WorldWideScience

Sample records for tailoring iron chelation

  1. Iron Chelation

    Science.gov (United States)

    Skip to main content Menu Donate Treatments Therapies Iron Chelation Iron chelation therapy is the main treatment ... have iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you ...

  2. Clinical efficacy and safety evaluation of tailoring iron chelation practice in thalassaemia patients from Asia-Pacific: a subanalysis of the EPIC study of deferasirox.

    Science.gov (United States)

    Viprakasit, Vip; Ibrahim, Hishamshah; Ha, Shau-Yin; Ho, Phoebe Joy; Li, Chi-Kong; Chan, Lee-Lee; Chiu, Chang-Fang; Sutcharitchan, Pranee; Habr, Dany; Domokos, Gabor; Roubert, Bernard; Xue, Hong-Ling; Bowden, Donald K; Lin, Kai-Hsin

    2011-03-01

    Although thalassaemia is highly prevalent in the Asia-Pacific region, clinical data on efficacy and safety profiles of deferasirox in patients from this region are rather limited. Recently, data from the multicentre Evaluation of Patients' Iron Chelation with Exjade (EPIC) study in 1744 patients with different anaemias has provided an opportunity to analyse 1115 thalassaemia patients, of whom 444 patients were from five countries in the Asia-Pacific region (AP) for whom thalassaemia management and choice of iron chelators were similar. Compared to the rest of the world (ROW), baseline clinical data showed that the AP group appeared to be more loaded with iron (3745.0 vs. 2822.0 ng/ml) and had a higher proportion on deferoxamine monotherapy prior to the study (82.9 vs. 58.9%). Using a starting deferasirox dose based on transfusional iron intake and tailoring it to individual patient response, clinical efficacy based on serum ferritin reduction in AP and ROW thalassaemia patients was similar. Interestingly, the AP group developed a higher incidence of drug-related skin rash compared to ROW (18.0 vs. 7.2%), which may indicate different pharmacogenetic backgrounds in the two populations. Our analysis confirms that, with appropriate adjustment of dose, deferasirox can be clinically effective across different regions, with manageable side effects.

  3. Tailoring iron chelation by iron intake and serum ferritin: the prospective EPIC study of deferasirox in 1744 patients with transfusion-dependent anemias

    Science.gov (United States)

    Cappellini, Maria Domenica; Porter, John; El-Beshlawy, Amal; Li, Chi-Kong; Seymour, John F.; Elalfy, Mohsen; Gattermann, Norbert; Giraudier, Stéphane; Lee, Jong-Wook; Chan, Lee Lee; Lin, Kai-Hsin; Rose, Christian; Taher, Ali; Thein, Swee Lay; Viprakasit, Vip; Habr, Dany; Domokos, Gabor; Roubert, Bernard; Kattamis, Antonis

    2010-01-01

    Background Following a clinical evaluation of deferasirox (Exjade®) it was concluded that, in addition to baseline body iron burden, ongoing transfusional iron intake should be considered when selecting doses. The 1-year EPIC study, the largest ever investigation conducted for an iron chelator, is the first to evaluate whether fixed starting doses of deferasirox, based on transfusional iron intake, with dose titration guided by serum ferritin trends and safety markers, provides clinically acceptable chelation in patients (aged ≥2 years) with transfusional hemosiderosis from various types of anemia. Design and Methods The recommended initial dose was 20 mg/kg/day for patients receiving 2–4 packed red blood cell units/month and 10 or 30 mg/kg/day was recommended for patients receiving less or more frequent transfusions, respectively. Dose adjustments were based on 3-month serum ferritin trends and continuous assessment of safety markers. The primary efficacy end-point was change in serum ferritin after 52 weeks compared with baseline. Results The 1744 patients enrolled had the following conditions; thalassemia (n=1115), myelodysplastic syndromes (n=341), aplastic anemia (n=116), sickle cell disease (n=80), rare anemias (n=43) and other transfused anemias (n=49). Overall, there was a significant reduction in serum ferritin from baseline (−264 ng/mL; P5%) adverse events were gastrointestinal disturbances (28%) and skin rash (10%). Conclusions Analysis of this large, prospectively collected data set confirms the response to chelation therapy across various anemias, supporting initial deferasirox doses based on transfusional iron intake, with subsequent dose titration guided by trends in serum ferritin and safety markers (clinicaltrials.gov identifier: NCT00171821). PMID:19951979

  4. Tailoring iron chelation by iron intake and serum ferritin: the prospective EPIC study of deferasirox in 1744 patients with transfusion-dependent anemias.

    Science.gov (United States)

    Cappellini, Maria Domenica; Porter, John; El-Beshlawy, Amal; Li, Chi-Kong; Seymour, John F; Elalfy, Mohsen; Gattermann, Norbert; Giraudier, Stéphane; Lee, Jong-Wook; Chan, Lee Lee; Lin, Kai-Hsin; Rose, Christian; Taher, Ali; Thein, Swee Lay; Viprakasit, Vip; Habr, Dany; Domokos, Gabor; Roubert, Bernard; Kattamis, Antonis

    2010-04-01

    Background Following a clinical evaluation of deferasirox (Exjade) it was concluded that, in addition to baseline body iron burden, ongoing transfusional iron intake should be considered when selecting doses. The 1-year EPIC study, the largest ever investigation conducted for an iron chelator, is the first to evaluate whether fixed starting doses of deferasirox, based on transfusional iron intake, with dose titration guided by serum ferritin trends and safety markers, provides clinically acceptable chelation in patients (aged >or=2 years) with transfusional hemosiderosis from various types of anemia. The recommended initial dose was 20 mg/kg/day for patients receiving 2-4 packed red blood cell units/month and 10 or 30 mg/kg/day was recommended for patients receiving less or more frequent transfusions, respectively. Dose adjustments were based on 3-month serum ferritin trends and continuous assessment of safety markers. The primary efficacy end-point was change in serum ferritin after 52 weeks compared with baseline. The 1744 patients enrolled had the following conditions; thalassemia (n=1115), myelodysplastic syndromes (n=341), aplastic anemia (n=116), sickle cell disease (n=80), rare anemias (n=43) and other transfused anemias (n=49). Overall, there was a significant reduction in serum ferritin from baseline (-264 ng/mL; P5%) adverse events were gastrointestinal disturbances (28%) and skin rash (10%). Conclusions Analysis of this large, prospectively collected data set confirms the response to chelation therapy across various anemias, supporting initial deferasirox doses based on transfusional iron intake, with subsequent dose titration guided by trends in serum ferritin and safety markers (clinicaltrials.gov identifier: NCT00171821).

  5. Iron Chelation and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Kelsey J. Weigel

    2014-01-01

    Full Text Available Histochemical and MRI studies have demonstrated that MS (multiple sclerosis patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen.

  6. Combination therapies in iron chelation

    Directory of Open Access Journals (Sweden)

    Raffaella Origa

    2014-12-01

    Full Text Available The availability of oral iron chelators and new non-invasive methods for early detection and treatment of iron overload, have significantly improved the life expectancy and quality of life of patients with b thalassemia major. However, monotherapy is not effective in all patients for a variety of reasons. We analyzed the most relevant reports recently published on alternating or combined chelation therapies in thalassemia major with special attention to safety aspects and to their effects in terms of reduction of iron overload in different organs, improvement of complications, and survival. When adverse effects, such as gastrointestinal upset with deferasirox or infusional site reactions with deferoxamine are not tolerable and organ iron is in an acceptable range, alternating use of two chelators (drugs taken sequentially on different days, but not taken on the same day together may be a winning choice. The association deferiprone and deferoxamine should be the first choice in case of heart failure and when dangerously high levels of cardiac iron exist. Further research regarding the safety and efficacy of the most appealing combination treatment, deferiprone and deferasirox, is needed before recommendations for routine clinical practice can be made.

  7. Iron mobilization using chelation and phlebotomy

    DEFF Research Database (Denmark)

    Flaten, T. P.; Aaseth, J.; Andersen, Ole

    2012-01-01

    or subcutaneously, mostly on a daily basis. Thus, there is an obvious need to find and develop new effective iron chelators for oral use. In later years, particularly two such oral iron chelators have shown promise and have been approved for clinical use, namely deferiprone (Ferriprox) and deferasirox (Exjade...

  8. Importance of iron chelation therapy

    Directory of Open Access Journals (Sweden)

    A. Varoğlu

    2011-12-01

    Full Text Available It is necessary to remember that today patients have different options of chelation treatment, as desferrioxamine, deferiprone and deferasirox are available. However, a patient has to be compliant with treatments. They have always to remember that too much iron causes different complications and could be a barrier for a definitive cure from thalassemia. 由于出现了去铁胺、去铁酮和去铁斯若等药物,病人现在可以选择不同的螯合治疗方式。 然而,病人必须适应这几种治疗方式。 他们必须时刻记住太多的铁元素会引发多种并发症,并对地中海贫血的彻底治疗造成阻碍。

  9. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Directory of Open Access Journals (Sweden)

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  10. Recent developments centered on orally active iron chelators

    Directory of Open Access Journals (Sweden)

    Robert Hider

    2014-09-01

    Full Text Available Over the past twenty years there has been a growing interest in the orally active iron chelators, deferiprone and deferasirox, both have been extensively studied. The ability of these compounds to mobilize iron from the heart and endocrine tissue has presented the clinician with some advantages over desferrioxamine, the first therapeutic iron chelator. Other orally active iron chelators are currently under development. The critical features necessary for the design of therapeutically useful orally active iron chelators are presented in this review, together with recent studies devoted to the design of such chelators. This newly emerging range of iron chelators will enable clinicians to apply iron chelation methodology to other disease states and to begin to design personalized chelation regimes.

  11. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  12. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    Objectives: To examine the iron status of malnourished children by comparing bone marrow iron deposits in children with protein energy malnutrition with those in well-nourished controls, and measuring chelatable urinary iron excretion in children with kwashiorkor. Design: Bone marrow iron was assessed histologicaHy in ...

  13. Chelation of di- and trivalent iron with some polyaminopolycarboxylic acids

    International Nuclear Information System (INIS)

    Hafez, M.B.; Sharabi, Nahid; Patti, Francois.

    1979-02-01

    The chelation of di- and trivalent iron with some polyaminopolycarboxylic acids was studied. The influence of pH on the formation of the complex was investigated, the molecular ratio and the stability constants were determined [fr

  14. REGIONAL SIDEROSIS: A NEW CHALLENGE FOR IRON CHELATION THERAPY

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2013-12-01

    Full Text Available The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g. sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinson’s disease. We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation based on dual activity based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The scavenging and redeployment mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinson’s disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic

  15. Regional siderosis: a new challenge for iron chelation therapy.

    Science.gov (United States)

    Cabantchik, Zvi Ioav; Munnich, Arnold; Youdim, Moussa B; Devos, David

    2013-12-31

    The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g., sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinson's disease). We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation of dual activity, one based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The "scavenging and redeployment" mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinson's disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic functions.

  16. Hydroxyurea could be a good clinically relevant iron chelator.

    Directory of Open Access Journals (Sweden)

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  17. Oxidation-Induced Degradable Nanogels for Iron Chelation

    Science.gov (United States)

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-02-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.

  18. Targeted Iron Chelation Will Improve Recovery after Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    for glial replacement after mid-thoracic contusion injury or cervical lateral hemi-section injury. Our pilot data reveal that iron levels do not...did not improve open field locomotion (Figure 1B). Intriguingly, rats receiving vehicle (grape juice ) performed significantly worse than those...cord injury in animals given the iron chelator Exjade, vehicle (grape juice ) or nothing (control). A

  19. Studies on effect of Microbial Iron Chelators on Candida Albican

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.; Milicent, S.; Zaheer-Uddin

    2005-01-01

    Iron is an essential for the life of all microbe cells. It generally exists in the oxidized form Fe(III). Even under anaerobic reducing condition the metal appear to be taken up as Fe(III). Thus free-living microorganisms require specific and effective ferric ion transport system to cope with low availability of the metal. In iron deficient environment they produce a low molecular weight specific chelators called siderphores or microbial iron chelators. Siderphores compete for limited supplied of iron. These compounds came out of the cell but can not re-enter without iron due to high affinity of these siderphores often have more than one catechol/hydroxamate functions and are multidentate (usually hexadentate ligands). The aim of the present research is to check the effect of iron chelators, namely gallic acid and salisyl hydroxamate on the growth of Candida albican in vitro. C. albican is the opportunistic paltogen present as the normal flora inside human body. In vivo the growth of C. albican is distributed by the use of antibiotics and immuno suppressers. In cases of iron over-dosage in human being, the patients are treated with certain a-iron chelators. Hence an attempt is made to notice the effect that might be inhibition or enhancement of the organism in vitro. (author)

  20. The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study

    Directory of Open Access Journals (Sweden)

    Berdoussi Eleni

    2009-06-01

    Full Text Available Abstract Background Available iron chelation regimes in thalassaemia may achieve different changes in cardiac and hepatic iron as assessed by MR. The aim of this study was to assess the efficacy of four available iron chelator regimes in 232 thalassaemia major patients by assessing the rate of change in repeated measurements of cardiac and hepatic MR. Results For the heart, deferiprone and the combination of deferiprone and deferoxamine significantly reduced cardiac iron at all levels of iron loading. As patients were on deferasirox for a shorter time, a second analysis ("Initial interval analysis" assessing the change between the first two recorded MR results for both cardiac and hepatic iron (minimum interval 12 months was made. Combination therapy achieved the most rapid fall in cardiac iron load at all levels and deferiprone alone was significantly effective with moderate and mild iron load. In the liver, deferasirox effected significant falls in iron load and combination therapy resulted in the most rapid decline. Conclusion With the knowledge of the efficacy of the different available regimes and the specific iron load in the heart and the liver, appropriate tailoring of chelation therapy should allow clearance of iron. Combination therapy is best in reducing both cardiac and hepatic iron, while monotherapy with deferiprone or deferasirox are effective in the heart and liver respectively. The outcomes of this study may be useful to physicians as to the chelation they should prescribe according to the levels of iron load found in the heart and liver by MR.

  1. The iron chelator deferasirox protects mice from mucormycosis through iron starvation

    OpenAIRE

    Ibrahim, Ashraf S.; Gebermariam, Teclegiorgis; Fu, Yue; Lin,, Lin; Husseiny, Mohamed I.; French, Samuel W.; Schwartz, Julie; Skory, Christopher D.; Edwards, John E.; Spellberg, Brad J.

    2007-01-01

    Mucormycosis causes mortality in at least 50% of cases despite current first-line therapies. Clinical and animal data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the US FDA, is a highly effective treatment for mucormycosis. Deferasirox effectively chelated iron from Rhizopus oryzae and demonstrated cidal activity in vitro against 28 of 29 clinical...

  2. Iron chelating activity, phenol and flavonoid content of some ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... Thalassemia major is characterized by anemia, iron overload, further potentiation of reactive oxygen species (ROS) and damage to major organs, especially the cardiovascular system. Antioxidant and other supportive therapies protect red blood cells (RBC) against antioxidant damage. Chelation therapy.

  3. Management of transfusional iron overload – differential properties and efficacy of iron chelating agents

    Directory of Open Access Journals (Sweden)

    Kwiatkowski JL

    2011-09-01

    Full Text Available Janet L Kwiatkowski The Children's Hospital of Philadelphia, Division of Hematology and University of Pennsylvania School of Medicine, Philadelphia, PA, USA Abstract: Regular red cell transfusion therapy ameliorates disease-related morbidity and can be lifesaving in patients with various hematological disorders. Transfusion therapy, however, causes progressive iron loading, which, if untreated, results in endocrinopathies, cardiac arrhythmias and congestive heart failure, hepatic fibrosis, and premature death. Iron chelation therapy is used to prevent iron loading, remove excess accumulated iron, detoxify iron, and reverse some of the iron-related complications. Three chelators have undergone extensive testing to date: deferoxamine, deferasirox, and deferiprone (although the latter drug is not currently licensed for use in North America where it is available only through compassionate use programs and research protocols. These chelators differ in their modes of administration, pharmacokinetics, efficacy with regard to organ-specific iron removal, and adverse-effect profiles. These differential properties influence acceptability, tolerability and adherence to therapy, and, ultimately, the effectiveness of treatment. Chelation therapy, therefore, must be individualized, taking into account patient preferences, toxicities, ongoing transfusional iron intake, and the degree of cardiac and hepatic iron loading. Keywords: transfusion, iron, chelation, magnetic resonance imaging

  4. A ferric-chelate reductase for iron uptake from soils.

    Science.gov (United States)

    Robinson, N J; Procter, C M; Connolly, E L; Guerinot, M L

    1999-02-25

    Iron deficiency afflicts more than three billion people worldwide, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 in frd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils.

  5. Deferasirox, an oral chelator in the treatment of iron overload

    Directory of Open Access Journals (Sweden)

    I. Portioli

    2013-05-01

    Full Text Available BACKGROUND Deferasirox is a once-daily oral iron chelator developed for treating iron overload complicating long-term transfusion therapy in patients with diseases such as beta-thalassemia and myelodysplastic syndromes. Iron overload can damage the liver, pancreas and the heart. Deferoxamine, the only other drug approved for iron chelation, can prevent these effects but requires parenteral administration. Deferasirox has been approved after a one-year, open-label trial in patients ≥ 2 years old with beta-thalassemia and transfusional emosiderosis randomized to once-daily oral 5, 10, 20, 30 mg/kg/day in comparison of subcutaneous deferoxamine 20-60 mg/mg/kg/day x 5/week. CONCLUSIONS Deferasirox 20-30 mg/kg/day produced reductions in liver iron concentration (LIC similar to those with deferoxamine. Adverse effect of deferasirox (increases of serum creatinine and aminotransferases, including the gastrointestinal ones, are similar but more frequent than those occurring with deferoxamine. Information is lacking on the effects of deferasirox on cardiac iron and cardiac dysfunction which is the most serious complication of transfusional iron overload.

  6. Advances in iron chelation therapy: transitioning to a new oral formulation

    OpenAIRE

    Shah, Nirmish R.

    2017-01-01

    Iron overload is a concern for patients who require repeated red-blood-cell transfusions due to conditions such as sickle cell disease, thalassemia, or myelodysplastic syndromes. The recommended treatment for removing excess iron in these patients is iron chelation therapy. Currently available iron chelators include deferoxamine, which is administered by injection, and deferasirox and deferiprone, both of which are administered orally. Adherence to iron chelator therapy is an important consid...

  7. Iron chelators target both proliferating and quiescent cancer cells

    OpenAIRE

    Frykn?s, M?rten; Zhang, Xiaonan; Bremberg, Ulf; Senkowski, Wojciech; Olofsson, Maria H?gg; Brandt, Peter; Persson, Ingmar; D?Arcy, Padraig; Gullbo, Joachim; Nygren, Peter; Schughart, Leoni Kunz; Linder, Stig; Larsson, Rolf

    2016-01-01

    Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600. The compound-specific signature of VLX600 revealed a striking similarity to signatures generated by compounds known to chelate iron. Validation exp...

  8. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  9. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    Science.gov (United States)

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.

  10. Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion

    Directory of Open Access Journals (Sweden)

    Monica Pinheiro de Almeida Verissimo

    2013-01-01

    Full Text Available In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox providing good results in reducing cardiac, hepatic and endocrine toxicity. These practice guidelines, prepared by the Scientific Committee of Associação Brasileira de Thalassemia (ABRASTA, presents a review of the literature regarding iron overload assessment (by imaging and laboratory exams and the role of T2* magnetic resonance imaging (MRI to control iron overload and iron chelation therapy, with evidence-based recommendations for each clinical situation. Based on this review, the authors propose an iron chelation protocol for patients with thalassemia under regular transfusions.

  11. Antioxidant, Iron-chelating and Anti-glucosidase Activities of Typha ...

    African Journals Online (AJOL)

    Iron chelating activity was assessed using a ferrozine-based assay. Anti- glucosidase activity was determined using 4-nitrophenyl ... flavonoid (TF) content was determined based an aluminum chloride colorimetric assay [6]. TF content was ..... Dietary iron restriction or iron chelation protects from diabetes and loss of β-cell.

  12. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  13. Ascorbate status modulates reticuloendothelial iron stores and response to deferasirox iron chelation in ascorbate-deficient rats

    DEFF Research Database (Denmark)

    Brewer, Casey; Otto-Duessel, Maya; Lykkesfeldt, Jens

    2012-01-01

    that vitamin C supplementation would improve the availability of transfusional iron to DFX treatment by promoting iron's redox cycling, increasing its soluble ferrous form and promoting its release from reticuloendothelial cells. Osteogenic dystrophy rats (n = 54) were given iron dextran injections for 10......Iron chelation is essential to patients on chronic blood transfusions to prevent toxicity from iron overload and remove excess iron. Deferasirox (DFX) is the most commonly used iron chelator in the United States; however, some patients are relatively refractory to DFX therapy. We postulated...... weeks. Cardiac and liver iron levels were measured after iron loading (n = 18), 12 weeks of sham chelation (n = 18), and 12 weeks of DFX chelation (n = 18) at 75 mg/kg/day. Ascorbate supplementation of 150 ppm, 900 ppm, and 2250 ppm was used in the chow to mimic a broad range of ascorbate status; plasma...

  14. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols.

    Science.gov (United States)

    Layrisse, M; García-Casal, M N; Solano, L; Barón, M A; Arguello, F; Llovera, D; Ramírez, J; Leets, I; Tropper, E

    2000-09-01

    This study was conducted to determine the bioavailability of iron amino acid chelate (ferrochel) added to fortify breads prepared from either precooked corn flour or white wheat flour + cheese and margarine compared with the same basal breakfast enriched with either ferrous sulfate or iron-EDTA. The inhibitory effect of phytate and polyphenols on iron absorption from ferrochel was also tested. A total of 74 subjects were studied in five experiments. Iron absorption from ferrochel was about twice the absorption from ferrous sulfate (P: iron absorption in a dose-dependent manner. American-type coffee did not modify iron absorption significantly, whereas both espresso-type coffee and tea reduced iron absorption from ferrochel by 50% (P: food and high absorption, ferrochel is a suitable compound for food fortification.

  15. Antioxidant, Iron-chelating and Anti-glucosidase Activities of Typha ...

    African Journals Online (AJOL)

    Antioxidant, Iron-chelating and Anti-glucosidase Activities of Typha domingensis Pers (Typhaceae). T Chai, M Mohan, H Ong, F Wong. Abstract. Purpose: To evaluate the phytochemical profile as well as in vitro antioxidant, iron-chelating, and antiglucosidase activities of Typha domingensis Pers. (Typhaceae) Methods: Total ...

  16. Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions

    Directory of Open Access Journals (Sweden)

    Saliba AN

    2015-06-01

    Full Text Available Antoine N Saliba, Afif R Harb, Ali T Taher Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut, Beirut, Lebanon Abstract: Transfusional iron overload is a major target in the care of patients with transfusion-dependent thalassemia (TDT and other refractory anemias. Iron accumulates in the liver, heart, and endocrine organs leading to a wide array of complications. In this review, we summarize the characteristics of the approved iron chelators, deferoxamine, deferiprone, and deferasirox, and the evidence behind the use of each, as monotherapy or as part of combination therapy. We also review the different guidelines on iron chelation in TDT. This review also discusses future prospects and directions in the treatment of transfusional iron overload in TDT whether through innovation in chelation or other therapies, such as novel agents that improve transfusion dependence. Keywords: thalassemia, transfusion-dependent thalassemia, iron overload, iron chelation therapy, transfusion

  17. A rapid assay for evaluation of iron-chelating agents in rats

    International Nuclear Information System (INIS)

    Pippard, M.J.; Johnson, D.K.; Finch, C.A.

    1981-01-01

    The animal assay of potential new iron-chelating agents is at present dependent on cumbersome and imprecise iron balance studies in hypertransfused rodents. We report the development of a radioisotope assay in intact rats based on the transient labeling by ferritin 59Fe of the main source of chelatable iron within hepatocytes. The isotope was maximally available to chelators during the first 6 hr after its injection, nearly all the excretion being in the bile. The bile 59Fe/total iron ratio was independent of both the chelator and its dose. However, in iron-loaded rats, the ratio was reduced, and the isotope excretion was a less sensitive measure of intrahepatic chelation. In the proposed assay, test chelators were given to normal rats 2 hr after an intravenous injection of 59Fe-ferritin. Four hours later, the radioiron in the liver and in the gut gave a sensitive measure of the mobilization of hepatic iron to the bile. In addition, chemical iron determinations identified a small alternative source of urinary chelate with agents known to promote urine excretion in man. The assay gave a rapid and precise screen for chelators given by parenteral and oral routes

  18. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency.

    Science.gov (United States)

    Yi, Y; Guerinot, M L

    1996-11-01

    Reduction of Fe(III) to Fe(II) by Fe(III) chelate reductase is thought to be an obligatory step in iron uptake as well as the primary factor in making iron available for absorption by all plants except grasses. Fe(III) chelate reductase has also been suggested to play a more general role in the regulation of cation absorption. In order to experimentally address the importance of Fe(III) chelate reductase activity in the mineral nutrition of plants, three Arabidopsis thaliana mutans (frd1-1, frd1-2 and frd1-3), that do not show induction of Fe(III) chelate reductase activity under iron-deficient growth conditions, have been isolated and characterized. These mutants are still capable of acidifying the rhizosphere under iron-deficiency and accumulate more Zn and Mn in their shoots relative to wild-type plants regardless of iron status. frd1 mutants do not translocate radiolabeled iron to the shoots when roots are presented with a tightly chelated form of Fe(III). These results: (1) confirm that iron must be reduced before it can be transported, (2) show that Fe(III) reduction can be uncoupled from proton release, the other major iron-deficiency response, and (3) demonstrate that Fe(III) chelate reductase activity per se is not necessarily responsible for accumulation of cations previously observed in pea and tomato mutants with constitutively high levels of Fe(III) chelate reductase activity.

  19. Red Blood Cell Transfusion Independence Following the Initiation of Iron Chelation Therapy in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Maha A. Badawi

    2010-01-01

    Full Text Available Iron chelation therapy is often used to treat iron overload in patients requiring transfusion of red blood cells (RBC. A 76-year-old man with MDS type refractory cytopenia with multilineage dysplasia, intermediate-1 IPSS risk, was referred when he became transfusion dependent. He declined infusional chelation but subsequently accepted oral therapy. Following the initiation of chelation, RBC transfusion requirement ceased and he remained transfusion independent over 40 months later. Over the same time course, ferritin levels decreased but did not normalize. There have been eighteen other MDS patients reported showing improvement in hemoglobin level with iron chelation; nine became transfusion independent, nine had decreased transfusion requirements, and some showed improved trilineage myelopoiesis. The clinical features of these patients are summarized and possible mechanisms for such an effect of iron chelation on cytopenias are discussed.

  20. Clinically approved iron chelators influence zebrafish mortality, hatching morphology and cardiac function.

    Directory of Open Access Journals (Sweden)

    Jasmine L Hamilton

    Full Text Available Iron chelation therapy using iron (III specific chelators such as desferrioxamine (DFO, Desferal, deferasirox (Exjade or ICL-670, and deferiprone (Ferriprox or L1 are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.

  1. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.

    Science.gov (United States)

    Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V

    2017-10-01

    Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu 2+  ~ Al 3+  > Zn 2+  ≥ Ca 2+  ~ Mg 2+  ~ Mn 2+ (80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

  2. Advances in iron chelation therapy: transitioning to a new oral formulation

    Directory of Open Access Journals (Sweden)

    Nirmish R Shah

    2017-06-01

    Full Text Available Iron overload is a concern for patients who require repeated red-blood-cell transfusions due to conditions such as sickle cell disease, thalassemia, or myelodysplastic syndromes. The recommended treatment for removing excess iron in these patients is iron chelation therapy. Currently available iron chelators include deferoxamine, which is administered by injection, and deferasirox and deferiprone, both of which are administered orally. Adherence to iron chelator therapy is an important consideration and may be affected by side effects. A new formulation of deferasirox, a film-coated tablet (FCT, has the potential to improve adherence by offering greater flexibility in administration compared with the original formulation of deferasirox, a dispersible tablet (DT for oral suspension. This review provides an overview of the currently available iron chelator formulations, with a focus on a comparison between deferasirox DT for oral suspension and deferasirox FCT. The new formulation may be associated with fewer side effects and has increased bioavailability. In addition, alternative strategies for iron chelation, such as combining two different iron chelators, will be discussed.

  3. Advances in iron chelation therapy: transitioning to a new oral formulation.

    Science.gov (United States)

    Shah, Nirmish R

    2017-01-01

    Iron overload is a concern for patients who require repeated red-blood-cell transfusions due to conditions such as sickle cell disease, thalassemia, or myelodysplastic syndromes. The recommended treatment for removing excess iron in these patients is iron chelation therapy. Currently available iron chelators include deferoxamine, which is administered by injection, and deferasirox and deferiprone, both of which are administered orally. Adherence to iron chelator therapy is an important consideration and may be affected by side effects. A new formulation of deferasirox, a film-coated tablet (FCT), has the potential to improve adherence by offering greater flexibility in administration compared with the original formulation of deferasirox, a dispersible tablet (DT) for oral suspension. This review provides an overview of the currently available iron chelator formulations, with a focus on a comparison between deferasirox DT for oral suspension and deferasirox FCT. The new formulation may be associated with fewer side effects and has increased bioavailability. In addition, alternative strategies for iron chelation, such as combining two different iron chelators, will be discussed.

  4. Development of iron chelators for Cooley's anemia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, W.H.; Green, R.

    1982-01-26

    Iron chelators were screened in an iron-loaded rat model using selective radioiron probes. In all experiments, chelators D and F, in that order, induced significant loss of radioiron compared with controls. However, use of chelator D was associated with side effects, and resulted in the death of some animals. There was some evidence that chelator A also caused iron loss significantly greater than controls. Chelators B, C and E were without apparent enhancing effect on radioiron excretion. This was a blind study and the compounds used were A - 2,3-Dihydroxybenzoic acid; B - N,N1-Dimethyladipohydroxamic acid; C - DL-Phenylalanine hydroxamic acid; D - Ethylenediamine-N,N1-bis(2-hydroxphenylacetic acid); E - Propionohydroxamic acid; and F - Deferrioxamine B.

  5. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.

    Science.gov (United States)

    Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A

    2016-10-01

    Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. A Speciation Study on the Perturbing Effects of Iron Chelators on the Homeostasis of Essential Metal Ions.

    Science.gov (United States)

    Crisponi, Guido; Nurchi, Valeria Marina; Crespo-Alonso, Miriam; Sanna, Gavino; Zoroddu, Maria Antonietta; Alberti, Giancarla; Biesuz, Raffaela

    2015-01-01

    A number of reports have appeared in literature calling attention to the depletion of essential metal ions during chelation therapy on β-thalassaemia patients. We present a speciation study to determine how the iron chelators used in therapy interfere with the homeostatic equilibria of essential metal ions. This work includes a thorough analysis of the pharmacokinetic properties of the chelating agents currently in clinical use, of the amounts of iron, copper and zinc available in plasma for chelation, and of all the implied complex formation constants. The results of the study show that a significant amount of essential metal ions is complexed whenever the chelating agent concentration exceeds the amount necessary to coordinate all disposable iron--a frequently occurring situation during chelation therapy. On the contrary, copper and zinc do not interfere with iron chelation, except for a possible influence of copper on iron speciation during deferiprone treatment.

  7. Response of Different Irrigation on Nano Iron Chelated to Chamomile (Matricaria Chamomilla L. Genotypes

    Directory of Open Access Journals (Sweden)

    hamideh azade godjebigloo

    2017-12-01

    Full Text Available To study the effects of drought stress and foliar application of nano iron chelated on photosynthetic pigments, yield and yield component of thirteen genotypes of chamomile, a factorial experiment was conducted in a randomized complete block design with three replications at the Research Greenhouse of Zabol University in 2014. The experimental treatments were: drought stress at 2 levels (control or irrigation at 90% of field capacity and irrigation at 70% of field capacity, foliar application of nano iron chelate at 2 levels (control and 2 mg/l and 13 genotypes of chamomile consisting at: Isfahan, Mashhad, Shiraz, Kerman, Arak, Ardestan, Gachsaran, Nain, Khozestan, Safashahr, Kazeroon, Germany and Hungary. The results showed that besides the main effects of stress×genotype, the genotype×nano iron chelated and stress×nano iron chelated interactions and the triple effects were also became significant. Mean comparisons showed that the condition of genotypes at any level of stress and nano iron chelated had different trends. Using nano iron chelated in drought stress decreased chlorophyll a in Shiraz, Khozestan, Nain, Hungary and Germany genotypes, decreased chlorophyll b in genotypes of Isfahan, Kazeroon, Ardestan, Khozestan, Nain and Germany, decreased total chlorophyll in genotypes of Isfahan, Shiraz, Ardestan, Khozestan, Nain, Hungary and Germany and decreased anthocyanin content in Isfahan, Shiraz, Safashahr, Kazeroon, Khozestan and Germany genotypes. Using nano iron chelated in drought stress also caused a decrease in flower yield of Mashhad, Arak and Nain and a decrease per plant yield of Isfahan, Mashhad, Arak, Safashahr, Khozestan and Nain genotypes. The highest per plant yield (0.665 g. belonged to Kerman genotype, were achieved through non-stress and use of nano iron chelate treatments and the lowest per plant yield (0.164 g. to Arak genotype through the stress and non-spray treatments. Totally the interaction of chamomile genotypes to

  8. Randomised controlled trials of iron chelators for the treatment of cardiac siderosis in thalassaemia major

    Directory of Open Access Journals (Sweden)

    Arun John Baksi

    2014-09-01

    Full Text Available In conditions requiring repeated blood transfusion or where iron metabolism is abnormal, heart failure may result from accumulation of iron in the heart (cardiac siderosis. Death due to heart failure from cardiac iron overload has accounted for considerable early mortality in β-thalassemia major. The ability to detect iron loading in the heart by cardiovascular magnetic resonance using T2* sequences has created an opportunity to intervene in the natural history of such conditions. However, effective and well tolerated therapy is required to remove iron from the heart. There are currently 3 approved commercially available iron chelators: deferoxamine, deferiprone and deferasirox. We review the high quality randomised controlled trials in this area for iron chelation therapy in the management of cardiac siderosis.

  9. Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Jun-Peng Guo

    Full Text Available Patients of Alzheimer's disease (AD frequently have lower bone mineral density and higher rate of hip fracture. Tg2576, a well characterized AD animal model that ubiquitously express Swedish mutant amyloid precursor protein (APPswe, displays not only AD-relevant neuropathology, but also age-dependent bone deficits. However, the underlying mechanisms remain poorly understood. As APP is implicated as a regulator of iron export, and the metal chelation is considered as a potential therapeutic strategy for AD, we examined iron chelation's effect on the osteoporotic deficit in Tg2576 mice. Remarkably, in vivo treatment with iron chelator, clinoquinol (CQ, increased both trabecular and cortical bone-mass, selectively in Tg2576, but not wild type (WT mice. Further in vitro studies showed that low concentrations of CQ as well as deferoxamine (DFO, another iron chelator, selectively inhibited osteoclast (OC differentiation, without an obvious effect on osteoblast (OB differentiation. Intriguingly, both CQ and DFO's inhibitory effect on OC was more potent in bone marrow macrophages (BMMs from Tg2576 mice than that of wild type controls. The reduction of intracellular iron levels in BMMs by CQ was also more dramatic in APPswe-expressing BMMs. Taken together, these results demonstrate a potent inhibition on OC formation and activation in APPswe-expressing BMMs by iron chelation, and reveal a potential therapeutic value of CQ in treating AD-associated osteoporotic deficits.

  10. Iron Chelation Adherence to Deferoxamine and Deferasirox in Thalassemia

    Science.gov (United States)

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A.; Porter, John; Coates, Thomas; Giardina, Patricia J.; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J.

    2015-01-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed (chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine and deferasirox were quite high, with slightly higher adherence to the oral chelator (97 vs. 92%). Ninety percent of patients on deferasirox reported at least 90% adherence, compared with 75% of patients on deferoxamine. Adherence to both chelators was highest in children, followed by adolescents and older adults. Predictors of lower deferoxamine adherence were smoking in the past year, problems sticking themselves (adults only), problems wearing their pump, and fewer transfusions in the past year. Predictors of lower deferasirox adherence were bodily pain and depression. Switching chelators resulted in increased adherence, regardless of the direction of the switch, although switching from deferoxamine to deferasirox was far more common. As adherence to deferoxamine is higher than previously reported, it appears beneficial for patients to have a choice in chelators. PMID:21523808

  11. Inconsistent hepatic antifibrotic effects with the iron chelator deferasirox.

    Science.gov (United States)

    Sobbe, Amy; Bridle, Kim R; Jaskowski, Lesley; de Guzman, C Erika; Santrampurwala, Nishreen; Clouston, Andrew D; Campbell, Catherine M; Subramaniam, V Nathan; Crawford, Darrell H G

    2015-03-01

    Development of effective antifibrotic treatments that can be translated to clinical practice is an important challenge in contemporary hepatology. A recent report on β-thalassemia patients demonstrated that deferasirox treatment reversed or stabilized liver fibrosis independent of its iron-chelating properties. In this study, we investigated deferasirox in cell and animal models to better understand its potential antifibrotic effects. The LX-2 stellate cell line was treated with 5 μM or 50 μM deferasirox (Exjade, Novartis Pharmaceuticals Australia, North Ryde, NSW, Australia) for up to 120 h. Three-week-old multidrug resistance 2 null (Mdr2(-/-) ) mice received oral deferasirox or vehicle for 4 weeks (30 mg/kg/day). Cells and liver tissue were collected for assessment of fibrosis and fibrogenic gene expression. In LX-2 cells treated with 50 μM deferasirox for 12 h, α1(I)procollagen expression was decreased by 25%, with maximal reductions (10-fold) seen following 24-120 h of treatment. Similarly, α-smooth muscle actin (αSMA) expression was significantly lower. Alterations in matrix remodeling genes, specifically decreased expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2, were observed. There was no significant difference in hepatic hydroxyproline content in Mdr2(-/-) mice following deferasirox administration (vehicle: 395 ± 27 μg/g vs deferasirox: 421 ± 33 μg/g). Similarly, no changes in the expression of fibrogenic genes were observed. Despite reductions in α1(I)procollagen and αSMA expression and alterations in matrix degradation genes in LX-2 cells, deferasirox did not exhibit antifibrotic activity in Mdr2(-/-) mice. Given the positive outcomes seen in human trials, it may be appropriate to study deferasirox in other animal models of fibrosis and/or for a longer duration of therapy. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  12. Oral iron chelation and the treatment of iron overload in a pediatric hematology center.

    Science.gov (United States)

    Raphael, Jean L; Bernhardt, M Brooke; Mahoney, Donald H; Mueller, Brigitta U

    2009-05-01

    Recent advances have led to the development of oral iron chelators, which have changed clinical practice. The objective of this study was to descriptively assess the use of one such agent, deferasirox, as standard of care treatment in a large pediatric hematology center. We retrospectively studied all patients at the Texas Children's Hematology Center who were previously or currently treated with deferasirox. We gathered data on demographics, clinical diagnoses, length of time on chronic transfusions, previous use of deferoxamine, adherence to therapy, and reasons for discontinuation. We also assessed changes in serum ferritin, liver function tests, and creatinine for those on deferasirox for a minimum of 12 months. Fifty-nine patients were studied. Eighty-one percent of patients treated with deferasirox had a diagnosis of sickle cell disease. The mean baseline ferritin level for our study population was 2,117 ng/ml (range 754-7,211). Fifty-three percent of patients had been previously treated with deferoxamine. Adherence to oral therapy was documented in 76% of patients. For those on deferasirox for a minimum of 12 months, serum ferritin decreased in 30% of patients (44% of compliant patients, 11% of poorly compliant patients). Changes in creatinine and liver function tests were mild and did not result in long-term discontinuation of deferasirox in any cases. Outside of controlled clinical trials, deferasirox can be utilized safely as an oral iron chelator in children although adherence to therapy and the complex interaction of factors that contribute to iron overload still present challenges for clinicians. (c) 2009 Wiley-Liss, Inc.

  13. IRON CHELATING AND ANTIRADICAL ACTIVITY OF KAYU MANIK LEAVES (Trema orientalis

    Directory of Open Access Journals (Sweden)

    Salprima Yudha S.

    2011-11-01

    Full Text Available A methanol soluble fraction extracted from Kayu Manik leaves (Trema orientalis from Seluma, Bengkulu, exhibited an antiradical activity 69.73% (scavenging activity of the stable 1,1-diphenyl-2-picryl hydrazyl (DPPH free radical that was almost similar to that of 1 mM ascorbic acid. On the other hand, the iron chelating activity was 40.74%. We believe that it would be useful to take the results as an alternative for processing industries and can be observed as a good source of new agent for iron chelator.

  14. Reducing power and iron chelating property of Terminalia chebula (Retz. alleviates iron induced liver toxicity in mice

    Directory of Open Access Journals (Sweden)

    Sarkar Rhitajit

    2012-08-01

    Full Text Available Abstract Background The 70% methanol extract of Terminalia chebula Retz. fruit (TCME was investigated for its in vitro iron chelating property and in vivo ameliorating effect on hepatic injury of iron overloaded mice. Methods The effect of fruit extract on Fe2+-ferrozine complex formation and Fe2+ mediated pUC-18 DNA breakdown was studied in order to find the in vitro iron chelating activity. Thirty-six Swiss Albino mice were divided into six groups of: blank, patient control and treated with 50, 100, 200 mg/kg b.w. of TCME and desirox (standard iron chelator drug with Deferasirox as parent compound. Evaluations were made for serum markers of hepatic damage, antioxidant enzyme, lipid per oxidation and liver fibrosis levels. The reductive release of ferritin iron by the extract was further studied. Results In vitro results showed considerable iron chelation with IC50 of 27.19 ± 2.80 μg/ml, and a significant DNA protection with [P]50 of 1.07 ± 0.03 μg/ml along with about 86% retention of supercoiled DNA. Iron-dextran injection (i.p. caused significant increase in the levels of the serum enzymes, viz., alanine aminotransferase (ALAT, aspartate aminotransferase (ASAT, alkaline phosphatase (ALP and Bilirubin, which were subsequently lowered by oral administration of 200 mg/kg b.w. dose of the fruit extract by 81.5%, 105.88%, 188.08% and 128.31%, respectively. Similarly, treatment with the same dose of the extract was shown to alleviate the reduced levels of liver antioxidant enzyme superoxide dismutase, catalase, glutathione S-transferase and non-enzymatic reduced glutathione, by 49.8%, 53.5%, 35.4% and 11% respectively, in comparison to the iron overloaded mice. At the same time, the fruit extract effectively lowered the iron-overload induced raised levels of lipid per oxidation, protein carbonyl, hydroxyproline and liver iron by 49%, 67%, 67% and 26%, respectively, with oral treatment of 200 mg/kg b.w. dose of TCME. The fruit extract

  15. Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against Pseudomonas aeruginosa Growth and Biofilm Formation

    DEFF Research Database (Denmark)

    Liu, Yang; Yang, Liang; Molin, Søren

    2010-01-01

    The efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PA beta N) was paired with iron chelators 2,2'-dipyridyl, acetohydroxamic acid, and EDTA to assess synergistic activities against Pseudomonas aeruginosa growth and biofilm formation. All of the tested iron chelators synergistically...

  16. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review.

    Science.gov (United States)

    Delimont, Nicole M; Rosenkranz, Sara K; Haub, Mark D; Lindshield, Brian L

    2017-01-01

    Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme iron bioavailability with tannin consumption in vivo. Narrative systematic review and meta-analysis. Common themes in biochemical modeling and affinity studies were collated for summary and synthesis; data were extracted from in vivo experiments for meta-analysis. Thirty-two studies were included in analysis. Common themes that positively influenced tannin-PRP binding included specificity of tannin-PRP binding, PRP and tannin stereochemistry. Hydrolyzable tannins have different affinities than condensed tannins when binding to PRPs. In vivo, hepatic iron stores and non-heme iron absorption are not significantly affected by tannin consumption ( d  = -0.64-1.84; -2.7-0.13 respectively), and PRP expression may increase non-heme iron bioavailability with tannin consumption. In vitro modeling suggests that tannins favor PRP binding over iron chelation throughout digestion. Hydrolyzable tannins are not representative of tannin impact on non-heme iron bioavailability in food tannins because of their unique structural properties and PRP affinities. With tannin consumption, PRP production is increased, and may be an initial line of defense against tannin-non-heme iron chelation in vivo . More research is needed to compare competitive binding of tannin-PRP to tannin-non-heme iron complexes, and elucidate PRPs' role in adaption to non-heme iron bioavailability in vivo.

  17. Prooxidant and antioxidant properties of salicylaldehyde isonicotinoyl hydrazone iron chelators in HepG2 cells.

    Science.gov (United States)

    Caro, Andres A; Commissariat, Ava; Dunn, Caroline; Kim, Hyunjoo; García, Salvador Lorente; Smith, Allen; Strang, Harrison; Stuppy, Jake; Desrochers, Linda P; Goodwin, Thomas E

    2015-11-01

    Salicylaldehyde isonicotinoyl hydrazone (SIH) is an iron chelator of the aroylhydrazone class that displays antioxidant or prooxidant effects in different mammalian cell lines. Because the liver is the major site of iron storage, elucidating the effect of SIH on hepatic oxidative metabolism is critical for designing effective hepatic antioxidant therapies. Hepatocyte-like HepG2 cells were exposed to SIH or to analogs showing greater stability, such as N'-[1-(2-Hydroxyphenyl)ethyliden]isonicotinoyl hydrazide (HAPI), or devoid of iron chelating properties, such as benzaldehyde isonicotinoyl hydrazone (BIH), and toxicity, oxidative stress and antioxidant (glutathione) metabolism were evaluated. Autoxidation of Fe(2+)in vitro increased in the presence of SIH or HAPI (but not BIH), an effect partially blocked by Fe(2+) chelation. Incubation of HepG2 cells with SIH or HAPI (but not BIH) was non-toxic and increased reactive oxygen species (ROS) levels, activated the transcription factor Nrf2, induced the catalytic subunit of γ-glutamate cysteine ligase (Gclc), and increased glutathione concentration. Fe(2+) chelation decreased ROS and inhibited Nrf2 activation, and Nrf2 knock-down inhibited the induction of Gclc in the presence of HAPI. Inhibition of γ-glutamate cysteine ligase enzymatic activity inhibited the increase in glutathione caused by HAPI, and increased oxidative stress. SIH iron chelators display both prooxidant (increasing the autoxidation rate of Fe(2+)) and antioxidant (activating Nrf2 signaling) effects. Activation by SIH iron chelators of a hormetic antioxidant response contributes to their antioxidant properties and modulates the anti- and pro-oxidant balance. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Combined Iron Chelator and Antioxidant Exerted Greater Efficacy on Cardioprotection Than Monotherapy in Iron-Overloaded Rats.

    Directory of Open Access Journals (Sweden)

    Suwakon Wongjaikam

    Full Text Available Iron chelators are used to treat iron overload cardiomyopathy patients. However, a direct comparison of the benefits of three common iron chelators (deferoxamine (DFO, deferiprone (DFP and deferasirox (DFX or an antioxidant (N-acetyl cysteine (NAC with a combined DFP and NAC treatments on left ventricular (LV function with iron overload has not been investigated.Male Wistar rats were fed with either a normal diet or a high iron diet (HFe group for 4 months. After 2 months, the HFe-fed rats were divided into 6 groups to receive either: a vehicle, DFO (25 mg/kg/day, DFP (75 mg/kg/day, DFX (20 mg/kg/day, NAC (100 mg/kg/day or the combined DFP and NAC for 2 months. Our results demonstrated that HFe rats had increased plasma non-transferrin bound iron (NTBI, malondialdehyde (MDA, cardiac iron and MDA levels and cardiac mitochondrial dysfunction, leading to LV dysfunction. Although DFO, DFP, DFX or NAC improved these parameters, leading to improved LV function, the combined DFP and NAC therapy caused greater improvement, leading to more extensively improved LV function.The combined DFP and NAC treatment had greater efficacy than monotherapy in cardioprotection through the reduction of cardiac iron deposition and improved cardiac mitochondrial function in iron-overloaded rats.

  19. Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture.

    Science.gov (United States)

    Rush, Travis; Hjelmhaug, Julie; Lobner, Doug

    2009-01-01

    Chelation therapy for the treatment of acute, high dose exposure to heavy metals is accepted medical practice. However, a much wider use of metal chelators is by alternative health practitioners for so called "chelation therapy". Given this widespread and largely unregulated use of metal chelators it is important to understand the actions of these compounds. We tested the effects of four commonly used metal chelators, calcium disodium ethylenediaminetetraacetate (CaNa2EDTA), D-penicillamine (DPA), 2,3 dimercaptopropane-1-sulfonate (DMPS), and dimercaptosuccinic acid (DMSA) for their effects on heavy metal neurotoxicity in primary cortical cultures. We studied the toxicity of three forms of mercury, inorganic mercury (HgCl2), methyl mercury (MeHg), and ethyl mercury (thimerosal), as well as lead (PbCl2) and iron (Fe-citrate). DPA had the worst profile of effects, providing no protection while potentiating HgCl2, thimerosal, and Fe-citrate toxicity. DMPS and DMSA both attenuated HgCl2 toxicity and potentiated thimerosal and Fe toxicity, while DMPS also potentiated PbCl2 toxicity. CaNa2EDTA attenuated HgCl2 toxicity, but caused a severe potentiation of Fe-citrate toxicity. The ability of these chelators to attenuate the toxicity of various metals is quite restricted, and potentiation of toxicity is a serious concern. Specifically, protection is provided only against inorganic mercury, while it is lacking against the common form of mercury found in food, MeHg, and the form found in vaccines, thimerosal. The potentiation of Fe-citrate toxicity is of concern because of iron's role in oxidative stress in the body. Potentiation of iron toxicity could have serious health consequences when using chelation therapy.

  20. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    may predispose to bacterial infections and free radical- mediated injury in children with kwashiorkor. serum ... diminished iron-binding proteins would promote bacterial overgrowth, increasing the risk of systemic .... practices in food preparation result in increased siderophore levels in feeds and increased iron absorption ...

  1. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation.

    Science.gov (United States)

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C; Pourzand, Charareh

    2016-08-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320-400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Synthesis, characterization and in vitro anticancer evaluations of two novel derivatives of deferasirox iron chelator.

