WorldWideScience

Sample records for tabular single-domain magnetite

  1. Effect of maghemization on the magnetic properties of nonstoichiometric pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kasama, Takeshi

    2015-01-01

    The effect of maghemization on the magnetic properties of magnetite (Fe3O4) grains in the pseudo-single-domain (PSD) size range is investigated as a function of annealing temperature. X-ray diffraction and transmission electron microscopy confirm the precursor grains as Fe3O4 ranging from 150......-energy loss spectroscopy reveal slightly oxidized Fe3O4 grains, heated to 140°C, exhibit higher oxygen content at the surface. Off-axis electron holography allows for construction of magnetic induction maps of individual Fe3O4 and γ-Fe2O3 grains, revealing their PSD (vortex) nature, which is supported...... by magnetic hysteresis measurements, including first-order reversal curve analysis. The coercivity of the grains is shown to increase with reaction temperature up to 1808°C, but subsequently decreases after heating above 200°; this magnetic behavior is attributed to the growth of a γ-Fe2O3 shell with magnetic...

  2. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.

  3. Thermomagnetic Stability in Pseudo Single Domain Grains

    Science.gov (United States)

    Nagy, Lesleis; Williams, Wyn; Muxworthy, Adrian; Fabian, Karl; Conbhuí, Pádraig Ó.

    2016-04-01

    The reliability of paleomagnetic remanences are well understood for fine grains of magnetite that are single-domain (SD, uniformly magnetized). In particular Néel's theory [1] outlined the thermal energies required to block and unblock magnetic remanences. This lead to determination of thermal stability for magnetization in fine grains as outlined in Pullaiah et. al. [2] and a comprehensive understanding of SD paleomagnetic recordings. It has been known for some time that single domain magnetite is possible only in the grain size range 30 - 80nm, which may only account for a small fraction of the grain size distribution in any rock sample. Indeed rocks are often dominated by grains in the pseudo single domain (PSD) size range, at approximately 80 - 1000nm. Toward the top end of this range multi-domain features begin to dominate. In order to determine thermomagnetic stability in PSD grains we need to identify the energy barriers between all possible pairs of local energy minima (LEM) domain states as a function of both temperature and grain size. We have attempted to do this using the nudged elastic band (NEB) method [3] which searches for minimum energy paths between any given pair of LEM states. Using this technique we have determined, for the first time, complete thermomagnetic stability curves for PSD magnetite. The work presented is at a preliminary stage. However it can be shown that PSD grains of magnetite with simple geometries (e.g. cubes or cuboctahedra) have very few low energy transition paths and the stability is likely to be similar to that observed for SD grains (as expected form experimental observations). The results will provide a basis for a much more rigorous understanding of the fidelity of paleomagnetic signals in assemblages of PSD grains and their ability to retain ancient recordings of the geomagnetic field. References: [1] Néel, Louis. "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres

  4. Microsoft tabular modeling cookbook

    CERN Document Server

    Braak, Paul te

    2013-01-01

    This book follows a cookbook style with recipes explaining the steps for developing analytic data using Business Intelligence Semantic Models.This book is designed for developers who wish to develop powerful and dynamic models for users as well as those who are responsible for the administration of models in corporate environments. It is also targeted at analysts and users of Excel who wish to advance their knowledge of Excel through the development of tabular models or who wish to analyze data through tabular modeling techniques. We assume no prior knowledge of tabular modeling

  5. Biogenic magnetite as a primary remanence carrier in limestone deposits

    Science.gov (United States)

    Chang, Shih-Bin R.; Kirschvink, Joseph L.; Stolz, John F.

    1987-06-01

    Studies on the microbial communities and magnetic phases of samples collected from carbonate oozes at Sugarloaf Key, FL, U.S.A. and calcareous laminated sediments from Laguna Figueroa, Baja California, Mexico have revealed the existence of magnetotactic bacteria and ultrafine-grained single domain magnetite in both environments. Magnetotactic bacteria were identified by light and electron microscopy. The single domain magnetite was detected by coercivity spectra analysis with a SQUID magnetometer and examined under the transmission electron microscope. The similarity, in terms of size and shape, between the single domain magnetite found in these sediments and the magnetite observed in the bacterial magnetosome from enriched cultures indicates the ultrafine-grained magnetite in these two marine environments was biologically formed. These results, combined with the common occurrences of ultrafine-grained magnetite in limestone deposits detected rock magnetically, suggest biogenic magnetite may be present and contribute to the magnetic remanence in these rocks. Several Cambrian limestone samples, separately collected from Siberia, China, and Kazakhstan, were examined for the presence of bacterial magnetite. Samples from the Lower Cambrian Sinskian Formation at Siberia Platform were found to contain both a large amount of apparently bacterial magnetite particles and a very stable primary magnetic component. Post-Cambrian diagenesis does not seem to affect the microgranulometry of these apparently bacterial magnetite crystals or the magnetic remanence carried by them. Assessing the potential role of biogenic magnetite as a primary remanence carrier in other Phanerozoic limestone deposits ought to be further pursued.

  6. Resolving the Origin of Pseudo-Single Domain Magnetic Behavior

    Science.gov (United States)

    Roberts, Andrew P.; Almeida, Trevor P.; Church, Nathan S.; Harrison, Richard J.; Heslop, David; Li, Yiliang; Li, Jinhua; Muxworthy, Adrian R.; Williams, Wyn; Zhao, Xiang

    2017-12-01

    The term "pseudo-single domain" (PSD) has been used to describe the transitional state in rock magnetism that spans the particle size range between the single domain (SD) and multidomain (MD) states. The particle size range for the stable SD state in the most commonly occurring terrestrial magnetic mineral, magnetite, is so narrow ( 20-75 nm) that it is widely considered that much of the paleomagnetic record of interest is carried by PSD rather than stable SD particles. The PSD concept has, thus, become the dominant explanation for the magnetization associated with a major fraction of particles that record paleomagnetic signals throughout geological time. In this paper, we argue that in contrast to the SD and MD states, the term PSD does not describe the relevant physical processes, which have been documented extensively using three-dimensional micromagnetic modeling and by parallel research in material science and solid-state physics. We also argue that features attributed to PSD behavior can be explained by nucleation of a single magnetic vortex immediately above the maximum stable SD transition size. With increasing particle size, multiple vortices, antivortices, and domain walls can nucleate, which produce variable cancellation of magnetic moments and a gradual transition into the MD state. Thus, while the term PSD describes a well-known transitional state, it fails to describe adequately the physics of the relevant processes. We recommend that use of this term should be discontinued in favor of "vortex state," which spans a range of behaviors associated with magnetic vortices.

  7. Automation of Tabular Application Formation

    Directory of Open Access Journals (Sweden)

    S. V. Zykin

    2013-01-01

    Full Text Available The paper considers automation problems of the interface formation between a table and a relational database. The task description is formalized and the description of the existing approaches to formation of data representations on an example of widely widespread CASE-tools is submitted. The definition of intermediate data representation as a ”join table” is offered, which is used for maintenance of correctness of data representation formation, and also is necessary for direct and inverse data transformations. On the basis of lossless join property and realized dependencies, the concept and a way of context formation of the application and restrictions is introduced. The considered material is further used for constructing an inverse data transformation from tabular presentation into a relational one. On the basis of relationships properties on a database scheme, the partial order on the relations is established, and the restriction of acyclic databases schemes is introduced. The received results are further used at the analysis of principles of formation of inverse data transformation, and the basic details of such a transformation algorithm are considered.

  8. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques...... of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent...... magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information....

  9. Observing thermomagnetic stability of nonideal magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    The thermomagnetic behavior of remanence-induced magnetite (Fe3O4) particles in the pseudo-single-domain (PSD) size range (similar to 0.1-10 mu m), which dominate the magnetic signature of many rock lithologies, is investigated using off-axis electron holography. Construction of magnetic induction...... of the Fe3O4 grain, in this instance, remains thermally stable close to its unblocking temperature and exhibits a similar in-plane remanent state upon cooling; i.e., the particle is effectively behaving like a uniaxial single-domain particle to temperatures near T-C. Such particles are thought to be robust...... magnetic recorders. It is suggested that evidence for PSD behavior should therefore not preclude paleomagnetic investigation....

  10. Single-domain epitaxial silicene on diboride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Gill, T. G. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Sadowski, J. T. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Copel, M.; Tromp, R. M. [IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Hirjibehedin, C. F. [London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom)

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.

  11. Bats use magnetite to detect the earth's magnetic field.

    Science.gov (United States)

    Holland, Richard A; Kirschvink, Joseph L; Doak, Thomas G; Wikelski, Martin

    2008-02-27

    While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a "compass organelle" containing the iron oxide particles magnetite (Fe(3)O(4)). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic "Kalmijn-Blakemore" pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals.

  12. Magnetite precipitation and characterisation

    International Nuclear Information System (INIS)

    Joyce, A.; Garside, J.; Ivens, R.

    1988-06-01

    Magnetite (Fe 3 O 4 ) precipitation was investigated as a possible alternative treatment process to the conventional ferric hydroxide for removal of actinides from radioactive effluents. This offered the possibility of improved dewatering of filtered residues. Whilst a poor quality magnetite could be produced from deoxygenated ferrous/ferric solutions, all attempts to prepare magnetite from effluent simulates were unsuccessful. The failure was attributed to the presence of high nitrate and other interfering ions. (author)

  13. Direct observation of the thermal demagnetization of magnetic vortex structures in nonideal magnetite recorders

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kovács, András

    2016-01-01

    The thermal demagnetization of pseudo-single-domain (PSD) magnetite (Fe3O4) particles, which govern the magnetic signal in many igneous rocks, is examined using off-axis electron holography. Visualization of a vortex structure held by an individual Fe3O4 particle (~250nm in diameter) during in situ...

  14. Using llama derived single domain antibodies to target botulinum neurotoxins

    Science.gov (United States)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  15. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg, E-mail: oleg.vasylkiv@nims.go.jp

    2017-04-15

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  16. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    International Nuclear Information System (INIS)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-01-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  17. First-order reversal curves of single domain particles: diluted random assemblages and chains

    Science.gov (United States)

    Egli, R.

    2009-04-01

    Exact magnetic models can be used to calculate first-order reversal curves (FORC) of single domain (SD) particle assemblages, as shown by Newell [2005] for the case of isolated Stoner-Wohlfarth particles. After overcoming experimental difficulties, a FORC diagram sharing many similarities to Newell's model has been measured on a lake sediment sample (see A.P. Chen et al., "Quantification of magnetofossils using first-order reversal curves", EGU General Assembly 2009, Abstracts Vol. 11, EGU2009-10719). This sample contains abundant magnetofossils, as shown by coercivity analysis and electron microscopy, therefore suggesting that well dispersed, intact magnetosome chains are the main SD carriers. Subtle differences between the reversible and the irreversible contributions of the measured FORC distribution suggest that magnetosome chains might not be correctly described by the Stoner-Wohlfarth model. To better understand the hysteresis properties of such chains, a simple magnetic model has been implemented, taking dipole-dipole interactions between particles within the same chain into account. The model results depend on the magnetosome elongation, the number of magnetosomes in a chain, and the gap between them. If the chain axis is subparallel to the applied field, the magnetic moment reverses by a pseudo-fanning mode, which is replaced by a pseudo-coherent rotation mode at greater angles. These reversal modes are intrinsically different from coherent rotation assumed Stoner-Wohlfarth model, resulting in FORC diagrams with a smaller reversible component. On the other hand, isolated authigenic SD particles can precipitate in the sediment matrix, as it might occur for pedogenic magnetite. In this case, an assembly of randomly located particles provides a possible model for the resulting FORC diagram. If the concentration of the particles is small, each particle is affected by a random interaction field whose statistical distribution can be calculated from first

  18. Single-Domain Antibodies As Therapeutics against Human Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yanling Wu

    2017-12-01

    Full Text Available In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1, influenza viruses, hepatitis C virus (HCV, respiratory syncytial virus (RSV, and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.

  19. RF Application of High Temperature Single Domain Superconductors

    International Nuclear Information System (INIS)

    Ferendeci, M.

    2004-01-01

    Large single domain YBa2Cu3Ox materials have been successfully fabricated with superb RF properties by employing the seeded-melt growth (SMG) method. Commercially available Y-123 and Y-211 phase precursor powders were mixed thoroughly and pressed into various solid and cavity shapes. The solid pieces were then diced into cylindrical flat plates and polished. Following the growth procedure, the materials were then oxygenated in an oven for at least 7 days. The plates were then used as a part of a dielectric resonator cavity and the surface resistances were measured. The cavities were also tested in a closed cycle cryo cooler. The cavity resonance frequencies for the TM010 and TE111 modes, and the corresponding quality factors (Q values) were measured. From the measured Q values, the surface resistances of the cavity surfaces were calculated. Experimentally measured surface resistance values and various combinations of cavity structures for realizing highly selective RF filters will be presented

  20. Nanogeochemistry of hydrothermal magnetite

    Science.gov (United States)

    Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin

    2018-06-01

    Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.

  1. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum.

    Science.gov (United States)

    Schumann, Dirk; Raub, Timothy D; Kopp, Robert E; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V; Sears, S Kelly; Lücken, Uwe; Tikoo, Sonia M; Hesse, Reinhard; Kirschvink, Joseph L; Vali, Hojatollah

    2008-11-18

    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 microm long and hexaoctahedral prisms up to 1.4 microm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability--a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming--drove diversification of magnetite-forming organisms, likely including eukaryotes.

  2. Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook

    Directory of Open Access Journals (Sweden)

    Mehdi Arbabi-Ghahroudi

    2017-11-01

    Full Text Available Tremendous effort has been expended over the past two and a half decades to understand many aspects of camelid heavy chain antibodies, from their biology, evolution, and immunogenetics to their potential applications in various fields of research and medicine. In this article, I present a historical perspective on the development of camelid single-domain antibodies (sdAbs or VHHs, also widely known as nanobodies since their discovery and discuss the advantages and disadvantages of these unique molecules in various areas of research, industry, and medicine. Commercialization of camelid sdAbs exploded in 2001 with a flurry of patents issued to the Vrije Universiteit Brussel (VUB and later taken on by the Vlaams Interuniversitair Instituut voor Biotechnologie (VIB and, after 2002, the VIB-founded spin-off company, Ablynx. While entrepreneurial spirit has certainly catalyzed the exploration of nanobodies as marketable products, IP restrictions may be partially responsible for the relatively long time span between the discovery of these biomolecules and their entry into the pharmaceutical market. It is now anticipated that the first VHH-based antibody drug, Caplacizumab, a bivalent anti-vWF antibody for treating rare blood clotting disorders, may be approved and commercialized in 2018 or shortly thereafter. This elusive first approval, along with the expiry of key patents, may substantially alter the scientific and biomedical landscape surrounding camelid sdAbs and pave the way for their emergence as mainstream biotherapeutics.

  3. Llama-Derived Single Domain Antibodies Specific for Abrus Agglutinin

    Science.gov (United States)

    Goldman, Ellen R.; Anderson, George P.; Zabetakis, Dan; Walper, Scott; Liu, Jinny L.; Bernstein, Rachael; Calm, Alena; Carney, James P.; O’Brien, Thomas W.; Walker, Jennifer L.; Garber, Eric A. E.

    2011-01-01

    Llama derived single domain antibodies (sdAb), the recombinantly expressed variable heavy domains from the unique heavy-chain only antibodies of camelids, were isolated from a library derived from llamas immunized with a commercial abrin toxoid preparation. Abrin is a potent toxin similar to ricin in structure, sequence and mechanism of action. The selected sdAb were evaluated for their ability to bind to commercial abrin as well as abrax (a recombinant abrin A-chain), purified abrin fractions, Abrus agglutinin (a protein related to abrin but with lower toxicity), ricin, and unrelated proteins. Isolated sdAb were also evaluated for their ability to refold after heat denaturation and ability to be used in sandwich assays as both capture and reporter elements. The best binders were specific for the Abrus agglutinin, showing minimal binding to purified abrin fractions or unrelated proteins. These binders had sub nM affinities and regained most of their secondary structure after heating to 95 °C. They functioned well in sandwich assays. Through gel analysis and the behavior of anti-abrin monoclonal antibodies, we determined that the commercial toxoid preparation used for the original immunizations contained a high percentage of Abrus agglutinin, explaining the selection of Abrus agglutinin binders. Used in conjunction with anti-abrin monoclonal and polyclonal antibodies, these reagents can fill a role to discriminate between the highly toxic abrin and the related, but much less toxic, Abrus agglutinin and distinguish between different crude preparations. PMID:22174977

  4. The homogeneity of levitation force in single domain YBCO bulk

    International Nuclear Information System (INIS)

    Zhou Keran; Xu Kexi; Wu Xingda; Pan Pengjun

    2007-01-01

    The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2 Cu 3 O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2 Cu 3 O 7-δ bulk

  5. The homogeneity of levitation force in single domain YBCO bulk

    Science.gov (United States)

    Zhou, Keran; Xu, Ke-Xi; Wu, Xing-da; Pan, Peng-jun

    2007-11-01

    The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2Cu 3O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2Cu 3O 7-δ bulk.

