WorldWideScience

Sample records for tachyons

  1. Classical tachyons

    International Nuclear Information System (INIS)

    Recami, E.

    1984-01-01

    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author) [pt

  2. Deforming tachyon kinks and tachyon potentials

    International Nuclear Information System (INIS)

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  3. Conformal Tachyons

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...

  4. Tachyons without paradoxes

    International Nuclear Information System (INIS)

    Barrowes, S.C.

    1977-01-01

    Tachyon paradoxes, including causality paradoxes, have persisted within tachyon theories and left little hope for the existence of observable tachyons. A way is presented to solve the causality paradoxes, along with two other paradoxes, by the introduction of an absolute frame of reference in which a tachyon effect may never precede its cause. Relativity for ordinary matter is unaffected by this, even if the tachyons couple to ordinary particles. Violations of the principle of relativity due to the absolute frame would appear only in the case of free tachyons

  5. Are partons confined tachyons?

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1996-03-01

    The author notes that if hadrons are gravitationally stabilized ''black holes'', as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v 2 > c 2 , without conflict with the observational fact that neither quarks nor tachyons have appeared as ''free particles''. Some consequences of this model are explored

  6. Cosmology with rolling tachyon

    Indian Academy of Sciences (India)

    Email: sami@iucaa.ernet.in. Abstract. We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However ...

  7. Aspects of Tachyon theory

    International Nuclear Information System (INIS)

    Bose, S K

    2009-01-01

    Does the Special Theory of Relativity (STR) forbid the existence of particles traveling with speed greater than the speed of light in vacuo (Tachyons)? Prof. Sudarshan and collaborators O.M. Bilaniuk and V.K. Despande examined this question in 1962 and concluded that STR does not rule out such objects. Now, the momentum 4-vector of a Tachyon is necessarily space-like and consequently, the sign of energy no longer Lorentz-invariant. Thus a Tachyon will be found to have negative energy in certain inertial frames. The authors noted that in the latter, the sign of time-intervals will also be reversed. A negative energy Tachyon traveling backward in time could now be reinterpreted as a positive energy particle traveling forward in time. This reinterpretation could be done consistently as was shown by several examples. A quantum field theory of free spinless Tachyons was suggested by Feinberg (1967). M. Arons and Sudarshan reexamined this model and showed that the model did not possess invariance under the Poincare group. An alternative version was constructed by them that possessed the desired invariance property but no local commutativity. Subsequently, Dhar and Sudarshan constructed a model of a neutral scalar Tachyon with Yukawa coupling to Fermions. The model had unusual features such as the emission of a Tachyon by a Fermion as a real process and the need for an additional non-local interaction. Prof. Sudarshan, in association with J. Narlikar, studied Tachyons in the context of cosmology in 1976. One of their conclusions is that any primordial Tachyons that might have been created at the beginning are unlikely to have survived to the present era.

  8. Tachyons and causal paradoxes

    International Nuclear Information System (INIS)

    Maund, J.B.

    1979-01-01

    Although the existence of tachyons is not ruled out by special relativity, it appears that causal paradoxes will arise if there are tachyons. The usual solutions to these paradoxes employ some form of the reinterpretation principle. In this paper it is argued first that, the principle is incoherent, second, that even if it is not, some causal paradoxes remain, and third, the most plausible ''solution,'' which appeals to boundary conditions of the universe, will conflict with special relativity

  9. Are partons confined tachyons?

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1996-03-01

    The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.

  10. Tachyon field in cosmology

    Indian Academy of Sciences (India)

    This report is based on a recent work in collaboration with Bagla and Padmanabhan. [1]. In this paper, we construct cosmological models with homogeneous tachyon matter [2] to provide the dark energy component which drives acceleration of the universe (for a recent review of dark energy models, see [3]). We assume that.

  11. Tachyon dynamics — for neutrinos?

    Science.gov (United States)

    Schwartz, Charles

    2018-04-01

    Following earlier studies that provided a consistent theory of kinematics for tachyons (faster-than-light particles), we here embark on a study of tachyon dynamics, both in classical physics and in the quantum theory. Examining a general scattering process, we come to recognize that the labels given to “in” and “out” states are not Lorentz invariant for tachyons; and this lets us find a sensible interpretation of negative energy states. For statistical mechanics, as well as for scattering problems, we study what should be the proper expression for density of states for tachyons. We review the previous work on quantization of a Dirac field for tachyons and go on to expand earlier considerations of neutrinos as tachyons in the context of cosmology. We stumble into the realization that tachyon neutrinos would contribute to gravitation with the opposite sign compared to tachyon antineutrinos. This leads to the gobsmacking prediction that the Cosmic Neutrino Background, if they are indeed tachyons, might explain both phenomena of Dark Matter and Dark Energy. This theoretical study also makes contact with the anticipated results from the experiments KATRIN and PTOLEMY, which focus on beta decay and neutrino absorption by Tritium.

  12. Tachyonic cyclotron radiation

    International Nuclear Information System (INIS)

    Tomaschitz, R.

    2006-01-01

    We study superluminal cyclotron emission by electrons and muons in semiclassical orbits. The tachyonic line spectra of hydrogenic ions such as H, 56 Fe 25+ , and 238 U 91+ , as well as their muonic counterparts pμ - , 56 Fe 26+ μ - and 238 U 92+ μ - are calculated, in particular the tachyonic power transversally and longitudinally radiated, the total intensity, and the power radiated in the individual harmonics. We also investigate tachyonic continuum radiation from electrons and protons cycling in the surface and light cylinder fields of γ -ray and millisecond pulsars, such as the Crab pulsar, PSR B1509-58, and PSR J0218 + 4232. The superluminal spectral densities generated by non-relativistic, mildly relativistic and ultra-relativistic source particles are derived. We study the parameters determining the global shape of the transversal and longitudinal densities and the energy scales of the broadband spectrum. The observed cutoff frequency in the γ-ray band of the pulsars is used to infer the upper edge of the orbital energy, and we conclude that electrons and nuclei cycling in the surface fields can reach energies beyond the ''ankle'' of the cosmic ray spectrum. This suggests γ-ray pulsars as sources of ultra-high energy cosmic rays. (orig.)

  13. On the shape of tachyons

    International Nuclear Information System (INIS)

    Barut, A.O.

    1982-01-01

    Some aspects of the experimental behaviour of tachyons are studied, in particular by finding out their apparent shape. A Superluminal particle, which in its own rest-frame is spherical or ellipsoidal (and with an infinite life-time), would appear to a laboratory frame as occupying the whole region of space bound by a double cone and a two-sheeted hyperboloid. Such a structure (the tachyon 'shape') rigidly travels with the speed of the tachyon. However, if the Superluminal particle has a finite life-time in its rest-frame, then in the laboratory frame in gets a finite space-extension. As a by-product, we are able to interpret physically the immaginary units entering -as wellknown- the transversal coordinates in the Superluminal Lorentz transformations. The various particular or limiting cases of the tachyon shape are thoroughly considered. Finally, some brief considerations concerning possible experiments to look for tachyons are added

  14. The Effect of Bulk Tachyon Field on the Dynamics of Geometrical Tachyon

    International Nuclear Information System (INIS)

    Papantonopoulos, Eleftherios; Pappa, Ioanna; Zamarias, Vassilios

    2007-01-01

    We study the dynamics of the geometrical tachyon field on an unstable D3-brane in the background of a bulk tachyon field of a D3-brane solution of Type-0 string theory. We find that the geometrical tachyon potential is modified by a function of the bulk tachyon and inflation occurs at weak string coupling, where the bulk tachyon condenses, near the top of the geometrical tachyon potential. We also find a late accelerating phase when the bulk tachyon asymptotes to zero and the geometrical tachyon field reaches the minimum of the potential

  15. The ideal gases of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1984-01-01

    The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed

  16. Tachyons in the Milne Universe

    CERN Document Server

    Tomaschitz, R

    1999-01-01

    Superluminal particles (tachyons) are studied in a Robertson-Walker cosmology with linear expansion factor and negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving observers, isometric copies of the forward lightcone, which can be synchronized by Lorentz boosts. We investigate superluminal wave propagation, a real Proca field with negative mass-square, coupled to subluminal matter in analogy to the electromagnetic field. For photons, the eikonal approximation is exact in Robertson-Walker cosmology, and the Proca field is coupled to the background geometry in such a way that this also holds for tachyons. The spectral decomposition of freely propagating tachyon fields in the Milne universe is derived. We study the wave-particle duality in terms of the spectral elementary waves and their orthogonal ray bundles, in the comoving frame as well as in the individual geodesic rest frames of galactic observers. The spectral energy density of a tachyon back...

  17. Tachyons And Modern Physics

    Directory of Open Access Journals (Sweden)

    Francisco Martnez Flores

    2015-08-01

    Full Text Available ABSTRACT We have carried out an exhaustive analysis of the scope of Relativity showing that it is possible to couple it with Quantum Theory but not with Classical Mechanics In order to do that we have introduced the concept of electromagnetic and virtual mass to all particles subjected to Quantum Field Theory radically different from the real or inertial mass included in Newtonian Dynamics which turns out the adequate status to understand quantum phenomena without resorting to explanations difficult to admit. In that line we have considered the particles so-called Tachyon for which we made a reformulation of the relativistic equation avoiding the space-like or negative interval non-causal thus it has been demonstrated its identification with antiparticles on account of the peculiar behavior of energy and momentum regarding the particles and photons.

  18. A new formulation of the theory of tachyons. Part II: Tachyon electrodynamics

    International Nuclear Information System (INIS)

    Dawe, R.L.; Hines, K.C.

    1991-06-01

    A new formulation of the theory of tachyons using the same two postulates as in Special Relativity is applied to electrodynamics. Use is made of a 'switching principle' to show how tachyons automatically obey the law of conservation of electric charge in any inertial reference frame, even though the observed electric charge is not any invariant for tachyons. Tachyonic transformations of electromagnetic fields E, B, D, H, P and M are rigorously derived from Maxwell's equations and are shown to be the same as for bradyonic transformations. Tachyonic transformations of current and charge densities and scalar and vector potentials are also derived and discussed. Further examples include calculations of the magnetic dipole moment of a tachyonic current loop and of the speed of light in a tachyonic dielectric. Constitutive equations for a tachyonic dielectric are also given. The Lagrangian and Hamiltonian for charged tachyons are discussed, as well as generic tachyonic transformations. 51 refs., 15 figs

  19. A small mass tachyon theory

    International Nuclear Information System (INIS)

    Hohly, R.W.

    1992-01-01

    Tachyons of very small mass, m, have been assumed to satisfy a Proca-like equation, approximately but not exactly, so that the Lorentz gauge condition can be retained as in the photon case. THe tachyon fields therefore have four non-zero conjugate momenta, making invariance manifest. On introducing particle operators, two consistent, theories are found, a particle theory and a 'non-particle' theory, depending on which version of the Reinterpretation Principle one applies. The particle theory is relativistically invariant, gauge invariant, and also causal in the naive sense. While the vacuum is not invariant, using RIP, the fields and Fock space of physical tachyon states is invariant. The Lorentz gauge is satisfied by restricting states to those meeting a Gupta-Bleuler condition. Physical states can further be modified to travel symmetrically in time, and thus, will not violate causality. Under this restriction, a time symmetric tachyon sent backwards in time by Lorentz transformation becomes a tachyon going forward in time, but in the opposite direction

  20. Dynamical analysis of tachyonic chameleon

    Science.gov (United States)

    Banijamali, Ali; Solbi, Milad

    2017-08-01

    In the present paper we investigate tachyonic chameleon scalar field and present the phase space analysis for four different combinations of the tachyonic potential V(φ ) and the coupling function f(φ ) of the chameleon field with matter. We find some stable solution in which accelerated expansion of the universe is satisfied. In one case where both f(φ ) and V(φ ) are exponential a scaling attractor was found that can give rise to the late-time acceleration of the universe and alleviate the coincidence problem.

  1. Non-minimally coupled tachyon and inflation

    International Nuclear Information System (INIS)

    Piao Yunsong; Huang Qingguo; Zhang Xinmin; Zhang Yuanzhong

    2003-01-01

    In this Letter, we consider a model of tachyon with a non-minimal coupling to gravity and study its cosmological effects. Regarding inflation, we show that only for a specific coupling of tachyon to gravity this model satisfies observations and solves various problems which exist in the single and multi tachyon inflation models. But noting in the string theory the coupling coefficient of tachyon to gravity is of order g s , which in general is very small, we can hardly expect that the non-minimally coupling of tachyon to gravity could provide a reasonable tachyon inflation scenario. Our work may be a meaningful try for the cosmological effect of tachyon non-minimally coupled to gravity

  2. Tachyons in the Galilean limit

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, Vilanova i la Geltrú, E-08808 (Spain); Gomis, Joaquim [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona, Martí i Franquès 1, Barcelona, E-08028 (Spain); Mezincescu, Luca [Department of Physics, University of Miami,P.O. Box 248046, Coral Gables, FL, 33124 (United States); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2017-04-20

    The Souriau massless Galilean particle of “colour” k and spin s is shown to be the Galilean limit of the Souriau tachyon of mass m=ik and spin s. We compare and contrast this result with the Galilean limit of the Nambu-Goto string and Green-Schwarz superstring.

  3. Assisted inflation from geometric tachyon

    International Nuclear Information System (INIS)

    Panigrahi, Kamal L.; Singh, Harvendra

    2007-01-01

    We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes

  4. Tachyons in Robertson-Walker Cosmology

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    Superluminal signal transfer is studied in the context of a preferred cosmic frame of reference provided by the galactic background. The receding galaxies constitute a frame of absolute rest, in which the energy of tachyons (faster-than-light particles) is unambiguously defined as a positive quantity. The causality violation which arises in relativistic tachyonic theories is avoided. We define interactions of particles and tachyons in terms of elastic head-on collisions and energy-momentum conservation. To compare the theory developed with existing relativistic theories, tachyons are studied at first in a Minkowski universe, and the causality of a superluminal communication process is analyzed. Then we discuss the dynamics of tachyons in a Robertson-Walker universe with linear expansion factor and negatively curved three-space. We point out the consequences that the space expansion has on tachyons, like a finite life-time in the frame of absolute rest, and multiple images in the rest frames of moving observer...

  5. On the ideal gas of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1983-01-01

    The properties of the ideal gas of classical (nonquantum) faster than light particles-tachyons have been considered. The basic notions of thermodynamics of tachyons have been introduced. We have found the partition function and other thermodynamical quantities for the ideal tachyon gas. The equation of state which we have found for tachyons is exactly the same as for the ideal gas of partictes slower than light-bradyons. The internal energy and the apecific heat have been discussed at low and at very high temperatures. It has been shown that in high temperature limit the properties of gas of tachyons and gas of bradyons are th'e same. The numerical calculations concerning the internal energy and specific heat at different temperatures were performed and the results have been presented. It has been shown that in full interval of temperature the characteristics of gas of tachyons are similar to those of gas of bradyons

  6. Dynamics of Interacting Tachyonic Teleparallel Dark Energy

    International Nuclear Information System (INIS)

    Banijamali, Ali

    2014-01-01

    We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity. We analyze the phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor. So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.

  7. Disk partition function and oscillatory rolling tachyons

    International Nuclear Information System (INIS)

    Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2008-01-01

    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same

  8. Stability of a tachyon braneworld

    International Nuclear Information System (INIS)

    Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto; Herrera-Aguilar, Alfredo; Rocha, Roldão da

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld

  9. Stability of a tachyon braneworld

    Science.gov (United States)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Martorano Kuerten, André; Malagón-Morejón, Dagoberto; da Rocha, Roldão

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.

  10. Stability of a tachyon braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos, México (Mexico); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570, Puebla, Puebla, México (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aherrera@ifuap.buap.mx, E-mail: andre.kuerten@ufabc.edu.br, E-mail: malagon@fis.unam.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Santo André, SP (Brazil)

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld

  11. Stability of a tachyon braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apartado Postal J-48, 72570, Puebla, Puebla (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Kuerten, André Martorano [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Avenida dos Estados, 5001, Santo André, SP (Brazil); Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Rocha, Roldão da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC),Avenida dos Estados, 5001, Santo André, SP (Brazil)

    2016-01-26

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton’s law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb’s law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.

  12. Tachyon driven solution to Cosmic Coincidence Problrm

    OpenAIRE

    Srivastaca, S. K.

    2004-01-01

    Here, non-minimally coupled tachyon to gravity is considered as a source of "dark energy". It is demonstrated that with expansion of the universe, tachyon dark energy decays to "dark matter" providing a solution to "cosmic coincidence problem".Moreover, it is found that universe undergoes accelerated expansion simultaneously.

  13. Tachyons in an Expanding Space-Time

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    Superluminal signal transfer is introduced in the context of an absolute frame of reference provided by the galactic background. The receding galaxies constitute a reference frame, a frame of absolute rest, in which the energy of tachyons (faster-than-light particles) can be defined as a positive definite quantity. The theory presented is essentially covariant, but not relativistic. The causality problem of superluminal signal transfer, which arises in relativistic theories, can be completely avoided. Tachyons are studied in a Robertson-Walker universe with linear expansion factor and negatively curved three-space. The tachyonic dynamics is defined, and it is pointed out how tachyonic events appear to observers who are uniformly moving in the frame of absolute rest. The consequences that the space expansion has on tachyons, e.g. redoubling effects, are discussed.

  14. Tachyon mediated non-Gaussianity

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Leblond, Louis; Kumar, Jason

    2008-01-01

    We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.

  15. Open string decoupling and tachyon condensation

    International Nuclear Information System (INIS)

    Chalmers, G.

    2001-01-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.

  16. The tachyon potential in string theory

    International Nuclear Information System (INIS)

    Banks, T.

    1991-01-01

    We argue that the tachyon potential in string theory is exactly given by the unstable quadratic mass term calculated perturbatively around the critical string. The argument is given in terms of the sigma model formulation. The same result follows from the exact Wilson renormalization group equations. The discrepancy with previous calculations of the tachyon potential is explained by the fact that other authors worked near the tachyon mass shell where it is impossible to distinguish a potential from derivative terms in the effective action. (orig.)

  17. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  18. Two-body interactions by tachyon exchange

    International Nuclear Information System (INIS)

    Maccarrone, R.; Recami, E.

    1982-01-01

    Due to its relevance for the possible applications to particle physics and for causality problems, is analyzed in this paper the kinematic of (classical) tachyon-exchange between two bodies A, B, for all possible relative velocities. In particular, the two cases u.-vector V-vector c 2 are carefully investigated, V are the body B and tachyon speeds relative to A, respectively

  19. Can a tachyon emit light radiation in all directions

    Energy Technology Data Exchange (ETDEWEB)

    Ramanujam, G A [NGM Coll., Tamil Nadu (India). Dept. of Physics

    1976-03-01

    It is shown here that a critical analysis of the approaches employed by various authors to accommodate tachyons into special relativity leads one to the conclusion that a tachyon can emit light radiation only along its line of motion.

  20. Observability of complex ghosts and tachyons

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1976-01-01

    The complex ghost introduced previously by the present author is studied from a standpoint whether its effects are observable by experiments or not. According to the theory of complex ghost the scattering cross section of two real particles shows some particular properties. It has a kind of resonance peak at a certain energy which does not conform to the Breit-Wigner formula. It has also a peak for a certain energy transfer, if there exist tachyons. The tachyon is a kind of ghost and is allowed to exist in the theory. Using these properties the complex ghosts are expected to be detected by experiments. The recently observed resonance psi(3.1) is supposed to be the complex ghost of photon, since they have the same quantum numbers. If it is assumed, some properties of the resonance known by experiments are explained naturally to a certain extent. Along the same line it is not unnatural to expect that the photon is also accompanied by a tachyon as a ghost. An experiment to detect the tachyon is proposed. If the angular distribution of elastic electron-positron or electron-electron scattering is observed at a suitably high energy, then a peak will be found in the domain -1< cos theta<1, where it is assumed that the exchanged photon accompanies a tachyon. (auth.)

  1. Tachyon constant-roll inflation

    Science.gov (United States)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  2. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  3. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  4. Off-Shell Interactions of Closed-String Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Dabholkar, A

    2004-04-07

    Off-shell interactions for localized closed-string tachyons in C/Z{sub N} superstring backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions between these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact interaction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic interactions or to include other fields to test the conjecture for the height of the tachyon potential.

  5. Tachyon kinematics and causality: a systematic thorough analysis of the tachyon causal paradoxes

    International Nuclear Information System (INIS)

    Recami, E.

    1987-01-01

    The chronological order of the events along a spacelike path is not invariant under Lorentz transformations, as is well known. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stueckelberg-Feynman switching procedure (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the SWP does eliminate the motions backwards in time, but interchanges the roles of source and detector. This fact triggered the proposal of a host of causal paradoxes. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least in microphysics) only after the tachyon relativistic mechanics has been properly developed. They start by showing how to apply the SWP, both in the case of ordinary special relativity and in the case with tachyons. Then they carefully exploit the kinetics of the tachyon exchange between two (ordinary) bodies. Being finally able to tackle the tachyon causality problem, they successively solve the paradoxes of: (i) Tolman-Regge, (ii) Pirani, (iii) Edmonds, and (iv) Bell. Finally, they discuss a further, new paradox associated with the transmission of signals by modulated tachyon beams

  6. Tachyons, Lamb Shifts and Superluminal Chaos

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 ke...

  7. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  8. Are classical tachyons slower-than-light quantum particles

    International Nuclear Information System (INIS)

    Recami, E.; Maccarrone, G.D.

    1983-01-01

    After having studied the shape that a tachyon T (e.g., intrinsecally spherical) would take up, it is shown in an explicit example that the characteristic of classical tachyons are similar to those of the ordinary (slower-than-light) quantum particles. In particular, a realistic tachyon is associated with a 'phase-speed' V [V 2 >Cσ2], but with a 'group speed' v=c 2 /V [v 2 2

  9. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W. A.

    1985-01-01

    The possible role of space like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of tachyons. Particular attention is paid : 1) to tachyons as the possible carriers of interactions (''internal lines''); e.g., to the links between ''virtual particles'' and superluminal objects; 2) to the possibility of ''vacuum decays'' at the classical level; 3) to a Lorentz-invariant bootstrap model; 4) to the apparent shape of the tachyonic elementary particles (''elementary tachyons'') and its possible connection with the de Broglie wave-particle dualism

  10. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues Junior, W.A.

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions ('internal lines'); e.g., to the links between 'virtual particles' and superluminal objects; (ii) to the possibility of 'vacuum decays' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles ('elementary tachyons') and its possible connection with the de Broglie wave-particle dualism. (Author) [pt

  11. Singular tachyon kinks from regular profiles

    International Nuclear Information System (INIS)

    Copeland, E.J.; Saffin, P.M.; Steer, D.A.

    2003-01-01

    We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately

  12. Stability analysis in tachyonic potential chameleon cosmology

    International Nuclear Information System (INIS)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.

    2011-01-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations

  13. Stability analysis in tachyonic potential chameleon cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2011-05-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.

  14. A de Sitter tachyon thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Mora-Luna, Refugio Rigel [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aha@fis.unam.mx, E-mail: malagon@ifm.umich.mx, E-mail: rigel@ifm.umich.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Rua Santa Adélia, 166 09210-170, Santo André, SP (Brazil)

    2013-02-01

    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.

  15. Consistency of the tachyon warm inflationary universe models

    International Nuclear Information System (INIS)

    Zhang, Xiao-Min; Zhu, Jian-Yang

    2014-01-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ 0 and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε H , and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ 0 ) is usually not a suitable assumption for a warm inflationary model

  16. Inflation and dark energy arising from geometrical tachyons

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji

    2006-01-01

    We study the motion of a Bogomol'nyi-Prasad-Sommerfield D3-brane in the NS5-brane ring background. The radion field becomes tachyonic in this geometrical setup. We investigate the potential of this geometrical tachyon in the cosmological scenario for inflation as well as dark energy. We evaluate the spectra of scalar and tensor perturbations generated during tachyon inflation and show that this model is compatible with recent observations of cosmic microwave background due to an extra freedom of the number of NS5-branes. It is not possible to explain the origin of both inflation and dark energy by using a single tachyon field, since the energy density at the potential minimum is not negligibly small because of the amplitude of scalar perturbations set by cosmic microwave background anisotropies. However, the geometrical tachyon can account for dark energy when the number of NS5-branes is large, provided that inflation is realized by another scalar field

  17. Tachyon logamediate inflation on the brane

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Vahid; Nik, Elahe Navaee [Bu-Ali Sina University, Department of Physics, Hamedan (Iran, Islamic Republic of)

    2017-07-15

    According to a Barrow solution for the scale factor of the universe, the main properties of the tachyon inflation model in the framework of the RSII braneworld are studied. Within this framework the basic slow-roll parameters are calculated analytically. We compare this inflationary scenario to the latest observational data. The predicted spectral index and the tensor-to-scalar fluctuation ratio are in excellent agreement with those of Planck 2015. The current predictions are consistent with those of viable inflationary models. (orig.)

  18. Dynamics of coupled phantom and tachyon fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)

    2017-10-15

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  19. Dynamics of coupled phantom and tachyon fields

    International Nuclear Information System (INIS)

    Shahalam, M.; Pathak, S.D.; Li, Shiyuan; Myrzakulov, R.; Wang, Anzhong

    2017-01-01

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  20. The reconstruction of tachyon inflationary potentials

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Qin; Gong, Yungui; Lin, Jiong; Yi, Zhu, E-mail: feiqin@hust.edu.cn, E-mail: yggong@mail.hust.edu.cn, E-mail: 707751841@qq.com, E-mail: yizhu92@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, 1037 LuoYu Rd, Wuhan, Hubei 430074 (China)

    2017-08-01

    We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of e -folds before the end of inflation. Using the relation between the observables like n {sub s} and r with the slow-roll parameters, we reconstruct three classes of tachyon potentials. The model parameters are determined from the observations before the potentials are reconstructed, and the observations prefer the concave potential. We also discuss the constraints from the reheating phase preceding the radiation domination for the three classes of models by assuming the equation of state parameter w {sub re} during reheating is a constant. Depending on the model parameters and the value of w {sub re} , the constraints on N {sub re} and T {sub re} are different. As n {sub s} increases, the allowed reheating epoch becomes longer for w {sub re} =−1/3, 0 and 1/6 while the allowed reheating epoch becomes shorter for w {sub re} =2/3.

  1. Tachyon condensation in the D0/D4 system

    International Nuclear Information System (INIS)

    David, Justin R.

    2000-01-01

    The D0/D4 system with a Neveu-Schwarz B-field in the spatial directions of the D4-brane has a tachyon in the spectrum of the (0,4) strings. The tachyon signals the instability of the system to form a bound state of the D0-brane with the D4-brane. We use the Wess-Zumino-Witten like open superstring field theory formulated by Berkovits to study the tachyon potential for this system. The tachyon potential lies outside the universality class of the D-brane anti-D-brane system. It is a function of the B-field. We calculate the tachyon potential at the zeroth level approximation. The minimum of the tachyon potential in this case is expected to reproduce the mass defect involved in the formation of the D0/D4 bound state. We compare the minimum of the tachyon potential with the mass defect in three cases. For small values of the B-field we obtain 70% of the expected mass defect. For large values of the B-field with Pf(2πα' B) > 0 the potential reduces to that of the D-brane anti-D-brane reproducing 62% of the expected mass defect. For large values of the B-field with Pf(2πα' B) < 0 the minimum of the tachyon potential gives 25% of the expected mass defect. At the tachyon condensate we show that the (0,4) strings decouple from the low energy dynamics. (author)

  2. Observational constraints on tachyonic chameleon dark energy model

    Science.gov (United States)

    Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.

    2018-03-01

    It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.

  3. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, Erasmo

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions; (ii) to the possibility of ''vacuum decays'' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles and its possible connection with the de Broglie wave-particle dualism. (author)

  4. D-instantons and closed string tachyons in Misner space

    International Nuclear Information System (INIS)

    Hikida, Yasuaki; Tai, T.-S.

    2006-01-01

    We investigate closed string tachyon condensation in Misner space, a toy model for big bang universe. In Misner space, we are able to condense tachyonic modes of closed strings in the twisted sectors, which is supposed to remove the big bang singularity. In order to examine this, we utilize D-instanton as a probe. First, we study general properties of D-instanton by constructing boundary state and effective action. Then, resorting to these, we are able to show that tachyon condensation actually deforms the geometry such that the singularity becomes milder

  5. Non-Gaussianity from tachyonic preheating in hybrid inflation

    International Nuclear Information System (INIS)

    Barnaby, Neil; Cline, James M.

    2007-01-01

    In a previous work we showed that large non-Gaussianities and nonscale-invariant distortions in the cosmic microwave background power spectrum can be generated in hybrid inflation models, due to the contributions of the tachyon (waterfall) field to the second order curvature perturbation. Here we clarify, correct, and extend those results. We show that large non-Gaussianity occurs only when the tachyon remains light throughout inflation, whereas n=4 contamination to the spectrum is the dominant effect when the tachyon is heavy. We find constraints on the parameters of warped-throat brane-antibrane inflation from non-Gaussianity. For F-term and D-term inflation models from supergravity, we obtain nontrivial constraints from the spectral distortion effect. We also establish that our analysis applies to complex tachyon fields

  6. A model-theory for Tachyons in two dimensions

    International Nuclear Information System (INIS)

    Recami, E.; Rodriques, W.A. Jr.

    1986-01-01

    The subject of Tachyons, even if still speculative, may deserve some attention for reasons that can be divided into a few categories, two of which are as follows: The larger scheme, to build up in order to incorporate space-like objects in the relativistic theories. These allow better understanding of many aspects of the ordinary relativistic physics, even if Tachyons would not exist in our cosmos as ''asymptotically free'' objects; superliminal classical objects can have a role in elementary particle interactions (perhaps even in astrophysics) and possible verification of the reproduction of quantum-like behaviour at a classical level when taking into account the possible existence of faster-than-light classical particles. This paper shows that Special Relativity - even without tachyons - can be given a form which describes both particles and anti-particles. This paper also is confined only to a ''model theory'' of Tachyons in two dimensions

  7. Light-like tachyon condensation in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Hellerman, S.; Schnabl, Martin

    2013-01-01

    Roč. 2013, č. 4 (2013), s. 1-34 ISSN 1126-6708 Institutional support: RVO:68378271 Keywords : string field theory * tachyon condensation Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012

  8. How to recover casuality for tachyons even in macrophysics

    International Nuclear Information System (INIS)

    Pavsic, M.

    1976-11-01

    The postulate that negative energy particles do not exist (travelling forward in time) leads automatically to the ''re-interpretation principle'' by Stueckelberg and Feynman. It has already been shown that such a ''principle'', assumed as the third postulate of special relativity, ensures the validity of the law of (retarded) casuality both in standard relativity and in (extended) relativity with tachyons and with superluminal inertial frames. Our third postulate, moreover, alloys to one predict antiparticle existence in a purely relativistic context. The paper shown that the third postulate is sufficient to implement the law of casuality even in macrophysics, when usual macro-objects interact with micro-tachyons and macro-tachyons. To that aim, some tachyon kinematics is further developed, which can be useful even in understanding elementary particle interactions (and may be hadron structure). Many other related problems are discussed

  9. Tachyon hair on two-dimensional black holes

    International Nuclear Information System (INIS)

    Peet, A.; Susskind, L.; Thorlacius, L.

    1993-01-01

    Static black holes in two-dimensional string theory can carry tachyon hair. Configurations which are nonsingular at the event horizon have a nonvanishing asymptotic energy density. Such solutions can be smoothly extended through the event horizon and have a nonvanishing energy flux emerging from the past singularity. Dynamical processes will not change the amount of tachyon hair on a black hole. In particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. There also exist static solutions with a finite total energy, which have singular event horizons. Simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type

  10. Twisted tachyon condensation in closed string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Zwiebach, Barton

    2004-01-01

    We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)

  11. Tachyon tube on non BPS D-branes

    International Nuclear Information System (INIS)

    Huang Wunghong

    2004-01-01

    We report our searches for a single tubular tachyonic solution of regular profile on unstable non BPS D3-branes. We first show that some extended Dirac-Born-Infeld tachyon actions in which new contributions are added to avoid the Derrick's no-go theorem still could not have a single regular tube solution. Next we use the Minahan-Zwiebach tachyon action to find the regular tube solutions with circular or elliptic cross section. With a critical electric field, the energy of the tube comes entirely from the D0 and strings, while the energy associated to the tubular D2-brane tension is vanishing. We also show that fluctuation spectrum around the tube solution does not contain tachyonic mode. The results are consistent with the identification of the tubular configuration as a BPS D2-brane. (author)

  12. A model theory for tachyons in two dimensions

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W.A.

    1985-01-01

    The paper is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in part one (sect. 2) it is shown that special relativity, even without tachyons, can be given a form such to describe both particles and antiparticles. The plan of part two is confined only to a model theory in two dimensions, for the reasons stated in sect. 3

  13. Supersymmetric closed string tachyon cosmology: a first approach

    International Nuclear Information System (INIS)

    Vázquez-Báez, V; Ramírez, C

    2014-01-01

    We give a worldline supersymmetric formulation for the effective action of closed string tachyon in a FRW background. This is done considering that, as shown by Vafa, the effective theory of closed string tachyons can have worldsheet supersymmetry. The Hamiltonian is constructed by means of the Dirac procedure and written in a quantum version. By using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations

  14. Covariant holography of a tachyonic accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Rozas-Fernandez, Alberto [Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Fundamental, Madrid (Spain); University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth (United Kingdom)

    2014-08-15

    We apply the holographic principle to a flat dark energy dominated Friedmann-Robertson-Walker spacetime filled with a tachyon scalar field with constant equation of state w = p/ρ, both for w > -1 and w < -1. By using a geometrical covariant procedure, which allows the construction of holographic hypersurfaces, we have obtained for each case the position of the preferred screen and have then compared these with those obtained by using the holographic dark energy model with the future event horizon as the infrared cutoff. In the phantom scenario, one of the two obtained holographic screens is placed on the big rip hypersurface, both for the covariant holographic formalism and the holographic phantom model. It is also analyzed whether the existence of these preferred screens allows a mathematically consistent formulation of fundamental theories based on the existence of an S-matrix at infinite distances. (orig.)

  15. A de Sitter tachyonic braneworld revisited

    Science.gov (United States)

    Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão

    2018-01-01

    Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.

  16. Tachyon kinematics and causality: A systematic, thorough analysis

    International Nuclear Information System (INIS)

    Recami, E.

    1985-01-01

    The chronological order of the events along a space-like path is not invariant under Lorentz transformations, as wellknown. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stuckelberg-Feynman 'switching procedure' (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the 'SWP' does eliminate the motions backwards in time, but interchanges the roles of source and detector. This fact triggered the proposal of a host of causal 'paradoxes'. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least 'in microphysics') only after having properly developed the tachyon relativistic mechanics. It is shown how to apply the 'SWP', both in the case of ordinary Special Relativity, and in the case with tachyons. Then, the kinematics of the tachyon-exchange between two (ordinary) bodies is carrefully exploited. Being finally able to tackle the tachyon-causality problem, the paradoxes are sucessively solved: (i) by Tolman-Regge; (ii) by Pirani; (iii) by Edmonds; (iv) by Bell. At last, a further new paradox associated with the transmission of signals by modulated tachyon beams is discussed. (Author) [pt

  17. Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Dhar, Avinash; Nag, Partha

    2008-01-01

    We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and D8-bar-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra

  18. Closed string tachyon driving f(R) cosmology

    Science.gov (United States)

    Wang, Peng; Wu, Houwen; Yang, Haitang

    2018-05-01

    To study quantum effects on the bulk tachyon dynamics, we replace R with f(R) in the low-energy effective action that couples gravity, the dilaton, and the bulk closed string tachyon of bosonic closed string theory and study properties of their classical solutions. The α' corrections of the graviton-dilaton-tachyon system are implemented in the f(R). We obtain the tachyon-induced rolling solutions and show that the string metric does not need to remain fixed in some cases. In the case with H( t=‑∞ ) = , only the R and R2 terms in f(R) play a role in obtaining the rolling solutions with nontrivial metric. The singular behavior of more classical solutions are investigated and found to be modified by quantum effects. In particular, there could exist some classical solutions, in which the tachyon field rolls down from a maximum of the tachyon potential while the dilaton expectation value is always bounded from above during the rolling process.