    Science.gov (United States)

    Salehi, Samie; Saljooghi, Amir Sh; Shiri, Ali

    2016-06-15

    Iron (Fe) chelation therapy was initially designed to alleviate the toxic effects of excess Fe evident in Fe-overload diseases. However, the novel toxicological properties of some Fe chelator-metal complexes have shifted significant attention to their application in cancer chemotherapy. The present study investigates the new role of deferasirox as an anticancer agent due to its ability to chelate with iron. Because of aminoacids antioxidant effect, deferasirox and its two novel amino acid derivatives have been synthesized through the treatment of deferasirox with DCC as well as glycine or phenylalanine methyl ester. All new compounds have been characterized by elemental analysis, FT-IR NMR and mass spectrometry. Therefore, the cytotoxicity of these compounds was screened for antitumor activity against some cell lines using cisplatin as a comparative standard by MTT assay and Flow cytometry. The impact of iron in the intracellular generation of reactive oxygen species was assessed on HT29 and MDA-MB-231 cells. The potential of the synthesized iron chelators for their efficacy to protect cells against model oxidative injury induced was compared. The reactive oxygen species intracellular fluorescence intensity were measured and the result showed that the reactive oxygen species intensity after iron incubation increased while after chelators incubation the reactive oxygen species intensity were decreased significantly. Besides, the effect of the synthesized compounds on mouse fibroblast cell line (L929) was simultaneously evaluated as control. The pharmacological results showed that deferasirox and its two novel aminoacid derivatives were potent anticancer agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Competition between deferiprone, desferrioxamine and other chelators for iron and the effect of other metals.

    Science.gov (United States)

    Sheppard, L N; Kontoghiorghes, G J

    1993-06-01

    Competition for iron between the leading oral iron chelator deferiprone (L1, 1,2-dimethyl-3-hydroxypyrid-4-one) and desferrioxamine (DF), and the effect of other metals has been studied. Visible spectroscopy was used to estimate the displacement of iron from DF-iron(III) and L1-iron(III) complexes, respectively, by varying quantities of up to 100 molar equivalent of a competing metal ion M+ (Mg2+, Al3+, Ca2+, Mn2+, Co2+, Cu2+, Zn2+ and Pb2+) at physiological pH. Copper and aluminium showed the greatest competition against iron, while magnesium, calcium and manganese had little or no effect and the other metals an intermediate effect. DF showed greater selectivity for iron than L1 under these conditions. An analogous series of experiments carried out using a competing chelator of up to 50 molar equivalent in a place of a competing metal ion showed that 8-hydroxyquinoline, diethylenetriamine-pentaacetic acid (DTPA) and tropolone were more effective at displacing iron from DF-Fe and (L1)3Fe complexes than maltol or omadine. Desferrioxamine was the most efficient competitor against L1. Stoichiometric studies of the L1 complexes of aluminium and copper at pH 7.4 using Job Plots, suggested the formation of (L1)3Al and (L1)2Cu complexes, respectively.

  4. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions.

    Science.gov (United States)

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L; Guerinot, Mary Lou

    2008-07-29

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloroplast. Chloroplasts prepared from fro7 loss-of-function mutants have 75% less Fe(III) chelate reductase activity and contain 33% less iron per microgram of chlorophyll than wild-type chloroplasts. This decreased iron content is presumably responsible for the observed defects in photosynthetic electron transport. When germinated in alkaline soil, fro7 seedlings show severe chlorosis and die without setting seed unless watered with high levels of soluble iron. Overall, our results provide molecular evidence that FRO7 plays a role in chloroplast iron acquisition and is required for efficient photosynthesis in young seedlings and for survival under iron-limiting conditions.

  5. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.

    Science.gov (United States)

    Senoura, Takeshi; Sakashita, Emi; Kobayashi, Takanori; Takahashi, Michiko; Aung, May Sann; Masuda, Hiroshi; Nakanishi, Hiromi; Nishizawa, Naoko K

    2017-11-01

    Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.

  6. Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution, and iron chelation in vivo.

    Science.gov (United States)

    Wang, Yan; Liu, Zhi; Lin, Tien-Min; Chanana, Shaurya; Xiong, May P

    2018-03-01

    Deferoxamine (DFO) to treat iron overload (IO) has been limited by toxicity issues and short circulation times and it would be desirable to prolong circulation to improve non-transferrin bound iron (NTBI) chelation. In addition, DFO is currently unable to efficiently target the large pool of iron in the liver and spleen. Nanogel-Deferoxamine conjugates (NG-DFO) can prove useful as a model to investigate the pharmacokinetic (PK) properties and biodistribution (BD) behavior of iron-chelating macromolecules and their overall effect on serum ferritin levels. NG-DFO reduced the cytotoxicity of DFO and significantly reduced cellular ferritin levels in IO macrophages in vitro. PK/BD studies in normal rats revealed that NG-DFO displayed prolonged circulation and preferential accumulation into the liver and spleen. IO mice treated with NG1-DFO presented significantly lower levels of serum ferritin compared to DFO. Total renal and fecal elimination data point to the need to balance prolonged circulation with controlled degradation to accelerate clearance of iron-chelating macromolecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Is aceruloplasminemia treatable? Combining iron chelation and fresh-frozen plasma treatment.

    Science.gov (United States)

    Poli, L; Alberici, A; Buzzi, P; Marchina, E; Lanari, A; Arosio, C; Ciccone, A; Semeraro, F; Gasparotti, R; Padovani, A; Borroni, Barbara

    2017-02-01

    We report the case of a patient with hereditary ceruloplasmin deficiency due to a novel gene mutation in ceruloplasmin gene (CP), treated with fresh frozen plasma (FFP) and iron chelation therapy. A 59-year-old man with a past history of diabetes was admitted to our department due to progressive gait difficulties and cognitive impairment. Neurological examination revealed a moderate cognitive decline, with mild extrapyramidal symptoms, ataxia, and myoclonus. Brain T2-weighted MR imaging showed bilateral basal ganglia hypointensity with diffuse iron deposition. Increased serum ferritin, low serum copper concentration, undetectable ceruloplasmin, and normal urinary copper excretion were found. The genetic analysis of the CP (OMIM #604290) reported compound heterozygosity for two mutations, namely c.848G > A and c.2689_2690delCT. Treatment with FFP (500 mL i.v./once a week) and administration of iron chelator (Deferoxamine 1000 mg i.v/die for 5 days, followed by Deferiprone 500 mg/die per os) were undertaken. At the 6-month follow-up, clinical improvement of gait instability, trunk ataxia, and myoclonus was observed; brain MRI scan showed no further progression of basal ganglia T2 hypointensity. This case report suggests that the early initiation of combined treatment with FFP and iron chelation may be useful to reduce the accumulation of iron in the central nervous system and to improve the neurological symptoms.

  8. The iron chelator deferasirox enhances liposomal amphotericin B efficacy in treating murine invasive pulmonary aspergillosis

    Science.gov (United States)

    Ibrahim, Ashraf S.; Gebremariam, Teclegiorgis; French, Samuel W.; Edwards, John E.; Spellberg, Brad

    2010-01-01

    Objectives Increased bone marrow iron levels in patients with haematological malignancies is an independent risk factor for developing invasive pulmonary aspergillosis (IPA), suggesting an important role for iron uptake in the pathogenesis of IPA. We sought to determine the potential for combination therapy with the iron chelator deferasirox + liposomal amphotericin B (LAmB) to improve the outcome of murine IPA compared with LAmB monotherapy. Methods In vitro MIC and minimum fungicidal concentration (MFC) values of the iron chelator, deferasirox, for Aspergillus fumigatus were determined by microdilution assay. In addition, we studied the efficacy of deferasirox alone or combined with LAmB in treating immunocompromised mice infected with A. fumigatus via inhalation. Results Deferasirox was cidal in vitro against A. fumigatus, with an MIC and MFC of 25 and 50 mg/L, respectively. Deferasirox monotherapy modestly prolonged survival of mice with IPA. Combination deferasirox + LAmB therapy synergistically improved survival and reduced lung fungal burden compared with either monotherapy alone. Conclusions Iron chelation therapy with deferasirox alone or in combination with LAmB is effective in treating experimental IPA. Further study of deferasirox is warranted as adjunctive therapy for IPA infections. PMID:19942619

  9. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions

    OpenAIRE

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L.; Guerinot, Mary Lou

    2008-01-01

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloropla...

  10. The effect of iron loading and iron chelation on the innate immune response and subclinical organ injury during human endotoxemia: a randomized trial

    NARCIS (Netherlands)

    Eijk, L.T.G.J. van; Heemskerk, S.; Pluijm, R.W. van der; Wijk, S.M. van; Peters, W.H.M.; Hoeven, J.G. van der; Kox, M.; Swinkels, D.W.; Pickkers, P.

    2014-01-01

    In this double-blind randomized placebo-controlled trial involving 30 healthy male volunteers we investigated the acute effects of iron loading (single dose of 1.25 mg/kg iron sucrose) and iron chelation therapy (single dose of 30 mg/kg deferasirox) on iron parameters, oxidative stress, the innate

  11. Assessing the iron chelation capacity of goat casein digest isolates.

    Science.gov (United States)

    Smialowska, A; Matia-Merino, L; Carr, A J

    2017-04-01

    We isolated goat phosphopeptides via calcium and ethanol precipitation from a caseinate digest and investigated their feasibility as an iron-fortification ingredient in nutritional foods. Goat tryptic-digested phosphopeptides could bind 54.37 ± 0.50 mg of Fe/g of protein compared with goat milk, which could bind 3.83 ± 0.01 mg of Fe/g of protein, indicating that isolation did increase iron binding. However, the >13-fold increase in iron binding was only partly explained by the increased concentration of phosphoserine-rich residues in the isolated fraction: we observed a 77% increase in serine residue content and a 5.9-fold increase in phosphorus in the goat peptide isolate compared with the starting caseinate material. We investigated the effect of potential industrial processing conditions (including heating, cooling, holding time, and processing order) on iron binding by the tryptic-digested phosphopeptides. In addition, we tested the effect of ionic strength and the addition of peptides to a milk system to understand how food formulations could affect iron binding. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Iron chelation with deferasirox in a patient with de-novo ferroportin mutation.

    Science.gov (United States)

    Unal, Sule; Piperno, Alberto; Gumruk, Fatma

    2015-04-01

    Ferroportin disease is a rare type of autosomal dominantly inherited hemochromatosis caused with mutations in the ferroportin gene (SLC40A1). The patients characteristically have hyperferritinemia but normal transferin saturations. Herein, we present a 15-year-old female whose chief complaint was persistent nausea for the last one year. Extensive work-up including brain imaging revealed nothing to explain the etiology of nausea. The serum ferritin level of 1474ng/mL was suggestive for hemochromatosis syndromes and the molecular testing revealed de-novo c.485_487delTTG (P.Val162del) ferroportin gene mutation. Mild hepatic iron loading, in addition to the cumbersome nausea were accepted as indications for chelation treatment in this particular patient and deferasirox was initiated (10mg/kg/day) since family did not consent for phlebotomy. Deferasirox was stopped by the 9th month of initiation, since nausea subsided and hepatic iron content was normalized, in order to prevent over chelation. There are no well-established guidelines for the chelation of patients with hereditary hemochromatosis syndromes. However, lifelong monitorization for iron loading and re-initiation of chelation when necessary was planned in our patient. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Iron chelation excludes protein synthesis inhibition in the ...

    African Journals Online (AJOL)

    Ribonucleotide reductase, an iron requiring enzyme necessary in the production of deoxyribonucleotides required for replication in cell division and proliferation is induced during the S phase of the cell cycle. We have compared the trypanocidal properties of four antibiotics that show bactericidal activities by destabilizing ...

  14. Effects of oral iron chelator deferasirox on human malignant lymphoma cells.

    Science.gov (United States)

    Choi, Jong Gwon; Kim, Jung-Lim; Park, Joohee; Lee, Soonwook; Park, Seh Jong; Kim, Jun Suk; Choi, Chul Won

    2012-09-01

    Iron is essential for cell proliferation and viability. It has been reported that iron depletion by a chelator inhibits proliferation of some cancer cells. Deferasirox is a new oral iron chelator, and a few reports have described its effects on lymphoma cells. The goal of this study was to determine the anticancer effects of deferasirox in malignant lymphoma cell lines. Three human malignant lymphoma cell lines (NCI H28:N78, Ramos, and Jiyoye) were treated with deferasirox at final concentrations of 20, 50, or 100 µM. Cell proliferation was evaluated by an MTT assay, and cell cycle and apoptosis were analyzed by flow cytometry. Western blot analysis was performed to determine the relative activity of various apoptotic pathways. The role of caspase in deferasirox-induced apoptosis was investigated using a luminescent assay. The MTT assay showed that deferasirox had dose-dependent cytotoxic effects on all 3 cell lines. Cell cycle analysis showed that the sub-G1 portion increased in all 3 cell lines as the concentration of deferasirox increased. Early apoptosis was also confirmed in the treated cells by Annexin V and PI staining. Western blotting showed an increase in the cleavage of PARP, caspase 3/7, and caspase 9 in deferasirox-treated groups. We demonstrated that deferasirox, a new oral iron-chelating agent, induced early apoptosis in human malignant lymphoma cells, and this apoptotic effect is dependent on the caspase-3/caspase-9 pathway.

  15. XAS studies of the effectiveness of iron chelating treatments of Mary Rose timbers

    Energy Technology Data Exchange (ETDEWEB)

    Berko, A; Schofield, E J; Chadwick, A V [School of Physical Sciences, University of Kent, CT2 7NR (United Kingdom); Smith, A D [STFC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Jones, A M [The Mary Rose Trust, HM Naval Base, Portsmouth, PO1 3LX (United Kingdom); Mosselmans, J F W, E-mail: a.berko@kent.ac.u [Diamond Light Source, Didcot, OX11 0DE (United Kingdom)

    2009-11-15

    The oxidation of sulfur in marine archaeological timbers under museum storage conditions is a recently identified problem, particularly for major artefacts such as historic ships excavated from the seabed. Recent work on the Vasa has stressed the role of iron in catalysing the oxidative degradation of the wood cellulose and the polyethylene glycols used to restore mechanical integrity to the timbers. In developing new treatment protocols for the long term preservation of Henry VIII of England's flagship, the Mary Rose, we are investigating the potential of chelating agents to neutralise and remove the iron products from the ships timbers. We have explored the use of aqueous solutions of chelating agents of calcium phytate, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) and ammonium citrate to extract the iron compounds. All of these solutions exhibit some level of iron removal; however the key is to find the most effective concentration at pH of around 7 of the reagent solution, to minimise the treatment time and find the most cost-effective treatment for the whole of the Mary Rose hull. Fe K-edge XAFS data from samples of Mary Rose timbers, before and after treatment by the chelating agents mentioned has been collected. The data collected provide valuable insights into the effectiveness of the treatment solutions.

  16. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  17. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice.

    Science.gov (United States)

    Li, Qian; Wan, Jieru; Lan, Xi; Han, Xiaoning; Wang, Zhongyu; Wang, Jian

    2017-09-01

    Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.

  18. Flavonoids function as antioxidants: by scavenging reactive oxygen species or by chelating iron?

    Energy Technology Data Exchange (ETDEWEB)

    Wuguo Deng; Xingwang Fang; Jilan Wu [Peking Univ., Technical Physics Dept., Beijing (China)

    1997-09-01

    Flavonoids have been reported to exhibit strong antioxidative activity. In the present work, a systematic mechanistic study has been performed on five flavonoids (baicalin, hesperidin, naringin, quercetin and rutin) selected according to their structural characteristics. The experimental results reveal that flavonoids function as antioxidant mainly by chelating iron ions and by scavenging peroxyl radicals whereas their OH radical scavenging effect is much less important. (author).

  19. Safety and Outcomes of Open-Label Deferasirox Iron Chelation Therapy for Mucormycosis▿

    OpenAIRE

    Spellberg, Brad; Andes, David; Perez, Mario; Anglim, Anne; Bonilla, Hector; Mathisen, Glenn E.; Walsh, Thomas J.; Ibrahim, Ashraf S.

    2009-01-01

    We sought to describe the safety profile of open-label, adjunctive deferasirox iron chelation therapy in eight patients with biopsy-proven mucormycosis. Deferasirox was administered for an average of 14 days (range, 7 to 21) at 5 to 20 mg/kg of body weight/day. The only adverse effects attributable to deferasirox were rashes in two patients. Deferasirox treatment was not associated with changes in renal or liver function, complete blood count, or transplant immunosuppressive levels. Thus, def...

  20. IRON CHELATION THERAPY WITH DEFERASIROX IN THE MANAGEMENT OF IRON OVERLOAD IN PRIMARY MYELOFIBROSIS

    Directory of Open Access Journals (Sweden)

    Elena Maria Elli

    2014-05-01

    Full Text Available Deferasirox (DSX is the principal option currently available for iron-chelation-therapy (ICT, principally in the management of myelodysplastic syndromes (MDS, while in primary myelofibrosis (PMF the expertise is limited. We analyzed our experience in 10 PMF with transfusion-dependent anemia, treated with DSX from September 2010 to December 2013. The median dose tolerated of DSX was 750 mg/day (10 mg/kg/day, with 3 transient interruption of treatment for drug-related adverse events (AEs and 3 definitive discontinuation for grade 3/4 AEs. According to IWG 2006 criteria, erythroid responses with DSX were observed in 4/10 patients (40%, 2 of them (20% obtaining transfusion independence. Absolute changes in median serum ferritin levels (Delta ferritin were greater in hematologic responder (HR compared with non-responder (NR  patients, already at 6 months of ICT respect to baseline. Our preliminary data open new insights regarding the benefit of ICT not only in MDS, but also in PMF with the possibility to obtain an erythroid response, overall in 40 % of patients. HR patients receiving DSX seem to have a better survival and a lower incidence of leukemic transformation (PMF-BP. Delta ferritin evaluation at 6 months could represent a significant predictor for a different survival and PMF-BP.  However, the tolerability of the drug seems to be lower compared to MDS, both in terms of lower median tolerated dose and for higher frequency of discontinuation for AEs. The biological mechanism of action of DSX in chronic myeloproliferative setting through an independent NF-κB inhibition could be involved, but further investigations are required.

  1. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity.

    Science.gov (United States)

    Tian, Qiuying; Zhang, Xinxin; Yang, An; Wang, Tianzuo; Zhang, Wen-Hao

    2016-05-01

    Iron deficiency is one of the major limiting factors affecting quality and production of crops in calcareous soils. Numerous signaling molecules and transcription factors have been demonstrated to play a regulatory role in adaptation of plants to iron deficiency. However, the mechanisms underlying the iron deficiency-induced physiological processes remain to be fully dissected. Here, we demonstrated that the protein kinase CIPK23 was involved in iron acquisition. Lesion of CIPK23 rendered Arabidopsis mutants hypersensitive to iron deficiency, as evidenced by stronger chlorosis in young leaves and lower iron concentration than wild-type plants under iron-deficient conditions by down-regulating ferric chelate reductase activity. We found that iron deficiency evoked an increase in cytosolic Ca(2+) concentration and the elevated Ca(2+) would bind to CBL1/CBL9, leading to activation of CIPK23. These novel findings highlight the involvement of calcium-dependent CBL-CIPK23 complexes in the regulation of iron acquisition. Moreover, mutation of CIPK23 led to changes in contents of mineral elements, suggesting that CBL-CIPK23 complexes could be as "nutritional sensors" to sense and regulate the mineral homeostasis in Arabisopsis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Pharmacogenetic study of deferasirox, an iron chelating agent.

    Directory of Open Access Journals (Sweden)

    Ji Won Lee

    Full Text Available Transfusion-associated iron overload induces systemic toxicity. Deferasirox, a convenient long acting oral agent, has recently been introduced in clinical practice with a promising efficacy. But there are some patients who experience drug-related toxicities and cannot tolerate it. To investigate effect of genetic variations on the toxicities and find optimal target population, we analyzed the genetic polymorphisms of UDP-glucuronosyltransferase 1A (UGT1A subfamily, multi-drug resistance-associated protein 2 (MRP2 and breast cancer resistance protein (BCRP. A total of 20 functional genetic polymorphisms were analyzed in 98 patients who received deferasirox to reduce transfusion-induced iron overload. We retrospectively reviewed the medical records to find out the drug-related toxicities. Fifteen (15.3% patients developed hepatotoxicity. Patients without wild-type allele carrying two MRP2 haplotypes containing -1774 del and/or -24T were at increased risk of developing hepatotoxicity compared to patients with the wild-type allele on multivariate analysis (OR = 7.17, 95% CI = 1.79-28.67, P = 0.005. Creatinine elevation was observed in 9 patients (9.2%. Body weight ≥40 kg and homozygosity for UGT1A1*6 were risk factors of creatinine elevation (OR = 8.48, 95% CI = 1.7-43.57, P = 0.010 and OR = 14.17, 95% CI = 1.34-150.35, P = 0.028. Our results indicate that functional genetic variants of enzymes to metabolize and transport deferasirox are associated with drug-related toxicities. Further studies are warranted to confirm the results as the pharmacogenetic biomarkers of deferasirox.

  3. Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells

    Science.gov (United States)

    Alcain, Francisco J.; Low, Hans; Crane, Frederick L.

    1994-08-01

    Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  4. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons.

    Directory of Open Access Journals (Sweden)

    Pabla Aguirre

    Full Text Available Neuronal death in Parkinson's disease (PD is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.

  5. Aloin: a natural antitumor anthraquinone glycoside with iron chelating and non-atherogenic activities.

    Science.gov (United States)

    Esmat, Amr Y; Said, Mahmoud M; Khalil, Sally A

    2015-01-01

    The antitumor activity of aloin, the active anthraquinone of Aloe juice, against different murine and human tumors has been reported. In the present study, the impact of repeated aloin treatment at its maximum tolerated dose on serum levels of lipid profile, some elements, iron status and kidney function, compared with doxorubicin (a cardiotoxic anthracycline and inhibitor of erythropoiesis), was assessed. Rats were treated with a single dose of doxorubicin (30 mg/kg body weight, intraperitoneal) or aloin (50 mg/kg body weight, intramuscular) twice weekly over 2 weeks. Acute doxorubicin treatment elevated serum levels of triacylglycerols (59.90%), total cholesterol (42.29%), cholesteryl esters (54.75%), low density lipoprotein-cholesterol (230.16%), very low density lipoprotein-cholesterol (56.42%), urea (287.53%), and creatinine (85.38%), whereas serum high density lipoprotein-cholesterol, sodium, and calcium levels were reduced (44.61, 9.61, and 9.76%, respectively), as compared with controls. In contrast, aloin treatment showed insignificant changes in all the aforementioned parameters. Both doxorubicin and aloin induced erythropoiesis impairment demonstrated by a reduction in blood hemoglobin concentration. While aloin treatment elevated serum iron level (30.28%), doxorubicin treatment reduced serum levels of iron (51.47%) and percent transferrin saturation (55.21%), and in contrast, increased serum total iron binding capacity (34.85%). The chelating affinities of iron-aloin and -doxorubicin complexes, which contain bidentate iron-binding moieties, have been shown in the infrared spectra. The non-cardiotoxic effect of aloin treatment was due to its non-atherogenic and iron-chelating activities, which might also contribute in part to its anti-proliferative activity.

  6. Relative oral efficacy and acute toxicity of hydroxypyridin-4-one iron chelators in mice

    International Nuclear Information System (INIS)

    Porter, J.B.; Morgan, J.; Hoyes, K.P.; Burke, L.C.; Huehns, E.R.; Hider, R.C.

    1990-01-01

    The relationship between the oral efficacy and the acute toxicity of hydroxypyridin-4-one iron chelators has been investigated to clarify structure-function relationships of these compounds in vivo and to identify compounds with the maximum therapeutic safety margin. By comparing 59Fe excretion following oral or intraperitoneal administration of increasing doses of each chelator to iron-overloaded mice, the most effective compounds have been identified. These have partition coefficients (Kpart) above 0.3 in the iron-free form with a trend of increasing oral efficacy with increasing Kpart values (r = .6). However, this is achieved at a cost of increasing acute toxicity, as shown by a linear correlation between 59Fe excretion increase per unit dose and 1/LD50 (r = .83). A sharp increase in the LD50 values is observed for compounds with Kpart values above 1.0, suggesting that such compounds are unlikely to possess a sufficient therapeutic safety margin. Below a Kpart of 1.0, acute toxicity is relatively independent of lipid solubility. All the compounds are less toxic by the oral route than by the intraperitoneal route, although iron excretion is not significantly different by these two routes. At least five compounds (CP51, CP94, CP93, CP96, and CP21) are more effective orally than the same dose of intraperitoneal desferrioxamine (DFO) (P less than or equal to .02) or orally administered L1(CP20) (P less than or equal to .02)

  7. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction.

    Directory of Open Access Journals (Sweden)

    Yasumasa Ikeda

    Full Text Available Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases (CKD. Although several mechanisms underlying renal fibrosis and candidate drugs for its treatment have been identified, the effect of iron chelator on renal fibrosis remains unclear. In the present study, we examined the effect of an iron chelator, deferoxamine (DFO, on renal fibrosis in mice with surgically induced unilateral ureter obstruction (UUO. Mice were divided into 4 groups: UUO with vehicle, UUO with DFO, sham with vehicle, and sham with DFO. One week after surgery, augmented renal tubulointerstitial fibrosis and the expression of collagen I, III, and IV increased in mice with UUO; these changes were suppressed by DFO treatment. Similarly, UUO-induced macrophage infiltration of renal interstitial tubules was reduced in UUO mice treated with DFO. UUO-induced expression of inflammatory cytokines and extracellular matrix proteins was abrogated by DFO treatment. DFO inhibited the activation of the transforming growth factor-β1 (TGF-β1-Smad3 pathway in UUO mice. UUO-induced NADPH oxidase activity and p22(phox expression were attenuated by DFO. In the kidneys of UUO mice, divalent metal transporter 1, ferroportin, and ferritin expression was higher and transferrin receptor expression was lower than in sham-operated mice. Increased renal iron content was observed in UUO mice, which was reduced by DFO treatment. These results suggest that iron reduction by DFO prevents renal tubulointerstitial fibrosis by regulating TGF-β-Smad signaling, oxidative stress, and inflammatory responses.

  8. The iron chelating agent, deferoxamine detoxifies Fe(Salen-induced cytotoxicity

    Directory of Open Access Journals (Sweden)

    Masanari Umemura

    2017-08-01

    Full Text Available Iron-salen, i.e., μ-oxo-N,N′-bis(salicylideneethylenediamine iron (Fe(Salen was a recently identified as a new anti-cancer compound with intrinsic magnetic properties. Chelation therapy has been widely used in management of metallic poisoning, because an administration of agents that bind metals can prevent potential lethal effects of particular metal. In this study, we confirmed the therapeutic effect of deferoxamine mesylate (DFO chelation against Fe(Salen as part of the chelator antidote efficacy. DFO administration resulted in reduced cytotoxicity and ROS generation by Fe(Salen in cancer cells. DFO (25 mg/kg reduced the onset of Fe(Salen (25 mg/kg-induced acute liver and renal dysfunction. DFO (300 mg/kg improves survival rate after systematic injection of a fatal dose of Fe(Salen (200 mg/kg in mice. DFO enables the use of higher Fe(Salen doses to treat progressive states of cancer, and it also appears to decrease the acute side effects of Fe(Salen. This makes DFO a potential antidote candidate for Fe(Salen-based cancer treatments, and this novel strategy could be widely used in minimally-invasive clinical settings.

  9. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    Science.gov (United States)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  10. Deferasirox-TAT(47-57) peptide conjugate as a water soluble, bifunctional iron chelator with potential use in neuromedicine.

    Science.gov (United States)

    Goswami, Dibakar; Vitorino, Hector A; Alta, Roxana Y P; Silvestre, Daniel M; Nomura, Cassiana S; Machini, M Teresa; Espósito, Breno P

    2015-10-01

    Deferasirox (DFX), an orally active and clinically approved iron chelator, is being used extensively for the treatment of iron overload. However, its water insolubility makes it cumbersome for practical use. In addition to this, the low efficacy of DFX to remove brain iron prompted us to synthesize and evaluate a DFX-TAT(47-57) peptide conjugate for its iron chelation properties and permeability across RBE4 cell line, an in vitro model of the blood-brain barrier. The water-soluble conjugate was able to remove labile iron from buffered solution as well as from iron overloaded sera, and the permeability of DFX-TAT(47-57) conjugate into RBE4 cells was not affected compared to parent deferasirox. The iron bound conjugate was also able to translocate through the cell membrane.

  11. Iron (II)-chelating activity of buffalo αS-casein hydrolysed by corolase PP, alcalase and flavourzyme.

    Science.gov (United States)

    Jaiswal, Arvind; Bajaj, Rajesh; Mann, Bimlesh; Lata, Kiran

    2015-06-01

    Iron is a vital substance for human health which participates in many biochemical reactions. It also act as initiator for many harmful oxidative process. Buffalo αS-casein enriched fraction (80 %) was hydrolysed independently by corolase PP (H1), alcalase (H2), flavourzyme (H3) and sequentially by alcalase-flavourzyme (H4). After ultrafiltration (10 and 3 kDa) hydrolysates were analysed for their iron chelation activity using ferrozine. For H1 group of hydrolysates highest iron (II)-chelation activity (265.58 μM Fe(2+/)mg protein) was found after 8 h of hydrolysis for H2 (267.56 μM Fe(2+/)mg protein) and H3 group of hydrolysates (380.68 μM Fe(2+/)mg protein) after 6 h of hydrolysis. Sequential hydrolysis was not effective for iron (II)-chelation activity. 3 kDa fractions show higher iron (II)-chelation activity than 10 kDa fraction. Flavourzyme was more effective for generation of iron (II)-chelating peptides from buffalo αS-casein.

  12. Characterization of FRO1, a Pea Ferric-Chelate Reductase Involved in Root Iron Acquisition1

    Science.gov (United States)

    Waters, Brian M.; Blevins, Dale G.; Eide, David J.

    2002-01-01

    To acquire iron, many plant species reduce soil Fe(III) to Fe(II) by Fe(III)-chelate reductases embedded in the plasma membrane of root epidermal cells. The reduced product is then taken up by Fe(II) transporter proteins. These activities are induced under Fe deficiency. We describe here the FRO1 gene from pea (Pisum sativum), which encodes an Fe(III)-chelate reductase. Consistent with this proposed role, FRO1 shows similarity to other oxidoreductase proteins, and expression of FRO1 in yeast conferred increased Fe(III)-chelate reductase activity. Furthermore, FRO1 mRNA levels in plants correlated with Fe(III)-chelate reductase activity. Sites of FRO1 expression in roots, leaves, and nodules were determined. FRO1 mRNA was detected throughout the root, but was most abundant in the outer epidermal cells. Expression was detected in mesophyll cells in leaves. In root nodules, mRNA was detected in the infection zone and nitrogen-fixing region. These results indicate that FRO1 acts in root Fe uptake and they suggest a role in Fe distribution throughout the plant. Characterization of FRO1 has also provided new insights into the regulation of Fe uptake. FRO1 expression and reductase activity was detected only in Fe-deficient roots of Sparkle, whereas both were constitutive in brz and dgl, two mutants with incorrectly regulated Fe accumulation. In contrast, FRO1 expression was responsive to Fe status in shoots of all three plant lines. These results indicate differential regulation of FRO1 in roots and shoots, and improper FRO1 regulation in response to a shoot-derived signal of iron status in the roots of the brz and dgl mutants. PMID:12011340

  13. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition.

    Science.gov (United States)

    Waters, Brian M; Blevins, Dale G; Eide, David J

    2002-05-01

    To acquire iron, many plant species reduce soil Fe(III) to Fe(II) by Fe(III)-chelate reductases embedded in the plasma membrane of root epidermal cells. The reduced product is then taken up by Fe(II) transporter proteins. These activities are induced under Fe deficiency. We describe here the FRO1 gene from pea (Pisum sativum), which encodes an Fe(III)-chelate reductase. Consistent with this proposed role, FRO1 shows similarity to other oxidoreductase proteins, and expression of FRO1 in yeast conferred increased Fe(III)-chelate reductase activity. Furthermore, FRO1 mRNA levels in plants correlated with Fe(III)-chelate reductase activity. Sites of FRO1 expression in roots, leaves, and nodules were determined. FRO1 mRNA was detected throughout the root, but was most abundant in the outer epidermal cells. Expression was detected in mesophyll cells in leaves. In root nodules, mRNA was detected in the infection zone and nitrogen-fixing region. These results indicate that FRO1 acts in root Fe uptake and they suggest a role in Fe distribution throughout the plant. Characterization of FRO1 has also provided new insights into the regulation of Fe uptake. FRO1 expression and reductase activity was detected only in Fe-deficient roots of Sparkle, whereas both were constitutive in brz and dgl, two mutants with incorrectly regulated Fe accumulation. In contrast, FRO1 expression was responsive to Fe status in shoots of all three plant lines. These results indicate differential regulation of FRO1 in roots and shoots, and improper FRO1 regulation in response to a shoot-derived signal of iron status in the roots of the brz and dgl mutants.

  14. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Muriel Primon-Barros

    2015-01-01

    Full Text Available Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA, which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  15. Augmentation of antioxidant and iron(III) chelation properties of tertiary mixture of bioactive ligands.

    Science.gov (United States)

    K N, Lokesh; Channarayappa; Venkataranganna, Marikunte; Gowtham Raj, Gunti; Patil, Hansraj; Dave, Hardik

    2018-01-01

    The excess of iron in plasma and cellular compartment pose direct and indirect toxic effects. In the present investigation, we proposed additive function of nutritional bioactive ligands in combination which has shown enhanced antioxidant and iron(III) chelation property. The optimal interaction and in vitro antioxidant activity of tertiary mixture comprising of curcumin+quercetin+gallic acid was validated by central composite design (CCD) based on ferric reducing antioxidant power assay (FRAP). The additive denticity of nutritional bioactive ligands was investigated by UV-vis, FTIR & MALDI-TOF-MS analysis, which has given substantial evidence for the formation of tris-bidentate [curcumin-quercetin-gallic acid-Fe(III)] co-ordination complex. The in vivo proof of concept of the hypothesis was tested in iron intoxicated male wistar rats intoxicated with iron dextran. Co-administration curcumin+quercetin+gallic acid (CQG) exhibit dose dependent response & found effective in subsiding acute iron intoxication both at plasma and cellular level, evaluated by studies including serum ferritin, ICP-OES, lipid peroxidation and histopathology studies among others. Thus, we conclude that in vitro and in vivo studies supported our hypothesis to deduce additive function nutritional ligands to counteract direct and indirect effects of iron(III). Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. The chelation of colonic luminal iron by a unique sodium alginate for the improvement of gastrointestinal health.

    Science.gov (United States)

    Horniblow, Richard D; Latunde-Dada, Gladys O; Harding, Stephen E; Schneider, Melanie; Almutairi, Fahad M; Sahni, Manroy; Bhatti, Ahsan; Ludwig, Christian; Norton, Ian T; Iqbal, Tariq H; Tselepis, Chris

    2016-09-01

    Iron is an essential nutrient. However, in animal models, excess unabsorbed dietary iron residing within the colonic lumen has been shown to exacerbate inflammatory bowel disease and intestinal cancer. Therefore, the aims of this study were to screen a panel of alginates to identify a therapeutic that can chelate this pool of iron and thus be beneficial for intestinal health. Using several in vitro intestinal models, it is evident that only one alginate (Manucol LD) of the panel tested was able to inhibit intracellular iron accumulation as assessed by iron-mediated ferritin induction, transferrin receptor expression, intracellular (59) Fe concentrations, and iron flux across a Caco-2 monolayer. Additionally, Manucol LD suppressed iron absorption in mice, which was associated with increased fecal iron levels indicating iron chelation within the gastrointestinal tract. Furthermore, the bioactivity of Manucol LD was found to be highly dependent on both its molecular weight and its unique compositional sequence. Manucol LD could be useful for the chelation of this detrimental pool of unabsorbed iron and it could be fortified in foods to enhance intestinal health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Physiological Responses of Some Iranian Grape Cultivars to Iron Chelate Application in Calcareous Soil

    Directory of Open Access Journals (Sweden)

    H. Doulati Baneh

    2016-07-01

    Full Text Available Introduction: Iron chlorosis is considered to be one of the most important nutritional disorders in grapevines, particularly in calcareous soils that under these conditions fruit yield and quality is depressed in the current year and fruit buds poorly develop for following year. Symptoms of iron chlorosis in orchards and vineyards are usually more frequent in spring when shoot growth is rapid and bicarbonate concentration in the soil solution buffers soil pH in the rhizosphere and root apoplast. Several native grapevine (Vitis vinifera L. genotypes, highly appreciated for their organoleptic characteristics and commercial potential, are widely cultivated in Iran. Cultivated plants differ as to their susceptibility to Fe deficiency in calcareous soils, some being poorly affected while others showing severe leaf chlorotic symptoms. Selection and the use of Fe-efficient genotypes is one of the important approaches to prevent this nutritional problem. In this research the response of three local grapevine cultivars was evaluated to iron chelate consumption in a calcareous soil (26% T.N.V. Materials and Methods: Well rooted woody cuttings of three autochthonous varieties (Rasha, Qezel uzum, Keshmeshi Qermez were cultivated in pots filled with a calcareous soil with iron chelate consumption at three rates (0, 7.5 and 15 mg Fe/ Kg soil. The study was conducted with two factors (cultivar and iron chelate and 3 replicates in a factorial arrangement based on randomized complete block design. Plant parameters including vegetative growth, chlorophyll index and leaf area were monitored during the growth period. At the end of the treatment, fresh and dry weight of shoots and roots were determined. The concentrations of macro and micro elements in the leaves were assayed using an atomic absorption and spectrophotometer. One-way-ANOVA was applied comparing the behavior of the cultivars growing. Results and Discussion: Analysis of variance showed that chlorophyll

  18. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil

    OpenAIRE

    Ishimaru, Yasuhiro; Kim, Suyeon; Tsukamoto, Takashi; Oki, Hiroyuki; Kobayashi, Takanori; Watanabe, Satoshi; Matsuhashi, Shinpei; Takahashi, Michiko; Nakanishi, Hiromi; Mori, Satoshi; Nishizawa, Naoko K.

    2007-01-01

    Iron (Fe) deficiency is a worldwide agricultural problem on calcareous soils with low-Fe availability due to high soil pH. Rice plants use a well documented phytosiderophore-based system (Strategy II) to take up Fe from the soil and also possess a direct Fe2+ transport system. Rice plants are extremely susceptible to low-Fe supply, however, because of low phytosiderophore secretion and low Fe3+ reduction activity. A yeast Fe3+ chelate-reductase gene refre1/372, selected for better performance...

  19. Novel orally active iron chelators (3-hydroxypyridin-4-ones) enhance the biliary excretion of plasma non-transferrin-bound iron in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zanninelli, G.; Loreal, O. [Pontchaillou Univ. Hospital, INSERM U-49, Liver Research Unit, Rennes (France); Choudury, R. [King`s College, Dept. of Pharmacey, London (United Kingdom)] [and others

    1997-10-01

    Background/Aims: It is well documented that levels of plasma non-transferrin-bound iron (NTBI), a particularly toxic form of iron, are increased in iron overload disorders. In light of the pathogenetic importance of NTBI in chronic iron overload, we have studied the ability of new orally active iron chelators to promote the biliary excretion of iron originating as plasma {sup 55}Fe-NTBI. Methods: Biliary iron kinetics of plasma {sup 55}Fe-labeled NTBI and cumulative recoveries of {sup 55}Fe in bile were determined in normal and carbonyl iron-loaded rats receiving a single intragastric dose of iron chelator. These chelators were the novel hydroxypyridin-4-one compounds CP102, CP41, and their respective prodrugs CP117 and CP165. Results: The cumulative recovery of {sup 5} {sup 5}Fe in bile of normal rats was increased by 5.2-, 7.9-, 11.5-, and 9.2-fold with CP102, CP117, CP41 and CP165, respectively. In iron overloaded rats, these compounds increased the cumulative recovery by 28.6-, 48.6-, 72.6-, and 32-fold, respectively. All the chelators had a choleretic effect, were metabolized by the liver as demonstrated by HPLC study of bile, and were not cytotoxic since normal plasma transaminase levels were maintained at the end of the experiments. Conclusions: These chelators have potential interest for the treatment of iron overload conditions and may offer advantages over simple N-alkyl-hydroxypyridinones such as deferiprone (CP20, L1). (au) 29 refs.

  20. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil.

    Science.gov (United States)

    Ishimaru, Yasuhiro; Kim, Suyeon; Tsukamoto, Takashi; Oki, Hiroyuki; Kobayashi, Takanori; Watanabe, Satoshi; Matsuhashi, Shinpei; Takahashi, Michiko; Nakanishi, Hiromi; Mori, Satoshi; Nishizawa, Naoko K

    2007-05-01

    Iron (Fe) deficiency is a worldwide agricultural problem on calcareous soils with low-Fe availability due to high soil pH. Rice plants use a well documented phytosiderophore-based system (Strategy II) to take up Fe from the soil and also possess a direct Fe2+ transport system. Rice plants are extremely susceptible to low-Fe supply, however, because of low phytosiderophore secretion and low Fe3+ reduction activity. A yeast Fe3+ chelate-reductase gene refre1/372, selected for better performance at high pH, was fused to the promoter of the Fe-regulated transporter, OsIRT1, and introduced into rice plants. The transgene was expressed in response to a low-Fe nutritional status in roots of transformants. Transgenic rice plants expressing the refre1/372 gene showed higher Fe3+ chelate-reductase activity and a higher Fe-uptake rate than vector controls under Fe-deficient conditions. Consequently, transgenic rice plants exhibited an enhanced tolerance to low-Fe availability and 7.9x the grain yield of nontransformed plants in calcareous soils. This report shows that enhancing the Fe3+ chelate-reductase activity of rice plants that normally have low endogenous levels confers resistance to Fe deficiency.

  1. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    Science.gov (United States)

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that

  2. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes

    Science.gov (United States)

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    The prevalence rate of thalassemia, which is endemic in Southeast Asia, the Middle East, and the Mediterranean, exceeds 100,000 live births per year. There are many genetic variants in thalassemia with different pathological severity, ranging from a mild and asymptomatic anemia to life-threatening clinical effects, requiring lifelong treatment, such as regular transfusions in thalassemia major (TM). Some of the thalassemias are non-transfusion-dependent, including many thalassemia intermedia (TI) variants, where iron overload is caused by chronic increase in iron absorption due to ineffective erythropoiesis. Many TI patients receive occasional transfusions. The rate of iron overloading in TI is much slower in comparison to TM patients. Iron toxicity in TI is usually manifested by the age of 30–40 years, and in TM by the age of 10 years. Subcutaneous deferoxamine (DFO), oral deferiprone (L1), and DFO–L1 combinations have been effectively used for more than 20 years for the treatment of iron overload in TM and TI patients, causing a significant reduction in morbidity and mortality. Selected protocols using DFO, L1, and their combination can be designed for personalized chelation therapy in TI, which can effectively and safely remove all the excess toxic iron and prevent cardiac, liver, and other organ damage. Both L1 and DF could also prevent iron absorption. The new oral chelator deferasirox (DFX) increases iron excretion and decreases liver iron in TM and TI. There are drawbacks in the use of DFX in TI, such as limitations related to dose, toxicity, and cost, iron load of the patients, and ineffective removal of excess iron from the heart. Furthermore, DFX appears to increase iron and other toxic metal absorption. Future treatments of TI and related iron-loading conditions could involve the use of the iron-chelating drugs and other drug combinations not only for increasing iron excretion but also for preventing iron absorption. PMID:26893541

  3. Aroylhydrazone iron chelators: Tuning antioxidant and antiproliferative properties by hydrazide modifications.

    Science.gov (United States)

    Hrušková, Kateřina; Potůčková, Eliška; Hergeselová, Tereza; Liptáková, Lucie; Hašková, Pavlína; Mingas, Panagiotis; Kovaříková, Petra; Šimůnek, Tomáš; Vávrová, Kateřina

    2016-09-14

    Aroylhydrazones such as salicylaldehyde isonicotinoyl hydrazone (SIH) are tridentate iron chelators that may possess antioxidant and/or antineoplastic activities. Their main drawback, their low stability in plasma, has recently been partially overcome by exchanging the aldimine hydrogen for an unbranched alkyl group. In this study, ten analogs of methyl- and ethyl-substituted SIH derivatives with modified hydrazide scaffolds were synthesized to further explore their structure-activity relationships. Their iron-chelation efficiencies, anti- or pro-oxidant potentials, abilities to induce protection against model oxidative injury on the H9c2 cell line derived from rat embryonic cardiac tissue, cytotoxicities on the same H9c2 cells and antiproliferative activities on MCF-7 human breast adenocarcinoma and HL-60 human promyelotic leukemia cell lines were evaluated. Compounds derived from lipophilic naphthyl and biphenyl hydrazides displayed highly selective antiproliferative activities against both MCF-7 and HL-60 cell lines, and they showed markedly improved stabilities in plasma compared to SIH. Of particular interest is a hydrazone prepared from 2-hydroxypropiophenone and pyridazin-4-carbohydrazide that showed a considerable antiproliferative effect and protected cardiomyoblasts against oxidative stress with a five-fold higher selectivity compared to the parent compound SIH. Thus, this work highlighted new structure-activity relationships among antiproliferative and antioxidant aroylhydrazones and identified new lead compounds for further development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Mechanism of the antitumoral activity of deferasirox, an iron chelation agent, on mantle cell lymphoma.

    Science.gov (United States)

    Vazana-Barad, Liat; Granot, Galit; Mor-Tzuntz, Rahav; Levi, Itai; Dreyling, Martin; Nathan, Ilana; Shpilberg, Ofer

    2013-04-01

    Mantle cell lymphoma (MCL) characterized by the t(11;14)(q13;q32) translocation, resulting in cyclin D1 overexpression, is one of the most challenging lymphomas to treat. Iron chelators, such as deferasirox, have previously been shown to exhibit anti-proliferative properties; however, their effect on MCL cells has never been investigated. We showed that deferasirox exhibited antitumoral activity against the MCL cell lines HBL-2, Granta-519 and Jeko-1, with 50% inhibitory concentration (IC(50)) values of 7.99 ± 2.46 μM, 8.93 ± 2.25 μM and 31.86 ± 7.26 μM, respectively. Deferasirox induced apoptosis mediated through caspase-3 activation and decreased cyclin D1 protein levels resulting from increased proteasomal degradation. We also demonstrated down-regulation of phosphor-RB (Ser780) expression, which resulted in increasing levels of the E2F/RB complex and G(1)/S arrest. Finally, we showed that deferasirox activity was dependent on its iron chelating ability. The present data indicate that deferasirox, by down-regulating cyclin D1 and inhibiting its related signals, may constitute a promising adjuvant therapeutic molecule in the strategy for MCL treatment.

  5. New hydroxypyridinone iron-chelators as potential anti-neurodegenerative drugs.

    Science.gov (United States)

    Arduino, Daniela; Silva, Daniel; Cardoso, Sandra M; Chaves, Silvia; Oliveira, Catarina R; Santos, M Amelia

    2008-05-01

    The neuroprotective action of a set of new hydroxypyridinone-based (3,4-HP) compounds (A, B and C), which are iron chelators extra-functionalized with a propargylamino group for potential MAO-B inhibition, was evaluated after cell treatment with MPP+ (an in vivo inducer of parkinsonism) and Abeta(1-40) and/or Abeta(1-42) peptides. Our results show that all these compounds improved cell viability in cells treated with MPP+ and Abeta(1-40) peptide or Abeta(1-42) peptide. In order to evaluate the cellular mechanisms underlying the activity of these compounds, we studied their protective role in caspase activation. All compounds tested were able to prevent MPP+ and Brefeldin A induced caspase-2 activation. They also showed quite effective in the inhibition of caspase-4 and caspase-3 activity, an effector caspase in the apoptotic process. Finally, detection of apoptotic-like cell death after cell exposure to MPP+ was also performed by TUNEL assay. Our results demonstrated that all tested compounds prevented DNA fragmentation by decreasing TUNEL positive cells. A, B and C were more effective than DFP (a 3,4-HP iron-chelating agent in clinical use) in MPP+ induced cell death. Therefore, these results evidenced a neuroprotective and antiapoptotic role for the compounds studied.

  6. [Effectiveness of iron amino acid chelate versus ferrous sulfate as part of a food complement in preschool children with iron deficiency, Medellín, 2011].

    Science.gov (United States)

    Rojas, Maylen Liseth; Sánchez, Juliana; Villada, Óscar; Montoya, Liliana; Díaz, Alejandro; Vargas, Cristian; Chica, Javier; Herrera, Ana Milena

    2013-01-01

    Iron depleted deposits are the first link in the chain of events leading to iron deficiency which is the most prevalent nutritional shortage and main cause of anemia worldwide. This situation can be prevented through food fortification. To compare the efficacy of amino acid chelate iron with ferrous sulfate as fortifier of a dietary complement in preschoolers with iron deficiency. This study was a blinded clinical trial with randomized groups. We analyzed 56 preschoolers with iron deficiency (ferritin children had respiratory tract infection, without statistical differences. Both compounds increased serum ferritin concentration, with a higher increase in those who were given milk with iron amino acid chelate. There were no differences in the adverse reactions and infections incidences between the groups.

  7. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.

    Science.gov (United States)

    Connolly, Erin L; Campbell, Nathan H; Grotz, Natasha; Prichard, Charis L; Guerinot, Mary Lou

    2003-11-01

    The Arabidopsis FRO2 gene encodes the low-iron-inducible ferric chelate reductase responsible for reduction of iron at the root surface. Here, we report that FRO2 and IRT1, the major transporter responsible for high-affinity iron uptake from the soil, are coordinately regulated at both the transcriptional and posttranscriptional levels. FRO2 and IRT1 are induced together following the imposition of iron starvation and are coordinately repressed following iron resupply. Steady-state mRNA levels of FRO2 and IRT1 are also coordinately regulated by zinc and cadmium. Like IRT1, FRO2 mRNA is detected in the epidermal cells of roots, consistent with its proposed role in iron uptake from the soil. FRO2 mRNA is detected at high levels in the roots and shoots of 35S-FRO2 transgenic plants. However, ferric chelate reductase activity is only elevated in the 35S-FRO2 plants under conditions of iron deficiency, indicating that FRO2 is subject to posttranscriptional regulation, as shown previously for IRT1. Finally, the 35S-FRO2 plants grow better on low iron as compared with wild-type plants, supporting the idea that reduction of ferric iron to ferrous iron is the rate-limiting step in iron uptake.

  8. Overexpression of the FRO2 Ferric Chelate Reductase Confers Tolerance to Growth on Low Iron and Uncovers Posttranscriptional Control1

    Science.gov (United States)

    Connolly, Erin L.; Campbell, Nathan H.; Grotz, Natasha; Prichard, Charis L.; Guerinot, Mary Lou

    2003-01-01

    The Arabidopsis FRO2 gene encodes the low-iron-inducible ferric chelate reductase responsible for reduction of iron at the root surface. Here, we report that FRO2 and IRT1, the major transporter responsible for high-affinity iron uptake from the soil, are coordinately regulated at both the transcriptional and posttranscriptional levels. FRO2 and IRT1 are induced together following the imposition of iron starvation and are coordinately repressed following iron resupply. Steady-state mRNA levels of FRO2 and IRT1 are also coordinately regulated by zinc and cadmium. Like IRT1, FRO2 mRNA is detected in the epidermal cells of roots, consistent with its proposed role in iron uptake from the soil. FRO2 mRNA is detected at high levels in the roots and shoots of 35S-FRO2 transgenic plants. However, ferric chelate reductase activity is only elevated in the 35S-FRO2 plants under conditions of iron deficiency, indicating that FRO2 is subject to posttranscriptional regulation, as shown previously for IRT1. Finally, the 35S-FRO2 plants grow better on low iron as compared with wild-type plants, supporting the idea that reduction of ferric iron to ferrous iron is the rate-limiting step in iron uptake. PMID:14526117

  9. Approaching low liver iron burden in chelated patients with non-transfusion-dependent thalassemia: the safety profile of deferasirox.