  6. Bioinspired synthesis of magnetite nanoparticles

    NARCIS (Netherlands)

    Mirabello, G.; Lenders, J.J.M.; Sommerdijk, N.A.J.M.

    2016-01-01

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles

  7. Design and Testing of a Thermostable Platform for Multimerization of Single Domain Antibodies

    Science.gov (United States)

    2012-08-01

    H.J. Properties , production, and applications of camelid single domain antibody fragments. Appl. Microbiol. Biot. 2007, 77, 13‒22. 2. Goldman...Conway, J.; Sherwood, L.J.; Fech, M.; Vo, B.; Liu, J.L.; Hayhurst, A. Thermostable llama single domain antibodies for detection of Botulinum A...antiparallel coiled-coil inserted. J. Mol. Bio. 2001, 306, 25‒35. 9. Liu, J.L.; Anderson, G.P.; Goldman, E.R. Isolation of anti- toxin single domain

  8. Degeneration of biogenic superparamagnetic magnetite.

    Science.gov (United States)

    Li, Y-L; Pfiffner, S M; Dyar, M D; Vali, H; Konhauser, K; Cole, D R; Rondinone, A J; Phelps, T J

    2009-01-01

    Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  9. Degeneration of Biogenic Superparamagnetic Magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dr. Yi-Liang [University of Tennessee, Knoxville (UTK); Pfiffner, Susan M. [University of Tennessee, Knoxville (UTK); Dyar, Dr. M Darby [Mount Holyoke College; Vali, Dr. Hojatolah [McGill University, Montreal, Quebec; Konhauser, Dr, Kurt [University of Alberta; Cole, David R [ORNL; Rondinone, Adam Justin [ORNL; Phelps, Tommy Joe [ORNL

    2009-01-01

    ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  10. Magnetostatic interactions in a natural magnetite-ulvospinel intergrowth system

    Science.gov (United States)

    Evans, M. E.; Krasa, D.; Williams, W.; Winklhofer, M.

    2005-12-01

    The difficult problem of magnetostatic interactions in naturally-occurring minerals has a long history but a renewed attack on it is currently being driven by recent advances in instrumentation and computing power. We report a new investigation of a finely exsolved magnetite/ulvöspinel intergrowth first studied magnetically by Evans & Wayman (1974) and more recently by Harrison et al. (2002). Transmission electron micrographs reveal a rectilinear pattern of tiny magnetite blocks separated by ulvöspinel sheets. The magnetite blocks have a gaussian size distribution with mean and standard deviation of 193 and 46 nm, respectively (n ~ 500), with the separation between nearest neighbours being typically 40 nm, but often much less. Thermomagnetic analysis yields a well-defined Curie point of 548°C indicating that the ``magnetite" actually has a compostion of Fe2.9Ti0.1O4. Routine hysteresis measurements immediately reflect the interaction between neighbouring ``magnetite" regions, with Mrs/Ms = 0.22, well below the expected value for non-interacting single-domain particles. The corresponding FORC diagram clearly reveals the interaction fields with Hi = 30 mT (full-width at half-maximum, FWHM) centred on a well-defined Hc peak at 20 mT. Furthermore, the maximum interaction field observed (~50 mT) agrees well with that expected from simple theory and micromagnetic calculations. Elimination of the intergrowth structure by heating in an evacuated quartz vial for 2 hours at 1000 °C leads to marked changes in the magnetic properties: Mrs/Ms drops to 0.11, Hcr/Hc increases from 1.98 to 2.73, the main peak on the FORC diagram shifts to 6 mT and the interaction field profile drastically narrows (FWHM Hi = 14 mT).

  11. The characterisation of precipitated magnetites

    International Nuclear Information System (INIS)

    Rush, D.F.; Segal, D.L.

    1982-06-01

    Methods are described for the preparation of magnetite by precipitation from aqueous solutions of iron(II) and iron(III) salts. The magnetites have been characterised by transmission electron microscopy, chemical analysis and X-ray diffraction. Transmission Moessbauer spectroscopy has also been used to characterise precipitated magnetites and a comparison of the spectra has been made with those obtained from nickel ferrite and hydrated ferric oxides. The hydrothermal stability of magnetite at 573 K has also been investigated. This work is relevant to corrosion processes that can occur in the water coolant circuits of nuclear reactors. (author)

  12. Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi [Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India); Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2011-09-15

    Core-shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug 'Methylene blue' (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core-shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.

  13. Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2016-06-01

    Full Text Available Straightforward and effective methods are required for the bioconjugation of proteins to surfaces and particles. Previously we demonstrated that the fusion of a single domain antibody with the biotin binding molecule rhizavidin provided a facile method to coat biotin-modified surfaces with a highly active and oriented antibody. Here, we constructed similar single domain antibody—rhizavidin fusions as well as unfused rhizavidin with a His-tag. The unfused rhizavidin produced efficiently and its utility for assay development was demonstrated in surface plasmon resonance experiments. The single domain antibody-rhizavidin fusions were utilized to coat quantum dots that had been prepared with surface biotins. Preparation of antibody coated quantum dots by this means was found to be both easy and effective. The prepared single domain antibody-quantum dot reagent was characterized by surface plasmon resonance and applied to toxin detection in a fluoroimmunoassay sensing format.

  14. Network-Based Visual Analysis of Tabular Data

    Science.gov (United States)

    Liu, Zhicheng

    2012-01-01

    Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…

  15. Development and evaluation of single domain antibodies for vaccinia and the L1 antigen.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available There is ongoing interest to develop high affinity, thermal stable recognition elements to replace conventional antibodies in biothreat detection assays. As part of this effort, single domain antibodies that target vaccinia virus were developed. Two llamas were immunized with killed viral particles followed by boosts with the recombinant membrane protein, L1, to stimulate the immune response for envelope and membrane proteins of the virus. The variable domains of the induced heavy chain antibodies were selected from M13 phage display libraries developed from isolated RNA. Selection via biopanning on the L1 antigen produced single domain antibodies that were specific and had affinities ranging from 4×10(-9 M to 7.0×10(-10 M, as determined by surface plasmon resonance. Several showed good ability to refold after heat denaturation. These L1-binding single domain antibodies, however, failed to recognize the killed vaccinia antigen. Useful vaccinia binding single domain antibodies were isolated by a second selection using the killed virus as the target. The virus binding single domain antibodies were incorporated in sandwich assays as both capture and tracer using the MAGPIX system yielding limits of detection down to 4×10(5 pfu/ml, a four-fold improvement over the limit obtained using conventional antibodies. This work demonstrates the development of anti-vaccinia single domain antibodies and their incorporation into sandwich assays for viral detection. It also highlights the properties of high affinity and thermal stability that are hallmarks of single domain antibodies.

  16. Magnetotransport in (Ga,Mn)As on the verge of the single domain model

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Christoph; Dreher, Lukas; Daeubler, Joachim; Donhauser, Daniela; Glunk, Michael; Schoch, Wladimir; Schwaiger, Stephan; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2009-07-01

    We investigate the limits of the single-domain model in (Ga,Mn)As by performing detailed angle- and field-dependent magnetotransport measurements in samples with differing magnetic anisotropies. For this purpose, a series of (Ga,Mn)As layers with Mn concentrations of {proportional_to}5% was grown by low-temperature molecular-beam epitaxy on relaxed (In,Ga)As/GaAs templates with different In-concentrations, realizing different strain conditions from compressive to tensile. In past investigations we have elucidated the strain dependence of the magnetic anisotropy and of the anisotropic magnetoresistance employing a single-domain model. In order to analyze the break-down of the single-domain model, we now study in detail magnetization reversal processes by sweeping an external magnetic field along selected axes. The magnetic-field sweeps are compared with a series of angle-dependent magnetotransport measurements, carried out at weak external magnetic fields.

  17. MCNP/X TRANSPORT IN THE TABULAR REGIME

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES, H. GRADY [Los Alamos National Laboratory

    2007-01-08

    The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.

  18. Properties, production and applications of camelid single-domain antibody fragments

    NARCIS (Netherlands)

    Harmsen, M.M.; Haard, de H.J.

    2007-01-01

    Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms

  19. Single-Domain Antibodies as Tools to Perturb and Study RNA Viruses

    NARCIS (Netherlands)

    Hanke, Leo

    2017-01-01

    In this thesis, I describe the generation and characterization of alpaca-derived, antiviral, single-domain antibody fragments (VHHs). The antiviral targets of the described VHHs are the nuclear proteins of influenza A virus (IAV) and vesicular stomatitis virus (VSV). The described VHHs protect cells

  20. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.

    2012-01-01

    We studied the effect of different fusion domains on the functional immobilization of three llama single-domain antibody fragments (VHHs) after passive adsorption to polystyrene in enzyme-linked immunosorbent assays (ELISA). Three VHHs produced without any fusion domain were efficiently adsorbed to

  1. Dynamic working memory performance in individuals with single-domain amnestic mild cognitive impairment.

    Science.gov (United States)

    Guild, Emma B; Vasquez, Brandon P; Maione, Andrea M; Mah, Linda; Ween, Jon; Anderson, Nicole D

    2014-01-01

    Previous studies have observed poorer working memory performance in individuals with amnestic mild cognitive impairment than in healthy older adults. It is unclear, however, whether these difficulties are true only of the multiple-domain clinical subtype in whom poorer executive functioning is common. The current study examined working memory, as measured by the self-ordered pointing task (SOPT) and an n-back task, in healthy older adults and adults with single-domain amnestic mild cognitive impairment (aMCI). Individuals with single-domain aMCI committed more errors and required longer to develop an organizational strategy on the SOPT. The single-domain aMCI group did not differ from healthy older adults on the 1-back or 2-back, but had poorer discrimination on the 3-back task. This is, to our knowledge, the first characterization of dynamic working memory performance in a single-domain aMCI group. These results lend support for the idea that clinical amnestic MCI subtypes may reflect different stages on a continuum of progression to dementia and question whether standardized measures of working memory (span tasks) are sensitive enough to capture subtle changes in performance.

  2. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.

    Science.gov (United States)

    Liu, Jinny L; Goldman, Ellen R; Zabetakis, Dan; Walper, Scott A; Turner, Kendrick B; Shriver-Lake, Lisa C; Anderson, George P

    2015-10-09

    Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced

  3. Magnetic Dinner Salads: The Role of Biogenic Magnetite in Cryopreservation for Common Food Plants

    Science.gov (United States)

    Chaffee, T. M.; Kirschvink, J. L.; Kobayashi, A. K.

    2015-12-01

    Biogenically-precipitated magnetite has been found in organisms ranging from Bacteria, single-celled protists, and many of the animal phyla, where its major function is navigation and magnetoreception. To date there is but a single report of biogenic magnetite in plants (essentially, magnetoferritin), and that is in common grass (Festuca species, from Gajdardziska-Josifovska et. al. doi:10.1127/0935-1221/2001/0013/0863). Recent developments in cryopreservation suggest that ~ 1 mT, ~ 10 Hz oscillating magnetic fields can drastically reduce ice nucleation during freezing, promote supercooling, and minimize cellular damage in living tissues (e.g., Kaku et al., doi: 10.1016/j.cryobiol.2012.02.001). Kobayashi & Kirschvink (2014, doi:10.1016/j.cryobiol.2013.12.002) suggest that biogenic magnetite crystals could be the nucleating site for damaging ice crystals, and that they would be driven magneto-mechanically to rotate in those oscillating fields which could inhibit the ice crystal nucleation process. This prompted our investigation into the magnetite content of ordinary fruit and vegetable food products, as knowledge of the natural levels of biogenic magnetite in the human food supply could guide the selection of which foods might work for this type of cryopreservation. Our study involved a range of common foods including avocados, bananas, garlic, and apples. Samples were prepared in a clean lab environment kept free of contaminant particles, and subjected to a variety of standard rock-magnetic tests including IRM and ARM acquisition, and the corresponding Af demagnetization, on a standard 2G™ SRM. Results are consistent with moderately interacting single-domain magnetite (see figure), with moderate inter-particle interaction effects. Typical magnetite concentrations in these samples are in the range of .1 to 1 ng/g for room temperature samples, increasing to the range of 1-10 ng/g when measured frozen (to inhibit thermal rotation of small particles and clumps). If

  4. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    International Nuclear Information System (INIS)

    Morel, Mauricio; Martínez, Francisco; Mosquera, Edgar

    2013-01-01

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N 2 (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe 2+ and Fe 3+ from the mineral magnetite is synergistic

  5. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile); Martínez, Francisco, E-mail: polimart@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile)

    2013-10-15

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N{sub 2} (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe{sup 2+} and Fe{sup 3+} from the mineral magnetite is synergistic.

  6. Graphics processor efficiency for realization of rapid tabular computations

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Us, S.A.; Shestakov, M.V.

    2016-01-01

    Capabilities of graphics processing units (GPU) and central processing units (CPU) have been investigated for realization of fast-calculation algorithms with the use of tabulated functions. The realization of tabulated functions is exemplified by the GPU/CPU architecture-based processors. Comparison is made between the operating efficiencies of GPU and CPU, employed for tabular calculations at different conditions of use. Recommendations are formulated for the use of graphical and central processors to speed up scientific and engineering computations through the use of tabulated functions

  7. Magnetite and the interstellar medium

    International Nuclear Information System (INIS)

    Landaberry, S.C.; Magalhaes, A.M.

    1976-01-01

    Recent observations concerning interstellar circular polarization are explained by a simple two-cloud model using magnetite (Fe 3 O 4 ) grains as polarizing agents. Three stars covering a wide range of linear polarization spectral shapes were selected. Reasonably low column densities are required in order to interpret polarization data [pt

  8. Data Smearing: An Approach to Disclosure Limitation for Tabular Data

    Directory of Open Access Journals (Sweden)

    Toth Daniell

    2014-12-01

    Full Text Available Statistical agencies often collect sensitive data for release to the public at aggregated levels in the form of tables. To protect confidential data, some cells are suppressed in the publicly released data. One problem with this method is that many cells of interest must be suppressed in order to protect a much smaller number of sensitive cells. Another problem is that the covariates used to aggregate and level of aggregation must be fixed before the data is released. Both of these restrictions can severely limit the utility of the data. We propose a new disclosure limitation method that replaces the full set of microdata with synthetic data for use in producing released data in tabular form. This synthetic data set is obtained by replacing each unit’s values with a weighted average of sampled values from the surrounding area. The synthetic data is produced in a way to give asymptotically unbiased estimates for aggregate cells as the number of units in the cell increases. The method is applied to the U.S. Bureau of Labor Statistics Quarterly Census of Employment and Wages data, which is released to the public quarterly in tabular form and aggregated across varying scales of time, area, and economic sector.

  9. SON68 glass alteration enhanced by magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Godon, Nicole; Gin, Stephane; Rebiscoul, Diane; Frugier, Pierre [CEA, DEN-Marcoule, F30207, Bagnols-sur-Ceze (France)

    2013-07-01

    This paper reports experimental and modeling results of SON68 glass / magnetite interactions while in contact with synthetic groundwater from a clay environment. It is shown that magnetite enhances glass alteration, first by the sorption of Si released from the glass onto magnetite surfaces, then by a second process that could be the precipitation of an iron silicate mineral or the transformation of magnetite into a more reactive phase like hematite or goethite. This study globally suggests a detrimental effect of magnetite on the long-term durability of nuclear glass in geological disposal conditions. (authors)

  10. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs.

    Science.gov (United States)

    Vincke, Cécile; Gutiérrez, Carlos; Wernery, Ulrich; Devoogdt, Nick; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge

    2012-01-01

    Immunizing a camelid (camels and llamas) with soluble, properly folded proteins raises an affinity-matured immune response in the unique camelid heavy-chain only antibodies (HCAbs). The peripheral blood lymphocytes of the immunized animal are used to clone the antigen-binding antibody fragment from the HCAbs in a phage display vector. A representative aliquot of the library of these antigen-binding fragments is used to retrieve single domain antigen-specific binders by successive rounds of panning. These single domain antibody fragments are cloned in tandem to generate manifold constructs (bivalent, biparatopic or bispecific constructs) to increase their functional affinity, to increase specificity, or to connect two independent antigen molecules.

  11. SINGLE DOMAIN ANTIBODIES AND BIOENGINEERING DRUGS ON THEIR BASIS: NEW OPPORTUNITIES FOR DIAGNOSTICS AND THERAPY

    Directory of Open Access Journals (Sweden)

    E. N. Gorshkova

    2016-01-01

    Full Text Available Almost 20 years ago, a unique class of antibodies devoid of L chains was discovered in Camelidae blood serum. Only one variable domain is responsible for antigen recognition in these unusual antibodies. A recombinant protein, which is analogue to such antigen-recognizing variable domain was called the single domain antibody (sdAb, “nanobody” or “nanoantibody”. The single-domain antibodies and their derivatives have been widely used in the field of biology, toxicology and medicine offering new opportunities for diagnosis and treatment of cancer, autoimmune diseases, infectious diseases, and for toxin neutralization. This review focuses on latest researches in the field and concerns some prospectives for creation of nanoantibody-based diagnostic and therapeutic drugs.