  19. Information flow, causality, and the classical theory of tachyons

    International Nuclear Information System (INIS)

    Basano, L.

    1977-01-01

    Causal paradoxes arising in the tachyon theory have been systematically solved by using the reinterpretation principle as a consequence of which cause and effect no longer retain an absolute meaning. However, even in the tachyon theory, a cause is always seen to chronologically precede its effect, but this is obtained at the price of allowing cause and effect to be interchanged when required. A recent result has shown that this interchange-ability of cause and effect must not be unlimited if heavy paradoxes are to be avoided. This partial recovery of the classical concept of causality has been expressed by the conjecture that transcendent tachyons cannot be absorbed by a tachyon detector. In this paper the directional properties of the flow of information between two observers in relative motion and its consequences on the logical self-consistency of the theory of superluminal particles are analyzed. It is shown that the above conjecture does not provide a satisfactory solution to the problem because it implies that tachyons of any speed cannot be intercepted by the same detector. (author)

  20. A model-theory for tachyons in two dimensions

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues Junior, W.A.

    1985-01-01

    The subject of Tachyons, even if still speculative, may deserve some attention for reasons that can be divided into a few categories, two of which are preliminarily mentioned right now; (i) the larger scheme that one tries to build up in order to incorporate space-like objects in the relativistic theories can allow a better understanding of many aspects of the ordinary relativistic physics, even if Tachyons would not exist in our cosmos as 'asymptotically free' objects; (ii) Superluminal classical objects can have a role in elementary particle interactions (and perhaps even in astrophysics); and it might be tempting to verify how far one can go in reproducing the quantum-like behaviour at a classical level just by taking account of the possible existence of faster-than-light classical particles. This article is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in Part I (Sect. 2) it is merely shown that Special Relativity - even without tachyons - can be given a form such to describe both particles and anti-particles. The plan of Part II is confined only to a 'model-theory' of Tachyons in two dimensions, for the reasons stated in Sect. 3. (Author) [pt

  1. A study of tachyon dynamics for broad classes of potentials

    Energy Technology Data Exchange (ETDEWEB)

    Quiros, Israel [Division de Ciencias e Ingenieria de la Universidad de Guanajuato, AP 150, 37150, Leon, Guanajuato (Mexico); Gonzalez, Tame [Departamento de Fisica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); Gonzalez, Dania; Napoles, Yunelsy [Departamento de Matematica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); GarcIa-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria del IPN, Mexico DF (Mexico); Moreno, Claudia, E-mail: iquiros@Fisica.ugto.m, E-mail: tame@uclv.edu.c, E-mail: dgm@uclv.edu.c, E-mail: yna@uclv.edu.c, E-mail: rigarcias@ipn.m, E-mail: claudia.moreno@cucei.udg.m [Departamento de Fisica y Matematicas, Centro Universitario de Ciencias Exactas e IngenierIas, Av. Revolucion 1500 SR, Universidad de Guadalajara, 44430 Guadalajara, Jalisco (Mexico)

    2010-11-07

    We investigate in detail the asymptotic properties of tachyon cosmology for a broad class of self-interaction potentials. The present approach relies on an appropriate re-definition of the tachyon field, which, in conjunction with a method formerly applied in the bibliography in a different context allows us to generalize the dynamical systems study of tachyon cosmology to a wider class of self-interaction potentials beyond the (inverse) square-law one. It is revealed that independent of the functional form of the potential, the matter-dominated solution and the ultra-relativistic (also matter-dominated) solution are always associated with equilibrium points in the phase space of the tachyon models. The latter is always the past attractor, while the former is a saddle critical point. For inverse power-law potentials V{proportional_to}{phi}{sup -2{lambda}} the late-time attractor is always the de Sitter solution, while for sinh-like potentials V{proportional_to}sinh {sup -{alpha}}({lambda}{sup {phi}}), depending on the region of parameter space, the late-time attractor can be either the inflationary tachyon-dominated solution or the matter-scaling (also inflationary) phase. In general, for most part of known quintessential potentials, the late-time dynamics will be associated either with de Sitter inflation, or with matter-scaling, or with scalar field-dominated solutions.

  2. Things Fall Apart: Topology Change From Winding Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.

    2005-02-04

    We argue that closed string tachyons drive two spacetime topology changing transitions--loss of genus in a Riemann surface and separation of a Riemann surface into two components. The tachyons of interest are localized versions of Scherk-Schwarz winding string tachyons arising on Riemann surfaces in regions of moduli space where string-scale tubes develop. Spacetime and world-sheet renormalization group analyses provide strong evidence that the decay of these tachyons removes a portion of the spacetime, splitting the tube into two pieces. We address the fate of the gauge fields and charges lost in the process, generalize it to situations with weak flux backgrounds, and use this process to study the type 0 tachyon, providing further evidence that its decay drives the theory sub-critical. Finally, we discuss the time-dependent dynamics of this topology-changing transition and find that it can occur more efficiently than analogous transitions on extended supersymmetric moduli spaces, which are limited by moduli trapping.

  3. Tachyon condensation on the elliptic curve

    International Nuclear Information System (INIS)

    Govindarajan, Suresh; Jockers, Hans; Lerche, Wolfgang; Warner, Nicholas P.

    2007-01-01

    We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minimal charges. As an application, we explicitly construct all rank two matrix factorizations

  4. Tachyon Condensation on the Elliptic Curve

    CERN Document Server

    Govindarajan, S; Lerche, Wolfgang; Warner, Nicholas P

    2007-01-01

    We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minim...

  5. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons

    International Nuclear Information System (INIS)

    Sin, Sang-Jin

    2003-01-01

    We study the localized tachyon condensation of non-supersymmetric orbifold backgrounds in their mirror Landau-Ginzburg picture. We first show that the R-charges of chiral primaries increase under the process of condensing the tachyon in the same chiral ring. Then, utilizing the existence of four copies of (2,2) worldsheet supersymmetry, we show that the minimal tachyon mass in twisted sectors increases in CFT and type 0 string and it plays the role of the c-function of the twisted sectors. We also study the GSO projection in detail and show that type II decays to only to type II while type 0 can mix with type 0 and II under the RG-flow

  6. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Sin, Sang-Jin

    2003-03-20

    We study the localized tachyon condensation of non-supersymmetric orbifold backgrounds in their mirror Landau-Ginzburg picture. We first show that the R-charges of chiral primaries increase under the process of condensing the tachyon in the same chiral ring. Then, utilizing the existence of four copies of (2,2) worldsheet supersymmetry, we show that the minimal tachyon mass in twisted sectors increases in CFT and type 0 string and it plays the role of the c-function of the twisted sectors. We also study the GSO projection in detail and show that type II decays to only to type II while type 0 can mix with type 0 and II under the RG-flow.

  7. Localized tachyon condensation and G-parity conservation

    International Nuclear Information System (INIS)

    Lee, Sunggeun; Sin, Sang-Jin

    2004-01-01

    We study the condensation of localized tachyon in non-supersymmetric orbifold. We first show that the G-parity of chiral primaries are preserved under the condensation of localized tachyon (CLT). Using this, we finalize the proof of the conjecture that the lowest-tachyon-mass-squared increases under CLT at the level of type II string with full consideration of GSO projection. We also show the equivalence between the G-parity given by G [jk 1 /n]+[jk 2 /n] coming from partition function and that given by G={jk 1 /n}+k 2 -{jk 2 -/n}k 1 coming from the monomial construction for the chiral primaries in the dual Mirror picture. (author)

  8. The energy-carrying velocity and rolling of tachyons of unstable D-branes

    International Nuclear Information System (INIS)

    Chung, Jin Hyun; L'Yi, Won Sik

    2004-01-01

    We show that the tachyons that originate from unstable D-branes carry energy and momentum at a velocity β = c 2 /v; where v is the phase velocity, which is greater than c. For an observer who moves with velocity β, the tachyon is observed to be moving from one of the ground states of the tachyon potential to a potential hill. The tachyon is found to either pass over the hill or bounce back to the original ground state. Another possible solution is the case that is margial to these; that is, the tachyon reaches the top of the potential hill and stays there forever.

  9. Constant-roll tachyon inflation and observational constraints

    Science.gov (United States)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  10. The tachyon at the end of the universe

    International Nuclear Information System (INIS)

    McGreevy, John; Silverstein, Eva

    2005-01-01

    We show that a tachyon condensate phase replaces the spacelike singularity in certain cosmological and black hole spacetimes in string theory. We analyze explicitly a set of examples with flat spatial slices in various dimensions which have a winding tachyon condensate, using worldsheet path integral methods from Liouville theory. In a vacuum with no excitations above the tachyon background in the would-be singular region, we analyze the production of closed strings in the resulting state in the bulk of spacetime. We find a thermal result reminiscent of the Hartle-Hawking state, with tunably small energy density. The amplitudes exhibit a self-consistent truncation of support to the weakly-coupled small-tachyon region of spacetime. We argue that the background is accordingly robust against back reaction, and that the resulting string theory amplitudes are perturbatively finite, indicating a resolution of the singularity and a mechanism to start or end time in string theory. Finally, we discuss the generalization of these methods to examples with positively curved spatial slices

  11. Closed String Tachyons, AdS/CFT, and QCD

    International Nuclear Information System (INIS)

    Silverstein, Eva M

    2001-01-01

    We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual

  12. Tachyons imply the existence of a privileged frame

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, T.; Heylighen, F.

    1985-12-16

    It is shown that the existence of faster-than-light signals (tachyons) would imply the existence (and detectability) of a privileged inertial frame and that one can avoid all problems with reversed-time order only by using absolute synchronization instead of the standard one. The connection between these results and the EPR-paradox is discussed.

  13. Localizability of tachyonic particles and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Jentschura, U.D. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States); Institut fuer Theoretische Physik, Heidelberg (Germany); Wundt, B.J. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States)

    2012-02-15

    The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)

  14. Localizability of tachyonic particles and neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Jentschura, U.D.; Wundt, B.J.

    2012-01-01

    The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)

  15. Closed String Tachyons, AdS/CFT, and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Eva M

    2001-07-25

    We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual.

  16. The Tolman-Regge antitelephone paradox: Its solution by tachyon mechanics

    International Nuclear Information System (INIS)

    Recami, E.

    The possibility of solving (at least 'in microphysics') all the ordinary causal paradoxes devised for Tachyons is not yet widely recognized; on the contrary, the effectiveness of the Stuckelberg-Feynman 'switching principle' is often misunderstood. It is therefore shown in details and rigorously how to solve the oldest causal paradox, originally proposed by Tolman, which is the Kernel of so many further tachyon paradoxes. The key to the solution is a careful application of Tachyon Kinematics. Which can be unambiguously derived from Special Relativity. A systematic, thorough analysis of all tachyon paradoxes is going to appear elsewhere. (Author) [pt

  17. Non-minimally coupled tachyon field in teleparallel gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fazlpour, Behnaz [Department of Physics, Babol Branch, Islamic Azad University, Shariati Street, Babol (Iran, Islamic Republic of); Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir [Department of Basic Sciences, Babol University of Technology, Shariati Street, Babol (Iran, Islamic Republic of)

    2015-04-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.

  18. Non-minimally coupled tachyon field in teleparallel gravity

    International Nuclear Information System (INIS)

    Fazlpour, Behnaz; Banijamali, Ali

    2015-01-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P 4 ), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field

  19. Non-minimally coupled tachyonic inflation in warped string background

    International Nuclear Information System (INIS)

    Chingangbam, Pravabati; Panda, Sudhakar; Deshamukhya, Atri

    2005-01-01

    We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large T along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured. (author)

  20. Observational status of Tachyon Natural Inflation and reheating

    Science.gov (United States)

    Rashidi, Narges; Nozari, Kourosh; Grøn, Øyvind

    2018-05-01

    We study observational viability of Natural Inflation with a tachyon field as inflaton. By obtaining the main perturbation parameters in this model, we perform a numerical analysis on the parameter space of the model and in confrontation with 68% and 95% CL regions of Planck2015 data. By adopting a warped background geometry, we find some new constraints on the width of the potential in terms of its height and the warp factor. We show that the Tachyon Natural Inflation in the large width limit recovers the tachyon model with a phi2 potential which is consistent with Planck2015 observational data. Then we focus on the reheating era after inflation by treating the number of e-folds, temperature and the effective equation of state parameter in this era. Since it is likely that the value of the effective equation of state parameter during the reheating era to be in the range 0Inflation model. In particular, we show that a prediction of this model is r<=8/3 δns, where δns is the scalar spectral tilt, δns=1‑ns. In this regard, given that from the Planck2015 data we have δns=0.032 (corresponding to ns=0.968), we get r<= 0.085.

  1. Exact potential and scattering amplitudes from the tachyon non-linear β -function

    International Nuclear Information System (INIS)

    Coletti, E.; Forini, V.; Nardelli, G.; Orselli, M.; Grignani, G.

    2004-01-01

    We compute, on the disk, the non-linear tachyon β-function, β T , of the open bosonic string theory. β T is determined both in an expansion to the third power of the field and to all orders in derivatives and in an expansion to any power of the tachyon field in the leading order in derivatives. We construct the Witten-Shatashvili (WS) space-time effective action S and prove that it has a very simple universal form in terms of the renormalized tachyon field and β T . The expression for S is well suited to studying both processes that are far off-shell, such as tachyon condensation, and close to the mass-shell, such as perturbative on-shell amplitudes. We evaluate S in a small derivative expansion, providing the exact tachyon potential. The normalization of S is fixed by requiring that the field redefinition that maps S into the tachyon effective action derived from the cubic string field theory is regular on-shell. The normalization factor is in precise agreement with the one required for verifying all the conjectures on tachyon condensation. The coordinates in the space of couplings in which the tachyon β-function is non linear are the most appropriate to study RG fixed points that can be interpreted as solitons of S, i.e. D-branes. (author)

  2. Ancient cosmological tachyons in the present-day world

    International Nuclear Information System (INIS)

    Molski, M.

    1993-01-01

    The geodesic equation for space-like objects moving along a circular trajectory in the expanding universe is considered. Our analysis leads to the conclusion that ancient cosmological tachyons may exist in the present-day world and may play an important role in (i) the internal structure of hadrons conceived as nonlocal objects called strings, (ii) the T-symmetry violation observed in the weak K-decays, (iii) the multidimensional unified field theories of Kaluza-Klein type, and in (iv) the classical models of charged particles which combine ordinary electromagnetism with a self-interacting version of Newtonian gravity. 18 refs

  3. A premier analysis of supersymmetric closed string tachyon cosmology

    Science.gov (United States)

    Vázquez-Báez, V.; Ramírez, C.

    2018-04-01

    From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.

  4. Tachyon cosmology, supernovae data, and the big brake singularity

    International Nuclear Information System (INIS)

    Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Kamenshchik, A. Yu.

    2009-01-01

    We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard ΛCDM model.

  5. Dynamics and stability of light-like tachyon condensation

    International Nuclear Information System (INIS)

    Barnaby, Neil; Robinson, Patrick; Mulryne, David J.; Nunes, Nelson J.

    2009-01-01

    Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an 'island of stability' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.

  6. Dynamics and stability of light-like tachyon condensation

    Science.gov (United States)

    Barnaby, Neil; Mulryne, David J.; Nunes, Nelson J.; Robinson, Patrick

    2009-03-01

    Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an ``island of stability'' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.

  7. Quaternionic formulation of tachyons, superluminal transformations and a complex space-time

    Energy Technology Data Exchange (ETDEWEB)

    Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)

    1979-04-11

    A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.

  8. Proper acceleration, the geometric tachyon and the dynamics of a fundamental string near Dp branes

    International Nuclear Information System (INIS)

    Das, Ashok; Panda, Sudhakar; Roy, Shibaji

    2009-01-01

    We present a detailed analysis of our recent observation that the origin of the geometric tachyon, which arises when a Dp brane propagates in the vicinity of a stack of coincident NS5 branes, is due to the proper acceleration generated by the background dilaton field. We show that when a fundamental string (F-string), described by the Nambu-Goto action, is moving in the background of a stack of coincident Dp branes, the geometric tachyon mode can also appear since the overall conformal mode of the induced metric for the string can act as a source for proper acceleration. We also studied the detailed dynamics of the F-string as well as the instability by mapping the Nambu-Goto action of the F-string to the tachyon effective action of the non-BPS D-string. We qualitatively argue that the condensation of the geometric tachyon is responsible for the (F,Dp) bound state formation.

  9. Constraining non-minimally coupled tachyon fields by the Noether symmetry

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2009-01-01

    A model for a homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. The Noether symmetry is used to find expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is responsible for the decelerated-accelerated transition period.

  10. Note on inflation with a tachyon rolling on the Gauss-Bonnet brane

    International Nuclear Information System (INIS)

    Paul, B.C.; Sami, M.

    2004-01-01

    In this paper we study the tachyonic inflation in brane world cosmology with Gauss-Bonnet term in the bulk. We obtain the exact solution of slow roll equations in case of exponential potential. We attempt to implement the proposal of J. E. Lidsey and N. J. Nunes [Phys. Rev. D 67, 103510 (2003)] for the tachyon condensate rolling on the Gauss-Bonnet brane and discuss the difficulties associated with the proposal

  11. Non-critical Poincare invariant bosonic string backgrounds and closed string tachyons

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Gomez, Cesar; Hernandez, Lorenzo

    2001-01-01

    A new family of non critical bosonic string backgrounds in arbitrary space-time dimension D and with ISO(1,D-2) Poincare invariance are presented. The metric warping factor and dilaton agree asymptotically with the linear dilaton background. The closed string tachyon equation of motion enjoys, in the linear approximation, an exact solution of 'kink' type interpolating between different expectation values. A renormalization group flow interpretation, based on a closed string tachyon potential of type -T 2 e -T , is suggested

  12. Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation

    Science.gov (United States)

    Barnaby, Neil; Cline, James M.

    2006-05-01

    We show that in hybrid inflation it is possible to generate large second-order perturbations in the cosmic microwave background due to the instability of the tachyonic field during preheating. We carefully calculate this effect from the tachyon contribution to the gauge-invariant curvature perturbation, clarifying some confusion in the literature concerning nonlocal terms in the tachyon curvature perturbation; we show explicitly that such terms are absent. We quantitatively compute the non-Gaussianity generated by the tachyon field during the preheating phase and translate the experimental constraints on the nonlinearity parameter fNL into constraints on the parameters of the model. We also show that nonscale-invariant second-order perturbations from the tachyon field with spectral index n=4 can become larger than the inflaton-generated first-order perturbations, leading to stronger constraints than those coming from non-Gaussianity. The width of the excluded region in terms of the logarithm of the dimensionless coupling g, grows linearly with the log of the ratio of the Planck mass to the tachyon VEV, log⁡(Mp/v); hence very large regions are ruled out if the inflationary scale v is small. We apply these results to string-theoretic brane-antibrane inflation, and find a stringent upper bound on the string coupling, gs<10-4.5.

  13. Accelerated expansion of the universe driven by tachyonic matter

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2002-01-01

    It is an accepted practice in cosmology to invoke a scalar field with a potential V(φ) when the observed evolution of the universe cannot be reconciled with theoretical prejudices. Since one function degree of freedom in the expansion factor a(t) can be traded off for the function V(φ), it is always possible to find a scalar field potential which will reproduce a given evolution. I provide a recipe for determining V(φ) from a(t) in two cases: (i) a normal scalar field with the Lagrangian L=(1/2)∂ a φ∂ a φ-V(φ) used in quintessence or dark energy models; (ii) a tachyonic field with the Lagrangian L=-V(φ)[1-∂ a φ∂ a φ] 1/2 , motivated by recent string theoretic results. In the latter case, it is possible to have accelerated expansion of the universe during the late phase in certain cases

  14. Answer to 'Information flow, causality, and the classical theory of tachyons'

    International Nuclear Information System (INIS)

    Recami, E.; Pavsic, M.

    1978-01-01

    Recently Basano (Int. J. Theor. Phys.; 16:715 (1977)) in a paper entitled 'Information Flow, Causality and the Classical Theory of Tachyons' commented on earlier work by the present authors. In answer to those comments it is pointed out that although 'Extended Relativity' seems to allow one to solve any causal paradoxes with both usual particles and tachyons nevertheless a number of paradoxes are continuously proposed. It has already been shown by the authors that tachyons possibly do not imply any causality violations even in macro-physics but Basano claimed that the procedure lead to new, different paradoxes. It is here demonstrated that such presumed difficulties do not exist. (U.K.)

  15. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  16. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  17. Toward an open-closed string theoretical description of a rolling tachyon

    International Nuclear Information System (INIS)

    Ohmori, Kazuki

    2004-01-01

    We consider how the time-dependent decay process of an unstable D-brane should be described in the full (quantum) open-closed string theory. It is argued that the system, starting from the unstable D-brane configuration, will evolve in time into the time-independent open string tachyon vacuum configuration which we assume to be finite, with the total energy conserved. As a concrete realization of this idea, we construct a toy model describing the open and closed string tachyons which admits such a time-dependent solution. The structure of our model has some resemblance to that of open-closed string field theory

  18. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    International Nuclear Information System (INIS)

    Kamenshchik, A. Yu.; Manti, S.

    2013-01-01

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  19. Study of Tachyon Warm Intermediate and Logamediate Inflationary Universe from Loop Quantum Cosmological Perspective

    International Nuclear Information System (INIS)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2016-01-01

    We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ = Γ 0 (where Γ 0 is a constant) in “intermediate” inflation and Γ = V(ϕ), (where V(ϕ) is the potential of tachyonic field) in “logamediate” inflation. We have assumed slow-roll condition to construct scalar field ϕ, potential V, N-folds, etc. Various slow-roll parameters have also been obtained. We have analyzed the stability of this model through graphical representations. (paper)

  20. Nonequatorial tachyon trajectories in Kerr space-time and the second law of black-hole physics

    International Nuclear Information System (INIS)

    Dhurandhar, S.V.

    1979-01-01

    The behavior of tachyon trajectories (spacelike geodesics) in Kerr space-time is discussed. It is seen that the trajectories may be broadly classified into three types according to the magnitude of the angular momentum of the tachyon. When the magnitude of angular momentum is large [vertical-barhvertical-bar > or = a (1 + GAMMA 2 )atsup 1/2at, where h and GAMMA are the angular momentum and energy at infinity and a 0. In the other cases, a negative value for Carter's constant of motion Q is permitted, which happens to be a necessary condition for the tachyon to fall into the singularity. Next, the second law of black-hole physics is investigated in the general case of nonequatorial trajectories. It is shown that nonequatorial tachyons can decrease the area of the Kerr black hole only if it is rotating sufficiently rapidly [a > (4/3√3) M

  1. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    International Nuclear Information System (INIS)

    Setare, M.R.; Kamali, V.

    2014-01-01

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  2. Tachyon with an inverse power-law potential in a braneworld cosmology

    Science.gov (United States)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-08-01

    We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.

  3. Physical states at the tachyonic vacuum of open string field theory

    International Nuclear Information System (INIS)

    Giusto, S.; Imbimbo, C.

    2004-01-01

    We illustrate a method for computing the number of physical states of open string theory at the stable tachyonic vacuum in level truncation approximation. The method is based on the analysis of the gauge-fixed open string field theory quadratic action that includes Fadeev-Popov ghost string fields. Computations up to level 9 in the scalar sector are consistent with Sen's conjecture about the absence of physical open string states at the tachyonic vacuum. We also derive a long exact cohomology sequence that relates relative and absolute cohomologies of the BRS operator at the non-perturbative vacuum. We use this exact result in conjunction with our numerical findings to conclude that the higher ghost number non-perturbative BRS cohomologies are non-empty

  4. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)

    2014-09-07

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  5. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2014-09-01

    Full Text Available We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9, Planck and BICEP2 data.

  6. Finite temperature corrections to tachyon mass in intersecting D-branes

    International Nuclear Information System (INIS)

    Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu

    2017-01-01

    We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.

  7. Finite temperature corrections to tachyon mass in intersecting D-branes

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)

    2017-04-19

    We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.

  8. Pseudo-Hermitian quantum dynamics of tachyonic spin-1/2 particles

    International Nuclear Information System (INIS)

    Jentschura, U D; Wundt, B J

    2012-01-01

    We investigate the spinor solutions, the spectrum and the symmetry properties of a matrix-valued wave equation whose plane-wave solutions satisfy the superluminal (tachyonic) dispersion relation E 2 = p-vector 2 - m 2 , where E is the energy, p-vector is the spatial momentum and m is the mass of the particle. The equation reads (iγ μ  ∂ μ − γ 5  m)ψ = 0, where γ 5 is the fifth current. The tachyonic equation is shown to be CP invariant and T invariant. The tachyonic Hamiltonian breaks parity and is non-Hermitian but fulfils the pseudo-Hermitian property H 5 ( r-vector ) = P H + 5 (- r-vector ) P -1 =P H + 5 ( r-vector ) P -1 , where P is the parity matrix and P is the full parity transformation. The energy eigenvalues and eigenvectors describe a continuous spectrum of plane-wave solutions (which correspond to real eigenvalues for | p-vector |≥m) and evanescent waves, which constitute resonances and anti-resonances with complex-conjugate pairs of resonance eigenvalues (for | p-vector | 5 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  9. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  10. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    International Nuclear Information System (INIS)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Mora-Luna, Refugio Rigel

    2016-01-01

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  11. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Germán, Gabriel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road,Oxford, OX1 3NP (United Kingdom); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Institutode Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Mora-Luna, Refugio Rigel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2016-05-11

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  12. Tachyon warm-intermediate inflation in the light of Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Vahid; Mehrabi, Ahmad [Bu-Ali Sina University, Department of Physics, Hamedan (Iran, Islamic Republic of); Basilakos, Spyros [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Athens (Greece)

    2016-10-15

    We study the main properties of the warm tachyon inflation model in the framework of the RSII braneworld based on Barrow's solution for the scale factor of the universe. Within this framework we calculate analytically the basic slow-roll parameters for different versions of warm inflation. We test the performance of this inflationary scenario against the latest observational data and we verify that the predicted spectral index and the tensor-to-scalar fluctuation ratio are in excellent agreement with those of Planck 2015. Finally, we find that the current predictions are consistent with those of viable inflationary models. (orig.)

  13. Scalar perturbation in warm tachyon inflation in LQC in light of Plank and BICEP2

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)

    2014-12-12

    We study warm-tachyon inflationary universe model in the context of the effective field theory of loop quantum cosmology. In slow-roll approximation the primordial perturbation spectrums for this model are calculated. We also obtain the general expressions of the tensor-to-scalar ratio and scalar spectral index. We develop this model by using exponential potential, the characteristics of this model are presented in great details. The parameters of the model are restricted by recent observational data from Planck, WMAP9 and BICEP2.

  14. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-07-15

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  15. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  16. REM - the Shape of Potentials for f(R) Theories in Cosmology and Tachyons

    CERN Document Server

    Vulcanov, Dumitru N; Sporea, Ciprian A

    2014-01-01

    We investigated the reverse engineering method (REM) for constructing the potential of the scalar field in cosmological theories based on metric f(R) gravity and Friedman Robertson Walker (FRW) metric. Then transposing the new field and Friedman equations in an algebraic computing special library (in Maple + GrTennsorII platform) we graphically investigate the shape of the potentials in terms of the scalar field in at least two type of cosmology with exponential and linear scale factor expansion. Some perspectives and conclusions relating these results with tachyonic cosmology theories are noticed.

  17. Inflation driven by single geometric tachyon with D-brane orbiting around NS5-branes

    International Nuclear Information System (INIS)

    Kwon, Pyung Seong; Jun, Gyeong Yun; Panigrahi, Kamal L.; Sami, M.

    2012-01-01

    We investigate models in which inflation is driven by a single geometrical tachyon. We assume that the D-brane as a probe brane in the background of NS5-branes has non-zero angular momentum which is shown to play similar role as the number of the scalar fields of the assisted inflation. We demonstrate that the angular momentum corrected effective potential allows to account for the observational constraint on COBE normalization, spectral index n S and the tensor to scalar ratio of perturbations consistent with WMAP seven years data.

  18. Dynamics of tachyon fields and inflation - comparison of analytical and numerical results with observation

    Directory of Open Access Journals (Sweden)

    Milošević M.

    2016-01-01

    Full Text Available The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n, and tensor-scalar ratio (r for the given potentials. We pay special attention to the inverse power potential, first of all to V (x ~ x−4, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X0 to the string theory motivated sector of its values is briefly considered. [Projekat Ministarstva nauke Republike Srbije, br. 176021, br. 174020 i br. 43011

  19. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-29

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  20. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Khaledian, M.S.; Felegary, F.; Azarmi, Z.

    2010-01-01

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  1. Calculation of the decay rate of tachyonic neutrinos against charged-lepton-pair and neutrino-pair Cerenkov radiation

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István; Ehrlich, Robert

    2017-10-01

    We consider in detail the calculation of the decay rate of high-energy superluminal neutrinos against (charged) lepton pair Cerenkov radiation, and neutrino pair Cerenkov radiation, i.e., against the decay channels ν \\to ν {e}+ {e}- and ν \\to ν \\overline{ν } ν . Under the hypothesis of a tachyonic nature of neutrinos, these decay channels put constraints on the lifetime of high-energy neutrinos for terrestrial experiments as well as on cosmic scales. For the oncoming neutrino, we use the Lorentz-covariant tachyonic relation {E}ν =\\sqrt{{p}2-{m}ν 2}, where m ν is the tachyonic mass parameter. We derive both threshold conditions as well as on decay and energy loss rates, using the plane-wave fundamental bispinor solutions of the tachyonic Dirac equation. Various intricacies of rest frame versus lab frame calculations are highlighted. The results are compared to the observations of high-energy IceCube neutrinos of cosmological origin.

  2. Non-supersymmetric tachyon-free type-II and type-I closed strings from RCFT

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)], E-mail: bgator@imaff.cfmac.csic.es; Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2007-11-15

    We consider non-supersymmetric four-dimensional closed string theories constructed out of tensor products of N=2 minimal models. Generically such theories have closed string tachyons, but these may be removed either by choosing a non-trivial partition function or a suitable Klein bottle projection. We find large numbers of examples of both types.

  3. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies

    Science.gov (United States)

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S.; Moses, William W.; Qi, Jinyi

    2018-03-01

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1–1.3 over the TOF 500 ps and 1.5–1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  4. Vacuum stability with tachyonic boundary Higgs masses in no-scale supersymmetry or gaugino mediation

    International Nuclear Information System (INIS)

    Evans, Jason L.; Wells, James D.; Morrissey, David E.

    2009-01-01

    No-scale supersymmetry or gaugino mediation augmented with large negative Higgs soft masses at the input scale provides a simple solution to the supersymmetric flavor problem while giving rise to a neutralino lightest superpartner particle. However, to obtain a neutralino lightest superpartner particle it is often necessary to have tachyonic input Higgs soft masses that can give rise to charge-and-color-breaking minima and unbounded-from-below directions in the low-energy theory. We investigate the vacuum structure in these theories to determine when such problematic features are present. When the standard electroweak vacuum is only metastable, we compute its lifetime under vacuum tunneling. We find that vacuum metastability leads to severe restrictions on the parameter space for larger tanβ∼30, while for smaller tanβ∼10, only minor restrictions are found. Along the way, we derive an exact bounce solution for tunneling through an inverted parabolic potential.

  5. Vacuum Stability with Tachyonic Boundary Higgs Masses in No-Scale Supersymmetry or Gaugino Mediation

    CERN Document Server

    Evans, Jason L; Wells, James D

    2009-01-01

    No-scale supersymmetry or gaugino mediation augmented with large negative Higgs soft masses at the input scale provides a simple solution to the supersymmetric flavor problem while giving rise to a neutralino LSP. However, to obtain a neutralino LSP it is often necessary to have tachyonic input Higgs soft masses that can give rise to charge-and-color-breaking (CCB) minima and unbounded-from-below (UFB) directions in the low energy theory. We investigate the vacuum structure in these theories to determine when such problematic features are present. When the standard electroweak vacuum is only metastable, we compute its lifetime under vacuum tunneling. We find that vacuum metastability leads to severe restrictions on the parameter space for larger $\\tan\\beta \\sim 30$, while for smaller $\\tan\\beta\\sim 10$, only minor restrictions are found. Along the way, we derive an exact bounce solution for tunneling through an inverted parabolic potential.

  6. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others

  7. New view about black holes. [Tachyon--bradyon transformation at horizon

    Energy Technology Data Exchange (ETDEWEB)

    De Sabbata, V; Pavsic, M; Recami, E

    1977-01-01

    For a Schwarzschild black-hole, as reference frame is chosen the frame sigma at rest with respect to the Schwarzschild metric. In this locally non-inertial frame, a freely falling body is shown to reach the speed of light on the horizon and then to travel faster than light inside the horizon. The usual Szekeres--Kruskal (SK) coordinates represent themselves frames that (with respect to the frames sigma) travel at subluminal speed outside, at luminal speed on, and at superluminal speed inside the horizon (so that SK frames always describe any free falling body as a standard, slower-than-light object). Finally, black-holes are shown to be possible sources of tachyons.

  8. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    International Nuclear Information System (INIS)

    Keresztes, Zoltán; Gergely, László Á.

    2014-01-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω b h 2  = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω CDM  = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model

  9. The spectrum of the two-dimensional black hole or does the two-dimensional black hole have tachyonic or W-hair?

    International Nuclear Information System (INIS)

    Marcus, N.; Oz, Y.

    1993-01-01

    We solve the equations of motion of the tachyon and the discrete states in the background of Witten's semiclassical black hole and in the exact two-dimensional dilaton-graviton background of Dijkgraaf et al. We find the exact solutions for weak fields, leading to conclusions in disagreement with previous studies of tachyons in the black hole. Demanding that a state in the black hole be well behaved at the horizon implies that it must tend asymptotically to a combination of a Seiberg and an anti-Seiberg c=1 state. For such a state to be well behaved asymptotically, it must satisfy the condition that neither its Seiberg nor its anti-Seiberg Liouville momentum is positive. Thus, although the free-field BRST cohomologies of the underlying SL(2, R) theory is the same as that of a c=1 theory, the black-hole spectrum is drastically truncated: There are no W ∞ states, and only tachyons with x-momenta vertical stroke p tach ≤m tach vertical stroke are allowed. In the Minkowski case only the static tachyon is allowed. The black hole is stable to the back reaction of these remaining tachyons, so they are good perturbations of the black hole, or 'hair'. However, this leaves only three tachyonic hairs in the black hole and seven in the exact solution. Such sparse hair is clearly irrelevant to the maintenance of coherence during black-hole evaporation. (orig.)

  10. Tachyonic dyons

    International Nuclear Information System (INIS)

    Rajput, B.S.

