WorldWideScience

Sample records for tailings disposal site

  1. Mine tailings disposal

    International Nuclear Information System (INIS)

    Gonzales, P.A.; Adams, B.J.

    1980-06-01

    The hydrologic evaluation of mine tailings disposal sites after they are abandoned is considered in relation to their potential environmental impact on a long term basis. There is a direct relation between the amounts and types of water leaving a disposal site and the severity of the potential damage to the environment. The evaluation of the relative distribution of the precipitation reaching the ground into evaporation, runoff and infiltration is obtained for a selected site and type of tailings material whose characteristics and physical properties were determined in the soils laboratory. A conceptual model of the hydrologic processes involved and the corresponding mathematical model were developed to simulate the physical system. A computer program was written to solve the set of equations forming the mathematical model, considering the physical properties of the tailings and the rainfall data selected. The results indicate that the relative distribution of the precipitation depends on the surface and upper layer of the tailings and that the position of the groundwater table is governed by the flow through the bottom of the profile considered. The slope of the surface of the mass of tailings was found to be one of the principal factors affecting the relative distribution of precipitation and, therefore, the potential pollution of the environment

  2. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    International Nuclear Information System (INIS)

    2013-01-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  3. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  4. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  5. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  6. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    International Nuclear Information System (INIS)

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables

  7. Geomorphic criteria for selecting stable uranium tailings disposal sites in New Mexico. Volume 1. Technical report. Final report

    International Nuclear Information System (INIS)

    Wells, S.G.; Gardner, T.W.

    1985-03-01

    Essential to the disposal of uranium mill tailings in northwestern New Mexico is the geomorphic stability of the disposal site. Geomorphic stability assessment involves 3 steps: (1) evaluating the site's past geomorphic stability by determining the age of the landscape and its associated deposits; (2) quantifying short- and long-term geomorphic processes operating in the site area; and (3) evaluating the impact of mining activity and reclamation on the geomorphic stability of the site area. A heirarchy of geomorphic hazards which might impact a site area include: (1) drainage network extension/channel headcutting, (2) piping and gullying, (3) bank erosion and meander growth, (4) drainage network and channel incision, (5) channel aggradation, and (6) valley floor deposition and wind erosion. All of these processes operate on a scale of meters of change per year over historic time periods. Landscapes which have undergone significant changes in historic and Holocene time periods are valley floors. Valley floors are considered one of the most unstable landscapes for siting of uranium mill tailings

  8. Ground-water contamination near a uranium tailings disposal site in Colorado

    International Nuclear Information System (INIS)

    Goode, D.J.; Wilder, R.J.

    1987-01-01

    Contaminants from uranium tailings disposed of at an active mill in Colorado have seeped into the shallow ground water onsite. This ground water discharges into the Arkansas River Valley through a superposed stream channel cut in the resistant sandstone ridge at the edge of a synclinal basin. In the river valley, seasonal surface-water irrigation has a significant impact on hydrodynamics. Water levels in residential wells fluctuate up to 20 ft and concentrations of uranium, molybdenum, and other contaminants also vary seasonally, with highest concentrations in the Spring, prior to irrigation, and lowest concentrations in the Fall. Results of a simple transient mixing cell model support the hypothesis that lateral ground-water inflow, and not irrigation recharge, is the source of ground-water contamination

  9. 2015 Uranium Mill Tailings Radiation Control Act (UMTRCA) Title ll Annual Report, L-Bar, New Mexico Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Dick [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2015-11-01

    The L-Bar, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 18, 2015. The tailings impoundment was in excellent condition. Erosion and vegetation measurements to monitor the condition of the impoundment cover indicated that no erosion is occurring, and perennial vegetation foliar cover at the measurement plots increased substantially compared to previous years due to above-average precipitation for the year. A short segment of the perimeter fence near the site entrance was realigned in spring 2015 because a gully was undermining the fence corner. Loose fence strands at another location were repaired during the inspection, and a section of fence needs to be realigned to avoid areas affected by deep gullies and sediment deposition. Inspectors identified no other maintenance needs or cause for a follow-up inspection. Groundwater monitoring is required every 3 years. The next monitoring event will be in 2016.

  10. Evaluation of the mill tailings disposal site at the Zirovski vrh uranium mine in Slovenia

    International Nuclear Information System (INIS)

    Begus, T.; Kocevar, M.; Brencic, M.; Likar, B.; Logar, Z.

    2002-01-01

    Uranium mine Zirovski vrh in Slovenia was closed due to economic reasons. After that extensive work on decommission was done. The results of the comparison between three potential sites for mill tailings are presented. The results of the probabilistic approach to the factors of safety and confidence, seismic hazard analysis, hydrogeological models and in the economic evaluation are given. For the common evaluation they were interpreted in the way of UMTRA decision matrix. On the basis of the engineering judgement calculations for the recent status and the status after 1000 years was performed. (author)

  11. Mitigation action plan for remedial action at the Uranium Mill Tailing Sites and Disposal Site, Rifle, Colorado

    International Nuclear Information System (INIS)

    1992-07-01

    The Estes Gulch disposal site is approximately 10 kilometers (6 miles) north of the town of Rifle, off State Highway 13 on Federal land administered by the Bureau of Land Management. The Department of Energy (DOE) will transport the residual radioactive materials (RRM) by truck to the Estes Gulch disposal site via State Highway 13 and place it in a partially below-grade disposal cell. The RRM will be covered by an earthen radon barrier, frost protection layers, and a rock erosion protection layer. A toe ditch and other features will also be constructed to control erosion at the disposal site. After removal of the RRM and disposal at the Estes Gulch site, the disturbed areas at all three sites will be backfilled with clean soils, contoured to facilitate surface drainage, and revegetated. Wetlands areas destroyed at the former Rifle processing sites will be compensated for by the incorporation of now wetlands into the revegetation plan at the New Rifle site. The UMTRA Project Office, supported by the Remedial Action Contractor (RAC) and the Technical Assistance Contractor (TAC), oversees the implementation of the MAP. The RAC executes mitigation measures in the field. The TAC provides monitoring of the mitigation actions in cases where mitigation measures are associated with design features. Site closeout and inspection compliance will be documented in the site completion report

  12. Mitigation action plan for remedial action at the Uranium Mill Tailing Sites and Disposal Site, Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The Estes Gulch disposal site is approximately 10 kilometers (6 miles) north of the town of Rifle, off State Highway 13 on Federal land administered by the Bureau of Land Management. The Department of Energy (DOE) will transport the residual radioactive materials (RRM) by truck to the Estes Gulch disposal site via State Highway 13 and place it in a partially below-grade disposal cell. The RRM will be covered by an earthen radon barrier, frost protection layers, and a rock erosion protection layer. A toe ditch and other features will also be constructed to control erosion at the disposal site. After removal of the RRM and disposal at the Estes Gulch site, the disturbed areas at all three sites will be backfilled with clean soils, contoured to facilitate surface drainage, and revegetated. Wetlands areas destroyed at the former Rifle processing sites will be compensated for by the incorporation of now wetlands into the revegetation plan at the New Rifle site. The UMTRA Project Office, supported by the Remedial Action Contractor (RAC) and the Technical Assistance Contractor (TAC), oversees the implementation of the MAP. The RAC executes mitigation measures in the field. The TAC provides monitoring of the mitigation actions in cases where mitigation measures are associated with design features. Site closeout and inspection compliance will be documented in the site completion report.

  13. Evaluation of liners for a uranium-mill tailings disposal site: a status report

    International Nuclear Information System (INIS)

    Buelt, J.L.; Hale, V.Q.; Barnes, S.M.; Silviera, D.J.

    1981-05-01

    The United States Department of Energy is conducting a program designed to reclaim or stabilize inactive uranium-mill tailings sites. This report presents the status of the Liner Evaluation Program. The purpose of the study was to identify eight prospective lining materials or composites for laboratory testing. The evaluation was performed by 1) reviewing proposed regulatory requirements to define the material performance criteria; 2) reviewing published literature and communicating with industrial and government experts experienced with lining materials and techniques; and 3) characterizing the tailings at three of the sites for calcium concentration, a selection of anions, radionuclides, organic solvents, and acidity levels. The eight materials selected for laboratory testing are: natural soil amended with sodium-saturated montmorillonite (Volclay); locally available clay in conjunction with an asphalt emulsion radon suppression cover; locally available clay in conjunction with a multibarrier radon suppression cover; rubberized asphalt membrane; hydraulic asphalt concrete; chlorosulfonated polyethylene (hypalon) or high-density polyethylene; bentonite, sand and gravel mixture; and catalytic airblown asphalt membrane. The materials will be exposed in test units now being constructed to conditions such as wet/dry cycles, temperature cycles, oxidative environments, ion-exchange elements, etc. The results of the tests will identify the best material for field study. The status report also presents the information gathered during the field studies at Grand Junction, Colorado. Two liners, a bentonite, sand and gravel mixture, and a catalytic airblown asphalt membrane, were installed in a prepared trench and covered with tailings. The liners were instrumented and are being monitored for migration of moisture, radionuclides, and hazardous chemicals. The two liner materials will also be subjected to accelerated laboratory tests for a comparative assessment

  14. Revegetation/rock cover for stabilization of inactive uranium mill tailings disposal sites

    International Nuclear Information System (INIS)

    Beedlow, P.A.; McShane, M.C.; Cadwell, L.L.

    1982-07-01

    Pacific Northwest Laboratory is developing design and performance guidelines for surface stabilization of inactive uranium mill tailings. In this work, vegetation and rock covers are being evaluated for maintaining long-term integrity of impoundment systems. Methods are being developed to estimate erosion rates associated with rock and/or vegetation covers, and to determine the effects of surface treatments on soil moisture. Interactions between surface treatments and barriers (radon and biological) are being studied as well. The product will be a set of guidelines to aid in designing surface covers. This report presents the status of this program and a discussion of considerations pertinent to the application of surface covers to tailings. Test plots located in Grand Junction, Colorado and Waterflow, New Mexico are being used to study: (1) the interactions between vegetation and radon and biological barriers, (2) the effects of surface covers on soil moisture, and (3) the effects of rock covers on vegetation

  15. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  16. Uranium mill tailings storage, use, and disposal problems

    International Nuclear Information System (INIS)

    Hendricks, D.W.

    1977-01-01

    Solid and liquid residues (tailings) containing substantial quantities of naturally occurring radionuclides are produced and stored at all US uranium mill sites. These radioactive wastes are a potential health hazard with the degree of hazard depending largely on the tailings management practices at the individual sites. The principal pathways of potential radiation exposure to man are discussed. A description is presented of some past and current tailings storage practices together with a description of some of the possible problems associated with various stabilization and disposal options. 16 figures

  17. Retention of aqueous {sup 226}Ra fluxes from a sub-aqueous mill tailings disposal at the Bois Noirs site (Loire, France)

    Energy Technology Data Exchange (ETDEWEB)

    Courbet, Christelle; Simonucci, Caroline; Dauzeres, Alexandre; Matray, Jean-Michel [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SRTG/LETIS, B.P. 17, 92262 Fontenay-Aux-Roses (France); Bassot, Sylvain [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SRTG/LAME, B.P. 17, 92262 Fontenay-Aux-Roses (France); Mangeret, Arnaud [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SEDRAN/BRN, B.P. 17, 92262 Fontenay-Aux-Roses (France)

    2013-07-01

    This study focuses on a sub-aqueous mill tailings disposal site located in France (Bois Noirs) where 1.3 million tons of uranium mill sludge (fine tailings fraction < 50 μm) have been disposed since the 60's in a man-made pond below 4 meters of water maintained artificially by a rock-fill dam. A significant attenuation of aqueous {sup 226}Ra activity is observed in ground waters. This paper presents the preliminary modeling work performed for evaluating the role of water-rock interactions on aqueous {sup 226}Ra attenuation through the dam. This modeling attempt, assuming thermodynamic equilibrium, aims at checking the hydrochemical conceptual model developed in a previous study, in which Ra retention through the dam was assumed to most likely result from sorption onto metallic oxide-hydroxides. A 2D coupled reactive transport model was conceived to test this hypothesis over time and identify the measurements required to verify its consistency over the long term. (authors)

  18. Lakeview, Oregon, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management (LM), Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprap was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability

  19. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    International Nuclear Information System (INIS)

    Bostick, Kent; Daniel, Anamary; Pill, Ken; Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana

    2013-01-01

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10 -8 centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated

  20. Assessment of the underground disposal of tailings

    International Nuclear Information System (INIS)

    Hutt, N.M.; Morin, K.A.

    1995-06-01

    The Atomic Energy Control Board (AECB) of Canada is facing the issue of long-term disposal of uranium tailings. One option that has not been examined in sufficient detail for the AECB is the retrieval of tailings from surface impoundments and subsequent placement of those tailings in underground workings of mines. This report is structured like a catalogue of facts and information, with each paragraph presenting some concept, concern, theory, or case study involving the retrieval or placement of tailings. All relevant information, findings, interpretations, conclusions, and recommendations gathered during the course of this study are included. The Table of Contents illustrates the striking number of relevant topics and acts like a flowchart or checklist to ensure that an underground-disposal submission by a mining company has addressed relevant topics. This report explains in detail the implications of disturbing surface-impounded tailings for the purpose of placing only some of the volume underground. The cumulative environmental, safety, and monetary liabilities of such a partial scheme can be discouraging in some cases. (author). 244 refs., 47 tabs., 17 figs

  1. A new procedure for deep sea mining tailings disposal

    NARCIS (Netherlands)

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal

  2. Development of the disposal technology research component of the national uranium tailings program

    International Nuclear Information System (INIS)

    Melis, L.A.

    1983-03-01

    The National Technical Planning Group on Uranium Tailings Research, organized by CANMET in 1980, recommended the establishment of a National Uranium Tailings Program to develop research on the long-term abandonment of uranium mine tailings. This report deals with the disposal technology component of this program and attempts to provide recommendations with respect to potential research avenues in this area. A description of uranium tailings in Canada is provided in order to identify the current situation with uranium tailings management. Uranium mining sites described include the Elliot Lake and Bancroft area of Ontario, the northern Saskatchewan properties and the two abandoned sites in the North West Territories. The description of the sites was facilitated by subdividing the tailings into inactive sites, active sites, new tailings sites and areas of tailings in a close-out situation. Methods identified as promising include subsurface disposal, in-situ leaching, prevention of pyrite oxidation and reclamation studies at abandoned sites

  3. Canadian experience with uranium tailings disposal

    International Nuclear Information System (INIS)

    Culver, K.B.

    1982-06-01

    During the first years of uranium production in Canada uranium tailings were discharged directly into valleys or lakes near the mill. Treatment with barium chloride to precipitate radium began in 1965 at the Nordic Mine at Elliot Lake, Ontario. In the mid-60s and early 70s water quality studies indicated that discharges from uranium tailings areas were causing degradation to the upper part of the Serpent River water system. Studies into acid generation, revegetation, and leaching of radium were initiated by the mining companies and resulted in the construction of treatment plants at a number of sites. Abandoned tailings sites were revegetated. At hearings into the expansion of the Elliot Lake operations the issue of tailings management was a major item for discussion. As a result federal and provincial agencies developed guidelines for the siting and development of urnaium tailings areas prior to issuing operating licences. Western Canadian uranium producers do not have the acid generation problem of the Elliot Lake operations. The Rabbit Lake mill uses settling ponds followed by filtration. High-grade tailings from Cluff Lake are sealed in concrete and buried. Uranium producers feel that the interim criteria developed by the Atomic Energy Control Board, if adopted, would have a harmful effect on the viability of the Canadian uranium industry

  4. Submarine Tailings Disposal (STD—A Review

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available The mining industry is a fundamental industry involved in the development of modern society, but is also the world’s largest waste producer. This role will be enhanced in the future, because ore grades are generally decreasing, thus leading to increases in the waste/metal production ratio. Mine wastes deposited on-land in so-called tailings dams, impoundments or waste-dumps have several associated environmental issues that need to be addressed (e.g., acid mine drainage formation due to sulphide oxidation, geotechnical stability, among others, and social concerns due to land use during mining. The mining industry recognizes these concerns and is searching for waste management alternatives for the future. One option used in the past was the marine shore or shallow submarine deposition of this waste material in some parts of the world. After the occurrence of some severe environmental pollution, today the deposition in the deep sea (under constant reducing conditions is seen as a new, more secure option, due to the general thought that sulphide minerals are geochemically stable under the reduced conditions prevailing in the deep marine environment. This review highlights the mineralogical and geochemical issues (e.g., solubility of sulphides in seawater; reductive dissolution of oxide minerals under reducing conditions, which have to be considered when evaluating whether submarine tailings disposal is a suitable alternative for mine waste.

  5. Engineering, environmental and economic planning for tailings disposal

    International Nuclear Information System (INIS)

    Poellot, J.H.

    1982-01-01

    There are two principal points made in this paper. First, mining waste materials, or tailings, are geotechnical materials. Their behavior follows the principles of soil mechanics and is predictable by these principles. Second, proper disposal, meaning safe, environmentally sound and economical disposal, requires planning and recognizing waste disposal as part of the total mining system and process. In the development of these two principles, planning, design, and economic considerations of mine tailings are discussed

  6. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  7. Disposal of iron tailings in reservoirs: a GPR application

    Directory of Open Access Journals (Sweden)

    Rachel Jardim Martini

    2016-11-01

    Full Text Available A large volume of waste is generated by iron mining in Brazil, and the amount has been rapidly increasing. The waste is usually stored in large piles or in reservoirs formed by tailings dams, which occupy large areas in the mining complex. The limitation of natural resources and of new areas for waste disposal has led to change in paradigms. This study therefore aimed to apply a geophysical technique, known as Ground Penetrating Radar (GPR, in order to define sedimentation patterns in the subsurface reservoir created by Diogo's tailings dam in Rio Piracicaba in Minas Gerais, Brazil. To assist the recognition of patterns captured by the GPR, subsurface material samples were collected and analyzed for mineralogical composition, moisture content, electrical conductivity, mineralogical analysis, particle size, X-Ray Diffraction and X-Ray Fluorescence. The results indicated that areas with tailings that had high concentrations of hematite (around 60% in the mineralogical analysis altered the reflection patterns. The presence of water generated some multiple reflections, which were less significant in shallower sites with more waste and more significant in deeper sites with less waste. In general, the application of the GPR was feasible in aquatic environments with rich subsurface hematite deposits.

  8. Summary of the engineering assessment of inactive uranium mill tailings: Lakeview Site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1981-10-01

    Radon gas released from the 130,000 tons of tailings at the Lakeview site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from $6,000,000 for stabilization in-place, to $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined. Results show that uranium recovery is not economical

  9. Modelling of the underwater disposal of uranium mine tailings in Elliot Lake

    International Nuclear Information System (INIS)

    Halbert, B.E.; Scharer, J.M.; Chakravatti, J.L.; Barnes, E.

    1982-01-01

    Underwater disposal of uranium mine tailings from the Elliot Lake area operations offers potential advantages in controlling radon gas release, emission of airborne particulate matter, and acid production from pyrites in the tailings. In addition, the proximity of the three active properties, one owned by Denison Mines Limited and two by Rio Algom Limited, to a large deep lake has spurred interest in the concept. It has been estimated that the placement of approximately 150 million tonnes of tailings from future planned production would occupy less than 20% of the lake volume. To assess the applicability of the underwater tailings disposal concept, a multi-stage study was developed in conjunction with the regulatory agencies. The most important facet identified for investigation during the first-stage investigations was an assessment of the effects of underwater disposal on water quality in the Serpent River Basin watershed. To simulate the effects of underwater disposal, a computer simulation routine was developed and integrated with a water quality model previously developed for the Basin which predicts levels of total dissolved solids, ammonia, dissolved radium-226 and pH. The underwater disposal model component reflects the effects of direct input of tailings into the hypolimnion, the chemical/biological transformation of dissolved constituents in the water column, the reactions of pyritic tailings deposited on the bottom, and the flux of dissolved constituents from the tailings into the water column. To establish site-specific values for the underwater disposal model, field and laboratory experiments were utilized to evaluate rates of pyrite and ammonia oxidation, and pH-alkalinity relationships. The results of these studies and their use in the water quality model are discussed. In addition, the results of two model run simulations are presented. (author)

  10. Interior drains for open pit disposal of uranium mill tailings

    International Nuclear Information System (INIS)

    Staub, W.P.

    1978-01-01

    A conceptualized interior drainage system is presented for reducing the environmental impact on natural groundwater by disposal of uranium mill tailings in the mined-out open pit. The evaporation/seepage ratio can be increased through the use of interior drains, long-term monitoring of groundwater quality can be eliminated, and the open pit will not require an extensive liner. Other advantages not related to groundwater are: control of fugitive dust and radon emanation during mill operations and timely reclamation after the impoundment is filled with tailings

  11. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  12. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  13. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-03-01

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  14. Licensing plan for UMTRA project disposal sites

    International Nuclear Information System (INIS)

    1993-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC's acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information

  15. Summary of the engineering assessment of inactive uranium mill tailings, Green River site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the five options range from about $4,300,000 for stabilization in-place, to about $9,600,000 for disposal at a distance of about 30 miles. Three principal alternatives for the reprocessing of the Green River tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $1,800/lb by heap leach and $1,600/lb by conventional plant processes

  16. Long-term disposal of enrichment plant tails

    International Nuclear Information System (INIS)

    1979-08-01

    Approximately 97% of the uranium fed to the isotope separation plants is recovered as tails containing nominally 0.2 wt percent U-235. Essentially all this tails material produced in the past, as well as that currently being generated, is stored as solidified UF 6 in steel cylinders. This report describes a stand-alone, 10 tU/day facility for converting the UF 6 to a stable uranium oxide powder amenable to long-term storage in steel drums. The conversion is accomplished in a two-step process in which the UF 6 is first reduced to UF 4 with hydrogen in a tower reactor and then the UF 4 is pyrohydrolyzed to UO 2 with steam in a three-stage screw reactor. One reduction reactor supplies the feed for three pyrohydrolysis reactor lines. Included in the process flow sheets and reactor design details are descriptions of the major auxiliary components for vaporizing and feeding the UF 6 , a dissociator for ammonia used as a hydrogen source, a system for recovering anhydrous hydrogen fluoride, and a reactor system for the disposal of hydrous hydrogen fluoride. Two of the nominal 10 tU/day plants would be required to handle the tails produced in isotope separation plants supplying enriched uranium to a nuclear power industry with a generation capacity of 50 GWe per year

  17. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)

    1992-02-01

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  18. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CFR Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  19. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  20. Feasibility of co-disposing low-level radioactive waste with uranium mill tailings and/or FUSRAP waste

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    Analysis of the two most critical factors affecting a co-facility, economics and technical feasibility, indicates that neither should pose significant problems and in fact many aspects, particularly in economics, favor a co-facility over specialized disposal facilities. In consideration of costs, the symbiotic nature of co-facility economics should be recognized by the different parties the co-facility would serve. By minimizing the cost burdens of the LLW/UMTRAP disposal site users, a co-facility offers a unique opportunity for the cooperative subsidization of commercial and governmental operations. Likewise, a LLW/active tailings disposal co-facility affords two different sets of commercial users the opportunity to maximize the economic efficiency of each other's disposal operations. The technical requirements for siting a LLW or uranium mill tailings disposal facility are so similar as to appear tailor-made for a co-facility. Where differences are necessary, such as to distinguish between pollution sources in environmental monitoring, LLW and mill tailings are different. Where similarities are useful, such as in siting criteria and disposal operations, LLW and mill tailings are nearly identical. Institutional factors are split in their adaptability to a co-facility. Although public perceptions will range to both extremes, the fact that a significant percentage of the local populace may favor a co-facility serves as added incentive for such an operation. The institutional aspects which could serve as considerable impediments to co-facility development would be concern about liability in the event of site failure and licensing and legal obstacles associated with UMTRAP disposal that did not meet active tailings disposal licensing requirements

  1. Summary of the engineering assessment of inactive uranium mill tailings, Durango Site, Durango, Colorado

    International Nuclear Information System (INIS)

    1981-06-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Durango site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. This engineering assessment has included the preparation of topographic measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the nearly 1.6 million tons of tailings at the Durango site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the seven options range from about $10,700,000 for stabilization in-place, to about $21,800,000 for disposal at a distance of about 10 mi. Three principal alternatives for the reprocessing of the Durango tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing

  2. Engineering assessment of inactive uranium mill tailings, Durango Site, Durango, Colorado

    International Nuclear Information System (INIS)

    1981-06-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Durango site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the nearly 1.6 million tons of tailings at the Durango site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the seven options range from about $10,700,000 for stabilization in-place, to about $21,800,000 for disposal at a distance of about 10 mi. Three principal alternatives for the reprocessing of the Durango tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $30/lb U 3 O 8 by either heap leach or conventional plant processes

  3. Experience in the transport and disposal of uranium mill tailings from Aldama City to Sierra Pena Blanca in Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Ruiz, M.; Molina, G.; Angeles C, A.; Cruz G, S.; Lizacano C, D.; Reyes, J.; Rojas, V.