    Science.gov (United States)

    Taher, Ali T; Porter, John B; Viprakasit, Vip; Kattamis, Antonis; Chuncharunee, Suporn; Sutcharitchan, Pranee; Siritanaratkul, Noppadol; Origa, Raffaella; Karakas, Zeynep; Habr, Dany; Zhu, Zewen; Cappellini, M Domenica

    2014-06-01

    Patients with non-transfusion-dependent thalassemia (NTDT) often develop iron overload and related complications, and may require iron chelation. However, the risk of over-chelation emerges as patients reach low, near-normal body iron levels and dose adjustments may be needed. In the THALASSA study, the threshold for chelation interruption was LIC deferasirox for up to 2 yr reached this target. A post hoc analysis was performed to characterize the safety profile of deferasirox as these patients approached LICdeferasirox regimens (5 and 10 mg/kg/d) versus placebo in patients with NTDT. Patients randomized to deferasirox or placebo in the core could enter a 1-yr extension, with all patients receiving deferasirox (extension starting doses based on LIC at end-of-core and prior chelation response). The deferasirox safety profile was assessed between baseline and 6 months before reaching LICdeferasirox treatment duration up to reaching LICdeferasirox dose was 9.7 ± 3.0 mg/kg/d. The exposure-adjusted AE incidence regardless of causality was similar in periods 1 (1.026) and 2 (1.012). There were no clinically relevant differences in renal and hepatic laboratory parameters measured close to the time of LICdeferasirox safety profile remained consistent as patients approached the chelation interruption target, indicating that, with appropriate monitoring and dose adjustments in relation to iron load, low iron burdens may be reached with deferasirox with minimal risk of over-chelation. © 2014 The Authors. European Journal of Haematology Published by John Wiley & Sons Ltd.

  10. Iron Chelation Therapy with Deferasirox Results in Improvement of Liver Enzyme Level in Patients with Iron Overload-Associated Liver Dysfunction

    Directory of Open Access Journals (Sweden)

    Yasuo Miura

    2010-01-01

    Full Text Available Iron chelation therapy (ICT has been applied for the patients with iron overload-associated liver dysfunction since it is one of the causes of death in patients with intractable hematological diseases requiring multiple red blood cell transfusions. Recently, deferasirox (DSX, a novel, once-daily oral iron chelator, was demonstrated to have similar efficacy to the conventional continuous infusion of deferoxamine on a decrease in serum ferritin (SF level in heavily transfused patients. We show three cases of transfusion-mediated iron-overloaded patients with an elevated serum alanine aminotransaminase (ALT. All three patients who received the ICT with DSX showed a decrease in ALT level in association with a decrease in SF level. It is suggested that DSX therapy could be considered to expect the improvement of liver damage for iron-overloaded patients with an abnormal ALT level.

  11. Iron(III) chelating resins. V. Cross-linked copolymers of 1-(B-acrylamidoethyl)-3-hydroxy-2-methyl-4(1H) pyridinone (AHMP) and N,N-dimethylacrylamide (DMAA) for iron(III) chelation studies

    NARCIS (Netherlands)

    Feng, Minhua; Feng, M.H.; van der Does, L.; Bantjes, A.; Bantjes, Adriaan

    1994-01-01

    Iron (III) chelating resins containing 3-hydroxy-2-methyl-4(1H)pyridinone (HMP) groups were prepared from 1-(β-acrylamidoethyl)-3-hydroxy-2-methyl-4(1H)pyridinone (AHMP) and N,N-dimethylacrylamide (DMAA), using N,N-ethylene-bis-acrylamide (EBAA) as a cross-linking agent. The cross-linked AHMP-DMAA

  12. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes

    Directory of Open Access Journals (Sweden)

    Kontoghiorghe CN

    2016-01-01

    Full Text Available Christina N Kontoghiorghe, George J Kontoghiorghes Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol, Cyprus Abstract: The prevalence rate of thalassemia, which is endemic in Southeast Asia, the Middle East, and the Mediterranean, exceeds 100,000 live births per year. There are many genetic variants in thalassemia with different pathological severity, ranging from a mild and asymptomatic anemia to life-threatening clinical effects, requiring lifelong treatment, such as regular transfusions in thalassemia major (TM. Some of the thalassemias are non-transfusion-dependent, including many thalassemia intermedia (TI variants, where iron overload is caused by chronic increase in iron absorption due to ineffective erythropoiesis. Many TI patients receive occasional transfusions. The rate of iron overloading in TI is much slower in comparison to TM patients. Iron toxicity in TI is usually manifested by the age of 30–40 years, and in TM by the age of 10 years. Subcutaneous deferoxamine (DFO, oral deferiprone (L1, and DFO–L1 combinations have been effectively used for more than 20 years for the treatment of iron overload in TM and TI patients, causing a significant reduction in morbidity and mortality. Selected protocols using DFO, L1, and their combination can be designed for personalized chelation therapy in TI, which can effectively and safely remove all the excess toxic iron and prevent cardiac, liver, and other organ damage. Both L1 and DF could also prevent iron absorption. The new oral chelator deferasirox (DFX increases iron excretion and decreases liver iron in TM and TI. There are drawbacks in the use of DFX in TI, such as limitations related to dose, toxicity, and cost, iron load of the patients, and ineffective removal of excess iron from the heart. Furthermore, DFX appears to increase iron and other toxic metal absorption. Future treatments of TI and related iron-loading conditions could involve

  13. Tailoring iron complexes for ethylene oligomerization and/or polymerization.

    Science.gov (United States)

    Zhang, Wenjuan; Sun, Wen-Hua; Redshaw, Carl

    2013-07-07

    Recent progress in the use of iron-based complex pre-catalysts for ethylene reactivity is reviewed, illustrating the current state-of-the-art and the potential usefulness of such systems for delivering solely ethylene oligomerization or polymerization products. The problems associated with the industrial use of late transition metal complex pre-catalysts are generally regarded as catalyst deactivation and the formation of more products of lower molecular weight at elevated temperature. These problems have been addressed for iron-based complex pre-catalysts via the fine tuning of substituents of existing ligands and/or the design of new ligand sets. Results revealed that modified bis(imino)pyridyliron dichlorides were capable of operating at elevated temperatures, and were capable of delivering highly linear polyethylene. Other new models of iron complexes have achieved high activity for ethylene oligomerization and/or polymerization. Particularly successful has been the use of the 2-iminophenanthrolyliron pre-catalyst, which have now been utilized in a 500 tonne pilot plant.

  14. Chelation Therapy with Oral Solution of Deferiprone in Transfusional Iron-Overloaded Children with Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Alexandros Makis

    2013-01-01

    Full Text Available Iron overload in hemoglobinopathies is secondary to blood transfusions, chronic hemolysis, and increased iron absorption and leads to tissue injury requiring the early use of chelating agents. The available agents are parenteral deferoxamine and oral deferiprone and deferasirox. There are limited data on the safety and efficacy of deferiprone at a very young age. The aim of our study was the presentation of data regarding the use of oral solution of deferiprone in 9 children (mean age 6.5, range 2–10 with transfusion dependent hemoglobinopathies (6 beta thalassemia major, 1 thalassemia intermedia, and 2 sickle cell beta thalassemia. The mean duration of treatment was 21.5 months (range 15–31. All children received the oral solution without any problems of compliance. Adverse reactions were temporary abdominal discomfort and diarrhea (1 child, mild neutropenia (1 child that resolved with no need of discontinuation of treatment, and transient arthralgia (1 child that resolved spontaneously. The mean ferritin levels were significantly reduced at the end of 12 months (initial 2440 versus final 1420 μg/L, . This small study shows that oral solution of deferiprone was well tolerated by young children and its use was not associated with major safety concerns. Furthermore, it was effective in decreasing serum ferritin.

  15. Side effect of deferiprone as iron chelator in patient with thalassemia

    Directory of Open Access Journals (Sweden)

    Mikhael Yosia

    2018-01-01

    Full Text Available Background There are currently three available iron chelators: deferoxamine (DFO, deferasirox (DFX and deferiprone (DFP. In Dr. Cipto Mangunkusumo Hospital and Indonesia, in general, the accessibility of DFP for thalassemia patients has been adequate. Even though its efficacy in removing iron has been proven by countless studies, questions relating to its safety and possible side effects continue to be raised. Objective To assess common side effects of DFP usage by an intensive literature search and compare them to that in a pediatric thalassemia patient, in order to determine if the child’s symptoms in the were potentially caused by DFP. Methods A literature search using MeSH terms was done in PubMed. Full copies of articles that fulfil the inclusion criteria, based on their title, abstract, and subject descriptors, were critically appraised using The Joanna Brigs Institute (JBI critical appraisal tools. Results A total of 10 research articles from 1998-2013 were deemed applicable to this study including: 2 case reports, 5 prospective cohort studies, 2 retrospective cohort studies, and 1 randomized control trial with a grand total of 1,026 samples. Conclusion Side effects of DFP include: neutropenia, agranulocytosis, increased ALT, gastrointestinal problems, arthralgia or arthropathy, increased appetite or weight, thrombocytopenia, urine discoloration, as well as auditory and visual disturbances. Our case report patient’s symptoms of gum bleeding and haemorrhagic mass are not related to her DFP consumption.

  16. Reduction in labile plasma iron during treatment with deferasirox, a once-daily oral iron chelator, in heavily iron-overloaded patients with β-thalassaemia

    Science.gov (United States)

    Daar, Shahina; Pathare, Anil; Nick, Hanspeter; Kriemler-Krahn, Ulrike; Hmissi, Abdel; Habr, Dany; Taher, Ali

    2009-01-01

    This subgroup analysis evaluated the effect of once-daily oral deferasirox on labile plasma iron (LPI) levels in patients from the prospective, 1-yr, multicentre ESCALATOR study. Mean baseline liver iron concentration and median serum ferritin levels were 28.6 ± 10.3 mg Fe/g dry weight and 6334 ng/mL respectively, indicating high iron burden despite prior chelation therapy. Baseline LPI levels (0.98 ± 0.82 μmol/L) decreased significantly to 0.12 ± 0.16 μmol/L, 2 h after first deferasirox dose (P=0.0006). Reductions from pre- to post-deferasirox administration were also observed at all other time points. Compared to baseline, there was a significant reduction in preadministration LPI that reached the normal range at week 4 and throughout the remainder of the study (P≤0.02). Pharmacokinetic analysis demonstrated an inverse relationship between preadministration LPI levels and trough deferasirox plasma concentrations. Once-daily dosing with deferasirox ≥20 mg/kg/d provided sustained reduction in LPI levels in these heavily iron-overloaded patients, suggesting 24-h protection from LPI. Deferasirox may therefore reduce unregulated tissue iron loading and prevent further end-organ damage. PMID:19191863

  17. Side effects of Deferasirox Iron Chelation in Patients with Beta Thalassemia Major or Intermedia

    Directory of Open Access Journals (Sweden)

    Murtadha Al-Khabori

    2013-03-01

    Full Text Available Objectives: Chelating agents remain the mainstay in reducing the iron burden and extending patient survival in homozygous beta-thalassemia but adverse and toxic effects may increase with the institution and long term use of this essential therapy. This study aimed to estimate the incidence of deferasirox (DFX side effects in patients with thalassemia major or intermedia.Methods: A retrospective study of 72 patients (mean age: 20.3±0.9 yrs; 36 male, 36 female with thalassemia major or intermedia treated at Sultan Qaboos University Hospital, Oman, was performed to assess the incidence of side effects related to deferasirox over a mean of 16.7 month follow-up period.Results: Six patients experienced rashes and 6 had gastro-intestinal upset. DFX was discontinued in 18 patients for the following reasons: persistent progressive rise(s in serum creatinine (7 patients; 40% mean serum creatinine rise from baseline, feeling unwell (2, severe diarrhea (1, pregnancy (1, death unrelated to chelator (2 and rise in serum transaminases (2. Three patients were reverted to desferoxamine and deferiprone combination therapy as DFX was no longer biochemically effective after 18 months of therapy. There was no correlation between baseline serum ferritin and serum creatinine or a rise in serum creatinine. Cardiac MRI T2* did not change with DFX therapy. However, there was an improvement in liver MRI T2* (p=0.013.Conclusion: Renal side effects related to deferasirox appear to be higher than those reported in published clinical trials. Further larger studies are required to confirm these findings.

  18. On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure

    Directory of Open Access Journals (Sweden)

    Carpenter JP

    2011-09-01

    Full Text Available Abstract Background Trials of iron chelator regimens have increased the treatment options for cardiac siderosis in beta-thalassemia major (TM patients. Treatment effects with improved left ventricular (LV ejection fraction (EF have been observed in patients without overt heart failure, but it is unclear whether these changes are clinically meaningful. Methods This retrospective study of a UK database of TM patients modelled the change in EF between serial scans measured by cardiovascular magnetic resonance (CMR to the relative risk (RR of future development of heart failure over 1 year. Patients were divided into 2 strata by baseline LVEF of 56-62% (below normal for TM and 63-70% (lower half of the normal range for TM. Results A total of 315 patients with 754 CMR scans were analyzed. A 1% absolute increase in EF from baseline was associated with a statistically significant reduction in the risk of future development of heart failure for both the lower EF stratum (EF 56-62%, RR 0.818, p Conclusion These data show that during treatment with iron chelators for cardiac siderosis, small increases in LVEF in TM patients are associated with a significantly reduced risk of the development of heart failure. Thus the iron chelator induced improvements in LVEF of 2.6% to 3.1% that have been observed in randomized controlled trials, are associated with risk reductions of 25.5% to 46.4% for the development of heart failure over 12 months, which is clinically meaningful. In cardiac iron overload, heart mitochondrial dysfunction and its relief by iron chelation may underlie the changes in LV function.

  19. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.

    Science.gov (United States)

    Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D

    2009-06-10

    Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification

  20. Identification of the di-pyridyl ketone isonicotinoyl hydrazone (PKIH) analogues as potent iron chelators and anti-tumour agents

    Science.gov (United States)

    Becker, Erika M; Lovejoy, David B; Greer, Judith M; Watts, Ralph; Richardson, Des R

    2003-01-01

    In an attempt to develop chelators as potent anti-tumour agents, we synthesized two series of novel ligands based on the very active 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) group. Since lipophilicity and membrane permeability play a critical role in Fe chelation efficacy, the aldehyde moiety of the PCIH series, namely 2-pyridylcarboxaldehyde, was replaced with the more lipophilic 2-quinolinecarboxaldehyde or di-2-pyridylketone moieties. These compounds were then systematically condensed with the same group of acid hydrazides to yield ligands based on 2-quinolinecarboxaldehyde isonicotinoyl hydrazone (QCIH) and di-2-pyridylketone isonicotinoyl hydrazone (PKIH). To examine chelator efficacy, we assessed their effects on proliferation, Fe uptake, Fe efflux, the expression of cell cycle control molecules, iron-regulatory protein-RNA-binding activity, and 3H-thymidine, 3H-uridine and 3H-leucine incorporation. Despite the high lipophilicity of the QCIH ligands and the fact that they have the same Fe-binding site as the PCIH series, surprisingly none of these compounds were effective. In contrast, the PKIH analogues showed marked anti-proliferative activity and Fe chelation efficacy. Indeed, the ability of these ligands to inhibit proliferation and DNA synthesis was similar or exceeded that found for the highly cytotoxic chelator, 311. In contrast to the PCIH and QCIH analogues, most of the PKIH group markedly increased the mRNA levels of molecules vital for cell cycle arrest. In conclusion, our studies identify structural features useful in the design of chelators with high anti-proliferative activity. We have identified a novel class of ligands that are potent Fe chelators and inhibitors of DNA synthesis, and which deserve further investigation. PMID:12642383

  1. Identification of the di-pyridyl ketone isonicotinoyl hydrazone (PKIH) analogues as potent iron chelators and anti-tumour agents.

    Science.gov (United States)

    Becker, Erika M; Lovejoy, David B; Greer, Judith M; Watts, Ralph; Richardson, Des R

    2003-03-01

    (1) In an attempt to develop chelators as potent anti-tumour agents, we synthesized two series of novel ligands based on the very active 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) group. Since lipophilicity and membrane permeability play a critical role in Fe chelation efficacy, the aldehyde moiety of the PCIH series, namely 2-pyridylcarboxaldehyde, was replaced with the more lipophilic 2-quinolinecarboxaldehyde or di-2-pyridylketone moieties. These compounds were then systematically condensed with the same group of acid hydrazides to yield ligands based on 2-quinolinecarboxaldehyde isonicotinoyl hydrazone (QCIH) and di-2-pyridylketone isonicotinoyl hydrazone (PKIH). To examine chelator efficacy, we assessed their effects on proliferation, Fe uptake, Fe efflux, the expression of cell cycle control molecules, iron-regulatory protein-RNA-binding activity, and (3)H-thymidine, (3)H-uridine and (3)H-leucine incorporation. (2) Despite the high lipophilicity of the QCIH ligands and the fact that they have the same Fe-binding site as the PCIH series, surprisingly none of these compounds were effective. In contrast, the PKIH analogues showed marked anti-proliferative activity and Fe chelation efficacy. Indeed, the ability of these ligands to inhibit proliferation and DNA synthesis was similar or exceeded that found for the highly cytotoxic chelator, 311. In contrast to the PCIH and QCIH analogues, most of the PKIH group markedly increased the mRNA levels of molecules vital for cell cycle arrest. (3) In conclusion, our studies identify structural features useful in the design of chelators with high anti-proliferative activity. We have identified a novel class of ligands that are potent Fe chelators and inhibitors of DNA synthesis, and which deserve further investigation.

  2. Efficacy and safety of deferasirox, an oral iron chelator, in heavily iron-overloaded patients with β-thalassaemia: the ESCALATOR study

    Science.gov (United States)

    Taher, Ali; El-Beshlawy, Amal; Elalfy, Mohsen S; Al Zir, Kusai; Daar, Shahina; Habr, Dany; Kriemler-Krahn, Ulrike; Hmissi, Abdel; Al Jefri, Abdullah

    2009-01-01

    Objective: Many patients with transfusional iron overload are at risk for progressive organ dysfunction and early death and poor compliance with older chelation therapies is believed to be a major contributing factor. Phase II/III studies have shown that oral deferasirox 20–30 mg/kg/d reduces iron burden, depending on transfusional iron intake. Methods: The prospective, open-label, 1-yr ESCALATOR study in the Middle East was designed to evaluate once-daily deferasirox in patients ≥2 yr with β-thalassaemia major and iron overload who were previously chelated with deferoxamine and/or deferiprone. Most patients began treatment with deferasirox 20 mg/kg/d; doses were adjusted in response to markers of over- or under-chelation. The primary endpoint was treatment success, defined as a reduction in liver iron concentration (LIC) of ≥3 mg Fe/g dry weight (dw) if baseline LIC was ≥10 mg Fe/g dw, or final LIC of 1–7 mg Fe/g dw for patients with baseline LIC of 2 to deferasirox treatment, the intent-to-treat population experienced a significant treatment success rate of 57.0% (P = 0.016) and a mean reduction in LIC of 3.4 mg Fe/g dw. Changes in serum ferritin appeared to parallel dose increases at around 24 wk. Most patients (78.1%) underwent dose increases above 20 mg/kg/d, primarily to 30 mg/kg/d. Drug-related adverse events were mostly mild to moderate and resolved without discontinuing treatment. Conclusions: The results of the ESCALATOR study in primarily heavily iron-overloaded patients confirm previous observations in patients with β-thalassaemia, highlighting the importance of timely deferasirox dose adjustments based on serum ferritin levels and transfusional iron intake to ensure patients achieve their therapeutic goal of maintenance or reduction in iron burden. PMID:19187278

  3. Rapid monitoring of iron-chelating therapy in thalassemia major by a new cardiovascular MR measure: the reduced transverse relaxation rate

    Science.gov (United States)

    Kim, Daniel; Jensen, Jens H.; Wu, Ed X.; Feng, Li; Au, Wing-Yan; Cheung, Jerry S.; Ha, Shau-Yin; Sheth, Sujit S.; Brittenham, Gary M.

    2011-01-01

    In iron overload, almost all the excess iron is stored intracellularly as rapidly mobilizable ferritin iron and slowly exchangeable hemosiderin iron. Increases in cytosolic iron may produce oxidative damage that ultimately results in cardiomyocyte dysfunction. Because intracellular ferritin iron is evidently in equilibrium with the low-molecular-weight cytosolic iron pool, measurements of ferritin iron potentially provide a clinically useful indicator of changes in cytosolic iron. The cardiovascular magnetic resonance (CMR) index of cardiac iron used clinically, the effective transverse relaxation rate (R2*), is principally influenced by hemosiderin iron and changes only slowly over several months, even with intensive iron-chelating therapy. Another conventional CMR index of cardiac iron, the transverse relaxation rate (R2), is sensitive to both hemosiderin iron and ferritin iron. We have developed a new MRI measure, the ‘reduced transverse relaxation rate’ (RR2), and have proposed in previous studies that this measure is primarily sensitive to ferritin iron and largely independent of hemosiderin iron in phantoms mimicking ferritin iron and human liver explants. We hypothesized that RR2 could detect changes produced by 1 week of iron-chelating therapy in patients with transfusion-dependent thalassemia. We imaged 10 patients with thalassemia major at 1.5 T in mid-ventricular short-axis planes of the heart, initially after suspending iron-chelating therapy for 1 week and subsequently after resuming oral deferasirox. After resuming iron-chelating therapy, significant decreases were observed in the mean myocardial RR2 (7.8%, p 0.90). Although the difference between changes in RR2 and R2 was not significant (p > 0.3), RR2 was consistently more sensitive than R2 (and R2*) to the resumption of iron-chelating therapy, as judged by the effect sizes of relaxation rate differences detected. Although further studies are needed, myocardial RR2 may be a promising

  4. The oral iron chelator deferasirox might improve survival in allogeneic hematopoietic cell transplant (alloHSCT) recipients with transfusional iron overload.

    Science.gov (United States)

    Sivgin, Serdar; Baldane, Suleyman; Akyol, Gulsah; Keklik, Muzaffer; Kaynar, Leylagül; Kurnaz, Fatih; Pala, Cigdem; Zararsiz, Gokmen; Cetin, Mustafa; Eser, Bulent; Unal, Ali

    2013-10-01

    Iron overload (IO) has been shown to be an important cause of mortality and morbidity in patients who underwent allogeneic hematopoietic stem cell transplantation (alloHSCT). This study aimed to evaluate the possible effect of oral iron-chelation treatment (deferasirox) on survival in alloHSCT recipients in the posttransplant period. A total of 80 alloHSCT recipients with IO were analyzed, retrospectively. Pretransplant and posttransplant data were obtained from the patients' files. Patients were divided into two groups. Group 1; patients who did not receive any chelator treatment due to side effects or compliance problems. These patients were treated by phlebotomy. Group 2 consisted of patients who received deferasirox treatment. The median treatment duration with deferasirox was 122 days (min-max:91-225). The iron chelating treatment significantly reduced serum ferritin levels administered at a dosage of 20-30 mg/kg/day (pdeferasirox (Exjade) treatment may improve survival in patients with iron overload who underwent alloHSCT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Cytoprotective role of astaxanthin against glycated protein/iron chelate-induced toxicity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Nishigaki, Ikuo; Rajendran, Peramaiyan; Venugopal, Ramachandran; Ekambaram, Gnapathy; Sakthisekaran, Dhanapal; Nishigaki, Yutaka

    2010-01-01

    Astaxanthin (ASX), a red carotenoid pigment with no pro-vitamin A activity, is a biological antioxidant that occurs naturally in a wide variety of plants, algae and seafoods. This study investigated whether ASX could inhibit glycated protein/iron chelate-induced toxicity in human umbilical-vein endothelial cells (HUVEC) by interfering with ROS generation in these cells. Glycated fetal bovine serum (GFBS) was prepared by incubating fetal bovine serum (FBS) with high-concentration glucose. Stimulation of cultured HUVECs with 50 mm 1 mL of GFBS significantly enhanced lipid peroxidation and decreased antioxidant enzyme activities and levels of phase II enzymes. However, preincubation of the cultures with ASX resulted in a marked decrease in the level of lipid peroxide (LPO) and an increase in the levels of antioxidant enzymes in an ASX concentration-dependent manner. These results demonstrate that ASX could inhibit LPO formation and enhance the antioxidant enzyme status in GFBS/iron chelate-exposed endothelial cells by suppressing ROS generation, thereby limiting the effects of the AGE-RAGE interaction. The results indicate that ASX could have a beneficial role against glycated protein/iron chelate-induced toxicity by preventing lipid and protein oxidation and increasing the activity of antioxidant enzymes. (c) 2009 John Wiley & Sons, Ltd.

  6. Study on Selective Removal of Impurity Iron from Leached Copper-Bearing Solution Using a Chelating Resin

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2016-10-01

    Full Text Available In order to selectively remove iron from copper laden solution after leaching but prior to electrowinning, equilibrium, kinetic, and thermodynamic studies have been conducted on an a chelating resin of Rexp-501 at pH 1.0 and at various temperatures. Both Langmuir and Freundlich models were investigated, with the Langmuir model proving to be more suitable for fitting iron removal performance, with little influence from copper concentration. Compared with the pseudo first order kinetic model, the pseudo second order kinetic model fitted the dynamic adsorption process better, indicating a chemisorption mechanism. Fourier transform infrared spectroscopy (FT-IR results indicated that C=O from carbonyl group played a key role in combining with iron and can be regenerated and reused. However, the C=O of the acylamino group combining with iron was not able to be released after oxalic acid was applied.

  7. Sobrecarga e quelação de ferro na anemia falciforme Iron overload and iron chelation in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Cançado

    2007-09-01

    Full Text Available Pacientes cronicamente transfundidos desenvolvem sobrecarga de ferro que ocasiona lesão orgânica e morte. Nos últimos trinta anos, pacientes com sobrecarga de ferro transfusional dependem de infusões noturnas de desferroxamina para quelação de ferro. Apesar da dramática melhora da expectativa de vida na era da desferroxamina para pacientes com anemias dependentes de transfusão, 50% dos pacientes com talassemia maior morrem antes dos 30 anos de idade, predominantemente devido à insuficiência cardíaca induzida pelo ferro. A difícil natureza desse tratamento com infusão subcutânea prolongada por meio de aparelho infusor portátil motivou o desenvolvimento de formas alternativas de tratamento que facilitasse a aderência do paciente. Estratégias para reduzir a sobrecarga de ferro e suas conseqüências, através da melhora dos regimes de quelação, foram as prioridades mais importantes nos últimos anos. Nesta revisão, descrevemos os avanços mais importantes da terapia quelante de ferro. Em particular, analisamos os dois quelantes de ferro ativos por via oral: deferiprona e o novo quelante de ferro oral deferasirox.Patients who are chronically dependent on transfusions will develop iron overload that leads to organ damage and eventually to death. For nearly 30 years, patients with transfusional iron overload have been subject to overnight deferoxamine infusions for iron chelation. Despite dramatic gains in terms of life expectancy in the deferoxamine era for patients with transfusion-dependent anemias, 50% of patients with thalassemia major die before the age of 35 years, predominantly due to iron-induced heart failure. The very demanding nature of this treatment with prolonged subcutaneous infusion via portable pump infusions has been the motivation for attempts to develop alternative forms of treatment that would facilitate the patients' compliance. Strategies to reduce iron overload and its consequences by improving chelation

  8. Use of deferasirox, an iron chelator, to overcome imatinib resistance of chronic myeloid leukemia cells.

    Science.gov (United States)

    Kim, Dae Sik; Na, Yoo Jin; Kang, Myoung Hee; Yoon, Soo-Young; Choi, Chul Won

    2016-03-01

    The treatment of chronic myeloid leukemia (CML) has achieved impressive success since the development of the Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate. Nevertheless, resistance to imatinib has been observed, and a substantial number of patients need alternative treatment strategies. We have evaluated the effects of deferasirox, an orally active iron chelator, and imatinib on K562 and KU812 human CML cell lines. Imatinib-resistant CML cell lines were created by exposing cells to gradually increasing concentrations of imatinib. Co-treatment of cells with deferasirox and imatinib induced a synergistic dose-dependent inhibition of proliferation of both CML cell lines. Cell cycle analysis showed an accumulation of cells in the subG1 phase. Western blot analysis of apoptotic proteins showed that co-treatment with deferasirox and imatinib induced an increased expression of apoptotic proteins. These tendencies were clearly identified in imatinib-resistant CML cell lines. The results also showed that co-treatment with deferasirox and imatinib reduced the expression of BcrAbl, phosphorylated Bcr-Abl, nuclear factor-κB (NF-κB) and β-catenin. We observed synergistic effects of deferasirox and imatinib on both imatinib-resistant and imatinib-sensitive cell lines. These effects were due to induction of apoptosis and cell cycle arrest by down-regulated expression of NF-κB and β-catenin levels. Based on these results, we suggest that a combination treatment of deferasirox and imatinib could be considered as an alternative treatment option for imatinib-resistant CML.

  9. Immunological Evaluation of -Thalassemia Major Patients Receiving Oral Iron Chelator Deferasirox

    International Nuclear Information System (INIS)

    Aleem, A.; Alsaleh, K.; Algahtani, F.; Momen, A. A.; Shakoor, Z.; Iqbal, Z.

    2014-01-01

    Objective: To determine the immune abnormalities and occurrence of infections in transfusion-dependent -thalassemia major patients receiving oral iron chelator deferasirox (DFX). Study Design: An observational study. Place and Duration of Study: Hematology Clinics, King Khalid University Hospital, Riyadh, Saudi Arabia, from July to December 2010. Methodology: Seventeen patients with -thalassemia major (12 females, median age 26 years) receiving deferasirox (DFX) for a median duration of 27 months were observed for any infections and had their immune status determined. Immune parameters studied included serum immunoglobulins and IgG subclasses, serum complement (C3 and C4) and anti-nuclear antibody (ANA) level, total B and T-lymphocytes, CD4+ and CD8+ counts, CD4+/CD8+ ratio, and natural killer (NK) cells. Immunological parameters of the patients were compared with age, gender, serum ferritin level and splenectomy status. Lymphocyte subsets were also compared with age and gender matched normal controls. Results: A considerable reduction in serum ferritin was achieved by DFX from a median level of 2528 to 1875 mol/l. Serum IgG levels were increased in 7 patients. Low C4 levels were found in 9 patients. Total B and T-lymphocytes were increased in 14 patients each, while CD4+, CD8+ and NK cells were increased in 13, 12 and 11 patients respectively. Absolute counts for all lymphocyte subsets were significantly higher compared to the normal controls (p=0.05 for all parameters). Raised levels of IgG were associated with older age, female gender, splenectomized status and higher serum ferritin levels but this did not reach statistical significance except for the higher ferritin levels (p=0.044). Increased tendency to infections was not observed. Conclusion: Patients with -thalassemia major receiving DFX exhibited significant immune abnormalities. Changes observed have been described previously, but could be related to DFX. The immune abnormalities were not associated with

  10. Use of deferasirox, an iron chelator, to overcome imatinib resistance of chronic myeloid leukemia cells

    Science.gov (United States)

    Kim, Dae Sik; Na, Yoo Jin; Kang, Myoung Hee; Yoon, Soo-Young; Choi, Chul Won

    2016-01-01

    Background/Aims: The treatment of chronic myeloid leukemia (CML) has achieved impressive success since the development of the Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate. Nevertheless, resistance to imatinib has been observed, and a substantial number of patients need alternative treatment strategies. Methods: We have evaluated the effects of deferasirox, an orally active iron chelator, and imatinib on K562 and KU812 human CML cell lines. Imatinib-resistant CML cell lines were created by exposing cells to gradually increasing concentrations of imatinib. Results: Co-treatment of cells with deferasirox and imatinib induced a synergistic dose-dependent inhibition of proliferation of both CML cell lines. Cell cycle analysis showed an accumulation of cells in the subG1 phase. Western blot analysis of apoptotic proteins showed that co-treatment with deferasirox and imatinib induced an increased expression of apoptotic proteins. These tendencies were clearly identified in imatinib-resistant CML cell lines. The results also showed that co-treatment with deferasirox and imatinib reduced the expression of BcrAbl, phosphorylated Bcr-Abl, nuclear factor-κB (NF-κB) and β-catenin. Conclusions: We observed synergistic effects of deferasirox and imatinib on both imatinib-resistant and imatinib-sensitive cell lines. These effects were due to induction of apoptosis and cell cycle arrest by down-regulated expression of NF-κB and β-catenin levels. Based on these results, we suggest that a combination treatment of deferasirox and imatinib could be considered as an alternative treatment option for imatinib-resistant CML. PMID:26874514

  11. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper.

    Science.gov (United States)

    Mukherjee, Indrani; Campbell, Nathan H; Ash, Joshua S; Connolly, Erin L

    2006-05-01

    The Arabidopsis FRO2 gene encodes the iron deficiency-inducible ferric chelate reductase responsible for reduction of iron at the root surface; subsequent transport of iron across the plasma membrane is carried out by a ferrous iron transporter (IRT1). Genome annotation has identified seven additional FRO family members in the Arabidopsis genome. We used real-time RT-PCR to examine the expression of each FRO gene in different tissues and in response to iron and copper limitation. FRO2 and FRO5 are primarily expressed in roots while FRO8 is primarily expressed in shoots. FRO6 and FRO7 show high expression in all the green parts of the plant. FRO3 is expressed at high levels in roots and shoots, and expression of FRO3 is elevated in roots and shoots of iron-deficient plants. Interestingly, when plants are Cu-limited, the expression of FRO6 in shoot tissues is reduced. Expression of FRO3 is induced in roots and shoots by Cu-limitation. While it is known that FRO2 is expressed at high levels in the outer layers of iron-deficient roots, histochemical staining of FRO3-GUS plants revealed that FRO3 is predominantly expressed in the vascular cylinder of roots. Together our results suggest that FRO family members function in metal ion homeostasis in a variety of locations in the plant.

  12. Iron chelation therapy with deferasirox in patients with aplastic anemia: a subgroup analysis of 116 patients from the EPIC trial

    DEFF Research Database (Denmark)

    Lee, Jong Wook; Yoon, Sung-Soo; Shen, Zhi Xiang

    2010-01-01

    The prospective 1-year Evaluation of Patients' Iron Chelation with Exjade (EPIC) study enrolled a large cohort of 116 patients with aplastic anemia; the present analyses evaluated the efficacy and safety of deferasirox in this patient population. After 1 year, median serum ferritin decreased...... adjustments and ongoing iron intake. Baseline labile plasma iron levels were within normal range despite high serum ferritin levels. The most common drug-related adverse events were nausea (22%) and diarrhea (16%). Serum creatinine increases more than 33% above baseline and the upper limit of normal occurred...... neutrophil and platelet counts remained stable during treatment, and there were no drug-related cytopenias. This prospective dataset confirms the efficacy and well characterizes the tolerability profile of deferasirox in a large population of patients with aplastic anemia. This study was registered at www...

  13. Iron chelation therapy with deferasirox in patients with aplastic anemia: a subgroup analysis of 116 patients from the EPIC trial

    DEFF Research Database (Denmark)

    Lee, Jong Wook; Yoon, Sung-Soo; Shen, Zhi Xiang

    2010-01-01

    adjustments and ongoing iron intake. Baseline labile plasma iron levels were within normal range despite high serum ferritin levels. The most common drug-related adverse events were nausea (22%) and diarrhea (16%). Serum creatinine increases more than 33% above baseline and the upper limit of normal occurred...... in 29 patients (25%), but there were no progressive increases; concomitant use of cyclosporine had a significant impact on serum creatinine levels. The decrease in mean alanine aminotransferase levels at 1 year correlated significantly with reduction in serum ferritin (r = 0.40, P ...The prospective 1-year Evaluation of Patients' Iron Chelation with Exjade (EPIC) study enrolled a large cohort of 116 patients with aplastic anemia; the present analyses evaluated the efficacy and safety of deferasirox in this patient population. After 1 year, median serum ferritin decreased...

  14. Health-Related Quality of Life and Health Utility Values in Beta Thalassemia Major Patients Receiving Different Types of Iron Chelators in Iran.

    Science.gov (United States)

    Seyedifar, Meysam; Dorkoosh, Farid Abedin; Hamidieh, Amir Ali; Naderi, Majid; Karami, Hossein; Karimi, Mehran; Fadaiyrayeny, Masoomeh; Musavi, Masoumeh; Safaei, Sanaz; Ahmadian-Attari, Mohammad Mahdi; Hadjibabaie, Molouk; Cheraghali, Abdol Majid; Akbari Sari, Ali

    2016-10-01

    Background: Thalassemia is a chronic, inherited blood disorder, which in its most severe form, causes life-threatening anemia. Thalassemia patients not only engage with difficulties of blood transfusion and iron chelating therapy but also have some social challenges and health threatening factors. There are some reports on quality of life in thalassemia patients around the world from southeast of Asia to Italy in Europe and United States. In this study, we tried to evaluate and compare Health Related Quality of life (HRQoL) and the health utility in beta thalassemia major patients receiving different types of iron chelators and living in different socio-economical situations. Subjects and Methods: EQ-5D-3L accompanied by a Visual Analogue Scale (VAS) questionnaire was used. The respondents were patients with beta thalassemia major that were at least 12 years old selected from 3 provinces of Sistan-Blouchestan, Fars and Mazandaran. Comorbidities including heart complication, Diabetes Mellitus and Hepatitis and also types of iron chelators (oral, injection, combination of both) were also asked. Cross tab and ANOVA analysis conducted to evaluate each dimension score and health utility differences between provinces, iron chelation methods, comorbidities, age group and gender. Results: 528 patients answered the questionnaires. The health utility of patients that received oral iron chelator were 0.87 ± .01 for oral iron chelators versus 0.81 ± .01 for injection dosage form (ptype of iron chelation treatment which they received, the gender they have, the comorbidities they suffer and socio-economical situations they live in.

  15. Heterogeneity of myocardial iron distribution in response to chelation therapy in patients with transfusion-dependent anemias.

    Science.gov (United States)

    Hanneman, Kate; Raju, Vikram M; Moshonov, Hadas; Ward, Richard; Wintersperger, Bernd J; Crean, Andrew M; Ross, Heather; Nguyen, Elsie T

    2013-10-01

    The purpose of this study is to examine the effect of different iron chelation regimens on the distribution of myocardial iron in patients with transfusion-dependent anemias. Institutional review board approval was obtained. Patients treated with iron chelation therapy who had undergone baseline and 1-year follow-up cardiac T2* MR studies in a four-year period were identified retrospectively. One hundred and eight patients (44 % male, mean age 31.6 ± 9.7 years) were included. The interventricular septum on three short-axis slices (basal, mid and apical) was divided into anterior and inferior regions of interest for T2* analysis. Cardiac iron concentration (CIC) was calculated from T2* values. Statistical analysis included analysis of variance and paired t-test, using Bonferroni adjustment in all pairwise comparisons. At baseline, T2* measurements varied significantly across all six regions (p < 0.001): lowest in the mid anteroseptum (mean 22.3 ± 10.1 ms) and highest in the apical inferoseptum (mean 26.2 ± 12.8 ms). At follow-up, T2* and CIC values improved significantly in all segments [mean change of 3.78 ms (95 % CI (2.93, 4.62), p < 0.001) and 0.23 mg/g (95 % CI (0.16, 0.29), p < 0.001), respectively]. Change in T2* values varied significantly between segments (p < 0.001) with greatest improvement in the apical inferoseptum [4.26 ms, 95 % CI (2.42, 6.11)] and least improvement in the basal anteroseptum [2.95 ms, 95 % CI (1.37, 4.54)]. The largest improvement in T2* values was noted in patients treated with deferiprone [4.96 ms, 95 % CI (2.34, 7.58)]. There was a statistically significant difference in improvement in CIC values between chelation regimens (p = 0.016). This is the first study to report heterogeneity in response to iron chelating drugs with variable segmental changes in T2* values.

  16. Iron chelation therapy with deferasirox in patients with aplastic anemia: a subgroup analysis of 116 patients from the EPIC trial

    DEFF Research Database (Denmark)

    Lee, Jong Wook; Yoon, Sung-Soo; Shen, Zhi Xiang

    2010-01-01

    The prospective 1-year Evaluation of Patients' Iron Chelation with Exjade (EPIC) study enrolled a large cohort of 116 patients with aplastic anemia; the present analyses evaluated the efficacy and safety of deferasirox in this patient population. After 1 year, median serum ferritin decreased...... neutrophil and platelet counts remained stable during treatment, and there were no drug-related cytopenias. This prospective dataset confirms the efficacy and well characterizes the tolerability profile of deferasirox in a large population of patients with aplastic anemia. This study was registered at www...

  17. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.

    Science.gov (United States)

    Ding, Hong; Duan, Lihong; Wu, Huilan; Yang, Rongxin; Ling, Hongqing; Li, Wen-Xue; Zhang, Fusuo

    2009-07-01

    Iron deficiency-induced chlorosis in peanut during anthesis was alleviated when peanut was intercropped with maize in field and pot experiments. Iron acquisition of graminaceous plants is characterized by the synthesis and secretion of the iron-chelating phytosiderophores. Compared to the roots of monocropped maize, the roots of maize intercropped with peanut always secreted higher amounts of phytosiderophores during peanut anthesis. For non-graminaceous plants, reduction of ferric to ferrous iron on the root surface is the rate-limiting step for mobilizing iron from soil. The full-length cDNA, AhFRO1, which is encoding an Fe(III)-chelate reductase, was isolated from peanut. AhFRO1 expression in yeast conferred Fe(III)-chelate reductase activity to the cells. Consistent with its function in iron uptake, AhFRO1 was determined to be a membrane protein by transient expression analysis. AhFRO1 mRNA accumulated under iron deficiency conditions. During pre-anthesis, the Fe(III)-chelate reductase activity and the transcript levels of AhFRO1 were similar in monocropped and intercropped peanut. When the iron deficiency-induced chlorosis developed in the monocropped peanuts, both the Fe(III)-chelate reductase activity of peanut and the transcript levels of AhFRO1 were higher in intercropped than in monocropped peanuts, which is consistent with the secretion of phytosiderophores by maize roots. We conclude that AhFRO1 in peanut and phytosiderophores from maize co-operate to improve the iron nutrition of peanut when intercropped with maize.

  18. Optimising iron chelation therapy with deferasirox for non-transfusion-dependent thalassaemia patients: 1-year results from the THETIS study.

    Science.gov (United States)

    Taher, Ali T; Cappellini, M Domenica; Aydinok, Yesim; Porter, John B; Karakas, Zeynep; Viprakasit, Vip; Siritanaratkul, Noppadol; Kattamis, Antonis; Wang, Candace; Zhu, Zewen; Joaquin, Victor; Uwamahoro, Marie José; Lai, Yong-Rong

    2016-03-01

    Efficacy and safety of iron chelation therapy with deferasirox in iron-overloaded non-transfusion-dependent thalassaemia (NTDT) patients were established in the THALASSA study. THETIS, an open-label, single-arm, multicentre, Phase IV study, added to this evidence by investigating earlier dose escalation by baseline liver iron concentration (LIC) (week 4: escalation according to baseline LIC; week 24: adjustment according to LIC response, maximum 30mg/kg/day). The primary efficacy endpoint was absolute change in LIC from baseline to week 52. 134 iron-overloaded non-transfusion-dependent anaemia patients were enrolled and received deferasirox starting at 10mg/kg/day. Mean actual dose±SD over 1year was 14.70±5.48mg/kg/day. At week 52, mean LIC±SD decreased significantly from 15.13±10.72mg Fe/g dw at baseline to 8.46±6.25mg Fe/g dw (absolute change from baseline, -6.68±7.02mg Fe/g dw [95% CI: -7.91, -5.45]; Pdeferasirox doses in iron-overloaded non-transfusion-dependent anaemia patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Iron chelation with deferasirox for the treatment of secondary hemosiderosis in pediatric oncology patients: a single-center experience.

    Science.gov (United States)

    Ktena, Yiouli P; Athanasiadou, Anastasia; Lambrou, George; Adamaki, Maria; Moschovi, Maria

    2013-08-01

    Pediatric oncology patients are often iron overloaded, due to the multiple blood transfusions necessary during the course of chemotherapy. Our aim is to report the efficacy and safety of deferasirox, an oral iron chelator, in this patient group. Deferasirox was administered to 13 children with malignancies in remission and iron overload. Ferritin, blood urea nitrogen, creatinine, transaminases, and bilirubin were recorded at 4- to 8-week intervals, and hepatic and cardiac iron overload were assessed with magnetic resonance imaging before initiation of treatment. Deferasirox was administered for an average of 6 months (SD=4.5; range, 0.3 to 18.2). Two children presented with skin rash, 1 with gastrointestinal disturbances, and 1 with fully reversible acute renal failure. The mean monthly rate of change in ferritin levels was -10.8 μg/L before initiation of treatment (95% confidence interval [CI], -19.8 to -1.8; P=0.02) and -93.6 μg/L during deferasirox treatment (95% CI, -118.1 to -69.1; PDeferasirox was effective in reducing the iron burden. The adverse effects were easily monitored and managed. Further studies are warranted to investigate the effect of deferasirox on mortality and morbidity in this population.

  20. Durable Red Blood Cell Transfusion Independence in a Patient with an MDS/MPN Overlap Syndrome Following Discontinuation of Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Harpreet Kochhar

    2015-01-01

    Full Text Available Background. Hematologic improvement (HI occurs in some patients with acquired anemias and transfusional iron overload receiving iron chelation therapy (ICT but there is little information on transfusion status after stopping chelation. Case Report. A patient with low IPSS risk RARS-T evolved to myelofibrosis developed a regular red blood cell (RBC transfusion requirement. There was no response to a six-month course of study medication or to erythropoietin for three months. At 27 months of transfusion dependence, she started deferasirox and within 6 weeks became RBC transfusion independent, with the hemoglobin normalizing by 10 weeks of chelation. After 12 months of chelation, deferasirox was stopped; she remains RBC transfusion independent with a normal hemoglobin 17 months later. We report the patient’s course in detail and review the literature on HI with chelation. Discussion. There are reports of transfusion independence with ICT, but that transfusion independence may be sustained long term after stopping chelation deserves emphasis. This observation suggests that reduction of iron overload may have a lasting favorable effect on bone marrow failure in at least some patients with acquired anemias.

  1. Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease

    International Nuclear Information System (INIS)

    Xu Qi; Kanthasamy, Anumantha G.; Reddy, Manju B.

    2008-01-01

    Disrupted iron metabolism and excess iron accumulation has been reported in the brains of Parkinson's disease (PD) patients. Because excessive iron can induce oxidative stress subsequently causing degradation of nigral dopaminergic neurons in PD, we determined the protective effect of a naturally occurring iron chelator, phytic acid (IP6), on 1-methyl-4-phenylpyridinium (MPP + )-induced cell death in immortalized rat mesencephalic/dopaminergic cells. Cell death was induced with MPP + in normal and iron-excess conditions and cytotoxicity was measured by thiazolyl blue tetrazolium bromide (MTT assay) and trypan blue staining. Apoptotic cell death was also measured with caspase-3 activity, DNA fragmentation, and Hoechst nuclear staining. Compared to MPP + treatment, IP6 (30 μmol/L) increased cell viability by 19% (P + treatment was decreased by 55% (P < 0.01) and 52% (P < 0.05), respectively with IP6. Cell survival was increased by 18% (P < 0.05) and 42% (P < 0.001) with 30 and 100 μmol/L of IP6, respectively in iron-excess conditions. A 40% and 52% (P < 0.001) protection was observed in caspase-3 activity with 30 and 100 μmol/L IP6, respectively in iron-excess condition. Similarly, a 45% reduction (P < 0.001) in DNA fragmentation was found with 100 μmol/L IP6. In addition, Hoechst nuclear staining results confirmed the protective effect of IP6 against apoptosis. Similar protection was also observed with the differentiated cells. Collectively, our results demonstrate a significant neuroprotective effect of phytate in a cell culture model of PD

  2. Clinical management of gastrointestinal disturbances in patients with myelodysplastic syndromes receiving iron chelation treatment with deferasirox

    NARCIS (Netherlands)

    Nolte, F.; Angelucci, E.; Beris, P.; Macwhannell, A.; Selleslag, D.; Schumann, C.; Xicoy, B.; Almeida, A.; Guerci-Bresler, A.; Sliwa, T.; Muus, P.; Porter, J.; Hofmann, W.K.

    2011-01-01

    Myelodysplastic syndromes are characterized by ineffective hematopoiesis resulting in peripheral cytopenias. The majority of patients is dependent on regular transfusions of packed red blood cells leading to a secondary iron overload which might result in organ damage. Therefore, sufficient iron

  3. Evaluation of the iron chelation potential of hydrazones of pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde using the hepatocyte in culture.

    Science.gov (United States)

    Baker, E; Richardson, D; Gross, S; Ponka, P

    1992-03-01

    A range of new analogues of the promising iron chelator pyridoxal isonicotinoyl hydrazone was prepared and assessed for activity in reducing hepatocyte iron, mechanism of action and potential in iron-chelation therapy. A total of 45 compounds were synthesized by condensation of aromatic aldehydes (pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde) with various acid hydrazides prepared by systematic substitutions on the benzene ring or by the replacement of the ring with an acetyl, pyridyl, furoyl or thiophene moiety. The effects of these compounds on 59Fe uptake and intracellular distribution in hepatocytes in culture and on 59Fe mobilization from prelabeled hepatocytes were assessed. Toxicity, lipophilicity and the ability to chelate plasma transferrin-bound 59Fe were also evaluated. Several compounds were much more active than pyridoxal isonicotinoyl hydrazone and may have clinical potential. These included pyridoxal benzoyl hydrazone, pyridoxal p-methoxybenzoyl hydrazone, pyridoxal m-fluorobenzoyl hydrazone and pyridoxal 2-pyridyl hydrazone. All were more effective at reducing iron uptake than mobilizing hepatocyte iron; they also may act primarily on the transit iron pool rather than on storage iron. Other compounds (e.g., salicylaldehyde p-t-butyl-benzoyl hydrazone) redistributed ferritin-59Fe to different intracellular sites but had little net effect on hepatocyte iron levels.

  4. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities.

    Science.gov (United States)

    O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre

    2015-03-18

    The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (Piron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.

  5. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron.