    1986-01-01

    The generalization of the unification of electromagnetic and gravitational forces in the curved spaces is being undertaken currently by using recent non-Abelian gauge theory of fields associated with dyons. The author has also constructed the gauge invariant and Lorentz covariant theory of second quantization of the fields associated with dyons of spin-1 and spin -1/2 and it has been shown that the locality cannot be achieved in general in the commutation of second quantized transverse fields and potentials of dyons and that the effect of making simultaneously the charge and current source densities vanishing is the same as that of making dyonic mass vanishing. Demonstrating that the generalized fields associated with dyons cannot be described in Abelian gauge theory and that the sensible gauge theory of these fields is a non-Ableian one, has recently constructed a suitable Lorentz invariant non-Abelian gauge theory of the fields associated with dyons to describe the dual dynamics between colour isocharges and topological charges

  11. Tachyon Warm Intermediate and Logamediate Inflation in the Brane World Model in the Light of Planck Data

    International Nuclear Information System (INIS)

    Setare, M. R.; Kamali, V.

    2016-01-01

    Tachyon inflationary universe model on the brane in the context of warm inflation is studied. In slow-roll approximation and in longitudinal gauge, we find the primordial perturbation spectrums for this scenario. We also present the general expressions of the tensor-scalar ratio, scalar spectral index, and its running. We develop our model by using exponential potential; the characteristics of this model are calculated in great detail. We also study our model in the context of intermediate (where scale factor expands as a=a_0exp (At"f)) and logamediate (where the scale factor expands as a=a_0exp (A[ln t]"ν)) models of inflation. In these two sectors, dissipative parameter is considered as a constant parameter and a function of tachyon field. Our model is compatible with observational data. The parameters of the model are restricted by Planck data.

  12. The Hagedorn temperature and open QCD-string tachyons in pure N=1 super-Yang-Mills

    International Nuclear Information System (INIS)

    Armoni, Adi; Hollowood, Timothy J.

    2008-01-01

    We consider large-N confining gauge theories with a Hagedorn density of states. In such theories the potential between a pair of colour-singlet sources may diverge at a critical distance r c =1/T H . We consider, in particular, pure N=1 super-Yang-Mills theory and argue that when a domain wall and an anti-domain wall are brought to a distance near r c the interaction potential is better described by an 'open QCD-string channel'. We interpret the divergence of the potential in terms of a tachyonic mode and relate its mass to the Hagedorn temperature. Finally we relate our result to a theorem of Kutasov and Seiberg and argue that the presence of an open string tachyonic mode in the annulus amplitude implies an exponential density of states in the UV of the closed string channel

  13. Equivalence between Born–Infeld tachyon and effective real scalar field theories for brane structures in warped geometry

    International Nuclear Information System (INIS)

    Bernardini, A.E.; Bertolami, O.

    2013-01-01

    An equivalence between Born–Infeld and effective real scalar field theories for brane structures is built in some specific warped space–time scenarios. Once the equations of motion for tachyon fields related to the Born–Infeld action are written as first-order equations, a simple analytical connection with a particular class of real scalar field superpotentials can be found. This equivalence leads to the conclusion that, for a certain class of superpotentials, both systems can support identical thick brane solutions as well as brane structures described through localized energy densities, T 00 (y), in the 5th dimension, y. Our results indicate that thick brane solutions realized by the Born–Infeld cosmology can be connected to real scalar field brane scenarios which can be used to effectively map the tachyon condensation mechanism

  14. Closed-String Tachyons and the Hagedorn Transition in AdS Space

    CERN Document Server

    Barbón, José L F

    2002-01-01

    We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidan AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy'...

  15. Closed string tachyons on AdS orbifolds and dual Yang-Mills instantons

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Iizuka, N. [California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics

    2007-06-15

    We study the condensation of localized closed string tachyons on AdS orbifolds both from the bulk and boundary theory viewpoints. We first extend the known results for AdS{sub 5}/Z{sub k} to AdS{sub 3}/Z{sub k} case, and we proposed that the AdS{sub 3}/Z{sub k} decays into AdS{sub 3}/Z{sub k'} with k{sup '} < k. From the bulk viewpoint, we obtain a time-dependent gravity solution describing the decay of AdS orbifold numerically. From the dual gauge theory viewpoint, we calculated the Casimir energies of gauge theory vacua and it is found that their values are exactly the same as the masses of dual geometries, even though they are in different parameter regimes of 't Hooft coupling. We also consider AdS{sub 5} orbifold. The decay of AdS{sub 5}/Z{sub k} is dual to the transition between the vacua of dual gauge theory on R{sub t} x S{sup 3}/Z{sub k}. We constructed the instanton solutions describing the transitions by making use of instanton solutions on R{sub t} x S{sup 2}. (orig.)

  16. Dirac-Born-Infeld action on the tachyon kink and vortex

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2003-01-01

    The tachyon effective field theory describing the dynamics of a non-Bogomol'nyi-Prasad-Sommerfield (BPS) D-brane in superstring theory has an infinitely thin but finite tension kink solution describing a codimension one BPS D-brane. We study the world-volume theory of massless modes on the kink, and show that the world volume action has precisely the Dirac-Born-Infeld (DBI) form without any higher derivative corrections. We generalize this to a vortex solution in the effective field theory on a brane-antibrane pair. As in the case of the kink, the vortex is infinitely thin, has finite energy density, and the world-volume action on the vortex is again given exactly by the DBI action on a BPS D-brane. We also discuss the coupling of fermions and restoration of supersymmetry and κ symmetry on the world volume of the kink. The absence of higher derivative corrections to the DBI action on the soliton implies that all such corrections are related to higher derivative corrections to the original effective action on the world volume of a non-BPS D-brane or brane-antibrane pair

  17. Tachyons and virtual fields for elementary particles in strong interactions. Part 1

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1978-01-01

    An infinite component free field is constructed and carries an infinite tower of unstable selfcompounds which is defined by a mass-squared trajectory. The field transforms locally under the Poincare group, being a direct sum of spinor representations. The norm or propagator of the field can be written as an infinite partial series (in spin j) of contributions of positive definite metric, which permits transformation to a Regge pole plus background contribution. The Regge pole dominates in the relativistic domain p→infinity. The associated continuation to complex j values introduces an indefinite metric into the propagator and has associated oscillatory characteristic functions of the spinor representation. The constraint on the mass-squared function permits the propogator to be written in terms of partial propagators such that the resonances appear in the correct position on the second z sheet and the Regge poles in the correct Regge j-quadrants. The partial propagator can be written in a TCP invariant form in terms of a spectral function determined by the dispersion integral for a particular condition on the mass-squared trajectory and involving continua of the real mass-squared variable r (r>=4m 2 0 and r 0 is the stable mass corresponding to spin j=0). This allows the complete infinite component free field corresponding to the real mass-squared and spin spectrum to be constructed in such a way that it transforms locally under Lorentz transformatons and has a propagator which has the right resonances and motion of Regge poles. Since there is one mass spectral function, the field should be considered in toto and as a fully virtual field, and furthermore as a possible solution of nonlinear field equation of motion. The tachyonic field component r [af

  18. D0-D4 brane tachyon condensation to a BPS state and its excitation spectrum in noncommutative super Yang-Mills theory

    International Nuclear Information System (INIS)

    Wimmer, Robert

    2005-01-01

    We investigate the D0-D4-brane system for different B-field backgrounds including the small instanton singularity in noncommutative SYM theory. We discuss the excitation spectrum of the unstable state as well as for the BPS D0-D4 bound state. We compute the tachyon potential which reproduces the complete mass defect. The relevant degrees of freedom are the massless (4,4) strings. Both results are in contrast with existing string field theory calculations. The excitation spectrum of the small instanton is found to be equal to the excitation spectrum of the fluxon solution on R θ 2 x R which we trace back to T-duality. For the effective theory of the (0,0) string excitations we obtain a BFSS matrix model. The number of states in the instanton background changes significantly when the B-field becomes self-dual. This leads us to the proposal of the existence of a phase transition or cross over at self-dual B-field

  19. The Mont Blanc neutrinos from SN 1987A: Could they have been monochromatic (8 MeV) tachyons with m2 = - 0.38 keV2?

    Science.gov (United States)

    Ehrlich, Robert

    2018-05-01

    the dark matter model, itself supported by experimental observations. Lastly, it is noted that the tachyonic interpretation of the Mont Blanc burst fits the author's earlier unconventional 3 + 3 model of the neutrino mass states. Experimental corroboration should be sought for the linked hypotheses of an 8 MeV νbar line or an mν2 = - 0.38 keV2. The former might be seen in existing astrophysical data, while the latter should be proven or refuted by the KATRIN experiment in a short data-taking period.

  20. ''Localized'' tachyonic wavelet-solutions of the wave equation

    International Nuclear Information System (INIS)

    Barut, A.O.; Chandola, H.C.

    1993-05-01

    Localized-nonspreading, wavelet-solutions of the wave equation □φ=0 with group velocity v>c and phase velocity u=c 2 /v< c are constructed explicitly by two different methods. Some recent experiments seem to find evidence for superluminal group velocities. (author). 7 refs, 2 figs

  1. Exactly solvable field-theoretical model with tachyons

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.

    1988-01-01

    Explicit soliton solutions describing the inelastic interaction between sub- and superluminal particles are found within the framework of a new integrable model of relativistic classical field theory. The corresponding energies are nonnegative irrespective of the choice of reference frame

  2. Gravity waves from tachyonic preheating after hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dufaux, Jean-Francois [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Felder, Gary [Department of Physics, Clark Science Center, Smith College, Northampton, MA 01063 (United States); Kofman, Lev [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Navros, Olga, E-mail: jeff.dufaux@uam.es, E-mail: gfelder@email.smith.edu, E-mail: kofman@cita.utoronto.ca, E-mail: navros@email.unc.edu [Department of Mathematics, University of North Carolina Chapel Hill, CB3250 Philips Hall, Chapel Hill, NC 27599 (United States)

    2009-03-15

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  3. On Field Theory of Open Strings, Tachyon Condensation and Closed Strings

    OpenAIRE

    Shatashvili, Samson L.

    2001-01-01

    I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.

  4. Intrinsic-normal-ordered vertex operators from the multiloop N-tachyon amplitude

    International Nuclear Information System (INIS)

    Aldazabal, G.; Nunez, C.; Bonini, M.; Iengo, R.

    1987-09-01

    We construct vertex operators for arbitrary mass level states of the closed bosonic string. Starting from a generalization of the Koba-Nielsen amplitude which is suitable for an arbitrary genus Riemann surface, we read the vertex operators from the residues of the poles for the intermediate states. Since the original expression is metric independent and normal ordered without the need of inventing any regularization scheme, our vertex operators also possess these properties. We discuss their general features. (author). 17 refs

  5. Non-Gaussian signatures arising from warm inflation driven by geometric tachyon

    International Nuclear Information System (INIS)

    Bhattacharjee, Anindita; Deshamukhya, Atri

    2014-01-01

    In a warm inflationary scenario, the initial seeds of density perturbation arise from thermal fluctuations of the inflaton field. These fluctuations in principle have Gaussian distribution. In a Gaussian distribution the density perturbation can be expressed as the two point correlation function. Thus if in an inflationary model the density perturbation is expressed as correlation function of order higher than two, these fluctuations are non-Gaussian in nature. A simple inflationary model containing single scalar field, slow roll, canonical kinetic term and vacuum initial state can produce a tiny amount of non-Gaussianity which are very small to be detected by any experiment. Non-Gaussianity can also arise in inflationary models containing multiple scalar fields. For an inflationary scenario with single scalar field, non-Gaussianity can be expressed in terms of bi-spectrum however for multi field Inflation, it is expressed in terms of trispectrum etc. In this piece of work, the warm inflationary scenario, driven by a D3 brane due to the presence of a stack of k coincident NS 5 branes is considered and the non-Gaussian effects in such an inflationary scenario has been analysed by measuring the bispectrum of the gravitational field fluctuations generated during the warm inflation in strong dissipative regime. The bi-spectrum of the Inflation is expressed in terms of the parameter f NL and it is seen that the value of f NL parameter lies well within the limit observed by WMAP7

  6. Non-supersymmetric deformations of non-critical superstrings

    International Nuclear Information System (INIS)

    Itzhaki, Nissan; Kutasov, David; Seiberg, Nathan

    2005-01-01

    We study certain supersymmetry breaking deformations of linear dilaton backgrounds in different dimensions. In some cases, the deformed theory has bulk closed strings tachyons. In other cases there are no bulk tachyons, but there are localized tachyons. The real time condensation of these localized tachyons is described by an exactly solvable worldsheet CFT. We also find some stable, non-supersymmetric backgrounds

  7. Preheating Mechanism in F-term SUSY Hybrid Inflation

    International Nuclear Information System (INIS)

    Mazumdar, Arindam

    2012-01-01

    Supersymmetric F-term hybrid inflation is one of the most popular models of inflation. Preheating process occurs in this model via two different mechanism. Firstly the standard parametric resonance and secondly, the tachyonic preheating. Generally tachyonic preheating dominates the parametric resonance for this type of models. For different values of the parameters of the theory dominance of tachyonic preheating can vary.

  8. Conversion of gravity field energy. Konversion von Schwerkraft-Feld-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Nieper, H A

    1981-01-01

    This book by Mittelstandsinstitut Niedersachsen is a proceedings volume on the conference on energy technology on November 27/28, 1980. The meeting was attended by about 360 persons. On the basis of the knowledge presented, conversion of tachyon field energy into useful electrical energy appears possible. The tachyon field is present everywhere in space. Seike estimated its field strength at 8.8 x 10/sup 8/ V/cm. Magnetic and electrostatic fields can intercept tachyon energy. Especially masses subject to strong magnetic induction take up much tachyon energy. Also abrupt changes of voltage seem to extract energy from tachyons. The Gray motor is based on this principle. Further devices taking energy from the tachyon field are presented, e.g. the Johnson motor which has recently been given the Pat. No. US 4 151 431.

  9. The study of lossy compressive method with different interpolation for holographic reconstruction in optical scanning holography

    Directory of Open Access Journals (Sweden)

    HU Zhijuan

    2015-08-01

    Full Text Available We study the cosmological inflation models driven by the rolling tachyon field which has a Born-Infeld-type action.We drive the Hamilton-Jacobi equation for the cosmological dynamics of tachyon inflation and the mode equations for the scalar and tensor perturbations of tachyon field and spacetime, then a solution under the slow-roll condition is given. In the end,a realistic model from string theory is discussed.

  10. Quantum rings and recursion relations in 2D quantum gravity

    International Nuclear Information System (INIS)

    Kachru, S.

    1992-01-01

    This paper discusses tachyon condensate perturbations to the action of the two-dimensional string theory corresponding to the c + 1 matrix model. These are shown to deform the action of the ground ring on the tachyon modules, confirming a conjecture of Witten. The ground ring structure is used to derive recursion relations which relate (N + 1) and N tachyon bulk scattering amplitudes. These recursion relations allow one to compute all bulk amplitudes

  11. Particle creation and reheating in a braneworld inflationary scenario

    Science.gov (United States)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-10-01

    We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at the end of inflation.

  12. The thermal Virasoro formula

    International Nuclear Information System (INIS)

    Fujisaki, Haruo

    1991-01-01

    The thermal stability of non-planar duality is described at any finite temperature through the new-fashioned four-tachyon tree amplitude of closed bosonic thermal strings within the dispersion theoretic approach based upon the thermofield dynamics. (author)

  13. D branes in background fluxes and Nielsen-Olesen instabilities

    International Nuclear Information System (INIS)

    Russo, Jorge G.

    2016-01-01

    In quantum field theory, charged particles with spin ≥1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F_p_+_2, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are Dp branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic Dp brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin Dp quantum states which become very light at critical fields.

  14. D branes in background fluxes and Nielsen-Olesen instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Jorge G. [Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys, 23, 08010 Barcelona (Spain); Department de Fisica Cuantica i Astrofisica and Institut de Ciències del Cosmos,Universitat de Barcelona, Martí Franquès, 1, 08028 Barcelona (Spain)

    2016-06-06

    In quantum field theory, charged particles with spin ≥1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F{sub p+2}, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are Dp branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic Dp brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin Dp quantum states which become very light at critical fields.

  15. Ground State Energy of the Modified Nambu-Goto String

    Science.gov (United States)

    Hadasz, Leszek

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  16. Ground state energy of the modified Nambu-Goto string

    OpenAIRE

    Hadasz, Leszek

    1997-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  17. Constraints on sparticle spectrum in different supersymmetry ...

    Indian Academy of Sciences (India)

    ½HEP Division, Department of Physical Sciences, University of Helsinki, Finland ... number of proposals for solving this problem of tachyonic slepton masses [2]. .... KH and JL thank the Academy of Finland (project number 48787) for financial.

  18. Background Independent Open String Field Theory and Constant B-Field

    OpenAIRE

    Nemeschansky, D.; Yasnov, V.

    2000-01-01

    We calculate the background independent action for bosonic and supersymmetric open string field theory in a constant B-field. We also determine the tachyon effective action in the presence of constant B-field.

  19. Ghost properties of generalized theories of gravitation

    International Nuclear Information System (INIS)

    Mann, R.B.; Moffat, J.W.

    1982-01-01

    We investigate theories of gravitation, in which spacetime is non-Riemannian and the metric g/sub munu/ is nonsymmetric, for ghosts and tachyons, using a spin-projection operator formalism. Ghosts are removed not by gauge invariance but by a Lagrange multiplier W/sub μ/, which occurs due to the breaking of projective invariance in the theory. Unified theories based on a Lagrangian containing a term lambdag/sup munu/g/sub / are proved to contain ghosts or tachyons

  20. D-brane anti-D-brane system in string theory

    CERN Document Server

    Hyakutake, Y

    2003-01-01

    In this paper, we review a system of D-brane and anti-D-brane in type II superstring theories. [A. Sen, hep-th/9904207 and references there in; Y.Hyakutake, Master-Th., Doctor-Th. (in Japanese)] This system is unstable an tachyonic modes, which have negative mass squared, appear from open strings between D-brane and anti-D-brane. The effective field theory on the world-volume is described by U(1) x U(1) gauge theory with a complex tachyon field. Since the mass squared of the techyon field is negative, a tachyon potential would be like a wine bottle. In order to make the system stable, the tachyon rolls down the potential and gets some vacuum expectation value. This is called the tachyon condensation mechanism. During this mechanism, Dp-brane and anti-Dp-brane annihilate completely, if we admit Sen's conjecture. The suspicions between tachyon condensation and Hawking radiation are also discussed. (author)

  1. Non-supersymmetric orientifolds of Gepner models

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl

    2009-01-12

    Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.

  2. Search for tachyonomonopoles in cosmic rays

    International Nuclear Information System (INIS)

    Bartlett, D.F.; Nauenberg, U.

    1977-05-01

    Two of the most speculative particles are the magnetic monopole and the tachyon. One conjectures that these particles exist in cosmic rays as a combined ''tachyon monopole''. The fringing magnetic field of Fermilab's 15-foot bubble chamber is used to ''accelerate'' the tachyon to sufficiently high energy that it can emit visible Cherenkov radiation. This radiation is detected by 8 photomultiplier tubes mounted on the corners of a room-sized box which is suspended from the ceiling above the bubble chamber. Two small plastic scintillator counters placed inside the box differentiate between extensive air showers and tachyon monopoles. The detector was exposed to cosmic rays for 50 days. During that time we have not recorded any tachyon monopoles. The flux of such particles in cosmic rays cannot exceed 2.5 x 10 -15 cm -2 sec -1 if they follow the earth's magnetic field lines or 1.2 x 10 -12 cm -2 sec -1 if they do not. In either event this limit is at least 400 times lower than that inferred from a previous measurement. One did record counts from extensive air showers at a rate consistent with previous experiment. This rate was halved when the bubble chamber's magnetic field was turned off. This phenomenon was likely caused by focusing of the shower electrons in the fringing magnetic field of the bubble chamber

  3. Superluminal Kinematics in the Milne Universe Causality in the Cosmic Time Order

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    The causality of superluminal signal transfer in the galaxy background is scrutinized. The cosmic time of the comoving galaxy frame determines a distinguished time order for events connected by superluminal signals. Every observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. In this way all observers arrive at identical conclusions on the causality of events connected by superluminal signals. The energy of tachyons (superluminal particles) is defined in the comoving galaxy frame analogous to the energy of subluminal particles. It is positive in the galaxy frame and bounded from below in the rest frames of geodesically moving observers, so that particle-tachyon interactions can be based on energy-momentum conservation. We study tachyons in a Robertson-Walker cosmology with linear expansion factor and open, negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving obs...

  4. String phase transitions in a strong magnetic field

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Porrati, Massimo

    1993-01-01

    We consider open strings in an external constant magnetic field $H$. For an (infinite) sequence of critical values of $H$ an increasing number of (highest spin component) states lying on the first Regge trajectory becomes tachyonic. In the limit of infinite $H$ all these states are tachyons (with a common tachyonic mass) both in the case of the bosonic string and for the Neveu-Schwarz sector of the fermionic string. This result generalizes to extended object the same instability which occurs in ordinary non-Abelian gauge theories. The Ramond states have always positive square masses as is the case for ordinary QED. The weak field limit of the mass spectrum is the same as for a field theory with gyromagnetic ratio $g_S=2$ for all charged spin states. This behavior suggests a phase transition of the string as it has been argued for the ordinary electroweak theory.

  5. Non-rational 2D quantum gravity: I. World sheet CFT

    International Nuclear Information System (INIS)

    Kostov, I.K.; Petkova, V.B.

    2007-01-01

    We address the problem of computing the tachyon correlation functions in Liouville gravity with generic (non-rational) matter central charge c<1. We consider two variants of the theory. The first is the conventional one in which the effective matter interaction is given by the two matter screening charges. In the second variant the interaction is defined by the Liouville dressings of the non-trivial vertex operator of zero dimension. This particular deformation, referred to as ''diagonal'', is motivated by the comparison with the discrete approach, which is the subject of a subsequent paper. In both theories we determine the ground ring of ghost zero physical operators by computing its OPE action on the tachyons and derive recurrence relations for the tachyon bulk correlation functions. We find 3- and 4-point solutions to these functional equations for various matter spectra. In particular, we find a closed expression for the 4-point function of order operators in the diagonal theory

  6. Overproduction of cosmic superstrings

    International Nuclear Information System (INIS)

    Barnaby, Neil; Berndsen, Aaron; Cline, James M.; Stoica, Horace

    2005-01-01

    We show that the naive application of the Kibble mechanism seriously underestimates the initial density of cosmic superstrings that can be formed during the annihilation of D-branes in the early universe, as in models of brane-antibrane inflation. We study the formation of defects in effective field theories of the string theory tachyon both analytically, by solving the equation of motion of the tachyon field near the core of the defect, and numerically, by evolving the tachyon field on a lattice. We find that defects generically form with correlation lengths of order M s -1 rather than H -1 . Hence, defects localized in extra dimensions may be formed at the end of inflation. This implies that brane-antibrane inflation models where inflation is driven by branes which wrap the compact manifold may have problems with overclosure by cosmological relics, such as domain walls and monopoles

  7. Interacting bosonic strings in subcritical dimensions

    International Nuclear Information System (INIS)

    Hwang, S.; Marnelius, R.

    1988-01-01

    Interaction theory for relativistic bosonic string in spacetime dimensions below the critical value 26 is formulated using BRST techniques with an extra scalar field. One-loop zero-point amplitudes for closed strings are modular invariant. For a free scalar field, vertex operators are constructed leading to, e.g., the old dual N-tachyon tree amplitudes in D < 26. The N-tachyon one-loop expressions contain closed string poles for open strings, and are modular invariant for closed strings. However, the threshold cuts are wrong in D < 25. Only for D=25 to the considered vertex operators lead to consistency. (orig.)

  8. Interactions for winding strings in Misner space

    International Nuclear Information System (INIS)

    Hikida, Y.

    2006-06-01

    We compute correlation functions of closed strings in Misner space, a big crunch big bang universe. We develop a general method for correlators with twist fields, which are relevant for the investigation on the condensation of winding tachyon. We propose to compute the correlation functions by performing an analytic continuation of the results in C/Z N Euclidean orbifold. In particular, we obtain a finite result for a general four point function of twist fields, which might be important for the interpretation as the quartic term of the tachyon potential. Three point functions are read off through the factorization, which are consistent with the known results. (Orig.)

  9. Cosmological evolution of a brane Universe in a type 0 string background

    International Nuclear Information System (INIS)

    Papantonopoulos, E.; Pappa, I.

    2002-01-01

    We study the cosmological evolution of a D3-brane Universe in a type 0 string background. We follow the brane universe along the radial coordinate of the background and we calculate the energy density which is induced on the brane because of its motion in the bulk. For constant values of tachyon and dilaton an inflationary phase is appearing. For non constant values of tachyon and dilaton and for a particular range of values of the scale factor of the brane-universe, the effective energy density is dominated by a term proportional to 1/(log α) 4 indicating a slowly varying inflationary phase

  10. Goldstone Gauginos

    CERN Document Server

    Alves, Daniele S M; McCullough, Matthew; Weiner, Neal

    2015-01-01

    Models of supersymmetry with Dirac gauginos provide an attractive scenario for physics beyond the standard model. The "supersoft" radiative corrections and suppressed SUSY production at colliders provide for more natural theories and an understanding of why no new states have been seen. Unfortunately, these models are handicapped by a tachyon which is naturally present in existing models of Dirac gauginos. We argue that this tachyon is absent, with the phenomenological successes of the model preserved, if the right handed gaugino is a (pseudo-)Goldstone field of a spontaneously broken anomalous flavor symmetry.

  11. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    Science.gov (United States)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  12. Special relativity and superluminal motions: a discussion of some recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil); Fontana, F. [Pirelli Cavi, Milan (Italy). R and D sector; Garavaglia, R. [Milan Univ., Milan (Italy). Dipt. di Scienze dell' Informazione

    2000-03-01

    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even mounic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.

  13. In search of superluminal quantum communications: recent experiments and possible improvements

    International Nuclear Information System (INIS)

    Cocciaro, B; Faetti, S; Fronzoni, L

    2013-01-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity v t > c in a preferred reference frame. For finite values of v t , Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities v t . Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities V t for any possible direction of velocity V-vector of the tachyons preferred frame.

  14. In search of superluminal quantum communications: recent experiments and possible improvements

    Science.gov (United States)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2013-06-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt, Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities vt. Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities Vt for any possible direction of velocity vec V of the tachyons preferred frame.

  15. The identity string field and the sliver frame level expansion

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore

    2012-01-01

    Roč. 2012, č. 11 (2012), s. 1-25 ISSN 1126-6708 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation, bosonic strings , String Field Theory Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012

  16. Special relativity and superluminal motions: a discussion of some recent experiments

    International Nuclear Information System (INIS)

    Recami, E.; Fontana, F.; Garavaglia, R.

    2000-03-01

    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even muonic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity

  17. Regularization of finite temperature string theories

    International Nuclear Information System (INIS)

    Leblanc, Y.; Knecht, M.; Wallet, J.C.

    1990-01-01

    The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)

  18. Algebraic solutions in open string field theory – a lightning review

    Czech Academy of Sciences Publication Activity Database

    Schnabl, Martin

    2010-01-01

    Roč. 50, č. 3 (2010), s. 102-108 ISSN 1210-2709 Grant - others:EUROHORC(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * tachyon condensation Subject RIV: BF - Elementary Particles and High Energy Physics https://ojs.cvut.cz/ojs/index.php/ap/article/download/1213/1045

  19. Stacking non-BPS D-branes

    International Nuclear Information System (INIS)

    Alberghi, Gian Luigi; Caceres, Elena; Goldstein, Kevin; Lowe, David A. . lowe@het.brown.edu

    2001-08-01

    We present a candidate supergravity solution for a stacked configuration of stable non-BPS D-branes in Type II string theory compactified on T 4 /Z 2 . This gives a supergravity description of nonabelian tachyon condensation on the brane woldvolume. (author)

  20. Aspects of type $0$ string theory

    CERN Document Server

    Blumenhagen, R; Kumar, A; Lüst, Dieter

    2000-01-01

    A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.

  1. Centre-of-mass frames in six-dimensional special relativity

    International Nuclear Information System (INIS)

    Cole, E.A.B.

    1980-01-01

    Centre-of-mass frames are defined in six-dimensional special relativity. In particular, these frames are studied for various pairs of particles which can be any combination of bradyons, luxons and tachyons. These frames can be subluminal, superluminal or non-existent, depending on the angle between the particle time vectors. (author)

  2. Four-dimensional strings: Phenomenology and model building

    International Nuclear Information System (INIS)

    Quiros, M.

    1989-01-01

    In these lectures we will review some of the last developments in string theories leading to the construction of realistic four-dimensional string models. Special attention will be paid to world-sheet and space-time supersymmetry, modular invariance and model building for supersymmetric and (tachyon-free) nonsupersymmetric ten and four-dimensional models. (orig.)

  3. String perturbation theory diverges

    International Nuclear Information System (INIS)

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  4. On the SL(2,R) symmetry in Yang-Mills theories in the Landau, Curci-Ferrari and maximal abelian gauge

    International Nuclear Information System (INIS)

    Dudal, David; Verschelde, Henri; Rodino Lemes, Vitor Emanuel; Sarandy, Marcelo S.; Sorella, Silvio Paolo; Picariello, Marco

    2002-01-01

    The existence of a SL(2;R) symmetry is discussed in SU(N) Yang-Mills in the maximal abelian gauge. This symmetry, also present in the Landau and Curci-Ferrari gauge, ensures the absence of tachyons in the maximal abelian gauge. In all these gauges, SL(2;R) turns out to be dynamically broken by ghost condensates. (author)

  5. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  6. Large BCFT moduli in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Maccaferri, C.; Schnabl, Martin

    2015-01-01

    Roč. 2015, č. 8 (2015), s. 149 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : String Field Theory * tachyon condensation * D-branes Subject RIV: BE - Theoretical Physics Impact factor: 6.023, year: 2015

  7. Lucky Luke--The Man Who Shoots Faster than His Shadow

    Science.gov (United States)

    Bokor, Nándor

    2015-01-01

    The famous motto of the Lucky Luke comics series and its accompanying drawing are analyzed from a physicist's viewpoint. They provide useful pedagogical tools to discuss such aspects of relativity as causality, the equivalence principle, gravitational blue shift, and the tachyonic antitelephone. [This article was first published in Hungarian in…

  8. Variable generalized Chaplygin gas in a 5D cosmology

    Science.gov (United States)

    Salti, Mustafa; Aydogdu, Oktay; Yanar, Hilmi; Sogut, Kenan

    2018-03-01

    We construct the variable generalized Chaplygin gas (VGCG) defining a unified dark matter-energy scenario and investigate its essential cosmological properties in a universe governed by the Kaluza-Klein (KK) theory. A possible theoretical basis for the VGCG in the KK cosmology is argued. Also, we check the validity of thermodynamical laws and reimplement dynamics of tachyons in the KK universe.

  9. Explicit formuli for one, two, three and four loops string amplitudes in critical dimension

    International Nuclear Information System (INIS)

    Morozov, A.Yu.

    1987-01-01

    A report on explicit formulae for loop string diagrams in the primary-quantized theory of strings is presented. In the critical dimension d=26 tachyon p-loop scattering amplitude in the theory of boson strings is presented as finite-multiple integral with respect to Riemann surface M p moduli space. Integration on M p in continual integral is determined

  10. COSMOS-e'-GTachyon from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Panda, Sudhakar [Institute of Physics, Bhubaneswar, Odisha (India); Harish-Chandra Research Institute, Allahabad (India)

    2016-05-15

    In this article, our prime objective is to study the inflationary paradigm in the context of the generalized tachyon (GTachyon) living on the world volume of a non-BPS string theory. The tachyon action is considered here is modified compared to the original action. One can quantify the amount of the modification via a power q instead of 1/2 in the effective action. Using this set-up we study inflation by various types of tachyonic potentials, using which we constrain the index q within, 1/2 < q < 2, and a specific combination (∝ α{sup '}M{sup 4}{sub s}/g{sub s}) of the Regge slope α{sup '}, the string coupling constant g{sub s} and the mass scale of tachyon M{sub s}, from the recent Planck 2015 and Planck+BICEP2/Keck Array joint data. We explicitly study the inflationary consequences from single field, assisted field and multi-field tachyon set-ups. Specifically for the single field and assisted field cases we derive the results in the quasi-de Sitter background in which we will utilize the details of cosmological perturbations and quantum fluctuations. Also we derive the expressions for all inflationary observables using any arbitrary vacuum and the Bunch-Davies vacuum. For the single field and the assisted field cases we derive the inflationary flow equations, new sets of consistency relations. Also we derive the field excursion formula for the tachyon, which shows that assisted inflation is on the safe side compared to the single field case to validate the effective field theory framework. Further we study the features of the CMB angular power spectrum from TT, TE and EE correlations from scalar fluctuations within the allowed range of q for each of the potentials from the single field set-up. We also put constraints from the temperature anisotropy and polarization spectra, which shows that our analysis is consistent with the Planck 2015 data. Finally, using the δN formalism we derive the expressions for inflationary observables in the context of

  11. Universal contributions to scalar masses from five dimensional supergravity

    CERN Document Server

    Dudas, Emilian

    2012-01-01

    We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability...

  12. Holographic cosmology from a system of M2–M5 branes

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Setare, Mohammad Reza, E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Ali, Ahmed Farag, E-mail: afali@fsu.edu [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt)

    2016-05-15

    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  13. Introduction to path integrals, matrix models and strings

    International Nuclear Information System (INIS)

    Jevicki, A.

    1995-01-01

    The major strength of the theory is then that it is integrable and exactly solvable. Its integrable nature leads to understanding of a w ∞ algebra as a space-time symmetry of string theory. This algebra acts in a nonlinear way on the basic collective field representing a massless tachyon. It is interpreted as a spectrum-generating algebra allowing to build an infinite sequence of discrete imaginary energy states which turn out to be remnants of higher string modes in two dimensions. The presence and interplay of discrete modes with the scalar tachyon are particularly interesting. The w ∞ symmetry is seen to serve as an organizational principle and is of much broader relevance. (orig.)

  14. Considerations about the apparent 'superluminal expansions' in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G.D.; Rodono, M.

    1984-01-01

    The orthodox models devised to explain the apparent 'superluminal expansions' observed in astrophysics - and here briefly summarized and discussed together with the experimental data - do not seem to be too much succesful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual Superluminal motions take place. The ground is prepared starting from a variational principle, introducing the elements of a tachyon mechanics within special relativity, and arguing about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest 'Superluminal models' are reviewed and developed, paying particular attention to the observations which they would give rise to. Itis concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the orthodox ones. (Author) [pt

  15. Instabilities in the aether

    International Nuclear Information System (INIS)

    Carroll, Sean M.; Dulaney, Timothy R.; Gresham, Moira I.; Tam, Heywood

    2009-01-01

    We investigate the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector 'aether' fields. Models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. There are precisely three kinetic terms that are not manifestly unstable: a sigma model (∂ μ A ν ) 2 , the Maxwell Lagrangian F μν F μν , and a scalar Lagrangian (∂ μ A μ ) 2 . The timelike sigma-model case is well defined and stable when the vector norm is fixed by a constraint; however, when it is determined by minimizing a potential there is necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar cases, the Hamiltonian is unbounded below, but at the level of perturbation theory there are fewer degrees of freedom and the models are stable. However, in these two theories there are obstacles to smooth evolution for certain choices of initial data.