    1996-01-01

    In the process of decontamination, transport and disposal of uranium mill tailings, in the state of Chihuahua, Mexico, was necessary the multidisciplinary and multi institutional task to select mainly the site for the final disposal. The uranium mill tailings content Ra-226 which half live time is 1600 years, therefore the site should be adequately stable, a remote place of population, and which containment will survive for thousand of years. The decontamination of site where the uranium mill tailings were 25 years ago, required the application of norms from regulator organism. For the transport of uranium mill tailings was necessary that the vehicles had devices to reduce the dispersion of material in the road. The selection of the site was product of balance between the cost of transport and the final disposal. To typify the site, studies of hydrology, meteorology, ecology, geology and seismology were performed. On the other hand, the decision to locate the deposit in the site was due to dispersion of material by the rain, wind and bowls. (authors). 3 refs., 1 fig., 1 tab

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  5. Low-level radioactive waste disposal in the USA - Use of mill tailings impoundments as a new policy option

    International Nuclear Information System (INIS)

    Farrell, C.W.

    2006-01-01

    Disposal of low-level radioactive waste (LLW) in the United States is facing severe and immediate capacity limitations. Seemingly intractable regulatory and jurisdictional conflicts make establishment of new LLW disposal sites effectively impossible. Uranium mill tailings impoundments constructed at conventional uranium open-cast and underground mines could offer approximately 40 to 80+ million tons of disposal capacity for low activity radioactive waste. Such impoundments would provide an enhanced, high level of environmental and health and safety protection for the direct disposal of depleted uranium, special nuclear material, technologically-enhanced, naturally-occurring radioactive material (TENORM) and mixed waste. Many waste streams, such as TENORM and decommissioning rubble, will be high-volume, low activity materials and ideally suited for disposal in such structures. Materials in a given decay chain with a total activity from all radionuclides present of ∼820 Bq/g (2.22 x 10 -08 Ci/g) with no single radionuclide present in an activity greater than ∼104 Bq/g (2,800 pCi/g) should be acceptable for disposal. Materials of this type could be accepted without any site-specific dose modelling, so long as the total activity of the tailings impoundment not exceed its design capacity (generally 82 x 10 07 Bq/metric tonne) (0.020 Ci/short ton) and the cover design requirements to limit radon releases are satisfied. This paper provides background on US LLW disposal regulations, examines LLW disposal options under active consideration by the US Environmental Protection Agency and Department of Energy, develops generic waste acceptance criteria and identifies policy needs for federal and state governments to facilitate use of uranium mill tailings impoundments for LLW disposal. (author)

  6. Engineering assessment of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado: summary

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Gunnison site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the ivnvestigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the combined 540,000 dry tons of tailings and the 435,400 tons of contaminated waste at the Gunnison site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The 10 alternative actions presented in this engineering assessment range from stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to disposal sites along with decontamination of the Gunnison site (Options II through X). Cost estimates for the 10 options range from about $8,900,000 for stabilization in-place, to about $14,000,000 for disposal in the North Alkali Creek area at a distance of about 18 mi. Truck haulage would be used to transport the tailings and contaminated materials from the Gunnison site to the selected disposal site. Three principal alternatives for the reprocessing of the Gunnison tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocesssing. The cost of the uranium recovered would be about $250 and $230/lb of U 3 O 8 by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981

  7. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report

  8. Summary of the engineering assessment of inactive uranium mill tailings. Vitro site, Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-04-01

    This report is a summary of a parent report (issued under separate cover) entitled Engineering Assessment of Inactive Uranium Mill Tailings for Vitro Site, Salt Lake City, Utah. Bacon and Davis Utah Inc. has reevaluated the Vitro site in order to revise the April 1976 assessment of the problems resulting from the existence of radioactive uranium mill tailings at Salt Lake City, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Vitro site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option 1), to removal of the tailings to remote disposal sites, and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $36,400,000 for stabilization in-place, to about $91,000,000 for disposal at a distance of about 85 mi. Three principal alternatives for the reprocessing of the Vitro tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $130/lb by conventional plant processes. Spot market price for uranium was $28.00 in November 1980. Therefore, reprocessing the tailings for uranium recovery appears to be economically unattractive at present.

  9. Summary of the engineering assessment of inactive uranium mill tailings. Vitro site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1981-04-01

    This report is a summary of a parent report (issued under separate cover) entitled Engineering Assessment of Inactive Uranium Mill Tailings for Vitro Site, Salt Lake City, Utah. Bacon and Davis Utah Inc. has reevaluated the Vitro site in order to revise the April 1976 assessment of the problems resulting from the existence of radioactive uranium mill tailings at Salt Lake City, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Vitro site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option 1), to removal of the tailings to remote disposal sites, and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $36,400,000 for stabilization in-place, to about $91,000,000 for disposal at a distance of about 85 mi. Three principal alternatives for the reprocessing of the Vitro tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $130/lb by conventional plant processes. Spot market price for uranium was $28.00 in November 1980. Therefore, reprocessing the tailings for uranium recovery appears to be economically unattractive at present

  10. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site

  11. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

  12. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    International Nuclear Information System (INIS)

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992)

  13. Summary of the engineering assessment of inactive uranium mill tailings: Falls City site, Falls City, Texas

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Falls City site in order to update the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranum mill tailings at Falls City, Texas. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrolgy and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.5 million tons of tailings at the Falls City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,700,000 for stabilization in place, to about $35,100,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Falls City tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The tailings piles are presently being rewashed for uranium recovery by Solution Engineering, Inc. The cost for further reprocessing would be about $250/lb of U 3 O 8 . The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery does not appear to be economically attractive for the foreseeable future

  14. 10 CFR 61.51 - Disposal site design for land disposal.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...

  15. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...

  16. Accelerated aging tests of liners for uranium mill tailings disposal

    International Nuclear Information System (INIS)

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing

  17. Engineering assessment of inactive uranium mill tailings. Vitro site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1981-04-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Vitro site in order to revise the April 1976 assessment of the problems resulting from the existence of radioactive uranium mill tailings at Salt Lake City, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Vitro site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites, and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $36,400,000 for stabilization in-place, to about $91,000,000 for disposal at a distance of about 85 mi. Three principal alternatives for the reprocessing of the Vitro tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $130/lb by conventional plant processes. Spot market price for uranium was $28.00 in November 1980. Therefore, reprocessing the tailings for uranium recovery appears to be economically unattractive at present

  18. Engineering assessment of inactive uranium mill tailings: Mexican Hat site, Mexican Hat, Utah. Summary

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: (a) heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U 3 O 8 whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions

  19. Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  20. Remedial action at the Green River uranium mill tailings site, Green River, Utah: Environmental assessment

    International Nuclear Information System (INIS)

    1988-07-01

    The inactive Green River uranium mill tailings site is one mile southeast of Green River, Utah. The existing tailings pile is within the floodplain boundaries of the 100-year and 500-year flood events. The 48-acre designated site contains eight acres of tailings, the mill yard and ore storage area, four main buildings, a water tower, and several small buildings. Dispersion of the tailings has contaminated an additional 24 acres surrounding the designated site. Elevated concentrations of molybdenum, nitrate, selenium, uranium, and gross alpha activity exceed background levels and the proposed US Environmental Protection Agency (EPA) maximum concentration limits in the groundwater in the unconsolidated alluvium and in the shallow shales and limestones beneath the alluvium at the mill tailings site. The contamination is localized beneath, and slightly downgradient of, the tailings pile. The proposed action is to relocate the tailings and associated contaminated materials to an area 600 feet south of the existing tailings pile where they would be consolidated into one, below-grade disposal cell. A radon/infiltration barrier would be constructed to cover the stabilized pile and various erosion control measures would be taken to ensure the long-term stability of the stabilized pile. 88 refs., 12 figs., 20 tabs

  1. Summary of the engineering assessment of inactive uranium mill tailings, Riverton Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    1981-08-01

    Ford, Bacon, and Davis Utah Inc. has reevaluated the Riverton site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Riverton, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 900,000 tons of tailings materials at the Riverton site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The nine alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontaminations of the tailings site (Options II through IX). Cost estimates for the nine options range from about $16,600,000 for stabilization in-place, to about $23,200,000 for disposal at a distance of 18 to 25 mi. Three principal alternatives for the reprocessing of the Riverton tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $260 and $230/lb of U 3 O 8 by heap leach and conventional plant processes respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery does not appear to be economically attractive

  2. Summary of the engineering assessment of inactive uranium mill tailings, Shiprock Site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1981-07-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of the stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and(c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive

  3. Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future

  4. Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions

  5. Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

  6. Summary of the engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future

  7. Technical summary of geological, hydrological, and engineering studies at the Slick Rock Uranium Mill Tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1990-12-01

    The purpose of this document is to provide the Colorado Department of Health (CDH) with a summary of the technical aspects of the proposed remedial action for the Slick Rock tailings near Slick Rock, Colorado. The technical issues summarized in this document are the geology and groundwater at the Burro Canyon disposal site and preliminary engineering considerations for the disposal cell

  8. Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado. Summary

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U 3 O 8 by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present

  9. Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.

  10. Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U 3 O 8 by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present

  11. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-01-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  12. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    Science.gov (United States)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  13. Engineering assessment of inactive uranium mill tailings. Canonsburg Site, Canonsburg, Pennsylvania

    International Nuclear Information System (INIS)

    1982-04-01

    Ford, Bacon and Davis Utah Inc. has evaluated the Canonsburg site in order to assess the problems resulting from the existence of radioactive residues at Canonsburg, Pennsylvania. This engineering assessment has included the preparation of topographic maps, radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the approximately 300,000 tons of tailings and contaminated soil at the Canonsburg site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings and contaminated materials to a remote disposal site and decontamination of the Canonsburg site (Options II through IV). Cost estimates for the four options range from $23,244,000 for stabilization in-place, to $27,052,000 for disposal at a distance of about 17 mi. Three principal alternatives for the reprocessing of the Canonsburg tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. As required by Public Law 95-604, under whose auspices this project is conducted, the US Department of Energy has solicited expressions of interest in reprocessng the tailings and residues at the Canonsburg site for uranium recovery. Since no such interest was demonstrated, no effort has been made to estimate the value of the residual uranium resource at the Canonsburg site

  14. Summary of the engineering assessment of inactive uranium-mill tailings: Canonsburg Site, Canonsburg, Pennsylvania

    International Nuclear Information System (INIS)

    1982-04-01

    Ford, Bacon and Davis Utah Inc. has evaluated the Canonsburg site in order to assess the problems resulting from the existence of radioactive residues at Canonsburg, Pennsylvania. This engineering assessment has included the preparation of topographic maps, radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the approximately 300,000 tons of tailings and contaminated soil at the Canonsburg site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings and contaminated materials to a remote disposal site and decontamination of the Canonsburg site (Options II through IV). Cost estimates for the four options range from $23,244,000 for stabilization in-place, to $27,052,000 for disposal at a distance of about 17 mi. Three principal alternatives for the reprocessing of the Canonsburg tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. As required by Public Law 95-604, under whose auspices this project is conducted, the US Department of Energy has solicited expressions of interest in reprocessing the tailings and residues at the Canonsburg site for uranium recovery. Since no such interest was demonstrated, no effort has been made to estimate the value of the residual uranium resource at the Canonsburg site

  15. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Land disposal facility operation and disposal site closure. 61.52 Section 61.52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal...

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  18. Long-term surveillance plan for the Gunnison, Colorado disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  19. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  20. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  1. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  2. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  3. Long-term surveillance plan for the Gunnison, Colorado disposal site

    International Nuclear Information System (INIS)

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  4. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1992-10-01

    To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer at the point of compliance (POC) at the Gunnison Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site near Gunnison, Colorado. The proposed remedial action will ensure protection of human health and the environment. A summary of the principal features of the water resources protection strategy for the Gunnison disposal site is included in this report

  5. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  6. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  7. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  8. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  9. Engineering assessment of inactive uranium mill tailings, Shiprock site, Shiprock, New Mexico. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-01-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.7 million tons of tailings at the Shiprock site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The 11 alternative actions presented range from completion of the present ongoing EPA site decontamination plan (Option I), to stabilizing in-place with varying depths of cover material (Options II-IV), to removal to an isolated long-term disposal site (Options V-XI). All options include remedial action costs for off-site locations where tailings have been placed. Costs estimates for the 11 options range from $540,000 to $12,500,000. Reprocessing the tailings for uranium is not economically feasible

  10. Engineering assessment of inactive uranium mill tailings, Shiprock site, Shiprock, New Mexico. Phase II, Title I

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-31

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.7 million tons of tailings at the Shiprock site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The 11 alternative actions presented range from completion of the present ongoing EPA site decontamination plan (Option I), to stabilizing in-place with varying depths of cover material (Options II-IV), to removal to an isolated long-term disposal site (Options V-XI). All options include remedial action costs for off-site locations where tailings have been placed. Costs estimates for the 11 options range from $540,000 to $12,500,000. Reprocessing the tailings for uranium is not economically feasible.

  11. Summary of the engineering assessment of inactive uranium mill tailings, Naturita site, Naturita, Colorado

    International Nuclear Information System (INIS)

    1981-07-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Naturita site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive contamination at the former uranium mill tailings site at Naturita, Colorado. This evaluation has included the preparation of topographic maps, the drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of contaminated materials and radiation exposures of individuals and nearby populations, and the evaluation and costing of alternative remedial actions. Radon gas released from the estimated 344,000 tons of contaminated materials that remain at the Naturita site constitutes the most significant environmental impact, although external gamma radiation also is a factor. The two alternative actions presented in this engineering assessment are stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), and removal of residual radioactive materials to a disposal site and decontamination of the Naturita site (Option II). Cost estimates for the two options are about $7,200,000 for stabilization in-place, and about $8,200,000 for disposal at the Ranchers Exploration and Development Corporation's reprocessing site. Truck haulage would be used to transport the contaminated materials from the Naturita site to the selected disposal site.Ranchers Exploration and Development Corporation removed the tailings from the site, reprocessed them, and disposed of them from 1977 to 1979. There is no noteworthy mineral resource remaining at the former tailings site; therefore, recovery of residual mineral values was not considered in this assessment

  12. Engineering assessment of inactive uranium mill tailings, Naturita Site, Naturita, Colorado

    International Nuclear Information System (INIS)

    1981-07-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Naturita site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive contamination at the former uranium mill tailings site at Naturita, Colorado. This evaluation has included the preparation of topographic maps, the drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of contaminated materials and radiation exposures of individuals and nearby populations, and the evaluation and costing of alternative remedial actions. Radon gas released from the estimated 344,000 tons of contaminated materials that remain at the Naturita site constitutes the most significant environmental impact, although external gamma radiation also is a factor. The two alternative actions presented in this engineering assessment are stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), and removal of residual radioactive materials to a disposal site and decontamination of the Naturita site (Option II). Cost estimates for the two options are about $7,200,000 for stabilization in-place, and about $8,200,000 for disposal at the Ranchers Exploration and Development Corporations's reprocessing site. Truck haulage would be used to transport the contaminated materials from the Naturita site to the selected disposal site.Ranchers Exploration and Development Corporation removed the tailings from the site, reprocessed them, and disposed of them from 1977 to 1979. There is no noteworthy mineral resource remaining at the former tailings site; therefore, recovery of residual mineral values was not considered in this assessment

  13. Engineering assessment of inactive uranium mill tailings: Lakeview site, Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    This assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from about $6,000,000 for stabilization in-place, to about $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill. The cost of the uranium recovered would be over $450/lb of U/sub 3/O/sub 8/ and hence reprocessing is not economical.

  14. Engineering assessment of inactive uranium mill tailings: Lakeview site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1981-10-01

    This assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from about $6,000,000 for stabilization in-place, to about $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill. The cost of the uranium recovered would be over $450/lb of U 3 O 8 and hence reprocessing is not economical

  15. System for the hydrogeologic analysis of uranium mill waste disposal sites

    International Nuclear Information System (INIS)

    Osiensky, J.L.

    1983-01-01

    Most of the uranium mill wastes generated before 1977 are stored in unlined tailings ponds. Seepage from some of these ponds has been of sufficient severity that the US Nuclear Regulatory Commission (NRC) has required the installation of withdrawal wells to remove the contaminated groundwater. Uranium mill waste disposal facilities typically are located in complex hydrogeologic environments. This research was initiated in 1980 to analyze hydrogeologic data collected at seven disposal sites in the US that have experienced problems with groundwater contamination. The characteristics of seepage migration are site specific and are controlled by the hydrogeologic environment in the vicinity of each tailings pond. Careful monitoring of most seepage plumes was not initiated until approximately 1977. These efforts were accelerated as a consequence of the uranium Mill Tailings Act of 1979. Some of the data collected at uranium mill waste disposal sites in the past are incomplete and some were collected by methods that are outdated. Data frequently were collected in sequences which disrupted the continuity of the hydrogeologic analysis and decreased the effectiveness of the data collection programs. Evaluation of data collection programs for seven uranium mill waste disposal sites in the US has led to the development and presentation herein of a system for the hydrogeologic analysis of disposal sites

  16. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  17. Humboldt Open Ocean Disposal Site (HOODS) Survey Work 2014

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Humboldt Open Ocean Disposal Site (HOODS) is a dredged material disposal site located 3 nautical miles (nm) offshore of Humboldt Bay in Northern California....

  18. Mineralogy and trace element relative solubility patterns of shallow marine sediments affected by submarine tailings disposal and artisanal gold mining, Buyat-Ratototok district, North Sulawesi, Indonesia

    Science.gov (United States)

    Blackwood, George M.; Edinger, Evan N.

    2007-04-01

    Shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590 660 ppm arsenic, 490 580 ppm antimony, and 0.8 5.8 ppm mercury. Electron microprobe survey found both colloidal iron arsenic-phases without sulphur and arsenian pyrite in tailings and sites to which tailings had dispersed, but only arsenopyrite in sediments affected by artisanal mining. Antimony in tailings was present as antimony oxides, colloidal iron antimony phases, colloidal iron antimony phases, and stibnite in sediments affected by both types of mining. A sequential extraction found that 2% of arsenic held in tailings and tailings-contaminated sediments was exchangeable, 20 30% was labile, including weakly adsorbed, carbonate- and arsenate bound, 20 30% was metastable, probably incorporated into iron or manganese oxyhydroxides, or strongly adsorbed to silicate minerals, and 40 48% was relatively insoluble, probably incorporated into sulphides or silicates. Arsenic in sediments affected by artisanal gold mining was 75 95% relatively insoluble. Antimony in all sediments was >90% relatively insoluble. Relative solubility patterns of most other metals did not differ between industrial tailings-affected, artisanal-mining affected areas, and fluvial sediments. Results suggest that submarine tailings disposal is not suitable for refractory Carlin-like gold deposits because ore processing converts arsenic to forms unstable in anoxic marine sediments.

  19. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  20. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use

  1. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  2. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    International Nuclear Information System (INIS)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions

  3. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  4. Remote sensing supported surveillance and characterization of tailings behavior at a gold mine site, Finland.

    Science.gov (United States)

    Rauhala, Anssi; Tuomela, Anne; Rossi, Pekka M.; Davids, Corine

    2017-04-01

    The management of vast amounts of tailings produced is one of the key issues in mining operations. The effective and economic disposal of the waste requires knowledge concerning both basic physical properties of the tailings as well as more complex aspects such as consolidation behavior. The behavior of tailings in itself is a very complex issue that can be affected by flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw, and desiccation phenomena. The utilization of remote sensing in an impoundment-scale monitoring of tailings could benefit the management of tailings, and improve our knowledge on tailings behavior. In order to gain better knowledge of tailings behavior in cold climate, we have utilized both modern remote sensing techniques and more traditional in situ and laboratory measurements in characterizing thickened gold tailings behavior at a Finnish gold mine site, where the production has been halted due to low gold prices. The remote sensing measurements consisted of elevation datasets collected from unmanned aerial vehicles during summers 2015 and 2016, and a further campaign is planned for the summer 2017. The ongoing traditional measurements include for example particle-size distribution, frost heave, frost depth, water retention, temperature profile, and rheological measurements. Initial results from the remote sensing indicated larger than expected settlements on parts of the tailings impoundment, and also highlighted some of the complexities related to data processing. The interpretation of the results and characterization of the behavior is in this case complicated by possible freeze-thaw effects and potential settlement of the impoundment bottom structure consisting of natural peat. Experiments with remote sensing and unmanned aerial vehicles indicate that they could offer potential benefits in frequent mine site monitoring, but there is a need towards more robust and streamlined data acquisition and processing. The

  5. Engineering assessment of inactive uranium mill tailings, Durango site, Durango, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.555 million tons of tailings at the Durango site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented range from vegetative stabilization (Option I), to contouring and stabilizing in-place with varying depths of cover material (Options II and III), to removal to an isolated long-term disposal site (Options V to VIII). All options include remedial action costs for offsite locations where tailings have been placed. Costs estimated for the eight options range from $4,340,000 to $13,590,000. Reprocessing the tailings for uranium is sufficiently economically attractive to justify reprocessing in conjunction with each of the options

  6. Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1993-12-01

    This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  7. Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-12-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office

  8. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado

    International Nuclear Information System (INIS)

    1990-02-01

    This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents

  9. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  10. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    International Nuclear Information System (INIS)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  13. Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2

    International Nuclear Information System (INIS)

    1997-02-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance

  14. Siting of near surface disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The Safety Standards are supplemented by a number of Safety Guides and Safety Practices. This Safety Guide defines the site selection process and criteria for identifying suitable near surface disposal facilities for low and intermediate level solid wastes. Management of the siting process and data needed to apply the criteria are also specified. 4 refs

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona

    International Nuclear Information System (INIS)

    1994-06-01

    This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site

  16. The impact of submarine copper mine tailing disposal from the 1970s on Repparfjorden, northern Norway.

    Science.gov (United States)

    Sternal, Beata; Junttila, Juho; Skirbekk, Kari; Forwick, Matthias; Carroll, JoLynn; Pedersen, Kristine Bondo

    2017-07-15

    We investigate the state of sedimentological environment and contaminant status of Repparfjorden (N Norway) impacted by submarine disposal of mine tailings during the 1970s using sedimentological and geochemical properties of seventeen sediment cores. The impact of tailings disposal is mainly restricted to the inner fjord where the discharge occurred. Sediment cores retrieved from the inner fjord contain layers of mine tailings up to 9-cm thick, 3-9cm below the seafloor. Spreading of the tailing-related metal Cu and particles is limited to the inner fjord and to a 2cm layer in one core from the outer fjord. Two interrelated factors, fjord morphology and sedimentation rate, controlled the distribution of contaminant-laden tailings in the fjord. The mobility of Cu from buried contaminated sediments to the sediment-water interface in the inner fjord indicates that benthic communities have been continuously exposed to elevated Cu concentrations for nearly four decades. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas

    International Nuclear Information System (INIS)

    1995-06-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  18. Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  19. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

  20. Geotechnical quality control: low-level radioactive waste and uranium mill tailings disposable facilities

    International Nuclear Information System (INIS)

    Johnson, H.V.; Spigolon, S.J.; Lutton, R.J.

    1983-06-01

    Among the many responsibilities, the owner or licensee establishes and oversees the quality control (QC) of geotechnical aspects during construction, operation, and closure of low-level radioactive waste (LLW) or uranium mill tailings disposal facilities. This report first focuses on geotechnical QC practices by identifying the geotechnical parameters that should be considered along with appropriate laboratory and field testing and observation techniques. Advantages and disadvantages of the tests are discussed. Preference is given to those standard testing techniques (e.g., ASTM and AASHTO) that are in widespread use and easily accessible to industry. Next, guidance is provided on establishing a geotechnical QC program. The frequency of testing is discussed along with specifications for appropriate field and observation control. Methods of relating laboratory testing and field testing are recommended. Various factors influencing QC and reports/documentation control are discussed. Finally, verification studies for confirming site characteristics and soil engineering properties related to design assumptions are explained. It is the intent of this report to provide a document that summarizes all elements necessary to properly implement a QC plan. To this end and since NRC's involvement will only be through its random inspection and enforcement function and is expected to be limited during the licensee's execution of the QC program (after licensing), emphasis is placed throughout this report on the need for proper QC documentation

  1. Cost of implementing AECB interim criteria for the closeout of uranium tailings sites

    International Nuclear Information System (INIS)

    1981-04-01

    The main purpose of this study was to arrive at a gross approximation of the costs to the Canadian uranium mining industry of meeting the proposed closeout criteria established by the Atomic Energy Control Board for tailings deposits. Two options have been investigated: on-land disposal and underlake disposal. Given the budget allocated to the study, the estimates must be understood as approximations. Overall cost figures for the Canadian uranium mining industry are linear extensions from a hypothetical base case. The results of a conference held in Ottawa on February 25 and 26 to discuss the proposed AECB interim criteria for the closeout of uranium tailings sites are also included. Representatives from mining firms, provincial regulatory authorities, universities and the Atomic Energy Control board attended the conference

  2. Lung cancer risks in the vicinity of uranium tailings sites

    International Nuclear Information System (INIS)

    Rogers, V.C.; Sandquist, G.M.