    Science.gov (United States)

    Park, Sung-Soo; Bae, Insoo; Lee, Yong J

    2008-04-15

    Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1 that is the key regulator of cellular response to low oxygen tension. Under normoxic conditions, HIF-1alpha is continuously degraded by the ubiquitin-proteasome pathway through pVHL (von Hippel-Lindau tumor suppressor protein). Under hypoxic conditions, HIF-1alpha is stabilized and induces the transcription of HIF-1 target genes. Quercetin, a flavonoid with anti-oxidant, anti-inflammatory, and kinase modulating properties, has been found to induce HIF-1alpha accumulation and VEGF secretion in normoxia. In this study, the molecular mechanisms of quercetin-mediated HIF-1alpha accumulation were investigated. Previous studies have shown that, in addition to being induced by hypoxia, HIF-1alpha can be induced through the phosphatidylinositol 3-kinase (PI3K)/Akt and p53 signaling pathways. But our study revealed, through p53 mutant-type as well as p53 null cell lines, that neither the PI3K/Akt nor the p53 signaling pathway is required for quercetin-induced HIF-1alpha accumulation. And we observed that HIF-1alpha accumulated by quercetin is not ubiquitinated and the interaction of HIF-1alpha with pVHL is reduced, compared with HIF-1alpha accumulated by the proteasome inhibitor MG132. The use of quercetin's analogues showed that only quercetin and galangin induce HIF-1/2alpha accumulation and this effect is completely reversed by additional iron ions. This is because quercetin and galangin are able to chelate cellular iron ions that are cofactors of HIF-1/2alpha proline hydroxylase (PHD). These data suggest that quercetin inhibits the ubiquitination of HIF-1/2alpha in normoxia by hindering PHD through chelating iron ions.

  6. Bipyridine, an iron chelator, does not lessen intracerebral iron-induced damage or improve outcome after intracerebral hemorrhagic stroke in rats.

    Science.gov (United States)

    Caliaperumal, Jayalakshmi; Wowk, Shannon; Jones, Sarah; Ma, Yonglie; Colbourne, Frederick

    2013-12-01

    Iron chelators, such as the intracellular ferrous chelator 2,2'-bipyridine, are a potential means of ameliorating iron-induced injury after intracerebral hemorrhage (ICH). We evaluated bipyridine against the collagenase and whole-blood ICH models and a simplified model of iron-induced damage involving a striatal injection of FeCl2 in adult rats. First, we assessed whether bipyridine (25 mg/kg beginning 12 h post-ICH and every 12 h for 3 days) would attenuate non-heme iron levels in the brain and lessen behavioral impairments (neurological deficit scale, corner turn test, and horizontal ladder) 7 days after collagenase-induced ICH. Second, we evaluated bipyridine (20 mg/kg beginning 6 h post-ICH and then every 24 h) on edema 3 days after collagenase infusion. Body temperature was continually recorded in a subset of these rats beginning 24 h prior to ICH until euthanasia. Third, bipyridine was administered (as per experiment 2) after whole-blood infusion to examine tissue loss, neuronal degeneration, and behavioral impairments at 7 days post-stroke, as well as body temperature for 3 days post-stroke. Finally, we evaluated whether bipyridine (25 mg/kg given 2 h prior to surgery and then every 12 h for 3 days) lessens tissue loss, neuronal death, and behavioral deficits after striatal FeCl2 injection. Bipyridine caused a significant hypothermic effect (maximum drop to 34.6 °C for 2-5 h after each injection) in both ICH models; however, in all experiments bipyridine-treated rats were indistinguishable from vehicle controls on all other measures (e.g., tissue loss, behavioral impairments, etc.). These results do not support the use of bipyridine against ICH.

  7. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation

    OpenAIRE

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C.; Pourzand, Charareh

    2016-01-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320?400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect...

  8. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhujian [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Wu, Pingxiao, E-mail: pppxwu@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); Gong, Beini; Yang, Shanshan; Li, Hailing [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhu, Ziao; Cui, Lihua [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2016-05-01

    Graphical abstract: - Highlights: • G–Fe chelate molecules were well preserved into montmorillonite. • The product shows an excellent catalytic activity under sunlight at neutral pH value. • G–Fe–Mt is a promising catalyst for advanced oxidation processes. - Abstract: To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G–Fe–Mt) was developed. The physiochemical properties of G–Fe–Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G–Fe–Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G–Fe–Mt under neutral pH. G–Fe–Mt is a promising catalyst for advanced oxidation processes.

  9. Curcumin Inhibits Growth of Saccharomyces cerevisiae through Iron Chelation ▿ ††

    OpenAIRE

    Minear, Steven; O'Donnell, Allyson F.; Ballew, Anna; Giaever, Guri; Nislow, Corey; Stearns, Tim; Cyert, Martha S.

    2011-01-01

    Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains un...

  10. Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils.

    Science.gov (United States)

    Ylivainio, Kari

    2010-10-01

    In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg(-1)). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Pharmacokinetics of the iron chelator desferrioxamine as affected by liposome encapsulation: potential in treatment of chronic hemosiderosis

    Energy Technology Data Exchange (ETDEWEB)

    Guilmette, R.A.; Cerny, E.A.; Rahman, Y.E.

    1978-01-23

    Desferrioxamine (DF), the chelator of choice for removal of excess stored iron, is limited by its rapid excretion, metabolic breakdown, and low cell uptake. We have encapsulated DF in unilamellar and multilamellar liposomes, and have compared the short-term pharmacokinetics of nonencapsulated and encapsulated /sup 59/Fe-labeled DF after intravenous administration. Disappearance of /sup 59/Fe-DF from the plasma was very rapid in mice receiving multilamellar liposome-encapsulated and nonencapsulated drug, but much slower in mice receiving unilamellar liposomes. Between 1 and 24 hours after injection, nonencapsulated /sup 59/Fe-DF never exceeded 1 to 5% of the injected dose (ID) in liver or <0.7% in spleen; whereas after either multilamellar or unilamellar liposomes, the uptake in liver was 30 to 35% ID, and in spleen was 1 to 5% ID. Excretion of /sup 59/Fe-DF was much slower with liposome encapsulation. These results indicate that liposomes can effectively deliver DF to critical organs of iron storage. Thus this drug delivery system is potentially useful for treatment of iron overload.

  12. Ulcerated hemosiderinic dyschromia and iron deposits within lower limbs treated with a topical application of biological chelator

    Directory of Open Access Journals (Sweden)

    Eugenio Brizzio

    2012-12-01

    Full Text Available The ulcerative haemosiderinic dyschromia of chronic venous insufficiency is difficult to heal and presents a high accumulation of iron. Lactoferrin, a potent natural iron chelator, could help to scar this ulcerative haemosi - derinic dyschromia. The objective of this study was to determine whether the topical application of a liposomal gel with Lactoferrin favors scarring/degradation of the brown colored spot typical of ulcerative haemosiderinic dyschromia. Nine patients with severe chronic venous insufficiency and ulcerative haemosiderinic dyschromia (CEAP-C6, with a natural evolution of over 12 months, were included in the study. Hemo chromatosis gene mutations were investigated. The levels of serum ferritin, transferrin saturation and blood cell counts were analyzed. The presence of hemosiderin was investigated through periulcerous and ulcer fundus biopsies carried out at baseline and 30 days after treatment with Lactoferrin. The severity of the injuries (CEAP classification was evaluated at the beginning of and throughout the whole 3-month treatment period. No patient had received compression treatment during the three months previous to this therapy. Significant improvement in these injuries, with a reduction in the dimensions of the brown spot (9 of 9 at Day 90, and complete scarring with a closure time ranging from 15 to 180 days (7 of 9 were observed. The use of topical lactoferrin is a non-invasive therapeutic tool that favors clearance of hemosiderinic dyschromia and scarring of the ulcer. The success of this study was not influenced either by the hemochromatosis genetics or the iron metabolism profile observed.

  13. Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression: role of chelatable iron.

    Science.gov (United States)

    Hickok, Jason R; Sahni, Sumit; Mikhed, Yuliya; Bonini, Marcelo G; Thomas, Douglas D

    2011-12-02

    N-Myc downstream-regulated gene 1 (NDRG1) is a ubiquitous cellular protein that is up-regulated under a multitude of stress and growth-regulatory conditions. Although the exact cellular functions of this protein have not been elucidated, mutations in this gene or aberrant expression of this protein have been linked to both tumor suppressive and oncogenic phenotypes. Previous reports have demonstrated that NDRG1 is strongly up-regulated by chemical iron chelators and hypoxia, yet its regulation by the free radical nitric oxide ((•)NO) has never been demonstrated. Herein, we examine the chemical biology that confers NDRG1 responsiveness at the mRNA and protein levels to (•)NO. We demonstrate that the interaction of (•)NO with the chelatable iron pool (CIP) and the appearance of dinitrosyliron complexes (DNIC) are key determinants. Using HCC 1806 triple negative breast cancer cells, we find that NDRG1 is up-regulated by physiological (•)NO concentrations in a dose- and time-dependant manner. Tumor cell migration was suppressed by NDRG1 expression and we excluded the involvement of HIF-1α, sGC, N-Myc, and c-Myc as upstream regulatory targets of (•)NO. Augmenting the chelatable iron pool abolished (•)NO-mediated NDRG1 expression and the associated phenotypic effects. These data, in summary, reveal a link between (•)NO, chelatable iron, and regulation of NDRG1 expression and signaling in tumor cells.

  14. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jehn-Chuan Lee

    2016-08-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO, and deferasirox all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.

  15. Iron chelation or anti-oxidants prevent renal cell damage in the rewarming phase after normoxic, but not hypoxic cold incubation.

    NARCIS (Netherlands)

    Bartels-Stringer, M.; Verpalen, J.T.M.; Wetzels, J.F.M.; Russel, F.G.M.; Kramers, C.

    2007-01-01

    It has now been firmly established that, not only ischemia/reperfusion, but also cold itself causes damage during kidney transplantation. Iron chelators or anti-oxidants applied during the cold plus rewarming phase are able to prevent this damage. At present, it is unknown if these measures act only

  16. Iron-chelating therapy with deferasirox in transfusion-dependent, higher risk myelodysplastic syndromes: a retrospective, multicentre study.

    Science.gov (United States)

    Musto, Pellegrino; Maurillo, Luca; Simeon, Vittorio; Poloni, Antonella; Finelli, Carlo; Balleari, Enrico; Ricco, Alessandra; Rivellini, Flavia; Cortelezzi, Agostino; Tarantini, Giuseppe; Villani, Oreste; Mansueto, Giovanna; Milella, Maria R; Scapicchio, Daniele; Marziano, Gioacchino; Breccia, Massimo; Niscola, Pasquale; Sanna, Alessandro; Clissa, Cristina; Voso, Maria T; Fenu, Susanna; Venditti, Adriano; Santini, Valeria; Angelucci, Emanuele; Levis, Alessandro

    2017-06-01

    Iron chelation is controversial in higher risk myelodysplastic syndromes (HR-MDS), outside the allogeneic transplant setting. We conducted a retrospective, multicentre study in 51 patients with transfusion-dependent, intermediate-to-very high risk MDS, according to the revised international prognostic scoring system, treated with the oral iron chelating agent deferasirox (DFX). Thirty-six patients (71%) received azacitidine concomitantly. DFX was given at a median dose of 1000 mg/day (range 375-2500 mg) for a median of 11 months (range 0·4-75). Eight patients (16%) showed grade 2-3 toxicities (renal or gastrointestinal), 4 of whom (8%) required drug interruption. Median ferritin levels decreased from 1709 μg/l at baseline to 1100 μg/l after 12 months of treatment (P = 0·02). Seventeen patients showed abnormal transaminase levels at baseline, which improved or normalized under DFX treatment in eight cases. One patient showed a remarkable haematological improvement. At a median follow up of 35·3 months, median overall survival was 37·5 months. The results of this first survey of DFX in HR-MDS are comparable, in terms of safety and efficacy, with those observed in lower-risk MDS. Though larger, prospective studies are required to demonstrate real clinical benefits, our data suggest that DFX is feasible and might be considered in a selected cohort of HR-MDS patients. © 2017 John Wiley & Sons Ltd.

  17. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III Extraction

    Directory of Open Access Journals (Sweden)

    Jamileh Amin

    2012-02-01

    Full Text Available Liquid-liquid iron(III extraction was investigated using benzyl fatty hydroxamic acids (BFHAs and methyl fatty hydroxamic acids (MFHAs as chelating agents through the formation of iron(III methyl fatty hydroxamate (Fe-MFHs or iron(III benzyl fatty hydroxamate (Fe-BFHs in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively. The presence of a large amount of Mg(II, Ni(II, Al(III, Mn(II and Co(II ions did affect the iron(III extraction. Finally stripping studies for recovering iron(III from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane were carried out at various concentrations of HCl, HNO3 and H2SO4. The results showed that the desired acid for recovery of iron(III was 5 M HCl and quantitative recovery of iron(III was achieved from Fe(III-MFHs and Fe(III-BFHs solutions in hexane containing 5 mg/L of Fe(III.

  18. Role of iron metabolism genetic determinants in response to chelation therapy in a cohort of β-thalassemia and sickle cell syndromes Italian patients

    Directory of Open Access Journals (Sweden)

    Maria Concetta Renda

    2014-09-01

    Full Text Available In patients with β-thalassemia and sickle cell syndromes there is an important secondary iron overload due to regular blood transfusions and increased duodenal iron absorption. As in genetic hemochromatosis, also the secondary iron storage leads to tissue injury that involves all the major organs: liver, heart, kidney, endocrine glands. At present, in patients with β-thalassemia and sickle cell syndrome, iron chelation therapy is widely used for the treatment of secondary hemochromatosis, to limit the toxic effects of iron overload. In order to maintain the correct homeostasis, several genes are involved in the metabolic pathways of iron, including HFE, FPN (ferroportin and TF (transferrin. In this study we analyzed the genes HFE, FPN and TF, to assess their possible effects on response to therapy with deferasirox and deferiprone, either as monotherapy or in combination therapy in a cohort of patients with β-thalassemia and sickle cell syndromes.

  19. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Science.gov (United States)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  20. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis.

    Science.gov (United States)

    Li, Li-Ya; Cai, Qiu-Yi; Yu, Dian-Si; Guo, Chang-Hong

    2011-08-01

    The Arabidopsis gene FRO6(AtFRO6) encodes ferric chelate reductase and highly expressed in green tissues of plants. We have expressed the gene AtFRO6 under the control of a 35S promoter in transgenic tobacco plants. High-level expression of AtFRO6 in transgenic plants was confirmed by northern blot analysis. Ferric reductase activity in leaves of transgenic plants grown under iron-sufficient or iron-deficient conditions is 2.13 and 1.26 fold higher than in control plants respectively. The enhanced ferric reductase activity led to increased concentrations of ferrous iron and chlorophyll, and reduced the iron deficiency chlorosis in the transgenic plants, compared to the control plants. In roots, the concentration of ferrous iron and ferric reductase activity were not significantly different in the transgenic plants compared to the control plants. These results suggest that FRO6 functions as a ferric chelate reductase for iron uptake by leaf cells, and overexpression of AtFRO6 in transgenic plants can reduce iron deficiency chlorosis.

  1. Comparison of iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on liver and cardiac T2* MRI in thalassemia maior.

    Science.gov (United States)

    Ansari, Shahla; Azarkeivan, Azita; Miri-Aliabad, Ghasem; Yousefian, Saeed; Rostami, Tahereh

    2017-01-01

    Cardiac complications due to iron overload are the most common cause of death in patients with thalassemia major. The aim of this study was to compare iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on cardiac and liver iron load measured by T2* MRI. In this study, 108 patients with thalassemia major aged over 10 years who had iron overload in cardiac T2* MRI were studied in terms of iron chelators efficacy on the reduction of myocardial siderosis. The first group received deferoxamine, the second group only deferasirox, and the third group, a combination of deferoxamine and deferiprone. Myocardial iron was measured at baseline and 12 months later through T2* MRI technique. The three groups were similar in terms of age, gender, ferritin level, and mean myocardial T2* at baseline. In the deferoxamine group, myocardial T2* was increased from 12.0±4.1 ms at baseline to 13.5±8.4 ms at 12 months (p=0.10). Significant improvement was observed in myocardial T2* of the deferasirox group (pdeferasirox and the combination group. In comparison to deferoxamine monotherapy, combination therapy and deferasirox monotherapy have a significant impact on reducing iron overload and improvement of myocardial and liver T2* MRI.

  2. Proximal muscular atrophy and weakness: An unusual adverse effect of deferasirox iron chelation therapy.

    Science.gov (United States)

    Vill, K; Müller-Felber, W; Teusch, V; Blaschek, A; Gerstl, L; Huetker, S; Albert, M H

    2016-01-01

    Deferasirox is a standard treatment for chronic transfusional iron overload. Adverse effects of deferasirox have been reported in large prospective studies. We report two cases of monozygotic twins manifesting with proximal muscular atrophy and weakness under deferasirox. Discontinuation of deferasirox resulted in symptom improvement and ultimately in complete remission five months after successful haematopoietic stem cell transplantation. Broad diagnostic work-up could not bring evidence of another aetiology of muscular weakness. Iron overload or beta thalassemia itself as a cause is considered unlikely in our patients because the chronological coincidence of muscular symptoms was contra-directional to serum ferritin levels and significant clinical improvement was observed promptly after cessation of deferasirox even before transplantation. These observations suggest that the development of muscular weakness in patients on deferasirox should be recognised as a possible adverse effect of the drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Impact of iron, chelators, and free fatty acids on lipid oxidation in low-moisture crackers.

    Science.gov (United States)

    Barden, Leann; Vollmer, Daniel; Johnson, David; Decker, Eric

    2015-02-18

    This research strove to understand the relationship between physical structure and oxidative stability in crackers since mechanisms of lipid oxidation are poorly understood in low-moisture foods. Confocal microscopy showed that lipids formed a continuous matrix surrounding starch granules, and starch-lipid, lipid-air, and protein-lipid interfaces were observed. Unlike bulk oils, meats, and emulsions, lipid hydroperoxides exhibited greater stability in low-moisture crackers as hexanal formation was delayed >20 d. Iron, added at 10 times the concentrations normally found in enriched flour, did not increase oxidation rates compared to the control. EDTA may reduce endogenous iron activity but not as greatly as in other matrices. Addition of fatty acids up to 1.0% of total lipid weight did not statistically affect lipid oxidation lag phases. The unique structure of low-moisture foods clearly affects their resistance to metal-promoted lipid oxidation.

  4. Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts.

    Science.gov (United States)

    González-Vallejo, E B; Morales, F; Cistué, L; Abadía, A; Abadía, J

    2000-02-01

    The ferric-chelate reductase (FC-R) activity of mesophyll protoplasts isolated from Fe-sufficient (control) and Fe-deficient sugar beet (Beta vulgaris L.) leaves has been characterized. Measurements were made in an ionic environment similar to that in the apoplastic space of the sugar beet mesophyll cells. The FC-R activity of Fe-sufficient and Fe-deficient protoplasts was dependent on light. Fe deficiency decreased markedly the FC-R activity per protoplast surface unit. The optimal pH for the activity of the FC-R in mesophyll protoplasts was in the range 5.5 to 6.0, typical of the apoplastic space. Beyond pH 6.0, the activity of the FC-R in mesophyll protoplasts decreased markedly in both Fe-sufficient and Fe-deficient protoplasts. These data suggest that both the intrinsic decrease in FC-R activity per protoplast surface and a possible shift in the pH of the apoplastic space could lead to the accumulation of physiologically inactive Fe pools in chlorotic leaves.

  5. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with nontransfusion-dependent thalassemia syndromes

    Directory of Open Access Journals (Sweden)

    Taher AT

    2016-12-01

    Full Text Available Ali T Taher,1 John B Porter,2 Antonis Kattamis,3 Vip Viprakasit,4 M Domenica Cappellini51Department of Internal Medicine, American University of Beirut, Beirut, Lebanon; 2Department of Haematology, University College London, London, UK; 3First Department of Pediatrics, University of Athens, Athens, Greece; 4Department of Pediatrics and Thalassemia Center, Siriraj Hospital, Mahidol University, Bangkok, Thailand; 5Department of Internal Medicine, Università di Milano, Ca Granda Foundation IRCCS, Milan, ItalyAs the scientific steering committee for THALASSA (an assessment of Exjade in nontransfusion-dependent thalassemia [NTDT], we read with interest the review by Kontoghiorghe and Kontoghiorghes entitled “Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes” published in January 2016.1 While this review provides a detailed overview of available iron chelators for the treatment of NTDT patients, there remain some factual inaccuracies and misrepresentations of data related to deferasirox. Therefore, we believe that the current article may be misleading to readers of Drug Design, Development and Therapy.Author’s replyGeorge J KontoghiorghesPostgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol, CyprusThere are many murky areas and marketing, legal, ethical, and other conflicts in the pharmaceutical industry, some of which involve physicians and academics. These activities and related ethical issues affect the safety and treatment of millions of patients.1–11 Irregular and sometimes illegal activities for new patented drugs carried out by pharmaceutical companies, such as secrecy agreements with academics/academic institutions, can lead to biased reporting of the results of clinical trials and cover ups or underreporting of toxic side effects, as well as doctor’s bribes

  6. Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model.

    Directory of Open Access Journals (Sweden)

    Patricia Ferrer

    Full Text Available Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S3"-(HO-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high µM range. Here we show that FBS0701 has inhibition concentration 50% (IC(50 of 6 µM for Plasmodium falciparum in contrast to the IC(50 for deferiprone and deferoxamine at 15 and 30 µM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials.

  7. Combination iron chelation therapy with deferiprone and deferasirox in iron-overloaded patients with transfusiondependent β-thalassemia major

    Directory of Open Access Journals (Sweden)

    Hossein Karami

    2017-01-01

    Full Text Available There are few papers on the combination therapy of deferiprone (DFP and deferasirox (DFX in iron-overloaded patients with transfusion-dependent β-thalassemia major (β-TM. A total of 6 patients with β-TM (5 males and 1 female with a mean age of 23.8±5.8 years (ranging from 17 to 31 used this treatment regimen. The mean doses of DFP and DFX were 53.9±22.2 and 29.3±6.8 mg/kg/day, respectively. The duration of treatment was 11.5±4.6 months. Their serum ferritin levels were measured to be 2800±1900 and 3400±1600 ng/mL before and after treatment, respectively (p<0.6. Their cardiac magnetic resonance imaging (MRI T2* values were 16.69±15.35 vs 17.38±5.74 millisecond (ms before and after treatment, respectively (p < 0.9. Although there was no significant difference between their cardiac MRI T2* values before and after treatment statistically, the values improved after combination therapy with DFP and DFX in most of the patients. Liver MRI T2 * values were changed from 2.12±0.98 to 3.03±1.51 ms after treatment (p < 0.01; Further, their liver T2* values and liver iron concentration (LIC were improved after treatment. Our study found that cardiac MRI T2* values, liver MRI T2* values, and LIC were improved after combination therapy with DFP and DFX in β-TM patients and that DFP and DFX combination therapy could be used to alleviate cardiac and liver iron loading.

  8. Patient Affected by Beta-Propeller Protein-Associated Neurodegeneration: A Therapeutic Attempt with Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Mattia Fonderico

    2017-08-01

    Full Text Available Here, we report the case of a 36-year-old patient with a diagnosis of de novo mutation of the WDR45 gene, responsible for beta-propeller protein-associated neurodegeneration, a phenotypically distinct, X-linked dominant form of Neurodegeneration with Brain Iron Accumulation. The clinical history is characterized by a relatively stable intellectual disability and a hypo-bradykinetic and hypertonic syndrome with juvenile onset. Genetic investigations and T1 and T2-weighted MR images align with what is described in literature. The patient was also subjected to PET with 18-FDG investigation and DaT-Scan study. In reporting relevant clinical data, we want to emphasize the fact that the patient received a chelation therapy with deferiprone (treatment already used in other forms of NBIA with encouraging results, which, however, had to be interrupted because the parkinsonian symptoms worsened. Conversely, the patient has benefited from non-drug therapies and, in particular, from an adapted motor activity with assisted pedaling (method in the process of validation in treatments of parkinsonian syndromes, which started before the treatment with deferiprone and still continues.

  9. Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing.

    Science.gov (United States)

    Duscher, Dominik; Januszyk, Michael; Maan, Zeshaan N; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Dong, Yixiao; Khong, Sacha M; Longaker, Michael T; Gurtner, Geoffrey C

    2017-03-01

    A hallmark of diabetes mellitus is the breakdown of almost every reparative process in the human body, leading to critical impairments of wound healing. Stabilization and activity of the transcription factor hypoxia-inducible factor (HIF)-1α is impaired in diabetes, leading to deficits in new blood vessel formation in response to injury. In this article, the authors compare the effectiveness of two promising small-molecule therapeutics, the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine, for attenuating diabetes-associated deficits in cutaneous wound healing by enhancing HIF-1α activation. HIF-1α stabilization, phosphorylation, and transactivation were measured in murine fibroblasts cultured under normoxic or hypoxic and low-glucose or high-glucose conditions following treatment with deferoxamine or dimethyloxalylglycine. In addition, diabetic wound healing and neovascularization were evaluated in db/db mice treated with topical solutions of either deferoxamine or dimethyloxalylglycine, and the efficacy of these molecules was also compared in aged mice. The authors show that deferoxamine stabilizes HIF-1α expression and improves HIF-1α transactivity in hypoxic and hyperglycemic states in vitro, whereas the effects of dimethyloxalylglycine are significantly blunted under hyperglycemic hypoxic conditions. In vivo, both dimethyloxalylglycine and deferoxamine enhance wound healing and vascularity in aged mice, but only deferoxamine universally augmented wound healing and neovascularization in the setting of both advanced age and diabetes. This first direct comparison of deferoxamine and dimethyloxalylglycine in the treatment of impaired wound healing suggests significant therapeutic potential for topical deferoxamine treatment in ischemic and diabetic disease.

  10. Iron chelation therapy with deferasirox induced complete remission in a patient with chemotherapy-resistant acute monocytic leukemia.

    Science.gov (United States)

    Fukushima, Toshihiro; Kawabata, Hiroshi; Nakamura, Takuji; Iwao, Haruka; Nakajima, Akio; Miki, Miyuki; Sakai, Tomoyuki; Sawaki, Toshioki; Fujita, Yoshimasa; Tanaka, Masao; Masaki, Yasufumi; Hirose, Yuko; Umehara, Hisanori

    2011-05-01

    A patient with chemotherapy-resistant acute monocytic leukemia who achieved complete remission (CR) after iron chelation therapy (ICT) with deferasirox is reported for the first time. A 73-year-old Japanese man with acute monocytic leukemia who was refractory to conventional remission induction chemotherapies achieved a partial response, with some improvement of his hemoglobin level and white blood cell count after gemtuzumab ozogamicin (GO) treatment. Seven months after GO treatment, the disease relapsed and the patient developed pancytopenia. He declined further chemotherapy, and started receiving 1,200-1,800 ml of packed red blood cell transfusion per month together with ICT with deferasirox (baseline serum ferritin level was 1,412 ng/ml). Twelve months after the initiation of deferasirox, the patient's serum ferritin level decreased to below 1,000 ng/ml and deferasirox was discontinued. Four months after discontinuation of deferasirox, the blood cell count normalized and the patient became transfusion-independent. Bone marrow aspiration and biopsy revealed hematological and cytogenetic CR. CR was achieved after ICT with deferasirox in a patient with acute myelogenous leukemia, suggesting that deferasirox may have an antileukemic effect in the clinical setting.

  11. Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: efficacy and safety during 5 years' follow-up.

    Science.gov (United States)

    Cappellini, M Domenica; Bejaoui, Mohamed; Agaoglu, Leyla; Canatan, Duran; Capra, Marcello; Cohen, Alan; Drelichman, Guillermo; Economou, Marina; Fattoum, Slaheddine; Kattamis, Antonis; Kilinc, Yurdanur; Perrotta, Silverio; Piga, Antonio; Porter, John B; Griffel, Louis; Dong, Victor; Clark, Joan; Aydinok, Yesim

    2011-07-28

    Patients with β-thalassemia require lifelong iron chelation therapy from early childhood to prevent complications associated with transfusional iron overload. To evaluate long-term efficacy and safety of once-daily oral iron chelation with deferasirox, patients aged ≥ 2 years who completed a 1-year, phase 3, randomized trial entered a 4-year extension study, either continuing on deferasirox (deferasirox cohort) or switching from deferoxamine to deferasirox (crossover cohort). Of 555 patients who received ≥ 1 deferasirox dose, 66.8% completed the study; 43 patients (7.7%) discontinued because of adverse events. In patients with ≥ 4 years' deferasirox exposure who had liver biopsy, mean liver iron concentration significantly decreased by 7.8 ± 11.2 mg Fe/g dry weight (dw; n = 103; P deferasirox and crossover cohorts, respectively. Median serum ferritin significantly decreased by 706 ng/mL (n = 196; P deferasirox use in pediatric and adult patients with β-thalassemia suggests treatment for ≤ 5 years is generally well tolerated and effectively reduces iron burden. This trial was registered at www.clinicaltrials.gov as #NCT00171210.

  12. Iron chelation: an adjuvant therapy to target metabolism, growth and survival of murine PTEN-deficient T lymphoma and human T lymphoblastic leukemia/lymphoma.

    Science.gov (United States)

    Benadiba, Joy; Rosilio, Celia; Nebout, Marielle; Heimeroth, Vera; Neffati, Zouhour; Popa, Alexandra; Mary, Didier; Griessinger, Emmanuel; Imbert, Véronique; Sirvent, Nicolas; Peyron, Jean-François

    2017-06-01

    Iron is an essential nutrient, acting as a catalyst for metabolic reactions that are fundamental to cell survival and proliferation. Iron complexed to transferrin is delivered to the metabolism after endocytosis via the CD71 surface receptor. We found that transformed cells from a murine PTEN-deficient T-cell lymphoma model and from T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/T-LL) cell lines overexpress CD71. As a consequence, the cells developed an addiction toward iron whose chelation by deferoxamine (DFO) dramatically affected their survival to induce apoptosis. Interestingly, DFO displayed synergistic activity with three ALL-specific drugs: dexamethasone, doxorubicin, and L-asparaginase. DFO appeared to act through a reactive oxygen species-dependent DNA damage response and potentiated the action of an inhibitor of the PARP pathway of DNA repair. Our results demonstrate that targeting iron metabolism could be an interesting adjuvant therapy for acute lymphoblastic leukemia.

  13. Multicenter COMPACT study of COMplications in patients with sickle cell disease and utilization of iron chelation therapy.

    Science.gov (United States)

    Jordan, Lanetta; Adams-Graves, Patricia; Kanter-Washko, Julie; Oneal, Patricia A; Sasane, Medha; Vekeman, Francis; Bieri, Christine; Magestro, Matthew; Marcellari, Andrea; Duh, Mei Sheng

    2015-03-01

    Over the past few decades, lifespans of sickle cell disease (SCD) patients have increased; hence, they encounter multiple complications. Early detection, appropriate comprehensive care, and treatment may prevent or delay onset of complications. We collected longitudinal data on sickle cell disease (SCD) complication rates and associated resource utilization relative to blood transfusion patterns and iron chelation therapy (ICT) use in patients aged ≥16 years to address a gap in the literature. Medical records of 254 SCD patients ≥16 years were retrospectively reviewed at three US tertiary care centers. We classified patients into cohorts based on cumulative units of blood transfused and ICT history: ICT (Cohort 1 [C1]), ≥15 units, no ICT (Cohort 2 [C2]), and ≥15 units with ICT (Cohort 3 [C3]). We report SCD complication rates per patient per year; cohort comparisons use rate ratios (RRs). Cohorts had 69 (C1), 91 (C2), and 94 (C3) patients. Pain led to most hospitalizations (76%) and emergency department (ED) (82%) visits. Among transfused patients (C2+C3), those receiving ICT were less likely to experience SCD complications than those who did not (RR [95% CI] C2 vs. C3: 1.33 [1.25-1.42]). Similar trends (RR [95% CI]) were observed in ED visits and hospitalizations associated with SCD complications (C2 vs. C3, ED: 1.94 [1.70-2.21]; hospitalizations: 1.61 [1.45-1.78]), but not in outpatient visits. Although the most commonly reported SCD complication among all patients was pain, patients who received ICT were less likely to experience pain and other complications than those who did not. These results highlight the need for increased patient and provider education on the importance of comprehensive disease management.

  14. The Iron-Deficiency Induced Phenolics Accumulation May Involve in Regulation of Fe(III) Chelate Reductase in Red Clover.

    Science.gov (United States)

    Jin, Chong Wei; He, Xiu Xia; Zheng, Shao Jian

    2007-09-01

    Although considerable researches have been conducted on the physiological responses to plant iron (Fe) deficiency stress in dicotyledonous plants, much still needs to be learned about the regulation of these processes. In the present research, red clover was used to investigate the role of root phenolics accumulation in regulating Fe-deficiency induced Fe(III) chelate reductase (FCR). The root FCR activity, IAA and phenolics accumulation, and also the phenolics secretion were greatly increased by the Fe deficiency treatment. The application of TIBA (2,3,5-triiodobenoic acid) to the stem, an IAA polar transport inhibitor, which could decrease IAA accumulation in root, significantly inhibited the FCR activity, but did not effect root phenolics accumulation and secretion, suggesting that IAA itself did not involve in root phenolics accumulation and secretion. In contrast, the Fe deficiency treatment significantly decreased the root IAA-oxidase activity. Interestingly the phenolics extracted from roots inhibited IAA-oxidase activity in vitro, and this inhibition was greater with phenolics extracted from roots of Fe deficient plants than that from Fe sufficient plants, indicating that the Fe deficiency-induced IAA-oxidase inhibition probably caused by the phenolics accumulation in Fe deficient roots. Based on these observations, we propose a model where under Fe deficiency stress in dicots, an increase in root phenolics concentrations plays a role in regulating root IAA levels through an inhibition of root IAA oxidase activity. This response, leads to, or at least partially leads to an increase in root IAA levels, which in turn help induce increased root FCR activity.

  15. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes.

    Science.gov (United States)

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D

    2017-07-17

    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion

  16. Effect of fresh apple extract on glycated protein/iron chelate-induced toxicity in human umbilical vein endothelial cells in vitro.

    Science.gov (United States)

    Nishigaki, Ikuo; Rajkapoor, Balasubramanian; Rajendran, Peramaiyan; Venugopal, Ramachandran; Ekambaram, Ganapathy; Sakthisekaran, Dhanapal; Nishigaki, Yutaka

    2010-04-01

    Consumption of fruits and vegetables has been associated with a low incidence of cardiovascular and other chronic diseases. The present study was aimed at evaluating the protective effects of fresh apple extract (AE) on human umbilical vein endothelial cells (HUVEC) exposed to cytotoxic glycated protein (GFBS)/iron (FeCl(3)) chelate. The experimental design comprised 10 groups with 5 flasks in each group. Group I was treated with 15% foetal bovine serum (FBS). Groups II, III and IV were treated with GFBS (70 microM), FBS + FeCl(3) (20 microM), and GFBS + FeCl(3), respectively. The other six groups were as follows: Group V, GFBS + AE (100 microg); Group VI, FBS + FeCl(3) + AE (100 microg); Group VII, GFBS + FeCl(3) + AE (100 microg); Group VIII, GFBS + AE (250 microg); Group IX, FBS + FeCl(3) + AE (250 microg); and Group X, GFBS + FeCl(3) + AE (250 microg). After 24 h incubation, cells were collected from all the experimental groups and assessed for lipid peroxidation (LPO) and activities of the antioxidant enzymes cytochrome c reductase and glutathione S-transferase (GST). HUVEC incubated with glycated protein (GFBS) either alone or combined with iron chelate showed a significant (p reductase (GR), in addition to increased microsomal cytochrome c reductase and decreased GST activities. Treatment of GFBS- or GFBS + FeCl(3)-exposed HUVEC with AE at 100 or 250 microg significantly decreased the level of LPO and returned the levels of antioxidants cytochrome c reductase and GST to near normal in a dose-dependent manner. The extracts recovered viability of HUVEC damaged by GFBS-iron treatment in a concentration-dependent manner. These findings suggest a protective effect of AE on HUVEC against glycated protein/iron chelate-induced toxicity, which suggests that AE could exert a beneficial effect by preventing diabetic angiopathies.

  17. Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters.

    Science.gov (United States)

    Cagnetta, Giovanni; Huang, Jun; Lomovskiy, Igor O; Yu, Gang

    2017-11-01

    Zero-valent iron (ZVI) is a valuable material for environmental remediation, because of its safeness, large availability, and inexpensiveness. Moreover, its reactivity can be improved by addition of (nano-) particles of other elements such as noble metals. However, common preparation methods for this kind of iron-based composites involve wet precipitation of noble metal salt precursors, so they are often expensive and not green. Mechanochemical procedures can provide a solvent-free alternative, even at a large scale. The present study demonstrates that it is possible to tailor functional properties of ZVI-based materials, utilizing high-energy ball milling. All main preparation parameters are investigated and discussed. Specifically, a copper-carbon-iron ternary composite was prepared for fast degradation of 4-nitrophenol (utilized as model pollutant) to 4-aminophenol and other phenolic compounds. Copper and carbon are purposely chosen to insert specific properties to the composite: Copper acts as efficient nano-cathode that enhances electron transfer from iron to 4-nitrophenol, while carbon protects the iron surface from fast oxidation in open air. In this way, the reactive material can rapidly reduce high concentration of nitrophenols in water, it does not require acid washing to be activated, and can be stored in open air for one week without any significant activity loss.

  18. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.

    Science.gov (United States)

    Durrett, Timothy P; Connolly, Erin L; Rogers, Elizabeth E

    2006-08-01

    All plants, except for the grasses, must reduce Fe(III) to Fe(II) in order to acquire iron. In Arabidopsis, the enzyme responsible for this reductase activity in the roots is encoded by FRO2. Two Arabidopsis mutants, frd4-1 and frd4-2, were isolated in a screen for plants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. frd4 mutant plants are chlorotic and grow more slowly than wild-type Col-0 plants. Additionally, frd4 chloroplasts are smaller in size and possess dramatically fewer thylakoid membranes and grana stacks when compared with wild-type chloroplasts. frd4 mutant plants express both FRO2 and IRT1 mRNA normally in their roots under iron deficiency, arguing against any defects in systemic iron-deficiency signaling. Further, transgenic frd4 plants accumulate FRO2-dHA fusion protein under iron-deficient conditions, suggesting that the frd4 mutation acts post-translationally in reducing Fe(III) chelate reductase activity. FRO2-dHA appears to localize to the plasma membrane of root epidermal cells in both Col-0 and frd4-1 transgenic plants when grown under iron-deficient conditions. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. The presence of cpFtsY mRNA and protein in the roots of wild-type plants suggests additional roles for this protein, in addition to its known function in targeting proteins to the thylakoid membrane in chloroplasts.

  19. The Urinary Antibiotic 5-Nitro-8-Hydroxyquinoline (Nitroxoline) Reduces the Formation and Induces the Dispersal of Pseudomonas aeruginosa Biofilms by Chelation of Iron and Zinc

    Science.gov (United States)

    Klinger, M.; Hermann, B.; Sachse, S.; Nietzsche, S.; Makarewicz, O.; Keller, P. M.; Pfister, W.; Straube, E.

    2012-01-01

    Since cations have been reported as essential regulators of biofilm, we investigated the potential of the broad-spectrum antimicrobial and cation-chelator nitroxoline as an antibiofilm agent. Biofilm mass synthesis was reduced by up to 80% at sub-MIC nitroxoline concentrations in Pseudomonas aeruginosa, and structures formed were reticulate rather than compact. In preformed biofilms, viable cell counts were reduced by 4 logs at therapeutic concentrations. Complexation of iron and zinc was demonstrated to underlie nitroxoline's potent antibiofilm activity. PMID:22926564

  20. Determination of antimony by electrochemical hydride generation atomic absorption spectrometry in samples with high iron content using chelating resins as on-line removal system

    International Nuclear Information System (INIS)

    Bolea, E.; Arroyo, D.; Laborda, F.; Castillo, J.R.

    2006-01-01

    A method for the removal of the interference caused by iron on electrochemical generation of stibine is proposed. It consists of a chelating resin Chelex 100 column integrated into a flow injection system and coupled to the electrochemical hydride generator quartz tube atomic absorption spectrometer (EcHG-QT-AAS). Iron, as Fe(II), is retained in the column with high efficiency, close to 99.9% under optimal conditions. No significant retention was observed for Sb(III) under same conditions and a 97 ± 5% signal recovery was achieved. An electrochemical hydride generator with a concentric configuration and a reticulated vitreous carbon cathode was employed. The system is able to determine antimony concentrations in the range of ng ml -1 in presence of iron concentrations up to 400 mg l -1 . The procedure was validated by analyzing PACS-2 marine sediments reference material with a 4% (w/w) iron content and a [Fe]:[Sb] ratio of 4000:1, which caused total antimony signal suppression on the electrochemical hydride generation system. A compost sample with high iron content (0.7%, w/w), was also analyzed. A good agreement was found on both samples with the certified value and the antimony concentration determined by ICP-MS, respectively

  1. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  2. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action.

    Science.gov (United States)

    Lui, Goldie Y L; Obeidy, Peyman; Ford, Samuel J; Tselepis, Chris; Sharp, Danae M; Jansson, Patric J; Kalinowski, Danuta S; Kovacevic, Zaklina; Lovejoy, David B; Richardson, Des R

    2013-01-01

    Deferasirox is an orally effective iron (Fe) chelator currently used for the treatment of iron-overload disease and has been implemented as an alternative to the gold standard chelator, desferrioxamine (DFO). Earlier studies demonstrated that DFO exhibits anticancer activity due to its ability to deplete cancer cells of iron. In this investigation, we examined the in vitro and in vivo activity of deferasirox against cells from human solid tumors. To date, there have been no studies to investigate the effect of deferasirox on these types of tumors in vivo. Deferasirox demonstrated similar activity at inhibiting proliferation of DMS-53 lung carcinoma and SK-N-MC neuroepithelioma cell lines compared with DFO. Furthermore, deferasirox was generally similar or slightly more effective than DFO at mobilizing cellular (59)Fe and inhibiting iron uptake from human transferrin depending on the cell type. However, deferasirox potently inhibited DMS-53 xenograft growth in nude mice when given by oral gavage, with no marked alterations in normal tissue histology. To understand the antitumor activity of deferasirox, we investigated its effect on the expression of molecules that play key roles in metastasis, cell cycle control, and apoptosis. We demonstrated that deferasirox increased expression of the metastasis suppressor protein N-myc downstream-regulated gene 1 and upregulated the cyclin-dependent kinase inhibitor p21(CIP1/WAF1) while decreasing cyclin D1 levels. Moreover, this agent increased the expression of apoptosis markers, including cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1. Collectively, we demonstrate that deferasirox is an orally effective antitumor agent against solid tumors.

  3. A Young Adult with Unintentional Acute Parenteral Iron intoxication Treated with Oral Chelation: The Use of Liver Ferriscan.

    Directory of Open Access Journals (Sweden)

    Vincenzo De Sanctis

    2017-01-01

    Full Text Available Acute iron poisoning in humans has not been adequately studied. Toxicity depends on the severity of iron overload. Manifestation of acute iron poisoning, defined as a serum iron concentration >300 µg/dL (55 µmol/L within 12 hours of ingestion, by oral route include numerous symptoms which appear in progressive stages.  Systemic toxicity is expected with an ingestion of 60 mg/kg.  A 27 year old female nurse presented to hematology department with iron toxicity 1 week after self-injecting herself with 20 ampoules of IV iron (4000 mg elemental iron, 60 mg/kg. Her vital signs were stable but she had mild hepatic tenderness.

  4. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a caco-2 cell culture model

    Science.gov (United States)

    Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability o...

  5. Chelating agent-assisted heat treatment of a carbon-supported iron oxide nanoparticle catalyst for PEMFC.

    Science.gov (United States)

    Liu, Shyh-Jiun; Huang, Chia-Hung; Huang, Chun-Kai; Hwang, Weng-Sing

    2009-08-28

    Iron complexes were supported on commercial carbon black and heat treated to create FeO(x)/C catalysts that showed a larger normalized current density and normalized power density than commercial Pt/C catalysts; the coordination number of the iron complexes used affected the formation of the active site for oxygen reduction in PEMFC.

  6. Iron(III) chelating resins-IV. Crosslinked copolymer beads of 1-(B-acrylamidoethyl)-3-hydroxy-2-methyl-4(1H)-pyridinone (AHMP) with 2-hydroxyethyl methacrylate (HEMA)

    NARCIS (Netherlands)

    Feng, M.H.; Feng, Minhua; van der Does, L.; Bantjes, A.; Bantjes, A.

    1994-01-01

    Iron(III) chelating beads have been synthesized by copolymerization of 1-(ß-acrylamidoethyl)-3-hydroxy-2-methyl-4(IH)-pyridinone (AHMP) with 2-hydroxyethyl methacrylate (HEMA), and ethyleneglycol dimethacrylate (EGDMA) as the crosslinking agent. The synthesis of the AHMP-HEMA beads was performed by

  7. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Nielsen, Nina Skall; Jacobsen, Charlotte

    2010-01-01

    rutin compounds exhibited decreased reducing power and metal chelating abilities as compared to rutin. Conversely, investigations on the oxidation of human low density lipoprotein (LDL) revealed that rutin laurate was most effective in inhibiting oxidation by prolonging LDL lag time for an in vitro...... in improved antioxidant abilities in more complex systems, including LDL-oxidation assays. Likely reasons may include improved lipophilic solubility and partitioning properties allowing for better accessibility to the actual site of oxidation. (C) 2010 Elsevier Ltd. All rights reserved....

  8. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications.

    Science.gov (United States)

    Tucker, Michael C; Phillips, Adam; Weber, Adam Z

    2015-12-07

    An all-iron redox flow battery is proposed and developed for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. The design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe2 (SO4 )3 active material and 1.2 m NaCl supporting electrolyte. With these materials, an average power density around 20 mW cm(-2) and a maximum energy density of 11.5 Wh L(-1) are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh(-1) , or only US$0.034 per mobile phone charge. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    Science.gov (United States)

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. A new tool for the assessment of satisfaction with iron chelation therapy (ICT-Sat) for patients with β-thalassemia major.

    Science.gov (United States)

    Elalfy, Mohsen S; Massoud, Walid; Elsherif, Nayera H; Labib, Jonair H; Elalfy, Omar M; Elaasar, Safaa; von Mackensen, Sylvia

    2012-06-01

    High satisfaction with iron chelation is a major determinant for adherence to ICT in beta-thalassaemia major (β-TM) patients. In this study, a new tool to assess different domains of satisfaction for available forms of ICT was developed and validated. The impact of patients' satisfaction with ICT has been tested. Items were generated via focus groups and a preliminary version with 24 items (ICT-Sat) with an additional item for treatment preference and a knowledge questionnaire (KQ) was developed. 170 β-TM patients from three Thalassaemia centers in Egypt, aged 2-32 years received three questionnaires to fill in; the new ICT-Sat, a KQ, and a previously validated tool for satisfaction with ICT (SICT) and retested 4-6 weeks later to ensure re-test reliability. Type of chelation, drug related adverse events, compliance with ICT, and serum ferritin level (SF) during the year prior to the study as well as available cardiac T2*data were recorded. One hundred and fifty two β-TM patients completed all questionnaires; median age was 12 years. The final 15 remaining ICT-Sat items, yielding to four domain scores, explained 70.6% of the total variance. The "perceived effectiveness" and "fear and worries" domains of the ICT-Sat correlated significantly with the domains "perceived effectiveness" and "acceptance" of the SICT. Patients treated with oral ICT were more satisfied with perceived effectiveness, and their side effects. A new clinically based ICT-Sat tool was developed and revealed good psychometric characteristics. Adherence to ICT was better correlated with "perceived effectiveness" and SF level. Copyright © 2012 Wiley Periodicals, Inc.

  12. Iron deficiency-induced increase of root branching contributes to the enhanced root ferric chelate reductase activity.

    Science.gov (United States)

    Jin, Chong-Wei; Chen, Wei-Wei; Meng, Zhi-Bin; Zheng, Shao-Jian

    2008-12-01

    In various plant species, Fe deficiency increases lateral root branching. However, whether this morphological alteration contributes to the Fe deficiency-induced physiological responses still remains to be demonstrated. In the present research, we demonstrated that the lateral root development of red clover (Trifolium pretense L.) was significantly enhanced by Fe deficient treatment, and the total lateral root number correlated well with the Fe deficiency-induced ferric chelate reductase (FCR) activity. By analyzing the results from Dasgan et al. (2002), we also found that although the two tomato genotypes line227/1 (P1) and Roza (P2) and their reciprocal F1 hybrid lines ("P1 x P2" and "P2 x P1") were cultured under two different lower Fe conditions (10(-6) and 10(-7) M FeEDDHA), their FCR activities are significantly correlated with the lateral root number. More interestingly, the -Fe chlorosis tolerant ability of these four tomato lines displays similar trends with the lateral root density. Taking these results together, it was proposed that the Fe deficiency-induced increases of the lateral root should play an important role in resistance to Fe deficiency, which may act as harnesses of a useful trait for the selection and breeding of more Fe-efficient crops among the genotypes that have evolved a Fe deficiency-induced Fe uptake system.

  13. Overview of chelation recommendations for thalassaemia and sickle cell disease

    Directory of Open Access Journals (Sweden)

    Banu Kaya

    2014-12-01

    Full Text Available The long term consequences of iron toxicity are mostly reversible with effective iron chelation therapy. Recommendations for use of chelation therapy in transfusion dependent thalassaemia (TDT, sickle cell disease (SCD and non transfusion dependent thalassaemia (NTDT continue to evolve as our knowledge and clinical experience increases. Improved chelation options including drug combinations and a better understanding of condition specific factors may help to improve efficiency of chelation regimens and meet the needs of patients more effectively.

  14. Tratamento da anemia ferropriva com ferro quelato glicinato e crescimento de crianças na primeira infância Treatment of iron deficiency anemia with iron bis-glycinate chelate and growth of young children

    Directory of Open Access Journals (Sweden)

    Luciana Cisoto Ribeiro

    2008-10-01

    Full Text Available OBJETIVO: Avaliar a resposta à suplementação diária com ferro quelato glicinato e seu impacto sobre o crescimento linear. MÉTODOS: Realizou-se um estudo prospectivo com 790 crianças, de 6 a 36 meses, que freqüentavam creches municipais de São Paulo no período de 1999 a 2003. Ao início e ao final do estudo a hemoglobina, o peso corporal e a estatura/comprimento foram coletados. Utilizou-se suplemento contendo ferro quelato glicinato em gotas na dose de 5mg Fe elementar/kg peso/dia, administrado na própria instituição pelo profissional de saúde da creche, por um período de 12 semanas. RESULTADOS: A suplementação resultou em um significante e positivo efeito sobre os níveis de hemoglobina. A resposta ao tratamento foi positiva em 85,3% das crianças, com um aumento médio de 1,6g/dL nos valores de hemoglobina (pOBJECTIVE: The objective of this study was to evaluate response to daily supplementation with iron bis-glycinate chelate and its impact on linear growth. METHODS: A prospective study was done with 790 children aging from 6 to 36 months who attended daycare in São Paulo from 1999 to 2003. Hemoglobin levels, body weight and height/length were determined at the beginning and end of the study. Liquid iron bis-glycinate chelate was administered in a dosage of 5mg of elemental iron/kg of body weight/day given by the health provider of the daycare facility for a period of 12 weeks. RESULTS: Supplementation resulted in a significant, positive effect on the hemoglobin levels of 85.3% of the children with a mean increase of 1.6g/dL (p<0.001. In children aging from 25 to 36 months and in those with lower hemoglobin levels at the beginning of supplementation, there was a significantly higher increase. No gastrointestinal problem or intolerance to the supplement was observed during the intervention period. Supplementation also had an impact on growth and on the height-for-age indicator (z-score in children older than 12 months but

  15. Catalase purification from rat liver with iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) cryogel discs.

    Science.gov (United States)

    Göktürk, Ilgım; Perçin, Işık; Denizli, Adil

    2016-08-17

    In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe(3+)) cryogel discs were prepared. The PHEMAGA/Fe(3+) cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe(3+) cryogel discs had large pores ranging from 10 to 100 µm with a swelling degree of 9.36 g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe(3+) cryogel discs were investigated. Maximum catalase adsorption capacity (62.6 mg/g) was obtained at pH 7.0, 25°C, and 3 mg/ml initial catalase concentration. The PHEMAGA/Fe(3+) cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe(3+) cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.