  16. General gauge mediation at the weak scale

    Energy Technology Data Exchange (ETDEWEB)

    Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94720 (United States); Redigolo, Diego [Sorbonne Universités, UPMC Univ Paris 06,UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589,LPTHE, F-75005, Paris (France); Shih, David [New High Energy Theory Center, Rutgers University,Piscataway, NJ 08854 (United States)

    2016-03-09

    We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to m{sub h} coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.

  17. String theory as a Lilliputian world

    International Nuclear Information System (INIS)

    Ambjørn, J.; Makeenko, Y.

    2016-01-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  18. Thought experiments at superluminal relative velocities

    International Nuclear Information System (INIS)

    Corben, H.C.

    1976-01-01

    It is imagined that our World is being examined from a similar world which is moving relative to us with a velocity greater than that of light. The two worlds are supposed to be similar in that the particles in each appear to any observer in that world to have real measurable properties. However, the enormous relative velocity so distorts the observations that each world makes on the other that the squares of certain real quantities appear to the other observer to be negative. Neglect of this fact has led to the erroneous belief that a free charged tachyon would emit Cherenkov radiation and that the existence of tachyons would lead to logical paradoxes. (author)

  19. A non-supersymmetric open-string theory and S-duality

    International Nuclear Information System (INIS)

    Bergman, O.; Gaberdiel, M.R.

    1997-01-01

    A non-supersymmetric ten-dimensional open-string theory is constructed as an orbifold of type I string theory, and as an orientifold of the bosonic type B theory. It is purely bosonic, and cancellation of massless tadpoles requires the gauge group to be SO(32) x SO(32). The spectrum of the theory contains a closed-string tachyon, and open-string tachyons in the (32,32) multiplet. The D-branes of this theory are analyzed, and it is found that the massless excitations of one of the 1-branes coincide with the world-sheet degrees of freedom of the D=26 bosonic string theory compactified on the SO(32) lattice. This suggests that the two theories are related by S-duality. (orig.)

  20. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  1. Holographic cosmology from a system of M2–M5 branes

    International Nuclear Information System (INIS)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2016-01-01

    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  2. Time-dependent perturbations in two-dimensional string black holes

    CERN Document Server

    Diamandis, G A; Maintas, X N; Mavromatos, Nikolaos E

    1992-01-01

    We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}

  3. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  4. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  5. Inflation from D3-brane motion in the background of D5-branes

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji; Ward, John

    2006-01-01

    We study inflation arising from the motion of a Bogomol'nyi-Prasad-Sommerfield D3-brane in the background of a stack of k parallel D5-branes. There are two scalar fields in this setup: (i) the radion field R, a real scalar field, and (ii) a complex tachyonic scalar field χ living on the world volume of the open string stretched between the D3 and D5 branes. We find that inflation is realized by the potential of the radion field, which satisfies observational constraints coming from the cosmic microwave background. After the radion becomes of the order of the string length scale l s , the dynamics is governed by the potential of the complex scalar field. Since this field has a standard kinematic term, reheating can be successfully realized by the mechanism of tachyonic preheating with spontaneous symmetry breaking

  6. On non-BPS effective actions of string theory

    Science.gov (United States)

    Hatefi, Ehsan

    2018-05-01

    We discuss some physical prospective of the non-BPS effective actions of type IIA and IIB superstring theories. By dealing with all complete three and four point functions, including a closed Ramond-Ramond string (in terms of both its field strength and its potential), gauge (scalar) fields as well as a real tachyon and under symmetry structures, we find various restricted world volume and bulk Bianchi identities. The complete forms of the non-BPS scattering amplitudes including their Chan-Paton factors are elaborated. All the singularity structures of the non-BPS amplitudes, their all order α ' higher-derivative corrections, their contact terms and various modified Bianchi identities are derived. Finally, we show that scattering amplitudes computed in different super-ghost pictures are compatible when suitable Bianchi identities are imposed on the Ramond-Ramond fields. Moreover, we argue that the higher-derivative expansion in powers of the momenta of the tachyon is universal.

  7. Dual models with SL(2, C) symmetry

    CERN Document Server

    Brink, L

    1972-01-01

    Making use of homogeneous space techniques, the authors construct a class of dual models, which is a generalization of the Virasoro- Shapiro type of model. The integrand in the integral representation for the N-point function depends not only on the modulus of the distances between two-dimensional Koba-Nielsen variables, but also on the corresponding phases. This is in fact the most general SL(2, C) invariant amplitude that can be constructed using complex integration variables. The extra phase factors in the integrand provide a possible means of avoiding tachyons both as external particles and as intermediate states in the amplitude. When factorized in a simple- minded fashion the intercepts are fixed to be integers. Although the external particles can be chosen not to be tachyons, such states appear as intermediate states. Within this factorization one can show that there are gauge conditions for the amplitude that can provide a ghostkilling mechanism. (19 refs).

  8. Considerations about the apparent superluminal expansions in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G. D.; Rodono, M.

    1985-01-01

    The ortodox models devised to explain the apparent ''superluminal expansions'' observed in astrophysics, and here briefly summarized and discussed together with th experimental data, do not seem to be to much successful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual superluminal motion take place. To prepare the ground one starts from a variational principle, introduces the elements of a tachyon mechanics within special relativity, and argues about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest ''superluminal models'', paying particular attention to the observations which they would give rise to are revie wed and developed. It is concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the ortodox ones

  9. Contribution of the hybrid inflation waterfall to the primordial curvature perturbation

    International Nuclear Information System (INIS)

    Lyth, David H.

    2011-01-01

    A contribution ζ χ to the curvature perturbation will be generated during the waterfall that ends hybrid inflation, that may be significant on small scales. In particular, it may lead to excessive black hole formation. We here consider standard hybrid inflation, where the tachyonic mass of the waterfall field is much bigger than the Hubble parameter. We calculate ζ χ in the simplest case, and see why earlier calculations of ζ χ are incorrect

  10. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  11. BCFT moduli space in level truncation

    Czech Academy of Sciences Publication Activity Database

    Kudrna, Matěj; Maccaferri, C.

    2016-01-01

    Roč. 2016, č. 4 (2016), 1-33, č. článku 057. ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : deformation: marginal * field theory: string * tachyon: potential * string: open * moduli space * effective potential * nonperturbative * toy model Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.063, year: 2016

  12. The dark sector from interacting canonical and non-canonical scalar fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2010-01-01

    In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.

  13. Reconstructing interacting entropy-corrected holographic scalar field models of dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Khaledian, M S [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: KKarami@uok.ac.ir, E-mail: MS.Khaledian@uok.ac.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2011-02-15

    Here we consider the entropy-corrected version of the holographic dark energy (DE) model in the non-flat universe. We obtain the equation of state parameter in the presence of interaction between DE and dark matter. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic DE model.

  14. Ward Identities of W_{\\infty} Symmetry and Higher Genus Amplitudes in 2D String Theory

    OpenAIRE

    Hamada, Ken-ji

    1995-01-01

    The Ward identities of the $W_{\\infty}$ symmetry in two dimensional string theory in the tachyon background are studied in the continuum approach. We consider amplitudes different from 2D string ones by the external leg factor and derive the recursion relations among them. The recursion relations have non-linear terms which give relations among the amplitudes defined on different genus. The solutions agree with the matrix model results even in higher genus. We also discuss differences of role...

  15. Connecting solutions in open string field theory with singular gauge transformations

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore; Maccaferri, C.

    2012-01-01

    Roč. 2012, č. 4 (2012), 1-40 ISSN 1126-6708 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : tachyon condensation * string field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP04%282012%29107

  16. A proposal for M2-brane-anti-M2-brane action

    International Nuclear Information System (INIS)

    Garousi, Mohammad R.

    2010-01-01

    We propose a manifestly SO(8) invariant BF type Lagrangian for describing the dynamics of M2-brane-anti-M2-brane system in flat spacetime. When one of the scalars which satisfies a free-scalar equation takes a large expectation value, the M2-brane-anti-M2-brane action reduces to the tachyon DBI action of D2-brane-anti-D2-brane system in flat spacetime.

  17. Dimopoulos–Dvali and Randall–Sundrum models

    Indian Academy of Sciences (India)

    attempt to deal with the hierarchy problem. These models can lead to rather unique and spectacular ... We also need to know how. ¯MPl and the more fundamental scale M are related. To this ... Of course, we still need to insure that the usual KK gravitons and the new KK scalars are non-tachyonic so that FR > 0 will also be ...

  18. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  19. Spiked instantons from intersecting D-branes

    Directory of Open Access Journals (Sweden)

    Nikita Nekrasov

    2017-01-01

    Full Text Available The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.

  20. Engineering a bosonic AdS/CFT correspondence

    OpenAIRE

    Ketov, Sergei V.; Leonhardt, Thorsten; Rühl, Werner

    2001-01-01

    We search for a possible bosonic (i.e. non-supersymmetric) string/gauge theory correspondence by using IIB and 0B strings as a guide. Our construction is based on the low-energy bosonic string effective action modified by an extra form flux. The closed string tachyon can be stabilyzed if the AdS scale L does not exceed certain critical value, L

  1. Three-vector, statistical theory of errors and the Planck constant

    International Nuclear Information System (INIS)

    Demers, P.

    1981-01-01

    The paper confirms an assertion of Pappas: T3 is not an Euclidean vector, it behaves like delta 3, a statistical error made of 3 component errors. T3 and delta 3 are 3-vectors, obeying Poincare's group for rotation, not for translation. The idea of T3 adds to the affinities between time, entropy, probability and Planck's constant, besides offering a proof of the non-existence of tachyons. (author)

  2. Minimal string theory is logarithmic

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka; Yamaguchi, Shun-ichi

    2005-01-01

    We study the simplest examples of minimal string theory whose worldsheet description is the unitary (p,q) minimal model coupled to two-dimensional gravity ( Liouville field theory). In the Liouville sector, we show that four-point correlation functions of 'tachyons' exhibit logarithmic singularities, and that the theory turns out to be logarithmic. The relation with Zamolodchikov's logarithmic degenerate fields is also discussed. Our result holds for generic values of (p,q)

  3. Open string theory in 1+1 dimensions

    International Nuclear Information System (INIS)

    Bershadsky, M.; Kutasov, D.

    1992-01-01

    We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)

  4. Instability of higher dimensional Yang-Mills systems

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1983-01-01

    We investigate the stability of Poincare xO(3) invariant solutions for a pure semi-simple Yang-Mills, as well as Yang-Mills coupled to gravity in 6-dimensional space-time compactified over M 4 xS 2 . In contrast to the Maxwell U(1) theory (IC-82/208) in six dimensions coupled with gravity and investigated previously, the present theory exhibits tachyonic excitations and is unstable. (author)

  5. Variational solution of the loop equation in QCD

    International Nuclear Information System (INIS)

    Agishtein, M.E.; Migdal, A.A.

    1988-01-01

    A new technique for the large N loop equation of QCD is worked out. The Wilson loop W(C) is approximated by a Gaussian functional. The parameters are fitted to the loop equation, after which the equation is statisfied up to 0.2%. The resulting Wilson loop corresponds to linearly rising Regge trajectories. The problem of tachyon is still present, but it could be cured by iteration of the loop equation starting from this variational solution. (orig.)

  6. Variational solution of the loop equation in QCD

    International Nuclear Information System (INIS)

    Agishtein, M.E.; Migdal, A.A.

    1988-01-01

    A new technique for the large N loop equation of QCD is worked out. The Wilson loop W(C) is approximated by a Gaussian functional. The parameters are fitted to the loop equation, after which the equation is satisfied up to 0.2%. The resulting Wilson loop corresponds to linearly rising Regge trajectories. The problem of tachyon is still present, but it could be cured by iteration of the loop equation starting from this variational solution

  7. Thermodynamics of 2D string theory

    International Nuclear Information System (INIS)

    Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University

    2003-01-01

    We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)

  8. Higgs boson decay into two photons in an electromagnetic background field

    DEFF Research Database (Denmark)

    Nielsen, N. K.

    2014-01-01

    The amplitude for Higgs boson decay into two photons in a homogeneous and time-independent magnetic field is investigated by proper-time regularization in a gauge-invariant manner and is found to be singular at large field values. The singularity is caused by the component of the charged vector...... boson field that is tachyonic in a strong magnetic field. Also, tools for the computation of the amplitude in a more general electromagnetic background are developed....

  9. Stability in higher-derivative matter fields theories

    International Nuclear Information System (INIS)

    Tretyakov, Petr V.

    2016-01-01

    We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β 1 and β 4 . By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β 4 < 0. By using the quantum field theory approach we also find an additional restriction for the parameters, β 1 > -(1)/(3)β 4 , which is needed to avoid a tachyon-like instability. (orig.)

  10. Delaying the waterfall transition in warm hybrid inflation

    OpenAIRE

    Bastero-Gil, Mar; Berera, Arjun; Metcalf, Thomas P.; Rosa, João G.

    2014-01-01

    We analyze the dynamics and observational predictions of supersymmetric hybrid inflation in the warm regime, where dissipative effects are mediated by the waterfall fields and their subsequent decay into light degrees of freedom. This produces a quasi-thermal radiation bath with a slowly-varying temperature during inflation and further damps the inflaton's motion, thus prolonging inflation. As in the standard supercooled scenario, inflation ends when the waterfall fields become tachyonic and ...

  11. A singular one-parameter family of solutions in cubic superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, E. Aldo [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170 São Paulo, SP (Brazil)

    2016-05-03

    Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.

  12. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    Science.gov (United States)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  13. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  14. A novel class of string models with Scherk-Schwarz supersymmetry breaking

    CERN Document Server

    Scrucca, Claudio A; Scrucca, Claudio A.; Serone, Marco

    2001-01-01

    A new type of four-dimensional string vacua with Scherk--Schwarz supersymmetry breaking is considered. The construction involves Z_N x Z_M' freely acting orbifolds, defined in terms of rotations and translations in the internal space. Tachyons are either absent or limited to a given region of the tree-level moduli space. Particular attention is devoted to an interesting Z_3 x Z_3' heterotic example.

  15. Loop corrections to the antibrane potential

    International Nuclear Information System (INIS)

    Bena, Iosif; Blåbäck, Johan; Turton, David

    2016-01-01

    Antibranes provide some of the most generic ways to uplift Anti-de Sitter flux compactifications to de Sitter, and there is a growing body of evidence that antibranes placed in long warped throats such as the Klebanov-Strassler warped deformed conifold solution have a brane-brane-repelling tachyon. This tachyon was first found in the regime of parameters in which the backreaction of the antibranes is large, and its existence was inferred from a highly nontrivial cancellation of certain terms in the inter-brane potential. We use a brane effective action approach, similar to that proposed by Michel, Mintun, Polchinski, Puhm and Saad in http://dx.doi.org/10.1007/JHEP09(2015)021, to analyze antibranes in Klebanov-Strassler when their backreaction is small, and find a regime of parameters where all perturbative contributions to the action can be computed explicitly. We find that the cancellation found at strong coupling is also present in the weak-coupling regime, and we establish its existence to all loops. Our calculation indicates that the spectrum of the antibrane worldvolume theory is not gapped, and may generically have a tachyon. Hence uplifting mechanisms involving antibranes remain questionable even when backreaction is small.

  16. Giant wormholes in ghost-free bigravity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, Sergey V.; Volkov, Mikhail S., E-mail: sergey_sushkov@mail.ru, E-mail: volkov@lmpt.univ-tours.fr [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation)

    2015-06-01

    We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we call W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.

  17. Giant wormholes in ghost-free bigravity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, Sergey V. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation); Volkov, Mikhail S. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation); Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Parc de Grandmont, 37200 Tours (France)

    2015-06-09

    We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we call W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.

  18. Off-the-Wall Higgs in the universal Randall-Sundrum model

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Lillie, Ben; Rizzo, Thomas G.

    2006-01-01

    We outline a consistent Randall-Sundrum (RS) framework in which a fundamental 5-dimensional Higgs doublet induces electroweak symmetry breaking (EWSB). In this framework of a warped Universal Extra Dimension, the lightest Kaluza-Klein (KK) mode of the bulk Higgs is tachyonic leading to a vacuum expectation value (vev) at the TeV scale. The consistency of this picture imposes a set of constraints on the parameters in the Higgs sector. A novel feature of our scenario is the emergence of an adjustable bulk profile for the Higgs vev. We also find a tower of non-tachyonic Higgs KK modes at the weak scale. We consider an interesting implementation of this 'Off-the-Wall Higgs' mechanism where the 5-dimensional curvature-scalar coupling alone generates the tachyonic mode responsible for EWSB. In this case, additional relations among the parameters of the Higgs and gravitational sectors are established. We discuss the experimental signatures of the bulk Higgs in general, and those of the 'Gravity-Induced' EWSB in particular

  19. Closed Strings From Nothing

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Albion

    2001-07-25

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.

  20. Faster Than Light (FTL) Travel and Causality in the Context of the Gravity-Electro-Magnetism (GEM) Theory of Field Unification

    Science.gov (United States)

    Brandenburg, J. E.

    2010-01-01

    In The GEM (Brandenburg, 2006) theory, direct manipulation of space-time geometry is possible leading to the possibility of transformation of a starship into a tachyon moving Faster Than Light (FTL). The GEM theory is reviewed and Causality in terms of the time ordering of experienced events is considered as well as examining the space-time curvature signature of such FTL particles. Time ordering and time flow is found to be determined by the 2nd law of thermodynamics and is used to derive a Cosmic time flow in terms of the expansion of the universe. The rate of increase of cosmic entropy is approximately dS/dt = c3/(Gmp), the rate that light transits from a proton-mass Black Hole, reminiscent of the Dirac Larger Number Hypothesis relating Cosmic and subatomic quantities. It is found that the tachyon FTL method, rather than allowing reversal of time ordering of experienced events, actually makes the cosmos age faster by contributing to an increase in ``Dark Energy'' and thus FTL travel via tachyons irreversibly changes the cosmos. Therefore, it appears that FTL travel can be accomplished without violation of Causality.

  1. Closed Strings From Nothing

    International Nuclear Information System (INIS)

    Lawrence, Albion

    2001-01-01

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting

  2. Composite antisymmetric tensor bosons in a four-fermion interaction model

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2000-01-01

    We discuss the phenomenological consequences of the U A (1) symmetry-breaking two-flavour four-fermion antisymmetric (AS) Lorentz tensor interaction Lagrangians. We use the recently developed methods that respect the 'duality' symmetry of this interaction. Starting from the Fierz transform of the two-flavour 't Hooft interaction (a four-fermion Lagrangian with AS tensor interaction terms augmented by Nambu and Jona-Lasinio (NJL)-type Lorentz scalar interaction responsible for dynamical symmetry breaking and quark mass generation), we find the following. (a) Four antisymmetric tensor and four AS pseudotensor bosons exist which satisfy a mass relation previously derived for scalar and pseudoscalar mesons from the 't Hooft interaction. (b) Antisymmetric tensor bosons mix with vector bosons via one-fermion-loop effective couplings so that both kinds of bosons have their masses shifted and the fermions (quarks) acquire anomalous magnetic moment form factors that explicitly violate chiral symmetry. (c) The mixing of massive AS tensor fields with vector fields leads to two sets of spin-1 states. The second set of spin-1 mesons is heavy and has not been observed. Moreover, at least one member of this second set is tachyonic, under standard assumptions about the source and strength of the AS tensor interaction. The tachyonic state also shows up as a pole in the space-like region of the electromagnetic form factors. (d) The mixing of axial-vector fields with antisymmetric tensor bosons is proportional to the (small) isospin-breaking up-down quark mass difference, so the mixing-induced mass shift is negligible. (e) The AS tensor version of the Veneziano-Witten U A (1) symmetry-breaking interaction does not lead to tachyons, or any AS tensor field propagation to leading order in N C . (author)

  3. The model of the relativistic particle with torsion

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1991-01-01

    The model of the relativistic particle with torsion, whose action appears in the Bose-Fermi transmutation mechanism, is canonically quantized in the Minkowski and euclidean spaces. In the Minkowski space there are massive, massless and tachyonic states in the spectrum of the model. In the massive sector the spectrum contains an infinite number of states, whose spin can take integer, half-integer, or fractional values. In the euclidean space, the spectrum is finite and the spin can only be integer, or half-integer. The reasons for the differences of the quantum theory of the model in the two spaces are elucidated. (orig.)

  4. New holographic scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Fehri, J. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-02-08

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  5. New holographic scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Fehri, J.

    2010-01-01

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  6. Ward identities of W{sub {infinity}} symmetry and higher-genus amplitudes in 2D string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, K. [National Lab. for High Energy Physics, Ibaraki (Japan)

    1996-03-04

    The Ward identities of the W{sub {infinity}} symmetry in two-dimensional string theory in the tachyon background are studied in the continuum approach. We consider amplitudes different from 2D string ones by the external leg factor and derive the recursion relations among them. The recursion relations have non-linear terms which give relations among the amplitudes defined on different genus. The solutions agree with the matrix model results even in higher genus. We also discuss the differences of the roles of the external leg factor between the c{sub M} = 1 model and the c{sub M} <1 model. (orig.).

  7. ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings

    International Nuclear Information System (INIS)

    Rodolfo, B.

    1999-01-01

    These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non-disturbing and Schroedinger-cat-like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy, Science and Technology database

  8. Cosmological perturbations in the projectable version of Hořava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Cerioni, Alessandro; Brandenberger, Robert H.

    2011-01-01

    We consider linear perturbations about a homogeneous and isotropic cosmological background in the projectable version of Hořava-Lifshitz gravity. Starting from the action for cosmological perturbations, we identify the canonically normalized fluctuation variables. We find that - in contrast to what happens in the non-projectable version of the theory - the extra scalar cosmological perturbation mode is already dynamical at the level of linear perturbations and is either ghost-like or tachyonic depending on the value of a free parameter. This indicates a problem for the projectable version of Hořava-Lifshitz gravity

  9. Scalar field localization on a brane with cosmological constant

    International Nuclear Information System (INIS)

    Ghoroku, Kazuo; Yahiro, Masanobu

    2003-01-01

    We investigate the localization of a massive scalar for both dS and AdS branes, where the scalar mass is varied from the massive-particle region to the tachyon region. We find that the eigenmass m of the localized mode satisfies a simple relation m 2 = cM 2 with a positive constant c for the dS brane, and m 2 = c 1 M 2 + c 2 with positive constants c 1 and c 2 for the AdS brane. We discuss the relation of these results to the stability of the brane and also some cosmological problems

  10. One-loop regularization of the Polyakov string functional

    International Nuclear Information System (INIS)

    Cohen, E.; Kluberg-Stern, H.; Peschanski, R.

    1989-01-01

    The divergences of the vacuum amplitude for the bosonic Polyakov string are studied at the one-loop level in a modular invariant regularization scheme, characterized by a dimensional cutoff analogous to proper time. As a result, the singular behaviour in the cutoff is not uniform in the range of the modulus variable and this yields a control on the singularities induced by the tachyon and the dilaton. The divergences are those of a sigma model, but the coefficients of the sigma-model counter-terms are different for the sphere and the flat torus. (orig.)

  11. Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2015-01-01

    Full Text Available We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe.

  12. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  13. Curvature force and dark energy

    International Nuclear Information System (INIS)

    Balakin, Alexander B; Pavon, Diego; Schwarz, Dominik J; Zimdahl, Winfried

    2003-01-01

    A curvature self-interaction of the cosmic gas is shown to mimic a cosmological constant or other forms of dark energy, such as a rolling tachyon condensate or a Chaplygin gas. Any given Hubble rate and deceleration parameter can be traced back to the action of an effective curvature force on the gas particles. This force self-consistently reacts back on the cosmological dynamics. The links between an imperfect fluid description, a kinetic description with effective antifriction forces and curvature forces, which represent a non-minimal coupling of gravity to matter, are established

  14. Generalised boundary terms for higher derivative theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Teimouri, Ali; Talaganis, Spyridon; Edholm, James [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands)

    2016-08-24

    In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.

  15. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze

    2016-09-01

    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  16. SVZ⊕1/q{sup 2}-expansion versus some QCD holographic models

    Energy Technology Data Exchange (ETDEWEB)

    Jugeau, F., E-mail: frederic.jugeau@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972, Rio de Janeiro (Brazil); Narison, S., E-mail: snarison@yahoo.fr [Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugène Bataillon, 34095 Montpellier (France); Ratsimbarison, H., E-mail: herysedra@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar)

    2013-05-13

    Considering the classical two-point correlators built from (axial-) vector, scalar q{sup ¯}q and gluonium currents, we confront results obtained using the SVZ⊕1/q{sup 2}-expansion to the ones from some QCD holographic models in the Euclidean region and with negative dilaton Φ{sub i}(z)=−|c{sub i}{sup 2}|z{sup 2}. We conclude that the presence of the 1/q{sup 2}-term in the SVZ-expansion due to a tachyonic gluon mass appears naturally in the Minimum Soft-Wall (MSW) and the Gauge/String Dual (GSD) models which can also reproduce semi-quantitatively some of the higher dimension condensate contributions appearing in the OPE. The Hard-Wall model shows a large departure from the SVZ⊕1/q{sup 2}-expansion in the vector, scalar and gluonium channels due to the absence of any power corrections. The equivalence of the MSW and GSD models is manifest in the vector channel through the relation of the dilaton parameter with the tachyonic gluon mass. For approximately reproducing the phenomenological values of the dimension d=4,6 condensates, the holographic models require a tachyonic gluon mass (α{sub s}/π)λ{sup 2}≈−(0.12–0.14) GeV{sup 2}, which is about twice the fitted phenomenological value from e{sup +}e{sup −} data. The relation of the inverse length parameter c{sub i} to the tachyonic gluon mass also shows that c{sub i} is channel dependent but not universal for a given holographic model. Using the MSW model and M{sub ρ}=0.78 GeV as input, we predict a scalar q{sup ¯}q mass M{sub S}≈(0.95–1.10) GeV and a scalar gluonium mass M{sub G}≈(1.1–1.3) GeV.

  17. Moving stable solitons in Galileon theory

    International Nuclear Information System (INIS)

    Masoumi, Ali; Xiao Xiao

    2012-01-01

    Despite the no-go theorem Endlich et al. (2011) which rules out static stable solitons in Galileon theory, we propose a family of solitons that evade the theorem by traveling at the speed of light. These domain-wall-like solitons are stable under small fluctuations-analysis of perturbation shows neither ghost-like nor tachyon-like instabilities, and perturbative collision of these solitons suggests that they pass through each other asymptotically, which maybe an indication of the integrability of the theory itself.

  18. Supersymmetric D2 anti-D2 Strings

    OpenAIRE

    Bak, Dongsu; Ohta, Nobuyoshi

    2001-01-01

    We consider the flat supersymmetric D2 and anti-D2 system, which follows from ordinary noncommutative D2 anti-D2 branes by turning on an appropriate worldvolume electric field describing dissolved fundamental strings. We study the strings stretched between D2 and anti-D2 branes and show explicitly that the would-be tachyonic states become massless. We compute the string spectrum and clarify the induced noncommutativity on the worldvolume. The results are compared with the matrix theory descri...

  19. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  20. Multiloop calculations in p-adic string theory and Bruhat-Tits trees.2

    International Nuclear Information System (INIS)

    Zabrodin, A.V.; Mironov, A.D.; Chekhov, L.O.

    1989-01-01

    The open p-adic string world sheet as a coset space F=T/Γ, where T is the Bruhat-Tits tree for the p-adic linear group GL(2.Q p ) is some Schottky group is treated. The boundary of this world sheet corresponds to p-adic Mumford curve of finite genus. The string dynamics is governed by the local Gaussian action on the coset space F. The tachyon amplitudes expressed in terms of p-adic Θ-functions are proposed for the Mumford curve of arbitrary genus and compared with the corresponding usual archimedian amplitudes. 41 refs.; 14 figs

  1. Consistent Lorentz violation in flat and curved space

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol; Redi, Michele

    2007-01-01

    Motivated by the severity of the bounds on Lorentz violation in the presence of ordinary gravity, we study frameworks in which Lorentz violation does not affect the spacetime geometry. We show that there are at least two inequivalent classes of spontaneous Lorentz breaking that even in the presence of gravity result in Minkowski space. The first one generically corresponds to the condensation of tensor fields with tachyonic mass, which in turn is related to ghost condensation. In the second class, realized by the Dvali-Gabadadze-Porrati model or theories of massive gravitons, spontaneous Lorentz breaking is induced by the expectation value of sources. The generalization to de Sitter space is also discussed

  2. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    International Nuclear Information System (INIS)

    Gorbunov, Dmitry S.; Sibiryakov, Sergei M.

    2005-01-01

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances

  3. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation); Sibiryakov, Sergei M. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation)

    2005-09-15

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  4. When can preheating affect the CMB?

    Science.gov (United States)

    Tsujikawa, Shinji; Bassett, Bruce A.

    2002-05-01

    We discuss the principles governing the selection of inflationary models for which preheating can affect the CMB. This is a (fairly small) subset of those models which have nonnegligible entropy/isocurvature perturbations on large scales during inflation. We study new models which belong to this class-two-field inflation with negative nonminimal coupling and hybrid/double/supernatural inflation models where the tachyonic growth of entropy perturbations can lead to the variation of the curvature perturbation, /R, on super-Hubble scales. Finally, we present evidence against recent claims for the variation of /R in the absence of substantial super-Hubble entropy perturbations.

  5. Matter and dark matter from false vacuum decay

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2010-08-15

    We study tachyonic preheating associated with the spontaneous breaking of B-L, the difference of baryon and lepton number. Reheating occurs through the decays of heavy Majorana neutrinos which are produced during preheating and in decays of the Higgs particles of B-L breaking. Baryogenesis is an interplay of nonthermal and thermal leptogenesis, accompanied by thermally produced gravitino dark matter. The proposed mechanism simultaneously explains the generation of matter and dark matter, thereby relating the absolute neutrino mass scale to the gravitino mass. (orig.)

  6. Matter and dark matter from false vacuum decay

    International Nuclear Information System (INIS)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2010-08-01

    We study tachyonic preheating associated with the spontaneous breaking of B-L, the difference of baryon and lepton number. Reheating occurs through the decays of heavy Majorana neutrinos which are produced during preheating and in decays of the Higgs particles of B-L breaking. Baryogenesis is an interplay of nonthermal and thermal leptogenesis, accompanied by thermally produced gravitino dark matter. The proposed mechanism simultaneously explains the generation of matter and dark matter, thereby relating the absolute neutrino mass scale to the gravitino mass. (orig.)

  7. Combined gauge-mediated and anomaly-mediated supersymmetry breaking and conformal sequestering

    International Nuclear Information System (INIS)

    Sundrum, Raman

    2005-01-01

    Anomaly-mediated supersymmetry breaking in the context of 4D conformally sequestered models is combined with Poppitz-Trivedi D-type gauge-mediation. The implementation of the two mediation mechanisms naturally leads to visible soft masses at the same scale so that they can cooperatively solve the μ and flavor problems of weak scale supersymmetry, as well as the tachyonic-slepton problem of pure anomaly-mediation. The tools are developed in a modular fashion for more readily fitting into the general program of optimizing supersymmetric dynamics in hunting for the most attractive weak scale phenomenologies combined with Planck-scale plausibility

  8. Positively deflected anomaly mediation

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2002-01-01

    We generalize the so-called 'deflected anomaly mediation' scenario to the case where threshold corrections of heavy messengers to the sparticle squared masses are positive. A concrete model realizing this scenario is also presented. The tachyonic slepton problem can be fixed with only a pair of messengers. The resultant sparticle mass spectrum is quite different from that in the conventional deflected anomaly mediation scenario, but is similar to the one in the gauge mediation scenario. The lightest sparticle is mostly B-ino

  9. Boundary string field theory and an open string one-loop

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi

    2003-01-01

    We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field

  10. Quantum consistency of open string theories

    International Nuclear Information System (INIS)

    Govaerts, J.

    1989-01-01

    We discuss how Virasoro anomalies in open string theories uniquely select the gauge group SO(2 D/2 ) independently of any regularisation, although the cancellation of these anomalies does not occur in tachyonic theories, and regulators can always be chosen to make these theories (one-loop) finite for any SO(n) and USp(n) gauge group. The discussion is mainly restricted to open bosonic strings. These results open new perspectives for the recent suggestion made by Sagnotti, the generalisations of which allow for the construction of new open string theories in less than ten dimensions. (orig.)

  11. Rotating spacetimes of Goedel-type

    International Nuclear Information System (INIS)

    Reboucas, M.J.; Teixeira, A.F.F.

    1986-01-01

    The Goedel-type Riemannian manifolds are examined under two different assumptions on the algebraic structure of the energy-momentum tensor. All Goedel-type manifolds of either Segre type [1,(1,111)] or [(1,11)1] are shown to be spacetime-homogeneous. A generalization of Bampi-Zordan theorem is presented. All Goedel-type Riemannian manifolds of the algebric tachyon fluid type are shown to be conformally flat and isometric to Reboucas-Tiomno model. The conformal form of Reboucas-Tiomno is given. (Author) [pt

  12. High energy production of gluons in a quasi-multi-Regge kinematics

    International Nuclear Information System (INIS)

    Fadin, V.S.; Lipatov, L.N.

    1989-01-01

    Inelastic gluon-gluon scattering amplitudes in the Born approximation for the quasi-multi-Regge kinematics are calculated, starting with the Veneziano-type expression for the inelastic amplitude of the gluon-tachyon scattering with its subsequent simplification in the region of large energies and the Regge slope α'→0. Results obtained allow one to determine the high order corrections to the gluon Regge trajectory, the reggeon-particle vertices and to the integral kernel of the Bethe-Salpeter equation for the vacuum t-channel partial waves. 10 refs.; 7 figs

  13. The non-Abelian gauge theory of matrix big bangs

    Science.gov (United States)

    O'Loughlin, Martin; Seri, Lorenzo

    2010-07-01

    We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantization to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t = 0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.

  14. The thawing dark energy dynamics: Can we detect it?

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S. [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India); Sen, A.A., E-mail: anjan.ctp@jmi.ac.i [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India); Sami, M. [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2010-03-15

    We consider different classes of scalar field models including quintessence and tachyon scalar fields with a variety of generic potentials belonging to the thawing type. We focus on observational quantities like Hubble parameter, luminosity distance as well as quantities related to the Baryon Acoustic Oscillation measurement. Our study shows that with present state of observations, one cannot distinguish amongst various models which in turn cannot be distinguished from cosmological constant. Our analysis indicates that there is a small chance to observe the dark energy metamorphosis in near future.

  15. Interacting viscous entropy-corrected holographic scalar field models of dark energy with time-varying G in modified FRW cosmology

    International Nuclear Information System (INIS)

    Adabi, Farzin; Karami, Kayoomars; Felegary, Fereshte; Azarmi, Zohre

    2012-01-01

    We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration parameters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G. (research papers)

  16. Solving Witten's SFT by insertion of operators on projectors

    Energy Technology Data Exchange (ETDEWEB)

    Yang Haitang [Center for Theoretical Physics, Massachussetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: hyanga@MIT.EDU

    2004-09-01

    Following Okawa, we insert operators at the boundary of regulated star algebra projectors to construct the leading order tachyon vacuum solution of open string field theory. We also calculate the energy density of the solution and the ratio between the kinetic and the cubic terms. A universal relationship between these two quantities is found. We show that for any twist invariant projector, the energy density can account for at most 68.46% of the D25-brane tension. The general results are then applied to regulated slivers and butterflies, and the next-to-leading order solution for regulated sliver states is constructed. (author)

  17. Nonminimally coupled hybrid inflation

    International Nuclear Information System (INIS)

    Koh, Seoktae; Minamitsuji, Masato

    2011-01-01

    We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains φ 4 term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.