    1982-04-01

    Lung cancer mortality data have been assembled for many counties of interest to the Uranium Mill Tailings Remedial Action Program (UMTRAP). The counties generally either contain UMTRAP tailings sites or are adjacent to them. The lung cancer rates of nearly all counties are less than the US average rate. In addition, some of the many factors associated with lung cancer are identified as are cancer risk estimators for radon daughters. 17 refs., 19 figs., 1 tab

  3. Environmental assessment of remedial action at the Lowman Uranium Mill Tailings Site near Lowman, Idaho. Final

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document assesses the environmental impacts of stabilization on site of the contaminated materials at the Lowman uranium mill tailings site. The Lowman site is 0.5 road mile northeast of the unincorporated village of Lowman, Idaho, and 73 road miles from Boise, Idaho. The Lowman site consists of piles of radioactive sands, an ore storage area, abandoned mill buildings, and windblown/waterborne contaminated areas. A total of 29.5 acres of land are contaminated and most of this land occurs within the 35-acre designated site boundary. The proposed action is to stabilize the tailings and other contaminated materials on the site. A radon barrier would be constructed over the consolidated residual radioactive materials and various erosion control measures would be implemented to ensure the long-term stability of the disposal cell. Radioactive constituents and other hazardous constituents were not detected in the groundwater beneath the Lowman site. The groundwater beneath the disposal cell would not become contaminated during or after remedial action so the maximum concentration limits or background concentrations for the contaminants listed in the draft EPA groundwater protection standards would be met at the point of compliance. No significant impacts were identified as a result of the proposed remedial action at the Lowman site.

  4. Denitrification in groundwater at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Goering, Timothy J.; Groffman, Armando; Thomson, Bruce

    1992-01-01

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  5. Scientific Considerations for the Assessment and Management of Mine Tailings Disposal in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Lindsay L. Vare

    2018-02-01

    Full Text Available Deep-sea tailings disposal (DSTD and its shallow water counterpart, submarine tailings disposal (STD, are practiced in many areas of the world, whereby mining industries discharge processed mud- and rock-waste slurries (tailings directly into the marine environment. Pipeline discharges and other land-based sources of marine pollution fall beyond the regulatory scope of the London Convention and the London Protocols (LC/LP. However, guidelines have been developed in Papua New Guinea (PNG to improve tailings waste management frameworks in which mining companies can operate. DSTD can impact ocean ecosystems in addition to other sources of stress, such as from fishing, pollution, energy extraction, tourism, eutrophication, climate change and, potentially in the future, from deep-seabed mining. Environmental management of DSTD may be most effective when placed in a broader context, drawing expertise, data and lessons from multiple sectors (academia, government, society, industry, and regulators and engaging with international deep-ocean observing programs, databases and stewardship consortia. Here, the challenges associated with DSTD are identified, along with possible solutions, based on the results of a number of robust scientific studies. Also highlighted are the key issues, trends of improved practice and techniques that could be used if considering DSTD (such as increased precaution if considering submarine canyon locations, likely cumulative impacts, and research needed to address current knowledge gaps.

  6. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site near Gunnison, Colorado. Final

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The presence of contaminated uranium mill tailings adjacent to the city of Gunnison has been a local concern for many years. The following issues were identified during public meetings that were held by the DOE prior to distribution of an earlier version of this EA. Many of these issues will require mitigation. Groundwater contamination; in December 1989, a herd of 105 antelope were introduced in an area that includes the Landfill disposal site. There is concern that remedial action-related traffic in the area would result in antelope mortality. The proposed Tenderfoot Mountain haul road may restrict antelope access to their water supply; a second wildlife issue concerns the potential reduction in sage grouse use of breeding grounds (leks) and nesting habitat; the proposed Tenderfoot Mountain haul road would cross areas designated as wetlands by US Army Corps of Engineers (COE); the proposed disposal site is currently used for grazing by cattle six weeks a year in the spring. Additional concerns were stated in comments on a previous version of this EA. The proposed action is to consolidate and remove all contaminated materials associated with the Gunnison processing site to the Landfill disposal site six air miles east of Gunnison. All structures on the site (e.g., water tower, office buildings) were demolished in 1991. The debris is being stored on the site until it can be incorporated into the disposal cell at the disposal site. All contaminated materials would be trucked to the Landfill disposal site on a to-be-constructed haul road that crosses BLM-administered land.

  7. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1992-02-01

    The presence of contaminated uranium mill tailings adjacent to the city of Gunnison has been a local concern for many years. The following issues were identified during public meetings that were held by the DOE prior to distribution of an earlier version of this EA. Many of these issues will require mitigation. Groundwater contamination; in December 1989, a herd of 105 antelope were introduced in an area that includes the Landfill disposal site. There is concern that remedial action-related traffic in the area would result in antelope mortality. The proposed Tenderfoot Mountain haul road may restrict antelope access to their water supply; a second wildlife issue concerns the potential reduction in sage grouse use of breeding grounds (leks) and nesting habitat; the proposed Tenderfoot Mountain haul road would cross areas designated as wetlands by US Army Corps of Engineers (COE); the proposed disposal site is currently used for grazing by cattle six weeks a year in the spring. Additional concerns were stated in comments on a previous version of this EA. The proposed action is to consolidate and remove all contaminated materials associated with the Gunnison processing site to the Landfill disposal site six air miles east of Gunnison. All structures on the site (e.g., water tower, office buildings) were demolished in 1991. The debris is being stored on the site until it can be incorporated into the disposal cell at the disposal site. All contaminated materials would be trucked to the Landfill disposal site on a to-be-constructed haul road that crosses BLM-administered land

  8. Long-term surveillance plan for the Shiprock Disposal site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-09-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents the land ownership interests and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  9. Long-term surveillance plan for the Green River, Utah disposal site. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out

  10. Long-term surveillance plan for the Green River, Utah, disposal site

    International Nuclear Information System (INIS)

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  11. Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  12. Long-term surveillance plan for the Green River, Utah disposal site. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  17. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  18. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  19. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    International Nuclear Information System (INIS)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 ). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations

  20. Summary of the engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions

  1. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  2. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  3. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-02-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  4. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP

  5. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    International Nuclear Information System (INIS)

    1996-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP

  6. Economic evaluation of inactive uranium mill tailings, Old Rifle Site, Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Teel, J H [Mountain States Research and Development, Tucson, AZ (United States)

    1982-12-01

    Mountain States Research and Development was contracted on March 1, 1981 to make an economic evaluation study at each of 12 abandoned uranium mill tailings sites in the western states. The objective of this work was to obtain the data necessary at each site to determine the possible revenue that could be derived from reprocessing the tailings. To accomplish this objective a drilling and sampling program was established for each site to determine the total amount of tailings and subbase material available for treatment and the amount of recoverable uranium, vanadium and molybdenum. These three metals were selected due to their common occurrence in uranium ores and common extractability in the leaching process. Laboratory leaching was then conducted on the samples obtained to determine the extractability of each of these metals and the optimum plant process to be applied. As the metal contents were generally low and represented mineral that had not been leached during previous processing, the economic evaluation is limited to consideration of the direct capital and operating costs required in connection with processing of each respective site material. Excavating, transportation and disposal of the material from each site in an environmentally acceptable location and manner was not within the scope of this project. It will be necessary to complete a separate study of these areas in order to determine the total costs involved. This report contains the results of the investigations of the Old Rifle Site.

  7. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    International Nuclear Information System (INIS)

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1

  8. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

  9. Site Selection for the Disposal of LLW in Taiwan

    International Nuclear Information System (INIS)

    Chuang, W.S.; Chi, L.M.; Tien, N.C.; Chang, F.L.

    2006-01-01

    This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potential candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper

  10. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    Science.gov (United States)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  11. Effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are identified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelerated vertical movement of moisture through the clay liner. 2 references, 8 figures

  12. The effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are indentified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelarated vertical movement of moisture through the clay liner

  13. Guidance for disposal of uranium-mill tailings: long-term stabilization of earthen cover materials

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Sale, M.J.; Webb, J.W.; Mulholland, P.J.

    1983-06-01

    The primary hazard associated with uranium-mill tailings is exposure to a radioactive gas, 222 Rn, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, depends on long-term protection of these cover materials. 230 Th, which decays to 222 Rn, has a half-life of about 80,000 years. The three major options available for stabilization of uranium-mill tailings are (1) rock cover, (2) soil and revegetation, or (3) a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 0 . For these steeper slopes, riprap will be necessary to maximize the probability of long-term stability. The use of vegetation to control erosion on the flatter portions of the site may be practicable in regions with sufficient rainfall and suitable soil types, but revegetation practices must be carefully evaluated

  14. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references

  15. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

  16. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    1999-11-01

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  17. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  18. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining.

    Science.gov (United States)

    Mestre, Nélia C; Rocha, Thiago L; Canals, Miquel; Cardoso, Cátia; Danovaro, Roberto; Dell'Anno, Antonio; Gambi, Cristina; Regoli, Francesco; Sanchez-Vidal, Anna; Bebianno, Maria João

    2017-09-01

    Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels' health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in

  19. The Monticello, Utah, uranium mill tailings site: A case history

    International Nuclear Information System (INIS)

    Korte, N.E.; Kearl, P.M.; Sewell, J.M.; Fleischhauer, H.L.; Abramiuk, I.N.

    1984-01-01

    A multidisciplinary study was conducted to characterize the potential for contamination from the inactive millsite in Monticello, Utah. Emphasis was given to site geology, hydrology, and geochemistry for two reasons: (1) a perennial stream flows through the tailings area, and (2) a culinary aquifer is overlain by an alluvial aquifer contaminated by the tailings area. Study results indicate that surface-water contamination attributable to the piles exists for approximately 6 km downstream from the site. Contamination also exists in the alluvial aquifer underlying the millsite. Hydrologic studies indicate an active alluvial system, with recharge to the gravels by infiltration through the trailings. Fortunately, water-level and water-quality data, together with the results of a 51-hour pump test, indicate that the Dakota Formation is an effective aquitard, restricting the downward movement of contaminated water to the underlying culinary aquifer

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  2. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  3. Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993

    International Nuclear Information System (INIS)

    1993-08-01

    The Uranium Mill Tailing Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations

  4. Site evaluation for disposal facilities in salt

    International Nuclear Information System (INIS)

    Brewitz, W.

    1982-01-01

    Although the various geoscientific investigations are not finished yet, the results so far show that the Konrad mine has some outstanding geological features as required for a safe disposal of radioactive wastes. The iron ore formation is extremely dry. Seepage water is no threat to the waste disposal operation and the repository itself. The construction of stable underground storage rooms which are sufficiently seized in volume is possible. Galleries containing wastes in drums or contaminated components can be refilled and sealed efficiently as well as the rest of the mine including the two shafts. Thereafter the geological containment with its favourable structure and ideal petrology will be an effective barrier against the contamination of the biosphere. As investigated this applies in particular to the low-active wastes with their specific nuclide inventory and the short decay time. (orig.)

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    International Nuclear Information System (INIS)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site's contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination

  6. A review of binders used in cemented paste tailings for underground and surface disposal practices.

    Science.gov (United States)

    Tariq, Amjad; Yanful, Ernest K

    2013-12-15

    Increased public awareness of environmental issues coupled with increasingly stringent environmental regulations pertaining to the disposal of sulphidic mine waste necessitates the mining industry to adopt more competent and efficient approaches to manage acid rock drainage. Cemented paste tailings (CPT) is an innovative form of amalgamated material currently available to the mining industry in developed countries. It is made usually from mill tailings mingled with a small amount of binder (customarily Portland cement) and water. The high cost associated with production and haulage of ordinary Portland cement and its alleged average performance as a sole binder in the long term (due to vulnerability to internal sulphate attack) have prompted users to appraise less expensive and technically efficient substitutes for mine tailings paste formulations. Generally, these binders include but are not limited to sulphate resistant cements, and/or as a partial replacement for Portland cement by artificial pozzolans, natural pozzolans, calcium sulphate substances and sodium silicates. The approach to designing environmentally efficient CPT is to ensure long-term stability and effective control over environmental contaminants through the use of composite binder systems with enhanced engineering properties to cater for inherit deficiencies in the individual constituents. The alkaline pore solution created by high free calcium rich cement kiln dust (CKD) (byproduct of cement manufacturing) is capable of disintegrating the solid glassy network of artificial pozzolans to produce reactive silicate and aluminate species when attacked by (OH(-)) ions. The augmented pozzolanic reactivity of CKD-slag and CKD-fly ash systems may produce resilient CPT. Since cemented paste comprising mine tailings and binders is a relatively new technology, a review of the binding materials used in such formulations and their performance evaluation in mechanical fill behaviour was considered pertinent in

  7. Numerical modeling of cracking pattern's influence on the dynamic response of thickened tailings disposals: a periodic approach

    Science.gov (United States)

    Ferrer, Gabriel; Sáez, Esteban; Ledezma, Christian

    2018-01-01

    Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with "fresh" tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings' behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site

  10. Nevada Test Site experience with greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Boland, J.R.

    1987-01-01

    In 1980, the Nevada Test Site (NTS) began a project to develop an improved disposal method for high specific activity (HSA) low-level wastes (LLW), e.g. tritium wastes. Past experience with the shallow land burial (SLB) of tritium wastes showed detectable concentrations appearing at trench surfaces. In 1981, the Greater Confinement Disposal Test (GCDT) was initiated to demonstrate the disposal of HSA wastes considered unsuitable for SLB. The project had two specific goals: (1) develop and demonstrate the operational technology for use of large-diameter boreholes for greater confinement disposal (GCD), and (2) conduct research necessary to quantify the effective improvement provided by GCD over SLB. While the long-term impacts may be insignificant for short-lived nuclides, the operational impacts may be a major limiting factor. For example, under 10 CFR 61 up to 700 Ci/m 3 of cobalt-60 may be disposed in SLB as Class A wastes; however, an unshielded waste package containing this amount of cobalt-60 would have an external radiation level of over 5000 R/h making it impossible to dispose of without use of a remote handling systems. In developing the GCDT, the authors decided that greater confinement disposal was not to be strictly limited to a category of wastes between low- and high-level, but a variety of problem wastes that could not, or should not, be disposed of by conventional SLB methods. The paper discusses NTS waste disposal history, hazards reduction, and waste management philosophy. 3 tables

  11. Engineering assessment of inactive uranium mill tailings, Durango site, Durango, Colorado. A summary of the Phase II, Title I

    International Nuclear Information System (INIS)

    1977-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.555 million tons of tailings at the Durango site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented range from vegetative stabilization (Option I), to contouring and stabilizing in-place with varying depths of cover material (Options II and III), to removal to an isolated long-term disposal site (Options V to VIII). All options include remedial action costs for offsite locations where tailings have been placed. Costs estimated for the eight options range from $4,340,000 to $13,590,000. Reprocessing the tailings for uranium is sufficiently economically attractive to justify reprocessing in conjunction with each of the options

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water

  14. UMTRA [Uranium Mill Tailings Remedial Action] Project site management manual

    International Nuclear Information System (INIS)

    1990-10-01

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the ''Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs

  15. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  16. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  17. Long-term dispersion and availability of metals from submarine mine tailing disposal in a fjord in Arctic Norway.

    Science.gov (United States)

    Pedersen, Kristine B; Jensen, Pernille E; Sternal, Beata; Ottosen, Lisbeth M; Henning, Mie Vesterskov; Kudahl, Manja Marie; Junttila, Juho; Skirbekk, Kari; Frantzen, Marianne

    2017-05-27

    Mining of Cu took place in Kvalsund in the Arctic part of Norway in the 1970s, and mine tailings were discharged to the inner part of the fjord, Repparfjorden. Metal speciation analysis was used to assess the historical dispersion of metals as well as their potential bioavailability from the area of the mine tailing disposal. It was revealed that the dispersion of Ba, Cr, Ni, Pb and Zn from the mine tailings has been limited. Dispersion of Cu to the outer fjord has, however, occurred; the amounts released and dispersed from the mine tailing disposal area quantified to be 2.5-10 t, less than 5% of Cu in the original mine tailings. An estimated 80-390 t of Cu still remains in the disposal area from the surface to a depth of 16 cm. Metal partitioning showed that 56-95% of the Cu is bound in the potential bioavailable fractions (exchangeable, reducible and oxidisable) of the sediments, totalling approximately 70-340 t, with potential for continuous release to the pore water and re-precipitation in over- and underlying sediments. Surface sediments in the deposit area were affected by elevated Cu concentrations just above the probable effect level according to the Norwegian sediment quality criteria, with 50-80% Cu bound in the exchangeable, reducible and oxidisable fractions, potentially available for release to the water column and/or for uptake in benthic organisms.

  18. Long-term dispersion and availability of metals from submarine mine tailing disposal in a fjord in Arctic Norway

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Jensen, Pernille Erland; Sternal, Beata

    2017-01-01

    Mining of Cu took place in Kvalsund in the Arctic part of Norway in the 1970s, and mine tailings were discharged to the inner part of the fjord, Repparfjorden. Metal speciation analysis was used to assess the historical dispersion of metals as well as their potential bioavailability from the area...... of the mine tailing disposal. It was revealed that the dispersion of Ba, Cr, Ni, Pb and Zn from the mine tailings has been limited. Dispersion of Cu to the outer fjord has, however, occurred; the amounts released and dispersed from the mine tailing disposal area quantified to be 2.5-10 t, less than 5% of Cu...... in the original mine tailings. An estimated 80-390 t of Cu still remains in the disposal area from the surface to a depth of 16 cm. Metal partitioning showed that 56-95% of the Cu is bound in the potential bioavailable fractions (exchangeable, reducible and oxidisable) of the sediments, totalling approximately 70...

  19. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lakeview, Oregon: Volume 1, Text and appendices A through D

    International Nuclear Information System (INIS)

    Chernoff, A.R.

    1992-07-01

    The Lakeview inactive uranium processing site is in Lake County, Oregon, approximately one mile northwest of the town of Lakeview, sixteen miles north of the California-Oregon border, and 96 miles east of Klamath Falls. The total designated site covers an area of 258 acres consisting of a tailings pile (30 acres). seven evaporation ponds (69 acres), the mill buildings, and related structures. The mill buildings and other structures have been decontaminated and are currently being used by Goose Lake Lumber Company. The tailings pile at the processing site was originally stabilized by Atlantic Richfield with an earthen cover 18--24 inches thick. The average depth of the tailings, including the cover, varied from six to eight feet. There were estimated to be 662,000 cubic yards of tailings, windblown contaminated materials, and vicinity property materials. During remedial action under the Uranium Mill Tailings Remedial Action (UMTRA) Project, approximately 264,000 cubic yards of additional contaminated materials were identified from excavations required to remove thorium- and arsenic-contaminated soils. The remedial action for the Lakeview site consisted of the cleanup, relocation, consolidation, and stabilization of all residual radioactive materials and thorium- and arsenic-contaminated materials in a partially below-grade disposal cell at a location approximately seven miles northwest of the tailings site, identified as the Collins Ranch site. A cover, including a radon/infiltration barrier and rock layer for protection from erosion, was Placed on top of the tailings. A rock-soil matrix covers the topslope and provides a growth medium for vegetation. The US Department of Energy (DOE) will retain the license and surveillance and maintenance responsibilities for the final restricted site of 13 acres

  20. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lakeview, Oregon: Volume 1, Text and appendices A through D

    Energy Technology Data Exchange (ETDEWEB)

    Chernoff, A R [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Project Office; Ervin, C [Oregon State Dept. of Energy, Salem, OR (United States)

    1992-07-01

    The Lakeview inactive uranium processing site is in Lake County, Oregon, approximately one mile northwest of the town of Lakeview, sixteen miles north of the California-Oregon border, and 96 miles east of Klamath Falls. The total designated site covers an area of 258 acres consisting of a tailings pile (30 acres). seven evaporation ponds (69 acres), the mill buildings, and related structures. The mill buildings and other structures have been decontaminated and are currently being used by Goose Lake Lumber Company. The tailings pile at the processing site was originally stabilized by Atlantic Richfield with an earthen cover 18--24 inches thick. The average depth of the tailings, including the cover, varied from six to eight feet. There were estimated to be 662,000 cubic yards of tailings, windblown contaminated materials, and vicinity property materials. During remedial action under the Uranium Mill Tailings Remedial Action (UMTRA) Project, approximately 264,000 cubic yards of additional contaminated materials were identified from excavations required to remove thorium- and arsenic-contaminated soils. The remedial action for the Lakeview site consisted of the cleanup, relocation, consolidation, and stabilization of all residual radioactive materials and thorium- and arsenic-contaminated materials in a partially below-grade disposal cell at a location approximately seven miles northwest of the tailings site, identified as the Collins Ranch site. A cover, including a radon/infiltration barrier and rock layer for protection from erosion, was Placed on top of the tailings. A rock-soil matrix covers the topslope and provides a growth medium for vegetation. The US Department of Energy (DOE) will retain the license and surveillance and maintenance responsibilities for the final restricted site of 13 acres.

  1. Alternate site selection process for UMTRA [Uranium Mill Tailings Remedial Action] project sites

    International Nuclear Information System (INIS)

    1988-06-01

    The purpose of this document is to describe the guidelines and processes to be used by the Department of Energy (DOE) with input from the affected states and tribes to select alternate disposal sites in compliance with each established cooperative agreement. This document supersedes two previous DOE documents, Criteria for Evaluating Disposal Sites (DOE, 1982) and Alternate Site Selection Process (ASSP) for UMTRA Project Sites (DOE, 1986). This revision of the ASSP was prepared in response to the proposed groundwater protection standards that amend 40 CF 192. The principal modifications are to the ASSP screening criteria for hydrological and geological conditions at candidate disposal sites. The revised screening and selection criteria will assist the project in selecting disposal sites where the probability of compliance with the proposed groundwater standards is high. The ASSP described in Section 2.0 consists of three phases: Phases I -- designation of a search region; Phase II -- preliminary screening of the designated search region; and Phase III -- identification and evaluation of candidate sites. Section 3.0 discusses how the results of the ASSP will be reported. This process provides a technically sound and publicly defensible approach for identifying potentially suitable disposal sites. 4 refs., 1 fig., 3 tabs

  2. Uranium tailings sampling manual

    International Nuclear Information System (INIS)

    Feenstra, S.; Reades, D.W.; Cherry, J.A.; Chambers, D.B.; Case, G.G.; Ibbotson, B.G.

    1985-01-01

    The purpose of this manual is to describe the requisite sampling procedures for the application of uniform high-quality standards to detailed geotechnical, hydrogeological, geochemical and air quality measurements at Canadian uranium tailings disposal sites. The selection and implementation of applicable sampling procedures for such measurements at uranium tailings disposal sites are complicated by two primary factors. Firstly, the physical and chemical nature of uranium mine tailings and effluent is considerably different from natural soil materials and natural waters. Consequently, many conventional methods for the collection and analysis of natural soils and waters are not directly applicable to tailings. Secondly, there is a wide range in the physical and chemical nature of uranium tailings. The composition of the ore, the milling process, the nature of tailings depositon, and effluent treatment vary considerably and are highly site-specific. Therefore, the definition and implementation of sampling programs for uranium tailings disposal sites require considerable evaluation, and often innovation, to ensure that appropriate sampling and analysis methods are used which provide the flexibility to take into account site-specific considerations. The following chapters describe the objective and scope of a sampling program, preliminary data collection, and the procedures for sampling of tailings solids, surface water and seepage, tailings pore-water, and wind-blown dust and radon

  3. Preparations for Mixed Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Clark, D.K.; Perez, P.A.; Doyle, G.

    2006-01-01

    The Radioactive Waste Management Complex (RWMC) at the Nevada Test Site (NTS) is preparing for the receipt and disposal of low-level mixed waste (MV) generated within the U.S. Department of Energy (DOE) complex. The NTS maintains and develops disposal locations to accommodate various waste forms, and is engaged in developing verification and handling processes to ensure proper acceptance and disposal. Operations at the RWMC are focused on ensuring future disposal needs can be accommodated with a maximum benefit to risk ratio. This paper addresses the programmatic developments implemented at the NTS to accommodate the receipt, verification, and disposal of MW. The Radioactive Waste Acceptance Program (RWAP) has incorporated aspects of the Waste Analysis Plan (WAP) into the Nevada Test Site Waste Acceptance Criteria (NTSWAC). The verification program includes statistical sampling components that take into account waste form, program reliability, and other factors. The WAP allows for a conglomerate of verification techniques including visual examination, non-destructive examination, and chemical screening ensuring compliance with the NTSWAC. The WAP also provides for the acceptance of MW with most U.S. Environmental Protection Agency waste codes. The MW sent to the NTS for disposal must meet Land-Disposal Restriction standards. To support the verification processes outlined in the WAP, a Real-Time-Radiography (RTR) facility was constructed. Using a 450 keV, 5-mA tube-head system with a bridge and manipulator assembly, MW packages can undergo non-destructive examination (x-ray) at the RWMC. Prior to the NTS accepting the waste shipment, standard waste boxes, drums, and nominally sized bulk items can be manipulated on a cart and examined directly or skewed in real-time to ensure compliance with NTSWAC requirement s An existing MW disposal cell at the RWMC has been tailored to meet the requirements of a Category 2 non-reactor Nuclear Facility. In retrofitting an existing

  4. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site

  5. Selection of radioactive waste disposal site considering natural processes

    International Nuclear Information System (INIS)

    Nakamura, H.