  12. New method for introducing nanometer flux pinning centers into single domain YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Yang, W.M.; Wang, Miao

    2013-01-01

    Highlights: • Single domain YBCO bulks with Bi 2 O 3 additions fabricated by TSIG process. • Nanoscale Y 2 Ba 4 CuBiOx(YBi2411) particles introduced by Bi 2 O 3 additions. • The YBi2411 particles are about 150 nm, can act as effective flux pinning centers. • The optimal addition of Bi 2 O 3 is 0.7wt% to achieve higher levitation force. • The result is helpful to improve the quality of REBCO bulk superconductors. -- Abstract: Single domain YBCO superconductors with different additions of Bi 2 O 3 have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi 2 O 3 additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi 2 O 3 less than 2 wt%; Bi 2 O 3 can be reacted with Y 2 BaCuO 5 and liquid phase and finally form Y 2 Ba 4 CuBiO x (YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi 2 O 3 addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors

  13. Polarization dependence of the spin-density-wave excitations in single-domain chromium

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Sternlieb, B.J. [Brookhaven (United States); Lorenzo, E. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Werner, S.A. [Missouri (United States)

    1997-09-01

    A polarized neutron scattering experiment has been performed with a single-Q, single domain sample of chromium in a magnetic field of 4 T. It is confirmed that the longitudinal fluctuations are enhanced for small energy transfers and that the spin wave modes with {delta}S parallel to Q and {delta}S perpendicular to Q are similar. (author) 2 figs., 1 tab., 2 refs.

  14. High-pressure oxygenation of thin-wall YBCO single-domain samples

    International Nuclear Information System (INIS)

    Chaud, X; Savchuk, Y; Sergienko, N; Prikhna, T; Diko, P

    2008-01-01

    The oxygen annealing of ReBCO bulk material, necessary to achieve superconducting properties, usually induces micro- and macro-cracks. This leads to a crack-assisted oxygenation process that allows oxygenating large bulk samples faster than single crystals. But excellent superconducting properties are cancelled by the poor mechanical ones. More progressive oxygenation strategy has been shown to reduce drastically the oxygenation cracks. The problem then arises to keep a reasonable annealing time. The concept of bulk Y123 single-domain samples with thin-wall geometry has been introduced to bypass the inherent limitation due to a slow oxygen diffusion rate. But it is not enough. The use of a high oxygen pressure (16 MPa) enables to speed up further the process. It introduces a displacement in the equilibrium phase diagram towards higher temperatures, i.e., higher diffusion rates, to achieve a given oxygen content in the material. Remarkable results were obtained by applying such a high pressure oxygen annealing process on thin-wall single-domain samples. The trapped field of 16 mm diameter Y123 thin-wall single-domain samples was doubled (0.6T vs 0.3T at 77K) using an annealing time twice shorter (about 3 days). The initial development was made on thin bars. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample

  15. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Directory of Open Access Journals (Sweden)

    Ali Riazi

    Full Text Available Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  16. Magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Sora, Sergiu; Ion, Rodica Mariana

    2010-01-01

    This work aims to establish and to optimize the conditions for chemical synthesis of nanosized magnetic core-shell iron oxide. The core is magnetite and for the shell we used gold in order to obtain different nanoparticles. Iron oxides was synthesized by sonochemical process using ferrous salts, favoring the synthesis at low-temperature, low costs, high material purity and nanostructure control. After synthesis, some investigation techniques as: X-ray diffraction (XRD), atomic force microscopy (AFM), Thermogravimetric analysis (TGA), Fourier-Transform Infrared Spectroscopy (FTIR) and UVVis absorbance spectroscopy, have been used to see the characteristics of the nanoparticles. For in vitro applications, it is important to prevent any aggregation of the nanoparticles, and may also enable efficient excretion and protection of the cells from toxicity. For biomedical applications like magnetic biofunctional material vectors to target tissues, the particles obtained have to be spherical with 10 nm average diameter. Key words: magnetite, nanocomposite, core-shell, sonochemical method

  17. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Namita, E-mail: saxenanamita@yahoo.com [School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Singh, Man, E-mail: mansingh50@hotmail.com [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India)

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6–12 nm size, narrow size distribution and cubo-spheroidal shape were synthesised. Particles were Superparamagnetic with high values of saturation magnetisation of up to 68 emu/g and negligible values of remanence and coercivity. A reaction yield of up to 62% was obtained. Hydrophilic coated particles were produced in a single, one step facile process for biomedical applications, using optimised parameters of pH and alkali concentration obtained in the study. Single domain particles with good magnetisation formed stable aqueous dispersions. FTIR, UV-Visible and DLS were used to confirm the coating and dispersion stabilities of the particles. These particles have the requisite properties required for application in different biomedical fields.

  18. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying

    2012-08-15

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single-domain structures, whose polarization areas can be manipulated by writing and reading. The nanoplates are also effective catalysts for the oxidation of carbon monoxide. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Why magnetite is not the only indicator of past rainfall in the Chinese loess plateau?

    Science.gov (United States)

    Guo, Xuelian; Banerjee, Subir K.; Wang, Ronghua; Zhao, Guoyong; Song, Hong; Lü, Bin; Li, Qian; Liu, Xiuming

    2018-03-01

    The study investigates the magnetic mineralogy of paleosol S5 from Xifeng (XF), Linyou (LY) and Baoji (BJ) sections with increasing annual precipitation from north to the south on the Chinese Loess Plateau. Paleosol S5 samples from these three localities are further prepared as magnetic extracts and separation residues. Low temperature magnetic measurements including field cooled and zero field cooled (FC/ZFC) remanence, in-phase magnetic susceptibility, thermal remanent magnetization and room temperature saturation isothermal remanence magnetization (RTSIRM), with X-ray diffraction measurements are carried out for all magnetic extracts and separation residues samples. The asymmetric rounded `hump' in cooling curves on RTSIRM and the `tilted' Verwey transition on ZFC/FC curves suggest that partially oxidized magnetite is the dominant magnetic contributor, not pure maghemite or magnetite. Furthermore, The Verwey transitions on cooling curves slightly decrease and the increased slope of `tilted' Verwey transition on ZFC remanence curves show that the degree of oxidation of magnetite between localities increases in the order XF-LY-BJ. Hard isothermal remanent magnetization, X-ray diffraction data and the difference of magnetization in warming curves of RTSIRM suggest that both hematite concentration in magnetic extracts and goethite concentration in separation residues increase from XF to BJ. Frequency dependent susceptibility and ZFC/FC curves show that BJS5 layer formed under high paleoprecipitation has less superparamagnetic (SP) but more single domain to pseudo-single domain particles, because SP maghemite was dissolved and transformed into goethite by temporary water-logging. The increase in hematite concentration is interpreted as due to SP maghemite oxidation or original goethite dehydration within dry soil environment. Therefore, transformation of maghemite to goethite in waterlogged phases of the S5 paleosol led to the loss of magnetization.

  20. Why magnetite is not the only indicator of past rainfall in the Chinese Loess Plateau?

    Science.gov (United States)

    Guo, Xuelian; Banerjee, Subir K.; Wang, Ronghua; Zhao, Guoyong; Song, Hong; Lü, Bin; Li, Qian; Liu, Xiuming

    2018-06-01

    This study investigates the magnetic mineralogy of palaeosol S5 from Xifeng (XF), Linyou (LY) and Baoji (BJ) sections with increasing annual precipitation from north to the south on the Chinese Loess Plateau. Palaeosol S5 samples from these three localities are further prepared as magnetic extracts and separation residues. Low-temperature magnetic measurements including field cooled and zero field cooled (FC/ZFC) remanence, in-phase magnetic susceptibility, thermal remanent magnetization and room temperature saturation isothermal remanence magnetization (RTSIRM), with X-ray diffraction measurements are carried out for all magnetic extracts and separation residues samples. The asymmetric rounded `hump' in cooling curves on RTSIRM and the `tilted' Verwey transition on ZFC/FC curves suggest that partially oxidized magnetite is the dominant magnetic contributor, not pure maghemite or magnetite. Furthermore, The Verwey transitions on cooling curves slightly decrease and the increased slope of `tilted' Verwey transition on ZFC remanence curves show that the degree of oxidation of magnetite between localities increases in the order XF-LY-BJ. Hard isothermal remanent magnetization, X-ray diffraction data and the difference of magnetization in warming curves of RTSIRM suggest that both hematite concentration in magnetic extracts and goethite concentration in separation residues increase from XF to BJ. Frequency-dependent susceptibility and ZFC/FC curves show that BJS5 layer formed under high palaeoprecipitation has less superparamagnetic (SP) but more single domain to pseudo-single domain particles, because SP maghemite was dissolved and transformed into goethite by temporary waterlogging. The increase in hematite concentration is interpreted as due to SP maghemite oxidation or original goethite dehydration within dry soil environment. Therefore, transformation of maghemite to goethite in waterlogged phases of the S5 palaeosol led to the loss of magnetization.

  1. Synthesis of magnetite nanoparticles from mineral waste

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohit [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Sakthivel, R., E-mail: velsak_r@yahoo.com [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Behura, Reshma; Mishra, B.K. [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Das, D. [UGC-DAE Consortium, Kolkata (India)

    2015-10-05

    Highlights: • Mineral waste becomes a valuable source for the synthesis of magnetite. • Milling helps uniform mixing of reductant with iron ore tailings. • Magnetite nanoparticles exhibit saturation magnetization of 60 emu/g. • Ag coating induces antibacterial activity of magnetite. - Abstract: Magnetite nanoparticles were synthesized from iron ore tailings – a mineral waste collected from the iron ore processing plant. Mechanical milling followed by chemical route is employed to obtain the magnetite nanoparticles from the waste. The magnetite nanoparticles were characterized by X-ray diffractometer, Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrometer and Vibrating Sample Magnetometer. X-ray diffraction pattern confirms the existence of a magnetite phase. Field Emission Scanning Electron Microscopic (FE-SEM) pictures reveal that the particle size is below 100 nm. Fourier Transform Infrared (FTIR) spectrum shows a band at 570 cm{sup −1} for the Fe–O bond vibration. Vibrating Sample Magnetometric (VSM) study shows high saturation magnetization value of 60 emu/g at low applied magnetic field. Silver coated magnetite nanoparticles exhibits antibacterial property whereas bare magnetite does not.

  2. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  3. Summer Decay Processes in a Large Tabular Iceberg

    Science.gov (United States)

    Wadhams, P.; Wagner, T. M.; Bates, R.

    2012-12-01

    Summer Decay Processes in a Large Tabular Iceberg Peter Wadhams (1), Till J W Wagner(1) and Richard Bates(2) (1) Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK (2) Scottish Oceans Institute, School of Geography and Geosciences, University of St Andrews, St. Andrews, Scotland KY16 9AL We present observational results from an experiment carried out during July-August 2012 on a giant grounded tabular iceberg off Baffin Island. The iceberg studied was part of the Petermann Ice Island B1 (PIIB1) which calved off the Petermann Glacier in NW Greenland in 2010. Since 2011 it has been aground in 100 m of water on the Baffin Island shelf at 69 deg 06'N, 66 deg 06'W. As part of the project a set of high resolution GPS sensors and tiltmeters was placed on the ice island to record rigid body motion as well as flexural responses to wind, waves, current and tidal forces, while a Waverider buoy monitored incident waves and swell. On July 31, 2012 a major breakup event was recorded, with a piece of 25,000 sq m surface area calving off the iceberg. At the time of breakup, GPS sensors were collecting data both on the main berg as well as on the newly calved piece, while two of us (PW and TJWW) were standing on the broken-out portion which rose by 0.6 m to achieve a new isostatic equilibrium. Crucially, there was no significant swell at the time of breakup, which suggests a melt-driven decay process rather than wave-driven flexural break-up. The GPS sensors recorded two disturbances during the hour preceding the breakup, indicative of crack growth and propagation. Qualitative observation during the two weeks in which our research ship was moored to, or was close to, the ice island edge indicates that an important mechanism for summer ablation is successive collapses of the overburden from above an unsupported wave cut, which creates a submerged ram fringing the berg. A model of buoyancy stresses induced by

  4. Synthesis and surface modification of hydrophobic magnetite to processible magnetite at silica-propylamine

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Korea Institute of Science and Technology, Nanomaterials Research Center, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)]. E-mail: kjwoo@kist.re.kr; Hong, Jangwon [Korea Institute of Science and Technology, Nanomaterials Research Center, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Ahn, Jae-Pyoung [Korea Institute of Science and Technology, Nanomaterials Research Center, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)

    2005-05-15

    Hydrophobic magnetite nanoparticles with a narrow size distribution were prepared by thermal decomposition of Fe(CO){sub 5} in octyl ether solution of oleic acid and by consecutive aeration. The nanoparticles were converted into magnetite core/silica shell (magnetite at silica) structured particles with hydrophilic and processible aminopropyl groups on their surfaces.

  5. Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics.

    Science.gov (United States)

    García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J

    2016-04-09

    Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs.

  6. Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics

    Directory of Open Access Journals (Sweden)

    Miren García-Cortés

    2016-04-01

    Full Text Available Dietary supplements (DS are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™ while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang. Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs.

  7. Geosites inventory of the northwestern Tabular Middle Atlas of Morocco

    Science.gov (United States)

    El Wartiti, Mohamed; Malaki, Amina; Zahraoui, Mohamed; El Ghannouchi, Abdelilah; di Gregorio, Felice

    2008-07-01

    Across the northwestern Tabular Middle Atlas of Morocco there are many examples of landscapes, rocks and fossils that provide key evidence of a particular moment or period in Earth history. Such Earth heritage sites are important for educating the general public in environmental matters. They also serve as tools for demonstrating sustainable development and for illustrating methods of site conservation as well as remembering that rocks, minerals, fossils, soils, landforms form an integral part of the natural world. The significance of certain sites for aesthetic or tourism reasons is obvious. There are numerous geosites, which could contribute to effective exploitation of geotourism, often in conjunction with ecotourism. The strategy employed to such sites involves close consultation with all communities in the vicinity of the respective geosite and is not only aimed at tourism and education, but also at sustainable improvement of the infrastructure of the people of this area. Geological heritage sites, properly managed, can generate employment and new economic activities, especially in regions in need of new or additional sources of income.

  8. Automated Generation of Tabular Equations of State with Uncertainty Information

    Science.gov (United States)

    Carpenter, John H.; Robinson, Allen C.; Debusschere, Bert J.; Mattsson, Ann E.

    2015-06-01

    As computational science pushes toward higher fidelity prediction, understanding the uncertainty associated with closure models, such as the equation of state (EOS), has become a key focus. Traditional EOS development often involves a fair amount of art, where expert modelers may appear as magicians, providing what is felt to be the closest possible representation of the truth. Automation of the development process gives a means by which one may demystify the art of EOS, while simultaneously obtaining uncertainty information in a manner that is both quantifiable and reproducible. We describe our progress on the implementation of such a system to provide tabular EOS tables with uncertainty information to hydrocodes. Key challenges include encoding the artistic expert opinion into an algorithmic form and preserving the analytic models and uncertainty information in a manner that is both accurate and computationally efficient. Results are demonstrated on a multi-phase aluminum model. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics

    Science.gov (United States)

    García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J.

    2016-01-01

    Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs. PMID:27070596

  10. Quantification of Biogenic Magnetite by Synchrotron X-ray Microscopy During the PETM

    Science.gov (United States)

    Wang, H.; Wang, J.; Kent, D. V.; Chen-Wiegart, Y. C. K.

    2014-12-01

    Exceptionally large biogenic magnetite crystals, including spearhead-like and spindle-like ones up to 4 microns, have been reported in clay-rich sediments recording the ~56 Ma Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion (CIE) in a borehole at Ancora, NJ and along with magnetotactic bacteria (MTB) chains, were suggested [Schumann et al. 2008 PNAS; Kopp et al. 2009 Paleoceanography] to account for the distinctive single domain (SD) rock magnetic properties of these sediments [Lanci et al. 2002 JGR]. However, because uncalibrated magnetic extraction techniques were used to provide material for TEM imaging of the biogenic magnetite, it is difficult to quantitatively analyze their concentration in the bulk clay. In this study, we use a synchrotron transmission X-ray microscope to image bulk CIE clay. We first take mosaic images of sub-millimeter-sized bulk clay samples, in which we can identify many of the various types of giant biogenic magnetite crystals, as well as several other types of iron minerals, such as pyrite framboids, siderite, and detrital magnetite. However, limited by the instrument resolution (~50 nm), we are not able to identify MTB chains let alone isolated magnetic nanoparticles that may be abundant the clay. To quantitatively estimate the concentration of the giant biogenic magnetite, we re-deposited the bulk clay sample in an alcohol solution on a silicon nitride membrane for 2D X-ray scans. After scanning a total area of 0.55 mm2 with average clay thickness of 4 μm, we identified ~40 spearheads, ~5 spindles and a few elongated rods and estimated their total magnetization as SD particles to be less than about 10% of the mass normalized clay for the scanned area. This result suggests that the giant biogenic magnetite is not a major source of the SD signal for the clay and is in good agreement with rock magnetic analyses using high-resolution first-order reversal curves and thermal fluctuation tomography on bulk CIE clay

  11. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies

    DEFF Research Database (Denmark)

    Staus, Dean P; Wingler, Laura M; Strachan, Ryan T

    2014-01-01

    . However, a monomeric single-domain antibody (nanobody) from the Camelid family was recently found to allosterically bind and stabilize an active conformation of the β2-adrenergic receptor (β2AR). Here, we set out to study the functional interaction of 18 related nanobodies with the β2AR to investigate...... their roles as novel tools for studying GPCR biology. Our studies revealed several sequence-related nanobody families with preferences for active (agonist-occupied) or inactive (antagonist-occupied) receptors. Flow cytometry analysis indicates that all nanobodies bind to epitopes displayed...... on the intracellular receptor surface; therefore, we transiently expressed them intracellularly as "intrabodies" to test their effects on β2AR-dependent signaling. Conformational specificity was preserved after intrabody conversion as demonstrated by the ability for the intracellularly expressed nanobodies...