  18. Tadpole resummations in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed

  19. Strong/weak coupling duality relations for non-supersymmetric string theories

    International Nuclear Information System (INIS)

    Blum, J.D.; Dienes, K.R.

    1998-01-01

    Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)

  20. On D-brane anti D-brane effective actions and their corrections to all orders in alpha-prime

    International Nuclear Information System (INIS)

    Hatefi, Ehsan

    2013-01-01

    Based on a four point function, the S-matrix elements at disk level of the scattering amplitude of one closed string Ramond-Ramond field (C) and two tachyons and one scalar field, we find out new couplings in brane anti brane effective actions for p = n, p+2 = n cases. Using the infinite corrections of the vertex of one RR, one gauge and one scalar field and applying the correct expansion, it is investigated in detail how we produce the infinite gauge poles of the amplitude for p = n case. By discovering new higher derivative corrections of two tachyon-two scalar couplings in brane anti brane systems to all orders in α', we also obtain the infinite scalar poles in (t'+s'+u)-channel in field theory. Working with the complete form of the amplitude with the closed form of the expansion and comparing all the infinite contact terms of this amplitude, we derive several new Wess-Zumino couplings with all their infinite higher derivative corrections in the world volume of brane anti brane systems. In particular, in producing all the infinite scalar poles of C V φ V T V T > , one has to consider the fact that scalar's vertex operator in (-1)-picture must carry the internal σ 3 Chan-Paton matrix. The symmetric trace effective action has a non-zero coupling between Dφ (1)i and Dφ (2) i while this coupling does not exist in ordinary trace effective action

  1. Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston E

    2003-06-07

    The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.

  2. Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Wei [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Tu, Hong [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shu, Chenggang [The Shanghai Key Lab for Astrophysics, Shanghai (China)

    2016-09-15

    We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ) to observable related variables (w{sub φ}, Ω{sub φ}, λ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w{sub φ}, Ω{sub φ}, λ) instead of variables (x, y, λ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter. (orig.)

  3. Superstring theory

    International Nuclear Information System (INIS)

    Schwarz, J.H.

    1985-01-01

    Dual string theories, initially developed as phenomenological models of hadrons, now appear more promising as candidates for a unified theory of fundamental interactions. Type I superstring theory (SST I), is a ten-dimensional theory of interacting open and closed strings, with one supersymmetry, that is free from ghosts and tachyons. It requires that an SO(eta) or Sp(2eta) gauge group be used. A light-cone-gauge string action with space-time supersymmetry automatically incorporates the superstring restrictions and leads to the discovery of type II superstring theory (SST II). SST II is an interacting theory of closed strings only, with two D=10 supersymmetries, that is also free from ghosts and tachyons. By taking six of the spatial dimensions to form a compact space, it becomes possible to reconcile the models with our four-dimensional perception of spacetime and to define low-energy limits in which SST I reduces to N=4, D=4 super Yang-Mills theory and SST II reduces to N=8, D=4 supergravity theory. The superstring theories can be described by a light-cone-gauge action principle based on fields that are functionals of string coordinates. With this formalism any physical quantity should be calculable. There is some evidence that, unlike any conventional field theory, the superstring theories provide perturbatively renormalizable (SST I) or finite (SST II) unifications of gravity with other interactions

  4. Open Wilson lines as states of closed string

    International Nuclear Information System (INIS)

    Murakami, Koichi; Nakatsu, Toshio

    2003-01-01

    A system of a D-brane in bosonic string theory on a constant B field background is studied in order to obtain further insight into the bulk-boundary duality. Boundary states which describe arbitrary numbers of open-string tachyons and gluons are given. The UV behavior of field theories on the non-commutative world-volume is investigated by using these states. We take the zero-slope limits of the generating functions of one-loop amplitudes of gluons (and open-string tachyons) in which the region of the small open-string proper time is magnified. The existence of a B field allows the limits to be slightly different from the standard field theory limits of a closed-string. These limits enable us to obtained world-volume theories at a trans-string scale. In this limit the generating functions are shown to be factorized into two curved open Wilson lines (and their analogues) and become integrals on the space of paths with a Gaussian distribution around straight lines. These facts indicate the possibility that field theories on the non-commutative world-volume are topological at such a trans-string scale. We also give a proof of the Dhar-Kitazawa conjecture by determining an explicit correspondence between the closed-string states and the paths. Momentum eigenstates of closed-string or momentum loops also play an important role in these analyses. (author)

  5. Signs and stability in higher-derivative gravity

    Science.gov (United States)

    Narain, Gaurav

    2018-02-01

    Perturbatively renormalizable higher-derivative gravity in four space-time dimensions with arbitrary signs of couplings has been considered. Systematic analysis of the action with arbitrary signs of couplings in Lorentzian flat space-time for no-tachyons, fixes the signs. Feynman + i𝜖 prescription for these signs further grants necessary convergence in path-integral, suppressing the field modes with large action. This also leads to a sensible wick rotation where quantum computation can be performed. Running couplings for these sign of parameters make the massive tensor ghost innocuous leading to a stable and ghost-free renormalizable theory in four space-time dimensions. The theory has a transition point arising from renormalization group (RG) equations, where the coefficient of R2 diverges without affecting the perturbative quantum field theory (QFT). Redefining this coefficient gives a better handle over the theory around the transition point. The flow equations push the flow of parameters across the transition point. The flow beyond the transition point is analyzed using the one-loop RG equations which shows that the regime beyond the transition point has unphysical properties: there are tachyons, the path-integral loses positive definiteness, Newton’s constant G becomes negative and large, and perturbative parameters become large. These shortcomings indicate a lack of completeness beyond the transition point and need of a nonperturbative treatment of the theory beyond the transition point.

  6. Flavorful hybrid anomaly-gravity mediation

    International Nuclear Information System (INIS)

    Gross, Christian; Hiller, Gudrun

    2011-01-01

    We consider supersymmetric models where anomaly and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of anomaly mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of anomaly mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing energy at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.

  7. Open bosonic string in background electromagnetic field

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1987-01-01

    The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found

  8. Staggered multi-field inflation

    International Nuclear Information System (INIS)

    Battefeld, Diana; Battefeld, Thorsten; Davis, Anne-Christine

    2008-01-01

    We investigate multi-field inflationary scenarios with fields that drop out of the model in a staggered fashion. This feature is natural in certain multi-field inflationary setups within string theory; for instance, it can manifest itself when fields are related to tachyons that condense, or inter-brane distances that become meaningless when branes annihilate. Considering a separable potential, and promoting the number of fields to a smooth time dependent function, we derive the formalism to deal with these models at the background and perturbed level, providing general expressions for the scalar spectral index and the running. We recover known results of e.g. a dynamically relaxing cosmological constant in the appropriate limits. We further show that isocurvature perturbations are suppressed during inflation, and so perturbations are adiabatic and nearly Gaussian. The resulting setup might be interpreted as a novel type of warm inflation, readily implemented within string theory and without many of the shortcomings associated with warm inflation. To exemplify the applicability of the formalism we consider three concrete models: assisted inflation with exponential potentials as a simple toy model (a graceful exit becomes possible), inflation from multiple tachyons (a constant decay rate of the number of fields and negligible slow roll contributions turns out to be in good agreement with observations) and inflation from multiple M5-branes within M-theory (a narrow stacking of branes yields a consistent scenario)

  9. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  10. No-scale D-term inflation with stabilized moduli

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried; Domcke, Valerie; Wieck, Clemens

    2013-09-15

    We study the consistency of hybrid inflation and moduli stabilization, using the Kallosh- Linde model as an example for the latter. We find that F-term hybrid inflation is not viable since inflationary trajectories are destabilized by tachyonic modes. On the other hand, D-term hybrid inflation is naturally compatible with moduli stabilization due to the absence of a large superpotential term during the inflationary phase. Our model turns out to be equivalent to superconformal D-term inflation and it therefore successfully accounts for the CMB data in the large-field regime. Supersymmetry breaking can be incorporated via an O'Raifeartaigh model. For GUT-scale inflation one obtains a stringent bound on the gravitino mass. A rough estimate yields m{sub 3/2}>or similar 10{sup 5} GeV, contrary to naive expectation.

  11. Formation of primordial black holes from non-Gaussian perturbations produced in a waterfall transition

    Science.gov (United States)

    Bugaev, Edgar; Klimai, Peter

    2012-05-01

    We consider the process of primordial black hole (PBH) formation originated from primordial curvature perturbations produced during waterfall transition (with tachyonic instability), at the end of hybrid inflation. It is known that in such inflation models, rather large values of curvature perturbation amplitudes can be reached, which can potentially cause a significant PBH production in the early Universe. The probability distributions of density perturbation amplitudes in this case can be strongly non-Gaussian, which requires a special treatment. We calculated PBH abundances and PBH mass spectra for the model and analyzed their dependence on model parameters. We obtained the constraints on the parameters of the inflationary potential, using the available limits on βPBH.

  12. Correspondence of f(R,∇R) Modified Gravity with Scalar Field Models

    International Nuclear Information System (INIS)

    Jawad, Abdul; Debnath, Ujjal

    2014-01-01

    This paper is devoted to study the scalar field dark energy models by taking its different aspects in the framework of f(R,∇R) gravity. We consider flat FRW universe to construct the equation of state parameter governed by f(R,∇R) gravity. The stability of the model is discussed with the help of squared speed of sound parameter. It is found that models show quintessence behavior of the universe in stable as well as unstable modes. We also develop the correspondence of f(R,∇R) model with some scalar field dark energy models like quintessence, tachyonic field, k-essence, dilaton, hessence, and DBI-essence. The nature of scalar fields and corresponding scalar potentials is being analyzed in f(R,∇R) gravity graphically which show consistency with the present day observations about accelerated phenomenon

  13. Improved Off-Shell Scattering Amplitudes in String Field Theory and New Computational Methods

    CERN Document Server

    Park, I Y; Bars, Itzhak

    2004-01-01

    We report on new results in Witten's cubic string field theory for the off-shell factor in the 4-tachyon amplitude that was not fully obtained explicitly before. This is achieved by completing the derivation of the Veneziano formula in the Moyal star formulation of Witten's string field theory (MSFT). We also demonstrate detailed agreement of MSFT with a number of on-shell and off-shell computations in other approaches to Witten's string field theory. We extend the techniques of computation in MSFT, and show that the j=0 representation of SL(2,R) generated by the Virasoro operators $L_{0},L_{\\pm1}$ is a key structure in practical computations for generating numbers. We provide more insight into the Moyal structure that simplifies string field theory, and develop techniques that could be applied more generally, including nonperturbative processes.

  14. Hemispherical power asymmetry from scale-dependent modulated reheating

    International Nuclear Information System (INIS)

    McDonald, John

    2013-01-01

    We propose a new model for the hemispherical power asymmetry of the CMB based on modulated reheating. Non-Gaussianity from modulated reheating can be small enough to satisfy the bound from Planck if the dominant modulation of the inflaton decay rate is linear in the modulating field σ. σ must then acquire a spatially-modulated power spectrum with a red scale-dependence. This can be achieved if the primordial perturbation of σ is generated via tachyonic growth of a complex scalar field. Modulated reheating due to σ then produces a spatially modulated and scale-dependent sub-dominant contribution to the adiabatic density perturbation. We show that it is possible to account for the observed asymmetry while remaining consistent with bounds from quasar number counts, non-Gaussianity and the CMB temperature quadupole. The model predicts that the adiabatic perturbation spectral index and its running will be modified by the modulated reheating component

  15. AI based HealthCare Platform for Real Time, Predictive and Prescriptive Analytics using Reactive Programming

    Science.gov (United States)

    Kaur, Jagreet; Singh Mann, Kulwinder, Dr.

    2018-01-01

    AI in Healthcare needed to bring real, actionable insights and Individualized insights in real time for patients and Doctors to support treatment decisions., We need a Patient Centred Platform for integrating EHR Data, Patient Data, Prescriptions, Monitoring, Clinical research and Data. This paper proposes a generic architecture for enabling AI based healthcare analytics Platform by using open sources Technologies Apache beam, Apache Flink Apache Spark, Apache NiFi, Kafka, Tachyon, Gluster FS, NoSQL- Elasticsearch, Cassandra. This paper will show the importance of applying AI based predictive and prescriptive analytics techniques in Health sector. The system will be able to extract useful knowledge that helps in decision making and medical monitoring in real-time through an intelligent process analysis and big data processing.

  16. Relativistic string dynamics and its connection with hadron physics

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1976-01-01

    Physical reasons for using the relativistic string as a hadron model are briefly discussed. The classical and quantum dynamics of the string which is the first example of a relativistic elongated object are presented. The connection between the string and the dual-resonance models, together with the Born-Infeld field model is indicated. As it turned out from the study of the string behaviour in a constant electromagnetic field, even in the classical theory states with the negative square of the string mass - tachyons - appear. As an illustration, a series of examples of classical motion of a free string and a string in an external electromagnetic field from a given initial state is presented

  17. Thermodynamics of hairy black holes in Lovelock gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Tjoa, Erickson [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,Nanyang Technological University, Singapore, 637371 (Singapore); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada)

    2017-02-14

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including ‘virtual triple points’ and the first example of a ‘λ-line’ — a line of second order phase transitions — in black hole thermodynamics.

  18. Flowing to four dimensions

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe; Rubakov, Valery

    2006-01-01

    We analyze the properties of a model with four-dimensional brane-localized Higgs type potential of a six dimensional scalar field satisfying the Dirichlet boundary condition on the boundary of a transverse two-dimensional compact space. The regularization of the localized couplings generates classical renormalization group running. A tachyonic mass parameter grows in the infrared, in analogy with the QCD gauge coupling in four dimensions. We find a phase transition at a critical value of the bare mass parameter such that the running mass parameter becomes large in the infrared precisely at the compactification scale. Below the critical coupling, the theory is in symmetric phase, whereas above it spontaneous symmetry breaking occurs. Close to the phase transition point there is a very light mode in the spectrum. The massive Kaluza-Klein spectrum at the critical coupling becomes independent of the UV cutoff

  19. Configurational entropy as a tool to select a physical thick brane model

    Science.gov (United States)

    Chinaglia, M.; Cruz, W. T.; Correa, R. A. C.; de Paula, W.; Moraes, P. H. R. S.

    2018-04-01

    We analize braneworld scenarios via a configurational entropy (CE) formalism. Braneworld scenarios have drawn attention mainly due to the fact that they can explain the hierarchy problem and unify the fundamental forces through a symmetry breaking procedure. Those scenarios localize matter in a (3 + 1) hypersurface, the brane, which is inserted in a higher dimensional space, the bulk. Novel analytical braneworld models, in which the warp factor depends on a free parameter n, were recently released in the literature. In this article we will provide a way to constrain this parameter through the relation between information and dynamics of a system described by the CE. We demonstrate that in some cases the CE is an important tool in order to provide the most probable physical system among all the possibilities. In addition, we show that the highest CE is correlated to a tachyonic sector of the configuration, where the solutions for the corresponding model are dynamically unstable.

  20. Quantum and classical aspects of deformed c = 1 strings

    International Nuclear Information System (INIS)

    Nakatsu, T.; Tsujimaru, S.; Takasaki, K.

    1995-01-01

    The quantum and classical aspects of a deformed c=1 matrix model proposed by Jevicki and Yoneya are studied. String equations are formulated in the framework of the Toda lattice hierarchy. The Whittaker functions now play the role of generalized Airy functions in c<1 strings. This matrix model has two distinct parameters. Identification of the string coupling constant is thereby not unique, and leads to several different perturbative interpretations of this model as a string theory. Two such possible interpretations are examined. In both cases, the classical limit of the string equations, which turns out to give a formal solution of Polchinski's scattering equations, shows that the classical scattering amplitudes of massless tachyons are insensitive to deformations of the parameters in the matrix model. (author)

  1. Multiloop calculations in p-adic string theory and Bruhat-Tits trees. 1

    International Nuclear Information System (INIS)

    Zabrodin, A.V.; Mironov, A.D.; Chekhov, L.O.

    1989-01-01

    The open p-adic string world sheet as a coset space F=T/Γ, where T is the Bruhat-Tits three for the p-adic linear group GL(2.Q p ) and Γ is contained it PGL(2.Q p ) is some Schottky group is treated. The boundary of this world sheet corresponds to p-adic Mumford curve of finite genus. The string dynamics is governed by the local gaussian action on the coset space F. The tachyon amplitudes expressed in terms of p-adic Θ-functions are proposed for the Mumford curve of arbitrary genus and compared them with the corresponding usual archimedian amplitudes. 25 refs.; 5 figs

  2. A nonlinear dynamics for the scalar field in Randers spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)

    2017-03-10

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  3. Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings

    International Nuclear Information System (INIS)

    Bak, Dongsu; Rey, Soojong; Yee, Houng

    2004-01-01

    We study dynamics of type-IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1 2 st n 2 st N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents. (author)

  4. The FZZ-duality conjecture. A proof

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-05-15

    We prove that the cigar conformal field theory is dual to the Sine-Liouville model, as conjectured originally by Fateev, Zamolodchikov and Zamolodchikov. Since both models possess the same chiral algebra, our task is to show that correlations of all tachyon vertex operators agree. We accomplish this goal through an off-critical version of the geometric Langlands duality for sl(2). More explicitly, we combine the well-known self-duality of Liouville theory with an intriguing correspondence between the cigar and Liouville field theory. The latter is derived through a path integral treatment. After a very detailed discussion of genus zero amplitudes, we extend the duality to arbitrary closed surfaces. (orig.)

  5. Non-Abelian magnetized blackholes and unstable attractors

    International Nuclear Information System (INIS)

    Mosaffa, A.E.; Randjbar-Daemi, S.; Sheikh-Jabbari, M.M.

    2006-12-01

    Fluctuations of non-Abelian gauge fields in a background magnetic flux contain tachyonic modes and hence the background is unstable. We extend these results to the cases where the background flux is coupled to Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of Reissner-Nordstroem blackholes or the AdS 2 x S 2 , are also unstable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes. (author)

  6. Ramond and Neveu-Schwarz paraspinning strings in presence of D-branes

    Science.gov (United States)

    Hamam, D.; Belaloui, N.

    2018-03-01

    We investigate the theory of an open parafermionic string between two parallel Dp-, Dq-branes in Ramond and Neveu-Schwarz sectors. Trilinear commutation relations between the string variables are postulated and the corresponding ones in terms of modes are derived. The analysis of the spectrum shows that one can again have a free tachyon Neveu-Schwarz model for some values of the order of the paraquantization associated to some values of p and q. The consistency of this model requires the calculation of the partition function and its confrontation with the results of the degeneracies. A perfect agreement between the two results is obtained and the closure of the Virasoro superalgebra is confirmed.

  7. BPS limit of multi- D- and DF-strings in boundary string field theory

    International Nuclear Information System (INIS)

    Go, Gyungchoon; Ishida, Akira; Kim, Yoonbai

    2007-01-01

    A BPS limit is systematically derived for straight multi- D- and DF-strings from the D3D-bar3 system in the context of boundary superstring field theory. The BPS limit is obtained in the limit of thin D(F)-strings, where the Bogomolny equation supports singular static multi-D(F)-string solutions. For the BPS multi-string configurations with arbitrary separations, BPS sum rule is fulfilled under a Gaussian type tachyon potential and reproduces exactly the descent relation. For the DF-strings ((p,q)-strings), the distribution of fundamental string charge density coincides with its energy density and the Hamiltonian density takes the BPS formula of square-root form

  8. Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Strasbourg Univ. (France). Inst. Pluridisciplinaire Hubert Curien; Herrmann, Bjoern [Savoie Univ., Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.

  9. Stability of cylindrical thin shell wormhole during evolution of universe from inflation to late time acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R. [Department of Science, Campus of Bijar, University of Kurdistan,Bijar (Iran, Islamic Republic of); Sepehri, A. [Faculty of Physics, Shahid Bahonar University,P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2015-03-16

    In this paper, we consider the stability of cylindrical wormholes during evolution of universe from inflation to late time acceleration epochs. We show that there are two types of cylindrical wormholes. The first type is produced at the corresponding point where k black F-strings are transited to BIon configuration. This wormhole transfers energy from extra dimensions into our universe, causes inflation, loses it’s energy and vanishes. The second type of cylindrical wormhole is created by a tachyonic potential and causes a new phase of acceleration. We show that wormhole parameters grow faster than the scale factor in this era, overtake it at ripping time and lead to the destruction of universe at big rip singularity.

  10. Matrix model and time-like linear dila ton matter

    International Nuclear Information System (INIS)

    Takayanagi, Tadashi

    2004-01-01

    We consider a matrix model description of the 2d string theory whose matter part is given by a time-like linear dilaton CFT. This is equivalent to the c=1 matrix model with a deformed, but very simple Fermi surface. Indeed, after a Lorentz transformation, the corresponding 2d spacetime is a conventional linear dila ton background with a time-dependent tachyon field. We show that the tree level scattering amplitudes in the matrix model perfectly agree with those computed in the world-sheet theory. The classical trajectories of fermions correspond to the decaying D-boranes in the time-like linear dilaton CFT. We also discuss the ground ring structure. Furthermore, we study the properties of the time-like Liouville theory by applying this matrix model description. We find that its ground ring structure is very similar to that of the minimal string. (author)

  11. Instanton geometry and quantum A∞ structure on the elliptic curve

    International Nuclear Information System (INIS)

    Herbst, M.; Lerche, W.; Nemeschansky, D.

    2006-03-01

    We first determine and then study the complete set of non-vanishing A-model correlation functions associated with the 'long-diagonal branes' on the elliptic curve. We verify that they satisfy the relevant A ∞ consistency relations at both classical and quantum levels. In particular we find that the A ∞ relation for the annulus provides a reconstruction of annulus instantons out of disk instantons. We note in passing that the naive application of the Cardy-constraint does not hold for our correlators, confirming expectations. Moreover, we analyze various analytical properties of the correlators, including instanton flops and the mixing of correlators with different numbers of legs under monodromy. The classical and quantum A ∞ relations turn out to be compatible with such homotopy transformations. They lead to a non-invariance of the effective action under modular transformations, unless compensated by suitable contact terms which amount to redefinitions of the tachyon fields. (orig.)

  12. No-scale D-term inflation with stabilized moduli

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Domcke, Valerie; Wieck, Clemens

    2013-09-01

    We study the consistency of hybrid inflation and moduli stabilization, using the Kallosh- Linde model as an example for the latter. We find that F-term hybrid inflation is not viable since inflationary trajectories are destabilized by tachyonic modes. On the other hand, D-term hybrid inflation is naturally compatible with moduli stabilization due to the absence of a large superpotential term during the inflationary phase. Our model turns out to be equivalent to superconformal D-term inflation and it therefore successfully accounts for the CMB data in the large-field regime. Supersymmetry breaking can be incorporated via an O'Raifeartaigh model. For GUT-scale inflation one obtains a stringent bound on the gravitino mass. A rough estimate yields m 3/2 >or similar 10 5 GeV, contrary to naive expectation.

  13. Cosmological abundance of the QCD axion coupled to hidden photons

    Science.gov (United States)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  14. Moduli backreaction on inflationary attractors

    International Nuclear Information System (INIS)

    Roest, Diederik; Werkman, Pelle

    2016-07-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT- scenario and cosmological α-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for α-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  15. Infrared behavior of closed superstrings in strong magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Kiritsis, E.; Kounnas, C.

    1995-01-01

    A large class of four-dimensional supersymmetric ground states of closed superstrings with a non-zero mass gap are constructed. For such ground states we turn on chromo-magnetic fields as well as curvature. The exact spectrum as function of the chromo-magnetic fields and curvature is derived. We examine the behavior of the spectrum, and find that there is a maximal value for the magnetic field H max similar M planck 2 . At this value all states that couple to the magnetic field become infinitely massive and decouple. We also find tachyonic instabilities for strong background fields of the order O (μM planck ) where μ is the mass gap of the theory. Unlike the field theory case, we find that such ground states become stable again for magnetic fields of the order O (M 2 planck ). The implications of these results are discussed. (orig.)

  16. Nonminimally coupled scalar fields may not curve spacetime

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    It is shown that flat spacetime can be dressed with a real scalar field that satisfies the nonlinear Klein-Gordon equation without curving spacetime. Surprisingly, this possibility arises from the nonminimal coupling of the scalar field with the curvature, since a footprint of the coupling remains in the energy-momentum tensor even when gravity is switched off. Requiring the existence of solutions with vanishing energy-momentum tensor fixes the self-interaction potential as a local function of the scalar field depending on two coupling constants. The solutions describe shock waves and, in the Euclidean continuation, instanton configurations in any dimension. As a consequence of this effect, the tachyonic solutions of the free massive Klein-Gordon equation become part of the vacuum

  17. Study of the critical behavior of the O(N) linear and nonlinear sigma models

    International Nuclear Information System (INIS)

    Graziani, F.R.

    1983-01-01

    A study of the large N behavior of both the O(N) linear and nonlinear sigma models is presented. The purpose is to investigate the relationship between the disordered (ordered) phase of the linear and nonlinear sigma models. Utilizing operator product expansions and stability analyses, it is shown that for 2 - (lambda/sub R/(M) is the dimensionless renormalized quartic coupling and lambda* is the IR fixed point) limit of the linear sigma model which yields the nonlinear sigma model. It is also shown that stable large N linear sigma models with lambda 0) and nonlinear models are trivial. This result (i.e., triviality) is well known but only for one and two component models. Interestingly enough, the lambda< d = 4 linear sigma model remains nontrivial and tachyonic free

  18. The FZZ-duality conjecture. A proof

    International Nuclear Information System (INIS)

    Hikida, Y.; Schomerus, V.

    2008-05-01

    We prove that the cigar conformal field theory is dual to the Sine-Liouville model, as conjectured originally by Fateev, Zamolodchikov and Zamolodchikov. Since both models possess the same chiral algebra, our task is to show that correlations of all tachyon vertex operators agree. We accomplish this goal through an off-critical version of the geometric Langlands duality for sl(2). More explicitly, we combine the well-known self-duality of Liouville theory with an intriguing correspondence between the cigar and Liouville field theory. The latter is derived through a path integral treatment. After a very detailed discussion of genus zero amplitudes, we extend the duality to arbitrary closed surfaces. (orig.)

  19. Non-perturbative transitions among intersecting-brane vacua

    CERN Document Server

    Angelantonj, Carlo; Dudas, Emilian; Pradisi, Gianfranco; 10.1007/JHEP07(2011)123

    2011-01-01

    We investigate the transmutation of D-branes into Abelian magnetic backgrounds on the world-volume of higher-dimensional branes, within the framework of global models with compact internal dimensions. The phenomenon, T-dual to brane recombination in the intersecting-brane picture, shares some similarities to inverse small-instanton transitions in non-compact spaces, though in this case the Abelian magnetic background is a consequence of the compactness of the internal manifold, and is not ascribed to a zero-size non-Abelian instanton growing to maximal size. We provide details of the transition in various supersymmetric orientifolds and non-supersymmetric tachyon-free vacua with Brane Supersymmetry Breaking, both from brane recombination and from a field theory Higgs mechanism viewpoints.

  20. The Colloquium

    Science.gov (United States)

    Amoroso, Richard L.

    HÉCTOR A.A brief introductory survey of Unified Field Mechanics (UFM) is given from the perspective of a Holographic Anthropic Multiverse cosmology in 12 `continuous-state' dimensions. The paradigm with many new parameters is cast in a scale-invariant conformal covariant Dirac polarized vacuum utilizing extended HD forms of the de Broglie-Bohm and Cramer interpretations of quantum theory. The model utilizes a unique form of M-Theory based in part on the original hadronic form of string theory that had a variable string tension, TS and included a tachyon. The model is experimentally testable, thus putatively able to demonstrate the existence of large-scale additional dimensionality (LSXD), test for QED violating tight-bound state spectral lines in hydrogen `below' the lowest Bohr orbit, and surmount the quantum uncertainty principle utilizing a hyperincursive Sagnac Effect resonance hierarchy.

  1. De Sitter vacua in no-scale supergravities and Calabi-Yau string models

    CERN Document Server

    Covi, Laura; Gross, Christian; Louis, Jan; Palma, Gonzalo A; Scrucca, Claudio A

    2008-01-01

    We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which b...

  2. Unitarity relations in c=1 Liouville theory

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1992-01-01

    In this paper, the authors consider the S-matrix of c = 1 Liouville theory with vanishing cosmological constant. The authors examine some of the constraints imposed by unitarity. These completely determine (N,2) amplitudes at tree level in terms of the (N,1) amplitudes when the plus tachyon momenta take generic values. A surprising feature of the matrix model results is the lack of particle creation branch cuts in the higher genus amplitudes. In fact, the authors show that the naive field theory limit of Liouville theory would predict such branch cuts. However, unitarity in the full string theory ensures that such cuts do not appear in genus one (N,1) amplitudes. The authors conclude with some comments about the genus one (N,2) amplitudes

  3. Causal properties of nonlinear gravitational waves in modified gravity

    Science.gov (United States)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  4. On the unfolding of the fundamental region in integrals of modular invariant amplitudes

    International Nuclear Information System (INIS)

    Trapletti, Michele

    2003-01-01

    We study generic one-loop (string) amplitudes where an integration over the fundamental region F of the modular group is needed. We show how the known lattice-reduction technique used to unfold F to a more suitable region S can be modified to rearrange generic modular invariant amplitudes. The main aim is to unfold F to the strip and, at the same time, to simplify the form of the integrand when it is a sum over a finite number of terms, like in one-loop amplitudes for closed strings compactified on orbifolds. We give a general formula and a recipe to compute modular invariant amplitudes. As an application of the technique we compute the one-loop vacuum energy ρ n for a generic Z n freely acting orbifold, generalizing the result that this energy is less than zero and drives the system to a tachyonic divergence, and that ρ n m if n>m. (author)

  5. Combined study of the gluon and ghost condensates μ2> and abccbcc> in Euclidean SU(2) Yang-Mills theory in the Landau gauge

    International Nuclear Information System (INIS)

    Capri, M.A.L.; Lemes, V.E.R.; Sobreiro, R.F.; Sorella, S.P.; Dudal, D.; Verschelde, H.; Gracey, J.A.

    2006-01-01

    The ghost condensate abc c b c c > is considered together with the gluon condensate μ 2 > in SU(2) Euclidean Yang-Mills theories quantized in the Landau gauge. The vacuum polarization ceases to be transverse due to the nonvanishing condensate abc c b c c >. The gluon propagator itself remains transverse. By polarization effects, this ghost condensate induces then a splitting in the gluon mass parameter, which is dynamically generated through μ 2 >. The obtained effective masses are real when μ 2 > is included in the analysis. In the absence of μ 2 >, the already known result that the ghost condensate induces effective tachyonic masses is recovered. At the one-loop level, we find that the effective diagonal mass becomes smaller than the off-diagonal one. This might serve as an indication for some kind of Abelian dominance in the Landau gauge, similar to what happens in the maximal Abelian gauge

  6. Elementary particles and high energy phenomena. Progress report, May 1974--April 1975

    International Nuclear Information System (INIS)

    Nauenberg, U.; Bartlett, D.F.

    1975-05-01

    The study of K 0 /sub L/(π 3 ) has now been published in final form. When compared with the matrix elements for the K + (π 3 ) evidence was found for parallel I = 1/2 parallel violation in the linear terms, but not in the quadratic. The data-taking phase of a measurement of K 0 /sub L/ → K 0 /sub S/ p and related reactions at SLAC were completed. The presence of neutrons in the beam permits one to study several new reactions. The apparatus for detecting tachyon monopoles was installed above the Fermilab 15' bubble chamber, and data-taking begun. No evidence yet found for these particles. The theoretical effort was devoted to supporting the kaon experiments and to the study of dynamical symmetry breaking and Higg's symmetry. One has also written two proposals for experiments at Fermilab. A list of publications is included. (U.S.)

  7. One-loop adjoint masses for non-supersymmetric intersecting branes

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, P. [Technische Univ., Vienna (Austria). 1. Inst. fuer Theoretische Physik; Antoniadis, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Benakli, K. [CNRS, UPMC Univ. Paris (France). Lab. de Physique Theorique et Haute Energies; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vichi, A. [Institute de Theorie des Phenomenes Physiques, EPFL, Lausanne (Switzerland)

    2011-05-15

    We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values. We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes. In the open string channel, the string two-point function receives contributions only from the infrared and the ultraviolet limits. The latter is due to tree-level closed string uncanceled NS-NS tadpoles, which we explicitly reproduce from the effective Born-Infeld action. On the other hand, the infrared region reproduces the one-loop mediation of supersymmetry breaking in the effective gauge theory, via messengers and their Kaluza-Klein excitations. In the toroidal set-up considered here, it receives contributions only from N {approx} 4 and N {approx} 2 supersymmetric configurations, and thus always leads at leading order to a tachyonic direction, in agreement with effective field theory expectations. (orig.)

  8. Energy momentum tensor and marginal deformations in open string field theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2004-01-01

    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)

  9. A Minimal Supersymmetric Model of Particle Physics and the Early Universe

    CERN Document Server

    Buchmüller, W; Kamada, K; Schmitz, K

    2014-01-01

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local $B$$-$$L$, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken $B$$-$$L$ symmetry, which ends in tachyonic preheating, i.e.\\ the decay of the false vacuum, followed by a matter dominated phase with heavy $B$$-$$L$ Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of g...

  10. Magnetically-enhanced open string pair production

    Science.gov (United States)

    Lu, J. X.

    2017-12-01

    We consider the stringy interaction between two parallel stacks of D3 branes placed at a separation. Each stack of D3 branes in a similar fashion carry an electric flux and a magnetic flux with the two sharing no common field strength index. The interaction amplitude has an imaginary part, giving rise to the Schwinger-like pair production of open strings. We find a significantly enhanced rate of this production when the two electric fluxes are almost identical and the brane separation is on the order of string scale. This enhancement will be largest if the two magnetic fluxes are opposite in direction. This novel enhancement results from the interplay of the non-perturbative Schwinger-type pair production due to the electric flux and the stringy tachyon due to the magnetic flux, and may have realistic physical applications.

  11. Solving the open bosonic string in perturbation theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1990-01-01

    The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)

  12. Curved-space classical solutions of a massive supermatrix model

    International Nuclear Information System (INIS)

    Azuma, Takehiro; Bagnoud, Maxime

    2003-01-01

    We investigate here a supermatrix model with a mass term and a cubic interaction. It is based on the super Lie algebra osp(1 vertical bar 32,R), which could play a role in the construction of the eleven-dimensional M-theory. This model contains a massive version of the IIB matrix model, where some fields have a tachyonic mass term. Therefore, the trivial vacuum of this theory is unstable. However, this model possesses several classical solutions where these fields build noncommutative curved spaces and these solutions are shown to be energetically more favorable than the trivial vacuum. In particular, we describe in details two cases, the SO(3)xSO(3)xSO(3) (three fuzzy 2-spheres) and the SO(9) (fuzzy 8-sphere) classical backgrounds

  13. Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    E.V. Luschevskaya

    2015-09-01

    Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.

  14. Was the Universe actually radiation dominated prior to nucleosynthesis?

    Science.gov (United States)

    Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue

    2017-08-01

    Maybe not. String theory approaches to both beyond the Standard Model and inflationary model building generically predict the existence of scalars (moduli) that are light compared to the scale of quantum gravity. These moduli become displaced from their low energy minima in the early Universe and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper, we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big bang nucleosynthesis.