    1991-01-01

    To dispose the radioactive waste, it is necessary to consider the transfer of material in natural environment. The points of consideration are 1) Long residence time of water 2) Independence of biosphere from the compartment containing the disposal site in the natural hydrologic cycle 3) Dilution with the natural inactive isotope or the same group of elements. Isotope dilution for 129 I and 14 C can be expected by proper selection of the site. 241 Am and 239 Pu will be homogenized into soil or sediment with insoluble elements such as iron and aluminium. For 237 Np and 99 Tc anionic condition is important for the selection. From the point of view of hydrologic cycle, anoxic dead water zone avoiding beneath mountain area is preferable for the disposal site. (author)

  6. Project licensing plan for UMTRA [Uranium Mill Tailings Remedial Action] sites

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Licensing Plan is to establish how a disposal site will be licensed, and to provide responsibilities of participatory agencies as legislated by the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604). This Plan has been developed to ensure that the objectives of licensing are met by identifying the necessary institutional controls, participatory agency responsibilities, and key milestones in the licensing process. The Plan contains the legislative basis for and a description of the licensing process (''Process'') for UMTRA sites. This is followed by a discussion of agency responsibilities, and milestones in the Process. The Plan concludes with a generic timeline of this Process. As discussed in Section 2.1, a custodial maintenance and surveillance plan will constitute the basis for a site license. The details of maintenance and surveillance are discussed in the Project Maintenance and Surveillance Plan (AL-350124.0000). 5 refs., 4 figs

  7. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  8. Environmental assessment of remedial action at the Lakeview Uranium Mill Tailings Site, Lakeview, Oregon: Volume 2, Appendices

    International Nuclear Information System (INIS)

    1985-04-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Lakeview uranium mill tailings site located one mile north of Lakeview, Oregon. The site covers 256 acres and contains 30 acres of tailings, 69 acres of evaporation ponds, and 25 acres of windblown materials. Remedial actions must be performed in accordance with standards and with the concurrence of the Nuclear Regulatory Commission. Three alternatives have been addressed in this document. The first alternative (the proposed action) is relocation of all contaminated materials to the Collins Ranch site. The contaminated materials would be consolidated into an embankment constructed partially below grade and covered with radon protection and erosion protection covers. A second alternative would relocate the tailings to the Flynn Ranch site and dispose of the contaminated materials in a slightly below grade embankment. A radon protection and erosion protection cover system would also be installed. The no-action alternative is also assessed. Stabilization in place is not considered due to potential seismic and geothermal hazards associated with the current tailings site, and the inability to meet EPA standards. Volume 2 contains 11 appendices

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  10. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium

  11. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  12. The disposal of Canada's nuclear fuel waste: site screening and site evaluation technology

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Everitt, R.A.; Gascoyne, M.; Kozak, E.T.; Lodha, G.S.; Martin, C.D.; Soonawala, N.M.; Stevenson, D.R.; Thorne, G.A.; Whitaker, S.H.

    1994-06-01

    The concept for the disposal of Canada's nuclear fuel waste is to dispose of the waste in an underground vault, nominally at 500 m to 1000 m depth, at a suitable site in plutonic rock of the Canadian Shield. The feasibility of this concept and assessments of its impact on the environment and human health, will be documented by AECL in an Environmental Impact Statement (EIS). This report is one of nine primary references for the EIS. It describes the approach and methods that would be used during the siting stage of the disposal project to identify a preferred candidate disposal site and to confirm its suitability for constructing a disposal facility. The siting stage is divided into two distinct but closely related substages, site screening and site evaluation. Site screening would mainly involve reconnaissance investigations of siting regions of the Shield to identify potential candidate areas where suitable vault locations are likely to exist. Site screening would identify a small number of candidate areas where further detailed investigations were warranted. Site evaluation would involve progressively more detailed surface and subsurface investigations of the candidate areas to first identify potentially suitable vault locations within the candidate areas, and then characterize these potential disposal sites to identify the preferred candidate location for constructing the disposal vault. Site evaluation would conclude with the construction of exploratory shafts and tunnels at the preferred vault location, and underground characterization would be done to confirm the suitability of the preferred candidate site. An integrated program of geological, geophysical, hydrogeological, geochemical and geomechanical investigations would be implemented to obtain the geoscience information needed to assess the suitability of the candidate siting areas and candidate sites for locating a disposal vault. The candidate siting areas and candidate disposal vault sites would be

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  15. Recycling and disposal of FUSRAP materials from the Ashland 2 site at a licensed uranium mill

    International Nuclear Information System (INIS)

    Howard, B.; Conboy, D.; Rehmann, M.; Roberts, H.

    1999-01-01

    During World War II the Manhattan Engineering District (MED) used facilities near Buffalo, N.Y. to extract natural uranium from ores. Some of the byproduct material left from the ores (MED byproduct), containing low levels of uranium, thorium, and radium, was deposited on a disposal site known as Ashland 2, located in Tonawanda, NY. On behalf of the United States Army Corps of Engineers (USACE, or the Corps), ICF Kaiser Engineers (ICFKE) was tasked to provide the best value clean-up results that meet all of the criteria established in the Record of Decision for the site. International Uranium (USA) Corporation (IUC), the operator of the White Mesa Uranium Mill, a Nuclear Regulatory Commission (NRC)-licensed mill near Blanding, Utah, was selected to perform uranium extraction on the excavated materials, therefore giving the best value as it provided beneficial use of the material consistent with the Resource Conservation and Recovery Act (RCRA) intent to encourage recycling and recovery, while also providing the most cost-effective means of disposal. Challenges overcome to complete this project included (1) identifying the best-value location to accept the material; (2) meeting regulatory requirements with IUC obtaining an NRC license amendment to accept and process the material as an alternate feed; (3) excavating and preparing the material for shipment, then shipping the material to the Mill for uranium recovery; and (4) processing the material, followed by disposal of tailings from the process in the Mill's licensed uranium tailings facility. Excavation from Ashland 2 and processing of the Ashland 2 material at the White Mesa Mill resulted in a cleaner environment at Tonawanda, a cost avoidance of up to $16 million, beneficial recovery of source material, and environmentally protective disposal of byproduct material. (author)

  16. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  17. Techniques for site investigations for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1985-01-01

    The report provides a more detailed description of the capabilities and applications of the various earth science investigation techniques outlined in the IAEA Technical Reports Series Nos. 177, 215 and 216. These methods are generally appropriate during at least one of the stages of the assessment or selection of a site for any type of waste disposal facility, in shallow ground or in deep geological formations. This report is addressed to technical authorities responsible for or involved in planning, approving, executing and reviewing national waste disposal programmes. It may also help administrative authorities in this field to select appropriate techniques for obtaining the majority of the required information at minimum cost

  18. Site Evaluation Studies of the Massachusetts Bay Disposal Site for Ocean Disposal of Dredged Material

    Science.gov (United States)

    1988-07-05

    entire Bank, without any noticeably detectable elevations of organic contaminants in areas of proximity, but 6 kilometers distant , to disposal activity...Office of Water Regulations and Standards, Criteria and Standards Division. May 1, 1987, including Water Quality Criteria Summary. Estrella , B. T

  19. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  20. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  1. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain

  2. Development of Advanced Korean Reference HLW Disposal System - Site Characteristics -

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Park, Kyung Woo; Kin, Geon Young; Choi, Heui Joo

    2011-01-01

    In order to dispose of a high-level radioactive waste (HLW) safely in geological formations, an advanced Korean reference high-level waste disposal system(A-KRS) is being investigated to cope with the HLWs from pyro-processing of the spent nuclear fuel. This is a summarized comprehensive KURT site characterization report for the development of an A-KRS and the scope is as follows; topographical and geological characteristics, hydrogeological conceptual model and groundwater flow simulation, groundwater chemistry and geothermal gradient, and potential layout for deep geological repository. The geological, geo-structural, hydrogeological, and geochemical information, which are investigated and estimated up to -500m depth using various investigation methods, has been providing for development of disposal system, engineered barrier system, radionuclide migration properties in natural barrier system, and their total safety assessment

  3. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  4. The disposal of reactor pressure vessels heads at the Soulaines LLW disposal site (France)

    International Nuclear Information System (INIS)

    Lecoq, Pascal; Dutzer, Michel

    2012-01-01

    In 1994, EDF, the national utility, requested ANDRA (Agence nationale pour la gestion des dechets radioactifs), the French national agency for the management of radioactive waste, to take over 55 reactor pressure vessel (RPV) heads from all PWRs (900 and 1,300 MW). By 1994, 24 of the 55 vessel heads had already been removed and stored in an EDF facility located in southern France. Since the disposal of such large components was not described and licensed in the safety report of the Centre de l'Aube and in the regulatory body's technical prescriptions, it was necessary to request a special authorisation from the Nuclear Safety Authority (Autorite de surete nucleaire - ASN), which is the French regulatory body. The study relating to the disposal of large components (long-term safety and operation aspects) began in 1995, and the first authorisation request was sent to ASN in December 1997. The main provisions being foreseen included: the disposal of the RPV head with the use of a biological shielding plate under the head and of a protection plate for adapters; the disposal in dedicated vaults; the acceptance of RPV heads disposal according to their radiological characterisation. Investigations by the regulatory body lasted 18 months, and the decision was unfavourable, due to the lack of an envelope (packaging) all around the waste, and the observation, with regard to the embedding conditions, of a continuity between the package and the filling material (inside the vault), without that continuous envelope. Consequently, the file was revised: the package concept was changed, and the confining envelope, which was initially used for transportation only, was maintained for disposal purposes in order to form, together with the shielding plate, the first barrier around the waste. Hence, the mass of the large components increased from 60 and 80 t to 100 and 120 t, respectively. The delivery of vessel heads at the Soulaines disposal site was discussed during a meeting of the

  5. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

    Directory of Open Access Journals (Sweden)

    Elela Sherif

    2006-01-01

    Full Text Available Abstract Background We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. Results We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. Conclusion Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

  6. Completion of the uranium mill tailings remedial project and cleanup of the former mill site at Grand Junction, Colorado

    International Nuclear Information System (INIS)

    Rael, G.J.; Cox, S.W.; Artiglia, E.W.

    2000-01-01

    The United States Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Surface Project has successfully completed the cleanup of 22 former uranium mill sites, more than 5400 vicinity properties, and has constructed 18 entombment cells. The Project has recently received the United States Nuclear Regulatory Commission's approval and certification for the last two disposal sites, with these sites being placed under the general license for long term custodial care of residual radioactive material. The UMTRA site located at Grand Junction, Colorado is a good example of the technical, political, economic, and public relations challenges that were overcome in achieving success. The UMTRA Team discussed, negotiated, planned, and eventually acted on this uranium mill tailings problem and brought the project to a successful conclusion for the community. From the early 1940s through the 1970s, uranium ore was mined in significant quantities under United States federal contracts for the government's national defence programmes, i.e. the Manhattan Engineering District and Atomic Energy Commission programmes. The problem started as the need for uranium decreased in the late 1960s, resulting in mills shutting down, leaving behind large quantities of process waste tailings and contaminated mill buildings. The former Climax Uranium Company mill site in Grand Junction was one of the largest of these sites. (author)

  7. Wind erosion research at an uranium mill tailings site

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G A

    1977-07-01

    A uranium mill tailings pile at Grants, New Mexico, was selected for wind erosion research since the configuration provides flat area containing fine sand and made up of larger particles. The wind erosion experiment is discussed. Experimental equipment consists of meteorological instrumentation to automatically activate air samplers as a function of wind speed increments and direction, particle cascade impactors to measure airborne respirable concentrations as a function of particle size, inertial impaction devices to measure nonrespirable fluxes of airborne particles, a virtual particle cascade impactor to measure airborne concentrations of toxic trace elements, and soil depth gauges to measure changes in surface soil elevations as a function of time. Both radioactive particles as well as toxic trace element concentrations are measured. Radioactive particles are measured with both particle cascade impactors as well as high-volume air samplers. In contrast, toxic trace element airborne concentrations are measured only with a two-stage virtual particle cascade impactor. Fluxes of nonrespirable airborne particles are measured with inertial impaction devices. At particle cascade impactor sites, a rotating cyclone preseparator collects nonrespirable particles. In addition at all sites, fluxes of nonrespirable particles are measured using an open cavity inertial impaction device. (JGB)

  8. Voluntary cleanup of the Ames chemical disposal site

    International Nuclear Information System (INIS)

    Taboas, A.L.; Freeman, R.; Peterson, J.

    2003-01-01

    The U.S. Department of Energy completed a voluntary removal action at the Ames chemical disposal site, a site associated with the early days of the Manhattan Project. It contained chemical and low-level radioactive wastes from development of the technology to extract uranium from uranium oxide. The process included the preparation of a Remedial Investigation, Feasibility Study, Baseline Risk Assessment, and, ultimately, issuance of a Record of Decision. Various stakeholder groups were involved, including members of the regulatory community, the general public, and the landowner, Iowa State University. The site was restored and returned to the landowner for unrestricted use.

  9. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  10. Mine tailings composition in a historic site: implications for ecological restoration.

    Science.gov (United States)

    Courtney, R

    2013-02-01

    Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p restoration work will employ capping with a barrier layer.

  11. Modelling of contaminant release from a uranium mine tailings site

    International Nuclear Information System (INIS)

    Kahnt, Rene; Metschies, Thomas

    2007-01-01

    Available in abstract form only. Full text of publication follows: Uranium mining and milling continuing from the early 1960's until 1990 close to the town of Seelingstaedt in Eastern Germany resulted in 4 tailings impoundments with a total tailings volume of about 105 Mio. m 3 . Leakage from these tailings impoundments enters the underlying aquifers and is discharged into surface water streams. High concentration of salts, uranium and several heavy metals are released from the tailings. At present the tailings impoundments are reshaped and covered. For the identification of suitable remediation options predictions of the contaminant release for different remediation scenarios have to be made. A compartment model representing the tailings impoundments and the surrounding aquifers for the calculation of contaminant release and transport was set up using the software GOLDSIM. This compartment model describes the time dependent hydraulic conditions within the tailings and the surrounding aquifers taking into account hydraulic and geotechnical processes influencing the hydraulic properties of the tailings material. A simple geochemical approach taking into account sorption processes as well as retardation by applying a k d -approach was implemented to describe the contaminant release and transport within the hydraulic system. For uranium as the relevant contaminant the simple approach takes into account additional geochemical conditions influencing the mobility. Alternatively the model approach allows to include the results of detailed geochemical modelling of the individual tailings zones which is than used as source term for the modelling of the contaminant transport in the aquifer and to the receiving streams. (authors)

  12. California LLW disposal site development update: Ahead of milestone schedule

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1987-01-01

    US Ecology has been designated by the State of California to locate, develop and operate a low-level radioactive waste disposal facility. In early 1986, the firm identified eighteen desert basins in southeastern California for siting consideration. Three candidate sites were selected for detailed field characterization work in February, 1987. A preferred site for licensing purposes will be identified in early 1988. California is currently ahead of the siting milestone schedule mandated by the Low-Level Radioactive Waste Policy Amendments Act. It is likely that a license application will be filed before the 1990 milestone date. This paper describes the process undertaken by US Ecology to identify three candidates sites for characterization, and the public involvement program supporting this decision. Future activities leading to final site development are also described

  13. 10 CFR 61.44 - Stability of the disposal site after closure.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency's (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  16. Guidance for closure of existing DOE LLW disposal sites

    International Nuclear Information System (INIS)

    Blanchfield, L.

    1987-01-01

    During FY 1986, a closure guidance document was developed. The purpose of this document is to provide guidance in support of DOE Order 5820.2 to site operating contractors for the stabilization and closure of existing low-level waste (LLW) shallow land disposal sites at US Department of Energy (DOE) facilities. Guidance is provided to aid operators in placing existing LLW sites in a closed conditions, i.e., a condition in which a nonoperational site meets postclosure performance requirements and can be shown, within a high degree of confidence, to perform as anticipated in the future, under the most cost-effective maintenance approach. Guidance is based on the philosophy that closure should be planned and performed using a systems approach. Plans for FY 1987 call for revision of the document to incorporate more information on closure of LLW sites also containing radioactive mixed waste and/or transuranic waste. 4 references, 3 figures, 2 tables

  17. Assessment of candidate sites for disposal of treated effluents at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, J.D.

    1992-01-01

    A rigidly defined evaluation process was used to recommend a preferred location to dispose of treated effluents from facilities in the 200 Areas of the US Department of Energy's Hanford Site in Washington State. First, siting constraints were defined based on functional design considerations and siting guidelines. Then, criteria for selecting a preferred site from among several candidates were identified and their relative importance defined. Finally, the weighted criteria were applied and a site was selected for detailed characterization by subsurface investigations

  18. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  1. Pyramiding tumuli waste disposal site and method of construction thereof

    Science.gov (United States)

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site

  4. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  5. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Jasso, Tashina [USDOE Office of Legacy Management, Washington, DC (United States); Widdop, Michael [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-09-29

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levels were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.

  6. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment

  9. Radon levels after restoration of the U-mine disposal site

    International Nuclear Information System (INIS)

    Krizman, M.J.; Rojc, J.; Jovanovic, P.

    2010-01-01

    After cessation of the underground mining of uranium ore and production of uranium concentrate at Zirovski Vrh (Slovenia) in the period 1985-1990, two permanent surface disposal sites remained, namely, tailings pile and mine waste rock pile. Both disposal sites were of equal size of 4 hectares and were significant sources of radon. Their final restoration was designed in compliance with the condition of dose constraint for the public and authorized limits for radon exhalation from the remediated piles. In the late summer of 2008, a restoration of the mine waste pile was finished. Radon releases were reduced significantly by constructing an effective radon barrier of well compacted clay material and a thick complex protective cover layer constructed over it. Radon exhalation rate from the mine waste area was lowered from primary level of 0.7 Bq/m 2 ·s to natural levels (0.01 Bq/m 2 ·s), and consequently, ambient radon levels also decreased on the site and nearby environment. The average radon contribution from the remaining U-mine sources was estimated on the basis of the environmental measurements of radon concentrations; they dropped from initial 7-9 Bq/m 3 to approximately 3 Bq/m 3 . Further reduction of outdoor radon concentrations is expected after 2010, since the restoration of another disposal site will have been completed by the end of this year. Public exposure due to industrial radon after the first phase of restoration satisfactorily meets the dose constraint level of 0.3 mSv/y, since it decreased to less than 0.1 mSv/y. (authors)

  10. Annual Performance Report April 2015 Through March 2016 for the Shiprock, New Mexico, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, Mark [USDOE Office of Legacy Management (LM), Washington, DC (United States); Miller, David [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-10-01

    This annual report evaluates the performance of the groundwater remediation system at the Shiprock, New Mexico, Disposal Site (Shiprock site) for the period April 2015 through March 2016. The Shiprock site, a former uranium-ore processing facility remediated under the Uranium Mill Tailings Radiation Control Act, is managed by the U.S. Department of Energy (DOE) Office of Legacy Management. This annual report is based on an analysis of groundwater quality and groundwater level data obtained from site monitoring wells and the groundwater flow rates associated with the extraction wells, drains, and seeps. Background The Shiprock mill operated from 1954 to 1968 on property leased from the Navajo Nation. Remediation of surface contamination, including stabilization of mill tailings in an engineered disposal cell, was completed in 1986. During mill operation, nitrate, sulfate, uranium, and other milling-related constituents leached into underlying sediments and contaminated groundwater in the area of the mill site. In March 2003, DOE initiated active remediation of groundwater at the site using extraction wells and interceptor drains. At that time, DOE developed a baseline performance report that established specific performance standards for the Shiprock site groundwater remediation system. The Shiprock site is divided into two distinct areas: the floodplain and the terrace. The floodplain remediation system consists of two groundwater extraction wells, a seep collection drain, and two collection trenches (Trench 1 and Trench 2). The terrace remediation system consists of nine groundwater extraction wells, two collection drains (Bob Lee Wash and Many Devils Wash), and a terrace drainage channel diversion structure. All extracted groundwater is pumped into a lined evaporation pond on the terrace. Compliance Strategy and Remediation Goals As documented in the Groundwater Compliance Action Plan, the U.S. Nuclear Regulatory Commission–approved compliance strategy for the

  11. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  12. Environmental conditions of two abandoned uranium mill tailings sites in northern Saskatchewan

    International Nuclear Information System (INIS)

    Kalin, M.

    Two abandoned uranium mill tailings sites near Uranium City, Saskatchewan, have been studied in an attempt to follow the natural rehabilitation processes. The Gunnar site is a largely terrestrial environment while the Lorado mill tailings were discharged mainly into Nero Lake. This report describes the ecological conditions of both sites, potential long-term environmental degradation, and possible measures to assist the recovery of both areas

  13. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs

  14. Application of studies on the overboard placement of dredged sediments to the management of disposal sites

    Science.gov (United States)

    Panageotou, William; Halka, Jeffrey; ,

    1994-01-01

    From the mid 1960's until 1991, dredging and disposal occurred in the northern Chesapeake Bay without guidelines to maximize the capacity and to minimize the spread of the deposits beyond the disposal sites, particularly toward the navigation channel. Planning for future dredging projects is dependant upon the remaining site capacity and the behavior of the disposed sediment. Recent studies have shown that the fate of the deposited sediments is determined primarily by the water depth and bathymetry in the vicinity of the disposal site, and the method of dredging and disposal utilized. Currently used open-water disposal sites in the northern Chesapeake Bay are reaching their maximum capacity. This makes the application of the information from these studies critical, both for the optimal use of current sites and for the evaluation of new sites. Management scenarios utilizing these studies are applied to a disposal site in the northern Chesapeake Bay.

  15. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd 3 ). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM)

  16. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells.

  17. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    International Nuclear Information System (INIS)

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers ''will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of ''vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells

  18. Status of disposal sites for the Department of Energy's Formerly Utilized Sites Remedial Action Program

    International Nuclear Information System (INIS)

    Kannard, J.R.

    1988-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) is a US Department of Energy (DOE) program to evaluate and remedy radiological and chemical contamination conditions at sites across the nation where contamination exceeding current guidelines remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions which Congress has mandated DOE to remedy. The need for permanent disposal facilities for the low-level radioactive wastes and mixed wastes resulting from the FUSRAP program was recognized early. The selection and development of disposal sites was known to require significant time. Because of the complexities of developing a disposal site, a plan was developed to proceed with remedial action prior to availability of permanent disposal sites. To accomplish this, the waste from remedial action activities would be placed in temporary storage at interim storage sites. The paper provides a description of the wastes involved, and issues requiring attention including public relations, regulations, government agency interaction, mixed waste requirements. Current status of the program along with evolving strategies are discussed

  19. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Funding for disposal site closure and stabilization. 61.62 Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The...

  20. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document

  1. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document.

  2. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability

  3. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-07-01

    The Slick Rock uranium mill tailings sites are located near the small town of Slick Rock, in San Miguel County, Colorado. There are two designated UMTRA sites at Slick Rock, the Union Carbide (UC) site and the North Continent (NC) site. Both sites are adjacent to the Dolores River. The UC site is approximately 1 mile (mi) [2 kilometers (km)] downstream of the NC site. Contaminated materials cover an estimated 55 acres (ac) [22 hectares (ha)] at the UC site and 12 ac (4.9 ha) at the NC site. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 620, 000 cubic yards (yd 3 ) [470,000 cubic meters (m 3 )]. In addition to the contamination at the two processing site areas, four vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into groundwater

  4. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  5. Use of asphalt emulsion sealants in disposal of uranium mill tailings

    International Nuclear Information System (INIS)

    Hartley, J.N.; Freeman, H.D.; Elmore, M.R.

    1981-07-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado confirmed that an 8-cm admix seal containing 22 wt % asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation

  6. Source term development for tritium at the Sheffield disposal site

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Barletta, R.E.; Smalley, J.F.; Kempf, C.R.; Davis, R.E.

    1984-01-01

    The Sheffield low-level radioactive waste disposal site, which ceased operation in 1978, has been the focus of modeling efforts by the NRC for the purpose of predicting long-term site behavior. To provide the NRC with the information required for its modeling effort, a study to define the source term for tritium in eight trenches at the Sheffield site has been undertaken. Tritium is of special interest since significant concentrations of the isotope have been found in groundwater samples taken at the site and at locations outside the site boundary. Previous estimates of tritium site inventory at Sheffield are in wide disagreement. In this study, the tritium inventory in the eight trenches was estimated by reviewing the radioactive shipping records (RSRs) for waste buried in these trenches. It has been found that the tritium shipped for burial at the site was probably higher than previously estimated. In the eight trenches surveyed, which amount to roughly one half the total volume and activity buried at Sheffield, approximately 2350 Ci of tritium from non-fuel cycle sources were identified. The review of RSRs also formed the basis for obtaining waste package descriptions and for contacting large waste generators to obtain more detailed information regarding these waste packages. As a result of this review and the selected generator contacts, the non-fuel cycle tritium waste was categorized. The tritium releases from each of these waste categories were modeled. The results of this modeling effort are presented for each of the eight trenches selected. 3 references, 2 figures

  7. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  8. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    Bachrach, A.; Hoopes, J.; Morycz, D.; Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P.; Rice, G.

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated [vicinity] properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed

  9. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  10. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  11. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project's second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water

  12. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  13. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  14. Alternative management techniques for the uranium mill tailings site at Salt Lake City, UT

    International Nuclear Information System (INIS)

    Rogers, V.C.; Goldsmith, W.A.; Haywood, F.F.; Gantner, G.K.