  12. The generation and selection of single-domain, v region libraries from nurse sharks.

    Science.gov (United States)

    Flajnik, Martin F; Dooley, Helen

    2009-01-01

    The cartilaginous fish (sharks, skates, and rays) are the oldest phylogenetic group in which a human-type adaptive immune system and immunoglobulins (Igs) have been found. In addition to their conventional (heavy-light chain heterodimeric) isotypes, IgM and IgW, sharks produce the novel isotype, IgNAR, a heavy chain homodimer that does not associate with light chains. Instead, its variable (V) regions act as independent, soluble units in order to bind antigen. In this chapter, we detail our immunization protocol in order to raise a humoral IgNAR response in the nurse shark (Ginglymostoma cirratum) and the subsequent cloning of the single-domain V regions from this isotype in order to select antigen-specific binders by phage display.

  13. Single-domain versus two-domain configuration in thin ferromagnetic prisms

    International Nuclear Information System (INIS)

    Pini, Maria Gloria; Politi, Paolo

    2007-01-01

    Thin ferromagnetic elements in the form of rectangular prisms are theoretically investigated in order to study the transition from single-domain to two-domain state, with changing the in-plane aspect ratio p. We address two main questions: first, how general is the transition; second, how the critical value p c depends on the physical parameters. We use two complementary methods: discrete-lattice calculations and a micromagnetic continuum approach. Ultrathin films do not appear to split in two domains. Instead, thicker films may undergo the above transition. We have used the continuum approach to analyze recent magnetic force microscopy observations in 30nm-thick patterned permalloy elements, finding a good agreement for p c

  14. Synthesis of ferrite nanoparticle by milling process for preparation of single domain magnet

    International Nuclear Information System (INIS)

    Suryadi; Hasbiyallah; Agus S W; Nurul TR; Budhy Kurniawan

    2009-01-01

    Study of ferrite nanoparticle synthesis for preparation of single domain magnet by milling of scrap magnet material have been done. Sample preparation were done using disk mill continued with high energy milling (HEM). Some powder were taken after 5, 10 dan 20 hours milling using HEM-E3D. The powder were then characterized using X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRF characterization result, confirmed by XRD analysis result, showed that the sample are of Strontium ferrite phase. Microstructure analysis result showed the occurrence of grain refining process of ferrite particle with increasing of milling time. Particle having size of nanometers successfully obtained, although in unhomogeneous distribution. Magnetic properties characterization result showed the increasing of hysteresis curve area of sample for longer milling time and sintering process. (author)

  15. Temperature effects on drift of suspended single-domain particles induced by the Magnus force

    Science.gov (United States)

    Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.

    2018-03-01

    We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.

  16. Enhanced magnetostriction derived from magnetic single domain structures in cluster-assembled SmCo films

    Science.gov (United States)

    Bai, Yulong; Yang, Bo; Guo, Fei; Lu, Qingshan; Zhao, Shifeng

    2017-11-01

    Cluster-assembled SmCo alloy films were prepared by low energy cluster beam deposition. The structure, magnetic domain, magnetization, and magnetostriction of the films were characterized. It is shown that the as-prepared films are assembled in compact and uniformly distributed spherical cluster nanoparticles, most of which, after vacuum in situ annealing at 700 K, aggregated to form cluster islands. These cluster islands result in transformations from superparamagnetic states to magnetic single domain (MSD) states in the films. Such MSD structures contribute to the enhanced magnetostrictive behaviors with a saturation magnetostrictive coefficient of 160 × 10-6 in comparison to 105 × 10-6 for the as-prepared films. This work demonstrates candidate materials that could be applied in nano-electro-mechanical systems, low power information storage, and weak magnetic detecting devices.

  17. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    International Nuclear Information System (INIS)

    Garza-Navarro, Marco; Torres-Castro, Alejandro; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-01

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  18. Tabular method of critical heat flux description in square packing rod bundles

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Smogalev, I.P.

    2003-01-01

    Elaborations of harnessing tabular method for the description and calculation of critical heat fluxes in square packing rod bundles are presented. The tabular method for fuel rod triangular assemblies derived from using basic table for critical heat fluxes in triangular fuel assemblies demonstrates good results. For the harnessing tabular method in square packing rod bundles correction functions reflecting specific geometry were found. Comparative evaluations of calculated values for the critical heat fluxes with experimental ones are presented. Good agreement of calculations with experiments is noted in all range of parameters [ru

  19. The Antitumor Effect of Single-domain Antibodies Directed Towards Membrane-associated Catalase and Superoxide Dismutase.

    Science.gov (United States)

    Bauer, Georg; Motz, Manfred

    2016-11-01

    Neutralizing single-domain antibodies directed towards catalase or superoxide dismutase (SOD) caused efficient reactivation of intercellular reactive oxygen species/reactive nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling specifically in human tumor cells. Single-domain antibodies targeted tumor cell-specific membrane-associated SOD and catalase, but not the corresponding intracellular enzymes. They were shown to be about 200-fold more effective than corresponding classical recombinant antigen-binding fragments and more than four log steps more efficient than monoclonal antibodies. Combined addition of single-domain antibodies against catalase and SOD caused a remarkable synergistic effect. Proof-of-concept experiments in immunocompromised mice using human tumor xenografts and single-domain antibodies directed towards SOD showed an inhibition of tumor growth. Neutralizing single-domain antibodies directed to catalase and SOD also caused a very strong synergistic effect with the established chemotherapeutic agent taxol, indicating an overlap of signaling pathways. This effect might also be useful in order to avoid unwanted side-effects and to drastically lower the costs for taxol-based therapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Electrical resistivity of ferrimagnetic magnetite thin film

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Yogi, A.; Kaurav, N.; Gupta, R.P.; Phase, D.M.

    2006-01-01

    We have grown Fe 3 O 4 (III) epitaxial film on Al 2 O 3 (0001) substrate by pulsed laser deposition, with thickness of 130 nm. X-ray diffraction studies of magnetite show the spinel cubic structure of film with preferential (III) orientation. The electrical resistivity measurement demonstrates that the properties of thin film of magnetite are basically similar to those of bulk magnetite and clearly shows semiconductor-insulator transition at Verwey transition temperature (≅140 K). We have found higher Verwey transition temperature when compared with earlier reports on similar type of system. Possible causes for increase in transition temperature are discussed. (author)

  1. Global Fire Emissions Indicators, Country-Level Tabular Data: 1997-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Fire Emissions Indicators, Country-Level Tabular Data: 1997-2015 contains country tabulations from 1997 to 2015 for the total area burned (hectares) and...

  2. General expression for spectrum of magnetic anomaly due to long tabular body and its characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, D.C.; Murthy, K.S.R.; Rao, T.C.S.

    A general expression for spectrum of magnetic anomalies-vertical, horizontal and total intensity - due to a long tabular body is derived which is used to estimate the body parameters. The analysis is extended to a marine magnetic anomaly recorded...

  3. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, Leo; Knockenhauer, Kevin E.; Brewer, R. Camille; van Diest, Eline; Schmidt, Florian I.; Schwartz, Thomas U.; Ploegh, Hidde L. (Whitehead); (MIT)

    2016-12-13

    Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of host range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies.

    IMPORTANCEInfluenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and

  4. Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.

    Science.gov (United States)

    Moonens, Kristof; Van den Broeck, Imke; Okello, Emmanuel; Pardon, Els; De Kerpel, Maia; Remaut, Han; De Greve, Henri

    2015-02-24

    Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding.

  5. Thermally Induced Magnetite-Haematite Transformation

    International Nuclear Information System (INIS)

    Mazo-Zuluaga, J.; Barrero, C. A.; Diaz-Teran, J.; Jerez, A.

    2003-01-01

    The products of thermal treatments of pure and copper doped magnetites have been investigated using Moessbauer spectrometry, XRD and thermal analysis techniques. The samples were heated in air between RT and 800 o C at several heating rates. Samples treated at 520 o C during 12 and 24 hours consist only of well-crystallized haematite. On the other hand, magnetites treated at 350 o C consisted of mixtures of haematite, maghemite and magnetite, with relative amount of each phase depending on the presence of copper as well as on the heating time. Results show that the transformation of magnetite to haematite goes through the formation of maghemite, and that the presence of copper delays this transformation.

  6. Thermally Induced Magnetite-Haematite Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Mazo-Zuluaga, J.; Barrero, C. A. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Diaz-Teran, J.; Jerez, A. [Universidad Nacional de Educacion a Distancia UNED, Po Senda del Rey 9, Departamento de Quimica Inorganica y Quimica Tecnica (Spain)

    2003-06-15

    The products of thermal treatments of pure and copper doped magnetites have been investigated using Moessbauer spectrometry, XRD and thermal analysis techniques. The samples were heated in air between RT and 800{sup o}C at several heating rates. Samples treated at 520{sup o}C during 12 and 24 hours consist only of well-crystallized haematite. On the other hand, magnetites treated at 350{sup o}C consisted of mixtures of haematite, maghemite and magnetite, with relative amount of each phase depending on the presence of copper as well as on the heating time. Results show that the transformation of magnetite to haematite goes through the formation of maghemite, and that the presence of copper delays this transformation.

  7. On modifying the magnetite films with complexonates

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Bardasheva, T.I.

    1992-01-01

    Formation of magnetite layers on the surface of low-carbon steels and in neutral ammonium-nitrade eelctrolytes containing complexonate type inhibitors is studied to improve protection corrosion resistance of oxide coatings by means of electrochemical and gravimetrical techniques. Phosphonates are determined to affect kinetics and thickness of magnetite film formation, to increase protection properties of oxide layers. Complexonate-modified oxide coating is characterized by increased corrosion-resistance including that to chloride activating action

  8. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    International Nuclear Information System (INIS)

    Glukhov, S; Berestovoy, M; Nabiev, I; Sukhanova, A; Chames, P; Baty, D

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or 'nanobodies') conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD–sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis. (paper)

  9. Shark Variable New Antigen Receptor (VNAR Single Domain Antibody Fragments: Stability and Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Stewart Nuttall

    2013-01-01

    Full Text Available The single variable new antigen receptor domain antibody fragments (VNARs derived from shark immunoglobulin new antigen receptor antibodies (IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds. As single domains, they demonstrate favorable size and cryptic epitope recognition properties, making them attractive in diagnosis and therapy of numerous disease states. Here, we examine the stability of VNAR domains with a focus on a family of VNARs specific for apical membrane antigen 1 (AMA-1 from Plasmodium falciparum. The VNARs are compared to traditional monoclonal antibodies (mAbs in liquid, lyophilized and immobilized nitrocellulose formats. When maintained in various formats at 45 °C, VNARs have improved stability compared to mAbs for periods of up to four weeks. Using circular dichroism spectroscopy we demonstrate that VNAR domains are able to refold following heating to 80 °C. We also demonstrate that VNAR domains are stable during incubation under potential in vivo conditions such as stomach acid, but not to the protease rich environment of murine stomach scrapings. Taken together, our results demonstrate the suitability of shark VNAR domains for various diagnostic platforms and related applications.

  10. Micromagnetic study of single-domain FePt nanocrystals overcoated with silica

    International Nuclear Information System (INIS)

    Hyun, Changbae; Lee, Doh C; Korgel, Brian A; Lozanne, Alex de

    2007-01-01

    Chemically-synthesized FePt nanocrystals must be annealed at a high temperature (>550 deg. C) to induce the hard ferromagnetic L 1 0 phase. Unfortunately, the organic stabilizer covering these nanocrystals degrades at these temperatures and the nanocrystals sinter, resulting in the loss of control over nanocrystal size and separation in the film. We have developed a silica overcoating strategy to prevent nanocrystal sintering. In this study, 6 nm diameter FePt nanocrystals were coated with 17 nm thick shells of silica using an inverse micelle process. Magnetization measurements of the annealed FePt-SiO 2 nanocrystals indicate ferromagnetism with a high coercivity at room temperature. Magnetic force microscopy (MFM) results show that the film composed of nanocrystals behaves as a dipole after magnetization by an 8 T external field. The individual nanocrystals are modelled as single-domain particles with random crystallographic orientations. We propose that the interparticle magnetic dipole interaction is weaker than the magnetocrystalline energy in the remanent state, leading to an unusual material with no magnetic anisotropy and no domains. Films of these nanoparticles are promising candidates for magnetic media with a data storage density of ∼Tb/in 2

  11. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  12. Fungal Glucosylceramide-Specific Camelid Single Domain Antibodies Are Characterized by Broad Spectrum Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Barbara De Coninck

    2017-06-01

    Full Text Available Chemical crop protection is widely used to control plant diseases. However, the adverse effects of pesticide use on human health and environment, resistance development and the impact of regulatory requirements on the crop protection market urges the agrochemical industry to explore innovative and alternative approaches. In that context, we demonstrate here the potential of camelid single domain antibodies (VHHs generated against fungal glucosylceramides (fGlcCer, important pathogenicity factors. To this end, llamas were immunized with purified fGlcCer and a mixture of mycelium and spores of the fungus Botrytis cinerea, one of the most important plant pathogenic fungi. The llama immune repertoire was subsequently cloned in a phage display vector to generate a library with a diversity of at least 108 different clones. This library was incubated with fGlcCer to identify phages that bind to fGlcCer, and VHHs that specifically bound fGlcCer but not mammalian or plant-derived GlcCer were selected. They were shown to inhibit the growth of B. cinerea in vitro, with VHH 41D01 having the highest antifungal activity. Moreover, VHH 41D01 could reduce disease symptoms induced by B. cinerea when sprayed on tomato leaves. Based on all these data, anti-fGlcCer VHHs show the potential to be used as an alternative approach to combat fungal plant diseases.

  13. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    Science.gov (United States)

    Glukhov, S.; Berestovoy, M.; Chames, P.; Baty, D.; Nabiev, I.; Sukhanova, A.

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or "nanobodies") conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD-sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis.

  14. Hysteresis loop design by geometry of garnet film element with single domain wall

    International Nuclear Information System (INIS)

    Skidanov, V A; Vetoshko, P M; Stempkovskiy, A L

    2011-01-01

    Numerical modeling and experimental investigation of magnetostatic stable states of two-domain structure in Bi-substituted uniaxial garnet film elements was made. Single domain walls (DW) between two opposite normally magnetized parts in isolated rectangular strip and strip-like bridge are found to exhibit different behavior. DW inside strip (bridge) suffers increasing repulsion (attraction) from nearest edge when shifted from element center. DW position center position is stable in isolated strip but bridge is magnetized spontaneously to one of two saturated states in zero external field. Isolated strip magnetization process occurs reversibly while bridge magnetization reversal occurs by coercive manner. Strip susceptibility and bridge coercive field are entirely defined by magnetostatic barrier created by element boundary stray field in case of constant DW length during magnetization reversal. Variation of strip and bridge boundary shape along DW trajectory gives the opportunity to create additional controllable potential profile due to DW surface energy modulation by DW length. Garnet elements with high Faraday rotation and low light switching field were developed for fine magnetic sensing and optical data processing applications.

  15. Transition from many domain to single domain martensite morphology in small-scale shape memory alloys

    International Nuclear Information System (INIS)

    Ueland, Stian M.; Schuh, Christopher A.

    2013-01-01

    The morphology of the martensitic transformation during a superelastic cycle is studied by in situ scanning electron microscopy deformation experiments in microwires of Cu–Zn–Al. The diameters of the wires studied (21–136 μm) span the range in which significant size effects upon transformation hysteresis have been observed. In larger wires the transformation is accommodated by the continual nucleation of many new martensite plates that grow and eventually coalesce with their neighbors. In small wires a single martensite plate nucleates at the start of transformation and then proceeds to grow in a monolithic fashion; the wire transforms by smooth axial propagation of a single interface. The transition from many domain to single domain transformation is gradual with wire diameter, and is based upon scaling of the domain density with sample size. We attribute it to a crossover from bulk to surface obstacle control of transformation front propagation. This observation also sheds light on reported size effects in energy dissipation in shape memory alloys

  16. Influence of Sn on the optical anisotropy of single-domain Si(001)

    International Nuclear Information System (INIS)

    Astropekakis, A.; Power, J.R.; Fleischer, K.; Esser, N.; Richter, W.; Galata, S.; Papadimitriou, D.