  16. Brain catalase in the streptozotocin-rat model of sporadic Alzheimer's disease treated with the iron chelator-monoamine oxidase inhibitor, M30.

    Science.gov (United States)

    Sofic, E; Salkovic-Petrisic, M; Tahirovic, I; Sapcanin, A; Mandel, S; Youdim, M; Riederer, P

    2015-04-01

    Low intracerebroventricular (icv) doses of streptozotocin (STZ) produce regionally specific brain neurochemical changes in rats that are similar to those found in the brain of patients with sporadic Alzheimer's disease (sAD). Since oxidative stress is thought to be one of the major pathologic processes in sAD, catalase (CAT) activity was estimated in the regional brain tissue of animals treated intracerebroventricularly with STZ and the multitarget iron chelator, antioxidant and MAO-inhibitor M30 [5-(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline]. Five-day oral pre-treatment of adult male Wistar rats with 10 mg/kg/day M30 dose was followed by a single injection of STZ (1 mg/kg, icv). CAT activity was measured colorimetrically in the hippocampus (HPC), brain stem (BS) and cerebellum (CB) of the control, STZ-, M30- and STZ + M30-treated rats, respectively, 4 weeks after the STZ treatment. STZ-treated rats demonstrated significantly lower CAT activity in all three brain regions in comparison to the controls (p effects in this non-transgenic sAD model.

  17. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  18. Bioavailability of iron multi-amino acid chelate preparation in mice and human duodenal HuTu 80 cells.

    Science.gov (United States)

    Kajarabille, Naroa; Brown, Catriona; Cucliciu, Anamaria; Thapaliya, Gita; Latunde-Dada, Gladys O

    2017-03-01

    Strategies for preventing Fe deficiency include Fe supplementation and Fe fortification of foods. The absorption, metabolism and chemical characteristics of Fe multi-amino acid chelate (IMAAC) are not known. Absorption of IMAAC was compared with FeSO4 in Fe-depleted mice and in vitro chemical studies of the Fe supplement was performed in HuTu 80 cells. Hb repletion study was carried out in Fe-deficient CD1 mice that were fed for 10 d a diet supplemented with ferrous IMAAC or FeSO4. A control group of Fe-replete mice was fed a diet with adequate Fe concentrations throughout the study. Tissues were collected from the mice, and the expression of Fe-related genes was determined by quantitative PCR. Ferric reductase and Fe uptake were evaluated in HuTu 80 cells. Supplementation of the diet with FeSO4 or IMAAC significantly increased Hb levels (P<0·001) in Fe-deficient mice from initial 93·9 (SD 10·8) or 116·2 (SD 9·1) to 191 (SD 0·7) or 200 (SD 0·5) g/l, respectively. Initial and final Hb for the Fe-deficient control group were 87·4 (SD 6·7) and 111 (SD 11·7) g/l, respectively. Furthermore, the liver non-haem Fe of both supplement groups increased significantly (P<0·001). IMAAC was more effective at restoring Fe in the spleen compared with FeSO4 (P<0·005). Gene expression showed the IMAAC supplement absorption is regulated by the body's Fe status as it significantly up-regulated hepcidin (P<0·001) and down-regulated duodenal cytochrome b mRNA (P<0·005), similar to the effects seen with FeSO4. A significant proportion of Fe in IMAAC is reduced by ascorbic acid. Fe absorption in mice and cells was similar for both IMAAC and FeSO4 and both compounds induce and regulate Fe metabolism genes similarly in the maintenance of homeostasis in mice.

  19. Hyperchloraemic metabolic acidosis induced by the iron chelator deferasirox: a case report and review of the literature.

    Science.gov (United States)

    Dell'Orto, V G; Bianchetti, M G; Brazzola, P

    2013-12-01

    Deferasirox is a new treatment of iron overload that is administered orally once-a-day, resulting in better acceptance in patients. Deferasirox-induced renal tubular dysfunction has been reported on very rare occasions. A 17-year-old adolescent with β-thalassaemia on deferasirox 30 mg/kg daily presented with isolated hyperchloraemic metabolic acidosis (bicarbonate 12·9 mM, sodium 137 mM, chloride 111 mM, potassium 3·6 mM). Acidosis resolved after withdrawing deferasirox. Naranjo adverse drug reaction scale suggested that the likelihood that deferasirox was responsible for acidosis was probable. Eight cases of metabolic acidosis have been reported in patients treated with deferasirox. In most cases, acidosis was associated with further features of renal tubular dysfunction. We describe herein a case of metabolic acidosis in the setting of treatment with the deferasirox. Our case and the literature indicate a potential risk of kidney toxicity on this agent. © 2013 John Wiley & Sons Ltd.

  20. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives

    Directory of Open Access Journals (Sweden)

    Bayanzay K

    2016-08-01

    Full Text Available Karim Bayanzay, Lama Alzoebie Department of Hematology, Gulf Medical University, Ajman, United Arab Emirates Abstract: Hypertransfusion regimens for thalassemic patients revolutionized the management of severe thalassemia; transforming a disease which previously led to early infant death into a chronic condition. The devastating effect of the accrued iron from chronic blood transfusions necessitates a more finely tuned approach to limit the complications of the disease, as well as its treatment. A comprehensive approach including carefully tailored transfusion protocol, continuous monitoring and assessment of total body iron levels, and iron chelation are currently the mainstay in treating iron overload. There are also indications for ancillary treatments, such as splenectomy and fetal hemoglobin induction. The main cause of death in iron overload continues to be related to cardiac complications. However, since the widespread use of iron chelation started in the 1970s, there has been a general improvement in survival in these patients. Keywords: hematology, chelators, deferoxamine, deferiserox, deferiprone, liver iron concentration, iron overload, serum ferritin concentration, hepatic iron storage, iron chelation therapy

  1. Deferasirox treatment of iron-overloaded chelation-naïve and prechelated patients with myelodysplastic syndromes in medical practice: results from the observational studies eXtend and eXjange

    Science.gov (United States)

    Gattermann, Norbert; Jarisch, Andrea; Schlag, Rudolf; Blumenstengel, Klaus; Goebeler, Mariele; Groschek, Matthias; Losem, Christoph; Procaccianti, Maria; Junkes, Alexia; Leismann, Oliver; Germing, Ulrich

    2012-01-01

    EXtend and eXjange were prospective, 1-yr, non-interventional, observational, multicentre studies that investigated deferasirox, a once-daily oral iron chelator, in iron-overloaded chelation-naïve and prechelated patients with myelodysplastic syndromes (MDS), respectively, treated in the daily-routine setting of office-based physicians. No inclusion or exclusion criteria or additional monitoring procedures were applied. Deferasirox was administered as recommended in the European Summary of Product Characteristics. Haematological parameters and adverse events (AEs) were collected at two-monthly intervals. Data from 123 chelation-naïve patients with MDS (mean age 70.4 yrs) with median baseline serum ferritin level of 2679 (range 184–16 500) ng/mL, and 44 prechelated patients with MDS (mean age 69.6 yrs) with median baseline serum ferritin level of 2442 (range 521–8565) ng/mL, were assessed. The mean prescribed daily dose of deferasirox at the first visit was 15.7 and 18.7 mg/kg/d, respectively. Treatment with deferasirox produced a significant reduction in median serum ferritin levels in chelation-naïve patients with MDS from 2679 to 2000 ng/mL (P = 0.0002) and a pronounced decrease in prechelated patients with MDS from 2442 to 2077 ng/mL (P = 0.06). The most common drug-related AEs were gastrointestinal, increased serum creatinine levels and rash. These studies demonstrate that deferasirox used in physicians’ medical practices is effective in managing iron burden in transfusion-dependent patients with MDS. PMID:22023452

  2. Overview of current chelation practices

    Directory of Open Access Journals (Sweden)

    Y. Aydinok

    2011-12-01

    Full Text Available Deferoxamine (DFO is reference standard therapy for transfusional iron overload since the 1980s. Although it is a highly effective iron chelator, the compliance problem to subcutaneous administration of DFO remains as the major problem. The oral chelator Deferiprone (DFP has no marketing licence in North America, however, it has been licensed in India since 1994 and the European Union (EU granted marketing approval for DFP in 1999, specifically for patients with thalassemia major when DFO is inadequate, intolerable or unacceptable. There are still limited data available on the use of DFP in children between 6 and 10 years of age, and no data on DFP use in children under 6 years of age. Subsequently the oral chelator Deferasirox (DFX was approved by FDA and EMA for the treatment of patients with transfusional iron overload -older than 2 years of age- as first line therapy, in 2005 and 2006 respectively. The primary objective of iron chelation is to maintain body iron at safe levels at all times but once iron is accumulated, the objective of iron chelation is to reduce tissue iron to safe levels which is a slow process. The chelation regimen, dose and frequency of administration, of the chelator(s are mainly determined based on body iron burden, presence of myocardial iron and the transfusional iron loading rate. A proper monitoring of chelation is of importance for measuring the response rate to a particular regimen and providing dose adjustments to enhance chelation efficacy and to avoid toxicity. Efficacy of a chelation regimen may exhibit individual variability resulting from factors such as absorbtion and metabolism of the chelator. Tolerability and compliance are also individual variables effecting the response to chelation. Understanding of advantages and limitations of chelators, accurately determining chelation needs of patients with iron overload and designing individualized chelation regimens with less toxicity but optimum efficacy

  3. Iron-induced oligomerization of human FXN81-210 and bacterial CyaY frataxin and the effect of iron chelators

    DEFF Research Database (Denmark)

    Ahlgren, Eva Christina; Fekry, Mostafa; Wiemann, Mathias

    2017-01-01

    Patients suffering from the progressive neurodegenerative disease Friedreich’s ataxia have reduced expression levels of the protein frataxin. Three major isoforms of human frataxin have been identified, FXN42-210, FXN56-210 and FXN81-210, of which FXN81-210 is considered to be the mature form. Both...... studies suggest that within the oligomers FXN81-210 and CyaY monomers are packed in a head-to-tail fashion in ring-shaped structures with potential iron-binding sites located at the interface between monomers. The higher stability of CyaY oligomers can be explained by a higher number of acidic residues...

  4. Cost utility analysis of reduced intensity hematopoietic stem cell transplantation in adolescence and young adult with severe thalassemia compared to hypertransfusion and iron chelation program.

    Science.gov (United States)

    Sruamsiri, Rosarin; Chaiyakunapruk, Nathorn; Pakakasama, Samart; Sirireung, Somtawin; Sripaiboonkij, Nintita; Bunworasate, Udomsak; Hongeng, Suradej

    2013-02-05

    Hematopoieticic stem cell transplantation is the only therapeutic option that can cure thalassemia disease. Reduced intensity hematopoietic stem cell transplantation (RI-HSCT) has demonstrated a high cure rate with minimal complications compared to other options. Because RI-HSCT is very costly, economic justification for its value is needed. This study aimed to estimate the cost-utility of RI-HSCT compared with blood transfusions combined with iron chelating therapy (BT-ICT) for adolescent and young adult with severe thalassemia in Thailand. A Markov model was used to estimate the relevant costs and health outcomes over the patients' lifetimes using a societal perspective. All future costs and outcomes were discounted at a rate of 3% per annum. The efficacy of RI-HSCT was based a clinical trial including a total of 18 thalassemia patients. Utility values were derived directly from all patients using EQ-5D and SF-6D. Primary outcomes of interest were lifetime costs, quality adjusted life-years (QALYs) gained, and the incremental cost-effectiveness ratio (ICER) in US ($) per QALY gained. One-way and probabilistic sensitivity analyses (PSA) were conducted to investigate the effect of parameter uncertainty. In base case analysis, the RI-HSCT group had a better clinical outcomes and higher lifetime costs. The incremental cost per QALY gained was US $3,236 per QALY. The acceptability curve showed that the probability of RI-HSCT being cost-effective was 71% at the willingness to pay of 1 time of Thai Gross domestic product per capita (GDP per capita), approximately US $4,210 per QALY gained. The most sensitive parameter was utility of severe thalassemia patients without cardiac complication patients. At a societal willingness to pay of 1 GDP per capita, RI-HSCT was a cost-effective treatment for adolescent and young adult with severe thalassemia in Thailand compared to BT-ICT.

  5. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis.

    Science.gov (United States)

    Chen, Wei Wei; Yang, Jian Li; Qin, Cheng; Jin, Chong Wei; Mo, Ji Hao; Ye, Ting; Zheng, Shao Jian

    2010-10-01

    In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (α-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N(ω)-nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or α-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.

  6. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    Science.gov (United States)

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the

  7. Unsymmetrical Chelation of N-Thioether-Functionalized Bis(diphenylphosphino)amine-Type Ligands and Substituent Effects on the Nuclearity of Iron(II) Complexes: Structures, Magnetism, and Bonding.

    Science.gov (United States)

    Fliedel, Christophe; Rosa, Vitor; Falceto, Andrés; Rosa, Patrick; Alvarez, Santiago; Braunstein, Pierre

    2015-07-06

    Starting from the short-bite ligands N-thioether-functionalized bis(diphenylphosphino)amine-type (Ph2P)2N(CH2)3SMe (1) and (Ph2P)2N(p-C6H4)SMe (2), the Fe(II) complexes [FeCl2(1)]n (3), [FeCl2(2)]2 (4), [Fe(OAc)(1)2]PF6 (5), and [Fe(OAc)(2)2]PF6 (6) were synthesized and characterized by Fourier transform IR, mass spectrometry, elemental analysis, and also by X-ray diffraction for 3, 4, and 6. Complex 3 is a coordination polymer in which 1 acts as a P,P-pseudochelate and a (P,P),S-bridge, whereas 4 has a chlorido-bridged dinuclear structure in which 2 acts only as a P,P-pseudochelate. Since these complexes were obtained under strictly similar synthetic and crystallization conditions, these unexpected differences were ascribed to the different spacer between the nitrogen atom and the −SMe group. In both compounds, one Fe–P bond was found to be unusually long, and a theoretical analysis was performed to unravel the electronic or steric reasons for this difference. Density functional theory calculations were performed for a set of complexes of general formula [FeCl2(SR2){R21PN(R2)P′R23}] (R = H, Me; R1, R2, and R3 = H, Me, Ph), to understand the reasons for the significant deviation of the iron coordination sphere away from tetrahedral as well as from trigonal bipyramidal and the varying degree of unsymmetry of the two Fe–P bonds involving pseudochelating PN(R)P ligands. Electronic factors nicely explain the observed structures, and steric reasons were further ruled out by the structural analysis in the solid-state of the bis-chelated complex 6, which displays usual and equivalent Fe–P bond lengths. Magnetic susceptibility studies were performed to examine how the structural differences between 3 and 4 would affect the interactions between the iron centers, and it was concluded that 3 behaves as an isolated high-spin Fe(II) mononuclear complex, while significant intra- and intermolecular ferromagnetic interactions were evidenced for 4 at low temperatures

  8. Iron chelation therapy of transfusion-dependent β-thalassemia during pregnancy in the era of novel drugs: is deferasirox toxic?

    Science.gov (United States)

    Diamantidis, Michael D; Neokleous, Nikolaos; Agapidou, Aleka; Vetsiou, Evaggelia; Manafas, Achilles; Fotiou, Paraskevi; Vlachaki, Efthymia

    2016-05-01

    The life expectancy of thalassemic patients has increased, and now approaches that of healthy individuals, thanks to improved treatment regimens. However, pregnancy in women with β-Thalassemia Μajor remains a challenging condition. Recent advances in managing this haemoglobinopathy offer the potential for safe pregnancies with favorable outcome. However, clinical data regarding the use of chelation therapy during pregnancy are limited, and it is unclear whether these agents impose any risk to the developing fetus. Successful pregnancies following unintentional treatment with deferoxamine or deferasirox have rarely been reported. Generally, chelators are not recommended during pregnancy. Regarding the new oral chelators, data on fetotoxicity are lacking. In the present study, we describe the evolution and successful outcome of nine pregnancies in six Greek thalassemic women who received deferasirox inadvertently during early pregnancy, and review the literature regarding fetal anomalies due to chelators. Use of chelation before embarking upon a non-programmed pregnancy remains a difficult and unresolved question. In our study, chelation treatment during pregnancy did not prevent the delivery of healthy children. Nonetheless, the use of deferasirox is contraindicated in pregnant women, based on the product label. Deferasirox should only be used during pregnancy if the potential benefit outweighs the potential fetal risk.

  9. Beliefs about chelation among thalassemia patients

    Directory of Open Access Journals (Sweden)

    Trachtenberg Felicia L

    2012-12-01

    Full Text Available Abstract Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC of the Thalassemia Clinical Research Network (TCRN. Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y, 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump, 63% oral, 11% combination. Patients expressed high “necessity” for transfusion (96%, DFO chelation (92% and oral chelation (89%, with lower “concern” about treatment (48%, 39%, 19% respectively. Concern about oral chelation was significantly lower than that of DFO (p Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804

  10. Effects of methionine chelate- or yeast proteinate-based supplement of copper, iron, manganese and zinc on broiler growth performance, their distribution in the tibia and excretion into the environment.

    Science.gov (United States)

    Singh, Abhay Kumar; Ghosh, Tapan Kumar; Haldar, Sudipto

    2015-04-01

    A straight-run flock of 1-day-old Cobb 400 chicks (n = 432) was distributed into four treatment groups (9 replicate pens in each group, 12 birds in a pen) for a 38-day feeding trial evaluating the effects of a methionine chelate (Met-TM)- or a yeast proteinate (Yeast-TM)-based supplement of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) on growth performance, bone criteria and some metabolic indices in commercial broiler chickens. The diets were either not supplemented with any trace elements at all (negative control, NC) or supplemented with an inorganic (sulphate) trace element premix (inorganic TM (ITM), 1 g/kg feed), the Met-TM (1 g/kg feed) and the Yeast-TM (0.5 g/kg feed). Body weight, feed conversion ratio and dressed meat yield at 38 days were better in the Yeast-TM-supplemented group as compared with the NC, ITM and Met-TM groups (p broilers with methionine chelates or yeast proteinate forms of Cu, Fe, Mn and Zn improved body weight and feed conversion ratio (FCR) and markedly reduced excretion of the said trace elements. The study revealed that it may be possible to improve broiler performance and reduce excretion of critical trace elements into the environment by complete replacement of inorganic trace minerals from their dietary regime and replacing the same with methionine chelate or yeast proteinate forms.

  11. Iron chelation treatment with deferasirox prior to high-dose chemotherapy and autologous stem cell transplantation may reduce the risk of hepatic veno-occlusive disease in children with high-risk solid tumors.

    Science.gov (United States)

    Chueh, Hee Won; Sung, Ki Woong; Lee, Soo Hyun; Yoo, Keon Hee; Koo, Hong Hoe; Kim, Ju Youn; Cho, Eun Joo

    2012-03-01

    We evaluated whether iron chelation treatment during induction chemotherapy could safely reduce serum iron levels and thereby reduce the frequency of hepatic veno-occlusive disease (VOD) during high-dose chemotherapy and autologous stem cell transplantation (HDCT/autoSCT) in children with high-risk solid tumors. Children diagnosed with high-risk solid tumors between August 2008 and July 2009 were enrolled. Deferasirox treatment (25 mg/kg/day) was initiated when serum ferritin levels increased to more than 1,000 ng/ml during induction chemotherapy. Patients who were diagnosed with the same disease between April 2005 and June 2007 and treated in the same way without any iron chelation treatment formed the control group. Efficacy and toxicity of deferasirox treatment were compared between the two groups. Eighteen of 20 patients enrolled received deferasirox treatment. Deferasirox treatment was completed as scheduled in 11 (61.1%) of them without dose reduction or discontinuation. The serum ferritin levels prior to HDCT/autoSCT were lower in the deferasirox group than in the control group (median 1,268 ng/ml vs. 1,828 ng/ml, P deferasirox group (P = 0.005). However, renal dysfunction (38.9%) including Fanconi syndrome (16.7%) was a frequently observed adverse effect of deferasirox treatment. Deferasirox treatment during induction chemotherapy reduces the frequency of VOD during HDCT/autoSCT. The development of renal dysfunction should be closely monitored during deferasirox treatment. Copyright © 2011 Wiley Periodicals, Inc.

  12. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  13. Effect of Chelate Ring Size in Iron(II) Isothiocyanato Complexes with Tetradentate Tripyridyl-alkylamine Ligands on Spin Crossover Properties

    DEFF Research Database (Denmark)

    Leibold, Michael; Kisslinger, Sandra; Heinemann, Frank W.

    2016-01-01

    -pyridylmethyl)amine, also abbreviated as tpa in the literature] we modified the ligand by increasing systematically the chelate ring sizes from 5 to 6 thus obtaining complexes [Fe(pmea)(NCS)2], [Fe(pmap)(NCS)2], and [Fe(tepa)(NCS)2] [pmea = N,N-bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine, pmap = N,N-bis[2...

  14. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Burba, P.; Jakubowski, B.; Kuckuk, R. [Institut fuer Spektrochemie und Angewandte Spektroskopie e.V., Dortmund (Germany); Kuellmer, K.; Heumann, K.G. [Mainz Univ. (Germany). Inst. fuer Anorganische Chemie und Analytische Chemie

    2000-12-01

    The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients K{sub d}of up to 10 {sup 3.7} mL/g at pH 4.0 continuously decreasing down to 10 {sup 1.5} at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients K {sub d} were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively. (orig.)

  15. Uranyl chelate lasers, realization

    International Nuclear Information System (INIS)

    Macheteau, Y.; Coste, A.; Luce, M.; Rigny, P.

    1975-01-01

    The absorption fluorescence and excitation spectra of uranyle chelates were determined. The corresponding fluorescence decay was measured at low temperature. The possibility of obtaining a stimulated emission with uranyl chelates is examined from the consideration made on the properties of Eu chelates (B 4 EuNa and B 4 Eu piperidine) which give the laser effect [fr

  16. Relationship among chelator adherence, change in chelators, and quality of life in thalassemia.

    Science.gov (United States)

    Trachtenberg, Felicia L; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A; Neufeld, Ellis J; Yamashita, Robert

    2014-10-01

    Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of health-related quality of life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Thalassemia Longitudinal Cohort participants in the USA, UK, and Canada completed the SF-36v2 (ages 14+) and the PF-28 CHQ (parents of children life . Strategies to balance medical needs with family, work, and personal life may assist in adherence.

  17. Overall survival in lower IPSS risk MDS by receipt of iron chelation therapy, adjusting for patient-related factors and measuring from time of first red blood cell transfusion dependence: an MDS-CAN analysis.

    Science.gov (United States)

    Leitch, Heather A; Parmar, Ambica; Wells, Richard A; Chodirker, Lisa; Zhu, Nancy; Nevill, Thomas J; Yee, Karen W L; Leber, Brian; Keating, Mary-Margaret; Sabloff, Mitchell; St Hilaire, Eve; Kumar, Rajat; Delage, Robert; Geddes, Michelle; Storring, John M; Kew, Andrea; Shamy, April; Elemary, Mohamed; Lenis, Martha; Mamedov, Alexandre; Ivo, Jessica; Francis, Janika; Zhang, Liying; Buckstein, Rena

    2017-10-01

    Analyses suggest iron overload in red blood cell (RBC) transfusion-dependent (TD) patients with myleodysplastic syndrome (MDS) portends inferior overall survival (OS) that is attenuated by iron chelation therapy (ICT) but may be biassed by unbalanced patient-related factors. The Canadian MDS Registry prospectively measures frailty, comorbidity and disability. We analysed OS by receipt of ICT, adjusting for these patient-related factors. TD International Prognostic Scoring System (IPSS) low and intermediate-1 risk MDS, at RBC TD, were included. Predictive factors for OS were determined. A matched pair analysis considering age, revised IPSS, TD severity, time from MDS diagnosis to TD, and receipt of disease-modifying agents was conducted. Of 239 patients, 83 received ICT; frailty, comorbidity and disability did not differ from non-ICT patients. Median OS from TD was superior in ICT patients (5·2 vs. 2·1 years; P MDS, adjusting for age, frailty, comorbidity, disability, revised IPSS, TD severity, time to TD and receiving disease-modifying agents. This provides additional evidence that ICT may confer clinical benefit. © 2017 John Wiley & Sons Ltd.

  18. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  19. Fortification with iron chelate and substitution of sucrose by sucralose in light uvaia sherbet (Eugenia pyriformis Cambess): physical, chemical and sensory characteristics.

    Science.gov (United States)

    Giarola, Tales Márcio de Oliveira; Pereira, Cristina Guimarães; de Resende, Jaime Vilela

    2015-09-01

    In this work, iron fortified light uvaia sherbet, with low sucrose content, was developed and its physical, chemical and sensory characteristics were evaluated. The central composite rotational design (CCRD), applicable to the response surface methodology, was used to analyze the formulations. In the formulations, in addition of iron fortification (9 to 15 mg/100 g), the sucrose was substituted by micronized sucralose in a proportion of 66-94 %. The responses were analyzed with respect to changes in pH, total solids, ash, carbohydrates, proteins, calories, overrun, nucleation and thawing temperatures, rheological parameters and sensory attributes. Protein contents and acidity were similar in all formulations. There was a reduction of over 25 % in the caloric value. The rheological results showed pseudoplastic behavior and significant viscosity differences among the tested sherbets. In the overrun and thawing behavior results the sucrose concentration had a significant influence as the formulations with substitution by 28 g of sucralose/kg of sucrose showed greater air incorporation. In the flavor attribute there was not significance in relation to the iron fortification. Sherbets prepared with substitution of sucrose by sucralose and fortified with iron showed good acceptability, more stability and more resistant to thawing.

  20. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  1. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  2. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    Science.gov (United States)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus

  3. Metal chelates of N-alkylacetoacetanilides

    Energy Technology Data Exchange (ETDEWEB)

    Thankarajan, N.; Sreeman, P. (Calicut Univ. (India). Dept. of Chemistry)

    1981-04-01

    Beryllium(II), copper(II) and iron(III) chelates of N-methylacetoacetanilide, and beryllium(II), copper(II), chromium(III), Iron(III) and dioxouranium(VI) chelates of N-methyl- and N-ethyl-acetoacetanilides have been prepared and characterised on the basis of their analytical, spectral (UV, IR, PMR) and other physicochemical data. Polarographic studies reveal that the copper(II) complexes of the above ligands are stabler than that of acetoacetanilide. Pentagonal-bipyramidal structure for the uranium complex, and square-pyramidal structure for 1:1 adducts of the copper complexes with pyridine, have been suggested on the basis of the spectral data.

  4. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  5. Magnetic resonance assessment of iron overload by separate measurement of tissue ferritin and hemosiderin iron.

    Science.gov (United States)

    Wu, Ed X; Kim, Daniel; Tosti, Christina L; Tang, Haiying; Jensen, Jens H; Cheung, Jerry S; Feng, Li; Au, Wing-Yan; Ha, Shau-Yin; Sheth, Sujit S; Brown, Truman R; Brittenham, Gary M

    2010-08-01

    With transfusional iron overload, almost all the excess iron is sequestered intracellularly as rapidly mobilizable, dispersed, soluble ferritin iron, and as aggregated, insoluble hemosiderin iron for long-term storage. Established magnetic resonance imaging (MRI) indicators of tissue iron (R(2), R(2)*) are principally influenced by hemosiderin iron and change slowly, even with intensive iron chelation. Intracellular ferritin iron is evidently in equilibrium with the low-molecular-weight cytosolic iron pool that can change rapidly with iron chelation. We have developed a new MRI method to separately measure ferritin and hemosiderin iron, based on the non-monoexponential signal decay induced by aggregated iron in multiple-spin-echo sequences. We have initially validated the method in agarose phantoms and in human liver explants and shown the feasibility of its application in patients with thalassemia major. Measurement of tissue ferritin iron is a promising new means to rapidly evaluate the effectiveness of iron-chelating regimens.

  6. [Iron dysregulation and anemias].

    Science.gov (United States)

    Ikuta, Katsuya

    2015-10-01

    Most iron in the body is utilized as a component of hemoglobin that delivers oxygen to the entire body. Under normal conditions, the iron balance is tightly regulated. However, iron dysregulation does occasionally occur; total iron content reductions cause iron deficiency anemia and overexpression of the iron regulatory peptide hepcidin disturbs iron utilization resulting in anemia of chronic disease. Conversely, the presence of anemia may ultimately lead to iron overload; for example, thalassemia, a common hereditary anemia worldwide, often requires transfusion, but long-term transfusions cause iron accumulation that leads to organ damage and other poor outcomes. On the other hand, there is a possibility that iron overload itself can cause anemia; iron chelation therapy for the post-transfusion iron overload observed in myelodysplastic syndrome or aplastic anemia improves dependency on transfusions in some cases. These observations reflect the extremely close relationship between anemias and iron metabolism.

  7. Comments on chelation therapy

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1981-01-01

    The primary purpose of actinide chelation is to decrease the risk from radiation-induced cancer. While occupational exposures in the past have mainly involved low specific activity 239 Pu, future exposures will increasingly involve high specific activity plutonium, americium, and curium - all of which clear more rapidly from the lung. This will tend to shift the cancer risk from lung to bone and liver. Although therapy with Ca- or Zn-DTPA rapidly removes 241 Am from the canine, the sub-human primate, and the human liver, improved methods for removal from bone and lung are needed. DTPA can remove 241 Am more easily from the growing skeleton of a child than from the mature skeleton of an adult. Investigators at Karlsruhe are developing chelation agents for oral administration and are investigating the reduction in local dose to bone resulting from chelation therapy

  8. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation

    International Nuclear Information System (INIS)

    Levin, T.L.; Sheth, S.S.; Ruzal-Shapiro, C.; Abramson, S.; Piomelli, S.; Berdon, W.E.

    1995-01-01

    The magnetic resonance bone marrow patterns in thalassemia were evaluated to determine changes produced by transfusion and chelation therapy. Thirteen patients had T1- and T2-weighted images of the spine, pelvis and femurs. Three received no therapy (age range 2.5-3 years). Three were ''hypertransfused'' (transfused to maintain a hemoglobin greater than 10 g/dl) and not chelated because of age (age range 6 months-8 years). Seven were ''hypertransfused'' and chelated (age range 12-35 years). Signal characteristics of marrow were compared with those of surrounding muscle and fat. Fatty marrow (isointense with subcutaneous fat) was compared with red marrow (hypointense to fat and slightly hyperintense to muscle). Marrow hypointense to muscle was identified as iron deposition within red marrow. The untreated group demonstrated signal consistent with red marrow throughout the central and peripheral skeleton. Hypertransfused but not chelated patients demonstrated marked iron deposition in the central and peripheral skeleton. Hypertransfused and chelated patients demonstrated iron deposition in the central skeleton and a mixed appearance of marrow in the peripheral skeleton. The MR appearance of marrow in thalassemia is a reflection of the patient's transfusion and chelation therapy. Iron deposition occurs despite chelation therapy in sites of active red marrow. As red marrow retreats centrally with age, so does the pattern of iron deposition. The long-term biological effects of this iron deposition are unknown. (orig.). With 8 figs., 1 tab

  9. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation

    Energy Technology Data Exchange (ETDEWEB)

    Levin, T.L. [Department of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, New York, NY (United States); Sheth, S.S. [Department of Pediatrics, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, 3959 Broadway, New York, NY 10032 (United States); Ruzal-Shapiro, C. [Department of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, New York, NY (United States); Abramson, S. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Piomelli, S. [Department of Pediatrics, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, 3959 Broadway, New York, NY 10032 (United States); Berdon, W.E. [Department of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital, New York, NY (United States)

    1995-11-01

    The magnetic resonance bone marrow patterns in thalassemia were evaluated to determine changes produced by transfusion and chelation therapy. Thirteen patients had T1- and T2-weighted images of the spine, pelvis and femurs. Three received no therapy (age range 2.5-3 years). Three were ``hypertransfused`` (transfused to maintain a hemoglobin greater than 10 g/dl) and not chelated because of age (age range 6 months-8 years). Seven were ``hypertransfused`` and chelated (age range 12-35 years). Signal characteristics of marrow were compared with those of surrounding muscle and fat. Fatty marrow (isointense with subcutaneous fat) was compared with red marrow (hypointense to fat and slightly hyperintense to muscle). Marrow hypointense to muscle was identified as iron deposition within red marrow. The untreated group demonstrated signal consistent with red marrow throughout the central and peripheral skeleton. Hypertransfused but not chelated patients demonstrated marked iron deposition in the central and peripheral skeleton. Hypertransfused and chelated patients demonstrated iron deposition in the central skeleton and a mixed appearance of marrow in the peripheral skeleton. The MR appearance of marrow in thalassemia is a reflection of the patient`s transfusion and chelation therapy. Iron deposition occurs despite chelation therapy in sites of active red marrow. As red marrow retreats centrally with age, so does the pattern of iron deposition. The long-term biological effects of this iron deposition are unknown. (orig.). With 8 figs., 1 tab.

  10. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  11. Effect of Iron Bisglycinate on Muscle Strength in Weightlifting

    OpenAIRE

    BUTT, Zafar Iqbal; ADNAN, Muhammad Abdul Jabar

    2016-01-01

    Iron is an unconditional necessity for nearly everyone’s life, together with human being andthe majority bacterial groups, both animals and plants utilize iron; therefore, iron is availablein a broad diversity of foodstuff resources. For managing Iron Deficiency with maximumabsorption and safety Iron Bisglycinate Chelate (Ferrochel) can be used which is ProteinChelated Iron. Weightlifting, likewise termed Olympic-style weightlifting is an athletic sort inthe contemporary Olympic package in wh...

  12. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  13. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  14. Tailored ceramics

    International Nuclear Information System (INIS)

    Harker, A.B.

    1988-01-01

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  15. Chelated minerals for poultry

    Directory of Open Access Journals (Sweden)

    SL Vieira

    2008-06-01

    Full Text Available Organic minerals have been subject of an increasing number of investigations recently. These compounds can be considered the most significant event regarding commercial forms of minerals targeting animal supplementation in the last decades. Minerals, especially metals, are usually supplemented in poultry feeds using cheap saline sources and have never required a lot of attention in terms of quality. On the other hand, definitions of organic minerals are very broad and frequently lead to confusion when decision-making becomes necessary. Organic minerals include any mineral bound to organic compounds, regardless of the type of existing bond between mineral and organic molecules. Proteins and carbohydrates are the most frequent candidates in organic mineral combinations. Organic fraction size and bond type are not limitations in organic mineral definition; however, essential metals (Cu, Fe, Zn, and Mn can form coordinated bonds, which are stable in intestinal lumen. Metals bound to organic ligands by coordinated bonds can dissociate within animal metabolism whereas real covalent bonds cannot. Chelated minerals are molecules that have a metal bound to an organic ligand through coordinated bonds; but many organic minerals are not chelates or are not even bound through coordinated bonds. Utilization of organic minerals is largely dependent on the ligand; therefore, amino acids and other small molecules with facilitated access to the enterocyte are supposed to be better utilized by animals. Organic minerals with ligands presenting long chains may require digestion prior to absorption. After absorption, organic minerals may present physiological effects, which improve specific metabolic responses, such as the immune response. Many studies have demonstrated the benefits of metal-amino acid chelates on animal metabolism, but the detection positive effects on live performance is less consistent.

  16. To chelate or not to chelate in MDS: That is the question!

    Science.gov (United States)

    Zeidan, Amer M; Griffiths, Elizabeth A

    2018-03-08

    Myelodysplastic syndromes (MDS) are a heterogeneous group of hemopathies that exhibit physical manifestations with clinical consequences of bone marrow failure and inherent risk of progression to acute myeloid leukemia. Iron overload (IO) is common in MDS due to chronic transfusion support and disease-related alterations in iron metabolism. IO has been conclusively associated with inferior outcomes among MDS patients. Despite lack of randomized trials showing a survival impact of iron chelation therapy (ICT), ICT is recommended by experts and guidelines for select MDS patients with IO and is often used. The availability of effective oral ICT agents has reignited the controversy regarding ICT use in patients with MDS and IO. Here we summarize the studies evaluating the value of ICT in MDS and suggest a practical approach for use of these therapies. We also highlight controversies regarding use of ICT in MDS and discuss some ongoing efforts to answer these questions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Chelation of thallium by combining deferasirox and desferrioxamine in rats.

    Science.gov (United States)

    Saljooghi, Amir Shokooh; Babaie, Maryam; Mendi, Fatemeh Delavar; Zahmati, Maliheh; Saljooghi, Zoheir Shokouh

    2016-01-01

    The hypothesis that two known chelators deferasirox (4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid) and desferrioxamine (DFO) might be more efficient as combined treatment than as monotherapies in removing thallium from the body was tested in a new acute rat model. 7-week-old male Wistar rats received chelators: deferasirox (orally), DFO (intraperitoneal; i.p.), or deferasirox + DFO as 75 or 150 mg/kg dose half an hour after a single i.p. administration of 8 mg thallium/kg body weight in the form of chloride. Serum thallium concentration, urinary thallium, and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level, while DFO was more effective than deferasirox in enhancing urinary thallium excretion, deferasirox was more effective than DFO in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the DFO effect on thallium and DFO did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of thallium chelators. Urinary values were more useful because of the high variability of serum results. © The Author(s) 2013.

  18. Chelation of aluminum by combining deferasirox and deferiprone in rats.

    Science.gov (United States)

    Saljooghi, Amir Shokooh

    2012-09-01

    The hypothesis that two known chelators deferasirox and deferiprone (L1) might be more efficient as combined treatment than as single therapies in removing aluminum from the body was tested in a new acute rat model. Seven-week-old male Wistar rats received chelators: deferasirox (orally [p.o.]), L1 (p.o.) or deferasirox + L1 as 100 or 200 mg/kg dose half an hour after a single intraperitoneal administration of 6 mg Al/kg body weight in the form of chloride. Serum aluminum concentration, urinary aluminum and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level. While deferasirox was more effective than L1 in enhancing urinary aluminum excretion, L1 was more effective than deferasirox in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the L1 effect on aluminum and L1 did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of aluminum chelators. Urinary values were more useful due to the high variability of serum results.

  19. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Huilan; Li, Lihua; Du, Juan; Yuan, Youxi; Cheng, Xudong; Ling, Hong-Qing

    2005-09-01

    Iron chelate reductase is required for iron acquisition from soil and for metabolism in plants. In the genome of Arabidopsis thaliana there are eight genes classified into the iron chelate reductase gene family (AtFROs) based on sequence homology with AtFRO2 (a ferric chelate reductase in Arabidopsis). They are localized on chromosome 1 (three AtFROs) and chromosome 5 (five AtFROs) of Arabidopsis and show a high level of amino acid sequence similarity to each other. An assay for ferric chelate reductase activity revealed that AtFRO2, AtFRO3, AtFRO4, AtFRO5, AtFRO7 and AtFRO8 conferred significantly increased iron reduction activity compared with the control when expressed in yeast cells, indicating that the six AtFROs encode iron chelate reductases functioning in iron homeostasis in Arabidopsis. AtFRO2 displayed the highest iron reduction activity among the AtFROs investigated, further demonstrating that AtFRO2 is a major iron reductase gene in Arabidopsis. AtFRO2 and AtFRO3 were mainly expressed in roots of Arabidopsis, AtFRO5 and AtFRO6 in shoots and flowers, and AtFRO7 in cotyledons and trichomes, whereas the transcription of AtFRO8 was specific for leaf veins. Considering the tissue-specific expression profiles of AtFRO genes, we suggest that AtFRO2 and AtFRO3 are two Fe(III) chelate reductases mainly functioning in iron acquisition and metabolism in Arabidopsis roots, while AtFRO5, AtFRO6, AtFRO7 and AtFRO8 are required for iron homeostasis in different tissues of shoots.

  20. Chelates for Micronutrient Nutrition among Crops

    Indian Academy of Sciences (India)

    lated metals could supply many of the micronutrient require- ments of plants. These chelates find use in a wide variety of agricultural crops. Applications for chelates vary from fertilizer additives, seed dressing to foliar sprays and hydroponics. Chelates and Chelating Agents. A chelate describes a kind of organic chemical ...

  1. Novel polycatecholamide chelating agents

    Science.gov (United States)

    Weitl, F.L.; Raymond, K.N.

    1981-08-24

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. Formulas of the compounds are given. To prepare them polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO/sub 3/H, SO/sub 3/M, NO/sub 2/, CO/sub 2/H or CO/sub 2/M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr/sub 3/ or BCl/sub 3/ in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  2. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators.

    Science.gov (United States)

    Durbin, Patricia W

    2008-11-01

    All of the actinides are radioactive. Taken into the body, they damage and induce cancer in bone and liver, and in the lungs if inhaled, and U(VI) is a chemical kidney poison. Containment of radionuclides is fundamental to radiation protection, but if it is breached accidentally or deliberately, decontamination of exposed persons is needed to reduce the consequences of radionuclide intake. The only known way to reduce the health risks of internally deposited actinides is to accelerate their excretion with chelating agents. Ethylendiaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were introduced in the 1950's. DTPA is now clinically accepted, but its oral activity is low, it must be injected as a Ca(II) or Zn(II) chelate to avoid toxicity, and it is structurally unsuitable for chelating U(VI) or Np(V). Actinide penetration into the mammalian iron transport and storage systems suggested that actinide ions would form stable complexes with the Fe(III)-binding units found in potent selective natural iron chelators (siderophores). Testing of that biomimetic approach began in the late 1970's with the design, production, and assessment for in vivo Pu(IV) chelation of synthetic multidentate ligands based on the backbone structures and Fe(III)-binding groups of siderophores. New efficacious actinide chelators have emerged from that program, in particular, octadentate 3,4,3-LI(1,2-HOPO) and tetradentate 5-LIO(Me-3,2-HOPO) have potential for clinical acceptance. Both are much more effective than CaNa3-DTPA for decorporation of Pu(IV), Am(III), U(VI), and Np(IV,V), they are orally active, and toxicity is acceptably low at effective dosage.

  3. Iron and Parkinson's disease.

    Science.gov (United States)

    Di Lorenzo, Francesco

    2015-01-01

    In this case presentation, a man with a diagnosis of Parkinson's disease was treated with Chelation Therapy against iron without iron serum level correlation. The patient, who suffered from motor and non-motor symptoms of the disease, showed an improved condition after the Therapy. This clinical test was evaluated with UPDRS III score. The rationale and the limits of the Therapy are discussed. This case suggests that iron-dependent oxidative stress could represent a promising therapy for this dramatic disease; the necessity to deeply study the iron metabolism in neuro-degeneration appears really significant.

  4. Clinical Pharmacist-Provided Services In Iron-Overloaded Beta-Thalassaemia Major Children: A New Insight Into Patient Care.

    Science.gov (United States)

    Bahnasawy, Salma M; El Wakeel, Lamia M; Beblawy, Nagham El; El-Hamamsy, Manal

    2017-04-01

    Iron-overloaded β-thalassaemia major (BTM) children have high risk of delayed sexual/physical maturation, liver/heart diseases and reduced life expectancy. The lifelong need to use iron chelators, their unpleasant administration, side effects and lack of awareness regarding iron overload risks all hamper BTM patient compliance to iron chelators. This study evaluated the impact of clinical pharmacist-provided services on the outcome of iron-overloaded BTM children. Forty-eight BTM children were randomly assigned to either control group, who received standard medical care, or intervention group, who received standard medical care plus clinical pharmacist-provided services. Services included detection of drug-related problems (DRPs) and their management, patient education regarding disease nature and iron chelators, as well as providing patient-tailored medication charts. After six months of study implementation, there was a highly significant difference between the control and intervention groups in serum ferritin (SF) (mean: 3871 versus 2362, μg/l, p = 0.0042), patient healthcare satisfaction (median: 24.47 versus 90.29, p < 0.0001) and quality of life (QoL) (median: 49.84 versus 63.51, p = 0.0049). The intervention group showed a decline from baseline to the end of study in DRPs (64-4), the number of non-compliant patients (24-3) and mean SF levels (3949-2362 μg/l, p < 0.0001). Clinical pharmacist-provided services can positively impact the outcome of BTM children. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. Oral iron administration in suckling piglets – a review

    Directory of Open Access Journals (Sweden)

    Martin Svoboda

    2018-01-01

    Full Text Available Iron deficiency is presently a serious problem in suckling piglets on pig farms. The most often used method of anaemia prevention in piglets is parenteral administration of iron dextran. Oral iron represents an alternative to this method. The goal of this article is to review current knowledge on oral iron administration in suckling piglets. The substances that can be used for this purpose include iron dextran, iron salts, iron chelates, carbonyl iron, an iron polymaltose complex and iron microparticles. The different methods of oral iron administration in piglets are discussed.

  6. Determination of deferasirox plasma concentrations: do gender, physical and genetic differences affect chelation efficacy?

    Science.gov (United States)

    Mattioli, Francesca; Puntoni, Matteo; Marini, Valeria; Fucile, Carmen; Milano, Giulia; Robbiano, Luigi; Perrotta, Silverio; Pinto, Valeria; Martelli, Antonietta; Forni, Gian Luca

    2015-04-01

    patients: LBM was a borderline significant effect modifier of the relationship between UGT1A1 polymorphisms and CDFX . Individual patient-tailored dosing of DFX should help to improve iron chelation efficacy and to reduce dose-dependent drug toxicity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean

    NARCIS (Netherlands)

    Boye, Marie; Nishioka, Jun; Croot, Peter L.; Laan, Patrick; Timmermans, Klaas R.; Baar, Hein J.W. de

    2005-01-01

    The speciation of strongly chelated iron during the 22-day course of an iron enrichment experiment in the Atlantic sector of the Southern Ocean deviates strongly from ambient natural waters. Three iron additions (ferrous sulfate solution) were conducted, resulting in elevated dissolved iron

  8. Recent acquisitions in the management of iron overload.

    Science.gov (United States)

    Franchini, Massimo

    2005-10-01

    Chronically transfused patients develop iron overload, which leads to organ damage and ultimately to death. The introduction of the iron-chelating agent desferrioxamine mesylate dramatically improved the life expectancy of these patients. However, the very demanding nature of this treatment (subcutaneous, continuous infusion via a battery-operated portable pump) has been the motivation for attempts to develop alternative forms of treatment that would facilitate the patients' compliance. In this review, we describe the most important advances in iron-chelation therapy.

  9. Tailored ceramics. Chapter 5

    International Nuclear Information System (INIS)

    Haker, A.B.

    1988-01-01

    In the light of the broad variation in US high-level waste (HLW) types and the uncertainties in future waste production, research on the Rockwell International Science Center has focussed on developing a generic technology for the consolidation of high-level wastes into polyphase ceramics. The basic approach has been to 'tailor' wste compositions with chemical additives so that upon consolidation a dense ceramic assemblage is formed that chemically binds the waste species into known phases. This chapter deals with tailored ceramics for current and future high-level waste compositions. Section 2 gives a historical review of the development of tailored ceramics. Section 3 deals with tailored ceramics designed for specific HLW compositions and with microstructure and phase development. Section 4 discusses chemical and physical properties of tailored ceramic waste forms. In section 5 the various processing steps involved in converting HLW to polycrystalline ceramic forms are described. (author). 159 refs.; 20 figs.; 14 tabs

  10. Removal of thallium by combining desferrioxamine and deferiprone chelators in rats.

    Science.gov (United States)

    Amiri, Asghar; Fatemi, S Jamilaldine; Fatemi, S Nabilaldine

    2007-04-01

    The hypothesis that two known chelators deferiprone (1,2-dimethy1-3-hydroxypyrid-4-one, L1) and desferrioxamine (DFO) might be more efficient as combined treatment than as monotherapies in removing thallium from the body was tested in rats. Six-week-old male Wistar rats received chelators: L1 (p.o.), DFO (i.p.) or L1 + DFO as 110 or 220 mg/kg dose half an hour after a single i.p. administration of 8 mg Tl/kg body weight in the form of chloride. Serum thallium concentration, urinary thallium and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level, while DFO was more effective than L1 in enhancing urinary thallium excretion, L1 was more effective than DFO in enhancing urinary iron excretion. In the combined treatment group, L1 did not increase the DFO effect on thallium and DFO did not increase the effect of L1 on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of thallium chelators. Urinary values were more useful because of the high variability of serum results. Result of combined chelators treatment should be confirmed in a different experimental model before extrapolation to other systems.

  11. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  12. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  13. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  14. Iron-binding properties of sugar cane yeast peptides.

    Science.gov (United States)

    de la Hoz, Lucia; Ponezi, Alexandre N; Milani, Raquel F; Nunes da Silva, Vera S; Sonia de Souza, A; Bertoldo-Pacheco, Maria Teresa

    2014-01-01

    The extract of sugar-cane yeast (Saccharomyces cerevisiae) was enzymatically hydrolysed by Alcalase, Protex or Viscozyme. Hydrolysates were fractionated using a membrane ultrafiltration system and peptides smaller than 5kDa were evaluated for iron chelating ability through measurements of iron solubility, binding capacity and dialyzability. Iron-chelating peptides were isolated using immobilized metal affinity chromatography (IMAC). They showed higher content of His, Lys, and Arg than the original hydrolysates. In spite of poor iron solubility, hydrolysates of Viscozyme provided higher iron dialyzability than those of other enzymes. This means that more chelates of iron or complexes were formed and these kept the iron stable during simulated gastro-intestinal digestion in vitro, improving its dialyzability. Published by Elsevier Ltd.

  15. Phytases for Improved Iron Absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Nyffenegger, Christian; Meyer, Anne S.

    2014-01-01

    Microbial phytases (EC 3.1.3.8) catalyse dephosphorylation of phytic acid, which is the primary storage compound for phosphorous in cereal kernels. The negatively charged phosphates in phytic acid chelate iron (Fe3+) and thus retards iron bioavailability in humans 1. Supplementation of microbial...... phytase can improve iron absorption from cereal-based diets 2. In order for phytase to catalyse iron release in vivo the phytase must be robust to low pH and proteolysis in the gastric ventricle. Our work has compared the robustness of five different microbial phytases, evaluating thermal stability...