    1976-01-01

    The concentrations of 226 Ra and other uranium-chain radionuclides present in tailings piles at uranium-milling sites are on the order of 10 3 times higher than those usually found in soil-surface minerals. The public radiation exposure attributable to these sites is primarily due to inhalation of 222 Rn progeny. This paper presents the radiological assessment of the uranium-milling site at Salt Lake City, Utah. Adverse health effects are estimated from present and projected public radiation exposures. Three alternative remedial action measures can be used to reduce radiation exposures: (1) decontamination of offsite areas contaminated by tailings materials; (2) covering the tailings with contamination-free material; and (3) removal of the tailings to a more remote location. These three measures are examined in terms of costs incurred and serious health effects avoided

  15. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors

  16. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  17. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project

  18. Dismantlement of waste disposal site in the Musashi Reactor Facility

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Morishima, Kayoko; Tanzawa, Tomio; Mitsuhashi, Ishi; Matsumoto, Tetsuo

    2012-01-01

    The decommissioning of the Musashi reactor was decided in 2003. Liquid waste management facility and solid waste management facility at the waste disposal site had been dismantled and removed. After separating nonradioactive wastes from radioactive wastes with confirmation test of no detectable radioactivity, the system of incinerator, electrical components, feedwater and stock solution processing system, and waste treatment facility were dismantled as nonradioactive wastes from 2011 to 2012. Separating waterproof painting and additional shaving of stock solution storage tanks and scraping of concrete floor surfaces were conducted to separate radioactive wastes. Solid waste storage warehouse was also dismantled in 2012. Radioactive wastes packed in containers were moved and stored in the reactor facility. (T. Tanaka)

  19. Risk assessment of landfill disposal sites - State of the art

    International Nuclear Information System (INIS)

    Butt, Talib E.; Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-01-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches

  20. Upper Mississippi II Dredged Material Disposal Site Recreational User Assessment.

    Science.gov (United States)

    1980-02-01

    AD-A069 159 WISCONSIN UNIV-MADISON F/6 8/11 UPPER MISSISSIPPI 1 DREDGED MATERIAL DISPOSAL SITE RECREATIONA--ETC(Ul FEB 80 R H BECKER, W A BATES , B J...people who stayed in motels or hotels (4.9%). *The litter level at this pool was generally reported as low (85.7%), and a medium litter level was reported...W A BATES , B J NIEMANN DACW25-79-C-0008UNCLASSIFIEO N mEEEEEI/EE//IE Eh|~EEhE ElEEEll/ElllEI E///I/I//II/IIl /I/I////I////u I//II////EN/ .40 r- 00

  1. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  2. Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia).

    Science.gov (United States)

    Gustaytis, M A; Myagkaya, I N; Chumbaev, A S

    2018-07-01

    Gold-bearing polymetallic Cu-Zn deposits of sulphur-pyrite ores were discovered in the Novo-Ursk region in the 1930s. The average content of mercury (Hg) was approximately 120 μg/g at the time. A comprehensive study of Hg distribution in waste of metal ore enrichment industry was carried out in the cold season on the tailing dump site and in adjacent areas. Mercury concentration in among snow particulate, dissolved and colloid fractions was determined. The maximal Hg content in particulate fraction from the waste tailing site ranged 230-573 μg/g. Such indices as the frequency of aerosol dust deposition events per units of time and area, enrichment factor and the total load allowed to establish that the territory of the tailing waste dump site had a snow cover highly contaminated with dust deposited at a rate of 247-480 mg/(m 2 ∙day). Adjacent areas could be considered as area with low Hg contamination rate with average deposition rate of 30 mg/(m 2 ∙day). The elemental composition of the aerosol dust depositions was determined as well, which allowed to reveal the extent of enrichment waste dispersion throughout adjacent areas. The amount of Hg entering environment with snowmelt water discharge was estimated. As a result of snowmelting, in 2014 the nearest to the dump site hydrographic network got Hg as 7.1 g with colloids and as 5880 g as particles. The results obtained allowed to assess the degree of Hg contamination of areas under the impact of metal enrichment industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  4. Phase II, Title I, engineering assessment of inactive uranium mill tailings, Riverton Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Spook Site, Converse County, Wyoming. Services include the performance of core drillings, soil, water and other sample analyses, radiometric measurements to determine areas with radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site geology, hydrology, and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 187,000 tons of tailings at the Spook Site constitutes the main environmental impact, which is negligible. The two alternative actions presented are better fencing of the site in its present state, and placing tailings and contaminated on-site materials and soil in the open-pit mine and covering the resulting pile with 2 ft of overburden materials. The cost estimates for the options are $81,000 and $142,000, respectively

  5. 75 FR 61415 - Admiralty National Monument: Tongass National Forest; Alaska; Expansion of Tailings Disposal...

    Science.gov (United States)

    2010-10-05

    ... project reserves, plus provide volume for waste rock co-disposal and an expanded resource base as..., Department of Natural Resources Reclamation Plan Approval. State water rights permits for water withdrawals... Greens Creek Mining Company (HGCMC) operates an underground polymetallic mine located approximately 18...

  6. Engineering assessment of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado. Phase II, Title I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. The Phase II - Title I services include the preparation of topographic measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 0.5 million tons of tailings at the Gunnison site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The nine alternative actions presented range from millsite decontamination (Option I), to adding various depths of stabilization cover material (Options II and III), to removal of the tailings to long-term storage sites and decontamination of the present site (Options IV through IX). Cost estimates for the nine options range from $480,000 to $5,890,000. Reprocessing the tailings for uranium does not appear to be economically attractive at present.

  7. Engineering assessment of inactive uranium mill tailings, Naturita site, Naturita, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Naturita, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings sufficient to determine areas and volumes of tailings, the performance of radiometric measurements to determine the extent of radium contamination, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the costing of alternative corrective actions. Radon gas release from the 704,000 tons of tailings at the Naturita site constitutes the most significant environmental impact although windblown tailings and external gamma radiation are also factors. Ranchers Exploration and Development Company has been licensed by the State of Colorado to reprocess the tailings at a location 3 mi from the present site where they will be stabilized for long-term storage. The remedial action options include remedial action for structures in Naturita and Nucla (Option I) at an estimated cost of $270,000 and remedial action for structures and open land adjacent to the tailings site (Option II) at an estimated cost of $950,000

  8. Engineering assessment of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. The Phase II - Title I services include the preparation of topographic measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 0.5 million tons of tailings at the Gunnison site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The nine alternative actions presented range from millsite decontamination (Option I), to adding various depths of stabilization cover material (Options II and III), to removal of the tailings to long-term storage sites and decontamination of the present site (Options IV through IX). Cost estimates for the nine options range from $480,000 to $5,890,000. Reprocessing the tailings for uranium does not appear to be economically attractive at present

  9. Improved dewatering characteristics of uranium tailings through controlled neutralization for paste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, N., E-mail: nkuyucak@golder.com [Golder Paste Technology Ltd., Ottawa, ON (Canada); Primeau, P.; Labelle, M.; Palkovits, F. [Golder Paste Technology Ltd., Sudbury, ON (Canada)

    2010-07-01

    Tailings from a uranium mine have been tested to improve the dewatering properties and final weight percent (wt%) solids of the neutralized tailings. The objectives were to maximize water recovery due to the scarcity of water in the project area and to produce a suitable cemented paste fill to minimize ore dilution underground in order to maximize the head grade to the mill. The applicability of the controlled neutralization process, in which gypsum would precipitate as crystalline particles thereby improving the dewatering properties of the tailings through the use of a deep bed paste thickeners was tested. The acid leach slurry samples used were obtained from the end of the leaching circuit, before uranium recovery and lime neutralization. The tests conducted indicated that the controlled neutralization process greatly reduced the volume of neutralization precipitates which typically results in a higher final density and wt% solids. Additionally it improved the dewatering (filtration) properties of the material. Controlled neutralization also reduced the amount of sulphate in the solution close to that of its saturation limit, which would reduce the amount of scaling that could occur during full scale applications and would increase the recyclability of the water back to the process. Deep bed paste thickening also improved the final wt% solids of the underflow. The test work demonstrated that it was possible, at the bench scale level, to improve final density and recover additional water. The increase in the filterability of the material provided a good indication that further increase in wt% solids and water recovery could be obtained in full scale applications. Unconfined Compressive Strength (UCS) tests improved for samples with reduced gypsum concentrations. While the strength achieved remained low, there was a substantial increase. Although further studies are required, neutralization of uranium tailings under controlled conditions to form gypsum as

  10. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This site characterization report provides the results of the field data collection activities for the Environmental Restoration Disposal Facility site. Information gathered on the geology, hydrology, ecology, chemistry, and cultural resources of the area is presented. The Environmental Restoration Disposal Facility is located at the Hanford Site in Richland, Washington

  11. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  12. Long-Term Stewardship at a Former Uranium Mill Tailings Site in Riverton, Wyoming WM2017-17090

    Energy Technology Data Exchange (ETDEWEB)

    Dam, William [USDOE Office of Legacy Management, Washington, DC (United States); Gil, Dr. April [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Raymond H. [Navarro Research and Engineering, Oak Ridge, TN (United States); Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2017-03-01

    The US Department of Energy Office of Legacy Management (LM) is responsible for maintaining protective public health and environmental conditions at former uranium mill tailings sites nationwide via long-term stewardship. One of these sites, a former uranium mill near Riverton, Wyoming, is within the boundary of the Wind River Indian Reservation and operated from 1958 to 1963. Tailings and contaminated material associated with mill operations were removed and transported to an offsite disposal cell in 1989. The remedial action was completed under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Milling operations, which included an unlined tailings impoundment and an unlined evaporation pond, contaminated the shallow groundwater, resulting in a downgradient groundwater plume that discharges to the Little Wind River. A natural flushing compliance strategy was implemented in 1998. This strategy allows contaminants of concern to naturally flush from the groundwater, provided that contaminants flush below US Environmental Protection Agency maximum concentration limits within 100 years. As part of the compliance strategy, LM has implemented a groundwater monitoring program along with institutional controls that include the installation of an alternate water supply, continued sampling of private wells, and restrictions on well drilling and gravel pit construction. LM works closely with local stakeholders and community members to ensure that these institutional controls are in place and maintained. The Riverton site provides an interesting case study where contaminant remobilization due to river flooding prompted a reevaluation of the conceptual site model to verify if the current compliance strategy would remain protective of human health and the environment. Concentrations of groundwater contaminants, which include sulfate, molybdenum, and uranium, were transiently elevated following flooding of the Little Wind River in 2010 and 2016. These flood

  13. Bioremediation of ground water contaminants at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.

    1995-01-01

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  16. Groundwater hydrology study of the Ames Chemical Disposal Site

    International Nuclear Information System (INIS)

    Stickel, T.

    1996-01-01

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine

  17. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  18. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pescatore, C.

    2010-01-01

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  19. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  20. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  1. Engineering assessment of inactive uranium mill tailings, Maybell site, Maybell, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. The Phase II--Title I services include the preparation of topographic maps, the performance of core drillings sufficient to determine areas and volumes of tailings and radiometric measurements to determine radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 2.6 million tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented range from fencing and maintenance (Option I), to placing the tailings in an open-pit mine and adding 2 ft of stabilization cover material (Option III). Cost estimates for the three options range from $250,000 to $4,520,000. Reprocessing the tailings for uranium does not appear to be economically attractive at present

  2. Trace metal contamination of water at a solid waste disposal site at ...

    African Journals Online (AJOL)

    , and close to, a solid waste disposal site at Kariba, Zimbabwe, and in water flowing from the area during 1996 and 1997. Soil samples were collected from the surface inside the disposal site and at distances of 3m, 25m and 50m (from the ...

  3. Economics model for new low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report describes LLWECON, an interactive computer mode for evaluating financial factors involved in low-level radioactive waste disposal. The logic by which LLWECON calculates the final generator price (price per cubic foot the disposal site operator charges waste generators) is detailed. Required user input and hypothetical examples, covering sites with different capacities, and both public and private-sector development, are included

  4. Processing radioactive wastes and uranium mill tailings for safe ecologically-acceptable disposal

    International Nuclear Information System (INIS)

    Manchak, F.

    1985-01-01

    Radioactive and associated chemical contaminants present in uranium mill tailings, for example, are isolated from the environment. A matrix product is formed by combining selected clays and lime with the soluble radioactive and chemical contaminants. The clays absorb the majority of all the contaminants. The lime neutralizes the contaminants and cements the clay silicates and absorbed contaminants. The resulting product is of a matrix-like nature and is reverted into a limestone by the uptake of carbon dioxide in a recarbonization process. The radionuclides and chemical contaminants in the resulting product are converted into insoluble oxides or hydroxides which do not appreciably leach out into the ground water. The release of radon gasses is substantially inhibited in the final product, and the release of radon gasses is virtually nonexistent in the final limestone

  5. Post-precipitation bias in band-tailed pigeon surveys conducted at mineral sites

    Science.gov (United States)

    Overton, C.T.; Schmitz, R.A.; Casazza, Michael L.

    2005-01-01

    Many animal surveys to estimate populations or index trends include protocol prohibiting counts during rain but fail to address effects of rainfall preceding the count. Prior research on Pacific Coast band-tailed pigeons (Patagioenas fasciata monilis) documented declines in use of mineral sites during rainfall. We hypothesized that prior precipitation was associated with a short-term increase in use of mineral sites following rain. We conducted weekly counts of band-tailed pigeons at 19 Pacific Northwest mineral sites in 2001 and 20 sites in 2002. Results from regression analysis indicated higher counts ???2 days after rain (11.31??5.00% [x????SE]) compared to ???3 days. Individual index counts conducted ???2 days after rain were biased high, resulting in reduced ability to accurately estimate population trends. Models of band-tailed pigeon visitation rates throughout the summer showed increased mineral-site counts during both June and August migration periods, relative to the July breeding period. Our research supported previous studies recommending that mineral-site counts used to index the band-tailed pigeon population be conducted during July. We further recommend conducting counts >3 days after rain to avoid weather-related bias in index estimation. The design of other population sampling strategies that rely on annual counts should consider the influence of aberrant weather not only coincident with but also preceding surveys if weather patterns are thought to influence behavior or detection probability of target species.

  6. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    International Nuclear Information System (INIS)

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed

  7. Method of impact evaluation of storage sites for uranium ore tailings

    International Nuclear Information System (INIS)

    Servant, A.C.; Cessac, B.

    2001-11-01

    Mining and ore processing generate liquid effluents and solid waste ( tailings) in important quantities. On fifty years exploitation, 50 millions tons of tailings have been stored on twenty sites in France. From a radiological point of view, the uranium tailings contain only natural radioisotopes, daughters of 238 U and 235 U families and for a low part daughter's of 232 Th family. Their activity stay low to very low, under the ore activity. It decreases very slowly because of the long period of some radionuclides ( 230 Th, 75 000 years, 226 Ra, 1600 years). generally stored on the exploitation site, these tailings constitute a radiological source term of which it is necessary to evaluate the impact on man and environment. At close-down of an uranium ore exploitation site, the operator is required to give to the prefect of his region a file of rehabilitation with the dispositions to take to limit the radiological impact of the storage. It is in this frame that the direction of pollutions and risks prevention (D.P.P.R.) from the Minister of Territory landscaping and the Institute of protection and nuclear safety (I.R.S.N.) established a convention, reference 56/2000, relative to investigations in matter of radiological impact evaluation of uranium tailings storage sites, in order to supply a document allowing to judge the pertinence of the different files made by Cogema in the frame of tailings storage of uranium ore processing. The present document constitutes the report planned at the 3. article ( 3. paragraph) of the convention. It gives the information necessary to the evaluation of impact studies for the sites in question. (N.C.)

  8. Analyses of soils at commercial radioactive-waste-disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1982-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from two currently operating commercial radioactive waste disposal sites; one at Barnwell, SC, and the other near Richland, WA. Soil samples believed to be representative of the soil that will contact the buried waste were collected and analyzed. Earth resistivities (field measurements), from both sites, supply information to identify variations in subsurface material. Barnwell soil resistivities (laboratory measurements) range from 3.6 x 10 5 ohm-cm to 8.9 x 10 4 ohm-cm. Soil resistivities of the Hanford sample vary from 3.0 x 10 5 ohm-cm to 6.6 x 10 3 ohm-cm. The Barnwell and Hanford soil pH ranges from 4.8 to 5.4 and from 4.0 to 7.2 respectively. The pH of a 1:2 mixture of soil to 0.01 M CaCl 2 resulted in a pH for the Barnwell samples of 3.9 +- 0.1 and for the Hanford samples of 7.4 +- 0.2. These values are comparable to the pH measurements of the water extract of the soils used for the analyses of soluble ion content of the soils. The exchange acidity of the soils was found to be approximately 7 mg-eq per 100 g of dry soil for clay material from Barnwell, whereas the Hanford soils showed an alkaline reaction. Aqueous extracts of saturated pastes were used to determine the concentrations of the following ions: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , SO 4 /sup =/, and Cl - . The sulfide content of each of the soils was measured in a 1:2.5 mixture of soil to an antioxidant buffer solution. The concentrations of soluble ions found in the soils from both sites are consistent with the high resistivities

  9. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  10. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  11. Conceptual design of a cover system for the degmay uranium tailings site

    Energy Technology Data Exchange (ETDEWEB)

    Vatsidin, Saidov; David, S. Kessel; Kim, Chang Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-06-15

    The Republic of Tajikistan has ten former uranium mining sites. The total volume of all tailings is approximately 55 million tonnes, and the covered area is more than 200 hectares. The safe management of legacy uranium mining and tailing sites has become an issue of concern. Depending on the performance requirements and site-specific conditions (location in an arid, semiarid or humid region), a cover system for uranium tailings sites could be constructed using several material layers using both natural and man-made materials. The purpose of this study is to find a feasible cost-effective cover system design for the Degmay uranium tailings site which could provide a long period (100 years) of protection. The HELP computer code was used in the evaluation of potential Degmay cover system designs. As a result of this study, a cover system with 70 cm thick percolation layer, 30 cm thick drainage layer, geomembrane liner and 60 cm thick barrier soil layer is recommended because it minimizes cover thickness and would be the most cost-effective design.

  12. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 μR/hr, the average background exposure rate for the area, to 140 μR/hr. The average exposure rate for the tailings and former mill area was 220 μR/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of 226 Ra in ten holes as a function of depth is presented graphically

  13. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  14. Preparation of Radwaste Disposal Site in Jawa Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan; Teddy Sumantry; Heru Sriwahyuni; Hendra A Pratama; Nurul Efri E; Achmad Sjarmufni; Pratomo Budiman; Dadang Suganda; Soegeng Waluyo; Ari Pudyo; Dewi Susilowati; Marwoto

    2008-01-01

    The task continuation and national needs indicate the important of starting for radioactive waste disposal preparation. As the IAEA procedures for the first step are to accomplished the conceptual and planning stage of radwaste disposal siting in Jawa island. Within the plan, the Milestone, the site important factors, the potential host rock, the possible areas, the aims and the investigation programs have been defined. From the procedures which are followed hopefully in the end of the activities, suitable site(s) to be able selected for radioactive waste disposal facility in near future. (author)

  15. Dungeness crab survey for the Southwest Ocean Disposal Site off Grays Harbor, Washington, June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, B.J.; Pearson, W.H. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1991-09-01

    As part of the Grays Harbor Navigation Improvement Project, the Seattle District of the US Army Corps of Engineers has begun active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. This survey was to verify that the location of the area of high crab density observed during site selection surveys has not shifted into the Southeast Ocean Disposal Site. In June 1990, mean densities of juvenile Dungeness crab were 146 crab/ha within the disposal site and 609 crab/ha outside ad north of the disposal site. At nearshore locations outside the disposal site, juvenile crab density was 3275 crab/ha. Despite the low overall abundance, the spatial distribution of crab was such that the high crab densities in 1990 have remained outside the Southwest Ocean Disposal Site. The survey data have confirmed the appropriateness of the initial selection of the disposal site boundaries and indicated no need to move to the second monitoring tier. 8 refs., 9 figs., 2 tabs.

  16. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  18. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  19. Remedial Action Plan and Site Design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Appendix C to Attachment 3, Calculations. Final

    International Nuclear Information System (INIS)

    1995-09-01

    This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation

  20. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  1. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC)

  2. Engineering assessment of inactive uranium mill tailings, Lakeview Site, Lakeview, Oregon. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-12-01

    Results are reported from an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at the Lakeview, Oregon site. Results are included from the analyses of soil, water, and other samples; radiometric measurements to determine areas with radium-contaminated materials; evaluation of resulting radiation exposures of individuals and nearby populations; investigation of site geology, hydrology, and meteorology; and evaluation and costing of alternative corrective actions. Radon gas release from the 130,000 tons of tailings at the Lakeview site constitutes the main environmental impact, which is minimal. The two alternative actions presented are maintenance of the site now that the ARCO reclamation program has been completed (Option I); and addition of stabilization cover to a minimum depth of 2 ft, improved fencing, and removal of a few isolated spots of contamination (Option II). The cost estimates for these options are $40,000 and $290,000, respectively

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  5. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  6. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Nevada Environmental Services (NNES), Las Vegas, NV (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  7. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  8. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  9. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    International Nuclear Information System (INIS)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC section 7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management

  10. Assumption and program of the earlier stage construction of L/ILW disposal site

    International Nuclear Information System (INIS)

    Li Xuequn; Chen Shi; Li Xinbang

    1993-01-01

    The authors analysed the production and treatment of low- and intermediate-level radwastes (L/ILW) in China. Some problems and situation in this field are introduced. Over the past ten years, preliminary efforts have been made by CNNC (China National Nuclear Corporation) in policy, law and rules, developing program, management system, siting, engineering techniques, and safety assessment for radwaste disposal. The investment of the earlier stage work of L/ILW disposal site construction is estimated, the program and assumption to disposal site construction of the L/ILW are reviewed

  11. Summary of the engineering assessment of inactive uranium mill tailings, Spook Site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon, Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover materI), to rema densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  12. Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover makes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation.

  13. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to rema densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  14. Engineering assessment of inactive uranium mill tailings, Tube City site, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to rterial (Option I), to rema densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  15. Engineering assessment of inactive uranium mill tailings, Spook site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Spook site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings 48 mi northeast of Casper, in Converse County, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 187,000 tons of tailings at the Spook site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover makes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  16. Revegetation/rock cover for stabilization of inactive U-tailings sites

    International Nuclear Information System (INIS)

    Beedlow, P.A.; Cadwell, L.L.

    1982-01-01

    Soil placed over any sealant/barrier system can provide a protective mantle if the soil is not lost by erosion. Vegetation is an attractive choice for controlling erosion because it can provide an economic self-renewing cover that serves to reduce erosion by both wind and water. Vegetation alone, however, may not adequately stabilize the surface in extremely arid areas. In those areas, a properly designed surface treatment of rock cover, perhaps in conjunction with vegetation, may be necessary to stabilize the tailings surfaces. The objective of this program is to establish guidelines for surface stabilization that are compatible with sealant/barrier systems and that are suited to soils and climates at inactive uranium mill tailings sites. These guidelines will provide the means to estimate potential vegetation cover, potential erosion, effects of surface treatments on sealant/barrier systems, and costs of vegetation and rock covers. Methods for establishing vegetation on sealed tailings will also be provided

  17. The disposal of solid radioactive wastes to land sites in the UK

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Phillipson, D.L.

    1984-01-01

    Solid radioactive waste management by land disposal, using a strategy laid down by the government, is discussed. Waste disposal at Drigg, and the proposals for the two preferred sites at Elstow (shallow burial) and Billingham (deep burial) are outlined. Nuclear Industry Radioactive Waste Executive (NIREX); safety; public acceptance; and the role of the private sector; are also described. (U.K.)

  18. Developments in support of low level waste disposal at BNFL's Drigg Site

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1988-01-01

    The continued upgrading of low-level waste pretreatment and disposal practices related to the United Kingdom Drigg disposal site is described, noting the need to take into account operational safety, long term post-closure safety, regulatory and public acceptance factors

  19. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  20. Siting Criteria for Low and Intermediate Level Radioactive Waste Disposal in Egypt (Proposal approach)

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods and suitable criteria. Near surface disposal method has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. Establishing site criteria is the first step in the sitting process to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  1. Heavy metal concentrations in shallow marine sediments affected by submarine tailings disposal and artisanal gold mining, Buyat-Ratototok district, North Sulawesi, Indonesia

    Science.gov (United States)

    Edinger, Evan N.; Siregar, P. Raja; Blackwood, George M.

    2007-04-01

    Trace element concentrations in shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and unregulated dumping of tailings and wastewater from small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590 690 ppm arsenic, 490 580 ppm antimony, and 0.8 5.8 ppm mercury. Tailings-affected sediment As and Sb concentrations were 20 30 times higher than in muddy sediments not contaminated with tailings, and 50 60 times higher than pre-mining average. Highest mercury concentrations were observed in sediments affected by small-scale mining using mercury amalgamation (5 29 ppm). Concentrations of most other trace elements were comparable in sediments affected by both types of mining and were slightly higher than regional averages for sediments collected before the onset of industrial mining. Elevated concentrations of both As and Sb in approximately equal proportions suggest tailings dispersal of at least 3.5 km. Mercury released from artisanal gold mining dispersed up to 4 km from river mouths. Slight increases in concentrations of non-mercury trace elements in areas affected by artisanal mining over pre-industrial mining concentrations were probably caused by increased rates of erosion.