    2001-01-01

    We apply reflectance anisotropy spectroscopy (RAS) and low-energy electron diffraction (LEED) to the study of Sn deposited on a single-domain vicinal Si(001) sample. Large variations in RAS are recorded when up to 5 monolayers (ML) of Sn is deposited on the Si substrate at room temperature. We observe (2x2) and (1x1) LEED patterns for the 0.5-ML and 1.0-ML Sn covered surfaces, respectively. The (1x1) LEED pattern exists beyond this coverage and up to 5.0-ML deposition. Even though a (1x1) LEED pattern is observed upon deposition of 1.5 ML, surprisingly, a significant optical anisotropy is observed. After annealing to 570 degree sign C for 2 min, we observe a progression of LEED pattern changes from c(4x4)→(6x2)→c(8x4)→(5x1) with increased Sn coverage up to 1.5 ML. Similar RAS line shapes are obtained for all reconstructions produced through annealing with the exception of the (5x1). For the (5x1) phase, a significant anisotropy appears in the region of 1.8 eV. Similarities in the RAS line shape for both the (5x1) phase and that obtained after deposition of 1.5 ML of Sn at room temperature may indicate a RAS sensitivity to Sn dimer orientation within the uppermost layer

  17. Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies.

    Science.gov (United States)

    Maggi, Maristella; Scotti, Claudia

    2017-08-01

    Single domain antibodies (sdAbs) are small antigen-binding domains derived from naturally occurring, heavy chain-only immunoglobulins isolated from camelid and sharks. They maintain the same binding capability of full-length IgGs but with improved thermal stability and permeability, which justifies their scientific, medical and industrial interest. Several described recombinant forms of sdAbs have been produced in different hosts and with different strategies. Here we present an optimized method for a time-saving, high yield production and extraction of a poly-histidine-tagged sdAb from Escherichia coli classical inclusion bodies. Protein expression and extraction were attempted using 4 different methods (e.g. autoinducing or IPTG-induced soluble expression, non-classical and classical inclusion bodies). The best method resulted to be expression in classical inclusion bodies and urea-mediated protein extraction which yielded 60-70 mg/l bacterial culture. The method we here describe can be of general interest for an enhanced and efficient heterologous expression of sdAbs for research and industrial purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Performance evaluation of phage-displayed synthetic human single-domain antibody libraries: A retrospective analysis.

    Science.gov (United States)

    Henry, Kevin A; Tanha, Jamshid

    2018-05-01

    Fully human synthetic single-domain antibodies (sdAbs) are desirable therapeutic molecules but their development is a considerable challenge. Here, using a retrospective analysis of in-house historical data, we examined the parameters that impact the outcome of screening phage-displayed synthetic human sdAb libraries to discover antigen-specific binders. We found no evidence for a differential effect of domain type (V H or V L ), library randomization strategy, incorporation of a stabilizing disulfide linkage or sdAb display format (monovalent vs. multivalent) on the probability of obtaining any antigen-binding human sdAbs, instead finding that the success of library screens was primarily related to properties of target antigens, especially molecular mass. The solubility and binding affinity of sdAbs isolated from successful screens depended both on properties of the sdAb libraries (primarily domain type) and the target antigens. Taking attrition of sdAbs with major manufacturability concerns (aggregation; low expression) and sdAbs that do not recognize native cell-surface antigens as independent probabilities, we calculate the overall likelihood of obtaining ≥1 antigen-binding human sdAb from a single library-target screen as ~24%. Successful library-target screens should be expected to yield ~1.3 human sdAbs on average, each with average binding affinity of ~2 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Fijten, H.P.D.; Setten, van M.C.

    2005-01-01

    The therapeutic parenteral application of llama single-domain antibody fragments (VHHs) is hampered by their small size, resulting in a fast elimination from the body. Here we describe a method to increase the serum half-life of VHHs in pigs by fusion to another VHH binding to porcine immunoglobulin

  20. Stimulation of chymosin secretion by simultaneous expression with chymosin-binding llama single-domain antibody fragments in yeast

    NARCIS (Netherlands)

    Harmsen, M.M.; Smits, C.B.; Geus, de B.

    2002-01-01

    We studied the effect of coexpression of chymosin and chymosin-binding llama single-domain antibody fragments (VHHs) on the secretion of chymosin by Saccharomyces cerevisiae cells. A VHH expression library containing chymosin-specific VHHs was obtained by immunization of a llama and coexpressed with

  1. Passive immunization of guinea-pigs with llama single-domain antibody fragments against foot-and-mouth disease

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Fijten, H.P.D.; Keulen, van L.; Rosalia, R.A.; Weerdmeester, K.; Cornelissen, A.H.M.; Bruin, de M.G.M.; Eble, P.L.; Dekker, A.

    2007-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease that occasionally causes outbreaks in Europe. There is a need for therapies that provide rapid protection against FMD in outbreak situations. We aim to provide such rapid protection by passive immunization with llama single-domain antibody

  2. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  3. A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies

    Science.gov (United States)

    Henry, Kevin A.; Sulea, Traian; van Faassen, Henk; Hussack, Greg; Purisima, Enrico O.; MacKenzie, C. Roger; Arbabi-Ghahroudi, Mehdi

    2016-01-01

    Staphylococcal protein A (SpA) and streptococcal protein G (SpG) affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs) in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs) are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species. PMID:27631624

  4. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment

    Directory of Open Access Journals (Sweden)

    María Elena Iezzi

    2018-02-01

    Full Text Available Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs, in particular those engineered from the variable heavy-chain fragment (VHH gene found in Camelidae heavy-chain antibodies (or IgG2 and IgG3, are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.

  5. Study on the coherence degree of magnetization reversal in Permalloy single-domain nano-ellipses

    Energy Technology Data Exchange (ETDEWEB)

    Júnior, D.S. Vieira [Departamento Acadêmico de Matemática, Física, e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais – Campus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Leonel, S.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Toscano, D., E-mail: danilotoscano@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Sato, F.; Coura, P.Z.; Dias, R.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2017-03-15

    Numerical simulations have been performed to study the magnetization reversal in Permalloy nano-ellipses, under combined in-plane magnetic fields along the longitudinal and the transverse directions. We have considered nano-ellipses with two different aspect ratios and five thicknesses: 220×80×t nm{sup 3} and 70×50×t nm{sup 3}, where t ranging from 5 to 25 nm in steps of 5 nm. We found that the mechanism of magnetization reversal is not only dependent on the parameters of the magnetic field pulse but also related to the ellipse dimensions. It is known that the reversal time is related to the mechanism behind the magnetization reversal. In particular, ultrafast magnetization reversals occur by coherent rotation, when applying a field oriented mainly perpendicular to the initial magnetization. In order to evaluate the degree of coherence of the magnetization reversal we have introduced a quantity called “coherence index”. Besides complementing the previous studies by including the effect of the thickness on the magnetization reversal, our results indicate that it is possible to obtain magnetization reversals with high degree of coherence in small nano-ellipses by adjusting the geometric factors of the ellipse and the parameters of the magnetic field pulse simultaneously. - Highlights: • Magnetization reversals in single-domain nano-ellipses were investigated. • A parameter to evaluate the degree of coherence of the magnetization reversal was proposed. • A higher coherence index indicates a complete, coherent, rotation of the magnetization.

  6. Aging study of the powdered magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Umar Saeed, E-mail: omar_aps@yahoo.co.uk [Department of Physics, University of Peshawar (Pakistan); Rahim, Abdur, E-mail: rahimkhan533@gmail.com [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Nasrullah [Department of Physics, Kohat University of Science and Technology, Kohat (Pakistan); Muhammad, Nawshad; Rehman, Fozia [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmad, Khalid [Institute of Chemistry, State University of Campinas, PO Box 6154, 13083-970 Campinas, SP (Brazil); Iqbal, Jibran [College of Natural and Health Sciences, Zayed University, 144534 Abu Dhabi (United Arab Emirates)

    2017-03-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m{sup 2}/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  7. Aging study of the powdered magnetite nanoparticles

    International Nuclear Information System (INIS)

    Khan, Umar Saeed; Rahim, Abdur; Khan, Nasrullah; Muhammad, Nawshad; Rehman, Fozia; Ahmad, Khalid; Iqbal, Jibran

    2017-01-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m"2/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  8. Oxidation of magnetite in aerated aqueous media

    International Nuclear Information System (INIS)

    Taylor, P.; Owen, D.G.

    1993-04-01

    Metastable equilibria involving phases less stable than hematite can be significantly more oxidizing than the calculated equilibrium between well-crystallized hematite and magnetite. In this report, generalized solubility and stability relationships between magnetite and Fe 2 O 3 .xH 2 O phases are derived to describe the metastable equilibria. Experiments with synthetic magnetite powders in aerated aqueous solutions show that crystalline hematite is formed within days at temperatures above 100 C in pure water or solutions containing anions (e.g., Cl - , SO 4 2 - , HCO 3 - ) that do not form very strong surface complexes with iron oxides. In the presence of dissolved phosphate or silica, however, the dissolution-precipitation route to hematite is strongly inhibited, and maghemite is a persistent metastable product. Thus, phosphate or silica are expected to delay the approach to magnetite-hematite equilibrium in aerated groundwaters conditioned by magnetite. These findings are presented in the context of nuclear fuel waste disposal. (author). 63 refs., 1 tab., 11 figs

  9. Llama Single Domain Antibodies Specific for the 7 Botulinum Neurotoxin Serotypes as Heptaplex Immunoreagents

    Science.gov (United States)

    Collazo, M. Thelma; Garza, John A.; Hayhurst, Andrew

    2010-01-01

    Background There are currently 7 known serotypes of botulinum neurotoxin (BoNT) classified upon non-cross reactivity of neutralizing immunoglobulins. Non-neutralizing immunoglobulins, however, can exhibit cross-reactivities between 2 or more serotypes, particularly mosaic forms, which can hamper the development of highly specific immunoassays, especially if based on polyclonal antisera. Here we employ facile recombinant antibody technology to subtractively select ligands to each of the 7 BoNT serotypes, resulting in populations with very high specificity for their intended serotype. Methods and Findings A single llama was immunized with a cocktail of 7 BoNT toxoids to generate a phage display library of single domain antibodies (sdAb, VHH or nanobodies) which were selected on live toxins. Resulting sdAb were capable of detecting both toxin and toxin complex with the best combinations able to detect 100s-10s of pg per 50 µL sample in a liquid bead array. The most sensitive sdAb were combined in a heptaplex assay to identify each of the BoNT serotypes in buffer and milk and to a lesser extent in carrot juice, orange juice and cola. Several anti-A(1) sdAb recognized A2 complex, showing that subtype cross-reactivity within a serotype was evident. Many of our sdAb could act as both captor and tracer for several toxin and toxin complexes suggesting sdAb can be used as architectural probes to indicate BoNT oligomerisation. Six of 14 anti-A clones exhibited inhibition of SNAP-25 cleavage in the neuro-2A assay indicating some sdAb had toxin neutralizing capabilities. Many sdAb were also shown to be refoldable after exposure to high temperatures in contrast to polyclonal antisera, as monitored by circular dichroism. Conclusions Our panel of molecularly flexible antibodies should not only serve as a good starting point for ruggedizing assays and inhibitors, but enable the intricate architectures of BoNT toxins and complexes to be probed more extensively. PMID:20098614

  10. Electrochemical assessment of magnetite anti corrosive paints

    International Nuclear Information System (INIS)

    Escobar, D. M.; Arroyave, C.; Jaramillo, F.; Mattos, O. R.; Margarit, I. c.; Calderon, J.

    2003-01-01

    With the purpose of deepening in the understanding of the mechanisms of protection of anticorrosive pigments based on iron oxides, this work has been carried out on the production of pure magnetite, and copper and chromium doped magnetite, which were evaluated by different characterization techniques. The paints were prepared with a solvent less epoxy resin maintaining the Pigment volume Content near the Practical Critical value (CPVC), established for each pigment. The paints were applied on polished steel and monitored with electrochemical techniques at total immersion conditions. Permeability and impedance measurements of free films were also done. Impedance data were simulated with the Boukamp software. Results show that the paints pigmented with doped magnetite present better behaviour than a paint prepared with commercial hematite. (Author) 8 refs

  11. Magnetic disaccommodation in Sn substituted magnetite

    International Nuclear Information System (INIS)

    Hernandez-Gomez, P.; Bendimya, K.; Francisco, C. de; Munoz, J.M.; Alejos, O.; Torres, C.

    2001-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline Sn-doped magnetite with nominal composition Sn x Fe 3-x O 4 with x ranging from x=0 to 0.6. In the temperature range between 80 and 500 K, the time decay of the initial permeability after sample demagnetization has been represented by means of isochronal disaccommodation curves, which show the presence of different relaxation processes at 250 K (IV' peak), 275 K (IV), 300 K (III), 400 K (II) and 440 K (I). This behavior is explained on the basis of the disaccommodation of vacancy-doped magnetite and another similar tetravalent substitution, as the previously analyzed Ti-doped magnetite

  12. Actinide removal from aqueous solution with activated magnetite

    International Nuclear Information System (INIS)

    Kochen, R.L.; Thomas, R.L.

    1987-01-01

    An actinide aqueous waste treatment process using activated magnetite has been developed at Rocky Flats. The use and effectiveness of various magnetites in lowering actinide concentrations in aqueous solution are described. Experiments indicate that magnetite particle size and pretreatment (activation of the magnetite surface with hydroxyl ions greatly influence the effective use of magnetite as an actinide adsorbent. With respect to actinide removal, Ba(OH) 2 -activated magnetite was more effective over a broader pH range than was NaOH-activated magnetite. About 50% less Ba(OH) 2 -activated magnetite was required to lower plutonium concentration from 10 -4 to 10 -8 g/l. 7 refs., 8 tabs

  13. Immobilization of Peroxidase onto Magnetite Modified Polyaniline

    Directory of Open Access Journals (Sweden)

    Eduardo Fernandes Barbosa

    2012-01-01

    Full Text Available The present study describes the immobilization of horseradish peroxidase (HRP on magnetite-modified polyaniline (PANImG activated with glutaraldehyde. After the optimization of the methodology, the immobilization of HRP on PANImG produced the same yield (25% obtained for PANIG with an efficiency of 100% (active protein. The optimum pH for immobilization was displaced by the effect of the partition of protons produced in the microenvironment by the magnetite. The tests of repeated use have shown that PANImG-HRP can be used for 13 cycles with maintenance of 50% of the initial activity.

  14. Domain-orientation dependence of levitation force in seeded melt grown single-domain YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Shi, D.; Qu, D.; Sagar, S.; Lahiri, K.

    1997-01-01

    Domain-orientation dependence of levitation force has been determined for single-domain YBa 2 Cu 3 O x . The single-domain material is obtained from a seeded melt growth process. The levitation force has been found to reach a maximum as the c axis of the domain is parallel to the direction of the force. The levitation force decreases in a cosine law fashion as the angle θ (the angle between the direction of the force and the c axis) increases from 0 degree to 60 degree. A maximum anisotropy of levitation force of 2.29 has been found. A physical model is proposed to explain the observed orientation dependence. copyright 1997 American Institute of Physics

  15. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy

    OpenAIRE

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies)...

  16. Remarkable Electromechanical Coupling in the 2–2 Composite Based on Single-domain PMN–0.33PT Crystal

    Directory of Open Access Journals (Sweden)

    Vitaly Yu. TOPOLOV

    2009-10-01

    Full Text Available A novel parallel-connected 2–2 single-domain 0.67Pb(Mg1/3Nb2/3O3 – 0.33PbTiO3 crystal / polymer composite with various orientations of polarization vectors of the components is proposed to analyze behavior of electromechanical coupling factors k*3j and k*k where j = 1, 2 and 3. It is shown that the combination of the highly piezo-active relaxor-ferroelectric single-domain component and the piezoelectric polymer provides considerable values of k*k (min k*k » –0.8 and max k*k» 0.7 and |k*33| (about 0.9. The active role of the polarization orientation effect and the composite structure in attaining the high performance is emphasized in this work. A strong correlation between k*k and the hydrostatic piezoelectric coefficient is first revealed near min k*k and max k*k of the 2–2 composite. Some advantages concerned with the presence of the single-domain component in the 2–2 composite are discussed in connection with the large values of k*3j and k*k as well as with the considerable anisotropy of k*3j.

  17. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  18. Muon spin-rotation study on magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Brabers, V.A.M.; Denison, A.B.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Schillaci, M.E.

    1982-01-01

    Muon spin-rotation (μSR) results on synthetic single crystals of magnetite (Fe 3 O 4 ) support the idea of muon bond formation in oxides. The anomaly in the temperature dependence of the μSR signal observed in Fe 3 O 4 may be attributed to the existence of molecular polarons in the Verwey transition-temperature region

  19. Magnetite nano-islands on Graphene

    Science.gov (United States)

    Anderson, Nathaniel; Zhang, Qiang; Rosenberg, Richard; Vaknin, David

    X-ray magnetic circular dichroism (XMCD) of ex-situ iron nano-islands grown on graphene reveals that iron oxidation spontaneously leads to the formation of magnetite nano-particles - i.e, the formation of the inverse spinel Fe3O4. Fe islands have been grown with two different heights (20 and 75 MLs) on epitaxial graphene and we have determined their magnetic behavior both as function of temperature and applied external field. Our XAS and XMCD at an applied magnetic field of B = 5 T show that the thin film (20 MLs) is totally converted to magnetite whereas the thicker film (75 MLs) exhibits magnetite properties but also those of pure metal iron. For both samples, temperature dependence of the XMCD shows clear transitions at ~120 K consistent with the Verwey transition of bulk magnetite. XMCD at low temperatures shows a weak hysteresis and provide the average spin and angular-momentum moments, the dipolar term, and the total moment . In addition, manipulation and comparison of the XMCD data from both samples allows us to extract information about the pure iron nano-islands from the thicker sample. Ames Laboratory is supported by the U.S. DOE, BES, MSE Contract No. DE-AC02-07CH11358. APS is supported by U.S. DOE Contract No. DE-AC02-06CH11357.