  16. N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Leonardo Victor Barbosa Pereira

    Full Text Available The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC. Male Wistar rats were submitted to 5/6 nephrectomy (Nx to induced CRF. An ionic-cyclic Gd (Gadoterate Meglumine was administrated (1.5 mM/KgBW, intravenously 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd- chelate administration: 1--Nx (n = 7; 2--Nx+NAC (n = 6; 3--Nx+Gd (n = 7; 4--Nx+NAC+Gd (4.8 g/L in drinking water, initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6. This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW, proteinuria (mg/24 hs, serum iron (µg/dL; serum ferritin (ng/mL; transferrin saturation (%, TIBC (µg/dL and TBARS (nmles/ml. Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

  17. Impacto da farinha de mandioca fortificada com ferro aminoácido quelato no nível de hemoglobina de pré-escolares Impact of cassava flour fortified with iron amino acid chelate on the hemoglobin level in pre-schools

    Directory of Open Access Journals (Sweden)

    Rahilda Brito Tuma

    2003-01-01

    Full Text Available OBJETIVO: Avaliou-se o impacto da farinha de mandioca fortificada com ferro aminoácido quelato em 80 pré-escolares de uma Unidade Filantrópica de Manaus, AM, distribuídos aleatoriamente em quatro grupos de 20 crianças cada, por um período de 120 dias. MÉTODOS: Foram utilizadas farinha de mandioca sem fortificação (Grupo zero e fortificada com 1, 2 e 3mg de Fe/dia, correspondendo a quantias diárias de 5, 10 e 15g de farinha, respectivamente, as quais foram distribuídas no horário do almoço, sendo ainda entregue às famílias a quantidade destinada ao consumo do final de semana. O estado nutricional das crianças foi avaliado no início e ao final do experimento, adotando-se como limite discriminatório entre eutrofia/desnutrição o ponto de corte OBJECTIVE: The impact of the cassava flour fortified with iron amino acid chelate was evaluated in 80 pre-scholars of a Philanthropic Unit of Manaus, state of Amazonas, randomly distributed in four groups of 20 children each, for a period of 120 days. METHODS: Cassava flour was used without fortification (group zero or fortified with 1, 2 and 3mg of Fe/day, corresponding respectively to 5, 10 and 15g of flour/day, which were given to the children at lunch time on weekdays. The equivalent amount was previously distributed to their families for flour intake also during the weekends. In the beginning and at the end of the experiment the children's nutritional status was evaluated, being adopted the cutoff point <-2 Z-scores as a discriminating limit between eutrophy/malnutrition, in agreement with the World Health Organization criteria, as well as being established as a cutoff point for the occurrence of iron deficiency anemia a hemoglobin rate of less than 11g/dL. RESULTS: At the end of this study, children recovered from chronic malnutrition, and a significant increase (p <5% of the hemoglobin rates, independently of iron concentration, from 11.4±0.9g/dL to 12.2±0.8g/dL, was observed in

  18. Iron and Acinetobacter baumannii Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Valentina Gentile

    2014-08-01

    Full Text Available Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.

  19. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato.

    Science.gov (United States)

    Kong, Danyu; Chen, Chunlin; Wu, Huilan; Li, Ye; Li, Junming; Ling, Hong-Qing

    2013-11-20

    Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato. Copyright © 2013. Published by Elsevier Ltd.

  20. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  1. Evaluation of a new tablet formulation of deferasirox to reduce chronic iron overload after long-term blood transfusions

    Directory of Open Access Journals (Sweden)

    Chalmers AW

    2016-02-01

    Full Text Available Anna W Chalmers, Jamile M Shammo Department of Internal Medicine, Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL, USA Abstract: Transfusion-dependent anemia is a common feature in a wide array of hematological disorders, including thalassemia, sickle cell disease, aplastic anemia, myelofibrosis, and myelodysplastic syndromes. In the absence of a physiological mechanism to excrete excess iron, chronic transfusions ultimately cause iron overload. Without correction, iron overload can lead to end-organ damage, resulting in cardiac, hepatic, and endocrine dysfunction/failure. Iron chelating agents are utilized to reduce iron overload, as they form a complex with iron, leading to its clearance. Iron chelation has been proven to decrease organ dysfunction and improve survival in certain transfusion-dependent anemias, such as β-thalassemia. Several chelating agents have been approved by the United States Food and Drug Administration for the treatment of iron overload, including deferoxamine, deferiprone, and deferasirox. A variety of factors have to be considered when choosing an iron chelator, including dosing schedule, route of administration, tolerability, and side effect profile. Deferasirox is an orally administered iron chelator with proven efficacy and safety in multiple hematological disorders. There are two formulations of deferasirox, a tablet for suspension, and a new tablet form. This paper is intended to provide an overview of iron overload, with a focus on deferasirox, and its recently approved formulation Jadenu® for the reduction of transfusional iron overload in hematological disorders. Keywords: iron chelation therapy, transfusional iron overload, deferasirox

  2. Hydroxypyri(mi)dine-based chelators as antidotes of toxicity due to aluminum and actinides.

    Science.gov (United States)

    Santos, M A; Esteves, M A; Chaves, S

    2012-01-01

    This review is focused on recent developments on hydroxypyri(mi)dines, as aluminum and actinide chelating agents to combat the toxicity due to accumulations of these metal ions in human body resulting from excessive metal exposure. After a brief update revision of the most common processes of aluminum (Al) exposure, as well as the associated toxicities and pathologies, we will focus on the current available Al chelators and future perspective as potential antidotes of Al toxicity. Due to the similarity between Al and Fe, a major emphasis is given to the hydroxypyridinone and hydroxypyrimidinone chelators, since they are analogues of the current iron chelators in clinical use (DFP and DFO). This review includes issues such as molecular design strategies and corresponding effects on the associated physico-chemical properties, lipo-hydrophilic balance, toxicity, in vivo bioassays and current clinical applications. The hydroxypyri(mi)dine chelators are also suitable for other hard metal ions, such as the radiotoxic actinides, and so a brief review is included on the applications of these chelators in actinides scavenging.

  3. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands.

    Science.gov (United States)

    Toso, Leonardo; Crisponi, Guido; Nurchi, Valeria M; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Mansoori, Delara; Arca, Massimiliano; Santos, M Amélia; Marques, Sérgio M; Gano, Lurdes; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Szewczuk, Zbigniew

    2014-01-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog. © 2013.

  4. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Tailored Barium Swallow Study

    Science.gov (United States)

    ... Different textures of food are often given. The barium is a contrast material that makes the food and liquid show ... MRI Intravenous Contrast Information MRI with or without Contrast Small Bowel Follow Through (SBFT) Tailored Barium Swallow Study The Upper GI Study (GI Series) ...

  6. Different patterns of myocardial iron distribution by whole-heart T2* magnetic resonance as risk markers for heart complications in thalassemia major.

    Science.gov (United States)

    Meloni, Antonella; Restaino, Gennaro; Borsellino, Zelia; Caruso, Vincenzo; Spasiano, Anna; Zuccarelli, Angelo; Valeri, Gianluca; Toia, Patrizia; Salvatori, Cristina; Positano, Vincenzo; Midiri, Massimo; Pepe, Alessia

    2014-12-20

    The multislice multiecho T2* cardiovascular magnetic resonance (CMR) technique allows to detect different patterns of myocardial iron overload (MIO). The aim of this cross-sectional study was to verify the association between cardiac complications (heart failure and arrhythmias), biventricular dysfunction and myocardial fibrosis with different patterns of MIO in thalassemia major (TM) patients. We considered 812 TM patients enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) Network. The T2* value in all the 16 cardiac segments was evaluated. We identified 4 groups of patients: 138 with homogeneous MIO (all segments with T2* heart iron (global heart T2* heart iron, and 339 with no MIO (all segments with T2* ≥ 20 ms). Compared to patients with no MIO, patients with homogeneous MIO were more likely to have cardiac complications (odds ratio-OR = 2.67), heart failure (OR = 2.54), LV dysfunction (OR = 5.59), and RV dysfunction (OR = 2.26); patients with heterogeneous MIO and significant global heart iron were more likely to have heart failure (OR = 2.38) and LV dysfunction (OR = 2.39). Cardiac complications, heart failure and dysfunction were correlated with MIO distribution with an increasing risk from the TM patients with no MIO to those with homogeneous MIO. Using a segmental approach, early iron deposit or homogeneous MIO patterns can be characterized to better tailor chelation therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Characterization of antibody-chelator conjugates: Determination of chelator content by terbium fluorescence titration

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, K.D.; Schnobrich, K.E.; Johnson, D.K. (Abbott Laboratories, Department 90M, Abbott Park, IL (United States))

    1991-01-01

    Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates.

  8. Nuclear resonance scattering measurement of human iron stores

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Ancona, R.C.; Mossey, R.T.; Vaswani, A.N.; Cohn, S.H.

    1985-07-01

    Hepatic iron stores were measured noninvasively in 31 patients (thalassemia, hemodialysis, hemosiderosis, refractory anemia) with suspected iron overload, employing a nuclear resonance scattering (NRS) technique. The thalassemia patients were undergoing desferrioxamine chelation therapy during the NRS measurements. The hemodialysis patients were measured before chelation therapy. Iron levels measured by NRS were in general agreement with those determined in liver biopsies by atomic absorption spectroscopy. In addition, NRS measurements from the thorax of some of these patients suggest that this method may also prove useful for clinical assessment of cardiac iron.

  9. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  10. Deferasirox in iron-overloaded patients with transfusion-dependent myelodysplastic syndromes: Results from the large 1-year EPIC study

    DEFF Research Database (Denmark)

    Gattermann, Norbert; Finelli, Carlo; Porta, Matteo Della

    2010-01-01

    patients were chelation-naïve or previously chelated; changes were dependent on dose adjustments and ongoing iron intake. Sustained reductions in labile plasma iron were observed. Discontinuation rate (48.7%) and adverse event profile were consistent with previously reported deferasirox data in MDS...

  11. Effect of metals on Candida albicans growth in the presence of chemical chelators and human abscess fluid.

    Science.gov (United States)

    Sohnle, P G; Hahn, B L; Karmarkar, R

    2001-04-01

    Calprotectin is a calcium- and zinc-binding protein that is present in abscess fluid supernatants and appears to inhibit microbial growth through competition for zinc. In the present study, growth inhibition by chemical chelators was compared with that produced by human abscess fluid to determine whether other chelators, perhaps with different metal specificities, would have the same or different patterns of metal reversibility as abscess fluid. Zinc was found to be more potent than the other metals tested in reversing C. albicans growth inhibition by human abscess fluid and three chemical chelators, even though in some cases the stability constants of certain of these chelators were higher for other metals. For example, in the presence of the chelator diethylenetriaminopentaacetic acid, zinc stimulated Candida growth at a 10-fold lower concentration than did iron, even though this chelator has a stability constant for iron that is almost 10(10) higher than that for zinc. These results suggest that the zinc specificity of calprotectin's C. albicans growth inhibition can best be explained by the marked sensitivity of this organism to zinc deprivation rather than by selective binding of this metal by the protein.

  12. Chelation for Coronary Heart Disease

    Science.gov (United States)

    ... conventional medicine , such as treating lead poisoning or iron overload. When used as a complementary treatment for heart disease, a health care provider typically administers a solution of disodium EDTA, a man-made amino acid, in a series of infusions ...

  13. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  14. Burkholderia pseudomallei modulates host iron homeostasis to facilitate iron availability and intracellular survival.

    Directory of Open Access Journals (Sweden)

    Imke H E Schmidt

    2018-01-01

    Full Text Available The control over iron homeostasis is critical in host-pathogen-interaction. Iron plays not only multiple roles for bacterial growth and pathogenicity, but also for modulation of innate immune responses. Hepcidin is a key regulator of host iron metabolism triggering degradation of the iron exporter ferroportin. Although iron overload in humans is known to increase susceptibility to Burkholderia pseudomallei, it is unclear how the pathogen competes with the host for the metal during infection. This study aimed to investigate whether B. pseudomallei, the causative agent of melioidosis, modulates iron balance and how regulation of host cell iron content affects intracellular bacterial proliferation.Upon infection of primary macrophages with B. pseudomallei, expression of ferroportin was downregulated resulting in higher iron availability within macrophages. Exogenous modification of iron export function by hepcidin or iron supplementation by ferric ammonium citrate led to increased intracellular iron pool stimulating B. pseudomallei growth, whereas the iron chelator deferoxamine reduced bacterial survival. Iron-loaded macrophages exhibited a lower expression of NADPH oxidase, iNOS, lipocalin 2, cytokines and activation of caspase-1. Infection of mice with the pathogen caused a diminished hepatic ferroportin expression, higher iron retention in the liver and lower iron levels in the serum (hypoferremia. In vivo administration of ferric ammonium citrate tended to promote the bacterial growth and inflammatory response, whereas limitation of iron availability significantly ameliorated bacterial clearance, attenuated serum cytokine levels and improved survival of infected mice.Our data indicate that modulation of the cellular iron balance is likely to be a strategy of B. pseudomallei to improve iron acquisition and to restrict antibacterial immune effector mechanisms and thereby to promote its intracellular growth. Moreover, we provide evidence that

  15. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture

    OpenAIRE

    Radzki, W.; Gutierrez Ma?ero, F. J.; Algar, E.; Lucas Garc?a, J. A.; Garc?a-Villaraco, A.; Ramos Solano, B.

    2013-01-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved toma...

  16. Chelating agents in pharmacology, toxicology and therapeutics

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63 Ni, 109 Cd, 203 Hg, 144 Ce, 95 Nb and the excretion of 210 Po, 63 Ni, 48 V, 239 Pu, 241 Am, 54 Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  17. Enhanced iron removal from liver parenchymal cells in experimental iron overload: liposome encapsulation of HBED and phenobarbital administration

    International Nuclear Information System (INIS)

    Rahman, Y.E.; Cerny, E.A.; Lau, E.H.; Carnes, B.A.

    1983-01-01

    The effectiveness of N,N'-bis[2-hydroxybenzyl]-ethylene-diamine-N,N'-diacetic acid (HBED) in removing radioiron introduced into the parenchymal cells of mouse liver as 59 Fe-ferritin has been investigated. The effectiveness of HBED, an iron chelator of low water solubility, has also been compared with that of desferrioxamine (DF), an iron chelator of high water solubility and currently in clinical use for treatment of transfusional iron overload. Using the 59 Fe excretion as the measure of effectiveness of chelation therapy and a standardized single chelator dose of 25 mg/kg, they have found that: (1) a saline suspension of HBED, prepared by sonication and given intraperitoneally to mice, promotes a small but significant increase in excretion of radioiron compared to the untreated controls, whereas DF, in its free form, is ineffective; (2) HBED encapsulated in lipid bilayers of liposomes and given intravenously is superior to nonencapsulated HBED; (3) DF encapsulated in small unilamellar liposomes is ineffective in removing iron given in the form of ferritin; (4) administration of phenobarbital in drinking water, at a concentration of 1 g/liter, induces a 30%-55% increase of iron excretion from untreated control mice and also from mice given HBED either in liposome-encapsulated or nonencapsulated form. HBED is superior to DF for removal of storage iron from liver parenchymal cells and liposomes are useful carriers for iron chelators of low water solubility

  18. In vitro iron availability from iron-fortified whole-grain wheat flour.

    Science.gov (United States)

    Kloots, Willem; Op den Kamp, Danielle; Abrahamse, Leo

    2004-12-29

    Iron deficiency is the most common nutritional disorder worldwide. Iron fortification of foods is considered to be the most cost-effective long-term approach to reduce iron deficiency. However, for fortified foods to be effective in reducing iron deficiency, the added iron must be sufficiently bioavailable. In this study, fortification of whole-grain wheat flour with different sources of iron was evaluated in vitro by measuring the amount of dialyzable iron after simulated gastrointestinal digestion of flour baked into chapatis and subsequent intestinal absorption of the released iron using Caco-2 cell layers. The dialyzability of iron from iron-fortified wheat flour was extremely low. Additions of 50 mg/kg iron to the flour in the form of ferrous sulfate, Ferrochel amino acid chelate, ferric amino acid chelate taste free (TF), Lipofer, ferrous lactate, ferrous fumarate, ferric pyrophosphate, carbonyl iron, or electrolytic iron did not significantly increase the amount of in vitro dialyzable iron after simulated gastrointestinal digestion. In contrast, fortification of flour with SunActive Fe or NaFeEDTA resulted in a significant increase in the amount of in vitro dialyzable iron. Relative to iron from ferrous sulfate, iron from SunActive Fe and NaFeEDTA appeared to be 2 and 7 times more available in the in vitro assay, respectively. Caco-2 cell iron absorption from digested chapatis fortified with NaFeEDTA, but not from those fortified with SunActive Fe, was significantly higher than from digested chapatis fortified with ferrous sulfate. On the basis of these results it appears that fortification with NaFeEDTA may result in whole-grain wheat flour that effectively improves the iron status.

  19. Comparison of twice-daily vs once-daily deferasirox dosing in a gerbil model of iron cardiomyopathy

    Science.gov (United States)

    Otto-Duessel, Maya; Aguilar, Michelle; Nick, Hanspeter; Moats, Rex; Wood, John C.

    2010-01-01

    Objective Despite the availability of deferoxamine chelation therapy for more than 20 years, iron cardiomyopathy remains the leading cause of death in thalassemia major patients. Effective chelation of cardiac iron is difficult; cardiac iron stores respond more slowly to chelation therapy and require a constant gradient of labile iron species between serum and myocytes. We have previously demonstrated the efficacy of once-daily deferasirox in removing previously stored cardiac iron in the gerbil, but changes in cardiac iron were relatively modest compared with hepatic iron. We postulated that daily divided dosing, by sustaining a longer labile iron gradient from myocytes to serum, would produce better cardiac iron chelation than a comparable daily dose. Methods Twenty-four 8- to 10-week-old female gerbils underwent iron dextran—loading for 10 weeks, followed by a 1-week iron equilibration period. Animals were divided into three treatment groups of eight animals each and were treated with deferasirox 100 mg/kg/day as a single dose, deferasirox 100 mg/kg/day daily divided dose, or sham chelation for a total of 12 weeks. Following euthanasia, organs were harvested for quantitative iron and tissue histology. Results Hepatic and cardiac iron contents were not statistically different between the daily single-dose and daily divided-dose groups. However, the ratio of cardiac to hepatic iron content was lower in the divided-dose group (0.78% vs 1.11%, p = 0.0007). Conclusion Daily divided dosing of deferasirox changes the relative cardiac and liver iron chelation profile compared with daily single dosing, trading improvements in cardiac iron elimination for less-effective hepatic chelation. PMID:17588475

  20. Iron biofortification and homeostasis in transgenic cassava roots expressing an algal iron assimilatory protein, FEA1

    Directory of Open Access Journals (Sweden)

    Uzoma eIhemere

    2012-09-01

    Full Text Available We have engineered the starchy root crop cassava (Manihot esculenta to express the Chlamydomonas reinhardtii iron assimilatory protein, FEA1, in roots to enhance its nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 gm meal. Significantly, the expression of the FEA1 protein did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of iron mediated by the FEA1 protein. Relative to wild-type plants, FEA1 expressing plants had reduced Fe(III chelate reductase activity and gene expression levels consistent with the more efficient uptake of iron in FEA1 transgenic plants. We also show that genes involved in iron homeostasis in cassava have altered tissue-specific patterns of expression in transgenic plants. Steady state transcript levels of the metal-chelate transporter MeYSL1, and the iron storage proteins, MeFER2 and MeFER6, were elevated in various tissues of FEA1 transgenic plants compared to wild-type plants. These results suggest that these gene products play a role in iron translocation and homeostasis in FEA1 transgenic cassava plants. These results are discussed in terms of enhanced strategies for the iron biofortification of plants.

  1. Responses to Iron-Deficiency in Arabidopsis-Thaliana - The Turbo Iron Reductase does not depend on the Formation of Root Hairs and Transfer Cells.

    NARCIS (Netherlands)

    Moog, P.R.; Van der Kooij, T.A.W.; Bruggemann, W.; Schiefelbein, J.W.; Kuiper, P.J.C.

    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a

  2. Treating iron overload in patients with non-transfusion-dependent thalassemia

    Science.gov (United States)

    Taher, Ali T; Viprakasit, Vip; Musallam, Khaled M; Cappellini, M Domenica

    2013-01-01

    Despite receiving no or only occasional blood transfusions, patients with non-transfusion-dependent thalassemia (NTDT) have increased intestinal iron absorption and can accumulate iron to levels comparable with transfusion-dependent patients. This iron accumulation occurs more slowly in NTDT patients compared to transfusion-dependent thalassemia patients, and complications do not arise until later in life. It remains crucial for these patients' health to monitor and appropriately treat their iron burden. Based on recent data, including a randomized clinical trial on iron chelation in NTDT, a simple iron chelation treatment algorithm is presented to assist physicians with monitoring iron burden and initiating chelation therapy in this group of patients. Am. J. Hematol. 88:409–415, 2013. © 2013 Wiley Periodicals, Inc. PMID:23475638

  3. Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Singh Rakesh K

    2010-02-01

    Full Text Available Abstract Background Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC, including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19. Methods Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS Results HNTMB displayed high cytotoxicity (IC50 200-400 nM compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 μM or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM. In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM. In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels. Conclusions The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other

  4. Tailored Random Graph Ensembles

    International Nuclear Information System (INIS)

    Roberts, E S; Annibale, A; Coolen, A C C

    2013-01-01

    Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.

  5. IRON REGULATES XANTHINE OXIDASE ACTIVITY IN THE LUNG

    Science.gov (United States)

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreduct...

  6. Investigation of the protective effects of Vitamin C, iron and ...

    African Journals Online (AJOL)

    The aim of this study was to determine the effects of Vitamin C (Vit. C), iron, the iron chelating agent desferrioxamine (DF) and their most effective dose combinations on thermotolerance of Caenorhabditis elegans (C. elegans). Due to the fact that studies on aging and lifespan take long time, thermotolerance was used as a ...

  7. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato.

    Science.gov (United States)

    Li, Lihua; Cheng, Xudong; Ling, Hong-Qing

    2004-01-01

    Tomato is a model plant for studying molecular mechanisms of iron uptake and metabolism in strategy I plants (dicots and non-graminaceous monocots). Reduction of ferric to ferrous iron on the root surface is an obligatory process for iron acquisition from soil in these plants. LeFRO1 encoding an Fe(III)-chelate reductase protein was isolated from the tomato genome. We show that expression of LeFRO1 in yeast increases Fe(III)-chelate reductase activity. In a transient expression analysis we found that LeFRO1 protein was targeted on the plasma membrane. LeFRO1 transcript was detected in roots, leaves, cotyledons, flowers and young fruits by RT-PCR analysis. Abundance of LeFRO1 mRNA was much lower in young fruits than in other tissues. The transcription intensity of LeFRO1 in roots is dependent on the iron status whereas it is constitutively expressed in leaves. These results indicate that LeFRO1 is required in roots and shoots as well as in reproductive organs for iron homeostasis and that its transcription in roots and shoots is regulated by different control mechanisms. The expression of LeFRO1 was disrupted in the iron-inefficient mutants chloronerva and T3238 fer, indicating that FER and CHLN genes are involved in the regulation of LeFRO1 expression in tomato roots. The differential expression of LeFRO1 and LeIRT1 (an iron-regulated metal transporter gene in tomato) in roots of T3238 fer under iron-deficient and -sufficient conditions suggests that the FER gene may regulate expression of LeFRO1 more directly than that of LeIRT1 in tomato roots.

  8. Evaluation of a new tablet formulation of deferasirox to reduce chronic iron overload after long-term blood transfusions.

    Science.gov (United States)

    Chalmers, Anna W; Shammo, Jamile M

    2016-01-01

    Transfusion-dependent anemia is a common feature in a wide array of hematological disorders, including thalassemia, sickle cell disease, aplastic anemia, myelofibrosis, and myelo-dysplastic syndromes. In the absence of a physiological mechanism to excrete excess iron, chronic transfusions ultimately cause iron overload. Without correction, iron overload can lead to end-organ damage, resulting in cardiac, hepatic, and endocrine dysfunction/failure. Iron chelating agents are utilized to reduce iron overload, as they form a complex with iron, leading to its clearance. Iron chelation has been proven to decrease organ dysfunction and improve survival in certain transfusion-dependent anemias, such as β-thalassemia. Several chelating agents have been approved by the United States Food and Drug Administration for the treatment of iron overload, including deferoxamine, deferiprone, and deferasirox. A variety of factors have to be considered when choosing an iron chelator, including dosing schedule, route of administration, tolerability, and side effect profile. Deferasirox is an orally administered iron chelator with proven efficacy and safety in multiple hematological disorders. There are two formulations of deferasirox, a tablet for suspension, and a new tablet form. This paper is intended to provide an overview of iron overload, with a focus on deferasirox, and its recently approved formulation Jadenu(®) for the reduction of transfusional iron overload in hematological disorders.

  9. TLc-A, the leading nanochelating-based nanochelator, reduces iron overload in vitro and in vivo.

    Science.gov (United States)

    Kalanaky, Somayeh; Hafizi, Maryam; Safari, Sepideh; Mousavizadeh, Kazem; Kabiri, Mahboubeh; Farsinejad, Alireza; Fakharzadeh, Saideh; Nazaran, Mohammad Hassan

    2016-03-01

    Iron chelation therapy is an effective approach to the treatment of iron overload conditions, in which iron builds up to toxic levels in the body and may cause organ damage. Treatments using deferoxamine, deferasirox and deferiprone have been introduced and despite their disadvantages, they remain the first-line therapeutics in iron chelation therapy. Our study aimed to compare the effectiveness of the iron chelation agent TLc-A, a nano chelator synthetized based on the novel nanochelating technology, with deferoxamine. We found that TLc-A reduced iron overload in Caco2 cell line more efficiently than deferoxamine. In rats with iron overload, very low concentrations of TLc-A lowered serum iron level after only three injections of the nanochelator, while deferoxamine was unable to reduce iron level after the same number of injections. Compared with deferoxamine, TLc-A significantly increased urinary iron excretion and reduced hepatic iron content. The toxicity study showed that the intraperitoneal median lethal dose for TLc-A was at least two times higher than that for deferoxamine. In conclusion, our in vitro and in vivo studies indicate that the novel nano chelator compound, TLc-A, offers superior performance in iron reduction than the commercially available and widely used deferoxamine.

  10. Iron overload in myelodysplastic syndromes (MDS).

    Science.gov (United States)

    Gattermann, Norbert

    2018-01-01

    Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.

  11. Tailored thrombolytic therapy. A perspective

    NARCIS (Netherlands)

    M.L. Simoons (Maarten); A.E.R. Arnold (Alfred)

    1993-01-01

    textabstractBACKGROUND. In contrast with current standard regimens, it seems more appropriate to tailor thrombolytic therapy to individual patient characteristics. A proposed model for such tailored therapy is based on individual assessment of benefits and risks of thrombolytic therapy, taking into

  12. Solid-phase materials for chelating metal ions and methods of making and using same

    Science.gov (United States)

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  13. Acquisition, Transport, and Storage of Iron by Pathogenic Fungi

    Science.gov (United States)

    Howard, Dexter H.

    1999-01-01

    Iron is required by most living systems. A great variety of means of acquisition, avenues of uptake, and methods of storage are used by pathogenic fungi to ensure a supply of the essential metal. Solubilization of insoluble iron polymers is the first step in iron assimilation. The two methods most commonly used by microorganisms for solubilization of iron are reduction and chelation. Reduction of ferric iron to ferrous iron by enzymatic or nonenzymatic means is a common mechanism among pathogenic yeasts. Under conditions of iron starvation, many fungi synthesize iron chelators known as siderophores. Two classes of compounds that function in iron gathering are commonly observed: hydroxamates and polycarboxylates. Two major responses to iron stress in fungi are a high-affinity ferric iron reductase and siderophore synthesis. Regulation of these two mechanisms at the molecular level has received attention. Uptake of siderophores is a diverse process, which varies among the different classes of compounds. Since free iron is toxic, it must be stored for further metabolic use. Polyphosphates, ferritins, and siderophores themselves have been described as storage molecules. The iron-gathering mechanisms used by a pathogen in an infected host are largely unknown and can only be posited on the basis of in vitro studies at present. PMID:10398672

  14. Chelation of Thallium (III) in Rats Using Combined Deferasirox and Deferiprone Therapy

    Science.gov (United States)

    Salehi, Samie; Saljooghi, Amir Sh.; Badiee, Somayeh; Moqadam, Mojtaba Mashmool

    2017-01-01

    Thallium and its compounds are a class of highly toxic chemicals that cause wide-ranging symptoms such as gastrointestinal disturbances; polyneuritis; encephalopathy; tachycardia; skin eruptions; hepatic, renal, cardiac, and neurological toxicities; and have mutagenic and genotoxic effects. The present research aimed to evaluate the efficacy of the chelating agents deferasirox (DFX) and deferiprone (L1) in reducing serum and tissue thallium levels after the administration of thallium (III), according to two different dosing regimens, to several groups of Wistar rats for 60 days. It was hypothesized that the two chelators might be more efficient as a combined therapy than as monotherapies in removing thallium (III) from the rats’ organs. The chelators were administered orally as either single or combined therapies for a period of 14 days. Serum and tissue thallium (III) and iron concentrations were determined by flame atomic absorption spectroscopy. Serum and tissue thallium (III) levels were significantly reduced by combined therapy with DFX and L1. Additionally, iron concentrations returned to normal levels and symptoms of toxicity decreased. PMID:29071014

  15. Chelation of Thallium (III) in Rats Using Combined Deferasirox and Deferiprone Therapy.

    Science.gov (United States)

    Salehi, Samie; Saljooghi, Amir Sh; Badiee, Somayeh; Moqadam, Mojtaba Mashmool

    2017-10-01

    Thallium and its compounds are a class of highly toxic chemicals that cause wide-ranging symptoms such as gastrointestinal disturbances; polyneuritis; encephalopathy; tachycardia; skin eruptions; hepatic, renal, cardiac, and neurological toxicities; and have mutagenic and genotoxic effects. The present research aimed to evaluate the efficacy of the chelating agents deferasirox (DFX) and deferiprone (L1) in reducing serum and tissue thallium levels after the administration of thallium (III), according to two different dosing regimens, to several groups of Wistar rats for 60 days. It was hypothesized that the two chelators might be more efficient as a combined therapy than as monotherapies in removing thallium (III) from the rats' organs. The chelators were administered orally as either single or combined therapies for a period of 14 days. Serum and tissue thallium (III) and iron concentrations were determined by flame atomic absorption spectroscopy. Serum and tissue thallium (III) levels were significantly reduced by combined therapy with DFX and L1. Additionally, iron concentrations returned to normal levels and symptoms of toxicity decreased.

  16. Update on the use of deferasirox in the management of iron overload

    Directory of Open Access Journals (Sweden)

    Ali Taher

    2009-10-01

    Full Text Available Ali Taher,1 Maria Domenica Cappellini21American University of Beirut, Beirut, Lebanon; 2Universitá di Milano, Policlinico Foundation IRCCS, Milan, ItalyAbstract: Regular blood transfusions as supportive care for patients with chronic anemia inevitably lead to iron overload as humans cannot actively remove excess iron. The cumulative effects of iron overload cause significant morbidity and mortality if not effectively treated with chelation therapy. Based on a comprehensive clinical development program, the once-daily, oral iron chelator deferasirox (Exjade® is approved for the treatment of transfusional iron overload in adult and pediatric patients with various transfusion-dependent anemias, including β-thalassemia and the myelodysplastic syndromes. Deferasirox dose should be titrated for each individual patient based on transfusional iron intake, current iron burden and whether the goal is to decrease or maintain body iron levels. Doses of >30 mg/kg/day have been shown to be effective with a safety profile consistent with that observed at doses <30 mg/kg/day. Recent data have highlighted the ability of deferasirox to decrease cardiac iron levels and to prevent the accumulation of iron in the heart. The long-term efficacy and safety of deferasirox for up to 5 years of treatment have now been established. The availability of this effective and generally well tolerated oral therapy represents a significant advance in the management of transfusional iron overload. Keywords: deferasirox, Exjade, oral, iron chelation, iron overload, cardiac iron 

  17. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    Science.gov (United States)

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  18. The Aging of Iron Man.

    Science.gov (United States)

    Ashraf, Azhaar; Clark, Maryam; So, Po-Wah

    2018-01-01

    Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  19. Ciprofloxacin: a novel therapeutic agent for iron overload?

    Directory of Open Access Journals (Sweden)

    Mitra Elmi

    2009-09-01

    Full Text Available Objective: Major thalassemia is one of the hematological diseases requiring multiple blood transfusions, which results in iron overload in the liver, heart and other organs. Current iron chelation therapy consists of intravenous (IV deferoxamine and oral deferasirox and deferiprone. Although these chelators are effective, many side effects are reported. In the present study, the iron-chelating effect of ciprofloxacin with good oral absorption was investigated. Material and Methods: Thirty male albino Wistar rats were used for the study. Ciprofloxacin (7 or 14 mg/kg per day was administered simultaneously with iron (0.03 g/kg per day or after one-month administration of iron. Ciprofloxacin effect on iron absorption in the liver and heart was studied carefully using atomic absorption. Results: A significant decrease in the liver and heart iron following the ciprofloxacin (14 mg/kg per day administration was observed, when compared with the control group. This ciprofloxacin-induced tissue iron depletion was more pronounced when it was administered simultaneously with iron, when it was administered for a longer duration (2 months rather than 1 month and when it was given in higher doses (14 mg/kg per day. Conclusion: Administration of ciprofloxacin may help to decrease the burden of parenteral administration, thereby improving compliance and also the life expectancy of thalassemic patients.

  20. CHELATING LIGANDS: ENHANCERS OF QUALITY AND PURITY ...

    African Journals Online (AJOL)

    Nwokem et al.

    ABSTRACT. The quality of biogas depends largely on the percentage of methane and hydrogen sulphide gas present. High concentration of hydrogen sulphide results in low quality biogas. This work employed the use of chelating ligands in scrubbing hydrogen sulphide gas while improving the yield of methane gas.

  1. Chelates for Micronutrient Nutrition among Crops

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 7. Chelates for Micronutrient Nutrition among Crops. B S Sekhon. General Article Volume 8 Issue 7 July 2003 pp 46-53. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/07/0046-0053. Keywords.

  2. Chelates for Micronutrient Nutrition among Crops

    Indian Academy of Sciences (India)

    The three main classes of micronutrient sources are inorganic, synthetic chelates and organic complexes. Inorganic sources such as sulphates of Cu, Mn, Fe and Zn are the most common metallic salts used in the fertilizer industry because of their ready plant availability and water solubility. In the past 35-40 years, it has ...

  3. Long-distance signaling of iron deficiency in plants

    OpenAIRE

    Enomoto, Yusuke; Goto, Fumiyuki

    2008-01-01

    In a recent issue of the Planta, we established two points regarding the long-distance signal of iron status in tobacco (Nicotiana tabacum L.). One is that the long-distance signal generated in iron deficient tissues is a major factor in positively regulating the expressions of iron uptake genes in tobacco. The expression of a ferric chelate reductase gene (NtFRO1) and an iron-regulated transporter gene (NtIRT1) in roots decreased by cutting off the leaves grown under the iron-deficient condi...

  4. Active Control of Tailored Laminates

    Data.gov (United States)

    National Aeronautics and Space Administration — Part of a proposed suite of technologies to enable a fully morphing seamless wing, this effort focuses on tailoring composite materials to enhance structural...

  5. Sorbent extraction of rubeanic acid-metal chelates on a new adsorbent: Sepabeads SP70.

    Science.gov (United States)

    Soylak, Mustafa; Tuzen, Mustafa

    2006-11-02

    A sorbent extraction procedure for lead, iron, cadmium and manganese ions on Sepabeads SP70 adsorption resin has been presented prior to their flame atomic absorption spectrometric determinations. By the passage of aqueous samples including analyte ions-rubeanic acid chelates through Sepabeads SP70 column, metal chelates adsorb quantitatively and almost all matrix elements will pass through the column to drain. The influence of potential interfering ions was also studied. The validation of the method was made though the analysis of LGC 6010 Hard drinking water, SRM 1577b Bovine liver and GBW 07603 Bush branches and leaves standard reference materials (SRM). The method was applied to the determination of analyte ions from various water, wastewater, cow meat and milk, red wine, and tobacco samples with successfully results.

  6. Chelating agents as stationary phase in extraction chromatography, ch. 11

    International Nuclear Information System (INIS)

    Sebesta, F.

    1975-01-01

    Chelating agents have been used largely in extraction chromatography for separations related to activation analysis, for concentration of metals from dilute solutions, and for preparation of radiochemically pure or carrier-free radionuclides. This review deals with the theory of extraction by chelating agents, the experimental technique, and the chelating agents and systems used (β-diketones, oximes, hydroxamic acid, dithizone and diethyldithiocarbamic acid)

  7. Leishmania chagasi: uptake of iron bound to lactoferrin or transferrin requires an iron reductase.

    Science.gov (United States)

    Wilson, Mary E; Lewis, Troy S; Miller, Melissa A; McCormick, Michael L; Britigan, Bradley E

    2002-03-01

    Leishmania chagasi can utilize iron bound to transferrin, lactoferrin, or other chelates. We investigated the mechanism of iron uptake. Promastigotes preferentially took up iron in a reduced rather than an oxidized form, suggesting that extracellular iron must be reduced prior to internalization. Similar to literature reports, a 70-kDa protein in promastigote membrane-containing microsomes bound to [125I]-labeled transferrin. However, [125I]lactoferrin and [125I]albumin also bound a similar 70-kDa protein, suggesting that binding might not be specific. Both total and fractionated promastigotes exhibited an NADPH-dependent iron reductase activity. In contrast to trypanosomes, which take up transferrin through a specific receptor, these data support a model in which a parasite-associated or secreted reductase reduces ferric to ferrous iron, decreasing its affinity for the extracellular chelate and allowing it to be readily internalized by the parasite. This could account for the ability of the parasite to utilize iron from multiple sources in diverse host environments. Index Descriptors and Abbreviations. Index descriptors: Cryptococcus neoformans, Histoplasma capsulatum, iron, iron reductase, lactoferrin, L. chagasi, leishmaniasis, nutrient acquisition, protozoan, Saccharomyces cerevisiae, Trypanosoma brucei, Trypanosoma cruzi, transferrin; Abbreviations used: DNA, deoxyribonucleic acid; DTT, dithiothreitol; HBSS, Hanks' balanced salt solution; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NEM, N-ethylmaleimide; RNA, ribonucleic acid.

  8. Impaired Iron Status in Aging Research

    Directory of Open Access Journals (Sweden)

    Christiaan Leeuwenburgh

    2012-02-01

    Full Text Available Aging is associated with disturbances in iron metabolism and storage. During the last decade, remarkable progress has been made toward understanding their cellular and molecular mechanisms in aging and age-associated diseases using both cultured cells and animal models. The field has moved beyond descriptive studies to potential intervention studies focusing on iron chelation and removal. However, some findings remain controversial and inconsistent. This review summarizes important features of iron dyshomeostasis in aging research with a particular emphasis on current knowledge of the mechanisms underlying age-associated disorders in rodent models.

  9. Diagnosis of iron overload and heart disease by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    J.C. Wood

    2011-12-01

    Full Text Available The use of Magnetic resonance imaging (MRI to estimate tissue iron was initiated nearly three decades ago but has only become a practical reality in the last ten years. MRI is most often used to estimate hepatic and cardiac iron in patients with thalassemia or sickle cell disease and has largely replaced liver biopsy for liver iron quantification. The ability of MRI to image extra hepatic organs has really transformed our understanding of iron mediated toxicity in transfusional siderosis. For decades, iron cardiomyopathy was the leading cause of death in thalassemia major, but it is now relatively rare in centers with regular MRI screening. Early recognition of cardiac iron loading allows more gentle modifications of iron chelation therapy prior to life threatening organ dysfunction. Serial MRI evaluations have demonstrated differential kinetics of uptake and clearance among the difference organs of the body. Although elevated serum ferritin and liver iron concentration increase the risk of cardiac and endocrine toxicities, extra hepatic iron deposition and toxicity occurs in many patients despite having low total body iron stores; there is no safe liver iron level in chronically transfused patients. Instead, the type, dose, and pattern of iron chelation therapy all contribute to whether cardiac iron accumulation will occur. These observations, coupled with the advent of increasing options for iron chelation therapy, are allowing clinicians to more appropriately tailor chelation therapy to individual patient needs, producing greater efficacy with fewer toxicities. With the decline in cardiac mortality, future frontiers in MRI monitoring including better prevention of endocrine toxicities, particularly hypogonadotropic hypogonadism and diabetes. These organs also serve as early warning signals for inadequate control of non-transferrin bound iron, a risk factor for cardiac iron loading. Thus MRI assessment of extra hepatic iron stores is a

  10. Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use1

    Science.gov (United States)

    López-Millán, Ana Flor; Morales, Fermín; Andaluz, Sofía; Gogorcena, Yolanda; Abadía, Anunciación; Rivas, Javier De Las; Abadía, Javier

    2000-01-01

    Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μm, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates. PMID:11027736

  11. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  12. Iron reductases from Pseudomonas aeruginosa.

    Science.gov (United States)

    Cox, C D

    1980-01-01

    Cell-free extracts of Pseudomonas aeruginosa contain enzyme activities which reduce Fe(III) to Fe(II) when iron is provided in certain chelates, but not when the iron is uncomplexed. Iron reductase activities for two substrates, ferripyochelin and ferric citrate, appear to be separate enzymes because of differences in heat stabilities, in locations in fractions of cell-free extracts, in reductant specificity, and in apparent sizes during gel filtration chromatography. Ferric citrate iron reductase is an extremely labile activity found in the cytoplasmic fraction, and ferripyochelin iron reductase is a more stable activity found in the periplasmic as well as cytoplasmic fraction of extracts. A small amount of activity detectable in the membrane fraction seemed to be loosely associated with the membranes. Although both enzymes have highest activity reduced nicotinamide adenine dinucleotide, reduced glutathione also worked with ferripyochelin iron reductase. In addition, oxygen caused an irreversible loss of a percentage of the ferripyochelin iron reductase following sparge of reaction mixtures, whereas the reductase for ferric citrate was not appreciably affected by oxygen. PMID:6766439

  13. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging.

    Science.gov (United States)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-12-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  14. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Costa, Fernando Ferreira [Universidade Estadual de Campinas, Campinas, SP (Brazil); Silveira, Paulo Augusto Achucarro [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Wood, John [University of Southern California, California (United States); Hamerschlak, Nelson [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2013-07-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  15. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-01-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions

  16. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone

    Science.gov (United States)

    Zhao, Liangliang; Hadziahmetovic, Majda; Wang, Chenguang; Xu, Xueying; Song, Ying; Jinnah, H.A.; Wodzinska, Jolanta; Iacovelli, Jared; Wolkow, Natalie; Krajacic, Predrag; Weissberger, Alyssa Cwanger; Connelly, John; Spino, Michael; Lee, Michael K.; Connor, James; Giasson, Benoit; Harris, Z. Leah; Dunaief, Joshua L.

    2016-01-01

    Brain iron accumulates in several neurodegenerative diseases and can cause oxidative damage, but mechanisms of brain iron homeostasis are incompletely understood. Patients with mutations in the cellular iron-exporting ferroxidase ceruloplasmin (Cp) have brain iron accumulation causing neurodegeneration. Here, we assessed the brains of mice with combined mutation of Cp and its homolog hephaestin. Compared to single mutants, brain iron accumulation was accelerated in double mutants in the cerebellum, substantia nigra, and hippocampus. Iron accumulated within glia, while neurons were iron deficient. There was loss of both neurons and glia. Mice developed ataxia and tremor, and most died by 9 months. Treatment with the oral iron chelator deferiprone diminished brain iron levels, protected against neuron loss, and extended lifespan. Ferroxidases play important, partially overlapping roles in brain iron homeostasis by facilitating iron export from glia, making iron available to neurons. PMID:26303407

  17. Distributions of uranium adsorbed from seawater in spherical polyacrylamidoxime chelating resins

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Sugasaka, Kazuhiko; Hirotsu, Takahiro; Takai, Nobuharu; Itagaki, Takaharu; Ouchi, Hidenaga.

    1984-01-01

    Distributions of metals adsorbed from seawater in spherical polyacrylamidoxime chelating resins were measured by X-ray micro-analyzer. Distributions of uranium in adsorbents were different according to their gel structure or porosity. In the case of adsorbents with low swelling tendencies, uranium was adsorbed only in the superficial layers of the adsorbents. The amount of adsorbed uranium increased with increasing of contact time, but no uranium was detected in the center of adsorbent even after 331 days. Iron was adsorbed only in the surface layer. Magnesium was detected almost uniformly in all parts of adsorbent. Copper and zinc were detected very little. (author)

  18. LABILE IRON IN CELLS AND BODY FLUIDS . Physiology, Pathology and Pharmacology

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2014-03-01

    Full Text Available In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI composition varies with metal concentration and substances with chelating groups but also with pH and the redox potential. Although physiologically in the lower µM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (that renders iron essentially non-labile, in systemic iron overload (IO, the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma transferrin approaches iron saturation, labile plasma iron (LPI emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of iron overload, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in iv iron formulations per se as well as in plasma (LPI following parenteral iron

  19. Mobilization of Iron by Plant-Borne Coumarins.

    Science.gov (United States)

    Tsai, Huei Hsuan; Schmidt, Wolfgang

    2017-06-01

    Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Metal chelates of 2-hydroxy-4-methylthiobutanoic acid in animal feeding. Part 2: Further characterizations, in vitro and in vivo investigations.

    Science.gov (United States)

    Predieri, Giovanni; Elviri, Lisa; Tegoni, Matteo; Zagnoni, Ingrid; Cinti, Enrico; Biagi, Giacomo; Ferruzza, Simonetta; Leonardi, Giuliano

    2005-02-01

    The alpha-hydroxyacid 2-hydroxy-4-methylthiobutanoic acid (the so-called methionine hydroxy-analogue, MHA), largely used in animal nutrition as a source of methionine, forms stable metal chelates with divalent metals of formula [{CH(3)SCH(2) CH(2)CH(OH)COO}(2)M].nH(2)O. Protonation and iron(III) and copper(II) complex formation constants have been determined by potentiometry at 25 degrees C. Distribution diagrams show that no free Fe(3+) cations are present in solution at pH>2.5. ESI-MS (Electron-Spray Ionization Mass Spectrometry) investigations carried out both on iron and zinc complexes in solution have evidenced various species with different MHA/metal ratios. In vivo trials were carried out with rats. After receiving a zinc-deficient diet for 3 weeks, animals were fed the same diet added with zinc sulfate or zinc/MHA chelate; the zinc content of faeces was higher (+45%; P<0.05) in sulfate fed rats, whereas zinc retention was higher (+61%; P<0.05) in the Zn/MHA diet. Experiments in vitro with human intestinal Caco-2 cells indicated that the MHA/Fe chelate was taken up by the cells without any apparent toxic effect. The iron uptake was higher than that of iron nitrilotriacetate (Fe(3+)NTA), an effective chelate for delivering iron to milk diets. In conclusion, these data indicate that the use of MHA chelates could be a valuable tool to increase bioavailability of trace minerals and reduce the environmental impact of animal manure.

  1. Deferoxamine inhibition of malaria is independent of host iron status

    Energy Technology Data Exchange (ETDEWEB)

    Hershko, C.; Peto, T.E.

    1988-07-01

    The mechanism whereby deferoxamine (DF) inhibits the growth of malaria parasites was studied in rats infected with Plasmodium berghei. Peak parasitemia was 32.6% (day 14) in untreated controls and 0.15% (day 7) in rats receiving 0.33 mg/g in 8 hourly DF injections, subcutaneously. DF inhibition of parasite growth was achieved without any reduction in transferrin saturation or hemoglobin synthesis and with only a partial (56%) depletion of hepatic iron stores. Dietary iron depletion resulted in anemia (hematocrit 25 vs. 46%), microcytosis (MCV 54 vs. 60 fl), and reduced transferrin saturation (17 vs. 96%) without any effect on infection (peak parasitemia 30 vs. 36%). Similarly, parenteral iron loading with ferric citrate over 10 d (75 mg iron/kg) failed to aggravate infection. In a search for evidence of direct interaction between DF and parasitized erythrocytes, gel filtration and ultrafiltration was performed on hemolysates obtained from in vivo /sup 59/Fe-labeled parasitized erythrocytes. This showed that 1.1-1.9% of the intracellular radioiron was located in a chelatable, labile iron pool. Incubation of intact cells with 0-500 microM DF resulted in a proportional increase in intracellular iron chelation, and the chelation of all available labile intracellular iron was completed within 6 h. These observations indicate that the severity of P. berghei infection in rats and its in vivo suppression by DF are independent of host iron status and suggest that DF inhibition of malaria involves intracellular chelation of a labile iron pool in parasitized erythrocytes.

  2. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  3. Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Nguyen, Michel; Robert, Anne; Sournia-Saquet, Alix; Vendier, Laure; Meunier, Bernard

    2014-05-26

    The non-controlled redox-active metal ions, especially copper, in the brain of patients with Alzheimer disease (AD) should be considered at the origin of the intense oxidative damage in the AD brain. Several bis(8-aminoquinoline) ligands, such as 1 and PA1637, are able to chelate Cu(2+) with high affinity, and are specific chelators of copper with respect to iron and zinc. They are able to efficiently extract Cu(2+) from a metal-loaded amyloid. In addition, these tetradentate ligands are specific for the chelation of Cu(2+) compared with Cu(+). Consequently, the copper ion is easily released from the bis(8-aminoquinoline) ligand under reductive conditions, and can be trapped again by a protein having some affinity for copper such as human serum albumin (HSA) proteins. In addition, the copper is not efficiently released from [Cu(CQ)2] in reductive conditions. The catalytic production of H2O2 by [Cu(2+)-Aβ(1-28)]/ascorbate is inhibited in vitro by the bis(8-aminoquinoline) 1, suggesting that 1 should be able to play a protective role against oxidative damages induced by copper-loaded amyloids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Separation and recovery of uranium ore by chlorinating, chelate resin and molten salt treatment

    International Nuclear Information System (INIS)

    Taki, Tomohiro

    2000-12-01

    Three fundamental researches of separation and recovery of uranium from uranium ore are reported in this paper. Three methods used the chloride pyrometallurgy, sodium containing molten salts and chelate resin. When uranium ore is mixed with activated carbon and reacted for one hour under the mixed gas of chlorine and oxygen at 950 C, more than 90% uranium volatilized and vaporization of aluminum, silicone and phosphorus were controlled. The best activated carbon was brown coal because it was able to control the large range of oxygen concentration. By blowing oxygen into the molten sodium hydroxide, the elution rate of uranium attained to about 95% and a few percent of uranium was remained in the residue. On the uranium ore of unconformity-related uranium deposits, a separation method of uranium, molybdenum, nickel and phosphorus from the sulfuric acid elusion solution with U, Ni, As, Mo, Fe and Al was developed. Methylene phosphonic acid type chelate resin (RCSP) adsorbed Mo and U, and then 100 % Mo was eluted by sodium acetate solution and about 100% U by sodium carbonate solution. Ni and As in the passing solution were recovered by imino-diacetic acid type chelate resin and iron hydroxide, respectively. (S.Y.)

  5. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells

    DEFF Research Database (Denmark)

    Talib, Jihan; Davies, Michael Jonathan

    2016-01-01

    of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss...... and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative...... stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part...