  2. Water Resources Research Program. Abatement of malodors at diked, dredged-material disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Dravnieks, A.; Zussman, R.; Goltz, R.

    1976-06-01

    Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented for handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.

  3. Experience in selection and characterization of sites for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1997-12-01

    An important matter in the development of a geological repository for disposal radioactive waste is the selection of a site that has characteristics that are favorable for isolation. A number of Member States have had national programmes under way for several decades to investigate sites to gather the geological information needed to design and construct a safe repository. The purpose of this report is to document this experience and to summarize what has been learned about the site selection and investigation process. It is hoped it will be of interest to scientists and engineers working in national disposal programmes by providing them information and key references regarding the disposal programmes in other countries. It may also be of interest to members of the public and to decision makers wanting an overview of the worldwide status of programmes to select and characterize geological disposal sites for radioactive waste

  4. Technologies for in situ immobilization and isolation of radioactive wastes at disposal and contaminated sites

    International Nuclear Information System (INIS)

    1997-11-01

    This report describes technologies that have been developed worldwide and the experiences applied to both waste disposal and contaminated sites. The term immobilization covers both solidification and embedding of wastes

  5. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  6. Geographic factors related to site suitability of low-level waste disposal

    International Nuclear Information System (INIS)

    Zittel, H.E.

    1981-01-01

    A number of factors related to the site suitability of low-level waste disposal sites are discussed. The factors are a combination of those which might be considered environmental and those dealing with site criteria. Among the factors covered are: possible population criteria, alternative site selection, transportation criteria and community involvement considerations. All these factors are discussed in a manner based on the premise that the technology exists to carry out low-level waste disposal in a manner such that public health and safety can be insured. The conclusion of the discussion is that problems encountered in siting low-level waste facilities will be largely societal and political in nature

  7. Geographic factors related to site suitability of low-level waste disposal

    Science.gov (United States)

    Zittel, H. E.

    Factors related to the site suitability of low level waste disposal sites are discussed including those which might be considered environmental and those dealing with site criteria. Possible population criteria, alternative site selection, transportation criteria, and community involvement are considered. All these factors are based on the premise that the technology exists to carry out low level waste disposal in a manner such that public health and safety can be insured. It is concluded that problems encountered in siting low level waste facilities are largely societal and political in nature.

  8. Impact of disposal of dredged material on sediment quality in the Kaohsiung Ocean Dredged Material Disposal Site, Taiwan.

    Science.gov (United States)

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Kao, Chih-Ming; Dong, Cheng-Di

    2018-01-01

    Kaohsiung Ocean Dredged Material Disposal Site (KODMDS) that located in the southwest offshore of Taiwan, has been annually disposed about 500,000 ton dredged sediments of Kaohsiung Harbor from 2003 to 2012. Five sediment cores collected from KODMDS and three from nearby reference sites were analyzed to evaluate their sedimentation rates, vertical profiles of heavy metal, and heavy metal pollution indices to assess the impact of dumping harbor dredged sediments into the ocean on the sediment quality in KODMDS. The sedimentation rate of 0.24 cm/y was estimated by the 210 Pb method, which means that the effected depth of the top layer of a core of D1 was affected in the period of dumping dredging sediments. The vertical distribution of heavy metals in the sediment cores from KODMDS showed the concentrations of most heavy metals were slightly elevated in the top layers of the sediment cores, which may be affected by the dumping of harbor dredged sediments. According to the analyzed results of the heavy metal pollution indices, the level of heavy metal pollution, the potential eco-toxicity and the potential ecological risk of the sediments in KODMDS exhibited only a slight increase, which indicated that the increase in concentration of heavy metals may potentially pose the insignificant impact on benthos inhabiting the disposal site. Copyright © 2017. Published by Elsevier Ltd.

  9. Engineering assessment of inactive uranium mill tailings new and old Rifle site, Rifle, Colorado. Phase II, Title I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Rifle, Colorado. The Phase II--Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 3.1 million tons of tailings at the two Rifle sites, constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. The 15 alternative remedial action options presented range from millsite decontamination and off-site remedial action (Options I and IV), to adding various depths of stabilization cover material (Options II, V, VI and VII), to removal of the tailings to long-term storage sites and decontamination of the present sites (Options III and VIII through XV). Cost estimates for the first 14 options range from $224,000 to $20,300,000. Option XV, estimated at $32,200,000, includes the cost for moving both Rifle tailings piles and the Grand Junction tailings pile to DeBeque for long-term storage and site decontamination after removal of the piles. Reprocessing of the tailings for uranium appears to be economically attractive at present.

  10. Engineering assessment of inactive uranium mill tailings, Rifle Site, Rifle, Colorado. Summary of the Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Rifle, Colorado. The Phase II - Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 3.1 million tons of tailings at the two Rifle sites, constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. The 15 alternative remedial action options presented range from millsite decomtamination and off-site remedial action (Options I and IV), to adding various depths of stabilization cover material (Options II, V, VI, and VII), to removal of the tailings to long-term storage sites and decontamination of the present sites (Options III and VIII through XV). Cost estimates for the first 14 options range from $224,000 to $20,300,000. Option XV, estimated at $32,200,000, includes the cost for moving both Rifle tailings piles and the Grand Junction tailings pile to DeBeque for long-term storage and site decontamination after removal of the piles. Reprocessing of the tailings for uranium appears to be economically attractive at present

  11. Engineering assessment of inactive uranium mill tailings new and old Rifle site, Rifle, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Rifle, Colorado. The Phase II--Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 3.1 million tons of tailings at the two Rifle sites, constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. The 15 alternative remedial action options presented range from millsite decontamination and off-site remedial action (Options I and IV), to adding various depths of stabilization cover material (Options II, V, VI and VII), to removal of the tailings to long-term storage sites and decontamination of the present sites (Options III and VIII through XV). Cost estimates for the first 14 options range from $224,000 to $20,300,000. Option XV, estimated at $32,200,000, includes the cost for moving both Rifle tailings piles and the Grand Junction tailings pile to DeBeque for long-term storage and site decontamination after removal of the piles. Reprocessing of the tailings for uranium appears to be economically attractive at present

  12. Monticello Mill Tailings Site, Operable Unit lll, Annual Groundwater Report, May 2015 Through April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management (LM), Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-10-01

    This report provides the annual analysis of water quality restoration progress, cumulative through April 2016, for Operable Unit (OU) III, surface water and groundwater, of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Monticello Mill Tailings Site (MMTS). The MMTS is a Comprehensive Environmental Response, Compensation, and Liability Act National Priorities List site located in and near the city of Monticello, San Juan County, Utah. MMTS comprises the 110-acre site of a former uranium- and vanadium-ore-processing mill (mill site) and 1700 acres of surrounding private and municipal property. Milling operations generated 2.5 million cubic yards of waste (tailings) from 1942 to 1960. The tailings were impounded at four locations on the mill site. Inorganic constituents in the tailings drained from the impoundments to contaminate local surface water (Montezuma Creek) and groundwater in the underlying alluvial aquifer. Mill tailings dispersed by wind and water also contaminated properties surrounding and downstream of the mill site. Remedial actions to remove and isolate radiologically contaminated soil, sediment, and debris from the former mill site, Operable Unit I (OU I), and surrounding properties (OU II) were completed in 1999 with the encapsulation of the wastes in an engineered repository located on DOE property 1 mile south of the former mill site. This effectively removed the primary source of groundwater contamination; however, contamination of groundwater and surface water remains within OU III at levels that exceed water quality protection standards. Uranium is the primary contaminant of concern (COC). LM implemented monitored natural attenuation with institutional controls as the OU III remedy in 2004. Because groundwater restoration proceeded more slowly than expected and did not meet performance criteria established in the OU III Record of Decision (June 2004), LM implemented a contingency action in 2009 by an Explanation of

  13. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  14. Preliminary site investigation for LL and IL radwaste disposal for Qinshan NPP

    International Nuclear Information System (INIS)

    Huang Yawen; Chen Zhangru

    1993-01-01

    With the purpose of selecting a disposal site for the low- and intermediate-level radwastes arising from Qinshan NPP, site investigations were carried out in several districts of Zhejiang Province. Investigation objectives included the circumstances of geology, hydrogeology, environmental ecology, and social economy. On the basis of collected data, five possible sites were recommended for policy-making reference and further investigation

  15. 78 FR 38672 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2013-06-27

    ... contains the Ocean Dredged Material Disposal Sites Final Environmental Impact Statement. Comments will only...-range impacts. 5. The EPA will, wherever feasible, designate ocean dumping sites beyond the edge of the... advantage to an off-shelf site designation, whereas possible adverse impacts to the human environment could...

  16. Engineering assessment of inactive uranium mill tailings, Slick Rock sites, Slick Rock, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at the two millsites in Slick Rock, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals residing nearby, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. The Union Carbide site has 350,000 tons of tailings and the North Continent site now owned by Union Carbide has 37,000 tons of tailings. Both tailings piles have been stabilized in accordance with regulations of the State of Colorado. Radon gas release from the tailings on the sites constitute the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The sparse population and relatively low radiation levels yield minimal immediate environmental impact. Hence the three alternative actions presented are directed towards restricting access to the sites (Option I), and returning the windblown tailings to the piles and stabilizing the piles with cover material (Option II), and consolidating the two piles on the UC site and stabilizing with 2 ft of cover (Option III). Fencing around the tailings piles is included in all options. Options II and III provide 2 ft of cover material on the tailings. Costs of the options range from $370,000 to $1,100,000. Reprocessing the tailings for uranium is not economically feasible

  17. Information for consideration in reviewing groundwater protection plans for uranium mill tailings sites

    International Nuclear Information System (INIS)

    Thorne, P.D.

    1992-05-01

    Guidelines and acceptance criteria were developed for reviewing certain aspects of groundwater protection plans for uranium mill tailing sites. The aspects covered include: (1) leaching and long-term releases of hazardous and radioactive constituents from tailings and other contaminated materials, (2) attenuation of hazardous and radioactive constituents in groundwater under saturated and unsaturated conditions, (3) design and implementation of groundwater monitoring programs, (4) design and construction of groundwater protection barriers, and (5) efficiency and effectiveness of groundwater cleanup programs. The objective of these guidelines is to assist the US Nuclear Regulatory Commission staff in reviewing Remedial Action Plans for inactive waste sites and licensing application documents for active commercial uranium and thorium mills

  18. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    International Nuclear Information System (INIS)

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs

  19. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs.

  20. Background report for the uranium-mill-tailings-sites remedial-action program

    International Nuclear Information System (INIS)

    1981-04-01

    The Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, mandates remedial action responsibilities to the Department of Energy for designated inactive uranium processing sites. To comply with the mandates of the Act, a program to survey and evaluate the radiological conditions at inactive uranium processing sites and at vicinity properties containing residual radioactive material derived from the sites is being conducted; the Remedial Action Program Office, Office of the Assistant Secretary for Nuclear Energy is implementing remedial actions at these processing sites. This report provides a brief history of the program, a description of the scope of the program, and a set of site-specific summaries for the 22 locations specified in the Act and three additional locations designated in response to Federal Register notices issued on August 17 and September 5, 1979. It is designed to be a quick source of background information on sites covered by the implementation program for Public Law 95-604

  1. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS)

  2. Ground water protection by insulating waste disposal sites. Hidroizolacija deponija otpadnog materijala radi zastite podzemnih voda

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, D.; Sukovic, M. (Rudarski Institut, Belgrade (Yugoslavia))

    1991-01-01

    Discusses use of insulating foil sheets at ash and waste disposal sites of fossil-fuel power plants in Yugoslavia. It is estimated that some 40 million tons of waste material are disposed of annually by Yugoslav mining enterprises and thermal power plants, which endangers underground and surface waters. Technological features of placing insulating foils to protect ground water are provided. Disposal sites are lined with 1.0-3.5 mm thick insulating foil sheets in combination with several 10-30 cm thick layers of natural clay and gravel. Successful application of polyethylene foil in combination with multiple marl layers at an ash disposal site of the Kolubara thermal power plant (Serbia) and at the Gacko power plant (Bosnia) is explained. Major Yugoslav and other manufacturers of watertight foil are listed. 5 refs.

  3. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    International Nuclear Information System (INIS)

    McKenzie, G.; Mohatt, J.V.; Kowall, S.J.; Jarvis, M.F.

    1993-06-01

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512

  4. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.A. [Heartland Operation to Protect the Environment, Inc., Auburn, NE (United States)

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, the future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.

  5. Engineering assessment of inactive uranium mill tailings, Belfield Site, Belfield, North Dakota

    International Nuclear Information System (INIS)

    1981-11-01

    Ford, Bacon and Davis Utah Inc. has evaluated the Belfield site in order to assess the problems resulting from the existence of radiactive ash at Belfield, South Dakota. This engineering assessment has included drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of ash and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actons. Radon gas released from the 55,600 tons of ash and contaminated material at the Belfield site constitutes a significant environmental impact, although external gamma radiation also is a factor. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material, to removal of the ash and contaminated materials to remote disposal sites, and decontamination of the Belfield site. Cost estimates for the four options range from about $1,500,000 for stabilization in-place, to about $2,500,000 for disposal at a distance of about 17 mi from the Belfield site. Reprocessing the ash for uranium recovery is not feasible because of the extremely small amount of material available at the site and because of its low U 3 O 8 content

  6. Summary of the engineering assessment of inactive uranium mill tailings: Belfield Site, Belfield, North Dakota

    International Nuclear Information System (INIS)

    1981-11-01

    Ford, Bacon and Davis Utah Inc. has evaluated the Belfield site in order to assess the problems resulting from the existence of radioactive ash at Belfield, South Dakota. This engineering assessment has included drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of ash and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 55,600 tons of ash and contaminated material at the Belfield site constitutes a significant environmental impact, although external gamma radiation also is a factor. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material, to removal of the ash and contaminated materials to remote disposal sites, and decontamination of the Belfield site. Cost estimates for the four options range from about $1,500,000 for stabilization in-place, to about $2,500,000 for disposal at a distance of about 17 mi from the Belfield site. Reprocessing the ash for uranium recovery is not feasible because of the extremely small amount of material available at the site and because of its low U 3 O 8 content

  7. Summary of the Phase II, Title I engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1977-01-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Tuba City millsite in Arizona. Services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals residing nearby, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the tailings on the site constitutes the most significant environmental impact to the inhabited area near the site

  8. Site safety requirements for high level waste disposal

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju

    2006-01-01

    This paper outlines the content, status and trend of site safety requirements of International Atomic Energy Agency, America, France, Sweden, Finland and Japan. Site safety requirements are usually represented as advantageous vis-a-vis disadvantagous conditions, and potential advantage vis-a-vis disadvantage conditions, respectively in aspects of geohydrology, geochemistry, lithology, climate and human intrusion etc. Study framework and steps of site safety requirements for China are discussed under the view of systems science. (authors)

  9. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  10. The role of geology in the evaluation of waste disposal sites

    International Nuclear Information System (INIS)

    Ogunsanwo, O.; Mands, E.

    1999-01-01

    The construction of waste disposal sites demonstrates the awareness of the need to protect the environment against pollution. The site are constructed on foundations of soils and rocks. Photo geological studies, geophysical investigations and geological field mapping are indispensable in the selection of suitable sites. Most of the construction materials (in the case of landfills) are of geologic origin and their suitability can only be ascertained after some geological assessments. Furthermore, the hydrogeological conditions within the adjoining terrains and the flow of leachates from and within the wastes must be monitored so as to prevent pollution (radiation, in the case of radioactive wastes, can be monitored with the aid of geochemistry). Several models/systems are available for the hydrogeological/geochemical evaluation of waste disposal sites. The selection of the site and the construction materials as well as the hydrogeological/ /geochemical studies are very critical as the performance of the disposal site depends solely on these aspects. These aspects are basically within the realms of geology. It is thus obvious that geology plays a leading role in the evaluation of waste disposal sites right from the site selection stage until the site is done with

  11. Probability of failure of waste disposals sites in Žirovski vrh uranium mine

    Directory of Open Access Journals (Sweden)

    Tomaž Beguš

    2002-12-01

    Full Text Available The only Uranium mine in Slovenia @irovski vrh was closed in 1990 due to economic reasons. After the closure extensive decommissioning works in the mine and in the surrounding began. In the very beginning after the closure great landslide has been occurred in the mill tailings site and recalculation of stability of existent and alternate sites were performed. In this calculations I used statistical scatter of input variables and calculated probability of failure of sites.

  12. status evaluation of heavy metals in waste disposal sites of ...

    African Journals Online (AJOL)

    PROF EKWUEME

    samples were also collected through purposive sampling method within the Champion Breweries and Plasto Crown Company waste dump sites. (Figure 1) with the aid of a soil auger and put separately in labeled steriled containers. The same samples in the control site were equally collected. They were transported to the.

  13. The transport implications of siting policies for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    James, I.A.

    1986-01-01

    This report has been produced to be complementary to the previously issued report ''The Transport Implications of Regional Policies for The Disposal of Intermediate Level Radioactive Wastes''. The same combinations of disposal facilities have been used so that direct comparison with intermediate waste results can be made. Low level wastes and short-lived intermediate level wastes for near-surface disposal are assumed to share a common infrastructure on the rail system and hence a methodology of separating total costs between these two waste types has been derived. Two transport modes, road and rail have been analysed. Hybrid transport, a combination of road and rail systems, has not been examined since no site is considered to produce sufficient waste to justify a dedicated rail service. Sellafield, has not been included in this examination since it is assumed to be served by its own disposal site at Drigg. (author)

  14. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  15. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Addendum D1

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, J.R.

    1985-01-01

    This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation for the US Department of Energy (DOE), Grand Junctions Project Office in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. The objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on- pile sampling was required to determine the depth of the 15-pCi/g Ra- 226 interface in an area where wind and water erosion has taken place.

  16. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  17. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.

  18. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document

  19. Heavy metal pollution of water in waste disposal sites in Port ...

    African Journals Online (AJOL)

    The high concentrations (mg/l) of Fe, Zn, Cd and Mn in the two studied sites indicates that water in these areas may be polluted by these heavy metals and could be toxic for agriculture. Key words: Waste disposal site, Pollution, Heavy metals, Concentrations, Portable water, Toxic, Agriculture, WHO Standard, Port Harcourt ...

  20. IMPACT OF THE JAKUŠEVEC-PRUDINEC WASTE DISPOSAL SITE ON GROUNDWATER QUALITY

    Directory of Open Access Journals (Sweden)

    Zoran Nakić

    2007-12-01

    Full Text Available The main goal of the research shown in this paper is to investigate the cause and effect relation of the Jakuševec-Prudinec waste disposal site and the groundwater pollution. The recovery of the Jakuševec-Prudinec waste disposal site by the end of 2003 did not have any significant impact on the pollution reduction in groundwater. Very high values of the pollution index defined in the area southeastern from the waste disposal site show spreading of the pollution toward Mičevec village. The analysis of the hydrogeochemical characteristics showed that in the waste disposal site area the local geochemical anomalies of the partial CO2 pressure exist, indicating that the intensive carbonate dissolution processes and HCO3- enrichment dominate in this area. Near the border of the waste disposal site groundwater with high ammonium ion (NH4+ and chloride ion (Cl- dominates. The high concentrations of the heavy metals and very strong geochemical bonds determined from the correlation coefficients show that in the reductive aquifer conditions heavy metals strongly release (the paper is published in Croatian.

  1. Development of closure criteria for inactive radioactive waste-disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) specifies that the U.S. Department of Energy shall comply with the procedural and substantive requirements of CERCLA regarding cleanup of inactive waste-disposal sites. Remedial actions require a level of control for hazardous substances that at least attains legally applicable or relevant and appropriate requirements (ARAR). This requirement may be waived if compliance with ARAR results in greater risk to human health and the environment than alternatives or is technically impractical. It will review potential ARAR for cleanup of inactive radioactive waste-disposal sites and propose a set of closure criteria for such sites at Oak Ridge National Laboratory. Important potential ARAR include federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. Proposed criteria for cleanup of inactive radioactive waste-disposal sites are: (1) a limit of 0.25 mSv on annual effective dose equivalent for offsite individuals; (2) limits of 1 mSv for continuous exposures and 5 mSv for occasional exposures on annual effective dose equivalent for inadvertent intruders, following loss of institutional controls over disposal sites; and (3) limits on concentrations of radionuclides in potable ground and surface waters in accordance with federal drinking-water standards, to the extent reasonably achievable

  2. Development of closure criteria for inactive radioactive waste disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, specifies that cleanup of inactive waste disposal sites at Department of Energy (DOE) facilities shall at least attain legally applicable or relevant and appropriate requirements (ARARs) for cleanup or control of environmental contamination. This paper discusses potential ARARs for cleanup of inactive radioactive waste disposal sites and proposes a set of closure criteria for such sites at Oak Ridge National Laboratory (ORNL). The most important potential ARARs include Federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. On the basis of these standards, we propose that cleanup and closure of inactive radioactive waste disposal sites at ORNL shall achieve (1) limits on annual effective dose equivalent for off-site individuals and inadvertent intruders that conform to the DOE's performance objectives for new low-level waste disposal facilities and (2) to the extent reasonably achievable, limits on radionuclide concentrations in ground water and surface waters in accordance with Federal drinking water standards and ground-water protection requirements

  3. Summary of the Phase II, Title I engineering assessment of inactive uranium mill tailings, Falls City Site, Falls City, Texas

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at Falls City, Texas. Services included taking soil samples, the performance of radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 2.5 million tons of tailings at the Falls City site constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. The two alternative remedial action options presented include on-site and off-site cleanup, fencing, and hydrological monitoring and, in addition, stabilization of pile 2 with 2 ft of cover material. The costs are $1.84 million and $2.45 million

  4. Phase II, Title I engineering assessment of inactive uranium mill tailings, Falls City Site, Falls City, Texas

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at Falls City, Texas. Services included taking soil samples, the performance of radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 2.5 million tons of tailings at the Falls City site constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. The two alternative remedial action options presented include on-site and off-site cleanup, fencing, and hydrological monitoring, and in addition, stabilization of pile 2 with 2 ft of cover material. The costs are $1.84 million for Option I and $2.45 million for Option II.

  5. Phase II, Title I engineering assessment of inactive uranium mill tailings, Falls City Site, Falls City, Texas

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at Falls City, Texas. Services included taking soil samples, the performance of radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 2.5 million tons of tailings at the Falls City site constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. The two alternative remedial action options presented include on-site and off-site cleanup, fencing, and hydrological monitoring, and in addition, stabilization of pile 2 with 2 ft of cover material. The costs are $1.84 million for Option I and $2.45 million for Option II

  6. Summary of the engineering assessment of inactive uranium-mill tailings, Bowman Site, Bowman, North Dakota

    International Nuclear Information System (INIS)

    1981-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive residues from the burning of uranium-bearing lignite at Bowman, North Dakota. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of ash residues and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 97,000 tons of ash and contaminated materials at the Bowman site constitutes a significant environmental impact, although windblown ash and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the contaminated materials to remote disposal sites and decontamination of the ashing site (Options II through IV). Cost estimates for the four options range from about $1,740,000 for stabilization in-place, to about $3,060,000 for disposal at a distance of about 4 mi. Reprocessing the ash for uranium recovery is not feasible because of the extremely small amount of material available at the site and because of its low U 3 O 8 content

  7. Status evaluation of heavy metals in waste disposal sites of ...

    African Journals Online (AJOL)

    ... control site and the world threshold standards for tropical soils. The results showed that the sludge pH value of 7.89 during wet season signified alkaline medium (outside the natural range of acidic medium for soils in the Niger Delta region of Nigeria) which was attributed to the high calcium content of the brewery effluent.

  8. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report

    International Nuclear Information System (INIS)

    1990-02-01

    This radiologic characterization of tho two inactive uranium millsites at Rifle, Colorado, was conducted by Bendix Field Engineering Corporation (Bendix) for the US Department of Energy (DOE), Grand Junction Projects Office, in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor, Jacobs Engineering Group, Inc. (Jacobs). The purpose of this project is to define the extent of radioactive contamination at the Rifle sites that exceeds US Environmental Protection Agency, (EPA) standards for UMTRA sites. The data presented in this report are required for characterization of the areas adjacent to the tailings piles and for the subsequent design of cleanup activities. An orientation visit to the study area was conducted on 31 July--1 August 1984, in conjunction with Jacobs, to determine the approximate extent of contaminated area surrounding tho piles. During that visit, survey control points were located and baselines were defined from which survey grids would later be established; drilling requirements were assessed; and radiologic and geochemical data were collected for use in planning the radiologic fieldwork. The information gained from this visit was used by Jacobs, with cooperation by Bendix, to determine the scope of work required for the radiologic characterization of the Rifle sites. Fieldwork at Rifle was conducted from 1 October through 16 November 1984

  9. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary.

  10. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    International Nuclear Information System (INIS)

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary

  11. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

  12. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service

  13. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  14. Study of a waste disposal site and it's groundwater contamination ...

    African Journals Online (AJOL)

    The choice of an old borrow pit at Avu village in the outskirts of Owerri Urban as the permanent dump for wastes from Owerri Urban is evaluated in terms of the hydrogeology of the site. The depth to the groundwater table or the vadose zone is 9 – 9.5m; the texture of the soils shows fine attenuative materials that can inhibit ...