  20. Magnetite nanoparticles embedded in biodegradable porous silicon

    International Nuclear Information System (INIS)

    Granitzer, P.; Rumpf, K.; Roca, A.G.; Morales, M.P.; Poelt, P.; Albu, M.

    2010-01-01

    Magnetite nanoparticles, which are coated with oleic acid in a hexane solution and exhibit an average diameter of 7.7 nm, were embedded in a porous silicon (PS) matrix by immersion under defined parameters (e.g. concentration, temperature, time). The porous silicon matrix is prepared by anodization of a highly n-doped silicon wafer in an aqueous HF-solution. Magnetic characterization of the samples has been performed by SQUID-magnetometry. The superparamagnetic behaviour of the magnetite nanoparticles is represented by temperature-dependent magnetization measurements. Zero field (ZFC)/field cooled (FC) experiments indicate magnetic interactions between the particles. For the infiltration into the PS-templates different concentrations of the magnetite nanoparticles are used and magnetization measurements are performed in respect with magnetic interactions between the particles. The achieved porous silicon/magnetite specimens are not only interesting due to their transition between superparamagnetic and ferromagnetic behaviour, and thus for magnetic applications but also because of the non-toxicity of both materials giving the opportunity to employ the system in medical applications as drug delivery or in medical diagnostics.

  1. The 1985 ARI Survey of Army Recruits: Tabular Description of NPS (active) Army Accessions. Volume 2

    Science.gov (United States)

    1987-04-01

    ACTIVE) ARMY ACCESSIONS, VOLUME 2 INTRODUCTION The purpose of this document and a companion volume, The 1985 Survey of Armv Recruits; Tabular...supsnssrket. Stock shelves in a eupenserket Check out goods in a auperserkst 143. 145. Lssrn *out being a chef . Lasrn about being an auto «echenic

  2. Tabular map of bank mining in North Czech and photo-documentation

    International Nuclear Information System (INIS)

    Svec, J.; Jenista, J.

    2003-01-01

    Quarry coal mining in North Bohemian coal territory represents actual problem that resulted in destabilisation up to devastation of land. Mining activities represent total area about 300 square kilometres. It is documented by tabular map with photo-documentation. Anthropogenic land degradation requires restoration actions in land in this range that will return its stability and natural functions

  3. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    Science.gov (United States)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure

  4. Biomimetic magnetite mediated by magnetosome proteins vs. ALH84001 meteorite magnetite: Are both comparable?

    Energy Technology Data Exchange (ETDEWEB)

    Barry-Sosa, A.; Jimenez-Lopez, C.

    2016-07-01

    The suggestion in 1996 that the Martian meteorite ALH84001 could contain proof of possible biologic activity in the past have generated a huge controversy that last until today. One of the most discussed evidence is the presence of magnetite crystals that resemble those produced by a particular group of bacteria, the so called magnetotactic bacteria (MTB). These microorganisms are the only known example of biologically controlled biomineralization among the prokaryotes and exert an exquisite control over the biomineralization process of intracellular magnetite that result in crystals with very unique features that, so far, cannot be replicated by inorganic means. These unique features have been used to recognize the biological origin of natural terrestrial magnetites, but the problem arises when those same biogenecity criteria are applied to extraterrestrial magnetites. Most of the problems are caused by the fact that it is not clear whether or not some of those characteristics can be reproduced inorganically. Magnetosome protein mediated magnetite synthesis seems to be the best approach to obtain magnetosome-like magnetites, and such strategy may help clarify what is the specific biosignature of magnetotactic bacteria. (Author)

  5. Study on magnetite nanoparticles synthesized by chemical method

    International Nuclear Information System (INIS)

    Pei Wenli; Kumada, H.; Natusme, T.; Saito, H.; Ishio, S.

    2007-01-01

    Magnetite nanoparticles with controlled size were synthesized by chemical method. Higher deposition temperature and a rapid-raising temperature procedure are favorable to particle size distribution and fabrication of monodisperse nanoparticles. The larger nanoparticles can be synthesized by the two-step method. The large nanoparticle (up to 25 nm) without agglomeration was successfully produced. The saturation magnetization of 11 nm magnetite particles was 45 emu/g at room temperature, which is smaller than that of bulk magnetite due to surface effect. Hysteresis of the magnetite nanoparticle was very small, indicating superparamagnetic behavior. The magnetic domains of the 11 nm magnetite nanoparticles were successfully observed by MFM

  6. Keemei: cloud-based validation of tabular bioinformatics file formats in Google Sheets.

    Science.gov (United States)

    Rideout, Jai Ram; Chase, John H; Bolyen, Evan; Ackermann, Gail; González, Antonio; Knight, Rob; Caporaso, J Gregory

    2016-06-13

    Bioinformatics software often requires human-generated tabular text files as input and has specific requirements for how those data are formatted. Users frequently manage these data in spreadsheet programs, which is convenient for researchers who are compiling the requisite information because the spreadsheet programs can easily be used on different platforms including laptops and tablets, and because they provide a familiar interface. It is increasingly common for many different researchers to be involved in compiling these data, including study coordinators, clinicians, lab technicians and bioinformaticians. As a result, many research groups are shifting toward using cloud-based spreadsheet programs, such as Google Sheets, which support the concurrent editing of a single spreadsheet by different users working on different platforms. Most of the researchers who enter data are not familiar with the formatting requirements of the bioinformatics programs that will be used, so validating and correcting file formats is often a bottleneck prior to beginning bioinformatics analysis. We present Keemei, a Google Sheets Add-on, for validating tabular files used in bioinformatics analyses. Keemei is available free of charge from Google's Chrome Web Store. Keemei can be installed and run on any web browser supported by Google Sheets. Keemei currently supports the validation of two widely used tabular bioinformatics formats, the Quantitative Insights into Microbial Ecology (QIIME) sample metadata mapping file format and the Spatially Referenced Genetic Data (SRGD) format, but is designed to easily support the addition of others. Keemei will save researchers time and frustration by providing a convenient interface for tabular bioinformatics file format validation. By allowing everyone involved with data entry for a project to easily validate their data, it will reduce the validation and formatting bottlenecks that are commonly encountered when human-generated data files are

  7. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein.

    Directory of Open Access Journals (Sweden)

    George P Anderson

    Full Text Available Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity.

  8. Synthesis of magnetite nanoparticles using electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Ye. Ya. Levitin

    2014-08-01

    Full Text Available The monodisperse magnetite nanoparticles are promising for use in the biomedical industry for targeted drug delivery, cell separation and biochemical products, Magnetic Resonance Imaging, immunological studies, etc. Classic method for the synthesis of magnetite is the chemical condensation Elmore’s, it is simple and cheap, but it is complicated by the formation of side compounds which impair the magnetic properties of the final product. Biological and medical purposes require high purity magnetite nanoparticles. Electrochemical methods of producing nanoparticles of magnetite acquire significant spread. The kinetics of electrochemical processes are a function of a larger number of parameters than the kinetics of conventional chemical reaction, thus electrochemical reactions can be thinner and more completely adjusted to give a predetermined size nanoparticles. In the kinetics of the electrochemical oxidation and reduction the important role is played by the nature of the electrode. In many industrial processes, it is advisable to use lead dioxide anodes with titanium current lead. Purpose of the work To determine the optimum conditions of electrochemical oxidation of Fe2+ Fe3+to produce magnetite with high purity and improved magnetic characteristics. Materials and methods Electrochemical studies were carried out in a glass cell ЯСЭ-2 using a potentiostat ПИ-50-1.1 and a recording device ПДА1. Reference electrode - silver chloride ЭВЛ1М 3.1, potentials listed on the hydrogen scale. The test solution contained 80 g/ l FeSO4×7H2O and H2SO4(to pH 1. The pH of the solution was measured with a pH–meter « рН–150». Concentration ratio of Fe3+/Fe2+in the solution was measured by permanganometric method. Magnetite particle sizes were measured by an electron microscope computer ЭВМ-100Л, an increasing is 2×105. Saturation magnetization was evaluated by the magnetization curve, for the measured sample in the field with strength

  9. Magnetite thin films: A simulational approach

    International Nuclear Information System (INIS)

    Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work the study of the magnetic properties of magnetite thin films is addressed by means of the Monte Carlo method and the Ising model. We simulate LxLxd magnetite thin films (d being the film thickness and L the transversal linear dimension) with periodic boundary conditions along transversal directions and free boundary conditions along d direction. In our model, both the three-dimensional inverse spinel structure and the interactions scheme involving tetrahedral and octahedral sites have been considered in a realistic way. Results reveal a power-law dependence of the critical temperature with the film thickness accordingly by an exponent ν=0.81 and ruled out by finite-size scaling theory. Estimates for the critical exponents of the magnetization and the specific heat are finally presented and discussed

  10. Encapsulated magnetite particles for biomedical application

    CERN Document Server

    Landfester, K

    2003-01-01

    The process of miniemulsification allows the generation of small, homogeneous, and stable droplets containing monomer or polymer precursors and magnetite which are then transferred by polymer reactions to the final polymer latexes, keeping their particular identity without serious exchange kinetics involved. It is shown that the miniemulsion process can excellently be used for the formulation of polymer-coated magnetic nanoparticles which can further be used for biomedical applications. The use of high shear, appropriate surfactants, and the addition of a hydrophobe in order to suppress the influence of Ostwald ripening are key factors for the formation of the small and stable droplets in miniemulsion and will be discussed. Two different approaches based on miniemulsion processes for the encapsulation of magnetite into polymer particles will be presented in detail.

  11. Advancing Sustainable Catalysis with Magnetite Surface ...

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heterogeneous catalysis is highlighted. Use of an oxide of earth-abundant iron for various applications in catalysis and environmental remediation.

  12. One step facile synthesis of ferromagnetic magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, Durga Devi; Abd Hamid, Sharifah Bee, E-mail: sharifahbee@um.edu.my

    2016-09-15

    The ferromagnetic properties of magnetite (Fe{sub 3}O{sub 4}) were influenced by the nanoparticle size, hence importance were given to the synthesis method. This paper clearly shows that magnetite nanoparticles were successfully synthesized by employing one step controlled precipitation method using a single salt (Iron(II) sulfate) iron precursor. The acquired titration curve from this method provides vital information on the possible reaction mechanism leading to the magnetite (Fe{sub 3}O{sub 4}) nanoparticles formation. Goethite (α-FeOOH) was obtained at pH 4, while the continuous addition of hydroxyl ions (OH{sup −}) forms iron hydroxides (Fe(OH){sub 2}). This subsequently reacts with the goethite, producing magnetite (Fe{sub 3}O{sub 4}) at pH 10. Spectroscopy studies validate the magnetite phase existence while structural and morphology analysis illustrates cubic shaped magnetite with an average size of 35 nm was obtained. The synthesized magnetite might be superparamagnetic though lower saturation magnetization (67.5 emu/g) measured at room temperature as compared to bulk magnetite. However the nanoparticles surface anisotropy leads to higher remanence (12 emu/g) and coercivity (117.7 G) making the synthesized magnetite an excellent candidate to be utilized in recording devices. The understanding of the magnetite synthesis mechanism can not only be used to achieve even smaller magnetite nanoparticles but also to prepare different types of iron oxides hydroxides using different iron precursor source. - Highlights: • Magnetite strong magnetism properties make it versatile in various applications including biomedical and electromagnetic materials. • Sulfate (SO{sub 4}{sup 2−}) anion plays a major role in the structure control of iron oxide during synthesis. • Phase pure magnetite nanoparticles with high magnetism properties can be obtained using a single salt (SO{sub 4}{sup 2−}) method.

  13. A Moessbauer study of doped magnetite

    International Nuclear Information System (INIS)

    Nistor, C.I.; Boekema, C.; Woude, F. van der; Sawatzky, G.A.

    1975-01-01

    Doped magnetite was investigated by means of the Moessbauer effect to ascertain the behaviour of conduction electrons in magnetite. The Moessbauer spectrum of Fe 3 O 4 recorded at room temperature consisted of two patterns: one corresponding to the Fe 3+ (A) ions and another corresponding to the Fe(B) ions. The first A and B lines of the room temperature Moessbauer spectra of Msub(0.1)Fesub(2.9)O 4 with M = Li, Ni and Sn are presented. The B site lines of the spectra were asymmetrically broadened and showed a certain structure whereas the A site lines were narrow. In the Moessbauer spectrum of Lisub(0.2)Fesub(2.8)O 4 recorded at 407 0 C even separate lines between the A and B patterns were observed. It was found that the symmetry and line broadening were only slightly temperature dependent and were still present at higher temperatures. The application of a charge oscillation model was found to be valid only for lower impurity concentrations. The Moessbauer study of doped magnetite revealed the occurrence of spin and charge density oscillations in the B sublattice. (Z.S.)

  14. Transient intermediates are populated in the folding pathways of single-domain two-state folding protein L

    Science.gov (United States)

    Maity, Hiranmay; Reddy, Govardhan

    2018-04-01

    Small single-domain globular proteins, which are believed to be dominantly two-state folders, played an important role in elucidating various aspects of the protein folding mechanism. However, recent single molecule fluorescence resonance energy transfer experiments [H. Y. Aviram et al. J. Chem. Phys. 148, 123303 (2018)] on a single-domain two-state folding protein L showed evidence for the population of an intermediate state and it was suggested that in this state, a β-hairpin present near the C-terminal of the native protein state is unfolded. We performed molecular dynamics simulations using a coarse-grained self-organized-polymer model with side chains to study the folding pathways of protein L. In agreement with the experiments, an intermediate is populated in the simulation folding pathways where the C-terminal β-hairpin detaches from the rest of the protein structure. The lifetime of this intermediate structure increased with the decrease in temperature. In low temperature conditions, we also observed a second intermediate state, which is globular with a significant fraction of the native-like tertiary contacts satisfying the features of a dry molten globule.

  15. A spectroscopic study of uranium(VI) interaction with magnetite

    International Nuclear Information System (INIS)

    El Aamrani, S.; Gimenez, J.; Rovira, M.; Seco, F.; Grive, M.; Bruno, J.; Duro, L.; Pablo, J. de

    2007-01-01

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO 2 and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI)

  16. Synthesis and characterization of Gd-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Honghu; Malik, Vikash; Mallapragada, Surya; Akinc, Mufit

    2017-01-01

    Synthesis of magnetite nanoparticles has attracted increasing interest due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. Here we investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizes under the conditions tested (0–10 at% Gd"3"+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. Our results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd"3"+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe_(_3_−_x_)Gd_xO_4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method. - Highlights: • Gd-doped magnetite nanoparticles are synthesized via aqueous co-precipitation method under mild conditions. • Gd doping affects growth of magnetite nanoparticles leading to tunable particle size. • Gd-doped magnetite nanoparticles exhibit ferrimagnetic properties.

  17. The use of magnetite for decontaminating alpha containing effluents

    International Nuclear Information System (INIS)

    Ivens, R.

    1988-06-01

    The feasibility of retention of precipitated magnetite by magnetic filtration followed by direct cementation offered an attractive alternative to conventional ferric hydroxide treatment of radioactive liquid effluents. The magnetically-assisted dewatering of laboratory-prepared magnetite was examined in a number of ways, none of which achieved the desired optimum solids content for cementation. Attempts to prepare magnetite in situ from typical effluents containing iron were unsuccessful owing to the presence of interfering ions. Preformed magnetite was reasonably effective at absorbing actinides from solution but did not appear to offer any significant advantage over ferric hydroxide. (author)

  18. Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jose R., E-mail: correa@fq.uh.cu [Department of General Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Bordallo, Eduardo [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Canetti, Dora [Department of Inorganic Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Leon, Vivian [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Otero-Diaz, Luis C. [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain); Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Negro, Carlos [Chemical Engineering Department, Complutense University of Madrid, Madrid 28040 (Spain); Gomez, Adrian [Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Saez-Puche, Regino [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain)

    2010-08-15

    Superparamagnetic magnetite nanoparticles were obtained starting from a mixture of iron(II) and iron(III) solutions in a preset total iron concentration from 0.04 to 0.8 mol l{sup -1} with ammonia at 25 and 70 {sup o}C. The regeneration of cellulose from viscose produces micrometrical spherical cellulose beads in which synthetic magnetite were embedded. The characterization of cellulose-magnetite beads by X-ray diffraction, Scanning and Transmission Electron Microscopy and magnetic measurement is reported. X-ray diffraction patterns indicate that the higher is the total iron concentration and temperature the higher is the crystal size of the magnetite obtained. Transmission Electron Microscopy studies of cellulose-magnetite beads revealed the distribution of magnetite nanoparticles inside pores of hundred nanometers. Magnetite as well as the cellulose-magnetite composites exhibit superparamagnetic characteristics. Field cooling and zero field cooling magnetic susceptibility measurements confirm the superparamagnetic behaviour and the blocking temperature for the magnetite with a mean size of 12.5 nm, which is 200 K.