  15. Gravitational Coleman–Weinberg potential and its finite temperature counterpart

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Srijit [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Discipline of Physics, Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India); Majumdar, Parthasarathi [Department of Physics, Ramakrishna Mission Vivekananada University, Belur Math, Howrah 711202 (India)

    2014-08-15

    Coleman–Weinberg (CW) phenomena for the case of gravitons minimally coupled to massless scalar field is studied. The one-loop effect completely vanishes if there is no self-interaction term present in the matter sector. The one-loop effective potential is shown to develop an instability in the form of acquiring an imaginary part, which can be traced to the tachyonic pole in the graviton propagator. The finite temperature counterpart of this CW potential is computed to study the behaviour of the potential in the high and low temperature regimes with respect to the typical energy scale of the theory. Finite temperature contribution to the imaginary part of gravitational CW potential exhibits a damped oscillatory behaviour; all thermal effects are damped out as the temperature vanishes, consistent with the zero-temperature result.

  16. Moduli Backreaction on Inflationary Attractors

    CERN Document Server

    Roest, Diederik; Werkman, Pelle

    2016-01-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $\\alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for $\\alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  17. The soft supersymmetry breaking in D=5 supergravity compactified on S_1/Z_2 orbifolds

    CERN Document Server

    Diamandis, G A; Kouroumalou, P; Lahanas, A B

    2010-01-01

    We study the origin of the supersymmetry breaking induced by the mediation of gravity and the radion multiplet from the hidden to the visible brane in the context of the N=2, D=5 supergravity compactified on S_1/Z_2 orbifolds. The soft supersymmetry breaking terms for scalar masses, trilinear scalar couplings and gaugino masses are calculated to leading order in the five dimensional Newton's constant k_5^2 and the gravitino mass m_{3/2}. These are finite and non-vanishing, with the scalar soft masses be non-tachyonic, and are all expressed in terms of the gravitino mass and the length scale R of the fifth dimension. The soft supersymmetry breaking parameters are thus correlated and the phenomenological implications are discussed.

  18. Canonical quantization of a relativistic particle with curvature and torsion

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1991-01-01

    A generalization of the relativistic particle action is considered. It contain, in addition to the length of the world trajectory, the integrals along the world curve of its curvature and torsion. The generalized Hamiltonian formalism for this model in the D-dimensional space-time is constructed. A complete set of the constraints in the phase space is obtained and their division into the first-class and the second-class constraints is accomplished. On this basis the canonical quantization of the model is fulfilled. For D=3 the mass spectrum is obtained in the sector without tachyonic states, the mass of the state being dependent on its spin. It is shown that in the framework of this model when D=3 the possibility to describe the states with integral, half-odd-integral and continuous spins is derived. Interaction with an external Abelian gauge field introduced in the geometrical way. 21 refs

  19. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    International Nuclear Information System (INIS)

    Akarsu, Özgür; Kumar, Suresh; Myrzakulov, R.; Sami, M.; Xu, Lixin

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis

  20. On Climbing Scalars in String Theory

    CERN Document Server

    Dudas, E; Sagnotti, A

    2010-01-01

    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.

  1. Phase structure of generalized Cross-Neveu models

    International Nuclear Information System (INIS)

    Klimenko, K.G.

    1987-01-01

    A phase structure of models with n spinor multiplets has been considered in the space-time of dimension D=2,3. In the case when n=2 and D=3 there may occur vaccums | +> violating chiral invariance, as well as |-> violating P,T symmetry of the model. At D,n=2 depending on the sign of the constant g 12 there also exist two different vacua. It is shown here, that at sufficiently small g 12 the description of the model with the help of the leading order of 1/N expansion is incorrect (there appear tachyons). The properties of Gross-Neveu model have been dealt with at D=3, n=1 and the temperature and chemical potential not equal to zero

  2. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  3. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  4. Cosmology in the laboratory: An analogy between hyperbolic metamaterials and the Milne universe

    Science.gov (United States)

    Figueiredo, David; Moraes, Fernando; Fumeron, Sébastien; Berche, Bertrand

    2017-11-01

    This article shows that the compactified Milne universe geometry, a toy model for the big crunch/big bang transition, can be realized in hyperbolic metamaterials, a new class of nanoengineered systems which have recently found its way as an experimental playground for cosmological ideas. On one side, Klein-Gordon particles, as well as tachyons, are used as probes of the Milne geometry. On the other side, the propagation of light in two versions of a liquid crystal-based metamaterial provides the analogy. It is shown that ray and wave optics in the metamaterial mimic, respectively, the classical trajectories and wave function propagation, of the Milne probes, leading to the exciting perspective of realizing experimental tests of particle tunneling through the cosmic singularity, for instance.

  5. The use of three orthogonal time-dimensions for concept reconciliation in physics

    International Nuclear Information System (INIS)

    Lewis, B.L.

    1981-01-01

    This paper uses logic and documented experimental results to show that there is overwhelming evidence to prove that time is multidimensional but that man can only perceive (measure) one of these dimensions. This paper attempts to demonstrate that man has enough experimental clues to permit him to develop a useful multidimensional time concept that will allow him to relate and explain observable physical phenomena. To demonstrate this, a multidimensional time concept is developed and used to explain and relate the following: the wave particle duality of nature, electromagnetic phenomena, intrinsic angular momentum, time dilation, Lorentz contraction and gravity. In the process, electrons are related to photons, protons to neutrinos and all four to tachyons. (Auth.)

  6. Thermodynamics of hairy black holes in Lovelock gravity

    Science.gov (United States)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  7. Covariant approach of perturbations in Lovelock type brane gravity

    Science.gov (United States)

    Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín

    2016-12-01

    We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.

  8. The operator formalism and contact terms in string theory

    International Nuclear Information System (INIS)

    Doyle, M.D.

    1992-01-01

    The operator formalism has proven to be a powerful tool in string theory. In particular, by making explicit the role of a choice of local coordinates (or, equivalently, a normal-ordering prescription) at vertex operator insertions, it provides a framework for understanding the insertion of very general states in both on-shell string theory and string field theory, for formulating a semirigid N = 2 geometry-based approach to topological gravity, for resolving ambiguities in fermionic string theory, and for analyzing contact interactions. The main focus of this thesis on this last application of the operator formalism, although it touches on each of the others. The first goal is the analysis of the dilaton contact terms required for the dilaton equation in the bosonic and heterotic strings. In the bosonic case, a coordinate family appropriate for a punctured sphere is given and is used to calculate dilaton two-point functions. This coordinate family is later generalized to a 'good' coordinate family appropriate for dilaton calculations on higher genus surfaces. It is found that dilaton-dilaton contact terms are improperly normalized resulting in the failure of the dilaton equation, suggesting that the zero-momentum dilaton is not the string coupling constant. This seems to be the result of a tachyon divergence. A similar calculation in the heterotic case, where there is no tachyon, shows that the dilaton contact terms are properly normalized, and that the dilaton equation and the interpretation of the dilaton as the string coupling constant goes through. The other major goal is re-examination of Green and Seiberg's work which showed that, in simple treatments of fermionic string theory, it is necessary to introduce contact interactions when vertex operators collide to avoid the failure of certain superconformal Ward identities

  9. A bridge between unified cosmic history by f( R)-gravity and BIonic system

    Science.gov (United States)

    Sepehri, Alireza; Capozziello, Salvatore; Setare, Mohammad Reza

    2016-04-01

    Recently, the cosmological deceleration-acceleration transition redshift in f( R) gravity has been considered in order to address consistently the problem of cosmic evolution. It is possible to show that the deceleration parameter changes sign at a given redshift according to observational data. Furthermore, a f( R) gravity cosmological model can be constructed in brane-antibrane system starting from the very early universe and accounting for the cosmological redshift at all phases of cosmic history, from inflation to late time acceleration. Here we propose a f( R) model where transition redshifts correspond to inflation-deceleration and deceleration-late time acceleration transitions starting froma BIon system. At the point where the universe was born, due to the transition of k black fundamental strings to the BIon configuration, the redshift is approximately infinity and decreases with reducing temperature (z˜ T2). The BIon is a configuration in flat space of a universe-brane and a parallel anti-universe-brane connected by a wormhole. This wormhole is a channel for flowing energy from extra dimensions into our universe, occurring at inflation and decreasing with redshift as z˜ T^{4+1/7}. Dynamics consists with the fact that the wormhole misses its energy and vanishes as soon as inflation ends and deceleration begins. Approaching two universe branes together, a tachyon is originated, it grows up and causes the formation of a wormhole. We show that, in the framework of f( R) gravity, the cosmological redshift depends on the tachyonic potential and has a significant decrease at deceleration-late time acceleration transition point (z˜ T^{2/3}). As soon as today acceleration approaches, the redshift tends to zero and the cosmological model reduces to the standard Λ CDM cosmology.

  10. Geometry and physics of branes

    Energy Technology Data Exchange (ETDEWEB)

    Gal' tsov, D V

    2003-03-21

    The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two

  11. Geometry and physics of branes

    International Nuclear Information System (INIS)

    Gal'tsov, D V

    2003-01-01

    The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two-dimensional conformal field

  12. Evading the Lyth bound in hybrid natural inflation

    International Nuclear Information System (INIS)

    Hebecker, A.; Kraus, S.C.; Westphal, Alexander

    2013-05-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ε can be sizable during an early period (relevant for the CMB spectrum). Subsequently, ε quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.

  13. No large scale curvature perturbations during the waterfall phase transition of hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2011-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  14. Evading the Lyth bound in hybrid natural inflation

    Science.gov (United States)

    Hebecker, A.; Kraus, S. C.; Westphal, A.

    2013-12-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axionlike shift symmetry keeps the inflaton potential flat (up to nonperturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ɛ can be sizable during an early period (relevant for the cosmic microwave background spectrum). Subsequently, ɛ quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While nonobservation of tensors by Planck is certainly not a problem, a discovery in the medium- to long-term future is realistic.

  15. Recursive stochastic effects in valley hybrid inflation

    Science.gov (United States)

    Levasseur, Laurence Perreault; Vennin, Vincent; Brandenberger, Robert

    2013-10-01

    Hybrid inflation is a two-field model where inflation ends because of a tachyonic instability, the duration of which is determined by stochastic effects and has important observational implications. Making use of the recursive approach to the stochastic formalism presented in [L. P. Levasseur, preceding article, Phys. Rev. D 88, 083537 (2013)], these effects are consistently computed. Through an analysis of backreaction, this method is shown to converge in the valley but points toward an (expected) instability in the waterfall. It is further shown that the quasistationarity of the auxiliary field distribution breaks down in the case of a short-lived waterfall. We find that the typical dispersion of the waterfall field at the critical point is then diminished, thus increasing the duration of the waterfall phase and jeopardizing the possibility of a short transition. Finally, we find that stochastic effects worsen the blue tilt of the curvature perturbations by an O(1) factor when compared with the usual slow-roll contribution.

  16. A magnetic instability of the non-Abelian Sakai-Sugimoto model

    International Nuclear Information System (INIS)

    Callebaut, Nele; Dudal, David

    2014-01-01

    In this follow-up paper of http://dx.doi.org/10.1007/JHEP03(2013)033 we further discuss the occurrence of a magnetically induced tachyonic instability of the rho meson in the two-flavour Sakai-Sugimoto model, uplifting two remaining approximations in the previous paper. That is, firstly, the magnetically induced splitting of the branes is now taken into account, evaluating without approximations the symmetrized trace which enters in the non-Abelian Dirac-Born-Infeld (DBI) action. This leads to an extra mass generating effect for the charged heavy-light rho meson through a holographic Higgs mechanism. Secondly, we compare the results in the approximation to second order in the field strength to the results using the full DBI-action. Both improvements cause an increase of the critical magnetic field for the onset of rho meson condensation. In addition, the stability in the scalar sector in the presence of the magnetic field is discussed

  17. The gravitational wave spectrum from cosmological B-L breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-05-01

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω GW h 2 ∝10 -13 -10 -8 , much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  18. Seven lessons from manyfield inflation in random potentials

    International Nuclear Information System (INIS)

    Dias, Mafalda; Frazer, Jonathan; Marsh, M.C. David

    2017-06-01

    We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the 'transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of 'approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2-100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the 'generic predictions' of single-field inflation can be emergent features of complex inflation models.

  19. Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions

    International Nuclear Information System (INIS)

    Nedelko, Sergei N.; Voronin, Vladimir E.

    2015-01-01

    The ensemble of Euclidean gluon field configurations represented by the domain wall network is considered. A single domain wall is given by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components of the gauge field. The domain wall separates the regions with Abelian self-dual and anti-self-dual fields. The network of the domain wall defects is introduced as a combination of multiplicative and additive superpositions of kinks. The character of the spectrum and eigenmodes of color-charged fluctuations in the presence of the domain wall network is discussed. Conditions for the formation of a stable thick domain wall junction (the chromomagnetic trap) during heavy-ion collisions are discussed, and the spectrum of color-charged quasi-particles inside the trap is evaluated. An important observation is the existence of the critical size L c of a single trap stable against gluon tachyonic modes. The size L c is related to the value of gluon condensate left angle g 2 F 2 right angle. The growth of large lumps of merged chromomagnetic traps and the concept of the confinement-deconfinement transition in terms of the ensemble of domain wall networks are outlined. (orig.)

  20. Instanton geometry and quantum A{sub {infinity}} structure on the elliptic curve

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lerche, W. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Nemeschansky, D. [University of Southern California, Los Angeles, CA (United States). Dept. of Physics

    2006-03-15

    We first determine and then study the complete set of non-vanishing A-model correlation functions associated with the 'long-diagonal branes' on the elliptic curve. We verify that they satisfy the relevant A{sub {infinity}} consistency relations at both classical and quantum levels. In particular we find that the A{sub {infinity}} relation for the annulus provides a reconstruction of annulus instantons out of disk instantons. We note in passing that the naive application of the Cardy-constraint does not hold for our correlators, confirming expectations. Moreover, we analyze various analytical properties of the correlators, including instanton flops and the mixing of correlators with different numbers of legs under monodromy. The classical and quantum A{sub {infinity}} relations turn out to be compatible with such homotopy transformations. They lead to a non-invariance of the effective action under modular transformations, unless compensated by suitable contact terms which amount to redefinitions of the tachyon fields. (orig.)

  1. Brane-antibrane systems at finite temperature and phase transition near the Hagedorn temperature

    International Nuclear Information System (INIS)

    Hotta, Kenji

    2002-01-01

    In order to study the thermodynamic properties of brane-antibrane systems, we compute the finite temperature effective potential of tachyon T in this system on the basis of boundary string field theory. At low temperature, the minimum of the potential shifts towards T=0 as the temperature increases. In the D9-anti-D9 case, the sign of the coefficient of vertical bar T vertical bar 2 term of the potential changes slightly below the Hagedorn temperature. This means that a phase transition occurs near the Hagedorn temperature. On the other hand, the coefficient is kept negative in the Dp-anti-Dp case with p≤8, and thus a phase transition does not occur. This leads us to the conclusion that only a D9-anti-D9 pair and no other (lower dimensional) brane-antibrane pairs are created near the Hagedorn temperature. We also discuss a phase transition in NS9B-anti-NS9B case as a model of the Hagedorn transition of closed strings. (author)

  2. Inflation as de Sitter instability

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano; Franzin, Edgardo [Universita di Cagliari, Cittadella Universitaria, Dipartimento di Fisica, Monserrato (Italy); INFN, Sezione di Cagliari, Monserrato (Italy); Mignemi, Salvatore [INFN, Sezione di Cagliari, Monserrato (Italy); Universita di Cagliari, Dipartimento di Matematica e Informatica, Cagliari (Italy)

    2016-09-15

    We consider cosmological inflation generated by a scalar field slowly rolling off from a de Sitter maximum of its potential. The models belong to the class of hilltop models and represent the most general model of this kind in which the scalar potential can be written as the sum of two exponentials. The minimally coupled Einstein-scalar gravity theory obtained in this way is the cosmological version of a two-scale generalization of known holographic models, allowing for solitonic solutions interpolating between an AdS spacetime in the infrared and scaling solutions in the ultraviolet. We then investigate cosmological inflation in the slow-roll approximation. Our model reproduces correctly, for a wide range of its parameters, the most recent experimental data for the power spectrum of primordial perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton, turns out to be seven to eight orders of magnitude smaller than the Planck mass. (orig.)

  3. Unifying inflation with late-time acceleration by a BIonic system

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Setare, Mohammad Reza, E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Pradhan, Anirudh, E-mail: pradhan@iucaa.ernet.in [Department of Mathematics, Institute of Applied Sciences & Humanities, GLA University, Mathura-281 406, U.P. (India); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Universitá di Napoli “Federico II”, I-80126 Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Edificio G, I-80126 Napoli (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi, 7, I-67100 L' Aquila (Italy); Sardar, Iftikar Hossain, E-mail: iftikar.spm@gmail.com [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India)

    2015-07-30

    We propose a cosmological model that unifies inflation, deceleration and acceleration phases of expansion history by a BIonic system. At the beginning, there are k black fundamental strings that transited to the BIon configuration at a given corresponding point. Here, two coupled universes, brane and antibrane, are created interacting each other through a wormhole and inflate. With decreasing temperature, the energy of this wormhole flows into the universe branes and leads to inflation. After a short time, the wormhole evaporates, the inflation ends and a deceleration epoch starts. By approaching the brane and antibrane universes together, a tachyon is born, grows and causes the creation of a new wormhole. At this time, the brane and antibrane universes result connected again and the late-time acceleration era of the universe begins. We compare our model with previous unified phantom models and observational data obtaining some cosmological parameters like temperature in terms of time. We also find that deceleration parameter is negative during inflation and late-time acceleration epochs, while it is positive during the deceleration era. This means that the model is consistent, in principle, with cosmological observations.

  4. Non-Abelian magnetized blackholes and unstable attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mosaffa, A.E. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: mosaffa@theory.ipm.ac.ir; Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11 34014, Trieste (Italy)], E-mail: seif@ictp.trieste.it; Sheikh-Jabbari, M.M. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@theory.ipm.ac.ir

    2008-01-21

    Fluctuations of non-Abelian gauge fields in a background magnetic charge contain 'tachyonic' modes which as we will show cause an instability of the background. We extend this result to the cases where the background charge (flux) is coupled to four-dimensional Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of (colored) Reissner-Nordstroem blackholes or the AdS{sub 2}xS{sup 2}, are also unstable unless the flux assumes its smallest allowed value, in which case the configuration is stable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes, with the exception of the minimally charged stable ones.

  5. Fluxbrane Inflation

    CERN Document Server

    Hebecker, Arthur; Lust, Dieter; Steinfurt, Stephan; Weigand, Timo

    2012-01-01

    As a first step towards inflation in genuinely F-theoretic setups, we propose a scenario where the inflaton is the relative position of two 7-branes on holomorphic 4-cycles. Non-supersymmetric gauge flux induces an attractive inter-brane potential. The latter is sufficiently flat in the supergravity regime of large volume moduli. Thus, in contrast to brane-antibrane inflation, fluxbrane inflation does not require warping. We calculate the inflaton potential both in the supergravity approximation and via an open-string one-loop computation on toroidal backgrounds. This leads us to propose a generalisation to genuine Calabi-Yau manifolds. We also comment on competing F-term effects. The end of inflation is marked by the condensation of tachyonic recombination fields between the 7-branes, triggering the formation of a bound state described as a stable extension along the 7-brane divisor. Hence our model fits in the framework of hybrid D-term inflation. We work out the main phenomenological properties of our D-te...

  6. Brane classical and quantum cosmology from an effective action

    International Nuclear Information System (INIS)

    Seahra, Sanjeev S.; Sepangi, H.R.; Ponce de Leon, J.

    2003-01-01

    Motivated by the Randall-Sundrum braneworld scenario, we discuss the classical and quantum dynamics of a (d+1)-dimensional boundary wall between a pair of (d+2)-dimensional topological Schwarzschild-AdS black holes. We assume there are quite general--but not completely arbitrary--matter fields living on the boundary 'brane universe', and that its geometry is that of a Friedmann-Lemaitre-Robertson-Walker (FLRW) model. The effective action governing the model in the minisuperspace approximation is derived. We find that the presence of black hole horizons in the bulk gives rise to a complex action for certain classically allowed brane configurations, but that the imaginary contribution plays no role in the equations of motion. Classical and instanton brane trajectories are examined in general and for special cases, and we find a subset of configuration space that is not allowed at the classical or semiclassical level; this subset corresponds to spacelike branes carrying tachyonic matter. The Hamiltonization and Dirac quantization of the model is then performed for the general case; the latter involves the manipulation of the Hamiltonian constraint before it is transformed into an operator that annihilates physical state vectors. The ensuing covariant Wheeler-DeWitt equation is examined at the semiclassical level, and we consider the possible localization of the brane universe's wave function away from the cosmological singularity. This is easier to achieve for branes with low density and/or spherical spatial sections

  7. Against tachyophobia

    International Nuclear Information System (INIS)

    Ellis, John; Lebedev, Oleg; Giedt, Joel; Olive, Keith; Srednicki, Mark

    2008-01-01

    We examine the possible extension of the parameter space of the minimal supersymmetric extension of the standard model (MSSM), as expressed via the renormalization-group equations in terms of universal soft supersymmetry-breaking terms at the unification scale, to include tachyonic input scalar masses. Many models with negative masses-squared for scalars at the unification scale may be viable because the small sizes of the masses-squared allow them to change signs during the renormalization-group evolution to the electroweak scale. However, in many cases, there is, in addition to the electroweak vacuum, a much deeper high-scale vacuum located along some F- and D-flat direction in the effective potential for the MSSM. We perform a numerical search for such vacua in both the constrained MSSM (CMSSM) and a variant with nonuniversal Higgs masses (NUHM). We discuss the circumstances under which the existence of such a deep charge- and color-breaking vacuum is consistent with standard cosmology. A crucial role is played by the inflation-induced scalar masses, whereas thermal effects are often irrelevant.

  8. Discussion on massive gravitons and propagating torsion in arbitrary dimensions

    International Nuclear Information System (INIS)

    Hernaski, C.A.; Vargas-Paredes, A.A.; Helayel-Neto, J.A.

    2009-01-01

    Full text. Massive gravity has been an issue of particular interest since the early days of Quantum Gravity. More recently, in connection with models based on brane-world scenarios, the discussion of massive gravitons is drawing a great deal of attention, in view of the possibility of their production at LHC and the feasibility of detection of quantum gravity effects at the TeV scale. In this paper, we reassess a particular R 2 -type gravity action in D dimensions, recently studied by Nakasone and Oda, taking now torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is non-propagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions. To make this we construct a complete basis of operators that projects the degrees of freedom of the dynamical fields of the model in their irreducible spin decomposition. The outcome is that we find a set of Lagrangians with a massive graviton that, in D=4, reproduce those already studied in the literature. (author)

  9. N=2→0 super no-scale models and moduli quantum stability

    Directory of Open Access Journals (Sweden)

    Costas Kounnas

    2017-06-01

    Full Text Available We consider a class of heterotic N=2→0 super no-scale Z2-orbifold models. An appropriate stringy Scherk–Schwarz supersymmetry breaking induces tree level masses to all massless bosons of the twisted hypermultiplets and therefore stabilizes all twisted moduli. At high supersymmetry breaking scale, the tachyons that occur in the N=4→0 parent theories are projected out, and no Hagedorn-like instability takes place in the N=2→0 models (for small enough marginal deformations. At low supersymmetry breaking scale, the stability of the untwisted moduli is studied at the quantum level by taking into account both untwisted and twisted contributions to the 1-loop effective potential. The latter depends on the specific branch of the gauge theory along which the background can be deformed. We derive its expression in terms of all classical marginal deformations in the pure Coulomb phase, and in some mixed Coulomb/Higgs phases. In this class of models, the super no-scale condition requires having at the massless level equal numbers of untwisted bosonic and twisted fermionic degrees of freedom. Finally, we show that N=1→0 super no-scale models are obtained by implementing a second Z2 orbifold twist on N=2→0 super no-scale Z2-orbifold models.

  10. Magnetic flux tube models in superstring theory

    CERN Document Server

    Russo, Jorge G

    1996-01-01

    Superstring models describing curved 4-dimensional magnetic flux tube backgrounds are exactly solvable in terms of free fields. We consider the simplest model of this type (corresponding to `Kaluza-Klein' Melvin background). Its 2d action has a flat but topologically non-trivial 10-dimensional target space (there is a mixing of angular coordinate of the 2-plane with an internal compact coordinate). We demonstrate that this theory has broken supersymmetry but is perturbatively stable if the radius R of the internal coordinate is larger than R_0=\\sqrt{2\\a'}. In the Green-Schwarz formulation the supersymmetry breaking is a consequence of the presence of a flat but non-trivial connection in the fermionic terms in the action. For R R/2\\a' there appear instabilities corresponding to tachyonic winding states. The torus partition function Z(q,R) is finite for R > R_0 (and vanishes for qR=2n, n=integer). At the special points qR=2n (2n+1) the model is equivalent to the free superstring theory compactified on a circle...

  11. Entropy, baryon asymmetry and dark matter from heavy neutrino decays

    International Nuclear Information System (INIS)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2011-01-01

    The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous B-L breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10 -5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.

  12. Consistent boundary conditions for open strings

    International Nuclear Information System (INIS)

    Lindstroem, Ulf; Rocek, Martin; Nieuwenhuizen, Peter van

    2003-01-01

    We study boundary conditions for the bosonic, spinning (NSR) and Green-Schwarz open string, as well as for (1+1)-dimensional supergravity. We consider boundary conditions that arise from (1) extremizing the action, (2) BRST, rigid or local supersymmetry, or κ(Siegel)-symmetry of the action, (3) closure of the set of boundary conditions under the symmetry transformations, and (4) the boundary limits of bulk Euler-Lagrange equations that are 'conjugate' to other boundary conditions. We find corrections to Neumann boundary conditions in the presence of a bulk tachyon field. We discuss a boundary superspace formalism. We also find that path integral quantization of the open string requires an infinite tower of boundary conditions that can be interpreted as a smoothness condition on the doubled interval; we interpret this to mean that for a path-integral formulation of open strings with only Neuman boundary conditions, the description in terms of orientifolds is not just natural, but is actually fundamental

  13. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans-Dicke cosmology

    International Nuclear Information System (INIS)

    Chattopadhyay, Surajit; Pasqua, Antonio; Khurshudyan, Martiros

    2014-01-01

    Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ D = (3φ 2 )/(4ω)(μH 2 + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ D in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)

  14. Brane Bremsstrahlung in DBI Inflation

    CERN Document Server

    Brax, Philippe

    2010-01-01

    We consider the effect of trapped branes on the evolution of a test brane whose motion generates DBI inflation along a warped throat. The coupling between the inflationary brane and a trapped brane leads to the radiation of non-thermal particles on the trapped brane. We calculate the Gaussian spectrum of the radiated particles and their backreaction on the DBI motion of the inflationary brane. Radiation occurs for momenta lower than the speed of the test brane when crossing the trapped brane. The slowing down effect is either due to a parametric resonance when the interaction time is small compared to the Hubble time or a tachyonic resonance when the interaction time is large. In both cases the motion of the inflationary brane after the interaction is governed by a chameleonic potential,which tends to slow it down. We find that a single trapped brane can hardly slow down a DBI inflaton whose fluctuations lead to the Cosmic Microwave Background spectrum. A more drastic effect is obtained when the DBI brane enc...

  15. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans-Dicke cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Surajit [Pailan College of Management and Technology, Kolkata (India); Pasqua, Antonio [University of Trieste, Department of Physics, Trieste (Italy); Khurshudyan, Martiros [Yerevan State University, Department of Theoretical Physics, Yerevan (Armenia); Potsdam-Golm Science Park, Max Planck Institute of Colloids and Interfaces, Potsdam (Germany)

    2014-09-15

    Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ{sub D} = (3φ{sup 2})/(4ω)(μH{sup 2} + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ{sub D} in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)

  16. Progress report for a research program in theoretical high energy physics

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Jevicki, A.; Kang, Kyungsik; Tan, Chung-I.

    1988-01-01

    This year's research has dealt with: galaxy and cluster from formation with and proton decay catalyzed by cosmic strings; dynamics of inflationary models; the contraction of gauge groups; the narrow e + e/sup /minus// and two photon peaks in heavy ion scattering; the application of the strong coupling-by-infrared extraction method and the strong coupling approximation or ordered exponentials; the operator construction of the interacting superstring theory; S-matrix formalism for the effective action in strings; general σ-model with general non-renormalizable interactions; gauge models that include the axion and majoron; high energy hadron-hadron scattering models; axion emission from supernova; flavor symmetry and mixings; a nonperturbative study of QCD; finite-temperature structure of superstring theories; rising total cross-sections in the dual parton model; a new class of solutions to the open-bosonic-string field equations; tachyons and perturbative unitarity; closed string field theory from an on-shell effective action; 2-dimensional conformal field theories and non-linear σ-models describing strings. 16 refs

  17. Preheating in new inflation

    International Nuclear Information System (INIS)

    Desroche, Mariel; Felder, Gary N.; Kratochvil, Jan M.; Linde, Andrei

    2005-01-01

    During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We investigate preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field into other particles, which can be described by the perturbative approach to reheating after inflation. The resulting reheating temperature typically is rather low

  18. Tree-level stability without spacetime fermions: novel examples in string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Niarchos, Vasilis

    2007-01-01

    Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory

  19. On Closed Timelike Curves and Warped Brane World Models

    Directory of Open Access Journals (Sweden)

    Slagter Reinoud Jan

    2013-09-01

    Full Text Available At first glance, it seems possible to construct in general relativity theory causality violating solutions. The most striking one is the Gott spacetime. Two cosmic strings, approaching each other with high velocity, could produce closed timelike curves. It was quickly recognized that this solution violates physical boundary conditions. The effective one particle generator becomes hyperbolic, so the center of mass is tachyonic. On a 5-dimensional warped spacetime, it seems possible to get an elliptic generator, so no obstruction is encountered and the velocity of the center of mass of the effective particle has an overlap with the Gott region. So a CTC could, in principle, be constructed. However, from the effective 4D field equations on the brane, which are influenced by the projection of the bulk Weyl tensor on the brane, it follows that no asymptotic conical space time is found, so no angle deficit as in the 4D counterpart model. This could also explain why we do not observe cosmic strings.

  20. Catoptric tadpoles

    International Nuclear Information System (INIS)

    Atick, J.J.; Moore, G.; Sen, A.

    1988-01-01

    Fermionic string perturbation theory is known to suffer from an ambiguity in the form of a total derivative in the moduli space. For a class of backgrounds (including R 10 , orbifolds and theories with no U(1) factors in gauge group) we show that these ambiguities for the partition function of heterotic string theory at any genus are proportional to massless physical tadpoles in the theory at lower genera and hence vanish in stable vacua. We also find that in R 10 the cosmological constant at a given genus is proportional to the cosmological constant at lower genera. This enables us to give an inductive argument for the vanishing of the cosmological constant in R 10 to all orders in string perturbation theory. We also address the ambiguity and finiteness of n-point functions. Our results indicate that in R 10 the ambiguity can be absorbed by a renormalization of the string coupling constant and the string tension. The expected sources of divergence in the n-point function in arbitrary tachyon-free backgrounds, besides the usual infrared divergences for d≤4, are shown to be proportional to tadpoles of physical massless fields. For type II strings in arbitrary backgrounds, we show by explicit calculations that the ambiguity vanishes at g=2. (orig.)

  1. Seven lessons from manyfield inflation in random potentials

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Mafalda; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Marsh, M.C. David [Cambridge Univ. (United Kingdom). Dept. of Appllied Mathematics and Theoretical Physics

    2017-06-15

    We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the 'transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of 'approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2-100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the 'generic predictions' of single-field inflation can be emergent features of complex inflation models.

  2. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  3. Anatomy of new SUSY breaking holographic RG flows

    Energy Technology Data Exchange (ETDEWEB)

    Argurio, Riccardo [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [International Center of Theoretical Physics (ICTP),Strada Costiera 11, I 34014 Trieste (Italy); Redigolo, Diego [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France)

    2015-03-17

    We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1){sub R} symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1){sub F} symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are spontaneously broken, and their lifting when the breaking is explicit. We further comment on the application of such class of backgrounds as archetypes of strongly coupled hidden sectors for gauge mediation of supersymmetry breaking. In particular, we show that it is possible to model in this way all types of hierarchies between the visible sector gaugino and sfermion masses.

  4. Relativistic particles with rigidity and torsion in D = 3 spacetimes

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel; Javaloyes, Miguel Angel; Lucas, Pascual

    2005-01-01

    Models describing relativistic particles, where Lagrangian densities depend linearly on both the curvature and the torsion of the trajectories, are revisited in D = 3 Lorentzian spacetimes with constant curvature. The moduli spaces of trajectories are completely and explicitly determined. Trajectories are Lancret curves including ordinary helices. To get the geometric integration of the solutions, we design algorithms that essentially involve the Lancret program as well as the notions of scrolls and Hopf tubes. The most interesting and consistent models appear in anti-de Sitter spaces, where the Hopf mappings, both the standard and the Lorentzian ones, play an important role. The moduli subspaces of closed solitons in anti-de Sitter settings are also obtained. Our main tool is the isoperimetric inequality in the hyperbolic plane. The mass spectra of these models are also obtained. The main characteristic of the anti-de Sitter space comes from the presence of real gravity, which becomes essential to find some system with only massive states. This fact, on one hand, has no equivalent in flat spaces, where spectra necessarily present tachyonic sectors and, on the other hand, solves an early stated problem

  5. The “Theoreticals” Pack

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The Particle Zoo is a colourful set of hand-made soft toys representing the particles in the Standard Model and beyond. It includes a “theoreticals” pack where you can find yet undiscovered particles: the best-selling Higgs boson, the graviton, the tachyon, and dark matter. Supersymmetric particle soft toys are also available on demand. But what would happen to the zoo if Nature had prepared some unexpected surprises? Julie Peasley, the zookeeper, is ready to sew new smiling faces…   The "Theoreticals" pack in the Particle Zoo. There is only one place in the world where you can buy a smiling Higgs boson and it’s not at CERN, although this is where scientists hope to observe it. The blue star-shaped particle is the best seller of Julie Peasley’s Particle Zoo – a collection of tens of soft toys representing all sorts of particles, including composite and decaying particles.  Over the years Julie’s zoo ...

  6. Cosmological constant--the weight of the vacuum

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2003-01-01

    Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(Gℎ/c 3 )∼10 -123 . This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1-6) and field theoretical (Sections 7-11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, ...) from different perspectives. The latter part of the review (Sections 7-11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem

  7. Universality in all-{alpha}{sup Prime} order corrections to BPS/non-BPS brane world volume theories

    Energy Technology Data Exchange (ETDEWEB)

    Hatefi, Ehsan, E-mail: ehatefi@ictp.it [International Centre for Theoretical Physics, Strada Costiera 11, Trieste (Italy); Park, I.Y., E-mail: inyongpark05@gmail.com [Department of Natural and Physical Sciences, Philander Smith College, Little Rock, AR 72223 (United States)

    2012-11-21

    Knowledge of all-{alpha}{sup Prime} higher derivative corrections to leading order BPS and non-BPS brane actions would serve in future endeavor of determining the complete form of the non-abelian BPS and tachyonic effective actions. In this paper, we note that there is a universality in the all-{alpha}{sup Prime} order corrections to BPS and non-BPS branes. We compute amplitudes between one Ramond-Ramond C-field vertex operator and several SYM gauge/scalar vertex operators. Specifically, we evaluate in closed form string correlators of two-point amplitudes A{sup C{phi}}, A{sup CA}, a three-point amplitude A{sup C{phi}{phi}}, and a four-point amplitude A{sup C{phi}{phi}{phi}}. We carry out pole and contact term analysis. In particular we reproduce some of the contact terms and the infinite massless poles of A{sup C{phi}{phi}{phi}} by SYM vertices obtained through the universality.