  6. The Battle for Iron between Humans and Microbes.

    Science.gov (United States)

    Carver, Peggy L

    2018-01-01

    Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    International Nuclear Information System (INIS)

    Dodi, Alain; Bouscarel, Maelle

    2008-01-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  8. Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).

    Science.gov (United States)

    Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2012-03-21

    In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.

  9. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Alain; Bouscarel, Maelle [Commissariat a l' energie atomique - C.E.A, Centre d' Etude de Cadarache, Laboratoire d' Analyses Radiochimiques et Chimiques, St Paul lez Durance (France)

    2008-07-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  10. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy...

  11. EDTA: the chelating agent under environmental scrutiny

    Directory of Open Access Journals (Sweden)

    Claudia Oviedo

    2003-12-01

    Full Text Available The chelating agent EDTA (ethylenediaminetetraacetic acid is a compound of massive use world wide with household and industrial applications, being one of the anthropogenic compounds with highest concentrations in inland European waters. In this review, the applications of EDTA and its behavior once it has been released into the environment are described. At a laboratory scale, degradation of EDTA has been achieved; however, in natural environments studies detect poor biodegradability. It is concluded that EDTA behaves as a persistent substance in the environment and that its contribution to heavy metals bioavailability and remobilization processes in the environment is a major concern.

  12. Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use

    OpenAIRE

    López-Millán, Ana Flor; Morales Iribas, Fermín; Andaluz, Sofía; Gogorcena Aoiz, Yolanda; Abadía Bayona, Anunciación; Rivas, Javier de las; Abadía Bayona, Javier

    2000-01-01

    Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μm, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing r...

  13. Inhibition of warfarin anticoagulation associated with chelation therapy.

    Science.gov (United States)

    Grebe, Heidi Braun; Gregory, Philip J

    2002-08-01

    Chelation therapy originally was administered exclusively to patients with heavy metal poisoning. Now some physicians are administering this therapy for numerous conditions, most commonly coronary heart disease. A 64-year-old man experienced impaired warfarin anticoagulation after undergoing chelation therapy His international normalized ratio (INR) fell from 2.6 the day before to 1.6 the day after therapy was administered. Whether chelation therapy decreases the effectiveness of warfarin anticoagulation is uncertain. However, because of this potential interaction, clinicians should consider increased INR monitoring in patients undergoing chelation therapy.

  14. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  15. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana; Koppenaal, David W.; Jansson, Janet K.

    2018-05-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences

  16. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    Science.gov (United States)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  17. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1

    Science.gov (United States)

    Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.

    2012-01-01

    We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

  18. Combined treatment of 3-hydroxypyridine-4-one derivatives and green tea extract to induce hepcidin expression in iron-overloaded β-thalassemic mice

    Directory of Open Access Journals (Sweden)

    Supranee Upanan

    2015-12-01

    Conclusions: The GTE + DFP treatment could ameliorate iron overload and liver oxidative damage in non-transfusion dependent β-thalassemic mice, by chelating toxic iron in plasma and tissues, and increasing hepcidin expression to inhibit duodenal iron absorption and iron release from hepatocytes and macrophages in the spleen. There is probably an advantage in giving GTE with DFP when treating patients with iron overload.

  19. Towards tailor-made participation

    DEFF Research Database (Denmark)

    Agger, Annika

    2012-01-01

    Public participation has become an important element of governance in many Western European countries. However, among scholars and practitioners there is a recognition that participatory governance processes tend to produce systematic exclusions. Knowledge about 'who' participates and 'how......' they participate can enhance our understanding of participatory processes. This paper presents some characterisations of citizens based on a review of the literature on participation. In addition, examples of how to tailor participation for different type of citizens are provided based on studies of urban...... regeneration programmes and local environmental initiatives in Denmark. The paper concludes that in order to broaden the inclusion of affected citizens, public authorities need to be tailor participation processes by applying distinct approaches to different types of citizens...

  20. Tailoring Earned Value Management. General Guidelines

    National Research Council Canada - National Science Library

    2002-01-01

    Partial Contents: General Principles, A Spectrum of Implementation, OMB Guidance, A Special Note about DOD, Risk Factors to Consider, How can EVMS be tailored, Tailor EVMS to Inherent Risk, Application Thresholds-DoD...

  1. Deep drawing simulation of Tailored Blanks

    NARCIS (Netherlands)

    van den Berg, Albert; Meinders, Vincent T.; Stokman, B.

    1998-01-01

    Tailored blanks are increasingly used in the automotive industry. A tailored blank consists of different metal parts, which are joined by a welding process. These metal parts usually have different material properties. Hence, the main advantage of using a tailored blank is to provide the right

  2. Chelated ruthenium catalysts for Z-selective olefin metathesis.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2011-06-08

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stereocontrolled olefin metathesis.

  3. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  4. Comparison of simple and chelated amberlite IR-120 for ...

    African Journals Online (AJOL)

    In the present study, the efficiency of simple and chelating Amberlite IR-120 with α-nitroso β-naphthol (IR-αNβN) and with 8-hydroxy quinoline (IR-8HQ) has been compared for the removal of Cu(II) from aqueous solutions. The chelation was confirmed using different characterization techniques like SEM, TGA and FTIR.

  5. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  6. A pharmaco-economic evaluation of deferasirox for treating patients with iron overload caused by transfusion-dependent thalassemia in Taiwan

    Directory of Open Access Journals (Sweden)

    Wan-Ling Ho

    2013-04-01

    Conclusion: Compared with infusional deferoxamine, oral deferasirox improved clinical outcomes and quality of life in terms of iron chelation in transfusion-dependent patients with thalassemia at a reasonable cost from a healthcare perspective.

  7. Quantitative measurement of metal chelation by fourier transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika E. Miller

    2015-12-01

    Full Text Available Nutritionally important minerals are more readily absorbed by living systems when complexed with organic acids, resulting in higher consumer demand and premium prices for these products. These chelated metals are produced by reaction of metal oxides and acids in aqueous solution. However, unreacted dry blends are sometimes misrepresented as metal chelates, when in reality they are only simple mixtures of the reactants typically used to synthesize them. This practice has increased interest in developing analytical methods that are capable of measuring the extent of metal chelation for quality control and regulatory compliance. We describe a novel method to rapidly measure the percent chelation of citric and malic acids with calcium, magnesium, and zinc. Utilization of attenuated total reflectance (FTIR-ATR provides for the direct, rapid measurement of solid samples. The inclusion of an internal standard allows independent determination of either free or chelated acids from integrated areas in a single spectrum.

  8. Treating Lead Toxicity: Possibilities beyond Synthetic Chelation

    Directory of Open Access Journals (Sweden)

    Shambhavi Tannir

    2013-01-01

    Full Text Available Lead, a ubiquitous metal, is one of the most abundant elements present on earth. Its easy availability and cost effectiveness made it an extremely popular component in the industrial revolution. However, its hazardous health effects were not considered at the time. Over the last few decades, with the adverse effects of lead coming to the forefront, nations across the world have started to recognize and treat lead toxicity. The most reliable and used method until now has been chelation therapy. Recent research has suggested the use of natural products and sources to treat lead poisoning with minimal or no side effects. This review has tried to summarize a few of the natural products/sources being investigated by various groups.

  9. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Directory of Open Access Journals (Sweden)

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  10. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Science.gov (United States)

    Christides, Tatiana; Sharp, Paul

    2013-01-01

    Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  11. Benefits of siderophore release lie in mediating diffusion limitation at low iron solubility

    OpenAIRE

    Leventhal, Gabriel; Schiessl, Konstanze; Ackermann, Martin

    2016-01-01

    Siderophores are chelators released by many bacteria to take up iron. In contrast to iron receptors located at the cell surface, released siderophores are at risk of being lost to environmental sinks. Here, we asked the question whether the release itself is essential for the function of siderophores, which could explain why such a risky strategy is widespread. We developed a reaction-diffusion model to determine the impact of siderophore release on overcoming iron limitation caused by poor s...

  12. The effect of supplementing sow and piglet diets with different forms of iron

    Directory of Open Access Journals (Sweden)

    Aliny Kétilim Novais

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of chelated iron supplementation on gestating and lactating sows and on their suckling and weaned piglets. Reproductive traits, piglet performance, hematological parameters, and the iron concentrations in colostrum, milk, and stillborn livers were measured. Ninety-six sows were subjected to one of three treatment groups. Group T1 comprised pregnant and lactating sows treated with diets supplemented with inorganic iron (551 mg Fe/kg and suckling piglets administered 200 mg of injectable iron dextran. Group T2 was the same as T1, except that sows after 84 days of gestation, lactating sows, and suckling piglets were fed a diet supplemented with 150 mg Fe/kg of chelated iron, and suckling piglets were administered injectable iron dextran. Group T3 was the same as T2 but without injectable iron dextran for suckling piglets. During the nursery phase, all of the weaned piglets were penned with their original groups or treatments and received isonutritive and isocaloric feeds. Piglets from the T2 and T3 groups also received an additional 150 mg Fe/kg of chelated iron via their feed. There were no differences among the treatments for reproductive traits or the iron concentrations in the colostrum, milk, or liver. The piglets that did not receive the injectable iron dextran showed the poorest performance during the pre-and post-weaning phases and showed the poorest hematological parameters of the suckling piglets. The chelated iron supplementation is insufficient to meet piglet demand. The iron dextran supply is necessary for suckling and weaned piglets.

  13. Chelating ionic liquids for reversible zinc electrochemistry.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  14. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Manwar, S.; Iram, S.

    2014-01-01

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  15. Time series with tailored nonlinearities

    Science.gov (United States)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  16. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  17. Estimates of the effect on hepatic iron of oral deferiprone compared with subcutaneous desferrioxamine for treatment of iron overload in thalassemia major: a systematic review

    Directory of Open Access Journals (Sweden)

    Caro J

    2002-11-01

    Full Text Available Abstract Background Beta thalassemia major requires regular blood transfusions and iron chelation to alleviate the harmful accumulation of iron. Evidence on the efficacy and safety of the available agents, desferrioxamine and deferiprone, is derived from small, non-comparative, heterogeneous observational studies. This evidence was reviewed to quantitatively compare the ability of these chelators to reduce hepatic iron. Methods The literature was searched using Medline and all reports addressing the effect of either chelator on hepatic iron were considered. Data were abstracted independently by two investigators. Analyses were performed using reported individual patient data. Hepatic iron concentrations at study end and changes over time were compared using ANCOVA, controlling for initial iron load. Differences in the proportions of patients improving were tested using χ2. Results Eight of 11 reports identified provided patient-level data relating to 30 desferrioxamine- and 68 deferiprone-treated patients. Desferrioxamine was more likely than optimal dose deferiprone to decrease hepatic iron over the average follow-up of 45 months (odds ratio, 19.0, 95% CI, 2.4 to 151.4. The degree of improvement was also larger with desferrioxamine. Conclusions This analysis suggests that desferrioxamine is more effective than deferiprone in lowering hepatic iron. This comparative analysis – despite its limitations – should prove beneficial to physicians faced with the challenge of selecting the optimal treatment for their patients.

  18. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Lee, Jae-Cheol [Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Baek, Kitae, E-mail: kbaek@jbnu.ac.kr [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of)

    2015-02-11

    Highlights: • Abiotic reductive extraction of As from contaminated soils was studied. • Oxalate/ascorbate were effective in extracting As bound to amorphous iron oxides. • Reducing agents were not effective in extracting As bound to crystalline oxides. • Reductive As extraction was greatly enhanced by complexation. • Combination of dithionite and EDTA could extract about 90% of the total As. - Abstract: Abiotic reductive extraction of arsenic from contaminated soils was studied with various reducing agents and combinations of reducing and chelating agents in order to remediate arsenic-contaminated soils. Oxalate and ascorbic acid were effective to extract arsenic from soil in which arsenic was associated with amorphous iron oxides, but they were not effective to extract arsenic from soils in which arsenic was bound to crystalline oxides or those in which arsenic was mainly present as a scorodite phase. An X-ray photoelectron spectroscopy study showed that iron oxides present in soils were transformed to Fe(II,III) or Fe(II) oxide forms such as magnetite (Fe{sub 3}O{sub 4}, Fe{sup II}Fe{sub 2}{sup III}O{sub 4}) by reduction with dithionite. Thus, arsenic extraction by dithionite was not effective due to the re-adsorption of arsenic to the newly formed iron oxide phase. Combination of chelating agents with reducing agents greatly improved arsenic extraction from soil samples. About 90% of the total arsenic could be extracted from all soil samples by using a combination of dithionite and EDTA. Chelating agents form strong complexation with iron, which can prevent precipitation of a new iron oxide phase and also enhance iron oxide dissolution via a non-reductive dissolution pathway.

  19. Glyphosate, a chelating agent-relevant for ecological risk assessment?

    Science.gov (United States)

    Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram

    2018-02-01

    Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.

  20. Tailor-welded blanks and their production

    Science.gov (United States)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  1. Dysregulation of Iron Metabolism in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Satoru Oshiro

    2011-01-01

    Full Text Available Dysregulation of iron metabolism has been observed in patients with neurodegenerative diseases (NDs. Utilization of several importers and exporters for iron transport in brain cells helps maintain iron homeostasis. Dysregulation of iron homeostasis leads to the production of neurotoxic substances and reactive oxygen species, resulting in iron-induced oxidative stress. In Alzheimer's disease (AD and Parkinson's disease (PD, circumstantial evidence has shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation. Several genetic studies have revealed mutations in genes associated with increased iron uptake, increased oxidative stress, and an altered inflammatory response in amyotrophic lateral sclerosis (ALS. Here, we review the recent findings on brain iron metabolism in common NDs, such as AD, PD, and ALS. We also summarize the conventional and novel types of iron chelators, which can successfully decrease excess iron accumulation in brain lesions. For example, iron-chelating drugs have neuroprotective effects, preventing neural apoptosis, and activate cellular protective pathways against oxidative stress. Glial cells also protect neurons by secreting antioxidants and antiapoptotic substances. These new findings of experimental and clinical studies may provide a scientific foundation for advances in drug development for NDs.

  2. Treating thalassemia major-related iron overload: the role of deferiprone

    Directory of Open Access Journals (Sweden)

    Berdoukas V

    2012-10-01

    Full Text Available Vasilios Berdoukas,1 Kallistheni Farmaki,2 Susan Carson,1 John Wood,3 Thomas Coates11Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Thalassemia Unit, General Hospital of Corinth, Corinth, Greece; 3Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USAAbstract: Over the last 20 years, management for thalassemia major has improved to the point where we predict that patients' life expectancy will approach that of the normal population. These outcomes result from safer blood transfusions, the availability of three iron chelators, new imaging techniques that allow specific organ assessment of the degree of iron overload, and improvement in the treatment of hepatitis. In October 2011, the Food and Drug Administration licensed deferiprone, further increasing the available choices for iron chelation in the US. The ability to prescribe any of the three chelators as well as their combinations has led to more effective reduction of total body iron. The ability to determine the amount of iron in the liver and heart by magnetic resonance imaging allows the prescription of the most appropriate chelation regime for patients and to reconsider what our aims with respect to total body iron should be. Recent evidence from Europe has shown that by normalizing iron stores not only are new morbidities prevented but also reversal of many complications such as cardiac failure, hypothyroidism, hypogonadism, impaired glucose tolerance, and type 2 diabetes can occur, improving survival and patients' quality of life. The most effective way to achieve normal iron stores seems to be with the combination of deferoxamine and deferiprone. Furthermore, outcomes should continue to improve in the future. Starting relative intensive chelation in younger children may prevent short stature and abnormal pubertal maturation as well as other iron-related morbidities. Also, further information should become available on the

  3. Selectivity in extraction of copper and indium with chelate extractants

    International Nuclear Information System (INIS)

    Zivkovic, D.

    2003-01-01

    Simultaneous extraction of copper and indium with chelate extractants (LIX84 and D2E11PA) was described. Stechiometry of metal-organic complexes examined using the method of equimolar ratios resulted in CuR 2 and InR 3 forms of hydrophobic extracting species. A linear correlation was obtained between logarithm of distribution coefficients and chelate agents and pH, respectively. Selectivity is generally higher with higher concentrations of chelate agents in the organic phase, and is decreased with increase of concentration of hydrogen ions in feeding phase. (Original)

  4. Altered expression of iron regulatory proteins with aging is associated with transient hepatic iron accumulation after environmental heat stress.

    Science.gov (United States)

    Bloomer, Steven A; Han, Okhee; Kregel, Kevin C; Brown, Kyle E

    2014-01-01

    An increasing body of evidence suggests that dysregulation of iron metabolism contributes to age-related pathologies. We have previously observed increased hepatic iron with aging, and that environmental heat stress stimulates a further increase in iron and oxidative liver injury in old rats. The purpose of this study was to determine a mechanism for the increase in hepatic iron in old rats after heat stress. Young (6 mo) and old (24 mo) Fischer 344 rats were exposed to two heating bouts separated by 24 h. Livers were harvested after the second heat stress, and protein levels of the iron import protein, transferrin receptor-1 (TFR1), and the iron export protein, ferroportin (Fpn) were determined by immunoblot. In the nonheated condition, old rats had lower TFR1 expression, and higher Fpn expression. After heat stress, TFR1 declined in the old rats, and iron chelation studies demonstrated that this decline was dependent on a hyperthermia-induced increase in iron. TFR1 did not change in the young rats after heat stress. Since TFR1 is inversely regulated by iron, our results suggest that the increase in intracellular iron with aging and heat stress lower TFR1 expression. Fpn expression increased in both age groups after heat stress, but this response was delayed in old rats. This delay in the induction of an iron exporter suggests a mechanism for the increase in hepatic iron and oxidative injury after heat stress in aged organisms. © 2013.

  5. Both immanently high active iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus xiaojinensis.

    Science.gov (United States)

    Zha, Qian; Wang, Yi; Zhang, Xin-Zhong; Han, Zhen-Hai

    2014-01-01

    To better understand the mechanism of low-iron stress tolerance in Malus xiaojinensis, the differences in physiological parameters and gene expression between an iron deficiency-sensitive species, Malus baccata, and an iron deficiency-tolerant species, M. xiaojinensis were investigated under low-iron (4 μM Fe) conditions. Under iron sufficient conditions, the expressions of iron uptake- and transport-related genes, i.e. FIT1, IRT1, CS1, FRD3 and NRMAP1, and the immanent leaf and root active iron contents were higher in M. xiaojinensis than those in M. baccata. However, on the first three days of low iron stress, the rhizospheric pH decreased and the root ferric chelate reductase (FCR) activity and the expression of ferrous uptake- and iron transport-related genes in the roots increased significantly only in M. xiaojinensis. Leaf chlorosis occurred on the 3rd and the 9th day after low-iron treatment in M. baccata and M. xiaojinensis, respectively. The expression of iron relocalization-related genes, such as NAS1, FRD3 and NRMAP3, increased after the 5th or 6th day of low iron stress in leaves of M. xiaojinensis, whereas the expression of NAS1, FRD3 and NRMAP3 in the leaves of M. baccata increased immediately after the onset of low iron treatment. Conclusively, the relative high active iron contents caused by the immanently active root ferrous uptake and the increased root ferrous uptake in response to low iron stress were the dominant mechanisms for the tolerance to iron deficiency in M. xiaojinensis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Renal functions in pediatric patients with beta-thalassemia major: relation to chelation therapy: original prospective study

    Directory of Open Access Journals (Sweden)

    ElMelegy Nagla T

    2010-05-01

    Full Text Available Abstract Background In β-thalassemia, profound anemia and severe hemosiderosis cause functional and physiological abnormalities in various organ systems. In recent years, there have been few published studies mainly in adult demonstrating renal involvement in β-thalassemia. This prospective study was aimed to investigate renal involvement in pediatric patients with transfusion dependant beta-thalassemia major (TD-βTM, using both conventional and early markers of glomerular and tubular dysfunctions, and to correlate findings to oxidative stress and iron chelation therapy. Methods Sixty-nine TD-βTM patients (aged 1-16 years and 15 healthy controls (aged 3-14 years were enrolled in this study. Based on receiving chelation therapy (deferoxamine, DFO, patients were divided into two groups: group [I] with chelation (n = 34 and group [II] without chelation (n = 35. Levels of creatinine (Cr, calcium (Ca, inorganic phosphorus (PO4, uric acid (UA and albumin were measured by spectrophotometer. Serum (S levels of cystatin-C (SCysC and total antioxidant capacity (STAC and urinary (U levels of β2-microglobulin (Uβ2MG were measured by immunosorbent assay (ELISA. Urinary N-acetyl-beta-D-glucosaminidase (UNAG activity and malondialdehyde (UMDA were measured by chemical methods. Estimated glomerular filtration rate (eGFR was determined from serum creatinine. Results In patient with and without chelation, glomerular [elevated SCysC, SCr, Ualbumin/Cr and diminished eGFR]; and tubular dysfunctions [elevated SUA, SPO4, UNAG/Cr, Uβ2MG/Cr] and oxidative stress marker disturbances [diminished STAC and elevated UMDA/Cr] were reported than controls. In patients with chelation, SCysC was significantly higher while, STAC was significantly lower than those without chelation. In all patients, SCysC showed significant positive correlation with SCr and negative correlation with eGFR; STAC showed significant positive correlation with eGFR and negative correlation with

  7. Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.).

    Science.gov (United States)

    Santos, Carla S; Carvalho, Susana M P; Leite, Andreia; Moniz, Tânia; Roriz, Mariana; Rangel, António O S S; Rangel, Maria; Vasconcelos, Marta W

    2016-09-01

    Iron deficiency chlorosis (IDC) is a serious environmental problem affecting the growth of several crops in the world. The application of synthetic Fe(III) chelates is still one of the most common measures to correct IDC and the search for more effective Fe chelates remains an important issue. Herein, we propose a tris(3-hydroxy-4-pyridinonate) iron(III) complex, Fe(mpp)3, as an IDC corrector. Different morphological, biochemical and molecular parameters were assessed as a first step towards understanding its mode of action, compared with that of the commercial fertilizer FeEDDHA. Plants treated with the pyridinone iron(III) complexes were significantly greener and had increased biomass. The total Fe content was measured using ICP-OES and plants treated with pyridinone complexes accumulated about 50% more Fe than those treated with the commercial chelate. In particular, plants supplied with compound Fe(mpp)3 were able to translocate iron from the roots to the shoots and did not elicit the expression of the Fe-stress related genes FRO2 and IRT1. These results suggest that 3,4-HPO iron(III) chelates could be a potential new class of plant fertilizing agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Chelating ligands for nanocrystals' surface functionalization.

    Science.gov (United States)

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  9. COMPARISON OF SIMPLE AND CHELATED AMBERLITE IR-120 ...

    African Journals Online (AJOL)

    13] have also been used. Many chelating ligands such as quinolone, ... synthesized by covalent bonds are much more resistant to external effects than those by simple adsorption [15]. Amberlite IR-120, a vinyl benzene polymer has good ...

  10. 3-hydroxy-2(1H)-pyridinone chelating agents

    Science.gov (United States)

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  11. Cell assay using a two-photon-excited europium chelate.

    Science.gov (United States)

    Xiao, Xudong; Haushalter, Jeanne P; Kotz, Kenneth T; Faris, Gregory W

    2011-08-01

    We report application of two-photon excitation of europium chelates to immunolabeling of epidermal growth factor receptor (EGFR) cell surface proteins on A431 cancer cells. The europium chelates are excited with two photons of infrared light and emit in the visible. Europium chelates are conjugated to antibodies for EGFR. A431 (human epidermoid carcinoma) cells are labeled with this conjugate and imaged using a multiphoton microscope. To minimize signal loss due to the relatively long-lived Eu(3+) emission, the multiphoton microscope is used with scanning laser two-photon excitation and non-scanning detection with a CCD. The chelate labels show very little photobleaching (less than 1% during continuous illumination in the microscope for 20 minutes) and low levels of autofluorescence (less than 1% of the signal from labeled cells). The detection limit of the europium label in the cell assay is better than 100 zeptomoles.

  12. Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W.G.; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-01-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  13. Prooxidant Mechanisms in Iron Overload Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2013-01-01

    Full Text Available Iron overload cardiomyopathy (IOC, defined as the presence of systolic or diastolic cardiac dysfunction secondary to increased deposition of iron, is emerging as an important cause of heart failure due to the increased incidence of this disorder seen in thalassemic patients and in patients of primary hemochromatosis. At present, although palliative treatment by regular iron chelation was recommended; whereas IOC is still the major cause for mortality in patient with chronic heart failure induced by iron-overloading. Because iron is a prooxidant and the associated mechanism seen in iron-overload heart is still unclear; therefore, we intend to delineate the multiple signaling pathways involved in IOC. These pathways may include organelles such as calcium channels, mitochondria; paracrine effects from both macrophages and fibroblast, and novel mediators such as thromboxane A2 and adiponectin; with increased oxidative stress and inflammation found commonly in these signaling pathways. With further understanding on these complex and inter-related molecular mechanisms, we can propose potential therapeutic strategies to ameliorate the cardiac toxicity induced by iron-overloading.

  14. Transgenic petunia with the iron(III-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Directory of Open Access Journals (Sweden)

    Yoshiko Murata

    Full Text Available Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III to iron(II and the uptake of iron(II by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III. Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems

  15. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  16. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    OpenAIRE

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies...

  17. Extraction of metals using supercritical fluid and chelate forming ligand

    International Nuclear Information System (INIS)

    Wai, C.M.; Laintz, K.E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated β-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated β-diketone and a trialkyl phosphate, or a fluorinated β-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated β-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  18. Mapping and characterization of iron compounds in Alzheimer's tissue

    International Nuclear Information System (INIS)

    Collingwood, Joanna; Dobson, Jon

    2006-01-01

    Understanding the management of iron in the brain is of great importance in the study of neurodegeneration, where regional iron overload is frequently evident. A variety of approaches have been employed, from quantifying iron in various anatomical structures, to identifying genetic risk factors related to iron metabolism, and exploring chelation approaches to tackle iron overload in neurodegenerative disease. However, the ease with which iron can change valence state ensures that it is present in vivo in a wide variety of forms, both soluble and insoluble. Here, we review recent developments in approaches to locate and identify iron compounds in neurodegenerative tissue. In addition to complementary techniques that allow us to quantify and identify iron compounds using magnetometry, extraction, and electron microscopy, we are utilizing a powerful combined mapping/characterization approach with synchrotron X-rays. This has enabled the location and characterization of iron accumulations containing magnetite and ferritin in human Alzheimer's disease (AD) brain tissue sections in situ at micron-resolution. It is hoped that such approaches will contribute to our understanding of the role of unusual iron accumulations in disease pathogenesis, and optimise the potential to use brain iron as a clinical biomarker for early detection and diagnosis.

  19. Potential involvement of iron in the pathogenesis of peritoneal endometriosis.

    Science.gov (United States)

    Defrère, S; Lousse, J C; González-Ramos, R; Colette, S; Donnez, J; Van Langendonckt, A

    2008-07-01

    The aim of this study is to review the current literature associating endometriosis with iron and to discuss the potential causes and consequences of iron overload in the pelvic cavity. Indeed, iron is essential for all living organisms. However, excess iron can result in toxicity and is associated with pathological disorders. In endometriosis patients, iron overload has been demonstrated in the different components of the peritoneal cavity (peritoneal fluid, endometriotic lesions, peritoneum and macrophages). Animal models allow us to gather essential information on the origin, metabolism and effect of iron overload in endometriosis, which may originate from erythrocytes carried into the pelvic cavity mainly by retrograde menstruation. Peritoneal macrophages play an important role in the degradation of these erythrocytes and in subsequent peritoneal iron metabolism. Iron overload could affect a wide range of mechanisms involved in endometriosis development, such as oxidative stress or lesion proliferation. In conclusion, excess iron accumulation can result in toxicity and may be one of the factors contributing to the development of endometriosis. Treatment with an iron chelator could thus be beneficial in endometriosis patients to prevent iron overload in the pelvic cavity, thereby diminishing its deleterious effect.

  20. Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana.

    Science.gov (United States)

    Schagerlöf, Ulrika; Wilson, Greer; Hebert, Hans; Al-Karadaghi, Salam; Hägerhäll, Cecilia

    2006-09-01

    Iron uptake in Arabidopsis thaliana is mediated by ferric chelate reductase FRO2, a transmembrane protein belonging to the flavocytochrome b family. There is no high resolution structural information available for any member of this family. We have determined the transmembrane topology of FRO2 experimentally using the alkaline phosphatase fusion method. The resulting topology is different from that obtained by theoretical predictions and contains 8 transmembrane helices, 4 of which build up the highly conserved core of the protein. This core is present in the entire flavocytochrome b family. The large water soluble domain of FRO2, which contains NADPH, FAD and oxidoreductase sequence motifs, was located on the inside of the membrane.

  1. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2010-01-01

    Full Text Available Abstract Background The Gram-negative bacterium Yersinia pestis is the causative agent of the bubonic plague. Efficient iron acquisition systems are critical to the ability of Y. pestis to infect, spread and grow in mammalian hosts, because iron is sequestered and is considered part of the innate host immune defence against invading pathogens. We used a proteomic approach to determine expression changes of iron uptake systems and intracellular consequences of iron deficiency in the Y. pestis strain KIM6+ at two physiologically relevant temperatures (26°C and 37°C. Results Differential protein display was performed for three Y. pestis subcellular fractions. Five characterized Y. pestis iron/siderophore acquisition systems (Ybt, Yfe, Yfu, Yiu and Hmu and a putative iron/chelate outer membrane receptor (Y0850 were increased in abundance in iron-starved cells. The iron-sulfur (Fe-S cluster assembly system Suf, adapted to oxidative stress and iron starvation in E. coli, was also more abundant, suggesting functional activity of Suf in Y. pestis under iron-limiting conditions. Metabolic and reactive oxygen-deactivating enzymes dependent on Fe-S clusters or other iron cofactors were decreased in abundance in iron-depleted cells. This data was consistent with lower activities of aconitase and catalase in iron-starved vs. iron-rich cells. In contrast, pyruvate oxidase B which metabolizes pyruvate via electron transfer to ubiquinone-8 for direct utilization in the respiratory chain was strongly increased in abundance and activity in iron-depleted cells. Conclusions Many protein abundance differences were indicative of the important regulatory role of the ferric uptake regulator Fur. Iron deficiency seems to result in a coordinated shift from iron-utilizing to iron-independent biochemical pathways in the cytoplasm of Y. pestis. With growth temperature as an additional variable in proteomic comparisons of the Y. pestis fractions (26°C and 37°C, there was

  2. Iron refractory iron deficiency anemia

    Science.gov (United States)

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  3. Diagnosis, management and response criteria of iron overload in myelodysplastic syndromes (MDS): updated recommendations of the Austrian MDS platform.

    Science.gov (United States)

    Valent, Peter; Stauder, Reinhard; Theurl, Igor; Geissler, Klaus; Sliwa, Thamer; Sperr, Wolfgang R; Bettelheim, Peter; Sill, Heinz; Pfeilstöcker, Michael

    2018-02-01

    Despite the availability of effective iron chelators, transfusion-related morbidity is still a challenge in chronically transfused patients with myelodysplastic syndromes (MDS). In these patients, transfusion-induced iron overload may lead to organ dysfunction or even organ failure. In addition, iron overload is associated with reduced overall survival in MDS. Areas covered: During the past 10 years, various guidelines for the management of MDS patients with iron overload have been proposed. In the present article, we provide our updated recommendations for the diagnosis, prevention and therapy of iron overload in MDS. In addition, we propose refined treatment response criteria. As in 2006 and 2007, recommendations were discussed and formulated by participants of our Austrian MDS platform in a series of meetings in 2016 and 2017. Expert commentary: Our updated recommendations should support early recognition of iron overload, optimal patient management and the measurement of clinical responses to chelation treatment in daily practice.

  4. Deferasirox: a review of its use for chronic iron overload in patients with non-transfusion-dependent thalassaemia.

    Science.gov (United States)

    Shirley, Matt; Plosker, Greg L

    2014-06-01

    Deferasirox (Exjade(®)) is a once-daily orally administered iron chelator which has been approved for use in the treatment of transfusional-dependent chronic iron overload since 2005. Based primarily on the findings of the THALASSA (Assessment of Exjade(®) in Non-Transfusion-Dependent THALASSemiA) trial, the approval for deferasirox has recently been expanded to include the management of chronic iron overload in patients with non-transfusion-dependent thalassaemia (NTDT) syndromes. Despite the lack of regular blood transfusions, NTDT patients can still develop clinically relevant iron overload, primarily due to increased gastrointestinal absorption secondary to ineffective erythropoiesis, and may require chelation therapy. The THALASSA trial, the first placebo-controlled clinical trial of an iron chelator in NTDT patients, demonstrated that deferasirox was effective in reducing liver iron and serum ferritin levels in this population. Deferasirox has an acceptable tolerability profile, with the most common adverse events reported in the THALASSA trial being related to mild to moderate gastrointestinal disorders. Although further long-term studies will be required to clearly demonstrate the clinical benefit of chelation therapy in NTDT patients, deferasirox presents a useful tool in the management of iron overload in this population.

  5. Phytochemical profile of a microalgae Euglena tuba and its hepatoprotective effect against iron-induced liver damage in Swiss albino mice.

    Science.gov (United States)

    Panja, S; Chaudhuri, D; Ghate, N B; Mandal, N

    2014-12-01

    This study was aimed to evaluate different phytochemical constituents and the ameliorating effect of 70% methanol extract of Euglena tuba (ETME) on iron overload-induced liver injury, along with its in vitro iron-chelating and DNA protection effects. Phytochemicals of ETME were identified by GC-MS analysis. Iron chelation and protection of Fenton reaction-induced DNA damage was conducted in vitro. Post oral administration of ETME to iron-overloaded mice, the levels of serum parameters, antioxidant enzymes, liver iron, lipid peroxidation, protein carbonyl and hydroxyproline contents were measured. ETME showed inhibition of lipid peroxidation, protein oxidation and liver fibrosis. The serum markers and liver iron were lessened, whereas enhanced levels of liver antioxidant enzymes were detected in ETME-treated group. Furthermore, the histopathological observations also substantiated the protective effects of the extract. Several bioactive compounds identified by GC-MS may be the basis of hepatoprotective as well as antioxidant and iron-chelating effect of ETME. Currently available iron-chelating agents show several side effects and limitations which may be overcome by ETME, which suggest its benefit against pathology of iron overload-linked diseases. Hence, ETME can be used as a promising hepatoprotective agent. © 2014 The Society for Applied Microbiology.

  6. Synthesis and evaluation of a class of 1,4,7-triazacyclononane derivatives as iron depletion antitumor agents.

    Science.gov (United States)

    Wang, Sheng; Gai, Yongkang; Zhang, Shasha; Ke, Lei; Ma, Xiang; Xiang, Guangya

    2018-01-15

    Iron depletion has been confirmed as an efficient strategy for cancer treatment. In the current study, a series of 1,4,7-triazacyclononane derivatives HE-NO2A, HP-NO2A and NE2P2A, as well as the bifunctional chelators p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA were synthesized and evaluated as iron-depleting agents for the potential anti-cancer therapy against human hepatocellular carcinoma. The cytotoxicity of these chelators was measured using hepatocellular cancer cells and compared with the clinically available iron depletion agent DFO and the universal metal chelator DTPA. All these 1,4,7-triazacyclononane-based chelators exhibited much stronger antiproliferative activity than DFO and DTPA. Among them, chelators with phenylpropyl side chains, represented by p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA, displayed the highest antiproliferative activity against HepG2 cells. Hence, these compounds are attractive candidates for the advanced study as iron depletion agents for the potential anti-cancer therapy, and could be further in conjugation with a targeting moiety for the future development in targeted iron depletion therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formability of stainless steel tailored blanks

    DEFF Research Database (Denmark)

    Bagger, Claus; Gong, Hui; Olsen, Flemming Ove

    2004-01-01

    In a number of systematic tests, the formability of tailored blanks consisting of even and different combinations of AISI304 and AISI316 in thickness of 0.8 mm and 1.5 mm have been investigated. In order to analyse the formability of tailored blanks with different sheet thickness, a method based ...

  8. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  9. Iron(III) and aluminium(III) complexes with substituted salicyl-aldehydes and salicylic acids.

    Science.gov (United States)

    Nurchi, Valeria M; Crespo-Alonso, Miriam; Toso, Leonardo; Lachowicz, Joanna I; Crisponi, Guido; Alberti, Giancarla; Biesuz, Raffaela; Domínguez-Martín, Alicia; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Zoroddu, M Antonietta

    2013-11-01

    The chelating properties toward iron(III) and aluminium(III) of variously substituted salicyl-aldehydes and salicylic acids have been evaluated, together with the effect of methoxy and nitro substituents in ortho and para position with respect to the phenolic group. The protonation and iron and aluminium complex formation equilibria have been studied by potentiometry, UV-visible spectrophotometry and (1)H NMR spectroscopy. The overall results highlight that salicyl-aldehydes present good chelating properties toward iron(III), with pFe ranging from 14.2 with nitro to 15.7 with methoxy substituent, being ineffective toward aluminium; the pFe values for salicylic acids are generally lower than those for salicyl-aldehydes, and about 4 units higher than the corresponding pAl values. The effect of the two substituents on the chelating properties of the ligands can be rationalized in terms of the Swain-Lupton treatment which accounts for the field and resonance effects. The structural characterization of the 1:2 iron complex with p-nitro salicylic acid shows that iron(III) ion exhibits an octahedral surrounding where two salicylate chelating ligands supply two O-phenolate and two O-carboxylate donor atoms in a roughly equatorial plane. The trans-apical sites are occupied by two aqua ligands. © 2013.

  10. Tailoring magnetic properties of multicomponent layered structure via current annealing in FePd thin films.

    Science.gov (United States)

    Cialone, Matteo; Celegato, Federica; Coïsson, Marco; Barrera, Gabriele; Fiore, Gianluca; Shvab, Ruslan; Klement, Uta; Rizzi, Paola; Tiberto, Paola

    2017-11-30

    Multicomponent layered systems with tailored magnetic properties were fabricated via current annealing from homogeneous Fe 67 Pd 33 thin films, deposited via radio frequency sputtering on Si/SiO2 substrates from composite target. To promote spontaneous nano-structuring and phase separation, selected samples were subjected to current annealing in vacuum, with a controlled oxygen pressure, using various current densities for a fixed time and, as a consequence, different phases and microstructures were obtained. In particular, the formation of magnetite in different amount was observed beside other iron oxides and metallic phases. Microstructures and magnetic properties evolution as a function of annealing current were studied and interpreted with different techniques. Moreover, the temperature profile across the film thickness was modelled and its role in the selective oxidation of iron was analysed. Results show that is possible to topologically control the phases formation across the film thickness and simultaneously tailor the magnetic properties of the system.

  11. Urinary iron excretion induced by intravenous infusion of deferoxamine in ß-thalassemia homozygous patients

    Directory of Open Access Journals (Sweden)

    Boturão-Neto E.

    2002-01-01

    Full Text Available The purpose of the present study was to identify noninvasive methods to evaluate the severity of iron overload in transfusion-dependent ß-thalassemia and the efficiency of intensive intravenous therapy as an additional tool for the treatment of iron-overloaded patients. Iron overload was evaluated for 26 ß-thalassemia homozygous patients, and 14 of them were submitted to intensive chelation therapy with high doses of intravenous deferoxamine (DF. Patients were classified into six groups of increasing clinical severity and were divided into compliant and non-compliant patients depending on their adherence to chronic chelation treatment. Several methods were used as indicators of iron overload. Total gain of transfusion iron, plasma ferritin, and urinary iron excretion in response to 20 to 60 mg/day subcutaneous DF for 8 to 12 h daily are useful to identify iron overload; however, urinary iron excretion in response to 9 g intravenous DF over 24 h and the increase of urinary iron excretion induced by high doses of the chelator are more reliable to identify different degrees of iron overload because of their correlation with the clinical grades of secondary hemochromatosis and the significant differences observed between the groups of compliant and non-compliant patients. Finally, the use of 3-9 g intravenous DF for 6-12 days led to a urinary iron excretion corresponding to 4.1 to 22.4% of the annual transfusion iron gain. Therefore, continuous intravenous DF at high doses may be an additional treatment for these patients, as a complement to the regular subcutaneous infusion at home, but requires individual planning and close monitoring of adverse reactions.

  12. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    Science.gov (United States)

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  13. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia.

    Science.gov (United States)

    Callens, Celine; Coulon, Séverine; Naudin, Jerome; Radford-Weiss, Isabelle; Boissel, Nicolas; Raffoux, Emmanuel; Wang, Pamella Huey Mei; Agarwal, Saurabh; Tamouza, Houda; Paubelle, Etienne; Asnafi, Vahid; Ribeil, Jean-Antoine; Dessen, Philippe; Canioni, Danielle; Chandesris, Olivia; Rubio, Marie Therese; Beaumont, Carole; Benhamou, Marc; Dombret, Hervé; Macintyre, Elizabeth; Monteiro, Renato C; Moura, Ivan C; Hermine, Olivier

    2010-04-12

    Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML.

  14. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia

    Science.gov (United States)

    Callens, Celine; Coulon, Séverine; Naudin, Jerome; Radford-Weiss, Isabelle; Boissel, Nicolas; Raffoux, Emmanuel; Wang, Pamella Huey Mei; Agarwal, Saurabh; Tamouza, Houda; Paubelle, Etienne; Asnafi, Vahid; Ribeil, Jean-Antoine; Dessen, Philippe; Canioni, Danielle; Chandesris, Olivia; Rubio, Marie Therese; Beaumont, Carole; Benhamou, Marc; Dombret, Hervé; Macintyre, Elizabeth; Monteiro, Renato C.

    2010-01-01

    Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML. PMID:20368581

  15. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization

  16. Iron homeostasis related genes in rice

    Directory of Open Access Journals (Sweden)

    Gross Jeferson

    2003-01-01

    Full Text Available Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe, two FRO (Fe3+-chelate reductase oxidase, thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein, eight NRAMP (Natural Resistance - Associated Macrophage Protein, and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.

  17. Staphylococcus aureus redirects central metabolism to increase iron availability.

    Directory of Open Access Journals (Sweden)

    David B Friedman

    2006-08-01

    Full Text Available Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment or genetic (Deltafur alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB, a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.

  18. Regulatory mechanisms for iron transport across the blood-brain barrier.

    Science.gov (United States)

    Duck, Kari A; Simpson, Ian A; Connor, James R

    2017-12-09

    Many critical metabolic functions in the brain require adequate and timely delivery of iron. However, most studies when considering brain iron uptake have ignored the iron requirements of the endothelial cells that form the blood-brain barrier (BBB). Moreover, current models of BBB iron transport do not address regional regulation of brain iron uptake or how neurons, when adapting to metabolic demands, can acquire more iron. In this study, we demonstrate that both iron-poor transferrin (apo-Tf) and the iron chelator, deferoxamine, stimulate release of iron from iron-loaded endothelial cells in an in vitro BBB model. The role of the endosomal divalent metal transporter 1 (DMT1) in BBB iron acquisition and transport has been questioned. Here, we show that inhibition of DMT1 alters the transport of iron and Tf across the endothelial cells. These data support an endosome-mediated model of Tf-bound iron uptake into the brain and identifies mechanisms for local regional regulation of brain iron uptake. Moreover, our data provide an explanation for the disparity in the ratio of Tf to iron transport into the brain that has confounded the field. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Supercritical Fluid Extraction of Metal Chelate: A Review.

    Science.gov (United States)

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  20. Ab initio coordination chemistry for nickel chelation motifs.

    Science.gov (United States)

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  1. Relative contribution of phytates, fibers, and tannins to low iron and zinc in vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions.

    Science.gov (United States)

    Lestienne, Isabelle; Caporiccio, Bertrand; Besançon, Pierre; Rochette, Isabelle; Trèche, Serge

    2005-10-19

    In vitro digestions were performed on pearl millet flours with decreased phytate contents and on two dephytinized or nondephytinized pearl millet grain fractions, a decorticated fraction, and a bran fraction with low and high fiber and tannin contents, respectively. Insoluble residues of these digestions were then incubated with buffer or enzymatic solutions (xylanases and/or phytases), and the quantities of indigestible iron and zinc released by these different treatments were determined. In decorticated pearl millet grain, iron was chelated by phytates and by insoluble fibers, whereas zinc was almost exclusively chelated by phytates. In the bran of pearl millet grain, a high proportion of iron was chelated by iron-binding phenolic compounds, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers. The low effect of phytase action on iron and zinc solubility of bran of pearl millet grain shows that, in the case of high fiber and tannin contents, the chelating effect of these compounds was higher than that of phytates.

  2. Screening of iron-enriched fungus from natural environment and evaluation of organically bound iron bioavailability in rats

    Directory of Open Access Journals (Sweden)

    Xin-guo Zhang

    2015-03-01

    Full Text Available Iron is an essential element for nearly all living organisms, and its deficiency is the most common form of malnutrition in the world. The organic forms of trace elements are considered more bioavailable than the inorganic forms. Although Saccharomyces cerevisiae can enrich metal elements and convert inorganic iron to organic species, its tolerability and transforming capacity are limited. The aim of this study was to screen higher biomass and other iron-enriched fungi strains besides Saccharomyces cerevisiae from the natural environment. A PDA medium containing 800 μg/mL iron was used for initial screening. Fifty strains that tolerated high iron concentration were isolated from the natural environment, and only one strain, No.BY1109, grew well at Fe (II concentration of 10,000μg/ml. According to morphological characterization, 18S rDNA sequence analysis, and biophysical and biochemical characterization, the strain No.BY1109 was identified as Rhodotorula. The iron content of No.BY1109 (10 mg Fe/g dry cell was determined using atomic absorption spectrometry. The results of distribution of iron in the cells showed that iron ion was mainly chelated in the cell walls and vacuoles. The bioavailability in rats confirmed that strain No.BY1109 had higher absorption efficiency than that of ferrous sulfate after single dose oral administration. The present study introduces new iron supplements, and it is a basis for finding new iron supplements from natural environment.

  3. The effect of desferrioxamine on iron metabolism and lipid peroxidation in hepatocytes of C57BL/10 mice in experimental uroporphyria

    NARCIS (Netherlands)

    C.M. Van Gelder (Carin); P.D. Siersema (Peter); A. Voogd (Arthur); C.M.H. de Jeu-Jaspars (Nel); H.G. van Eijk (Henk); J.F. Koster (Johan); F.W.M. de Rooy (F. W M); J.H.P. Wilson (Paul)

    1993-01-01

    textabstractThe effects of the iron chelator desferrioxamine (DFx) on liver iron accumulation, malondialdehyde (MDA) production, porphyrin accumulation and uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37) activity were investigated over a period of 14 weeks in C57BL/10 mice, made porphyric by the

  4. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.

    Science.gov (United States)

    Yuan, Youxi; Wu, Huilan; Wang, Ning; Li, Jie; Zhao, Weina; Du, Juan; Wang, Daowen; Ling, Hong-Qing

    2008-03-01

    Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbHLH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FIT with either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FRO2 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38, AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.

  5. The questioning for routine monthly monitoring of proteinuria in patients with β-thalassemia on deferasirox chelation.

    Science.gov (United States)

    Bayhan, Turan; Ünal, Şule; Ünlü, Ozan; Küçüker, Hakan; Tutal, Anıl Doğukan; Karabulut, Erdem; Gümrük, Fatma

    2017-05-01

    Iron chelation therapy is one of the mainstays of the management of the patients with β-thalassemia (BT) major. Deferasirox is an oral active iron chelating agent. Proteinuria is one of the potential renal adverse effects of deferasirox, and monthly follow-up for proteinuria is suggested by Food and Drug Administration and European Medicine Agency. We aimed to investigate the necessity for monthly monitoring for proteinuria among patients with BT on deferasirox. A retrospective laboratory and clinic data review was performed for patients with BT major or intermedia who were treated with deferasirox chelation therapy. All patients were monitored for proteinuria for every 3 or 4 weeks after the initiation of deferasirox with serum creatinine and spot urine protein/creatinine ratios. The median follow-up time of the 37 (36 BT major and one BT intermedia) patients was 44 months. Seven patients (18.9%) developed significant proteinuria (ratio ≥0.8). Of the 1490 measurements, 12 tests (0.8%) were proteinuric. Urine proteinuria resolved in all of the patients during the follow-up. The risk of proteinuria was higher at ages below a cut-off point of 23 years (p = 0.019). Patients, who were on deferasirox at doses above a cut-off dose of 29 mg/kg/day, were found to have higher risk of proteinuria development (p = 0.004). Proteinuria resolves without any complication or major intervention according to our results. Potentially more risky groups (age below 23 years old and receivers above a dose of 29 mg/kg/day) might be suggested to be followed monthly, besides monitoring all of the patients.

  6. A murine experimental anthracycline extravasation model: pathology and study of the involvement of topoisomerase II alpha and iron in the mechanism of tissue damage

    DEFF Research Database (Denmark)

    Thougaard, Annemette V; Langer, Seppo W; Hainau, Bo

    2010-01-01

    damage. In contrast to dexrazoxane, the iron-chelating bisdioxopiperazine ICRF-161 do not inhibit the catalytic cycle of topoisomerase II alpha. This compound was used to isolate and test the importance of iron in the wound pathogenesis. ICRF-161 was found ineffective in the treatment of anthracycline...... of topoisomerase II alpha and thereby prevents access of anthracycline to the enzyme and thus cytotoxicity, and also acts as a strong iron chelator following opening of its two bisdioxopiperazine rings. Using the model of extravasation in a dexrazoxane-resistant transgenic mouse with a heterozygous mutation...

  7. Inositol hexa-phosphate: a potential chelating agent for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A. [Radiobiology Laboratory, Radiation Dosimetry Unit, Department of Environment, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

    2007-07-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  8. Inositol hexa-phosphate: a potential chelating agent for uranium

    International Nuclear Information System (INIS)

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A.

    2007-01-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  9. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Troutner, D.E.; Schlemper, E.O.

    1990-01-01

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report

  10. Protracted chelate therapy after incorporation of plutonium 239 in rats

    International Nuclear Information System (INIS)

    Gemenetzis, E.

    1976-01-01

    The author has tested in how far 239 Pu can be mobilized by Ca and Zn, Desfenioxamin B(DFDA) and by combined doses of Ca-DTPA and DFDA. The pre-experiment covered the 239 Pu-metabolism in untreated male and female rats and the distribution in dependence of the way of application. If treatment is started immediately by multiple chelate doses, the first two injections play the main part in the decorporation of 239 Pu. The combination Ca-DTPA30 + DFDA30 μMol x kg -1 is proved to be the best means of decorporation for the whole body. The efficiency of another therapy depends essentially on the treatment used, a daily treatment showing the best effects. If treatment is started later with multiple chelate doses, the total decorporation efficiency is of less value, especially in the skeleton. Aequimolar doses of Ca-DTPA and Zn-DTPA have the same degree of efficiency. This indicates that during protracted chelate treatment starting later, Ca-DTPA could be substituted by the less toxic Zn-DTPA after incorporation of 239 Pu. These results show that intermittant administration of the week's dose is more efficient than a single chelate administration of the whole week's dose at once. Permanent chelate infusion does not seem necessary in any case since it has the same effect as 3 to 5 injections per week and is difficult to carry out in medical practice. Thus, it seems advisable to divide up the weekly dose into 3-5 injections. In case of a wound contamination, the efficiency of immediate intensive treatment depends on the 239 Pu compound used, on the chelate used, and on its dosage. (orig.) [de

  11. Interaction of chelating agents with cadmium in mice and rats

    International Nuclear Information System (INIS)

    Eybl, V.; Sykora, J.; Koutensky, J.; Caisova, D.; Schwartz, A.; Mertl, F.