  19. A stably expressed llama single-domain intrabody targeting Rev displays broad-spectrum anti-HIV activity.

    Science.gov (United States)

    Boons, Eline; Li, Guangdi; Vanstreels, Els; Vercruysse, Thomas; Pannecouque, Christophe; Vandamme, Anne-Mieke; Daelemans, Dirk

    2014-12-01

    The HIV Rev protein mediates the transport of partially and unspliced HIV mRNA from the nucleus to the cytoplasm. Rev multimerizes on a secondary stem-loop structure present in the viral intron-containing mRNA species and recruits the cellular karyopherin CRM1 to export viral mRNAs from the nucleus to the cytoplasm. Previously we have identified a single-domain intrabody (Nb(190)), derived from a llama heavy-chain antibody, which efficiently inhibits Rev multimerization and suppresses the production of infectious virus. We recently mapped the epitope of this nanobody and demonstrated that Rev residues K20 and Y23 are crucial for interaction while residues V16, H53 and L60 are important to a lesser extent. Here, we generated cell lines stably expressing Nb(190) and assessed the capacity of these cell lines to suppress the replication of different HIV-1 subtypes. These cells stably expressing the single-domain antibody are protected from virus-induced cytopathogenic effect even in the context of high multiplicity of infection. In addition, the replication of different subtypes of group M and one strain of group O is significantly suppressed in these cell lines. Next, we analysed the natural variations of Rev amino acids in sequence samples from HIV-1 infected patients worldwide and assessed the effect of Nb(190) on the most prevalent polymorphisms occurring at the key epitope positions (K20 and Y23) in Rev. We found that Nb(190) was able to suppress the function of these Rev variants except for the K20N mutant, which was present in only 0.7% of HIV-1 sequence populations (n = 4632). Cells stably expressing the single-domain intrabody Nb(190) are protected against virus-induced cytopathogenic effect and display a selective survival advantage upon infection. In addition, Nb(190) suppresses the replication of a wide range of different HIV-1 subtypes. Large-scale sequence analysis reveals that the Nb(190) epitope positions in Rev are well conserved across major HIV-1

  20. Crystal structure of a human single domain antibody dimer formed through V(H-V(H non-covalent interactions.

    Directory of Open Access Journals (Sweden)

    Toya Nath Baral

    Full Text Available Single-domain antibodies (sdAbs derived from human V(H are considered to be less soluble and prone to aggregate which makes it difficult to determine the crystal structures. In this study, we isolated and characterized two anti-human epidermal growth factor receptor-2 (HER2 sdAbs, Gr3 and Gr6, from a synthetic human V(H phage display library. Size exclusion chromatography and surface plasmon resonance analyses demonstrated that Gr3 is a monomer, but that Gr6 is a strict dimer. To understand this different molecular behavior, we solved the crystal structure of Gr6 to 1.6 Å resolution. The crystal structure revealed that the homodimer assembly of Gr6 closely mimics the V(H-V(L heterodimer of immunoglobulin variable domains and the dimerization interface is dominated by hydrophobic interactions.

  1. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  2. The effect of magnet size on the levitation force and attractive force of single-domain YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Yang, W M; Chao, X X; Bian, X B; Liu, P; Feng, Y; Zhang, P X; Zhou, L

    2003-01-01

    The levitation forces between a single-domain YBCO bulk and several magnets of different sizes have been measured at 77 K to investigate the effect of the magnet size on the levitation force. It is found that the levitation force reaches a largest (peak) value when the size of the magnet approaches that of the superconductor when the other conditions are fixed. The absolute maximum attractive force (in the field-cooled state) increases with the increasing of the magnet size, and is saturated when the magnet size approaches that of the superconductor. The maximum attractive force in the field-cooled (FC) state is much higher than that of the maximum attractive force in the zero field-cooled (ZFC) state. The results indicate that the effects of magnetic field distribution on the levitation force have to be considered during the designing and manufacturing of superconducting devices

  3. Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, George P. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Glaven, Richard H. [Nova Research, Inc., 1900 Elkin Street, Suite 230, Alexandria, VA 22308 (United States); Algar, W. Russ [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); College of Science, George Mason University, Fairfax, VA 22030 (United States); Susumu, Kimihiro [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Sotera Defense Solutions, Annapolis Junction, MD 20701 (United States); Stewart, Michael H. [Optical Sciences Division, Code 5600, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Medintz, Igor L. [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States); Goldman, Ellen R., E-mail: ellen.goldman@nrl.navy.mil [Center for Bio/Molecular Science and Engineering, Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W., Washington, DC 20375 (United States)

    2013-07-05

    Graphical abstract: -- Highlights: •Anti-ricin single domain antibodies (sdAb) were self-assembled on quantum dots (QDs). •Conjugates were prepared using dihydrolipoic acid-capped CdSe–ZnS core–shell QDs. •The sdAb–QD conjugates functioned in fluoroimmunoassays for ricin detection. •The conjugates provided signal amplification in surface plasmon resonance assays. •Conjugates provided sensitive detection compared to unconjugated sdAb reporters. -- Abstract: The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.

  4. Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance

    International Nuclear Information System (INIS)

    Anderson, George P.; Glaven, Richard H.; Algar, W. Russ; Susumu, Kimihiro; Stewart, Michael H.; Medintz, Igor L.; Goldman, Ellen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Anti-ricin single domain antibodies (sdAb) were self-assembled on quantum dots (QDs). •Conjugates were prepared using dihydrolipoic acid-capped CdSe–ZnS core–shell QDs. •The sdAb–QD conjugates functioned in fluoroimmunoassays for ricin detection. •The conjugates provided signal amplification in surface plasmon resonance assays. •Conjugates provided sensitive detection compared to unconjugated sdAb reporters. -- Abstract: The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format

  5. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma.

    Science.gov (United States)

    Li, Nan; Fu, Haiying; Hewitt, Stephen M; Dimitrov, Dimiter S; Ho, Mitchell

    2017-08-08

    Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma.

  6. Magnetite deposition in PWR secondary systems

    International Nuclear Information System (INIS)

    Schneider, V.; Riess, R.; Ruehle, W.

    2000-01-01

    Recently, local magnetite (Fe 3 04) deposition has been observed at various locations within the secondary systems of Siemens-designed PWRs. These deposits sometimes limited operational flexibility and affected routine operation checks. In addition, these deposits may affect the heat transfer characteristics of heat exchangers. Prior to replacement of components or piping or other extensive maintenance activities it should be investigated whether any modification in secondary-side water chemistry might counteract this corrosion phenomenon, which has proven very effective in maintaining steam generator performance. A VGB study will make an assessment of available field information, and countermeasures will be elaborated. This paper describes the current status of the project. (orig.) [de

  7. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  8. Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Sanford, R.F.

    1990-01-01

    Hydrogeologic modeling shows that tabular-type uranium deposits in the grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat

  9. Tabular equation of state of lithium for laser-fusion reactor studies

    International Nuclear Information System (INIS)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-01

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations

  10. Crossover And MTF Characteristics Of A Tabular-Grain X-Ray Film

    Science.gov (United States)

    Huff, K. E.; Wagner, P. W.

    1984-08-01

    An orthochromatic x-ray film made with tabular silver halide grains has a significantly higher MTF when exposed with green-emitting intensifying screens than do conventional films with similar sensitometric properties. The primary reason for the improved MTF is a decrease in the amount of crossover exposure, i.e., exposure by light that has crossed the support one or more times. Two well-established sensitometric procedures for measuring crossover have been compared. One produces results accurate enough for calculations of MTF relationships. Calculated MTF relationships for tabulargrain and conventional films are compared with measured values.

  11. Tabular equation of state of lithium for laser-fusion reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-19

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations.

  12. Gravity settling of precipitated magnetite and ferric floc

    International Nuclear Information System (INIS)

    Holt, N.S.; Loft, P.R.

    1983-06-01

    A comparison is presented of the gravity settling performance of ferric floc and magnetite, both in batch settling tests, and on a continuous gravity settler. The precipitation of magnetite from solution on a continuous basis was also demonstrated, and the process was shown not to be significantly affected by the presence of a wide range of chemical species. (U.K.)

  13. Treatment of alpha-contaminated effluents by magnetite precipitation

    International Nuclear Information System (INIS)

    Holt, N.S.

    1985-06-01

    Studies of the magnetic filtration of precipitated magnetite have continued enabling data on the effect of magnetic field strength on collecting efficiency to be extended from 0.32 Tesla to 0.8 Tesla with some interesting observations. Tests have been carried out on the direct encapsulation of the magnetite loaded matrices from these runs. (U.K.)

  14. Spin and charge density oscillations in doped magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Woude, F. van der; Sawatzky, G.A.

    1975-01-01

    A classical selfconsistent model was proposed based upon local compensation and upon neutrality conditions describing the response of conduction electrons in narrow d bands to local electric perturbation caused by an impurity placed at a particular site in the lattice. Theoretical results obtained by the model applied to magnetite are in good agreement with recent Moessbauer data on doped magnetite. (Z.S.)

  15. Electro-precipitation of magnetite nanoparticles: an electrochemical study

    OpenAIRE

    Ibrahim, Mona; Groenen-Serrano, Karine; Noé, Laure; Garcia, Cécile; Verelst, Marc

    2009-01-01

    Nanoparticles of magnetites (Fe3O4) are synthesized with a new process based on electro-precipitation in ethanol medium. A mechanism pathway is proposed consisting of a Fe(OH)3 precipitation followed by the reduction of iron hydroxide to magnetite in the presence of hydroxyl ions which are enerated at the cathode.

  16. Magnetic interactions, bonding, and motion of positive muons in magnetite

    NARCIS (Netherlands)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local

  17. Review on theoretical calculation of the magnetite solubility

    International Nuclear Information System (INIS)

    Kim, Myongjin; Kim, Hongpyo

    2013-01-01

    FAC is influenced by many factors such as water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from the damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of a change in the magnetite layer. In the present work, studies on the magnetite solubility were reviewed for the theoretical calculation of magnetite, and iron solubility data were compared to find the proper solubility values of each study

  18. Necessity of electrically conductive pili for methanogenesis with magnetite stimulation

    Directory of Open Access Journals (Sweden)

    Oumei Wang

    2018-03-01

    Full Text Available Background Magnetite-mediated direct interspecies electron transfer (DIET between Geobacter and Methanosarcina species is increasingly being invoked to explain magnetite stimulation of methane production in anaerobic soils and sediments. Although magnetite-mediated DIET has been documented in defined co-cultures reducing fumarate or nitrate as the electron acceptor, the effects of magnetite have only been inferred in methanogenic systems. Methods Concentrations of methane and organic acid were analysed with a gas chromatograph and high-performance liquid chromatography, respectively. The concentration of HCl-extractable Fe(II was determined by the ferrozine method. The association of the defined co-cultures of G. metallireducens and M. barkeri with magnetite was observed with transmission electron micrographs. Results Magnetite stimulated ethanol metabolism and methane production in defined co-cultures of G. metallireducens and M. barkeri; however, magnetite did not promote methane production in co-cultures initiated with a culture of G. metallireducens that could not produce electrically conductive pili (e-pili, unlike the conductive carbon materials that facilitate DIET in the absence of e-pili. Transmission electron microscopy revealed that G. metallireducens and M. barkeri were closely associated when magnetite was present, as previously observed in G. metallireducens/G. sulfurreducens co-cultures. These results show that magnetite can promote DIET between Geobacter and Methanosarcina species, but not as a substitute for e-pili, and probably functions to facilitate electron transfer from the e-pili to Methanosarcina. Conclusion In summary, the e-pili are necessary for the stimulation of not only G. metallireducens/G. sulfurreducens, but also methanogenic G. metallireducens/M. barkeri co-cultures with magnetite.

  19. Knowledge Representation and Inference for Analysis and Design of Database and Tabular Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    Antoni Ligeza

    2001-01-01

    Full Text Available Rulebased systems constitute a powerful tool for specification of knowledge in design and implementation of knowledge based systems. They provide also a universal programming paradigm for domains such as intelligent control, decision support, situation classification and operational knowledge encoding. In order to assure safe and reliable performance, such system should satisfy certain formal requirements, including completeness and consistency. This paper addresses the issue of analysis and verification of selected properties of a class of such system in a systematic way. A uniform, tabular scheme of single-level rule-based systems is considered. Such systems can be applied as a generalized form of databases for specification of data pattern (unconditional knowledge, or can be used for defining attributive decision tables (conditional knowledge in form of rules. They can also serve as lower-level components of a hierarchical multi-level control and decision support knowledge-based systems. An algebraic knowledge representation paradigm using extended tabular representation, similar to relational database tables is presented and algebraic bases for system analysis, verification and design support are outlined.

  20. The breakup of large tabular icebergs - direct observations and theoretical considerations

    Science.gov (United States)

    Wadhams, P.

    2013-12-01

    Peter Wadhams and Till Wagner Dept. of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. We review the factors governing the stability, dynamics and decay of icebergs and describe areas where current models are inadequate. These include questions such as draft changes in capsizing icebergs; iceberg trajectory modelling; the melt rate of the ice underside and ways of reducing it; and wave-induced flexure and its role in the break-up of tabular icebergs. In July 2012 the authors worked on a very large (42 sq km) tabular iceberg in Baffin Bay, which had calved from the Petermann Glacier in NW Greenland. We measured incoming swell spectrum and the iceberg response; also the role of buoyancy forces due to erosion of a waterline wave cut and the creation of an underwater ram. The iceberg broke up while we were on it, allowing an instrumental measurement of the calving event. The experiments were included in the BBC-2 film 'Operation Iceberg' shown on Nov 1 2012 and repeated on Nov 18. We conclude that two processes interacted in the break-up event: increased bending stress due to buoyancy of underwater rams; and direct flexural strain due to incidence of ocean swell. Implications for icebergs in the open sea are estimated.

  1. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  2. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda; Burba, Christopher M.

    2006-01-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  3. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent - Magnetic separation and recycling of magnetite.

    Science.gov (United States)

    Baek, Gahyun; Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2017-10-01

    Promotion of direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and electron-utilizing methanogens has recently been discussed as a new method for enhanced biomethanation. This study evaluated the effect of magnetite-promoted DIET in continuous anaerobic digestion of dairy effluent and tested the magnetic separation and recycling of magnetite to avoid continuous magnetite addition. The applied magnetite recycling method effectively supported enhanced DIET activity and biomethanation performance over a long period (>250days) without adding extra magnetite. DIET via magnetite particles as electrical conduits was likely the main mechanism for the enhanced biomethanation. Magnetite formed complex aggregate structures with microbes, and magnetite recycling also helped retain more biomass in the process. Methanosaeta was likely the major methanogen group responsible for DIET-based methanogenesis, in association with Proteobacteria and Chloroflexi populations as syntrophic partners. The recycling approach proved robust and effective, highlighting the potential of magnetite recycling for high-rate biomethanation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nanometric hybrid films of xanthan and magnetite

    International Nuclear Information System (INIS)

    Pereira, Edla M.A.; Silva, Anielle M.; Petri, Denise F.S.

    2011-01-01

    Magnetite nanoparticles (NMM) were synthesized by co-characterized by means of X-ray diffraction, infrared spectroscopy and potentiometric titration. Xanthan thin films and NMM were deposited alternately onto Si wafers. The attachment of first xanthan layer onto Si wafer was obtained in the presence of Ca 2+ 1 mM and at pH 10. Under these conditions calcium ions interact electrostatically with both silanol groups and xanthan carboxylate groups, yielding stable xanthan (1.5 ± 0.5) nm thick films. The deposition of NMM was forced by applying a magnetic field set under the sample. The following bilayers were formed by 'layer-by-layer' electrostatic process and magnetic field action. The bilayers formation was monitored by the variation in the ellipsometric angles values, Δ e ψ, and atomic force microscopy. (author)

  5. Degradation of magnetite nanoparticles in biomimetic media

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah; Hernandez, Ana C.; Sojo, Juan [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Materiales, Centro de Ingeniería de Materiales y Nanotecnología (Venezuela, Bolivarian Republic of); Lascano, Luis [Dpto. Física, Escuela Politécnica Nacional (Ecuador); Gonzalez, Gema, E-mail: gemagonz@ivic.gob.ve, E-mail: gema.gonzalez@epn.edu.ec [Escuela Nacional Politécnica (Ecuador)

    2017-04-15

    Magnetic nanoparticles (NPs) of magnetite Fe{sub 3}O{sub 4} obtained by coprecipitation (COP), thermal decomposition (DT), and commercial sample (CM) have been degraded in similar conditions to physiological medium at pH 4.7 and in simulated body fluid (SBF) at pH 7.4. The formation of the nanoparticles was confirmed by FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering. The degradation processes were followed with atomic absorption spectroscopy (EAA) and TEM. Magnetic measurements were carried out using vibrating sample magnetometry (VSM). Our results revealed that the structural and magnetic properties of the remaining nanoparticles after the degradation process were significantly different to those of the initial suspension. The degradation kinetics is affected by the pH, the coating, and the average particle size of the nanoparticles.