  8. Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Teper, Michael

    2016-01-01

    We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l"γ) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.

  9. Exploring AdS waves via nonminimal coupling

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2006-01-01

    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS space restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal-coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal-coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a nonperturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity

  10. Stringy horizons II

    Energy Technology Data Exchange (ETDEWEB)

    Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Kutasov, David [EFI and Department of Physics, University of Chicago,5640 S. Ellis Av., Chicago, IL 60637 (United States)

    2016-10-28

    We show that the spectrum of normalizable states on a Euclidean SL(2, R)/U(1) black hole exhibits a duality between oscillator states and wound strings. This duality generalizes the identification between a normalizable mode of dilaton gravity on the cigar and a mode of the tachyon with winding number one around the Euclidean time circle, which plays an important role in the FZZ correspondence. It implies that normalizable states on a large Euclidean black hole have support at widely separated scales. In particular, localized states that are extended over the cap of the cigar (the Euclidian analog of the black hole atmosphere) have a component that is localized near the tip of the cigar (the analog of the stretched horizon). As a consequence of this duality, the states exhibit a transition as a function of radial excitation level. From the perspective of a low energy probe, low lying states are naturally thought of as oscillator states in the black hole atmosphere, while at large excitation level they are naturally described as wound strings. As the excitation level increases, the size of the states first decreases and then increases. This behavior is expected to be a general feature of black hole horizons in string theory.

  11. Complex geometry and quantum string theory

    International Nuclear Information System (INIS)

    Belavin, A.A.; Knizhnik, V.G.

    1986-01-01

    Summation over closed oriented surfaces of genus p ≥ 2 (p - loop vacuum amplitudes in boson string theory) in a critical dimensions D=26 is reduced to integration over M p space of complex structures of Riemann surfaces of genus p. The analytic properties of the integration measure as a function of the complex coordinates on M p are studied. It is shown that the measure multiplied by (det Im τ-circumflex) 13 (τ-circumflex is the surface period matrix) is the square of the modulus of a function which is holomorphic on M p and does not vanish anywhere. The function has a second order pole at infinity of compactified space of moduli M p . These properties define the measure uniquely up to a constant multiple and this permits one to set up explicitformulae for p=2,3 in terms of the theta-constants. Power and logarithmic divergences connected with renormalization of the tachyon wave function and of the slope respectively are involved in the theory. Quantum geometry of critical strings turns out to be a complex geometry

  12. Rolling down the throat in NS5-brane background: the case of electrified D-brane

    International Nuclear Information System (INIS)

    Nakayama, Yu; Takayanagi, Hiromitsu; Panigrahi, Kamal L.; Rey, Soo-Jong

    2005-01-01

    We study rolling radion dynamics of electrified D-brane in NS5-brane background, both in effective field theory and in full open string theory. We construct exact boundary states and, from them, extract conserved Noether currents. We argue that T-duality and Lorentz boost offer an intuitive approach. In the limit of large number of NS5-branes, both boundary wave functions and conserved currents are sharply peaked and agree with those deduced from the effective field theory. As the number of NS5-branes is reduced, width around the peak becomes wider by string corrections. We also study radiative decay process. By applying Lorentz covariance, we show how the decay of electrified D-brane is related to that of bare D-brane. We compute spectral moments of final state energy and winding quantum number. Using Lorentz covariance argument, we explain in elementary way why winding quantum number should be included and derive rules how to do so. We conclude that Kutasov's 'geometric realization' between radion rolling dynamics and tachyon rolling dynamics holds universally, both for bare and electrified D-branes. (author)

  13. New strings for old Veneziano amplitudes. II. Group-theoretic treatment

    Science.gov (United States)

    Kholodenko, A. L.

    2006-09-01

    In this part of our four parts work we use theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function and amplitudes associated with it can be recovered with help of finite dimensional exactly solvableN=2 supersymmetric quantum mechanical model known earlier from works of Witten, Stone and others. Using the Lefschetz isomorphism theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in the early 50s and 60s and documented in the monograph by Bourbaki. Based on these theorems, we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.

  14. Brane classical and quantum cosmology from an effective action

    Science.gov (United States)

    Seahra, Sanjeev S.; Sepangi, H. R.; Ponce de Leon, J.

    2003-09-01

    Motivated by the Randall-Sundrum braneworld scenario, we discuss the classical and quantum dynamics of a (d+1)-dimensional boundary wall between a pair of (d+2)-dimensional topological Schwarzschild-AdS black holes. We assume there are quite general—but not completely arbitrary—matter fields living on the boundary “brane universe,” and that its geometry is that of a Friedmann-Lemaître-Robertson-Walker (FLRW) model. The effective action governing the model in the minisuperspace approximation is derived. We find that the presence of black hole horizons in the bulk gives rise to a complex action for certain classically allowed brane configurations, but that the imaginary contribution plays no role in the equations of motion. Classical and instanton brane trajectories are examined in general and for special cases, and we find a subset of configuration space that is not allowed at the classical or semiclassical level; this subset corresponds to spacelike branes carrying tachyonic matter. The Hamiltonization and Dirac quantization of the model is then performed for the general case; the latter involves the manipulation of the Hamiltonian constraint before it is transformed into an operator that annihilates physical state vectors. The ensuing covariant Wheeler-DeWitt equation is examined at the semiclassical level, and we consider the possible localization of the brane universe’s wave function away from the cosmological singularity. This is easier to achieve for branes with low density and/or spherical spatial sections.

  15. Non-singular bounce transitions in the multiverse

    International Nuclear Information System (INIS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2013-01-01

    According to classical GR, negative-energy (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by non-singular bounces. Here we explore possible dynamics of such bounces using a simple modification of the Friedmann equation, which ensures that the scale factor bounces when the matter density reaches some critical value ρ c . This is combined with a simple scalar field 'landscape', where the energy barriers between different vacua are small compared to ρ c . We find that the bounce typically results in a transition to another vacuum, with a scalar field displacement Δφ ∼ 1 in Planck units. If the new vacuum is AdS, we have another bounce, and so on, until the field finally transits to a positive-energy (de Sitter) vacuum. We also consider perturbations about the homogeneous solution and discuss some of their amplification mechanisms (e.g., tachyonic instability and parametric resonance). For a generic potential, these mechanisms are much less efficient than in models of slow-roll inflation. But the amplification may still be strong enough to cause the bubble to fragment into a mosaic of different vacua

  16. Non-singular bounce transitions in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, 08028, Barcelona (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2013-11-01

    According to classical GR, negative-energy (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by non-singular bounces. Here we explore possible dynamics of such bounces using a simple modification of the Friedmann equation, which ensures that the scale factor bounces when the matter density reaches some critical value ρ{sub c}. This is combined with a simple scalar field 'landscape', where the energy barriers between different vacua are small compared to ρ{sub c}. We find that the bounce typically results in a transition to another vacuum, with a scalar field displacement Δφ ∼ 1 in Planck units. If the new vacuum is AdS, we have another bounce, and so on, until the field finally transits to a positive-energy (de Sitter) vacuum. We also consider perturbations about the homogeneous solution and discuss some of their amplification mechanisms (e.g., tachyonic instability and parametric resonance). For a generic potential, these mechanisms are much less efficient than in models of slow-roll inflation. But the amplification may still be strong enough to cause the bubble to fragment into a mosaic of different vacua.

  17. Predictions of the quantum landscape multiverse

    Science.gov (United States)

    Mersini-Houghton, Laura

    2017-02-01

    The 2015 Planck data release has placed tight constraints on the class of inflationary models allowed. The current best fit region favors concave downwards inflationary potentials, since they produce a suppressed tensor to scalar index ratio r. Concave downward potentials have a negative curvature {{V}\\prime \\prime} , therefore a tachyonic mass square that drives fluctuations. Furthermore, their use can become problematic if the field rolls in a part of the potential away from the extrema, since the semiclassical approximation of quantum cosmology, used for deriving the most probable wavefunction of the universe from the landscape and for addressing the quantum to classical transition, breaks down away from the steepest descent region. We here propose a way of dealing with such potentials by inverting the metric signature and solving for the wavefunction of the universe in the Euclidean sector. This method allows us to extend our theory of the origin of the universe from a quantum multiverse, to a more general class of concave inflationary potentials where a straightforward application of the semiclassical approximation fails. The work here completes the derivation of modifications to the Newtonian potential and to the inflationary potential, which originate from the quantum entanglement of our universe with all others in the quantum landscape multiverse, leading to predictions of observational signatures for both types of inflationary models, concave and convex potentials.

  18. Instability of the Ackerman-Carroll-Wise model, and problems with massive vectors during inflation

    International Nuclear Information System (INIS)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-01-01

    We prove that the anisotropic inflationary background of the Ackerman-Carroll-Wise model, characterized by a fixed-norm vector field, is unstable. We found the instability by explicitly solving the linearized equations for the most general set of perturbations around this background, and by noticing that the solutions diverge close to horizon crossing. This happens because one perturbation becomes a ghost at that moment. A simplified computation, with only the perturbations of the vector field included, shows the same instability, clarifying the origin of the problem. We then discuss several other models, with a particular emphasis on the case of a nonminimal coupling to the curvature, in which vector fields are used either to support an anisotropic expansion, or to generate cosmological perturbations on an isotropic background. In many cases, the mass squared of the vector needs to be negative; we show that, as a consequence, the longitudinal vector mode is a ghost (a field with negative kinetic term, and negative energy, and not simply a tachyon). We comment on problems that arise at the quantum level. In particular, the presence of a ghost can be a serious difficulty for the UV completion that such models require in the subhorizon regime.

  19. Treatment of Cerenkov radiation from electric and magnetic charges in dispersive and dissipative media

    International Nuclear Information System (INIS)

    Saffouri, M.H.

    1982-07-01

    A rigorous treatment of the problem of Cerenkov radiation from fast moving electric and magnetic charges is presented. This is based on the rigorous solution of Maxwell's equations in a general dispersive medium possessing dielectric and magnetic properties and with, and without, dissipation. It is shown that the fields are completely determined by one scalar function. Expressions for the exact fields are obtained. From the asymptotic fields all the relevant properties of Cerenkov radiation are reproduced. In particular, it is shown that in the absence of dissipation the energy in each mode travels with the phase velocity of that mode. For a dissipative medium the electric field develops a longitudinal component and the energy propagates at an angle to the phase velocity. Application to the case of a Tachyon shows that it must emit Cerenkov radiation in vacuum. An estimate is given for the resulting linear density of emitted radiation. Finally, two suggestions are made for the experimental detection of magnetic charges and electric dipole moments of elementary particles based upon the Cerenkov radiation which they would emit in dispersive media. (author)

  20. Relativistic quantum theory of composite systems

    International Nuclear Information System (INIS)

    Sogami, I.

    1978-01-01

    A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)

  1. Critical behavior and duality in extended Sine-Gordon theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Holman, R.

    1991-01-01

    We study the critical properties of vectorial sine-Gordon theories based on the root system of simply-laced Lie algebras. We introduce the dual operators and study the renormalization aspects of these theories. These models are identified with vectorial Coulomb gas models of electric and magnetic charges and generalized Toda field theories. We prove that these theories are consistently renormalizable for simply-laced Lie algebras, but non-renormalizable in general in the non-simply-laced case. These models provide a description for the statistical mechanics of melting in the SU(3) case. They also provide a simplified model for strings compactified on root lattices. We compute the RG beta functions to quadratic order for general simply-laced algebras and find that in general there is a Weyl singlet, self-dual fixed point. This fixed point describes a critical theory with condensates of electric and magnetic charges corresponding to tachyonic and winding modes in string language. The different phases are related by Weyl and duality symmetry. The phase structure is conjectured in the general case, and analyzed in detail for SU(3) and SO(6). We compute Zamolodchikov's c-function to cubic order in the couplings in the general case and the conformal anomaly at the self-dual fixed point for SU(N). (orig.)

  2. Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Department of Physics, University of Cyprus,POB 20537, 1678 Nicosia (Cyprus); Computation-based Science and Technology Research Center, The Cyprus Institute,20 Kavafi Str., Nicosia 2121 (Cyprus); Teper, Michael [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2016-10-18

    We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l{sup γ}) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.

  3. Gravitational wave background from reheating after hybrid inflation

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-01-01

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm

  4. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  5. Medium generated gap in gravity and a 3D gauge theory

    Science.gov (United States)

    Gabadadze, Gregory; Older, Daniel

    2018-05-01

    It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.

  6. Spacetime representation of topological phononics

    Science.gov (United States)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  7. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  8. Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing

    International Nuclear Information System (INIS)

    Park, Min Jae; Lee, Jae Sung; Kim, Soo Mee; Kang, Ji Yeon; Lee, Dong Soo; Park, Kwang Suk

    2009-01-01

    Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. The preliminary tests for the possibility on virtual machines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify

  9. Vacua of maximal gauged D=3 supergravities

    International Nuclear Information System (INIS)

    Fischbacher, T; Nicolai, H; Samtleben, H

    2002-01-01

    We analyse the scalar potentials of maximal gauged three-dimensional supergravities which reveal a surprisingly rich structure. In contrast to maximal supergravities in dimensions D≥4, all these theories possess a maximally supersymmetric (N=16) ground state with negative cosmological constant Λ 2 gauged theory, whose maximally supersymmetric groundstate has Λ = 0. We compute the mass spectra of bosonic and fermionic fluctuations around these vacua and identify the unitary irreducible representations of the relevant background (super)isometry groups to which they belong. In addition, we find several stationary points which are not maximally supersymmetric, and determine their complete mass spectra as well. In particular, we show that there are analogues of all stationary points found in higher dimensions, among them are de Sitter (dS) vacua in the theories with noncompact gauge groups SO(5, 3) 2 and SO(4, 4) 2 , as well as anti-de Sitter (AdS) vacua in the compact gauged theory preserving 1/4 and 1/8 of the supersymmetries. All the dS vacua have tachyonic instabilities, whereas there do exist nonsupersymmetric AdS vacua which are stable, again in contrast to the D≥4 theories

  10. Cosmological perturbations in antigravity

    Science.gov (United States)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  11. Some Thermodynamic Considerations on the Physical and Quantum Nature of Space and Time

    Science.gov (United States)

    Sohrab, Siavash H.; Piltch, Nancy (Technical Monitor)

    2000-01-01

    It is suggested that the Planck h = m(sub k)c Lambda(sub k) and the Boltzmann k = m(sub k)c nu(sub k)Constants have stochastic foundation. It is further suggested that a body of fluid at equilibrium is composed of a spectrum of molecular clusters (energy levels) the size of which are governed by the Maxwell-Boltzmann distribution function. Brownian motions are attributed to equilibrium between suspensions and molecular clusters. Atomic (molecular) transition between different size atomic- (molecular-) clusters (energy levels) is shown to result in emission/absorption of energy in accordance with Bohr's theory of atomic spectra. Physical space is identified as a tachyonic fluid that is Dirac's stochastic ether or de Broglie's hidden thermostat. Compressibility of physical space, in accordance with Planck's compressible ether, is shown to result in the Lorentz-Fitzgerald contraction, thus providing a causal explanation of relativistic effect in accordance with the perceptions of Poincare and Lorentz. The invariant Schrodinger equation is derived from the invariant Bernoulli equation for incompressible potential flow. Following Heisenberg a temporal uncertainty relation is introduced as Delta(nu(sub Beta)) Delta(Rho(sub Beta)) > = k.

  12. Spontaneous B-L breaking as the origin of the hot early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Schmitz, K.

    2012-03-15

    The decay of a false vacuum of unbroken B-L symmetry is an intriguing and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase yields hybrid inflation, ending in tachyonic preheating. The dynamics of the B - L breaking Higgs field and thermal processes produce an abundance of heavy neutrinos whose decays generate entropy, baryon asymmetry and gravitino dark matter. We study the phase transition for the full supersymmetric Abelian Higgs model. For the subsequent reheating process we give a detailed time-resolved description of all particle abundances. The competition of cosmic expansion and entropy production leads to an intermediate period of constant 'reheating' temperature, during which baryon asymmetry and dark matter are produced. Consistency of hybrid inflation, leptogenesis and gravitino dark matter implies relations between neutrino parameters and superparticle masses, in particular a lower bound on the gravitino mass of 10 GeV.

  13. A minimal supersymmetric model of particle physics and the early universe

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-11-01

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.

  14. Entropy, baryon asymmetry and dark matter from heavy neutrino decays

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2011-04-15

    The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by lepto- genesis for characteristic neutrino mass parameters. We nd that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous B-L breaking. A quantitative analysis leads to contraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10{sup -5} eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter. (orig.)

  15. A minimal supersymmetric model of particle physics and the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-11-15

    We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.

  16. The gravitational wave spectrum from cosmological B-L breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)

    2013-05-15

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  17. Covariant loops and strings in a positive definite Hilbert space

    International Nuclear Information System (INIS)

    Rohrlich, F.

    1977-01-01

    Relativistic loops and strings are defined in the conventional way as solutions of a one-dimensional wave equation with certain boundary conditions and satisfying the orthogonal gauge conditions. Conventional pseudo-Cartesian co-ordinates (rather than null-plane co-ordinates) are used. The creation and annihilation operator four-vector αsub(μ)sup(+) and αsub(m) are required to be spacelike (orthogonal to the total momentum Psup(μ), so that the resulting Fock space is positive definite. This requirements is shown to be mathematically consistent with Poincare' invariance and to impose no additional physical constraints on the system. It can be implemented in a canonical realization of the Poincare' algebra as a condition on a state vectors, or in a noncanonical realization as an operator equation, as is done here. The space is further restricted by the Virasoro conditions to a physical subspace PHI which is of course also positive definite. In this way there arises no critical-dimension problem and Poincare' invariance holds also in 3+1 dimensions. The energy and spin spectra are the same as usual, leading to linear Regge trajectories, except that there are no tachyons and no zero mass states. The leading Regge trajectory has negative intercept

  18. Evading the Lyth bound in hybrid natural inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, A.; Kraus, S.C. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group

    2013-05-15

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter {epsilon} can be sizable during an early period (relevant for the CMB spectrum). Subsequently, {epsilon} quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.

  19. On bidimensional Lagrangian conformal models

    International Nuclear Information System (INIS)

    Lazzarini, S.

    1990-04-01

    The main topic of this thesis is the study of Conformal Field Theories defined on an arbitrary compact Riemann surface without boundary. The Beltrami parametrization of complexe structures endowing such a surface provides a local bidimensional diffeomorphism invariance of the theory and the holomorphic factorization. The perturbative quantization a la Feynman is then constrained by local factorized Ward identities. The renormalization is analysed in the Esptein-Glaser scheme. A first part deals with the simplest free field models where one checks the interesting conjecture that renormalized perturbative expansions could be resumed by a Polyakov's formula which is a Wess-Zumino action for the diffeomorphism anomaly. For a higher genus surface, only a differential version is proposed. The second part of this thesis is devoted to the characterization of some observables of the free bosonic string in the corresponding gauge theory with the aid of the nilpotent Slavnov s-operator. It is conjectured that part of the observables of this theory is labelled by the local cohomology of s modulo d and corresponds to the vertex operators, as it is verified for the tachyon vertex in the conformal gauge [fr

  20. Unity from duality: gravity, gauge theory and strings

    International Nuclear Information System (INIS)

    Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.

    2002-01-01

    The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)

  1. Do sewn up singularities falsify the Palatini cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Krakow (Poland); Stachowski, Aleksander [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Borowiec, Andrzej [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Wojnar, Aneta [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Universita di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica, Naples (Italy)

    2016-10-15

    We investigate further (cf. Borowiec et al. JCAP 1601(01):040, 2016) the Starobinsky cosmological model R + γR{sup 2} in the Palatini formalism with a Chaplygin gas and baryonic matter as a source in the context of singularities. The dynamics reduces to the 2D sewn dynamical system of a Newtonian type (a piece-wise-smooth dynamical system). We demonstrate that the presence of a sewn up freeze singularity (glued freeze type singularities) for the positive γ is, in this case, a generic feature of the early evolution of the universe. It is demonstrated that γ equal zero is a bifurcation parameter and the dynamics qualitatively changes as the γ sign is changing. On the other side for the case of negative γ instead of the big bang the sudden bounce singularity of a finite scale factor does appear and there is a generic class of bouncing solutions. While the Ω{sub γ} > 0 is favored by data only very small values of Ω{sub γ} parameter are allowed if we require agreement with the ΛCDM model. From the statistical analysis of astronomical observations, we deduce that the case of only very small negative values of Ω{sub γ} cannot be rejected. Therefore, observation data favor the universe without the ghost states (f{sup '}(R) > 0) and tachyons (f''(R) > 0). (orig.)

  2. The spectra of type IIB flux compactifications at large complex structure

    International Nuclear Information System (INIS)

    Brodie, Callum; Marsh, M.C. David

    2016-01-01

    We compute the spectra of the Hessian matrix, H, and the matrix M that governs the critical point equation of the low-energy effective supergravity, as a function of the complex structure and axio-dilaton moduli space in type IIB flux compactifications at large complex structure. We find both spectra analytically in an h − 1,2 +3 real-dimensional subspace of the moduli space, and show that they exhibit a universal structure with highly degenerate eigenvalues, independently of the choice of flux, the details of the compactification geometry, and the number of complex structure moduli. In this subspace, the spectrum of the Hessian matrix contains no tachyons, but there are also no critical points. We show numerically that the spectra of H and M remain highly peaked over a large fraction of the sampled moduli space of explicit Calabi-Yau compactifications with 2 to 5 complex structure moduli. In these models, the scale of the supersymmetric contribution to the scalar masses is strongly linearly correlated with the value of the superpotential over almost the entire moduli space, with particularly strong correlations arising for g s <1. We contrast these results with the expectations from the much-used continuous flux approximation, and comment on the applicability of Random Matrix Theory to the statistical modelling of the string theory landscape.

  3. Bosonization and current algebra of spinning strings

    International Nuclear Information System (INIS)

    Stern, A.

    1996-01-01

    We write down a general geometric action principle for spinning strings in d-dimensional Minkowski space, which is formulated without the use of Grassmann coordinates. Instead, it is constructed in terms of the pull-back of a left invariant Maurer-Cartan form on the d-dimensional Poincare group to the world-sheet. The system contains some interesting special cases. Among them are the Nambu string (as well as, null and tachyonic strings) where the spin vanishes, and also the case of a string with a spin current - but no momentum current. We find the general form for the Virasoro generators, and show that they are first class constraints in the Hamiltonian formulation of the theory. The current algebra associated with the momentum and angular momentum densities are shown, in general, to contain rather complicated anomaly terms which obstruct quantization. As expected, the anomalies vanish when one specializes to the case of the Nambu string, and there one simply recovers the algebra associated with the Poincare loop group. We speculate that there exist other cases where the anomalies vanish, and that these cases give the bosonization of the known pseudoclassical formulations of spinning strings. (orig.)

  4. Unifying inflation with late-time acceleration by a BIonic system

    Directory of Open Access Journals (Sweden)

    Alireza Sepehri

    2015-07-01

    Full Text Available We propose a cosmological model that unifies inflation, deceleration and acceleration phases of expansion history by a BIonic system. At the beginning, there are k black fundamental strings that transited to the BIon configuration at a given corresponding point. Here, two coupled universes, brane and antibrane, are created interacting each other through a wormhole and inflate. With decreasing temperature, the energy of this wormhole flows into the universe branes and leads to inflation. After a short time, the wormhole evaporates, the inflation ends and a deceleration epoch starts. By approaching the brane and antibrane universes together, a tachyon is born, grows and causes the creation of a new wormhole. At this time, the brane and antibrane universes result connected again and the late-time acceleration era of the universe begins. We compare our model with previous unified phantom models and observational data obtaining some cosmological parameters like temperature in terms of time. We also find that deceleration parameter is negative during inflation and late-time acceleration epochs, while it is positive during the deceleration era. This means that the model is consistent, in principle, with cosmological observations.

  5. Tensor-to-scalar ratio in punctuated inflation

    International Nuclear Information System (INIS)

    Jain, Rajeev Kumar; Sriramkumar, L.; Chingangbam, Pravabati; Souradeep, Tarun

    2010-01-01

    Recently, we have shown that scalar spectra with lower power on large scales and certain other features naturally occur in punctuated inflation, i.e. the scenario wherein a brief period of rapid roll is sandwiched between two stages of slow roll inflation. Such spectra gain importance due to the fact that they can lead to a better fit of the observed CMB anisotropies, when compared to the conventional, featureless, power law spectrum. In this paper, with examples from the canonical scalar field as well as the tachyonic models, we illustrate that, in punctuated inflation, a drop in the scalar power on large scales is always accompanied by a rise in the tensor power and, hence, an even more pronounced increase in the tensor-to-scalar ratio r on these scales. Interestingly, we find that r actually exceeds well beyond unity over a small range of scales. To our knowledge, this work presents for the first time, examples of single scalar field inflationary models wherein r>>1. This feature opens up interesting possibilities. For instance, we show that the rise in r on large scales translates to a rapid increase in the angular power spectrum, C l BB , of the B-mode polarization of the CMB at the low multipoles. We discuss the observational implications of these results.

  6. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  7. Marginal deformations of vacua with massive boson-fermion degeneracy symmetry

    International Nuclear Information System (INIS)

    Florakis, Ioannis; Kounnas, Costas; Toumbas, Nicolaos

    2010-01-01

    Two-dimensional string vacua with Massive Spectrum boson-fermion Degeneracy Symmetry, [MSDS] d=2 , are explicitly constructed in Type II and Heterotic superstring theories. The study of their moduli space indicates the existence of large marginal deformations that connect continuously the initial [MSDS] d=2 vacua to higher-dimensional conventional superstring vacua, where spacetime supersymmetry is spontaneously broken by geometrical fluxes. We find that the maximally symmetric, [Max:MSDS] d=2 , Type II vacuum, is in correspondence with the maximal, N=8, d=4 'gauged supergravity', where the supergravity gauging is induced by the fluxes. This correspondence is extended to less symmetric cases where the initial MSDS symmetry is reduced by orbifolds: [Z orb :MSDS] d=2 ↔[N≤8:SUGRA] d=4,fluxes . We also exhibit and analyse thermal interpretations of some Euclidean versions of the models and identify classes of MSDS vacua that remain tachyon-free under arbitrary marginal deformations about the extended symmetry point. The connection between the two-dimensional MSDS vacua and the resulting four-dimensional effective supergravities arises naturally within the context of an adiabatic cosmological evolution, where the very early Universe is conjectured to be described by an MSDS vacuum, while at late cosmological times it is described by an effective N=1 supergravity theory with spontaneously broken supersymmetry.

  8. de Sitter vacua in no-scale supergravities and Calabi-Yau string models

    International Nuclear Information System (INIS)

    Covi, L.; Gross, C.; Scrucca, C.A.

    2008-04-01

    We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N = 1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kaehler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the 'sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kaehler potential which break the no-scale property may allow to lift these masses. (orig.)

  9. Warm modified Chaplygin gas shaft inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Ilyas, Amara; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2017-02-15

    In this paper, we examine the possible realization of a new inflation family called ''shaft inflation'' by assuming the modified Chaplygin gas model and a tachyon scalar field. We also consider the special form of the dissipative coefficient Γ = a{sub 0}(T{sup 3})/(φ{sup 2}) and calculate the various inflationary parameters in the scenario of strong and weak dissipative regimes. In order to examine the behavior of inflationary parameters, the n{sub s}-φ, n{sub s}-r, and n{sub s}-α{sub s} planes (where n{sub s}, α{sub s}, r, and φ represent the spectral index, its running, tensor-to-scalar ratio, and scalar field, respectively) are being developed, which lead to the constraints r < 0.11, n{sub s} = 0.96 ± 0.025, and α{sub s} = -0.019 ± 0.025. It is quite interesting that these results of the inflationary parameters are compatible with BICEP2, WMAP (7+9) and recent Planck data. (orig.)

  10. Bayesian evidences for dark energy models in light of current observational data

    Science.gov (United States)

    Lonappan, Anto. I.; Kumar, Sumit; Ruchika; Dinda, Bikash R.; Sen, Anjan A.

    2018-02-01

    We do a comprehensive study of the Bayesian evidences for a large number of dark energy models using a combination of latest cosmological data from SNIa, CMB, BAO, strong lensing time delay, growth measurements, measurements of Hubble parameter at different redshifts and measurements of angular diameter distance by Megamaser Cosmology Project. We consider a variety of scalar field models with different potentials as well as different parametrizations for the dark energy equation of state. Among 21 models that we consider in our study, we do not find strong evidences in favor of any evolving dark energy model compared to Λ CDM . For the evolving dark energy models, we show that purely nonphantom models have much better evidences compared to those models that allow both phantom and nonphantom behaviors. Canonical scalar field with exponential and tachyon field with square potential have highest evidences among all the models considered in this work. We also show that a combination of low redshift measurements decisively favors an accelerating Λ CDM model compared to a nonaccelerating power law model.

  11. World-line quantization of a reciprocally invariant system

    International Nuclear Information System (INIS)

    Govaerts, Jan; Jarvis, Peter D; Morgan, Stuart O; Low, Stephen G

    2007-01-01

    We present the world-line quantization of a system invariant under the symmetries of reciprocal relativity (pseudo-unitary transformations on 'phase-space coordinates' (x μ (τ), p μ (τ)) which preserve the Minkowski metric and the symplectic form, and global shifts in these coordinates, together with coordinate-dependent transformations of an additional compact phase coordinate, θ(τ)). The action is that of free motion over the corresponding Weyl-Heisenberg group. Imposition of the first class constraint, the generator of local time reparametrizations, on physical states enforces identification of the world-line cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(D-1,1)≅U(D-1,1)xH(D), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group (the central extension of the global translation group, with central extension associated with the phase variable θ(τ)). The spacetime spectrum of physical states is identified. Even though for an appropriate range of values the restriction enforced by the cosmological constant projects out negative norm states from the physical gauge invariant spectrum, leaving over spin zero states only, in this purely bosonic setting the mass-squared spectrum is continuous over the entire real line and thus includes a tachyonic branch as well

  12. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  13. DGP specteroscopy

    International Nuclear Information System (INIS)

    Charmousis, Christos; Gregory, Ruth; Kaloper, Nemanja; Padilla, Antonio

    2006-01-01

    We systematically explore the spectrum of gravitational perturbations in codimension-1 DGP braneworlds, and find a 4D ghost on the self-accelerating branch of solutions. The ghost appears for any value of the brane tension, although depending on the sign of the tension it is either the helicity-0 component of the lightest localized massive tensor of mass 0 2 2 for positive tension, the scalar 'radion' for negative tension, or their admixture for vanishing tension. Because the ghost is gravitationally coupled to the brane-localized matter, the self-accelerating solutions are not a reliable benchmark for cosmic acceleration driven by gravity modified in the IR. In contrast, the normal branch of solutions is ghost-free, and so these solutions are perturbatively safe at large distance scales. We further find that when the Z 2 orbifold symmetry is broken, new tachyonic instabilities, which are much milder than the ghosts, appear on the self-accelerating branch. Finally, using exact gravitational shock waves we analyze what happens if we relax boundary conditions at infinity. We find that non-normalizable bulk modes, if interpreted as 4D phenomena, may open the door to new ghost-like excitations

  14. Unifying inflation with late-time acceleration by a BIonic system

    International Nuclear Information System (INIS)

    Sepehri, Alireza; Rahaman, Farook; Setare, Mohammad Reza; Pradhan, Anirudh; Capozziello, Salvatore; Sardar, Iftikar Hossain

    2015-01-01

    We propose a cosmological model that unifies inflation, deceleration and acceleration phases of expansion history by a BIonic system. At the beginning, there are k black fundamental strings that transited to the BIon configuration at a given corresponding point. Here, two coupled universes, brane and antibrane, are created interacting each other through a wormhole and inflate. With decreasing temperature, the energy of this wormhole flows into the universe branes and leads to inflation. After a short time, the wormhole evaporates, the inflation ends and a deceleration epoch starts. By approaching the brane and antibrane universes together, a tachyon is born, grows and causes the creation of a new wormhole. At this time, the brane and antibrane universes result connected again and the late-time acceleration era of the universe begins. We compare our model with previous unified phantom models and observational data obtaining some cosmological parameters like temperature in terms of time. We also find that deceleration parameter is negative during inflation and late-time acceleration epochs, while it is positive during the deceleration era. This means that the model is consistent, in principle, with cosmological observations

  15. Higgs phase in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kaymakcalan, O.S.

    1981-06-01

    A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase

  16. Instability of flat space at finite temperature

    International Nuclear Information System (INIS)

    Gross, D.J.; Perry, M.J.; Yaffe, L.G.

    1982-01-01

    The instabilities of quantum gravity are investigated using the path-integral formulation of Einstein's theory. A brief review is given of the classical gravitational instabilities, as well as the stability of flat space. The Euclidean path-integral representation of the partition function is employed to discuss the instability of flat space at finite temperature. Semiclassical, or saddle-point, approximations are utilized. We show how the Jeans instability arises as a tachyon in the graviton propagator when small perturbations about hot flat space are considered. The effect due to the Schwarzschild instanton is studied. The small fluctuations about this instanton are analyzed and a negative mode is discovered. This produces, in the semiclassical approximation, an imaginary part of the free energy. This is interpreted as being due to the metastability of hot flat space to nucleate black holes. These then evolve by evaporation or by accretion of thermal gravitons, leading to the instability of hot flat space. The nucleation rate of black holes is calculated as a function of temperature

  17. Born–Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born–Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge

  18. Born–Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    International Nuclear Information System (INIS)

    Sepehri, Alireza

    2016-01-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born–Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between

  19. Born-Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    Science.gov (United States)

    Sepehri, Alireza

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between

  20. Hybrid Inflation: Multi-field Dynamics and Cosmological Constraints

    Science.gov (United States)

    Clesse, Sébastien

    2011-09-01

    The dynamics of hybrid models is usually approximated by the evolution of a scalar field slowly rolling along a nearly flat valley. Inflation ends with a waterfall phase, due to a tachyonic instability. This final phase is usually assumed to be nearly instantaneous. In this thesis, we go beyond these approximations and analyze the exact 2-field dynamics of hybrid models. Several effects are put in evidence: 1) the possible slow-roll violations along the valley induce the non existence of inflation at small field values. Provided super-planckian fields, the scalar spectrum of the original model is red, in agreement with observations. 2) The initial field values are not fine-tuned along the valley but also occupy a considerable part of the field space exterior to it. They form a structure with fractal boundaries. Using bayesian methods, their distribution in the whole parameter space is studied. Natural bounds on the potential parameters are derived. 3) For the original model, inflation is found to continue for more than 60 e-folds along waterfall trajectories in some part of the parameter space. The scalar power spectrum of adiabatic perturbations is modified and is generically red, possibly in agreement with CMB observations. Topological defects are conveniently stretched outside the observable Universe. 4) The analysis of the initial conditions is extended to the case of a closed Universe, in which the initial singularity is replaced by a classical bounce. In the third part of the thesis, we study how the present CMB constraints on the cosmological parameters could be ameliorated with the observation of the 21cm cosmic background, by future giant radio-telescopes. Forecasts are determined for a characteristic Fast Fourier Transform Telescope, by using both Fisher matrix and MCMC methods.