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl 2 and on the whole body retention and tissue distribution of cadmium after the IV application of /sup 115mCdCl 2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatement of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl 2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of /sup 115m/Cd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes

  12. Efficacy of chelation therapy to remove aluminium intoxication.

    Science.gov (United States)

    Fulgenzi, Alessandro; De Giuseppe, Rachele; Bamonti, Fabrizia; Vietti, Daniele; Ferrero, Maria Elena

    2015-11-01

    There is a distinct correlation between aluminium (Al) intoxication and neurodegenerative diseases (ND). We demonstrated how patients affected by ND showing Al intoxication benefit from short-term treatment with calcium disodium ethylene diamine tetraacetic acid (EDTA) (chelation therapy). Such therapy further improved through daily treatment with the antioxidant Cellfood. In the present study we examined the efficacy of long-term treatment, using both EDTA and Cellfood. Slow intravenous treatment with the chelating agent EDTA (2 g/10 mL diluted in 500 mL physiological saline administered in 2 h) (chelation test) removed Al, which was detected (using inductively coupled plasma mass spectrometry) in urine samples collected from patients over 12 h. Patients that revealed Al intoxication (expressed in μg per g creatinine) underwent EDTA chelation therapy once a week for ten weeks, then once every two weeks for a further six or twelve months. At the end of treatment (a total of 22 or 34 chelation therapies, respectively), associated with daily assumption of Cellfood, Al levels in the urine samples were analysed. In addition, the following blood parameters were determined: homocysteine, vitamin B12, and folate, as well as the oxidative status e.g. reactive oxygen species (ROS), total antioxidant capacity (TAC), oxidized LDL (oxLDL), and glutathione. Our results showed that Al intoxication reduced significantly following EDTA and Cellfood treatment, and clinical symptoms improved. After treatment, ROS, oxLDL, and homocysteine decreased significantly, whereas vitamin B12, folate and TAC improved significantly. In conclusion, our data show the efficacy of chelation therapy associated with Cellfood in subjects affected by Al intoxication who have developed ND.

  13. Pharmacokinetics of Deferiprone in Patients with β-Thalassaemia : Impact of Splenectomy and Iron Status.

    Science.gov (United States)

    Limenta, Lie Michael George; Jirasomprasert, Totsapol; Jittangprasert, Piyada; Wilairat, Prapin; Yamanont, Praveena; Chantharaksri, Udom; Fucharoen, Suthat; Morales, Noppawan Phumala

    2011-01-01

    Iron-rich transfusions and/or a compensatory increase in iron absorption ultimately result in iron loading in patients with β-thalassaemia. Hence, without iron chelation, iron accumulates relentlessly. Deferiprone has been shown to be capable of reducing the iron burden in patients with b-thalassaemia. However, there is wide interpatient variation in deferiprone-induced urinary iron excretion (UIE). We hypothesized that splenectomy and iron status might influence the pharmacokinetic profiles of deferiprone in patients with β-thalassaemia/haemoglobin E, and the present study was aimed at examining this hypothesis. Thirty-one patients with β-thalassaemia/haemoglobin E (20 splenecto-mized and 11 non-splenectomized patients) were enrolled in the study. After an overnight fast, the subjects received a single oral dose of deferiprone 25 mg/kg of body weight. Blood samples were collected pre-dosing and at 15, 30, 45, 60, 90, 120, 180, 240, 300, 360 and 480 minutes after dosing. Urine output was pooled and collected at 0-2, 2-4, 4-8, 8-12 and 12-24 hour intervals. Serum and urine concentrations of deferiprone and its metabolite deferiprone glucuronide were determined using a validated high-performance liquid chromatography method. Serum deferiprone-chelated iron and UIE were determined using a validated colourimetric method. No significant difference in the pharmacokinetic parameters of non-conjugated deferiprone was observed between splenectomized and non-splenectomized patients. However, the maximum serum concentration (C max ) and the area under the serum concentration-time curve (AUC) from time zero to infinity (AUC∞) values of deferiprone glucuronide were significantly lower (both p values of serum deferiprone-chelated iron, as well as UIE, were significantly higher (p values 7.1 µmol/L, 1645 mmol · min/L and 77.1 mmol, respectively) than in non-splenectomized patients (median values 3.1 µmol/L, 545 mmol · min/L and 12.5 µmol, respectively). Urinary

  14. Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions.

    Science.gov (United States)

    Huang, Fenglin; Xu, Yunfei; Liao, Shiqin; Yang, Dawei; Hsieh, You-Lo; Wei, Qufu

    2013-03-11

    Polyacrylonitrile (PAN) nanofibers were prepared by electrospinning and they were modified with hydroxylamine to synthesize amidoxime polyacrylonitrile (AOPAN) chelating nanofibers, which were applied to adsorb copper and iron ions. The conversion of the nitrile group in PAN was calculated by the gravimetric method. The structure and surface morphology of the AOPAN nanofiber were characterized by a Fourier transform infrared spectrometer (FT-IR) and a scanning electron microscope (SEM), respectively. The adsorption abilities of Cu 2+ and Fe 3+ ions onto the AOPAN nanofiber mats were evaluated. FT-IR spectra showed nitrile groups in the PAN were partly converted into amidoxime groups. SEM examination demonstrated that there were no serious cracks or sign of degradation on the surface of the PAN nanofibers after chemical modification. The adsorption capacities of both copper and iron ions onto the AOPAN nanofiber mats were higher than those into the raw PAN nanofiber mats. The adsorption data of Cu 2+ and Fe 3+ ions fitted particularly well with the Langmuir isotherm. The maximal adsorption capacities of Cu 2+ and Fe 3+ ions were 215.18 and 221.37 mg/g, respectively.

  15. Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions

    Directory of Open Access Journals (Sweden)

    You-Lo Hsieh

    2013-03-01

    Full Text Available Polyacrylonitrile (PAN nanofibers were prepared by electrospinning and they were modified with hydroxylamine to synthesize amidoxime polyacrylonitrile (AOPAN chelating nanofibers, which were applied to adsorb copper and iron ions. The conversion of the nitrile group in PAN was calculated by the gravimetric method. The structure and surface morphology of the AOPAN nanofiber were characterized by a Fourier transform infrared spectrometer (FT-IR and a scanning electron microscope (SEM, respectively. The adsorption abilities of Cu2+ and Fe3+ ions onto the AOPAN nanofiber mats were evaluated. FT-IR spectra showed nitrile groups in the PAN were partly converted into amidoxime groups. SEM examination demonstrated that there were no serious cracks or sign of degradation on the surface of the PAN nanofibers after chemical modification. The adsorption capacities of both copper and iron ions onto the AOPAN nanofiber mats were higher than those into the raw PAN nanofiber mats. The adsorption data of Cu2+ and Fe3+ ions fitted particularly well with the Langmuir isotherm. The maximal adsorption capacities of Cu2+ and Fe3+ ions were 215.18 and 221.37 mg/g, respectively.

  16. Continuous tailoring activities in software engineering

    OpenAIRE

    Ribaud , Vincent; Saliou , Philippe

    2004-01-01

    International audience; Software activities belong to different processes. Tailoring software processes aims to relate the operational software processes of an organization to the effective project. With the information technology industry moving ever faster, established positions are undergoing constant evolutionary change. The failure of a complex tailoring process of a management information system is reported. There is a need to adopt software processes that can operate under constant cha...

  17. The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

    Energy Technology Data Exchange (ETDEWEB)

    Mark L. Wells; Mary Jane Perry; William P. Cochlan; Charles G. Trick

    2006-11-18

    The central hypothesis of this project is that natural iron-complexing organic ligands in seawater differentially regulate iron availability to large (microplankton) and small (nano and picoplankton) class of phytoplankton and thereby strongly influence the potential carbon sequestration in High Nitrate Low Chlorophyll (HNLC) regions of the ocean. The primary project goals are to: 1) determine how different natural and synthetic Fe chelators affect Fe availability to phytoplankton species that are representative of offshore HNLC waters, 2) elucidate how the changes in absolute concentrations of these chelators affect the longer-term ecosystem response to alleviation of Fe limitation, and 3) ascertain how changes in the ligand composition affect rates of cell sinking and aggregation - representative measures of the efficiency of carbon sequestration to the deep.

  18. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.D.

    1991-01-01

    The biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins and lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX. Insertion of iron leads to heme, while insertion of magnesium leads to chlorophyll. The Mg-chelatase from intact cucumber chloroplasts has been characterized with regard to substrate specificity, regulation, ATP requirement, and a requirement for intact chloroplasts. Mg-chelatase was isolated from maize, barley and peas and characterized in order to circumvent the intact chloroplast requirement of cucumber Mg-chelatase. Pea Mg-chelatase activity is higher than cucumber Mg-chelatase activity, and lacks the requirement for intact chloroplasts. Studies on isolated pea Mg-chelatase have shown more cofactors are required for the reaction than are seen with ferrochelatase, indicating a greater opportunity for regulatory control of this pathway. Two of the cofactors are proteins, and there appears to be a requirement for a protease-sensitive component which is outside the outer envelope. We are developing a continuous spectrophotometric assay for Mg-chelatase activity, and an assay for free heme which has shown heme efflux from intact chloroplasts. 18 refs. (MHB)

  19. Hepatoprotective Potential of Caesalpinia crista against Iron-Overload-Induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Rhitajit Sarkar

    2012-01-01

    Full Text Available The present study was carried out to evaluate the ameliorating effect of Caesalpinia crista Linn. (CCME extract on iron-overload-induced liver injury. Iron overload was induced by intraperitoneal administration of iron dextran into mice. CCME attenuated the percentage increase in liver iron and serum ferritin levels when compared to control group. CCME also showed a dose-dependent inhibition of lipid peroxidation, protein oxidation, and liver fibrosis. The serum enzyme markers were found to be less, whereas enhanced levels of liver antioxidant enzymes were detected in CCME-treated group. In presence of CCME, the reductive release of ferritin iron was increased significantly. Furthermore, CCME exhibited DPPH radical scavenging and protection against Fe2+-mediated oxidative DNA damage. The current study confirmed the hepatoprotective effect of CCME against the model hepatotoxicant iron overload and the activity is likely related to its potent antioxidant and iron-chelating property.

  20. Biodegradation of synthetic chelates in subsurface sediments from the southeast coastal plain

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, H. Jr.; Li, S.W.; Workman, D.J.; Girvin, D.C. (Pacific Northwest Lab., Richland, WA (United States))

    The codisposal of synthetic chelating agents [e.g., ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and nitrilotriacetic acid (NTA)] and radionuclides has been implicated in increased radionuclide transport in the subsurface environment. Microbial transformations of chelates in the subsurface are currently unknown, but could influence chelate persistence and thus alter the transport of radionuclides. Surface soil and subsurface sediments from five formations (36- to 376-m depth) were collected near Allendale, SC. Aerobic mineralization of [sup 14]C-labeled EDTA, DTPA, and NTA occurred in select sediments indicating that subsurface microorganisms can degrade chelates, whereas chelates may be relatively stable in strata where limited mineralization occurred. The chelates were not mineralized more rapidly or to a greater extent in the surface soil than in the subsurface sediments. The relative order of chelate persistence was EDTA > DTPA > NTA, with the maximum amount mineralized during 115 d at 15, 26, and 43%, respectively. Maximum mineralization of all three chelates did not occur in the same sediment, indicating that different microbial populations were responsible for the degradation of each chelate. Mineralization of chelates was minimal under denitrifying conditions and was reduced when additional soluble C was added. There was no relationship between chelate mineralization and the adsorption of chelates to sediments or the aqueous speciation of the chelates. 47 refs., 4 figs., 3 tabs.

  1. Uptake and incorporation of iron in sugar beet chloroplasts.

    Science.gov (United States)

    Solti, Adám; Kovács, Krisztina; Basa, Brigitta; Vértes, Attila; Sárvári, Eva; Fodor, Ferenc

    2012-03-01

    Chloroplasts contain 80-90% of iron taken up by plant cells. Though some iron transport-related envelope proteins were identified recently, the mechanism of iron uptake into chloroplasts remained unresolved. To shed more light on the process of chloroplast iron uptake, trials were performed with isolated intact chloroplasts of sugar beet (Beta vulgaris). Iron uptake was followed by measuring the iron content of chloroplasts in the form of ferrous-bathophenantroline-disulphonate complex after solubilising the chloroplasts in reducing environment. Ferric citrate was preferred to ferrous citrate as substrate for chloroplasts. Strong dependency of ferric citrate uptake on photosynthetic electron transport activity suggests that ferric chelate reductase uses NADPH, and is localised in the inner envelope membrane. The K(m) for iron uptake from ferric-citrate pool was 14.65 ± 3.13 μM Fe((III))-citrate. The relatively fast incorporation of (57)Fe isotope into Fe-S clusters/heme, detected by Mössbauer spectroscopy, showed the efficiency of the biosynthetic machinery of these cofactors in isolated chloroplasts. The negative correlation between the chloroplast iron concentration and the rate of iron uptake refers to a strong feedback regulation of the uptake. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Iron Stress-Induced Changes in Root Epidermal Cell Fate Are Regulated Independently from Physiological Responses to Low Iron Availability1

    Science.gov (United States)

    Schikora, Adam; Schmidt, Wolfgang

    2001-01-01

    Iron-overaccumulating mutants were investigated with respect to changes in epidermal cell patterning and root reductase activity in response to iron starvation. In all mutants under investigation, ferric chelate reductase activity was up-regulated both in the presence and absence of iron in the growth medium. The induction of transfer cells in the rhizodermis appeared to be iron regulated in the pea (Pisum sativum L. cv Dippes Gelbe Viktoria and cv Sparkle) mutants bronze and degenerated leaflets, but not in roots of the tomato (Lycopersicon esculentum Mill. cv Bonner Beste) mutant chloronerva, suggesting that in chloronerva iron cannot be recognized by putative sensor proteins. Experiments with split-root plants supports the hypothesis that Fe(III) chelate reductase is regulated by a shoot-borne signal molecule, communicating the iron status of the shoot to the roots. In contrast, the formation of transfer cells was dependent on the local concentration of iron, implying that this shoot signal does not affect their formation. Different repression curves of the two responses imply that the induction of transfer cells occurs after the enhancement of electron transfer across the plasma membrane rather than being causally linked. Similar to transfer cells, the formation of extra root hairs in the Arabidopsis mutant man1 was regulated by the iron concentration of the growth medium and was unaffected by interorgan signaling. PMID:11299349

  3. IRON REDUCTASE SYSTEMS ON THE PLANT PLASMA-MEMBRANE - A REVIEW

    NARCIS (Netherlands)

    MOOG, PR; BRUGGEMANN, W

    1994-01-01

    Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is

  4. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    Science.gov (United States)

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  5. Metal chelates of azo-pyridazine dyes Chelating tendencies of benzoylacetone-monohydrazone-3-hydrazino-4-benzyl-6-phenylpyridazine (bahp).

    Science.gov (United States)

    Ramadan, A A; Seada, M H; Rizkalla, E N

    1983-04-01

    The synthesis, acid-base equilibria and metal-ion chelating tendencies of BAHP are reported. From potentiometric equilibrium measurements of hydrogen-ion concentration at 30 degrees and ionic strength 0.10M (KNO(3)), in 75% dioxan-water medium, the values of the stability constants of some BAHP complexes with transition, non-transition and lanthanide ions have been evaluated. Probable structures of the metal chelates are inferred from the electronic absorption spectra and infrared examination of the solid copper complex. The use of BAHP as an analytical reagent for the spectrophotometric determination of copper, nickel and cobalt ions is discussed.

  6. Deferasirox for managing iron overload in people with myelodysplastic syndrome.

    Science.gov (United States)

    Meerpohl, Joerg J; Schell, Lisa K; Rücker, Gerta; Fleeman, Nigel; Motschall, Edith; Niemeyer, Charlotte M; Bassler, Dirk

    2014-10-28

    The myelodysplastic syndrome (MDS) comprises a diverse group of haematopoietic stem cell disorders. Due to symptomatic anaemia, most people with MDS require supportive therapy including repeated red blood cell (RBC) transfusions. In combination with increased iron absorption, this contributes to the accumulation of iron resulting in secondary iron overload and the risk of organ dysfunction and reduced life expectancy. Since the human body has no natural means of removing excess iron, iron chelation therapy, i.e. the pharmacological treatment of iron overload, is usually recommended. However, it is unclear whether or not the newer oral chelator deferasirox leads to relevant benefit. To evaluate the effectiveness and safety of oral deferasirox for managing iron overload in people with myelodysplastic syndrome (MDS). We searched the following databases up to 03 April 2014: MEDLINE, EMBASE, The Cochrane Library, Biosis Previews, Web of Science, Derwent Drug File and four trial registries: Current Controlled Trials (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), ICTRP (www.who.int./ictrp/en/), and German Clinical Trial Register (www.drks.de). Randomised controlled trials (RCTs) comparing deferasirox with no therapy, placebo or with another iron-chelating treatment schedule. We did not identify any trials eligible for inclusion in this review. No trials met our inclusion criteria. However, we identified three ongoing and one completed trial (published as an abstract only and in insufficient detail to permit us to decide on inclusion) comparing deferasirox with deferoxamine, placebo or no treatment. We planned to report evidence from RCTs that evaluated the effectiveness of deferasirox compared to either placebo, no treatment or other chelating regimens, such as deferoxamine, in people with MDS. However, we did not identify any completed RCTs addressing this question.We found three ongoing and one completed RCT (published as an abstract only and

  7. Spondias pinnata stem bark extract lessens iron overloaded liver toxicity due to hemosiderosis in Swiss albino mice.

    Science.gov (United States)

    Hazra, Bibhabasu; Sarkar, Rhitajit; Mandal, Nripendranath

    2013-01-01

    The present study was designed to evaluate the ameliorating effect of 70% methanol extract of Spondias pinnata (SPME) on iron overload induced liver injury. Iron overload was induced by intraperitoneal administration of iron-dextran into mice and resulting liver damage was manifested by significant rise in serum enzyme markers (ALT, AST, ALP and bilirubin) and reduction in liver antioxidants (SOD, CAT, GST and GSH). Hepatic iron, serum ferritin, lipid peroxidation, protein carbonyl and hydroxyproline contents were measured in response to the oral administration of SPME of different doses (50, 100 and 200 mg/kg body weight). In order to determine the efficiency as iron chelating drug, the release of iron from ferritin by SPME was further studied. Enhanced levels of antioxidant enzymes were detected in SPME treated mice. SPME produced a dose dependent inhibition of lipid peroxidation, protein oxidation, liver fibrosis; and levels of serum enzyme markers and ferritin were also reduced dose dependently. The liver iron content was also found to be less in SPME treated group compared to control group. The reductive release of ferritin iron was augmented significantly after dose dependent addition of SPME. The ameliorating effect of SPME on damaged liver was furthermore supported by the histopathological studies that showed improved histological appearances. In conclusion, the present results demonstrate the hepatoprotective efficiency of SPME in iron intoxicated mice, and hence possibly useful as iron chelating drug for iron overload diseases.

  8. Metal chelate conjugated monoclonal antibodies, wherein the metal is an α emitter

    International Nuclear Information System (INIS)

    Gansow, O.A.; Strand, M.

    1984-01-01

    Methods of manufacturing and purifying metal chelate conjugated monoclonal antibodies are described, wherein the chelated metal emits alpha radiation. The conjugates are suited for therapeutic uses being substantially free of nonchelated radiometal. (author)

  9. Iron-regulated proteins (IRPS of leptospira biflexa serovar Patoc strain Patoc I

    Directory of Open Access Journals (Sweden)

    Sritharan M

    2004-01-01

    Full Text Available BACKGROUND: Iron deficiency has been shown to induce the expression of siderophores and their receptors, the iron-regulated membrane proteins in a number of bacterial systems. In this study, the response of Leptospira biflexa serovar Patoc strain Patoc I to conditions of iron deprivation was assessed and the expression of siderophores and iron-regulated proteins is reported. MATERIALS AND METHODS: Two methods were used for establishing conditions of iron deprivation. One method consisted of addition of the iron chelators ethylenediamine-N, N′-diacetic acid (EDDA and ethylenediamine di-o-hydroxyphenylacetic acid (EDDHPA and the second method involved the addition of iron at 0.02 µg Fe/mL. Alternatively, iron sufficient conditions were achieved by omitting the chelators in the former method and adding 4 µg Fe/mL of the medium in the latter protocol. Triton X-114 extraction of the cells was done to isolate the proteins in the outer membrane (detergent phase, periplasmic space (aqueous phase and the protoplasmic cylinder (cell pellet. The proteins were subjected to SDS-PAGE for analysis. RESULTS: In the presence of the iron-chelators, four iron-regulated proteins (IRPs of apparent molecular masses of 82, 64, 60 and 33 kDa were expressed. The 82-kDa protein was seen only in the aqueous phase, while the other three proteins were seen in both the aqueous and detergent fractions. These proteins were not identified in organisms grown in the absence of the iron chelators. The 64, 60 and the 33 kDa proteins were also demonstrated in organisms grown in media with 0.02 µg Fe/mL. In addition, a 24 kDa protein was found to be down-regulated at this concentration of iron as compared to the high level of expression in organisms grown with 4 µg Fe/mL. The blue CAS agar plates with top agar containing 0.02µg Fe/mL showed a colour change to orange-red. CONCLUSION: The expression of siderophores and iron-regulated proteins under conditions of iron deprivation

  10. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  11. Ruthenium complexes of chelating amido-functionalized N ...

    Indian Academy of Sciences (India)

    Ruthenium complexes of chelating amido-functionalized N-heterocyclic carbene ligands: Synthesis, structure and DFT studies. SACHIN KUMARa, ANANTHA NARAYANANa, MITTA NAGESWAR RAOa,. MOBIN M SHAIKHb and PRASENJIT GHOSHa,∗. aDepartment of Chemistry and bNational Single Crystal X-ray ...

  12. Anti-inflammatory activity of some copper chelates

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, J.R.J.

    1974-01-01

    With the observation that cupric acetate had anti-inflammatory activity in the foot edema model of inflammation, it was felt that copper may play a role as a component of the active metabolite of anti-inflammatory agents used clinically. To test this hypothesis, various Cu chelates were made and tested in the foot edema, cotton-wad granuloma and polyarthritis models of inflammation. A marked increase in anti-inflammatory activity has been observed for the Cu chelates of chelating agents that had no anti-inflammatory activity as well as those that have been used clinically. Since ulcers may be viewed as inflammatory processes and often associated with the arthritic disease syndrome, the Cu chelates were evaluated as anti-ulcer agents. These compounds were demonstrated to have anti-ulcer activity in the Shay as well as the corticoid and stress induced rat ulcer models. Mechanistic considerations relevant to lysosomal and digestive proteolytic enzyme inhibition, anti-cholinergic activity, prostaglandin synthesis and wound healing are discussed. 9 references, 3 figures, 3 tables.

  13. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  14. Chelating ligands: enhancers of quality and purity of biogas ...

    African Journals Online (AJOL)

    The quality of biogas depends largely on the percentage of methane and hydrogen sulphide gas present. High concentration of hydrogen sulphide results in low quality biogas. This work employed the use of chelating ligands in scrubbing hydrogen sulphide gas while improving the yield of methane gas. Experimental ...

  15. Anti-Oxidative, Metal Chelating and Radical Scavenging Effects of ...

    African Journals Online (AJOL)

    Purpose: To evaluate protein hydrolysates and membrane ultrafiltration fractions of blue-spotted stingray for metal chelating and radical scavenging activities, as well as protection against oxidative protein damage. Methods: Stingray protein isolates were hydrolysed with alcalase, papain and trypsin for 3 h. Alcalase.

  16. Sequestration of zinc oxide by fimbrial designer chelators

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Sørensen, Jack K; Schembri, Mark

    2000-01-01

    Type 1 fimbriae are surface organelles of Escherichia coli. By engineering a structural component of the fimbriae, FimH, to display a random peptide library, we were able to isolate metal-chelating bacteria. A library consisting of 4 x 10(7) independent clones was screened for binding to Zn...

  17. Protective effect of some chelating agents and antioxidants on the ...

    African Journals Online (AJOL)

    Background: Heavy metals that normally cause problems are mercury (HgCl2) and lead acetate (LA). Chelating and inhibitor agents are the target to treat and overcome metal toxicity. The current study has been carried out to evaluate the protective effects of N-acetyl cysteine (NAC) and meso 2,3 dimercaptosuccinic acid ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, ... can help prevent overdosing in children. Because recent research supports concerns that iron deficiency during infancy and ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. ... other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  2. Iron-Deficiency Anemia

    Science.gov (United States)

    ... Home / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drawings also can cause iron-deficiency anemia. Poor Diet The best sources of iron are meat, poultry, ... more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat the ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... The best sources of iron are meat, poultry, fish, and iron-fortified foods (foods that have iron ... you: Follow a diet that excludes meat and fish, which are the best sources of iron. However, ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  10. Iron-Deficiency Anemia

    Science.gov (United States)

    ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. ... Treatment may need to be done in a hospital. The goals of treating iron-deficiency anemia are ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat sources ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  19. Clinical outcomes of transfusion-associated iron overload in patients with refractory chronic anemia

    Directory of Open Access Journals (Sweden)

    Gao C

    2014-04-01

    Full Text Available Chong Gao, Li Li, Baoan Chen, Huihui Song, Jian Cheng, Xiaoping Zhang, Yunyu SunDepartment of Hematology and Oncology, Key Department of Jiangsu Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People’s Republic of ChinaBackground: The purpose of this study was to evaluate the clinical outcomes of transfusion-associated iron overload in patients with chronic refractory anemia.Methods: Clinical manifestations, main organ function, results of computed tomography (CT, endocrine evaluation, and serum ferritin levels were analyzed retrospectively in 13 patients who were transfusion-dependent for more than 1 year (receiving >50 units of red blood cells to determine the degree of iron overload and efficacy of iron-chelating therapy.Results: Serum ferritin levels increased to 1,830–5,740 ng/mL in all patients. Ten patients had abnormal liver function. The CT Hounsfield units in the liver increased significantly in eleven patients, and were proportional to their serum ferritin levels. Skin pigmentation, liver dysfunction, and endocrine dysfunction were observed in nine patients with serum ferritin >3,500 ng/mL, eight of whom have since died. Interestingly, serum ferritin levels did not decrease significantly in nine transfusion-dependent patients who had received 15–60 days of iron-chelating therapy.Conclusion: Transfusion-dependent patients may progress to secondary iron overload with organ impairment, which may be fatal in those who are heavily iron-overloaded. The CT Hounsfield unit is a sensitive indicator of iron overload in the liver. Iron chelation therapy should be initiated when serum ferritin is >1,000 ng/mL and continued until it is <1,000 ng/mL in transfusional iron-overloaded patients.Keywords: anemia, aplastic, iron overload, myelodysplastic syndromes

  20. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  1. Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) Flour and Legume Fractions.

    Science.gov (United States)

    Luo, Yu-Wei; Xie, Wei-Hua; Cui, Qun-Xiang

    2010-02-24

    Simulations of gastrointestinal digestion were used to try to identify the nature of the complexes between antinutritional factors and iron and zinc in faba bean and legume fractions. In digestible residue of raw faba bean flour, simultaneous action of cellulase and phytases made it possible to release about 28% units more iron than that released with the treatment without enzymes. About 49.8% of iron in raw faba bean flour was solubilized after in vitro digestion and simultaneous action of cellulase and phytase. In the hull fraction, the action of phytases and the simultaneous action of cellulase and phytase allowed about 7 and 35% units of additional zinc to be solubilized, respectively. Single enzymatic degradation of phytates from dehulled faba bean allowed solubilization from 65 to 93% of zinc, depending upon the treatment. In dehulled faba bean, iron was chelated by phytates and by fibers, whereas zinc was almost exclusively chelated by phytates. In the hull of faba bean, a high proportion of iron was chelated by iron-tannins, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers.

  2. Metabolic changes of iron uptake in N(2)-fixing common bean nodules during iron deficiency.

    Science.gov (United States)

    Slatni, Tarek; Vigani, Gianpiero; Salah, Imen Ben; Kouas, Saber; Dell'Orto, Marta; Gouia, Houda; Zocchi, Graziano; Abdelly, Chedly

    2011-08-01

    Iron is an important nutrient in N(2)-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H(+)-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H(+)-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H(+)-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Antioxidant effects of coumarins include direct radical scavenging, metal chelation and inhibition of ROS-producing enzymes.

    Science.gov (United States)

    Filipský, Tomáš; Říha, Michal; Macáková, Kateřina; Anzenbacherová, Eva; Karlíčková, Jana; Mladěnka, Přemysl

    2015-01-01

    Coumarins represent a large group of 1,2-benzopyrone derivatives which have been identified in many natural sources and synthetized as well. Several studies have shown that their antioxidant capacity is not based only on direct scavenging of reactive oxygen and nitrogen species (RONS) but other mechanisms are also involved. These include: a) the chelation of transient metals iron and copper, which are known to catalyse the Fenton reaction; and b) the inhibition of RONS-producing enzymes (e.g. xanthine oxidase, myeloperoxidase and lipoxygenase), suggesting that mechanism(s) involved on cellular level are complex and synergistic. Moreover, many factors must be taken into account when analysing structure-antioxidant capacity relationships of coumarins due to different in vitro/in vivo methodological approaches. The structural features necessary for the direct RONS scavenging and metal chelation are apparently similar and the ideal structures are 6,7-dihydroxy- or 7,8-dihydroxycoumarins. However, the clinical outcome is unknown, because these coumarins are able to reduce copper and iron, and may thus paradoxically potentiate the Fenton chemistry. The similar structural features appear to be associated with inhibition of lipoxygenase, probably due to interference with iron in its active site. Contrarily, 6,7-dihydroxycoumarin seems to be the most active coumarin in the inhibition of xanthine oxidase while its derivative bearing the 4-methyl group or 7,8-dihydroxycoumarin are less active or inactive. In addition, coumarins may hinder the induction of inducible NO-synthase and cyclooxygenase- 2. Sparse data on inhibition of myeloperoxidase do not enable any clear conclusion, but some coumarins may block it.

  4. Chelator induced phytoextraction and in situ soil washing of Cu

    Energy Technology Data Exchange (ETDEWEB)

    Kos, Bostjan; Lestan, Domen

    2004-11-01

    In a soil column experiment, we investigated the effect of 5 mmol kg{sup -1} soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg{sup -1} Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8{+-}1.3 mg kg{sup -1} Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg{sup -1} exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53{+-}0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates.

  5. The protection conferred by chelation therapy in post-MI diabetics might be replicated by high-dose zinc supplementation.

    Science.gov (United States)

    McCarty, Mark F; DiNicolantonio, James J

    2015-05-01

    The recent Trial to Assess Chelation Therapy (TACT) study, enrolling subjects who had previously experienced a myocardial infarction, has provided strong evidence that intravenous chelation therapy can markedly reduce risk for mortality and vascular events in diabetics, whereas no discernible benefit was observed in non-diabetics. It has plausibly been suggested that this reflects a role for transition metal ions--iron or copper--in the genesis of advanced glycation end products, key mediators of diabetic complications that can destabilize plaque. Since phlebotomy therapy fails to prevent vascular events in diabetics, we hypothesize that labile copper may be the chief culprit whose removal by chelation mediated the benefit observed in TACT. If so, strategies less time and labor intensive than chelation therapy might provide comparable benefit. A number of recent studies report that the copper-specific orally-active chelator trientine can reduce risk for range of diabetic complications in rodents; a clinical trial with this agent demonstrated some decrease in left ventricular mass in diabetics with ventricular hypertrophy. However, until this agent becomes less expensive, supplementation with high-dose zinc may represent a more feasible alternative. Zinc opposes the absorption and redox activity of copper via induction of the antioxidant protein metallothionein, which binds copper tightly. A great many studies demonstrate that increased expression of metallothionein decreases risk for tissue damage in diabetic rodents, and in some of these studies metallothionein expression was boosted by supplemental zinc. Zinc supplementation also modestly improves glycemic control in type 2 diabetics, and might reduce risk for diabetes by protecting pancreatic beta cells from oxidative stress. A long term study assessing the impact of supplementing diabetics with high-dose zinc, assessing risk for mortality, vascular events, and diabetic complications, may be warranted. Histidine

  6. Use of deferiprone for the treatment of hepatic iron storage disease in three hornbills.

    Science.gov (United States)

    Sandmeier, Peter; Clauss, Marcus; Donati, Olivio F; Chiers, Koen; Kienzle, Ellen; Hatt, Jean-Michel

    2012-01-01

    3 hornbills (2 Papua hornbills [Aceros plicatus] and 1 longtailed hornbill [Tockus albocristatus]) were evaluated because of general listlessness and loss of feather glossiness. Because hepatic iron storage disease was suspected, liver biopsy was performed and formalin-fixed liver samples were submitted for histologic examination and quantitative image analysis (QIA). Additional frozen liver samples were submitted for chemical analysis. Birds also underwent magnetic resonance imaging (MRI) under general anesthesia for noninvasive measurement of liver iron content. Serum biochemical analysis and analysis of feed were also performed. Results of diagnostic testing indicated that all 3 hornbills were affected with hepatic iron storage disease. The iron chelator deferiprone was administered (75 mg/kg [34.1 mg/lb], PO, once daily for 90 days). During the treatment period, liver biopsy samples were obtained at regular intervals for QIA and chemical analysis of the liver iron content and follow-up MRI was performed. In all 3 hornbills, a rapid and large decrease in liver iron content was observed. All 3 methods for quantifying the liver iron content were able to verify the decrease in liver iron content. Orally administered deferiprone was found to effectively reduce the liver iron content in these 3 hornbills with iron storage disease. All 3 methods used to monitor the liver iron content (QIA, chemical analysis of liver biopsy samples, and MRI) had similar results, indicating that all of these methods should be considered for the diagnosis of iron storage disease and monitoring of liver iron content during treatment.

  7. Styrene-divinylbenzene copolymers loaded with organophosphorus chelating agents for rare earths separation

    International Nuclear Information System (INIS)

    Barbosa, Celina C.R.; Teixeira, Viviane G.; Coutinho, Fernanda M.B.

    1998-01-01

    Styrene-divinylbenzene copolymers used in extraction chromatography were synthesized in presence of selective chelating agents for rare earths: DEHPA, bis (2-ethylhexyl) phosphoric acid, and EHEHPA, bis (2-ethylhexyl) phosphonic acid. The copolymers were prepared by suspension polymerization technique using the pure chelating agents and its mixture with toluene (TOL) as diluents. The influence of synthesis conditions such as chelating agent/TOL ratios, dilution degree of monomers and amount of DVB on the porous structure of the copolymers were studied. The porous structure was characterized by the apparent density, fixed pore volume, surface area and by optical and scanning electron microscopy. The performance of the copolymers in the separation process of rare earths was evaluated. The total chelating capacity of each copolymer and the chelating kinetics in relation to gadolinium ion were determined. The chelating agent content of the copolymers depend on the amount of chelating agents employed in the synthesis. The highest amount of chelating agent that can be used in the synthesis in order to produce copolymers with high chelating capacity and good mechanical properties was determined. The total chelating capacity varied with the content of the chelating agents in the copolymer and the chelating kinetics was dependent mainly on the pore diameter, because this parameter determines the diffusion rate of the ions though the copolymer structure. (author)

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  9. IRON DOME

    African Journals Online (AJOL)

    Automated precise guided missile defence has been around for some years, and is a modern-day mechanism used frequently since 2011 to defend against rocket attacks penetrating national airspace. Israel's automated Iron Dome. Missile Defence System has intercepted over 1 000 rockets during two recent.

  10. The Economy of Persistence: Mario the Tailor

    Directory of Open Access Journals (Sweden)

    Prudence Black

    2016-03-01

    Full Text Available Mario Conte has had a tailor shop in King Street, Newtown since the mid 1960s. Taking an interview with Mario as its point of departure, this article describes the persistence of a skilled worker whose practices and techniques remain the same in a world that has long changed. While inattentive to what rules might be used to decorate a shop window, Mario continues to make and sew in the way that he learnt in post-war Italy. Mario’s persistence could be described as all the skills and other elements that need to be in place to keep him working, in particular the tradition of tailoring techniques he has remained true to over the last fifty years. The hand stitching of his tailoring is like a metronome of that persistence.

  11. Tailored Codes for Small Quantum Memories

    Science.gov (United States)

    Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.

    2017-12-01

    We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.

  12. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  13. Iron bioavailability from commercially available iron supplements.

    Science.gov (United States)

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-12-01

    Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including three liquid-based supplements. Iron bioavailability was measured using Caco-2 cells with ferritin formation as a surrogate marker for iron uptake. Statistical analysis was performed using one-way ANOVA followed by either Dunnett's or Tukey's multiple comparisons tests. Spatone Apple(®) (a naturally iron-rich mineral water with added ascorbate) and Iron Vital F(®) (a synthetic liquid iron supplement) had the highest iron bioavailability. There was no statistical difference between iron uptake from ferrous sulphate tablets, Spatone(®) (naturally iron-rich mineral water alone) and Pregnacare Original(®) (a multimineral/multivitamin tablet). In our in vitro model, naturally iron-rich mineral waters and synthetic liquid iron formulations have equivalent or better bioavailability compared with ferrous iron sulphate tablets. If these results are confirmed in vivo, this would mean that at-risk groups of IDA could be offered a greater choice of more bioavailable and potentially better tolerated iron preparations.

  14. Iron transport and storage in the coccolithophore: Emiliania huxleyi.

    Science.gov (United States)

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.

  15. The diverse roles of FRO family metalloreductases in iron and copper homeostasis.

    Science.gov (United States)

    Jain, Anshika; Wilson, Grandon T; Connolly, Erin L

    2014-01-01

    Iron and copper are essential for plants and are important for the function of a number of protein complexes involved in photosynthesis and respiration. As the molecular mechanisms that control uptake, trafficking and storage of these nutrients emerge, the importance of metalloreductase-catalyzed reactions in iron and copper metabolism has become clear. This review focuses on the ferric reductase oxidase (FRO) family of metalloreductases in plants and highlights new insights into the roles of FRO family members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The resulting ferrous iron is subsequently transported across the plasma membrane of root epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two other members of the FRO family (FRO4 and FRO5) function redundantly to reduce copper to facilitate its uptake from the soil. In addition, FROs appear to play important roles in subcellular compartmentalization of iron as FRO7 is known to contribute to delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies have underscored the importance of plasma membrane-localized ferric reductase activity in leaves for photosynthetic efficiency. Taken together, these studies highlight a number of diverse roles for FROs in both iron and copper metabolism in plants.

  16. The diverse roles of FRO family metalloreductases in iron and copper homeostasis

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2014-03-01

    Full Text Available Iron and copper are essential for plants and are important for the function of a number of protein complexes involved in photosynthesis and respiration. As the molecular mechanisms that control uptake, trafficking and storage of these nutrients emerge, the importance of metalloreductase-catalyzed reactions in iron and copper metabolism has become clear. This review focuses on the FRO family of metalloreductases in plants and highlights new insights into the roles of FRO family members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The resulting ferrous iron is subsequently transported across the plasma membrane of root epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two other members of the FRO family (FRO4 and FRO5 function redundantly to reduce copper to facilitate its uptake from the soil. In addition, FROs appear to play important roles in subcellular compartmentalization of iron as FRO7 is known to contribute to delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies have underscored the importance of plasma membrane-localized ferric reductase activity in leaves for photosynthetic efficiency. Taken together, these studies highlight a number of diverse roles for FROs in both iron and copper metabolism in plants.

  17. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Gulzar, A. [Materials Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ali, G. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Mahmood, M. [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Ajmal, M. [Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore (Pakistan)

    2009-07-30

    Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe{sub 3}C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.

  18. Coordination Chemistry of Microbial Iron Transport.

    Science.gov (United States)

    Raymond, Kenneth N; Allred, Benjamin E; Sia, Allyson K

    2015-09-15

    This Account focuses on the coordination chemistry of the microbial iron chelators called siderophores. The initial research (early 1970s) focused on simple analogs of siderophores, which included hydroxamate, catecholate, or hydroxycarboxylate ligands. The subsequent work increasingly focused on the transport of siderophores and their microbial iron transport. Since these are pseudo-octahedral complexes often composed of bidentate ligands, there is chirality at the metal center that in principle is independent of the ligand chirality. It has been shown in many cases that chiral recognition of the complex occurs. Many techniques have been used to elucidate the iron uptake processes in both Gram-positive (single membrane) and Gram-negative (double membrane) bacteria. These have included the use of radioactive labels (of ligand, metal, or both), kinetically inert metal complexes, and Mössbauer spectroscopy. In general, siderophore recognition and transport involves receptors that recognize the metal chelate portion of the iron-siderophore complex. A second, to date less commonly found, mechanism called the siderophore shuttle involves the receptor binding an apo-siderophore. Since one of the primary ways that microbes compete with each other for iron stores is the strength of their competing siderophore complexes, it became important early on to characterize the solution thermodynamics of these species. Since the acidity of siderophores varies significantly, just the stability constant does not give a direct measure of the relative competitive strength of binding. For this reason, the pM value is compared. The pM, like pH, is a measure of the negative log of the free metal ion concentration, typically calculated at pH 7.4, and standard total concentrations of metal and ligand. The characterization of the electronic structure of ferric siderophores has done much to help explain the high stability of these complexes. A new chapter in siderophore science has emerged

  19. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement.

    Science.gov (United States)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.

  20. Kinetic, spectroscopic and chemical modification study of iron release from transferrin; iron(III) complexation to adenosine triphosphate

    International Nuclear Information System (INIS)

    Thompson, C.P.

    1985-01-01

    Amino acids other than those that serve as ligands have been found to influence the chemical properties of transferrin iron. The catalytic ability of pyrophosphate to mediate transferrin iron release to a terminal acceptor is largely quenched by modification non-liganded histine groups on the protein. The first order rate constants of iron release for several partially histidine modified protein samples were measured. A statistical method was employed to establish that one non-liganded histidine per metal binding domain was responsible for the reduction in rate constant. These results imply that the iron mediated chelator, pyrophosphate, binds directly to a histidine residue on the protein during the iron release process. EPR spectroscopic results are consistent with this interpretation. Kinetic and amino acid sequence studies of ovotransferrin and lactoferrin, in addition to human serum transferrin, have allowed the tentative assignment of His-207 in the N-terminal domain and His-535 in the C-terminal domain as the groups responsible for the reduction in rate of iron release. The above concepts have been extended to lysine modified transferrin. Complexation of iron(II) to adenosine triphosphate (ATP) was also studied to gain insight into the nature of iron-ATP species present at physiological pH. 31 P NMR spectra are observed when ATP is presented in large excess

  1. Anti-Proliferative, Antioxidant and Iron-Chelating Properties of the ...

    African Journals Online (AJOL)

    Properties of the Tropical Highland Fern, Phymatopteris triloba (Houtt) Pichi Serm (Family Polypodiaceae). Tsun-Thai ... therapeutic properties of related species P. hastata and P. quasidivaricata suggest that P. ... Phenomenex Gemini 5U C-18 110A column (150. 4.6 mm)(Phenomenex, Torrance, CA, USA). The binary ...

  2. Antioxidant, Iron Chelating and Tyrosinase Inhibitory Activities of Extracts from Talinum triangulare Leach Stem

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Amorim

    2013-07-01

    Full Text Available The aim of this work is to evaluate the antioxidant activity against the radical species DPPH, the reducing capacity against Fe II ions, and the inhibitory activity on the tyrosinase enzyme of the T. triangulare. Hydromethanolic crude extract provided two fractions after the liquid/liquid partition with chloroform. The Folin-Ciocalteu method determined the total phenolic content of the crude extract (CE and the hydromethanolic fraction (Fraction 1, resulting in a concentration of 0.5853 g/100 g for Fraction 1, and 0.1400 g/100 g for the CE. Taking into account the results of the DPPH, the free radical scavenging capacity was confirmed. The formation of complexes with Fe II ions was evaluated by UV/visible spectrometry; results showed that CE has complexing power similar to the positive control (Gingko biloba extract.The inhibitory capacity of samples against the tyrosinase enzyme was determined by the oxidation of L-DOPA, providing IC50 values of 13.3 μg·mL−1 (CE and 6.6 μg·mL−1 (Fraction 1. The values indicate that Fraction 1 was more active and showed a higher inhibitory power on the tyrosinase enzyme than the ascorbic acid, used as positive control. The hydromethanolic extract of T. triangulare proved to have powerful antioxidant activity and to inhibit the tyrosinase enzyme; its potential is increased after the partition with chloroform.

  3. Effects of an oral iron chelator, deferasirox, on advanced hepatocellular carcinoma

    Science.gov (United States)

    Saeki, Issei; Yamamoto, Naoki; Yamasaki, Takahiro; Takami, Taro; Maeda, Masaki; Fujisawa, Koichi; Iwamoto, Takuya; Matsumoto, Toshihiko; Hidaka, Isao; Ishikawa, Tsuyoshi; Uchida, Koichi; Tani, Kenji; Sakaida, Isao

    2016-01-01

    AIM To evaluate the inhibitory effects of deferasirox (DFX) against hepatocellular carcinoma (HCC) through basic and clinical studies. METHODS In the basic study, the effect of DFX was investigated in three hepatoma cell lines (HepG2, Hep3B, and Huh7), as well as in an N-nitrosodiethylamine-induced murine HCC model. In the clinical study, six advanced HCC patients refractory to chemotherapy were enrolled. The initial dose of DFX was 10 mg/kg per day and was increased by 10 mg/kg per day every week, until the maximum dose of 30 mg/kg per day. The duration of a single course of DFX therapy was 28 consecutive days. In the event of dose-limiting toxicity (according to the Common Terminology Criteria for Adverse Events v.4.0), DFX dose was reduced. RESULTS Administration of DFX inhibited the proliferation of hepatoma cell lines and induced the activation of caspase-3 in a dose-dependent manner in vitro. In the murine model, DFX treatment significantly suppressed the development of liver tumors (P < 0.01), and significantly upregulated the mRNA expression levels of hepcidin (P < 0.05), transferrin receptor 1 (P < 0.05), and hypoxia inducible factor-1α (P < 0.05) in both tumor and non-tumor tissues, compared with control mice. In the clinical study, anorexia and elevated serum creatinine were observed in four and all six patients, respectively. However, reduction in DFX dose led to decrease in serum creatinine levels in all patients. After the first course of DFX, one patient discontinued the therapy. We assessed the tumor response in the remaining five patients; one patient exhibited stable disease, while four patients exhibited progressive disease. The one-year survival rate of the six patients was 17%. CONCLUSION We demonstrated that DFX inhibited HCC in the basic study, but not in the clinical study due to dose-limiting toxicities. PMID:27833388

  4. Anti-Proliferative, Antioxidant and Iron-Chelating Properties of the ...

    African Journals Online (AJOL)

    At 500 μg DM/ml, both extracts produced about 40 and 30 % anti-proliferative activity on HeLa cells and K562 cells, respectively. Both extracts had moderate nitric oxide-scavenging and ironchelating activities. The leaf extract half-maximal effective concentration (EC50) value of 0.85 mg/ml (scavenging of superoxide ...

  5. Effects of free and chelated iron on in vitro androgenesis in barley and wheat

    Czech Academy of Sciences Publication Activity Database

    Novotný, J.; Vagera, Jiří; Ohnoutková, Ludmila

    2000-01-01

    Roč. 63, - (2000), s. 35-40 ISSN 0167-6857 R&D Projects: GA ČR GV521/96/K117 Institutional research plan: CEZ:AV0Z5038910 Keywords : ferrous ions * Hordeum vulgare * Triticum aestivum Subject RIV: EF - Botanics Impact factor: 0.444, year: 2000

  6. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus.

    Science.gov (United States)

    Böttger, Lars H; Miller, Eric P; Andresen, Christian; Matzanke, Berthold F; Küpper, Frithjof C; Carrano, Carl J

    2012-10-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood, with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins, while strategy II plants utilize high-affinity, iron-specific, binding compounds called phytosiderophores. In contrast, little is known about the corresponding systems in marine, plant-like lineages, particularly those of multicellular algae (seaweeds). Herein the first study of the iron uptake and storage mechanisms in the brown alga Ectocarpus siliculosus is reported. Genomic data suggest that Ectocarpus may use a strategy I approach. Short-term radio-iron uptake studies verified that iron is taken up by Ectocarpus in a time- and concentration-dependent manner consistent with an active transport process. Upon long-term exposure to (57)Fe, two metabolites have been identified using a combination of Mössbauer and X-ray absorption spectroscopies. These include an iron-sulphur cluster accounting for ~26% of the total intracellular iron pool and a second component with spectra typical of a polymeric (Fe(3+)O(6)) system with parameters similar to the amorphous phosphorus-rich mineral core of bacterial and plant ferritins. This iron metabolite accounts for ~74% of the cellular iron pool and suggests that Ectocarpus contains a non-ferritin but mineral-based iron storage pool.

  7. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  8. LIFE-STYLE SEGMENTATION WITH TAILORED INTERVIEWING

    NARCIS (Netherlands)

    KAMAKURA, WA; WEDEL, M

    The authors present a tailored interviewing procedure for life-style segmentation. The procedure assumes that a life-style measurement instrument has been designed. A classification of a sample of consumers into life-style segments is obtained using a latent-class model. With these segments, the

  9. Tinker Tailor Robot Pi -- The Project

    Science.gov (United States)

    Bianchi, Lynne

    2017-01-01

    Tinker Tailor Robot Pi (TTRP) is an innovative curriculum development project, which started in September 2014. It involves in-service primary and secondary teachers, university academic engineers, business partners and pupils at Key Stages 1, 2 and 3 (ages 5-14). The focus of the work has been to explore how a pedagogy for primary engineering…

  10. Iron and Prochlorococcus

    Science.gov (United States)

    2009-06-01

    facilitate iron transport, store iron, regulate iron homeostasis , and enable acclimation to low iron availability (Andrews et al, 2003). In...Bacterial iron homeostasis . FEMS Microbiology Reviews 27: 215-237. Barbeau K (2006) Photochemistry of Organic Iron(III) Complexing Ligands in Oceanic...Microbiology 145: 1473-1484. Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional

  11. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Christopher C. Thompson

    2011-02-01

    Full Text Available Iron is an essential cofactor in a number of critical biochemical reactions, and as such, its acquisition, storage, and metabolism is highly regulated in most organisms. The obligate intracellular bacterium, Chlamydia trachomatis experiences a developmental arrest when iron within the host is depleted. The nature of the iron starvation response in Chlamydia is relatively uncharacterized because of the likely inefficient method of iron depletion, which currently relies on the compound deferoxamine mesylate (DFO. Inefficient induction of the iron starvation response precludes the identification of iron-regulated genes. This report evaluated DFO with another iron chelator, 2,2’-bipyridyl (Bpdl and presented a systematic comparison of the two across a range of criteria in a single-