-segregate with each other in the Q/SM population and were mapped to the long arm of chromosome 5H. Resistance to race TTKSK also co-segregated with resistance to both rusts, indicating that the gene conferring resistance to race TTKSK also lies at the rpg4/Rpg5 locus. This result was confirmed through the molecular analysis of recombinants previously used to characterize loci conferring resistance to race QCCJ and isolate 92-MN-90. The 70-kb region contains Rpg5 (a nucleotide-binding site leucine-rich repeat serine/threonine-protein kinase gene), rpg4 (an actin depolymerizing factor-like gene), and two other genes of unidentified function. Research is underway to resolve which of the genes are required for conferring resistance to race TTKSK. Regardless, the simple inheritance should make Q21861 a valuable source of TTKSK resistance in barley breeding programs.

  10. Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene.

    Science.gov (United States)

    Arora, D; Gross, T; Brueggeman, R

    2013-11-01

    A highly virulent form of the wheat stem rust pathogen Puccinia graminis f. sp. tritici race TTKSK is virulent on both wheat and barley, presenting a major threat to world food security. The recessive and temperature-sensitive rpg4 gene is the only effective source of resistance identified in barley (Hordeum vulgare) against P. graminis f. sp. tritici race TTKSK. Efforts to position clone rpg4 localized resistance to a small interval on barley chromosome 5HL, tightly linked to the rye stem rust (P. graminis f. sp. secalis) resistance (R) gene Rpg5. High-resolution genetic analysis and post-transcriptional gene silencing of the genes at the rpg4/Rpg5 locus determined that three tightly linked genes (Rpg5, HvRga1, and HvAdf3) are required together for rpg4-mediated wheat stem rust resistance. Alleles of the three genes were analyzed from a diverse set of 14 domesticated barley lines (H. vulgare) and 8 wild barley accessions (H. vulgare subsp. spontaneum) to characterize diversity that may determine incompatibility (resistance). The analysis determined that HvAdf3 and HvRga1 code for predicted functional proteins that do not appear to contain polymorphisms determining the compatible (susceptible) interactions with the wheat stem rust pathogen and were expressed at the transcriptional level from both resistant and susceptible barley lines. The HvAdf3 alleles shared 100% amino acid identity among all 22 genotypes examined. The P. graminis f. sp. tritici race QCCJ-susceptible barley lines with HvRga1 alleles containing the limited amino acid substitutions unique to the susceptible varieties also contained predicted nonfunctional rpg5 alleles. Thus, susceptibility in these lines is likely due to the nonfunctional RPG5 proteins. The Rpg5 allele analysis determined that 9 of the 13 P. graminis f. sp. tritici race QCCJ-susceptible barley lines contain alleles that either code for predicted truncated proteins as the result of a single nucleotide substitution, resulting in a

  11. Control biológico de la pudrición basal del tallo en Crisantemo (Dendranthema grandiflorum ocasionada por Sclerotinia sclerotiorum con algunos aislamientos de Trichoderma sp. y Gliocladium sp.

    Directory of Open Access Journals (Sweden)

    Valencia Jenny

    1999-12-01

    Full Text Available

    EI hongo Sclerotinia sclerotiorum ocasiona perdidas apreciables en diversos cultivos de flores y hortalizas. La investigación consistió en evaluar la capacidad antagónica de algunos aislamientos de Trichoderma sp. Y Gliocladium sp. Sobre Sclerotinia sclerotiorum, tanto in vitro, como en plantas de crisantemo. Los mejores antagonistas del patógeno in vitro fueron los aislamientos G-8B y G-98 de Gliocladium sp. y los aislamientos T-2IB y T-34B de Trichoderma sp. Los dos aislamientos de Gliocladium sp. Formaron un halo de inhibición alrededor de la colonia del patógeno, mientras que los aislamientos de Trichoderma sp. Produjeron esporulación abundante sobre las colonias del patógeno. Los mejores tratamientos en el control de la enfermedad en plantas de crisantemo fueron los aislamientos T-2IB y T-34B de Trichoderma sp. y el aislamiento G-8B de Gliocladium sp., con un menor índice y una menor severidad de la enfermedad. La metodología de evaluación in vitro utilizada en la investigación fue confiable, ya que los resultados encontrados en el laboratorio fueron bastante similares a los obtenidos en el ensayo de invernadero. Además, los aislamientos de Trichoderma y de Gliocladium utilizados ocasionaron un estimulo apreciable en el crecimiento de las plantas y un adelanto en la floración.