  1. Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Domcke, Valerie

    2013-09-15

    The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1){sub B-L} symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.

  2. Fixed point and anomaly mediation in partial {\\boldsymbol{N}}=2 supersymmetric standard models

    Science.gov (United States)

    Yin, Wen

    2018-01-01

    Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N = 2 supersymmetric (SUSY) extension of the standard model which has an N = 2 SUSY sector and an N = 1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N = 2 gauge interaction in the N = 2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of {{U}}{(1)}Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N = 2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.

  3. N=1 supersymmetry and super quantum electrodynamic in Atiyah-Ward space-time

    International Nuclear Information System (INIS)

    Andrade, M.A. de; Cima, O.M. Del; Magalhaes, M.N.P.

    1994-12-01

    The supersymmetric gauge invariant action for the massive Abelian N=1 super-QED 2+2 in the Atiyah-Ward space-time (D=2+2) is formulated. The questions concerning the scheme of the gauge invariance in D=2+2 by means of gauging the massive N=1 super-QED 2+2 are investigated. It is studied how to ensure the gauge invariance at the expenses of the introduction of a complex vector superfield. It is discussed the Wess-Zumino gauge and thereupon we conclude that in this gauge, only the imaginary part of the complex vector field, B μ , gauges a U(1)-symmetry, whereas its real part gauges a Weyl symmetry. It is build up the gauge invariant massive term by introducing four scalar superfields: a pair of chiral and a pair of anti-chiral superfields; the supermultiplets of each pair have opposite U (1)-changes. It is carried out a dimensional reduction a la Scherk of the massive N=1 super-QED 2+2 action from D=2+2 to D=1+2. Truncations are needed in order to suppress unphysical modes and one ends up with a parity-preserving N=1 super QED 1+2 (rather than N=2) in D=1+2 which spectrum is free from tachyons and ghosts at tree-level. Finally it is show that the N=1 super-QED 1+2 obtained is the supersymmetry version of the φ3 QED. (author). 27 refs

  4. Emergence and oscillation of cosmic space by joining M1-branes

    International Nuclear Information System (INIS)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    2016-01-01

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises; how could this model explain the oscillation of the universe between contraction and expansion branches? We try to address this issue in the framework of a BIonic system. In this model, M0-branes join to each other and give rise to a pair of M1-anti-M1-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of M1 and the bulk leading to an expansion of M1-branes. When M1-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To remove these states, M1-branes become compact, the sign of compacted gravity changes, causing anti-gravity to arise: in this case, branes get away from each other. By articulating M1-BIons, an M3-brane and an anti-M3-brane are created and connected by three wormholes forming an M3-BIon. This new system behaves like the initial system and by closing branes to each other, they become compact and, by getting away from each other, they open. Our universe is located on one of these M3-branes and, by compactifying the M3-brane, it contracts and, by opening it, it expands. (orig.)

  5. E10 for beginners

    International Nuclear Information System (INIS)

    Gebert, R.W.; Nicolai, H.

    1995-01-01

    In this contribution, we summarize a recent attempt to understand hyperbolic Kac Moody algebras in terms of the string vertex operator construction. As is well known, Kac Moody algebras fall into one of three classes corresponding to whether the associated Cartan matrices are positive definite, positive semi-definite and indefinite. Of these, the first two are well understood, leading to finite and affine Lie algebras (the latter being equivalent to current algebras in two space-time dimensions). Virtually nothing is known, however, about the last class of Kac Moody algebras, based on indefinite Cartan matrices. Nonetheless these have been repeatedly suggested as natural candidates for the still elusive fundamental symmetry of string theory (see e.g. [24], [28] for recent proposals in this direction). Being vastly larger than affine Kac Moody algebras, they are certainly ''sufficiently big'' for this purpose, but an even more compelling argument supporting such speculations is the intimate link that exists between Kac Moody algebras and the vertex operator construction of string theory which has been known for a long time. More specifically, it has been established that the elements making up a Kac Moody algebra of finite or affine type can be explicitly realized in terms of tachyon and photon emission vertex operators of a compactified open bosonic string [9], [14]. On the basis of these results, it has been conjectured that Kac Moody algebras of indefinite type might not only furnish new symmetries of string theory, but might themselves be understood in terms of string vertex operators associated with the higher excited (massive) states of a compactified bosonic string [14], [8]. (orig.)

  6. A fundamental special-relativistic theory valid for all real-valued speeds

    Directory of Open Access Journals (Sweden)

    Vedprakash Sewjathan

    1984-01-01

    Full Text Available This paper constitutes a fundamental rederivation of special relativity based on the c-invariance postulate but independent of the assumption ds′2=±ds2 (Einstein [1], Kittel et al [2], Recami [3], the equivalence principle, homogeneity of space-time, isotropy of space, group properties and linearity of space-time transformations or the coincidence of the origins of inertial space-time frames. The mathematical formalism is simpler than Einstein's [4] and Recami's [3]. Whilst Einstein's subluminal and Recami's superluminal theories are rederived in this paper by further assuming the equivalence principle and “mathematical inverses” [4,3], this paper derives (independent of these assumptions with physico-mathematical motivation an alternate singularity-free special-relativistic theory which replaces Einstein's factor [1/(1−V2/c2]12 and Recami's extended-relativistic factor [1/(V2/c2−1]12 by [(1−(V2/c2n/(1−V2/c2]12, where n equals the value of (m(V/m02 as |V|→c. In this theory both Newton's and Einstein's subluminal theories are experimentally valid on account of negligible terms. This theory implies that non-zero rest mass luxons will not be detected as ordinary non-zero rest mass bradyons because of spatial collapse, and non-zero rest mass tachyons are undetectable because they exist in another cosmos, resulting in a supercosmos of matter, with the possibility of infinitely many such supercosmoses, all moving forward in time. Furthermore this theory is not based on any assumption giving rise to the twin paradox controversy. The paper concludes with a discussion of the implications of this theory for general relativity.

  7. Noncommutative solitons

    International Nuclear Information System (INIS)

    Gopakumar, R.

    2002-01-01

    Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect

  8. Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)

    2015-05-13

    Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.

  9. N=1 supersymmetry and super quantum electrodynamic in Atiyah-Ward space-time

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.A. de; Cima, O.M. Del; Magalhaes, M.N.P.

    1994-12-01

    The supersymmetric gauge invariant action for the massive Abelian N=1 super-QED{sub 2+2} in the Atiyah-Ward space-time (D=2+2) is formulated. The questions concerning the scheme of the gauge invariance in D=2+2 by means of gauging the massive N=1 super-QED{sub 2+2} are investigated. It is studied how to ensure the gauge invariance at the expenses of the introduction of a complex vector superfield. It is discussed the Wess-Zumino gauge and thereupon we conclude that in this gauge, only the imaginary part of the complex vector field, B{sub {mu}}, gauges a U(1)-symmetry, whereas its real part gauges a Weyl symmetry. It is build up the gauge invariant massive term by introducing four scalar superfields: a pair of chiral and a pair of anti-chiral superfields; the supermultiplets of each pair have opposite U (1)-changes. It is carried out a dimensional reduction a la Scherk of the massive N=1 super-QED{sub 2+2} action from D=2+2 to D=1+2. Truncations are needed in order to suppress unphysical modes and one ends up with a parity-preserving N=1 super QED{sub 1+2} (rather than N=2) in D=1+2 which spectrum is free from tachyons and ghosts at tree-level. Finally it is show that the N=1 super-QED{sub 1+2} obtained is the supersymmetry version of the {sub {phi}3} QED. (author). 27 refs.

  10. Signatures of graviton masses on the CMB

    Science.gov (United States)

    Brax, Philippe; Cespedes, Sebastian; Davis, Anne-Christine

    2018-03-01

    The impact of the existence of gravitons with non-vanishing masses on the B-modes of the Cosmic Microwave Background (CMB) is investigated. We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the CMB and then could be easily constrained. For the case of massive gravity, we show analytically how the B-modes are sourced in a manner differing from the massless case leading to a plateau at low l in the CMB spectrum. We also study the case when there are more than one graviton, and when pressure instabilities are present. The latter would occur in doubly coupled bigravity in the radiation era. We focus on the case where a massless graviton becomes tachyonic in the radiation era whilst a massive one remains stable. As the unstable mode decouples from matter in the radiation era, we find that the effects of the instability is largely reduced on the spectrum of B-modes as long as the unstable graviton does not grow into the non-linear regime. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low l plateau together with a shifted position for the first few peaks compared to a purely massive graviton spectrum, a shift which depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.

  11. COSMOS-e{sup '}-soft Higgsotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-07-15

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R{sup 2} gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δN formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness. (orig.)

  12. D-brane propagation in two-dimensional black hole geometries

    International Nuclear Information System (INIS)

    Nakayama, Yu; Rey, Soo-Jong; Sugawara, Yuji

    2005-01-01

    We study propagation of D0-brane in two-dimensional lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the lorentzian D0-brane is formally constructible via Wick rotation from that of the euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k = 1 (k = 3 for the bosonic case), exposing the 'string - black hole transition' therein

  13. Constructing warm inflationary model in brane–antibrane system

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Sepehri, A., E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Kamali, V., E-mail: Vkamali@basu.ac.ir [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)

    2014-07-30

    Recently, various observational data predicted a possibility that inflation may naturally occur in a warm region. In this scenario, radiation is produced during the inflation epoch and reheating is avoided. The main question arises as to what is the origin of warm inflation in 4D universe? We answer this question in brane–antibrane system. We propose a model that allows all cosmological parameters like the scale factor a, the Hubble parameter H and phantom energy density depend on the equation of state parameter in transverse dimension between two branes. Thus, an enhancement in these parameters can be a signature of some evolutions in extra dimension. In our model, the expansion of 4D universe is controlled by the separation distance between branes and evolves from non-phantom phase to phantom one. Consequently, phantom-dominated era of the universe accelerates and ends up in big-rip singularity. Also, we show that as the tachyon potential increases, the effect of interaction between branes on the 4D universe expansion becomes systematically more effective, because at higher energies there exist more channels for flowing energy from extra dimension to other four dimensions. Finally, we test our model against WMAP and Planck data and obtain the ripping time. According to experimental data, N≃50 case leads to n{sub s}≃0.96, where N and n{sub s} are the number e-folds and the spectral index respectively. This standard case may be found in 0.01

  14. Emergence and oscillation of cosmic space by joining M1-branes

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza [Shahid Bahonar University, Faculty of Physics, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Capozziello, Salvatore [Universita di Napoli Federico II, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Tomsk State Pedagogical University, Tomsk (Russian Federation); INFN Sezione di Napoli, Naples (Italy); Ali, Ahmed Farag [Benha University, Department of Physics, Faculty of Science, Benha (Egypt); Pradhan, Anirudh [G L A University, Department of Mathematics, Institute of Applied Sciences and Humanities, Mathura, Uttar Pradesh (India)

    2016-05-15

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises; how could this model explain the oscillation of the universe between contraction and expansion branches? We try to address this issue in the framework of a BIonic system. In this model, M0-branes join to each other and give rise to a pair of M1-anti-M1-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of M1 and the bulk leading to an expansion of M1-branes. When M1-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To remove these states, M1-branes become compact, the sign of compacted gravity changes, causing anti-gravity to arise: in this case, branes get away from each other. By articulating M1-BIons, an M3-brane and an anti-M3-brane are created and connected by three wormholes forming an M3-BIon. This new system behaves like the initial system and by closing branes to each other, they become compact and, by getting away from each other, they open. Our universe is located on one of these M3-branes and, by compactifying the M3-brane, it contracts and, by opening it, it expands. (orig.)

  15. Topics in conformal invariance and generalized sigma models

    International Nuclear Information System (INIS)

    Bernardo, L.M.; Lawrence Berkeley National Lab., CA

    1997-05-01

    This thesis consists of two different parts, having in common the fact that in both, conformal invariance plays a central role. In the first part, the author derives conditions for conformal invariance, in the large N limit, and for the existence of an infinite number of commuting classical conserved quantities, in the Generalized Thirring Model. The treatment uses the bosonized version of the model. Two different approaches are used to derive conditions for conformal invariance: the background field method and the Hamiltonian method based on an operator algebra, and the agreement between them is established. The author constructs two infinite sets of non-local conserved charges, by specifying either periodic or open boundary conditions, and he finds the Poisson Bracket algebra satisfied by them. A free field representation of the algebra satisfied by the relevant dynamical variables of the model is also presented, and the structure of the stress tensor in terms of free fields (and free currents) is studied in detail. In the second part, the author proposes a new approach for deriving the string field equations from a general sigma model on the world sheet. This approach leads to an equation which combines some of the attractive features of both the renormalization group method and the covariant beta function treatment of the massless excitations. It has the advantage of being covariant under a very general set of both local and non-local transformations in the field space. The author applies it to the tachyon, massless and first massive level, and shows that the resulting field equations reproduce the correct spectrum of a left-right symmetric closed bosonic string

  16. Renormalization group flows and continual Lie algebras

    International Nuclear Information System (INIS)

    Bakas, Ioannis

    2003-01-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)

  17. Getting Open Source Right for Big Data Analytics: Software Sharing, Governance, Collaboration and Most of All, Fun!

    Science.gov (United States)

    Mattmann, C. A.

    2013-12-01

    A wave of open source big data analytic infrastructure is currently shaping government, private sector, and academia. Projects are consuming, adapting, and contributing back to various ecosystems of software e.g., the Apache Hadoop project and its ecosystem of related efforts including Hive, HBase, Pig, Oozie, Ambari, Knox, Tez and Yarn, to name a few; the Berkeley AMPLab stack which includes Spark, Shark, Mesos, Tachyon, BlinkDB, MLBase, and other emerging efforts; MapR and its related stack of technologies, offerings from commercial companies building products around these tools e.g., Hortonworks Data Platform (HDP), Cloudera's CDH project, etc. Though the technologies all offer different capabilities including low latency support/in-memory, versus record oriented file I/O, high availability, support for the Map Reduce programming paradigm or other dataflow/workflow constructs, there is a common thread that binds these products - they are all released under an open source license e.g., Apache2, MIT, BSD, GPL/LGPL, etc.; all thrive in various ecosystems, such as Apache, or Berkeley AMPLab; all are developed collaboratively, and all technologies provide plug in architecture models and methodologies for allowing others to contribute, and participate via various community models. This talk will cover the open source aspects and governance aspects of the aforementioned Big Data ecosystems and point out the differences, subtleties, and implications of those differences. The discussion will be by example, using several national deployments and Big Data initiatives stemming from the Administration including DARPA's XDATA program; NASA's CMAC program; NSF's EarthCube and geosciences BigData projects. Lessons learned from these efforts in terms of the open source aspects of these technologies will help guide the AGU community in their use, deployment and understanding.

  18. Sine-Gordon Equation in (1+2 and (1+3 dimensions: Existence and Classification of Traveling-Wave Solutions.

    Directory of Open Access Journals (Sweden)

    Yair Zarmi

    Full Text Available The (1+1-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2- and (1+3-dimensional equations for all N ≥ 1 are presented. In (1+2 dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2-dimensional solutions, or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2 and (1+3 dimensions.

  19. Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition

    International Nuclear Information System (INIS)

    Domcke, Valerie

    2013-09-01

    The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1) B-L symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.

  20. The Speed of Light and the Hubble parameter: The Mass-Boom Effect

    International Nuclear Information System (INIS)

    Alfonso-Faus, Antonio

    2008-01-01

    We prove here that Newton's universal gravitation and momentum conservation laws together reproduce Weinberg's relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light co taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, Ω m Ω k , so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Planck's fluctuation length of 10 -33 cm to the present size of the Universe (about 10 28 cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 10 15 gr) to the value at the present time of about 10 55 gr

  1. Observational constraints on scalar field models of dark energy with barotropic equation of state

    International Nuclear Information System (INIS)

    Sergijenko, Olga; Novosyadlyj, Bohdan; Durrer, Ruth

    2011-01-01

    We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological parameters using the following datasets: the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7, the power spectrum of luminous red galaxies from SDSS DR7 and the light curves of SN Ia from 2 different compilations: Union2 (SALT2 light curve fitting) and SDSS (SALT2 and MLCS2k2 light curve fittings). It has been found that the initial value of dark energy equation of state parameter is constrained very weakly by most of the data while the other cosmological parameters are well constrained: their likelihoods and posteriors are similar, their forms are close to Gaussian (or half-Gaussian) and the confidence ranges are narrow. The most reliable determinations of the best-fit value and 1σ confidence range for the initial value of the dark energy equation of state parameter are obtained from the combined datasets including SN Ia data from the full SDSS compilation with MLCS2k2 light curve fitting. In all such cases the best-fit value of this parameter is lower than the value of corresponding parameter for current epoch. Such dark energy loses its repulsive properties and in future the expansion of the Universe changes into contraction. We also perform a forecast for the Planck mock data and show that they narrow significantly the confidence ranges of cosmological parameters values, moreover, their combination with SN SDSS compilation with MLCS2k2 light curve fitting may exclude the fields with initial equation of state parameter > −0.1 at 2σ confidence level

  2. From fractals to wormholes via string theory

    International Nuclear Information System (INIS)

    Felce, A.G.

    1992-01-01

    The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view

  3. COSMOS-e'-soft Higgsotic attractors

    Science.gov (United States)

    Choudhury, Sayantan

    2017-07-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.

  4. COSMOS-e"'-soft Higgsotic attractors

    International Nuclear Information System (INIS)

    Choudhury, Sayantan

    2017-01-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R"2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δN formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness. (orig.)

  5. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  6. Effects of a strict cutoff on Quantum Field Theory

    International Nuclear Information System (INIS)

    Sturnfield, J.F.

    1987-01-01

    Standard Quantum Field Theory has a number of integrals which are infinite. Although these are eliminated for some cases by renormalization, this aspect of the theory is not fully satisfactory. A number of theories with fundamental lengths have been introduced as alternatives and it would be useful to be able to distinguish between them. In particular, the effects that a strict cutoff would have on Quantum Field Theory is studied. It is noted that care must be taken in the method used to apply a strict cutoff. This lead to considering a theory where the cutoffs are defined by restricting each internal line. This theory is only piece-wise analytic. The resulting scattering matrix is frame dependent, yet the theory still satisfies the special relativity view that all frames are subjectively identical. The renormalization of this theory is finite. The change in mass from the electron self-energy will be a spinor operator. The main distinctions of this theory from standard theory will occur at super high energies. New poles and resonances which arise from new endpoint singularities will be found. The locations of these singularities will be frame dependent. Some of these singularities will correspond to creations or interactions of the normal particles with tachyons. It will be shown that for the one loop diagram, the form of the cutoff singularities are closely related to the standard singularities. When there is more than one loop, there can appear some new type of behavior. In particular, a cube root type of behavior in the two loop self-energy diagram will be found. Also the asymptotic behavior of the ladder diagram is studied

  7. An extended action for the effective field theory of dark energy: a stability analysis and a complete guide to the mapping at the basis of EFTCAMB

    International Nuclear Information System (INIS)

    Frusciante, Noemi; Papadomanolakis, Georgios; Silvestri, Alessandra

    2016-01-01

    We present a generalization of the effective field theory (EFT) formalism for dark energy and modified gravity models to include operators with higher order spatial derivatives. This allows the extension of the EFT framework to a wider class of gravity theories such as Hořava gravity. We present the corresponding extended action, both in the EFT and the Arnowitt-Deser-Misner (ADM) formalism, and proceed to work out a convenient mapping between the two, providing a self contained and general procedure to translate a given model of gravity into the EFT language at the basis of the Einstein-Boltzmann solver EFTCAMB. Putting this mapping at work, we illustrate, for several interesting models of dark energy and modified gravity, how to express them in the ADM notation and then map them into the EFT formalism. We also provide for the first time, the full mapping of GLPV models into the EFT framework. We next perform a thorough analysis of the physical stability of the generalized EFT action, in absence of matter components. We work out viability conditions that correspond to the absence of ghosts and modes that propagate with a negative speed of sound in the scalar and tensor sector, as well as the absence of tachyonic modes in the scalar sector. Finally, we extend and generalize the phenomenological basis in terms of α-functions introduced to parametrize Horndeski models, to cover all theories with higher order spatial derivatives included in our extended action. We elaborate on the impact of the additional functions on physical quantities, such as the kinetic term and the speeds of propagation for scalar and tensor modes.

  8. Constraint quantization of a worldline system invariant under reciprocal relativity: II

    International Nuclear Information System (INIS)

    Jarvis, P D; Morgan, S O

    2008-01-01

    We consider the worldline quantization of a system invariant under the symmetries of reciprocal relativity. Imposition of the first class constraint, the generator of local time reparametrizations, on physical states enforces identification of the worldline cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(3, 1) ≅ U(3, 1) x H(4), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group. In our previous paper, J. Phys. A: Math. Theor. 40 (2007) 12095, the 'spin' degrees of freedom were handled as covariant oscillators, leading to a unique choice of cosmological constant, required for projecting out negative-norm states from the physical gauge-invariant states. In the present paper, the spin degrees of freedom are treated as standard oscillators with positive norm states (wherein Lorentz boosts are not number-conserving in the auxiliary space; reciprocal transformations are of course not spin-conserving in general). As in the covariant approach, the spectrum of the square of the energy-momentum vector is continuous over the entire real line, and thus includes tachyonic (spacelike) and null branches. Adopting standard frames, the Wigner method on each branch is implemented, to decompose the auxiliary space into unitary irreducible representations of the respective little algebras and additional degeneracy algebras. The physical state space is vastly enriched as compared with the covariant approach, and contains towers of integer spin massive states, as well as unconventional massless representations of continuous spin type, with continuous Euclidean momentum and arbitrary integer helicity

  9. Noncommutative solitons

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, R [Harish-Chandra Research Institute, Jhusi, Allahabad (India)

    2002-05-15

    Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect.

  10. The evolution of Brown-York quasilocal energy as due to evolution of Lovelock gravity in a system of M0-branes

    Science.gov (United States)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    Recently, it has been suggested in [S. Chakraborty and N. Dadhich, Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons, J. High Energ. Phys. 12 (2015) 003.] that the Brown-York mechanism can be used to measure the quasilocal energy in Lovelock gravity. We have used this method in a system of M0-branes and show that the Brown-York energy evolves in the process of birth and growth of Lovelock gravity. This can help us to predict phenomenological events which are emerged as due to dynamical structure of Lovelock gravity in our universe. In this model, first, M0-branes join each other and form an M3-brane and an anti-M3-branes connected by an M2-brane. This system is named BIon. Universes and anti-universes live on M3-branes and M2 plays the role of wormhole between them. By passing time, M2 dissolves in M3’s and nonlinear massive gravities like Lovelock massive gravity emerges and grows. By closing M3-branes, BIon evolves and wormhole between branes makes a transition to black hole. During this stage, Brown-York energy increases and shrinks to large values at the colliding points of branes. By approaching M3-branes towards each other, the square energy of their system becomes negative and some tachyonic states are produced. To remove these states, M3-branes compact, the sign of compacted gravity changes, anti-gravity is created which leads to getting away of branes from each other. Also, the Lovelock gravity disappears and its energy forms a new M2 between M3-branes. By getting away of branes from each other, Brown-York energy decreases and shrinks to zero.

  11. Constraint quantization of a worldline system invariant under reciprocal relativity: II

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P D; Morgan, S O [School of Mathematics and Physics, University of Tasmania, Private Bag 37 Hobart, Tasmania 7001 (Australia)], E-mail: Peter.Jarvis@utas.edu.au, E-mail: Stuart.Morgan@utas.edu.au

    2008-11-21

    We consider the worldline quantization of a system invariant under the symmetries of reciprocal relativity. Imposition of the first class constraint, the generator of local time reparametrizations, on physical states enforces identification of the worldline cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(3, 1) {approx_equal} U(3, 1) x H(4), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group. In our previous paper, J. Phys. A: Math. Theor. 40 (2007) 12095, the 'spin' degrees of freedom were handled as covariant oscillators, leading to a unique choice of cosmological constant, required for projecting out negative-norm states from the physical gauge-invariant states. In the present paper, the spin degrees of freedom are treated as standard oscillators with positive norm states (wherein Lorentz boosts are not number-conserving in the auxiliary space; reciprocal transformations are of course not spin-conserving in general). As in the covariant approach, the spectrum of the square of the energy-momentum vector is continuous over the entire real line, and thus includes tachyonic (spacelike) and null branches. Adopting standard frames, the Wigner method on each branch is implemented, to decompose the auxiliary space into unitary irreducible representations of the respective little algebras and additional degeneracy algebras. The physical state space is vastly enriched as compared with the covariant approach, and contains towers of integer spin massive states, as well as unconventional massless representations of continuous spin type, with continuous Euclidean momentum and arbitrary integer helicity.

  12. Wilson-Polyakov loops for critical strings and superstrings at finite temperature

    International Nuclear Information System (INIS)

    Green, M.B.

    1992-01-01

    An open string with end-points fixed at spatial separation L is a string theory analogue of the static quark-antiquark system in quenched QCD. Folowing a review of the quantum mechanics of this system in critical bosonic string theory the partition function at finite β (the inverse temperature) for fixed end-point open strings is discussed. This is related by a conformal transformation ('world-sheet duality') to the correlation function of two closed strings fixed at distinct spatial points (a string theory analogue of two Wilson-Polyakov loops). Temperature duality (β → β' = 4π 2 /β) relates this correlation function, in turn, to the finite-temperature Green function for a closed strong propagating between initial and final states that are at distinct (euclidean) space-time points. In addition, spatial duality relates the fixed end-point open string to the familiar open string with free end-points. A generalization to fixed end-points superstrings is suggested, in which the superalgebra may be viewed as the spatial dual of the usual open-string superalgebra. At zero temperature world-sheet duality relates the partition function of supersymmetric fixed end-point open strings to the correlation function of point-like closed-string states. These couple to combinations of the scalar and pseudoscalar states of a type-2b superstring superfield. At finite temperature supersymmetry is broken and this correlation function involves the propagation of non-supersymmetric states with non-zero winding numbers (which formally include a tachyon at temperatures above the Hagedorn transition). Temperature duality again relates the partition function to the finite-temperature Green function describing the propagator for point-like closed-string states of the dual theory, in which supersymmetry is broken. The singularity that arises in the critical bosonic theory as L is reduced below L = 2 π√α' is absent in the superstring and the static potential is well defined for all

  13. Minimal string theories and integrable hierarchies

    Science.gov (United States)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  14. The Lauricella functions and exact string scattering amplitudes

    International Nuclear Information System (INIS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi

    2016-01-01

    We discover that the 26D open bosonic string scattering amplitudes (SSA) of three tachyons and one arbitrary string state can be expressed in terms of the D-type Lauricella functions with associated SL(K+3,ℂ) symmetry. As a result, SSA and symmetries or relations among SSA of different string states at various limits calculated previously can be rederived. These include the linear relations first conjectured by Gross http://dx.doi.org/10.1016/0370-2693(87)90355-8; http://dx.doi.org/10.1016/0550-3213(88)90390-2; http://dx.doi.org/10.1103/PhysRevLett.60.1229D.J. Gross and J.R. Ellis, Strings at superplanckian energies: in search of the string symmetry, Phil. Trans. Roy. Soc. Lond. A 329 (1989) 401. http://dx.doi.org/10.1016/0550-3213(89)90435-5 and later corrected and proved in http://dx.doi.org/10.1016/j.physletb.2005.02.034; http://arxiv.org/abs/hep-th/0303012; http://dx.doi.org/10.1016/j.nuclphysb.2004.04.022; http://dx.doi.org/10.1016/j.nuclphysb.2004.11.032; http://dx.doi.org/10.1103/PhysRevLett.96.171601; http://dx.doi.org/10.1016/j.nuclphysb.2005.07.018; http://dx.doi.org/10.1016/j.nuclphysb.2005.12.025 in the hard scattering limit, the recurrence relations in the Regge scattering limit with associated SL(5,ℂ) symmetry http://dx.doi.org/10.1088/1126-6708/2009/06/028; http://dx.doi.org/10.1007/JHEP04(2013)082; http://dx.doi.org/10.1016/j.physletb.2014.11.017 and the extended recurrence relations in the nonrelativistic scattering limit with associated SL(4,ℂ) symmetry http://dx.doi.org/10.1007/JHEP05(2016)186 discovered recently. Finally, as an application, we calculate a new recurrence relation of SSA which is valid for all energies.

  15. Dissipative axial inflation

    Energy Technology Data Exchange (ETDEWEB)

    Notari, Alessio [Departament de Física Fondamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028 Spain (Spain); Tywoniuk, Konrad, E-mail: notari@ffn.ub.es, E-mail: konrad.tywoniuk@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland)

    2016-12-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term φ/ f {sub γ} F ∼ F , such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρ{sub R}, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff f {sub γ}, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if f {sub γ} is smaller than the field excursion φ{sub 0} by about a factor of at least O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4–5 efolds and an amplitude which is typically less than a few percent and decreases linearly with f {sub γ}. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρ{sub R} rather than φ-dot {sup 2}/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/ f {sub γ} to U(1) (photons) is much larger than the coupling 1/ f {sub G} to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed φ{sub 0∼} f {sub G}.

  16. The B-L phase transition. Implications for cosmology and neutrinos

    International Nuclear Information System (INIS)

    Schmitz, Kai

    2012-07-01

    We investigate the possibility that the hot thermal phase of the early universe is ignited in consequence of the B-L phase transition, which represents the cosmological realization of the spontaneous breaking of the Abelian gauge symmetry associated with B-L, the difference between baryon number B and lepton number L. Prior to the B-L phase transition, the universe experiences a stage of hybrid inflation. Towards the end of inflation, the false vacuum of unbroken B-L symmetry decays, which entails tachyonic preheating as well as the production of cosmic strings. Observational constraints on this scenario require the B-L phase transition to take place at the scale of grand unification. The dynamics of the B-L breaking Higgs field and the B-L gauge degrees of freedom, in combination with thermal processes, generate an abundance of heavy (s)neutrinos. These (s)neutrinos decay into radiation, thereby reheating the universe, generating the baryon asymmetry of the universe and setting the stage for the thermal production of gravitinos. The B-L phase transition along with the (s)neutrino-driven reheating process hence represents an intriguing and testable mechanism to generate the initial conditions of the hot early universe. We study the B-L phase transition in the full supersymmetric Abelian Higgs model, for which we derive and discuss the Lagrangian in arbitrary and unitary gauge. As for the subsequent reheating process, we formulate the complete set of Boltzmann equations, the solutions of which enable us to give a detailed and time-resolved description of the evolution of all particle abundances during reheating. Assuming the gravitino to be the lightest superparticle (LSP), the requirement of consistency between hybrid inflation, leptogenesis and gravitino dark matter implies relations between neutrino parameters and superparticle masses, in particular a lower bound on the gravitino mass of 10GeV. As an alternative to gravitino dark matter, we consider the case of

  17. The B-L phase transition. Implications for cosmology and neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Kai

    2012-07-15

    We investigate the possibility that the hot thermal phase of the early universe is ignited in consequence of the B-L phase transition, which represents the cosmological realization of the spontaneous breaking of the Abelian gauge symmetry associated with B-L, the difference between baryon number B and lepton number L. Prior to the B-L phase transition, the universe experiences a stage of hybrid inflation. Towards the end of inflation, the false vacuum of unbroken B-L symmetry decays, which entails tachyonic preheating as well as the production of cosmic strings. Observational constraints on this scenario require the B-L phase transition to take place at the scale of grand unification. The dynamics of the B-L breaking Higgs field and the B-L gauge degrees of freedom, in combination with thermal processes, generate an abundance of heavy (s)neutrinos. These (s)neutrinos decay into radiation, thereby reheating the universe, generating the baryon asymmetry of the universe and setting the stage for the thermal production of gravitinos. The B-L phase transition along with the (s)neutrino-driven reheating process hence represents an intriguing and testable mechanism to generate the initial conditions of the hot early universe. We study the B-L phase transition in the full supersymmetric Abelian Higgs model, for which we derive and discuss the Lagrangian in arbitrary and unitary gauge. As for the subsequent reheating process, we formulate the complete set of Boltzmann equations, the solutions of which enable us to give a detailed and time-resolved description of the evolution of all particle abundances during reheating. Assuming the gravitino to be the lightest superparticle (LSP), the requirement of consistency between hybrid inflation, leptogenesis and gravitino dark matter implies relations between neutrino parameters and superparticle masses, in particular a lower bound on the gravitino mass of 10GeV. As an alternative to gravitino dark matter, we consider the case of

  18. Gauge fields and inflation

    Science.gov (United States)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    small field models also have a potential minimum at φ≠0 which the system falls in at the end of inflation. A typical property of small field models is that a sufficient number of e-folds, requires a sub-Planckian inflaton initial value. For this reason they are called small field models. Natural inflation is an example of this type [12]. Hybrid inflation models: These models involve more than one scalar field while inflation is mainly driven by a single inflaton field ϕ. Inflaton starts from a large value rolling down until it reaches a bifurcation point, ϕ=ϕe, after which the field becomes unstable and undergoes a waterfall transition toward its global minimum. Its prime example is the Linde’s hybrid inflation model with the following potential [13] V(ϕ,χ)={λ}/{4}(+{1}/{2}g2ϕ2χ2+{1}/{2}m2ϕ2. During the initial inflationary phase the potential of the hybrid inflation is effectively described by a single field ϕ while inflation ends by a phase transition triggered by the presence of the second scalar field, the waterfall field χ. In other words, when the effective mass squared of a waterfall field becomes negative, the tachyonic instability makes waterfall field roll down toward the true vacuum state and the inflation suddenly ends.Number of e-folds Ne is given as Ne≃{M4}/{4λm2}ln({ϕ0}/{ϕe}), where ϕe={M}/{g} is the critical value of the inflaton below which, due to tachyonic instability, χ=0 becomes unstable and mχ2 gets negative. K-inflation: This is the prime example of models with non-canonical Kinetic term we discuss here. They are described by the action [14] S=∫d4x√{-g}({R}/{2}+P(φ,X)), where φ is a scalar field and X≔-{1}/{2}(. Here, P plays the rule of the effective pressure, while the energy density is given by ρ=2XP-P. Thus, the slow-roll parameter is given as ɛ={3XP}/{2XP-P}. The characteristic feature of these models is that in general they have a non-trivial sound speed cs2 for the propagation of perturbations (cf. our

  19. Cosmology in Gauge Field Theory and String Theory

    International Nuclear Information System (INIS)

    Garcia Compean, H

    2005-01-01

    the dark matter proposal in terms of the WIMPS arising in supersymmetric gauge theory, in particular, from the MSSM. A modern overview of the different mechanisms involved in the process of inflation is the aim of chapter 7. This is a preliminary to the well written discussion of inflation in the context of four-dimensional supergravity in chapter 8. In the remaining chapters, the authors focus on more recent subjects that are the arena of intense research, such as cosmology and black holes in string theory. From the different proposals in the literature, the authors have captured the more basic and relevant material without engaging in discussion of any particular recent proposal, for instance, the new results of string compactifications with fluxes and their application to cosmological models or the study of cosmological models driven by tachyonic matter. Both are open problems. I have no doubt that this book will be valuable for students of high-energy physics and gravitation taking courses in modern aspects of cosmology, and for people preparing their PhD in this subject. The other books by the authors that I have mentioned have been present in introductory courses of the subject as text or reference books for many years. Their new book will surely follow this same fate. (book review)

  20. Non-minimal supersymmetric models. LHC phenomenolgy and model discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Manuel Ernst

    2015-12-18

    It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar SU(2){sub R} triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new