  15. Rehabilitation of uranium tailings impoundments

    International Nuclear Information System (INIS)

    Crawley, A.H.

    1983-01-01

    Under Australian environmental controls relating to the management of uranium tailings, it is no longer acceptable practice to search for a rehabilitation strategy at the end of production when the generation of tailings has ceased. The uranium projects currently in production and those being proposed are tightly regulated by the authorities. The waste management plans must consider site specific factors and must include selection of appropriate disposal sites and design for long term containment. The final encapsulation in engineered facilities must take into account the probable routes to the environment of the tailings. Rehabilitation shoud be undertaken by the mining and milling operators to standards approved by appropriate authorities. Appropriate administrative arrangements are required, by way of technical committees and financial bonds to ensure that agreed standards of rehabilitation may be achieved. Past and present experience with the rehabilitation of uranium tailings impoundments in Australia is discussed

  16. Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.; Belval, D.L.

    1985-01-01

    This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)

  17. Suggested state requirements and criteria for a low-level radioactive waste disposal site regulatory program

    International Nuclear Information System (INIS)

    Ratliff, R.A.; Dornsife, B.; Autry, V.; Gronemyer, L.; Vaden, J.; Cashman, T.

    1985-08-01

    Description of criteria and procedure is presented for a state to follow in the development of a program to regulate a LLW disposal site. This would include identifying those portions of the NRC regulations that should be matters of compatibility, identifying the various expertise and disciplines that will be necessary to effectively regulate a disposal site, identifying the resources necessary for conducting a confirmatory monitoring program, and providing suggestions in other areas which, based on experiences, would result in a more effective regulatory program

  18. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  19. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  20. Site-selection studies for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Aeikaes, T.

    1984-02-01

    In the management of waste by the Industrial Power Company Ltd. (TVO) preparations are being made for the final disposal of unprocessed spent fuel into the Finnish bedrock. The site selection program will advance in three phases. The final disposal site must be made at the latest by the end of the year 2000, in accordance with a decision laid down by the Finnish Government. In the first phase, 1983-85, the main object is to find homogeneous stable bedrock blocks surrounded by fracture zones located at a safe distance from the planned disposal area. The work usually starts with a regional structural analysis of mosaics of Landsat-1 winter and summer imagery. Next an assortment of different maps, which cover the whole country, is used. Technical methods for geological and hydrogeological site investigations are being developed during the very first phase of the studies, and a borehole 1000 meters deep will be made in southwestern Finland. Studies for the final disposal of spent fuel or high-level reprocessing waste have been made since 1974 in Finland. General suitability studies of the bedrock have been going on since 1977. The present results indicate that suitable investigation areas for the final disposal of highly active waste can be found in Finland

  1. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-01-01

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance

  2. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  3. Application of GIS in siting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao

    2010-01-01

    High level radioactive waste geo-disposal is directly related to environment protection and Sustainable Utilization of nuclear energy. To ensure both success and long-term safe disposal of the high level-radioactive waste, finding suitable sites is an important step in the research. Meanwhile, siting and evaluation the geo-disposal repository for high level-radioactive waste need a wide range of relevant information, including geology and geophysical surveys data, geochemistry data and other geoscience data in the field. At the same time, some of the data has its spatial property. Geographic information system (GIS) have a role to play in all geographic and spatial aspects of the development and management of the siting disposal repository. GIS has greatly enhanced our ability to store, analyze and communicate accounts of the information. This study was conducted to compare the more suitable sites for the repository using GIS -based on the data which belongs to the preselected area in BeiShan, Gansu Province, China. First, the data of the pre-selected site is captured by GIS and stored in the geoscience database. Then, according to the relevant guide line in the field, the analysis models based on GIS are build. There are some thematic layers of the sites character grouped into two basic type, namely social factors(town, traffic and nuclear plant) and natural factors (water, land and animals and plants).In the paper, a series of GIS models was developed to compare the pre-selected areas in order to make optimal decision. This study shows that with appropriate and enough information GIS used in modeling is a powerful tool for site selection for disposal repository. (authors)

  4. Research in the selection of very low level radioactive waste disposal site in southwest China

    International Nuclear Information System (INIS)

    Tuo, Xianguo; Long, Qiong; Zhong, Hongmei; Xu, Zhengqi; Mu, Keliang; Gao, Lan

    2008-01-01

    The ultimate goal of Chinese Radioactive Nuclear Waste Management and Disposal Security is that must use proper and optimized ways to manage radioactive waste and make sure human beings and the environment either at the present or in the future can be free from any unacceptable risks. According to the goal, this paper presents an overview of comprehensive site characterization work that comprises investigations of physical geography, climatology, geology and hydrogeology, as well as geological hazard on two candidate Very Low Level Radioactive Waste (VLLW) disposal sites (Site 1 and Site 2) which are both located in the south west of China. The results showed that there are many similarities in the regional extent of the two sites, but many distinct differences are found in terrain and topographic features, granule stratum, hydraulic gradient, and so on. On the whole, the two alternative sites are in line with the requirements for very low level radioactive waste disposal, and Site 1 is superior to Site 2. (author)

  5. Engineering assessment of inactive uranium mill tailings, Naturita site, Naturita, Colorado. A summary of the Phase II, Title I

    International Nuclear Information System (INIS)

    1977-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Naturita, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings sufficient to determine areas and volumes of tailings, the performance of radiometric measurements to determine the extent of radium contamination, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the costing of alternative corrective actions. Radon gas release from the 704,000 tons of tailings at the Naturita site constitutes the most significant environmental impact although windblown tailings and external gamma radiation are also factors. Ranchers Exploration and Development Company has been licensed by the State of Colorado to reprocess the tailings at a location 3 mi from the present site where they will be stabilized for long-term storage. The remedial action options include remedial action for structures in Naturita and Nucla (Option I) at an estimated cost of $270,000 and remedial action for structures and open land adjacent to the tailings site (Option II) at an estimated cost of $950,000

  6. Engineering assessment of inactive uranium mill tailings, Grand Junction site, Grand Junction, Colorado. Phase II, Title I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented range from millsite decontamination (Option I), to adding various depths of stabilization cover material (Options II and III), to removal of the tailings to long-term storage sites and decontamination of the present site (Options IV through VIII). Cost estimates for the eight options range from $470,000 to $18,130,000. Reprocessing the tailings for uranium recovery does not appear to be economically attractive at present.

  7. Summary of the Phase II, Title I, engineering assessment of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1977-11-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. The Phase II--Title I services include the preparation of topographic measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 0.5 million tons of tailings at the Gunnison site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The nine alternative actions presented range from millsite decontamination (Option I), to adding various depths of stabilization cover material (Options II and III), to removal of the tailings to long-term storage sites and decontamination of the present site (Options IV through IX). Cost estimates for the nine options range from $480,000 to $5,890,000. Reprocessing the tailings for uranium does not appear to be economically attractive at present

  8. Engineering assessment of inactive uranium mill tailings, Grand Junction site, Grand Junction, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented range from millsite decontamination (Option I), to adding various depths of stabilization cover material (Options II and III), to removal of the tailings to long-term storage sites and decontamination of the present site (Options IV through VIII). Cost estimates for the eight options range from $470,000 to $18,130,000. Reprocessing the tailings for uranium recovery does not appear to be economically attractive at present

  9. Influence of the extreme millennial values of the physical data of the natural environment on the ground and near underground. Application to waste disposal sites

    International Nuclear Information System (INIS)

    Guinle-Thenevin, I.

    1998-01-01

    This study deals with effects of extreme climatic events in France on perenniality of radioactive or toxic waste disposal coverings or of tailing storage barriers. Three phenomena are quantified: erosion or scraping produced by storm showers, ground freezing depth caused by harsh winters and ground drying resulted from arid summers. To quantify this phenomena, we need statistical evaluation of the climatic events (erosivity of rain showers, frost severity index, drought severity indices), a study of the soil characteristics (petrography, thermal and hydraulic properties) and numeric models of soils (finite elements or finite differences methods). Last but not least, each method is applied to French sites chosen for their climate and their proximity to real or possible storage. Therefore, we show critical parameters for the design of waste disposal covering which takes into account extreme climatic events. (author)

  10. Uranium-mill-tailings conditioning technology

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; O'Brien, P.D.; Thode, E.F.; Wangen, L.E.; Williams, J.M.

    1982-01-01

    Conditioning of uranium mill tailings involves the physico-chemical alteration of tailings to remove or immobilize mobile radionuclides and toxic trace elements before disposal in a repository. The principal immobilization approach under investigation is sntering tailings at high temperatures (1100 to 1200 0 C) to radically alter the structure of tailings. This thermal stabilization at 1200 0 C reduced radon emanation power for tailings sands by factors of 20 to 200 and for tailings fines by factors of 300 to 1100. Substantial reductions in the leachability of most contaminants have been found for thermally conditioned tailings. A conceptual thermal stabilization process has been developed wherein obsolete coal-fired rotary cement kilns perform the sintering. An economic analysis of this conceptual process has shown that thermal stabilization can be competitive at certain tailings sites with other remedial actions requiring the excavation, transportation, and burial of tailings in a repository. An analysis of the long-term radiological hazard posed by untreated tailings and by tailings conditioned by radionuclide removal has illustrated the necessity of extracting both 226 Ra and 230 Th to achieve long-term hazard reductions. Sulfuric acid extraction of residual mineral values and important radionuclides from tailings has been investigated. Concentrated H 2 SO 4 can extract up to 80% of the 226 Ra, 70% of the Ba, and 90% of the 230 Th from tailings in a single stag extraction. An economic analysis of a sulfuric acid leach process was made to determine whether the value of minerals recovered from tailings would offset the leaching cost. For one relatively mineral-rich tailings pile, the U and V values would more than pay for the leaching step and would contribute about 60% of the costs of moving and burying the tailings at a new site

  11. INTRODUCTION A dump is defined as, “a site used to dispose of ...

    African Journals Online (AJOL)

    BIG TIMMY

    operated in accordance with environmental protection standards (USEPA, 1988) ... the quality of groundwater in the area. Studies have shown the adverse impacts of solid ... assess the quality in view of the proximity of the wells to open solid waste disposal sites and some uncased pit latrines. Results shows that the water is ...

  12. Modeling of a sedimentary rock alternative for the siting of the radioactive waste disposal system

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2007-01-01

    Here are described the main concepts, the approximations, and all those simulation aspects that characterize the modeling performed using the unsaturated saturated approach for porous media. The objective of this work is to obtain a generic description of a sedimentary rock soil as an alternative site for the low and intermediate level radioactive waste disposal system. (author) [es

  13. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  14. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  15. Environmental radiation monitoring around waste are disposal site in Tottori prefecture for fiscal year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    This document is the compilation of environment monitoring around waste uranium are disposal site, near Ningyo-toge mine in Tottori prefecture. This result have been to reported to Okayama and Tottori prefectures. The objects for monitoring were river water, drinking water, river sediments, paddy field sediments, air, rice, vegetables, and fruits. (author)

  16. Environmental radiation monitoring around waste ore disposal site in Tottori prefecture: fiscal year 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This document is the compilation of environmental monitoring around waste uranium ore disposal site, near Ningyo-toge mine in Tottori prefecture. The results have been reported to Okayama and Tottori prefectures. The objects for monitoring were river water, drinking water, river sediments, paddy field sediments, air, rice, vegetables, and fruits. (A. Yamamoto)

  17. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 2, Revision 2

    International Nuclear Information System (INIS)

    Weekes, D.C.; Lindsey, K.A.; Ford, B.H.; Jaeger, G.K.

    1996-12-01

    This document is Volume 2 in a two-volume series that comprise the site characterization report, the Preoperational Baseline and Site Characterization Report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; preoperational baseline chemical data and aquifer test data. Five groundwater monitoring wells, six deep characterization boreholes, and two shallow characterization boreholes were drilled at the Environmental Restoration Disposal Facility (ERDF) site to directly investigate site-specific hydrogeologic conditions

  18. Application of Industrial Waste CaF2 for Vegetative Covering of Phosphogypsum Disposal Site

    Directory of Open Access Journals (Sweden)

    Leaković, S.

    2012-11-01

    Full Text Available Phosphogypsum, i.e. calcium sulphate dihydrate is generated as a by-product in the phosphoric acid production during reaction between phosphate rock and sulphuric acid. It is stored as nonhazardous waste in a disposal site. Since 1983, when the phosphoric acid plant started operation, about 8 140 000 t of phosphogypsum have been disposed there. The disposal site consists of four separate ponds (compartments which are bounded by 6 meter high embankments of earth. According to a special design, it is possible to build layers upon the existing disposal site using phosphogypsum for making embankments. So far, the first 6-meter high level has been built with a 1:3 side slope of phosphogypsum embankments. Formation of the second level with 1:5 side slope is currently in progress. Another byproduct of phosphoric acid production is fluoride- and phosphorus-polluted wastewater. Before being discharged into the natural recipient, this wastewater is treated with calcium hydroxide. The product of neutralisation is calcium fluoride (CaF2 which is deposited in separate lagoons as nonhazardous waste. The application of calcium fluoride as a substrate for plants in the process of vegetative covering of the phosphogypsum disposal site is a new method of its usage. This way, a significant financial benefit is achieved because it is not necessary to build a new lagoon for calcium fluoride disposal. Regarding the environmental aspect, usage for vegetative covering is far better than the standard process of calcium fluoride disposal because residual phosphorus from CaF2 is utilised for enhanced growth of the plants. At the same time, the necessity for natural soil covering of the disposal site is reduced by 500 000 m3. Apart from the natural grass species, alfalfa (Medicago sativa L., Bermuda grass (Cynodon dactylon (L. Pers., grass mixtures with high content of red fescue (Festuca rubra L. and false indigo bush (Amorpha fruticosa L. displayed the best growth on the

  19. Geomorphological assessment of sites and impoundments for the long term containment of uranium mill tailings in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    East, T.J.

    1986-01-01

    This paper presents a program of current and future research into those geomorphological processes likely to affect the long term containment of uranium mill tailings in the Alligator Rivers Region of the Northern Territory. Research is directed at three main areas: identification of geomorphic hazards at proposed impoundment sites; determination of erosion rates on impoundment slopes; and prediction of patterns of fluvial dispersal of released tailings. Each necessitates consideration of present and future geomorphic processes

  20. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho

    International Nuclear Information System (INIS)

    1991-09-01

    The US Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent groundwater contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR 192). According to the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and groundwater velocities. Definition of background groundwater quality and comparison with the proposed EPA groundwater protection standards. Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. Definition of existing groundwater contamination by comparison with the EPA groundwater protection standards. Description of the geochemical processes that affect the downward migration of the source contaminants at the processing site. Description of water resource utilization, including availability, current and future use and value, and alternate water supplies

  1. Manual for the sampling of uranium mine tailings

    International Nuclear Information System (INIS)

    Feenstra, S.; Reades, D.W.; Cherry, J.A.; Chambers, D.B.; Case, G.G.; Ibbotson, B.G.

    1983-04-01

    The purpose of this manual is to describe the requisite sampling procedures to provide a basis for the application of uniform high-quality standards to detailed geotechnical, hydrogeological, geochemical and air quality measurements at Canadian uranium tailings disposal sites. The report describes the objective and scope of a sampling program, the preliminary data collection, and the procedures for sampling of tailings solids, surface water and seepage, tailings porewater, and wind-blown dust and radon

  2. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    International Nuclear Information System (INIS)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D.

    2013-01-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South

  3. Site characterization field manual for near surface geologic disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    McCray, J.G.; Nowatzki, E.A.

    1985-01-01

    This field manual has been developed to aid states and regions to do a detailed characterization of a proposed near-surface low-level waste disposal site. The field manual is directed at planners, staff personnel and experts in one discipline to acquaint them with the requirements of other disciplines involved in site characterization. While it can provide a good review, it is not designed to tell experts how to do their job within their own discipline

  4. Development and assessment of closure technology for liquid-waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Relyea, J.F.; Seitz, R.R.; Cammann, J.W.

    1990-01-01

    Discharge of low-level liquid wastes into soils was practiced previously at the Hanford Site. Technologies for long-term confinement of subsurface contaminants are needed. Additionally, methods are needed to assess the effectiveness of confinement technologies in remediating potentially diverse environmental conditions. Recently developed site remediation systems and assessment methods for in situ stabilization and isolation of radioactive and other contaminants within and below low-level liquid-waste disposal structures are summarized

  5. A two-reagent neutralization scheme for controlling the migration of contaminants from a uranium mill tailing disposal pond

    International Nuclear Information System (INIS)

    Dodson, M.E.; Opitz, B.E.; Sherwood, D.R.

    1985-01-01

    Techniques for reducing contaminant migration from tailings liquor impoundments and evaporation ponds are being investigated by the Pacific Northwest Laboratory as part of the Nuclear Regulatory Commission's Uranium Research and Recovery Program. Building upon previous studies investigating single-reagent neutralization, laboratory experiments were conducted to evaluate the performance of a two-reagent neutralization scheme for the treatment of acidic uranium mill tailings liquors. Acidic tailings liquor, pH 3 neutralization to pH 4.0 followed by continued neutralization with lime to pH 7.3, resulted in the highest solution quality with respect to the Environmental Protection Agency's water quality guidelines. Furthermore, the two-reagent neutralization scheme is the most cost-effective treatment procedure tested to date

  6. Evaluation of the ecological risks to terrestrial wildlife associated with a coal ash disposal site

    International Nuclear Information System (INIS)

    Sample, B.E.

    1994-01-01

    Between 1955 and 1989, coal ash was deposited within an impounded watershed on the Oak Ridge Reservation, creating the 3.6 ha-Filled Coal Ash Pond (FCAP). The site has subsequently become vegetated, providing habitat for wildlife. To evaluate the risks that metals in the ash may pose to wildlife, ash, surface water, small mammal, and vegetation samples were collected and metal residues were determined. Metal concentrations, As and Se in particular, were elevated in ash, surface water, plant foliage, and small mammals relative to reference materials. Estimates of metal exposures received from food, water, and ash consumption were calculated for short-tailed shrews, white-footed mice, white-tailed deer, red fox, and red-tailed hawks. While shrews and mice were assumed to reside exclusively at and receive 100% exposure from the site, exposure experienced by deer, fox, and hawks was assumed to be proportional to the size of the site relative to their home range. Because deer had been observed to consume ash presumably for it's high sodium content, exposure experienced by deer consuming ash to meet sodium requirements was also estimated. To assess the risk of coal ash to wildlife, exposure estimates were compared to body-size adjusted toxicity data for each metal. These comparisons suggest that metals at the site may be detrimental to reproduction and survivorship of mice, shrews, deer and fox; hawks do not appear to be at risk

  7. Annual status report on the inactive uranium mill tailings sites remedial action program

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Assessments of inactive uranium mill tailings sites in the United States led to the designation of 25 processing sites for remedial action under the provisions of Section 102(a) Public Law 95-604. The Department of Energy assessed the potential health effects to the public from the residual radioactive materials on or near the 25 sites; and, with the advice of the Environmental Protection Agency, the Secretary established priorities for performing remedial action. In designating the 25 sites and establishing the priorities for performing remedial action, the Department of Energy consulted with the Environmental Protection Agency, Nuclear Regulatory Commission, Department of the Interior, governors of the affected States, Navajo Nation, and appropriate property owners. Public participation in this process was encouraged. During Fiscal Year 1980, Department of Energy will be conducting surveys to verify the radiological characterization at the designated processing sites; developing cooperative agreements with the affected States; and initiating the appropriate National Environmental Policy Act documentation prior to conducting specific remedial actions.

  8. Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada.

    Science.gov (United States)

    Maqsoud, Abdelkabir; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Dionne, Jean

    2016-05-01

    The abandoned Manitou mine site has produced acid mine drainage (AMD) for several decades. In order to limit the detrimental environmental impacts of AMD, different rehabilitation scenarios were proposed and analyzed. The selected rehabilitation scenario was to use fresh tailings from the neighboring Goldex gold mine as monolayer cover and to maintain an elevated water table. In order to assess the impact of the Goldex tailing deposition on the hydrogeochemistry of the Manitou mine site, a network of 30 piezometers was installed. These piezometers were used for continuous measurement of the groundwater level, as well as for water sampling campaigns for chemical quality monitoring, over a 3-year period. Hydrochemical data were analyzed using principal component analysis. Results clearly showed the benefic impact of fresh tailing deposition on the groundwater quality around the contaminated area. These findings were also confirmed by the evolution of electrical conductivity. In addition to the improvement of the physicochemical quality of water on the Manitou mine site, new tailing deposition induced an increase of water table level. However, at this time, the Manitou reactive tailings are not completely submerged and possible oxidation might still occur, especially after ceasing of the fresh tailing deposition. Therefore, complementary rehabilitation scenarios should still be considered.

  9. Phase II, Title I engineering assessment of inactive uranium mill tailings, Monument Valley site, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1977-01-01

    An engineering assessment was made of the problems resulting from the existence of radioactive uranium mill tailings at the Monument Valley millsite in Arizona. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals residing nearby, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the tailings on the site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The sparse population and relatively low radiation levels yield minimal immediate environmental impact; hence, the two alternative actions presented are directed towards restricting access to the site and returning the windblown tailings to the pile and stabilizing the pile. Both options include remedial action costs for offsite locations where tailings have been placed. Cost estimates for the two options are $585,000 and $1,165,000

  10. A multiattribute utility analysis of alternative sites for the disposal of nuclear waste.

    Science.gov (United States)

    Merkhofer, M W; Keeney, R L

    1987-06-01

    Five potential sites nominated for the Nation's first geologic repository for disposing of nuclear waste are evaluated using multiattribute utility analysis. The analysis was designed to aid the Department of Energy in its selection of 3 sites for characterization, a detailed data-gathering process that will involve the construction of exploratory shafts for underground testing and that may cost as much as $1 billion per site. The analysis produced insights into the relative advantages and disadvantages of the nominated sites and clarified current uncertainties regarding repository performance.

  11. A study for the safety evaluation of geological disposal of TRU waste and influence on disposal site design by change of amount of TRU waste (Joint research)

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Kondo, Hitoshi; Takahashi, Kuniaki; Funabashi, Hideaki; Kawatsuma, Shinji; Kamei, Gento; Hirano, Fumio; Mihara, Morihiro; Ueda, Hiroyoshi; Ohi, Takao; Hyodo, Hideaki

    2011-02-01

    In the safety evaluation of the geological disposal of the TRU waste, it is extremely important to share the information with the Research and development organization (JAEA: that is also the waste generator) by the waste disposal entrepreneur (NUMO). In 2009, NUMO and JAEA set up a technical commission to investigate the reasonable TRU waste disposal following a cooperation agreement between these two organizations. In this report, the calculation result of radionuclide transport for a TRU waste geological disposal system was described, by using the Tiger code and the GoldSim code at identical terms. Tiger code is developed to calculate a more realistic performance assessment by JAEA. On the other hand, GoldSim code is the general simulation software that is used for the computation modeling of NUMO TRU disposal site. Comparing the calculation result, a big difference was not seen. Therefore, the reliability of both codes was able to be confirmed. Moreover, the influence on the disposal site design (Capacity: 19,000m 3 ) was examined when 10% of the amount of TRU waste increased. As a result, it was confirmed that the influence of the site design was very little based on the concept of the Second Progress Report on Research and Development for TRU Waste Disposal in Japan. (author)

  12. Should high-level nuclear waste be disposed of at geographically dispersed sites?

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.

    1992-01-01

    Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy

  13. Development of new low level radioactive waste disposal sites: A progress report

    International Nuclear Information System (INIS)

    Anderson, Robert T.; Antonucci, George J.; Ryan, Michael T.