     

    Palabras claves: Antagonismo in vitro, estimulo crecimiento, adelanto floración

     

  12. Synthèse de complexes métallo-salen et dérivés pour la biocatalyse et l'assemblage supramoléculaire

    OpenAIRE

    Lecarme, Lauréline

    2014-01-01

    We prepared salen and dipyrrophenolate iron complexes involving electron rich (tertbutyland methoxy substituents) phenolate moieties. Their oxidative chemistry leads to radicalspecies, one of them being characterized by X-Ray diffraction. The manganese and copperdipyrrophenolate complexes were also synthesized and oxidized, affording radical species.The first ones are efficient catalysts for the oxygenation of olefins, while the second ones areactive towards alcohol oxidation.Functionnalizati...

  13. Preservação de urediniósporos de Puccinia melanocephala, agente causal de ferrugem em cana-de-açúcar Preservation of uredospores of Puccinia melanocephala, the causal agent of sugarcane rust

    Directory of Open Access Journals (Sweden)

    Ely Oliveira Garcia

    2007-06-01

    Full Text Available A sazonalidade na manifestação da ferrugem da cana dificulta a obtenção de esporos em quantidades adequadas para inoculações em qualquer época do ano, restringindo os trabalhos envolvendo o patógeno aos meses nos quais a doença esta presente no campo. O trabalho visou desenvolver uma metodologia para preservar os esporos por períodos prolongados, mantendo sua viabilidade e infectividade. Esporos foram coletados a partir de folhas naturalmente infectadas, com bomba de vácuo. Parte dos esporos foi desidratada por liofilização ou em sílica gel e outra parte não passou por desidratação. Armazenaram-se estes esporos em diferentes temperaturas (temp. ambiente, 5ºC, -20 ºC, -80ºC. Periodicamente, a viabilidade dos esporos foi avaliada por meio de plaqueamento em ágar-água. Após o quarto mês, foi também avaliada a infectividade dos esporos armazenados por meio de inoculações na variedade suscetível SP70-1143, seguida da avaliação da área foliar atacada. Os esporos armazenados à temperatura ambiente e a 5ºC, independentemente da desidratação, permaneceram viáveis por períodos máximos de 1 mês e 2 meses, respectivamente. Os melhores tratamentos consistiram na desidratação em sílica gel, seguida pelo armazenamento à -20ºC e -80ºC. Mesmo após um ano de armazenamento nestas condições, os esporos provocaram ferrugem nas plantas inoculadas, em níveis de severidade adequados para um teste de discriminação de reações à ferrugem.The seasonality in the appearance of sugarcane rust makes it difficult to obtain in any season of year, adequate quantities uredospores for artificial inoculations in a breeding program. This research aimed to develop a long-term storage methodology to preserve uredospores of Puccicinia melanocephala to keep their viability and infectivity. Uredospores were collect using a vacuum pump from naturally rusted leaves. Part of these uredospores was dehydrated in silica gel or lyophilized and the other part was not dehydrated. Then they were all stored at different temperatures (room temperature, 5ºC, -20ºC and -80ºC. Subsequently, uredospores viability was periodically evaluated using the water-agar method. After the fourth month, the infectivity was also evaluated through inoculations in leaves of the sugarcane susceptible variety SP70-1143 following disease evaluation. Regardless of the dehydration treatment used, uredospores stored at room temperature and at 5ºC were viable for the maximum periods of 1 and 2 months, respectively. The best results were obtained with the silica gel dehydration treatment followed by storage at -20ºC or -80ºC. Even after one year of storage, these uredospores were able to cause rust in inoculated plants at levels of severity which are adequate to start screening tests for sugarcane resistance to rust.

  14. Болести кај житните култури во Република Македонија

    OpenAIRE

    Karov, Ilija; Mitrev, Sasa; Kovacevik, Biljana; Ristova, Daniela; Arsov, Emilija

    2006-01-01

    Во текот на мај и јуни 2006 и 2007 беше проверувана здравствената состојба на површините посеани со пченица и јачмен во следните реони на Република Македонија: Скопје, Штип,Кочани, Куманово, Пробиштип, Свети Николе и Битола. Притоа беа забележани повеќе габни заболувања од кои најголемо економско значење имаа: Puccinia graminis, Blumeria graminis f.sp tritici, Tapesia yallundae и Mycosaphaerella graminicola. Притоа се утврдени тереутосоруси, уредоспори и телеутоспори од габата Puccinia gramin...

  15. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat.

    Directory of Open Access Journals (Sweden)

    Long-Xi Yu

    Full Text Available Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn. is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race-specific genes or complex adult plant resistance is necessary to achieve durability. In the present study, we applied genome-wide association studies (GWAS for identifying loci associated with the Ug99 stem rust resistance (SR in a panel of wheat lines developed at the International Maize and Wheat Improvement Center (CIMMYT. Genotyping was carried out using the wheat 9K iSelect single nucleotide polymorphism (SNP chip. Phenotyping was done in the field in Kenya by infection of Puccinia graminis f. sp. tritici race TTKST, the Sr24-virulent variant of Ug99. Marker-trait association identified 12 SNP markers significantly associated with resistance. Among them, 7 were mapped on five chromosomes. Markers located on chromosomes 4A and 4B overlapped with the location of the Ug99 resistance genes SrND643 and Sr37, respectively. Markers identified on 7DL were collocated with Sr25. Additional significant markers were located in the regions where no Sr gene has been reported. The chromosome location for five of the SNP markers was unknown. A BLASTN search of the NCBI database using the flanking sequences of the SNPs associated with Ug99 resistance revealed that several markers were linked to plant disease resistance analogues, while others were linked to regulatory factors or metabolic enzymes. A KASP (Kompetitive Allele Specific PCR assay was used for validating six marker loci linked to genes with resistance to Ug99. Of those, four co-segregated with the Sr25-pathotypes while the rest identified unknown resistance genes. With further investigation, these markers can be used for marker-assisted selection in breeding for Ug99 stem rust resistance in wheat.

  16. INOCULACIÓN IN VITRO DE LA ROYA BLANCA (Puccinia horiana HENNINGS EN CRISANTEMO (Dendranthema grandiflora TZVELEV

    Directory of Open Access Journals (Sweden)

    C\\u00E9sar Vences-Contreras

    2008-01-01

    Full Text Available El presente estudio tuvo como finalidad el desarrollar la técnica de inoculación in vitro de la roya blanca, con el objeto de ahorrar tiempo y espacio en la caracterización de los distintos cultivares de crisantemo respecto al grado de susceptibilidad o resistencia a este patógeno. En Tenancingo, Estado de México, en el periodo 2004-2005 se colectaron hojas de crisantemo que presentaban daños por la enfermedad, se desinfectaron para posteriormente inocular las pústulas sobre plantas creciendo bajo condiciones in vitro. El recipiente de cultivo se mantuvo a una humedad relativa alrededor del 95% y temperaturas entre los 13 y 27 ºC, bajo condiciones de luz y oscuridad. Los daños por la enfermedad se manifestaron a los 20 días después de la inoculación. Los tratamientos a 17 ºC y oscuridad generaron un mayor número de pústulas (18,7. El diámetro de las pústulas fluctuó entre los 0,71 mm (tratamientos con 17 ºC y luz a los 1,79 mm en los tratamientos con 19 ºC y bajo oscuridad.

  17. First report of Puccinia psidii caused rust-disease epiphytotic on the invasive shrub Rhodomyrtus tomentosa in Florida

    Science.gov (United States)

    Rhodomyrtus tomentosa (Aiton) Hassk. (downy-rose myrtle, Family: Myrtaceae) of south Asian origin is an invasive shrub that has formed monotypic stands in Florida. During the winter and spring of 2010-2012, a rust disease of epiphytotic proportion was observed on young foliage, stem terminals and i...

  18. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis

    DEFF Research Database (Denmark)

    Walter, Stephanie; Ali, Sajid; Kemen, Eric

    2016-01-01

    .g., the spreading of two aggressive and high temperature adapted strains to three continents since 2000. The combination of sequence-characterized amplified region (SCAR) markers, which were developed from two specific AFLP fragments, differentiated the two invasive strains, PstS1 and PstS2 from all other P....... striiformis strains investigated at a worldwide level. The application of the SCAR markers on 566 isolates showed that PstS1 was present in East Africa in the early 1980s and then detected in the Americas in 2000 and in Australia in 2002. PstS2 which evolved from PstS1 became widespread in the Middle East...... as the most plausible origin of the two invasive strains. The SCAR markers developed in the present study provide a rapid, inexpensive, and efficient tool to track the distribution of P. striiformis invasive strains, PstS1 and PstS2....

  19. Haplotype divergence and multiple candidate genes at Rphq2, a partial resistance QTL of barley to Puccinia hordei

    Czech Academy of Sciences Publication Activity Database

    Yeo, F. K. S.; Wang, Y.; Vozábová, Tereza; Huneau, C.; LeRoy, P.; Chalhoub, B.; Qi, X. Q.; Niks, R. E.; Marcel, T. C.

    2016-01-01

    Roč. 129, č. 2 (2016), s. 289-304 ISSN 0040-5752 Institutional support: RVO:67985939 Keywords : cartial resistance genes * cloning * Hordeum vulgare Subject RIV: EF - Botanics Impact factor: 4.132, year: 2016

  20. Host status of false brome grass to the leaf rust fungus Puccinia brachypodii and the stripe rust fungus P. Striiformis

    NARCIS (Netherlands)

    Barbieri, M.; Marcel, T.C.; Niks, R.E.

    2011-01-01

    Purple false brome grass (Brachypodium distachyon) has recently emerged as a model system for temperate grasses and is also a potential model plant to investigate plant interactions with economically important pathogens such as rust fungi. We determined the host status of five Brachypodium species