    1992-01-01

    The status of the development of three new low level radioactive waste disposal facilities for the Central Midwest (Illinois), Southeastern (North Carolina) and Appalachian (Pennsylvania) compacts is presented. These three sites will dispose of about 50-65 percent of the commercial low-level waste (LLW) generated in the U.S. annually. Chem-Nuclear, as developer and proposed operator of all three sites has used a common approach to site development. This approach has been based on their twenty-plus years of operating experience and a standard technical approach. The technology employed is an above-grade, multiple engineered barrier design. The paper also contrasts actual progress at each site with a generalized project schedule. Areas of schedule delays are noted along with the steps being taken to accelerate schedule. Finally, we note that continued progress and timely start-up of operations of these new sites is critical on a national basis. This is due to the possibility of near-term closure of the existing LLW disposal sites. (author)

  14. Phase II, Title I engineering assessment of inactive uranium mill tailings, Phillips/United Nuclear Site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Phillips/United Nuclear site at Ambrosia Lake, New Mexico. Services included the preparation of topographic maps, the performance of core drillings sufficient to determine areas and volumes of tailings, and radiometric measurements to determine radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 2.6 million tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The estimated radiological health effects to the general population are considered to be minimal. The two alternative actions presented are: dike stabilization, fencing, and maintenance; and adding 2 ft of stabilization cover material. Both options include remedial action at off-site structures and on-site decontamination around the tailings pile. Cost estimates for the two options are $920,000 and $2,230,000, respectively

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water

  17. Comparative approaches to siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection

  18. Comparative approaches to siting low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  19. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1992-10-01

    Diffusion coefficients for radon gas in earthen materials are required to design suitable radon-barrier covers for uranium tailings impoundments and other materials that emit radon gas. Many early measurements of radon diffusion coefficients relied on the differences in steady-state radon fluxes measured from radon source before and after installation of a cover layer of the material being tested. More recent measurements have utilized the small-sample transient (SST) technique for greater control on moistures and densities of the test soils, greater measurement precision, and reduced testing time and costs. Several of the project sites for the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Program contain radiologically contaminated subsurface material composed predominantly of cobbles, gravels andsands. Since remedial action designs require radon diffusion coefficients for the source materials as well as the cover materials, these cobbly and gravelly materials also must be tested. This report contains the following information: a description of the test materials used and the methods developed to conduct the SST radon diffusion measurements on cobbly soils; the protocol for conducting radon diffusion tests oncobbly soils; the results of measurements on the test samples; and modifications to the FITS computer code for analyzing the time-dependent radon diffusion data

  20. 1980 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented on the volumes, curie values, sources, and disposal of low-level radioactive wastes (LLW) in each state. The wastes are segmented into 2 broad categories - institutional/industrial and commercial power reactor wastes. The volumes and curie values were obtained from the commercial site operators. The percentage of LLW disposed of at each of the 3 operating disposal sites located at Barnwell, SC, Beatty, NV, and Richland, WA are included

  1. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  2. Development of a geoscience database for preselecting China's high level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Li Jun; Fan Ai; Huang Shutao; Wang Ju

    2004-01-01

    Taking the development of a geoscience database for China's high level waste disposal sites: Yumen Town, Guansu province, northwest of China, as an example, this paper introduces in detail the application of Geographical Information System (GIS) to high level waste disposal and analyses its application prospect in other fields. The development of GIS provides brand-new thinking for administrators and technicians at all levels. At the same time, this paper also introduces the administration of maps and materials by using Geographical Information System. (author)

  3. OPTIMAL ALLOCATION OF LANDFILL DISPOSAL SITE: A FUZZY MULTI-CRITERIA APPROACH

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh, A. K. Vidyarthi

    2008-01-01

    Full Text Available The arbitrary disposal through land-fill sites and also the unscientific management of solid wastes generated by domestic, commercial and industrial activities leading to serious problems of health, sanitation and environmental degradation in India demand an immediate proper solid waste disposal planning otherwise it may cause a serious problem, especially in small and medium-sized cities/towns if proper steps are not initiated now. The present paper aims to develop decision support systems to allocate the best landfill disposal site among the given alternative sites for Vidya Vihar, Pilani, Rajasthan, India. The technique is applied to determine the overall strategy for planning of solid waste disposal and management, while taking into account its environmental impact, as well as economical, technical and sustainable development issues. The model effectively reflects dynamic, interactive, and uncertain characteristics of the solid waste management system and provides decision-makers with a decision tool to make a better decision while choosing a municipal solid waste management strategy.

  4. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas

    International Nuclear Information System (INIS)

    Chernoff, A.R.; Lacker, D.K.

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  5. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    International Nuclear Information System (INIS)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd 3 (4,580 m 3 ) of glass gems prior to disposal. This report documents Sandia National Laboratories' preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment

  6. Estimates of population distributions and tailings areas around licensed uranium mill sites. Final report

    International Nuclear Information System (INIS)

    Hans, J.M.; Hall, J.B.; Moore, W.E.

    1986-08-01

    Population distributions and tailings areas were estimated from aerial photography for each of 21 licensed uranium millsites. Approximately 11,600 persons live within 5 kilometers of the tailings impoundments at the millsites. About 82% of these persons live near five of the millsites. No persons were found living within 5 kilometers of six of the millsites. Tailings area measurements include the surface area of tailings in impoundments, heap-leached ore, and carryover tailings in evaporation ponds. Approximately 4,000 acres of tailings surfaces were measured for the 21 millsites. About 55% of the tailings surfaces were dry, 11% wet, and the remainder ponded. The average tailings surface area for the millsites is about 200 acres and ranges from 7 to 813 acres

  7. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    International Nuclear Information System (INIS)

    Poling, Jeanne; Arnold, Pat; Saad, Max; DiSanza, Frank; Cabble, Kevin

    2013-01-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  8. Status of the Texas low-level radioactive waste disposal site - construction sequencing and staffing patterns

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1996-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority, an agency of the State of Texas, has been attempting to develop a site for the disposal of low-level radioactive waste in Texas for more than fourteen years. Since 1991, the agency has been evaluating a site near Sierra Blanca, in far west Texas. Site characterization was completed in 1992, and a license application was filed that year. Construction plans were completed in 1993. In April 1996, the licensing agency, the Texas Natural Resource Conservation Commission, completed its review and proposed to issue a license. The administrative hearings on the proposed license should be completed by July 1997. The Authority is prepared to begin construction and operations as soon as a final license can be issued

  9. Site selection for ash and slag disposal at the Loznica thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, D.; Vlajic, M. (Rudarski Institut, Belgrade (Yugoslavia). Zavod za Pripremu Mineralnih Sirovina)

    1989-01-01

    Presents the results of a feasibility study made to determine the optimum location for ash and slag disposal at the 50 MW thermal power plant at Loznica where 120,000 t of ash and slag are disposed of annually by hydraulic transport. Three new sites were considered, two were 7 km from the power plant and near the river Drina. The possibility of site flooding and river pollution had to be considered. This, together with other factors, led to the choice of the third site at Antonici which is 2 km from the power plant and in a hilly region with good natural drainage. Properties of the ash and slag were also an important factor in the decision, which is fully discussed. 3 refs.

  10. Using performance assessment for radioactive waste disposal decision making -- implementation of the methodology into the third performance assessment iteration of the Greater Confinement Disposal site

    International Nuclear Information System (INIS)

    Gallegos, D.P.; Conrad, S.H.; Baer, T.A.

    1993-01-01

    The US Department of Energy is responsible for the disposal of a variety of radioactive wastes. Some of these wastes are prohibited from shallow land burial and also do not meet the waste acceptance criteria for proposed waste repositories at the Waste Isolation Pilot Plant (WIPP) and Yucca Mountain. These have been termed ''special-case'' waste and require an alternative disposal method. From 1984 to 1989, the Department of Energy disposed of a small quantity of special-case transuranic wastes at the Greater Confinement Disposal (GCD) site at the Nevada Test Site. In this paper, an iterative performance assessment is demonstrated as a useful decision making tool in the overall compliance assessment process for waste disposal. The GCD site has been used as the real-site implementation and test of the performance assessment approach. Through the first two performance assessment iterations for the GCD site, and the transition into the third, we demonstrate how the performance assessment methodology uses probabilistic risk concepts to guide affective decisions about site characterization activities and how it can be used as a powerful tool in bringing compliance decisions to closure

  11. Summary of the Phase II, Title I engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Green River site, Utah. The services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 123 thousand tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented are dike stabilization, fencing, on- and off-site decontamination and maintenance; improvements in the stabilization cover and diking plus cleanup of the site and Browns Wash, and realignment of Browns Wash; and addition of stabilization cover to a total of 2 ft, realignment of Browns Wash and placement of additional riprap, on-site cleanup and drainage improvements. All options include remedial action at off-site structures. Cost estimates for the three options range from $700,000 to $926,000

  12. Phase II, Title I engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Green River site, Utah. Services included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations , the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 123 thousand tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented are dike stabilization, fencing, on- and off-site decontamination and maintenance (Option I); improvements in the stabilization cover and diking plus cleanup of the site and Browns Wash, and realignment of Browns Wash (Option II); and addition of stabilization cover to a total of 2 ft, realignment of Browns Wash and placement of additional riprap, on-site cleanup and drainage improvements (Option III). All options include remedial action at off-site structures. Cost estimates for the three options range from $700,000 to $926,000

  13. Engineering assessment of inactive uranium mill tailings, Ray Point Site, Ray Point, Texas. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-12-01

    Results are reported from an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ray Point, Texas. The Phase II--Title I services generally include the preparation of topographic maps, the performance of soil sampling and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. About 490,000 tons of ore were processed at this mill with all of the uranium sold on the commercial market. None was sold to the AEC; therefore, this report focuses on a physical description of the site and the identification of radiation pathways. No remedial action options were formulated for the site, inasmuch as none of the uranium was sold to the AEC and Exxon Corporation has agreed to perform all actions required by the State of Texas. Radon gas release from the tailings at the Ray Point site constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. Exxon is also studying the feasibility of reprocessing the tailings

  14. Geological factors of disposal site selection for low-and intermediate-level solid radwastes in China

    International Nuclear Information System (INIS)

    Chen Zhangru

    1993-01-01

    For disposal of low- and intermediate-level solid radioactive wastes, shallow-ground disposal can provide adequate isolation of waste from human for a fairly long period of time. The objective of disposal site selection is to ensure that the natural properties of the site together with the engineered barrier site shall provide adequate isolation of radionuclides from the human beings and environment, so the whole disposal system can keep the radiological impact within an acceptable level. Since the early 1980's, complying with the national standards and the expert's conception as well as the related IAEA Criteria, geological selection of disposal sites for low-and intermediate-level solid radwastes has been carried out in East China, South China, Northwest China and Southwest China separately. Finally, 5 candidate sites were recommended to the CNNC

  15. 1982 State-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,891 cubic meters of radioactive waste containing 413,898 curies of activity was reported disposed at the commercial sites in 1982. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 summarizes estimated volumes by generator categories. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity by disposal site for each state. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Data reported for the calendar year 1982 were used for this report where available. When report data were not available, reactor information was obtained directly from the utility

  16. Engineering assessment of inactive uranium mill tailings, Maybell Site, Maybell, Colorado. Summary of the Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. The Phase II-Title I services include the preparation of topographic maps, the performance of core drillings sufficient to determine areas and volumes of tailings and radiometric measurements to determine radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 2.6 million tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented range from fencing and maintenance (Option I), to placing the tailings in an open-pit mine and adding 2 ft of stabilization cover material (Option III). Cost estimates for the three options range from $250,000 to $4,520,000. Reprocessing the tailings for uranium does not appear to be economically attractive at present

  17. Modifications to the remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    Modifications to the water resources protection strategy detailed in the remedial action plan for the Green River, Utah, disposal site are presented. The modifications are based on new information, including ground water quality data collected after remedial action was completed and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The modifications will result in compliance with the U.S. EPA proposed ground water standards (52 FR 36000 (1987))

  18. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  19. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    Science.gov (United States)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy

  20. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Frank G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory

  1. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  2. The general situation of clay site for high-level waste geological disposal repository

    International Nuclear Information System (INIS)

    Wang Changxuan; Liu Xiaodong; Liu Pinghui

    2008-01-01

    Host medium is vitally important for safety of high-level radiaoactive waste (HLW) geological disposal. Clay, as host media of geological repository of HLW, has received greater attention for its inherent advantages. This paper summarizes IAEA and OECD/NEA's some safety guides on site selection and briefly introduces the process of the site selection, their studies and the characteristics of the clay formations in Switz-erland, France and Belgian. Based on these analyses, some suggestions are made to China's HLW repository clay site selection. (authors)

  3. Characterization and dewatering of flotation technological tailings

    Directory of Open Access Journals (Sweden)

    Grigorova I.

    2014-01-01

    Full Text Available The treatment of flotation tailings is today a subject of interest in mineral processing because of the potential of wasted materials as an actual mineral resource and because of environmental reasons. Decantation ponds are found at almost every mine in the world. They are large earth fill dams containing the residue of the milling process to extract metals from mined ores. Traditional wet tailings disposal has been problematic due to the risk of ground water contamination and the difficulty in rehabilitating storage sites. Tailings dams are at risk of failure due to leakage, instability, liquefaction, and poor design. In the last few years the use of paste technology in the disposal of mine tailings is increasingly studied as an option to conventional tailings dams. The Lucky Invest Concentrator is located in the Eastern Rhodopes Mountain of Bulgaria. Since 1959 lead-zinc ores are dressed. Finally, during the flotation cycle lead and zinc concentrates are produced. The final technological processing waste precipitates in tailing pond. Research and development program has started to established opportunities to obtain dry deposit of the ore processing residue and analyses the feature of new tailing disposal method. The tailings particle size distributions and chemical compositions were determined. The data from laboratory and pilot scale tests clearly illustrate that there are the possibilities to obtaine lead-zinc dewatered tailings. The experimental results show that new cyclone modifications have a potential in dewatering technology of flotation tailings. It appears that dewatering cyclones can be an approach on new tailings pond elimination technology.

  4. The siting dilemma: Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    English, M.R.

    1991-01-01

    The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities

  5. Potential for effects of land contamination on human health. 2. The case of waste disposal sites.

    Science.gov (United States)

    Kah, Melanie; Levy, Len; Brown, Colin

    2012-01-01

    This review of the epidemiological literature shows that evidence for negative impacts of land contaminated by waste disposal on human health is limited. However, the potential for health impacts cannot be dismissed. The link between residence close to hazardous waste disposal sites and heightened levels of stress and anxiety is relatively well established. However, studies on self-reported outcomes generally suffer from interpretational problems, as subjective symptoms may be due to increased perception and recall. Several recent multiple-site studies support a plausible linkage between residence near waste disposal sites and reproductive effects (including congenital anomalies and low birth weight). There is some conflict in the literature investigating links between land contamination and cancers; the evidence for and against a link is equally balanced and is insufficient to make causal inferences. These are difficult to establish because of lack of data on individual exposures, and other socioeconomic and lifestyle factors that may confound a relationship with area of residence. There is no consistently occurring risk for any specific tumor across multiple studies on sites expected to contain similar contaminants. Further insights on health effects of land contamination are likely to be gained from studies that consider exposure pathways and biomarkers of exposure and effect, similar to those deployed with some success in investigating impacts of cadmium on human health.

  6. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  7. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  8. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Campbell, Sam [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  9. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals

  10. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  11. Engineering assessment of inactive uranium mill tailings

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

  12. Engineering assessment of inactive uranium mill tailings

    International Nuclear Information System (INIS)

    1981-07-01

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive

  13. Methane Fraction in Carbon Components in Biogas from Waste Disposal Sites in Japan and Southeast Asia

    International Nuclear Information System (INIS)

    Watanabe, I.; Yamada, M.; Osako, M.; Ikeguchi, T.

    2000-01-01

    The CH4 fraction (ratio) in total carbon components (CH4+CO2) in the biogas emitted from waste disposal sites is an essential factor for the calculation of the CH4 emission amount. The fractions were estimated from the results of field measurements of biogas from five waste disposal sites in Japan, Thailand and Indonesia. They were mostly distributed among 53-65% in the range of (CH4+CO2) above 10%, where is the most active zone in biogas emission, regardless of the differences in season, area and country. Thus, we propose the new value (55%) for CH4 fraction as the default one in the IPCC formula to estimate the CH4 emission, in stead of the current value (50%). 8 refs

  14. Numerical study of unsaturated flows and seepage of contaminants from subgrade mill tailings disposal areas equipped with bottom-clay liners

    International Nuclear Information System (INIS)

    Pin, F.G.; Witten, A.J.; Sharp, R.D.; Long, E.C. Jr.

    1983-08-01

    A computer code (MIGRAT) is developed to quantify the migration of moisture and multiple decaying and retarded contaminants in the unsaturated zone. MIGRAT was specifically conceived to assess the impacts of open mine to allow its use in many problems related to shallow, subsurface waste disposal. The model is applied to a generic uranium-mill-tailings pit constructed with a clay-lined bottom and steep unlined sidewalls. The contaminant decays and only one contaminant is retarded. This study shows the anticipated result that moisture and contamination migrate slowly through the bottom clay liner and that, in this migration, concentrations of the retarded contaminant significantly lag the unretarded contaminant. More importantly, this study reveals that the major pathway from the pit to the groundwater is through the sidewall. The time scales for this pathway are much shorter than those associated with the clay liner, and retardation has little effect on the rate of contaminant migration

  15. Public participation and regional development at a nuclear waste disposal site

    International Nuclear Information System (INIS)

    Ipsen, D.

    2004-01-01

    One of the conditions for citizens to actively participate in the search for a final repository for radioactive waste is public involvement and the preparation of perspectives for a long-term development of those regions that are geologically eligible for a nuclear waste disposal site. Regional development is an integral part of public participation and ranking second, after safety factors, as the essential field of interest for the local residents of a region chosen for a potential disposal site. I will offer insights developed in the context of Germany AkEnd, or the Task Group on Selection Procedure for Nuclear Waste Disposal Sites. This presentation will start with the discussion of those considerations referring to theoretical and empirical principles of public participation in long-term and high-risk projects. In a second step, the principles of public participation will be outlined. Afterwards, I will focus on the significance of the region as living space for people before I put up for discussion a few thoughts on regional development. (author)

  16. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    International Nuclear Information System (INIS)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches

  17. Baseline risk assessment for groundwater contamination at the uranium mill tailings site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1990-11-01

    The Gunnison Baseline Risk Assessment for Groundwater Contamination at the Uranium Mill Tailings Site was performed to determine if long-term use of groundwater from domestic wells near the site has a potential for adverse health effects. The risk assessment was based on the results of sampling domestic wells during 1989--1990. A risk assessment evaluates health risks by comparing the amount of a contaminant taken in by a person with the amount of the contaminant that may be toxic. The Gunnison Risk Assessment used high intake values to estimate the maximum levels a person might be exposed to. The results of the risk assessment are divided into cancer (carcinogenic) risks and non-carcinogenic risks. Five key contaminants were evaluated for adverse health risks: uranium, manganese, lead antimony, and cadmium. Due to the potential health risks and the unavoidable uncertainties associated with limited groundwater and toxicity data, it is prudent public health policy to provide a permanent alternate water supply. Additionally, providing a permanent alternate water supply is cost-effective compared to long-term routine monitoring

  18. Sandia's activities in uranium mill tailings remedial action

    International Nuclear Information System (INIS)

    Neuhauser, S.

    1980-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978 requires that remedial action be taken at over 20 inactive uranium mill tailings sites in the United States. Standards promulgated by the EPA under this act are to be the operative standards for this activity. Proposed standards must still undergo internal review, public comment, and receive Nuclear Regulatory Commission concurrence before being finalized. Briefly reviewed, the standards deal separately with new disposal sites (Part A) and cleanup of soil and contaminated structures at existing locations (Part B). In several cases, the present sites are felt to be too close to human habitations or to be otherwise unacceptably located. These tailings will probably be relocated. New disposal sites for relocated tailings must satisfy certain standards. The salient features of these standards are summarized

  19. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  20. Selection of a Site for a Near-Surface Disposal Facility: A Joint Report on Characterization of Sites

    International Nuclear Information System (INIS)

    Motiejunas, S.; Cernakauskas, P.

    2005-01-01

    Report describes general and safety-relevant environmental conditions of investigated sites and provides an overview of information concerning wastes to be disposed of. Safety relevant design aspects are given in the Project Report on Reference Design for a Near-Surface Disposal Facility for Low-and Intermediate-Level Short-Lived Radioactive Waste in Lithuania. This Report summarizes results of investigations performed during 2003-2005 by a number of researchers and evaluated by RATA. The work was performed by the Institute of Geology and Geography, the Lithuanian Energy Institute, Vilnius University, the Institute of Chemistry, UAB Grota, the Lithuanian Geological Survey, Swedish consultants from Geodevelopment, SKB and SKI-ICP, and generalized by RATA

  1. Ra-226 concentrations in blueberries Vaccinium angustifolium Ait. near an inactive uranium tailings site in Elliot Lake, Ontario, Canada

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.; Cloutier, N.R.

    1985-01-01

    Ra-226 concentrations were measured in blueberries growing around the Stanrock uranium tailings area near Elliot Lake, Ontario, Canada. Elevated levels of total Ra-226 ranging between 20 to 290 mBq g -1 were observed in samples collected within 500 m from the tailings. Highest levels, approx. 285 mBq g -1 , were observed in a sample collected on a tailings spill. For sites located more than 500 m away in the upwind direction, and those situated at distances greater than 1 km downwind from the waste pile, the total Ra-226 concentrations approached background levels which were measured as 2 to 6 mBq g -1 . Approximately 17% of the total Ra-226 measured was removable by washing the samples with distilled water. Wind dispersal of the tailings material and its deposition in the form of dust on blueberries was believed to be responsible for the external contamination. Based on the ICRP recommended dose limits for oral intake of Ra-226, it was calculated that approximately 160 kg a -1 , 3350 kg a -1 and 47 kg a -1 of washed blueberries from inside and outside the influenced zone, and from the tailings spill site, respectively, would need to be consumed before the individual annual limit for the general public was exceeded. (author)

  2. Application of the Integrated Site and Environment Data Management System for LILW Disposal Site

    International Nuclear Information System (INIS)

    Lee, Ji Hoon; Lee, Eun Yong; Kim, Chang Lak

    2007-01-01

    During the last five years, Site Information and Total Environmental data management System(SITES) has been developed. SITES is an integrated program for overall data acquisition, environmental monitoring, and safety analysis. SITES is composed of three main modules, such as site database system (SECURE), safety assessment system (SAINT) and environmental monitoring system (SUDAL). In general, for the safe management of radioactive waste repository, the information of site environment should be collected and managed systematically from the initial site survey. For this, SECURE module manages its data for the site characterization, environmental information, and radioactive environmental information etc. The purpose of SAINT module is to apply and analyze the data from SECURE. SUDAL is developed for environmental monitoring of the radioactive waste repository. Separately, it is ready to open to the public for offering partial information

  3. Siting low-level radioactive waste disposal facilities: The public policy dilemma

    International Nuclear Information System (INIS)

    English, M.R.

    1993-01-01

    The book's focus is on one overwhelming problems facing the compacts and states: figuring out where low-level waste disposal sites should be located. The author discusses the central issues underlying this dilemma - authority, trust, risk, justice - and the roles each plays in determining whether the siting processes are regarded as legitimate. The structure of the book provides a mix of narrative, fact and philosophy and adds to the body of well researched information saying that is is not only right but more efficient to develop and implement a just process

  4. Site selection and resource depletion in black-tailed godwits Limosa l. limosa eating rice during northward migration

    NARCIS (Netherlands)

    Lourenco, Pedro M.; Mandema, Freek S.; Hooijmeijer, Jos C.E.W.; Granadeiro, Jose P.; Piersma, Theunis; Bearhop, Stuart

    P>1. During migratory stopovers, animals are under strong time stress and need to maximize intake rates. We examine how foragers react to resource depletion by studying the foraging ecology and foraging site selection of black-tailed godwits Limosa l. limosa staging in rice fields during their

  5. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  6. Long-term surveillance plan for the Canonsburg, Pennsylvania, disposal site

    International Nuclear Information System (INIS)

    1995-10-01

    This document establishes elements of the US Department of Energy's (DOE) Long-Term Surveillance Plan for the Canonsburg, Pennsylvania, disposal site. The US Nuclear Regulatory Commission (NRC) will use this plan in support of license issuance for the long-term surveillance of the Canonsburg site. The Canonsburg (CAN) site is located within the borough of Canonsburg, Washington County, in southwestern Pennsylvania. The Canonsburg site covers approximately 30 acres (74 hectares). The disposal cell contains approximately 226,000 tons (241,000 tons) of residual radioactive material (RRM). Area C is southeast of the Canonsburg site, between Strabane Avenue and Chartiers Creek. Contaminated soils were removed from Area C during the remedial action, and the area was restored with uncontaminated fill material.After this cleanup, residual quantities of thorium-230 were detected at several Area C locations. The remedial action plan did not consider the ingrowth of radium-226 from thorium-230 as part of the Area C cleanup, and only two locations contained sufficient thorium-230 concentrations to result in radium-226 concentrations slightly above the US Environmental Protection Agency (EPA) standards

  7. Approaches to LLW disposal site selection and current progress of host states

    International Nuclear Information System (INIS)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref

  8. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  9. Engineering assessment of inactive uranium mill tailings, Lakeview Site, Lakeview, Oregon. Summary of Phase II, Title I

    International Nuclear Information System (INIS)

    1977-12-01

    Results are reported from an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at the Lakeview, Oregon site. Data ore included from the analyses of soil, water, and other samples; radiometric measurements to determine areas with radium-contaminated materials; evaluation of resulting radiation exposures of individuals and nearby populations; investigation of site geology, hydrology, and meteorology; and evaluation and costing of alternative corrective actions. Radon gas release from the 130,000 tons of tailings at the Lakeview site constitutes the main environmental impact, which is minimal. The two alternative actions presented are maintenance of the site now that the ARCO reclamation program has been completed (Option I); and addition of stabilization cover to a minimum depth of 2 ft, improved fencing, and removal of a few isolated spots of contamination (Option II). The cost estimates for these options are $40,000 and $290,000, respectively

  10. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

  11. Mass transfer of CO2 to groundwaters from a near-surface waste disposal site

    International Nuclear Information System (INIS)

    Caron, F.; Wilkinson, S.R.; Manni, G.; Torok, J.

    1995-01-01

    Gaseous 14 CO 2 originating from buried low-level radioactive wastes (LLRW) in a near-surface disposal site can be released to the environment via two major paths: gas-phase diffusion through soils to the atmosphere, and dissolution in groundwater, followed by aqueous migration. Aqueous migration would give the highest dose to an individual, espec