  6. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  7. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy

    Directory of Open Access Journals (Sweden)

    Bjoern Traenkle

    2017-08-01

    Full Text Available Single-domain antibodies (sdAbs have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  8. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy.

    Science.gov (United States)

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  9. Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display.

    Science.gov (United States)

    Dooley, Helen; Flajnik, Martin F; Porter, Andrew J

    2003-09-01

    The novel immunoglobulin isotype novel antigen receptor (IgNAR) is found in cartilaginous fish and is composed of a heavy-chain homodimer that does not associate with light chains. The variable regions of IgNAR function as independent domains similar to those found in the heavy-chain immunoglobulins of Camelids. Here, we describe the successful cloning and generation of a phage-displayed, single-domain library based upon the variable domain of IgNAR. Selection of such a library generated from nurse sharks (Ginglymostoma cirratum) immunized with the model antigen hen egg-white lysozyme (HEL) enabled the successful isolation of intact antigen-specific binders matured in vivo. The selected variable domains were shown to be functionally expressed in Escherichia coli, extremely stable, and bind to antigen specifically with an affinity in the nanomolar range. This approach can therefore be considered as an alternative route for the isolation of minimal antigen-binding fragments with favorable characteristics.

  10. Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library

    Directory of Open Access Journals (Sweden)

    Goldman Ellen R

    2007-11-01

    Full Text Available Abstract Background Shark heavy chain antibody, also called new antigen receptor (NAR, consists of one single Variable domain (VH, containing only two complementarity-determining regions (CDRs. The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. Results A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB, ricin, and botulinum toxin A (BoNT/A complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. Conclusion We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.

  11. Oriented conjugates of monoclonal and single-domain antibodies with quantum dots for flow cytometry and immunohistochemistry diagnostic applications

    Science.gov (United States)

    Sukhanova, Alyona; Even-Desrumeaux, Klervi; Millot, Jean-Marc; Chames, Patrick; Baty, Daniel; Artemyev, Mikhail; Oleinikov, Vladimir; Cohen, Jacques H. M.; Nabiev, Igor

    2012-03-01

    Ideal diagnostic nanoprobes should not exceed 15 nm in size and should contain high-affinity homogeneously oriented capture molecules on their surface. An advanced procedure for antibody (Ab) reduction was used to cleave each Ab into two functional half-Abs, 75-kDa heavy-light chain fragments, each containing an intact antigen-binding site. Affinity purification of half-Abs followed by their linkage to quantum dots (QDs) yielded oriented QD-Ab conjugates whose functionality was considerably improved compared to those obtained using the standard protocols. Ultrasmall diagnostic nanoprobes were engineered through oriented conjugation of QDs with 13-kDa single-domain Abs (sdAbs) derived from llama IgG. sdAbs were tagged with QDs via an additional cysteine residue specifically integrated into the C-terminal region of sdAb using genetic engineering. This approach made it possible to obtain sdAb-QD nanoprobes <12 nm in diameter comprising four copies of sdAbs linked to the same QD in an oriented manner. sdAb-QD conjugates against carcinoembryonic antigen (CEA) and HER2 exhibited an extremely high specificity in flow cytometry; the quality of immunohistochemical labeling of biopsy samples was found to be superior to that of labeling according to the current "gold standard" protocols of anatomo-pathological practice. The nano-bioengineering approaches developed can be extended to oriented conjugation of Abs and sdAbs with different semiconductor, noble metal, or magnetic nanoparticles.

  12. Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Hegmann, Elda; Gaspar, Kim; Kumar, Praveen; Chao, Heman

    2015-06-17

    A novel immunoconjugate (L-DOS47) was developed and characterized as a therapeutic agent for tumors expressing CEACAM6. The single domain antibody AFAIKL2, which targets CEACAM6, was expressed in the Escherichia coli BL21 (DE3) pT7-7 system. High purity urease (HPU) was extracted and purified from Jack bean meal. AFAIKL2 was activated using N-succinimidyl [4-iodoacetyl] aminobenzoate (SIAB) as the cross-linker and then conjugated to urease. The activation and conjugation reactions were controlled by altering pH. Under these conditions, the material ratio achieved conjugation ratios of 8-11 antibodies per urease molecule, the residual free urease content was practically negligible (95%) L-DOS47 conjugate was produced using only ultradiafiltration to remove unreacted antibody and hydrolyzed cross-linker. L-DOS47 was characterized by a panel of analytical techniques including SEC, IEC, Western blot, ELISA, and LC-MS(E) peptide mapping. As the antibody-urease conjugate ratio increased, a higher binding signal was observed. The specificity and cytotoxicity of L-DOS47 was confirmed by screening in four cell lines (BxPC-3, A549, MCF7, and CEACAM6-transfected H23). BxPC-3, a CEACAM6-expressing cell line was found to be most susceptible to L-DOS47. L-DOS47 is being investigated as a potential therapeutic agent in human phase I clinical studies for nonsmall cell lung cancer.

  13. Preparation of Magnetite Nanocrystals from Ferrous Sulphate Solution

    International Nuclear Information System (INIS)

    Cho Yu Mon; Tint Tint Kywe; Moe Moe Kyaw

    2010-12-01

    Magnetite (Fe3O4) nanoparticle were prepared by hydrothermal process in two ways, which would be used for production of copier toner.In this investigation, the first process was made from ferrous sulphate (FeSO4 . 7H2O) by using 10 M sodium hydroxide solution. In this method, magnetite nanoparticles were prepared by changing aeration time from 1 to 3 hr and heated at 90C for 15 min. The alternative process was carried out from ferrous sulphate (FeSO4.7H2O) by using 6.6 M sodium hydroxide solution and sodium silicate solution.Magnetite (black iron oxide) was synthesized by using different aeration times and reaction times. Aeration time was changed from 1 to 2 hr and reaction time was changed from 1 to 5.5 hr at 85 C. The magnetites obtained were examined by X-ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM) technique. The average particle size range of magnetite nanoprticles were 90-120 nm and 120-150 nm in each process. The maximum yied percentages of magnetite based on FeSO4 in both processing were found to be 46.30% and 60.72%. The precent yields of magnetite in both preparation based on theoretical yields were 91.02% and 94.83% respectively.

  14. LA-ICP-MS of magnetite: Methods and reference materials

    Science.gov (United States)

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  15. Porphyrin-magnetite nanoconjugates for biological imaging

    LENUS (Irish Health Repository)

    Nowostawska, Malgorzata

    2011-04-08

    Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  16. Kinetics of dissolution of magnetite in PDCA based formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Prince, A.A.M.; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V.

    1997-01-01

    Magnetite is one of the important corrosion products of pressurized heavy water reactors (PHWRs) where carbon steel is the dominant surface in the primary heat transport system. Designing of formulations capable of dissolving magnetite is important for effective decontamination of such surfaces. The rate of dissolution of synthetically prepared magnetite was studied in low concentrations of PDCA containing acidic formulations. The effect of addition of ascorbic acid, citric acid, Fe 2+ -PDCA complex on the rate was also studied. The effects of pH and the temperature on the dissolution rate were determined. The PDCA as a complexant has some positive factors like low protonation constant and enhanced stability to radiation. (author)

  17. The role of magnetite in Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Mahajan, V.; Huffman, G.P.; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy studies of iron catalysts from a Fischer-Tropsch (FT) Pilot Plant run at different time-on-stream periods were carried out. Magnetite Fe 3 O 4 was found to be active for the water-gas-shift (WGS) reaction which accompanies the FT synthesis reaction over Fe-based catalysts. A correlation between the ratio of the occupancy of octahedral sites to the tetrahedral sites in magnetite to the WGS activity was found. Cation-deficient magnetite gave higher WGS activity as compared to the stoichiometric phase. (orig.)

  18. Room temperature deposition of magnetite thin films on organic substrate

    International Nuclear Information System (INIS)

    Arisi, E.; Bergenti, I.; Cavallini, M.; Murgia, M.; Riminucci, A.; Ruani, G.; Dediu, V.

    2007-01-01

    We report on the growth of magnetite films directly on thin layers of organic semiconductors by means of an electron beam ablation method. The deposition was performed at room temperature in a reactive plasma atmosphere. Thin films show ferromagnetic (FM) hysteresis loops and coercive fields of hundreds of Oersted. Micro Raman analysis indicates no presence of spurious phases. The morphology of the magnetite film is strongly influenced by the morphology of the underlayer of the organic semiconductor. These results open the way for the application of magnetite thin films in the field of organic spintronics

  19. Escherichia coli F4 fimbriae specific lama single-domain antibody fragments effectively inhibit bacterial adhesion in vitro but poorly protect against diarrhea

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Hoogendoorn, A.; Zijderveld, van F.G.; Niewold, T.A.; Meulen, van der J.

    2005-01-01

    Oral administration of polyclonal antibodies directed against enterotoxigenic Escherichia coli (ETEC) F4 fimbriae is used to protect against piglet post-weaning diarrhoea. For cost reasons, we aim to replace these polyclonal antibodies by recombinant llama single-domain antibody fragments (VHHs)

  20. Passive immunization of pigs with bispecific llama single-domain antibody fragments against foot-and-mouth disease and porcine immunoglobulin

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.; Dekker, A.; Eble, P.L.

    2008-01-01

    Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-hoofed animals that occasionally causes outbreaks in Europe. We aim to develop an immunotherapy that confers rapid protection against FMD in outbreak situations. For this purpose, we previously isolated llama single-domain antibody

  1. Acute tissue death (white syndrome) affects the microenvironment of tabular Acropora corals

    DEFF Research Database (Denmark)

    Andersen, Sandra Breum; Vestergaard, Maj; Ainsworth, Tracy D.

    2010-01-01

    White syndrome (WS) is a collective term for coral diseases that cause acute tissue loss, resulting in apparently healthy tissue bordering on exposed skeleton. In this study, the microenvironmental condition and tissue structure of WS-affected tabular acroporid corals were assessed by O2...... microelectrodes and histological techniques. The high spatial resolution of the microelectrode measurements enabled an evaluation of the extent of physiological changes at, and 2 cm away from, the WS border. Respiration of the coral host was decreased on the skeleton-tissue border but was comparable...... to that of healthy corals only 2 cm away from the border. Histological data, however, showed a decrease in mesogloea thickness on and 2 cm away from the WS border, which correlates with a previously observed allocation of photoassimilates away from the WS border. We suggest that there are colony-wide negative...

  2. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton

    Science.gov (United States)

    Wen, Guang; Li, Jian-Wei; Hofstra, Albert H.; Koenig, Alan E.; Lowers, Heather A.; Adams, David

    2017-09-01

    Magnetite is a common mineral in igneous rocks and has been used as an important petrogenetic indicator as its compositions and textures reflect changing physiochemical parameters such as temperature, oxygen fugacity and melt compositions. In upper crustal settings, igneous rocks are often altered by hydrothermal fluids such that the original textures and compositions of igneous magnetite may be partly or completely obliterated, posing interpretive problems in petrological and geochemical studies. In this paper, we present textural and compositional data of magnetite from variably albitized granitoid rocks in the Handan-Xingtai district, North China Craton to characterize the hydrothermal reequilibration of igneous magnetite. Four types of magnetite have been identified in the samples studied: pristine igneous magnetite (type 1), reequilibrated porous magnetite (type 2), reequilibrated nonporous magnetite (type 3), and hydrothermal magnetite (type 4). Pristine igneous magnetite contains abundant well-developed ilmenite exsolution lamellae that are largely replaced by titanite during subsequent hydrothermal alteration. The titanite has a larger molar volume than its precursor ilmenite and thus causes micro-fractures in the host magnetite grains, facilitating dissolution and reprecipitation of magnetite. During sodic alteration, the igneous magnetite is extensively replaced by type 2 and type 3 magnetite via fluid-induced dissolution and reprecipitation. Porous type 2 magnetite is the initial replacement product of igneous magnetite and is subsequently replaced by the nonoporous type 3 variety as its surface area is reduced and compositional equilibrium with the altering fluid is achieved. Hydrothermal type 4 magnetite is generally euhedral and lacks exsolution lamellae and porosity, and is interpreted to precipitate directly from the ore-forming fluids. Hydrothermal reequilibration of igneous magnetite has led to progressive chemical purification, during which trace

  3. Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library.

    Science.gov (United States)

    Liu, Jinny L; Anderson, George P; Delehanty, James B; Baumann, Richard; Hayhurst, Andrew; Goldman, Ellen R

    2007-03-01

    Shark immunoglobulin new antigen receptor (IgNAR, also referred to as NAR) variable domains (Vs) are single-domain antibody (sdAb) fragments containing only two hypervariable loop structures forming 3D topologies for a wide range of antigen recognition and binding. Their small size ( approximately 12kDa) and high solubility, thermostability and binding specificity make IgNARs an exceptional alternative source of engineered antibodies for sensor applications. Here, two new shark NAR V display libraries containing >10(7) unique clones from non-immunized (naïve) adult spiny dogfish (Squalus acanthias) and smooth dogfish (Mustelus canis) sharks were constructed. The most conserved consensus sequences derived from random clone sequence were compared with published nurse shark (Ginglymostoma cirratum) sequences. Cholera toxin (CT) was chosen for panning one of the naïve display libraries due to its severe pathogenicity and commercial availability. Three very similar CT binders were selected and purified soluble monomeric anti-CT sdAbs were characterized using Luminex(100) and traditional ELISA assays. These novel anti-CT sdAbs selected from our newly constructed shark NAR V sdAb library specifically bound to soluble antigen, without cross reacting with other irrelevant antigens. They also showed superior heat stability, exhibiting slow loss of activity over the course of one hour at high temperature (95 degrees C), while conventional antibodies lost all activity in the first 5-10min. The successful isolation of target specific sdAbs from one of our non-biased NAR libraries, demonstrate their ability to provide binders against an unacquainted antigen of interest.

  4. Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites

    OpenAIRE

    Ouyang, Zen-Wei; Chen, Erh-Chiang; Wu, Tzong-Ming

    2015-01-01

    This work describes the thermal stability and magnetic properties of polyvinylidene fluoride (PVDF)/magnetite nanocomposites fabricated using the solution mixing technique. The image of transmission electron microscopy for PVDF/magnetite nanocomposites reveals that the 13 nm magnetite nanoparticles are well distributed in PVDF matrix. The electroactive β-phase and piezoelectric responses of PVDF/magnetite nanocomposites are increased as the loading of magnetite nanoparticles increases. The pi...

  5. Surface modification of Chlorella vulgaris cells using magnetite particles

    Czech Academy of Sciences Publication Activity Database

    Procházková, G.; Šafařík, Ivo; Brányik, T.

    2012-01-01

    Roč. 42, č. 2012 (2012), s. 1778-1787 E-ISSN 1877-7058 Institutional support: RVO:67179843 Keywords : microalgae * physicochemical approaches * surface interactions * magnetite * XDLVO theory * harvesting Subject RIV: EI - Biotechnology ; Bionics

  6. Synthesis of magnetite nanoparticles in the presence of aminoacids

    International Nuclear Information System (INIS)

    Marinescu, Gabriela; Patron, Luminita; Culita, Daniela C.; Neagoe, Cristian; Lepadatu, Costinel I.; Balint, Ioan; Bessais, Lotfi; Cizmas, Corneliu Bazil

    2006-01-01

    A new synthesis route to prepare magnetite nanoparticles in only one step is described. The precipitation of magnetite is performed in the presence of aminoacid solution. The experimental protocol is original and the nanomagnetites are characterized by XRD, FTIR, TEM and SQUID magnetometry. A theoretical study of the consistent experimental results was performed using QSPR (Quantitative Structure Property Relationsheep). According with these studies the synthesized nanoparticles seem to be organized into a core-shell system, where the inner-core is formed from unit cells of magnetite. A way to control the self-assembly and the physical properties of the synthesized nanoparticles consists in their correlation with descriptors representing the aminoacid chemical structures. Using quantum chemical as well as the other simplest original descriptors it was found a relationship between the used aminoacids and the magnetization, nanoparticles diameter, magnetite core diameter and the (Fe 3 O 4 ) 8 cells in each nanoparticle core

  7. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  8. Sonochemical preparation of magnetite nanoparticles by reverse precipitation method

    OpenAIRE

    Shuto, Tatsuya; Nakagoe, Osamu; Tanabe, Shuji

    2008-01-01

    Magnetic iron oxide nanoparticles were successfully prepared by reverse precipitation method with the assistance of ultrasound. Obtained nanoparticles were identified as magnetite (Fe_3O_4) by XRD measurement. It was found that obtained magnetite nanoparticles have small sizes (about 10.7 ±2.9 nm in diameter) and spherical shape by TEM observations. In reverse precipitation method, the dropping conditions of aqueous FeSO_4 solution affect on the sizes and uniformity of the products.

  9. Texture, microstructure and geochemistry of magnetite from the Banduhurang uranium mine, Singhbhum shear zone, India - implications for physico-chemical evolution of magnetite mineralization

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Dutta, Tusar; Samanta, Susanta K.; Pal, Dipak C.

    2013-01-01

    The Singhbhum Shear zone in eastern India is one of the largest repositories of uranium and copper in India. Besides uranium and copper, apatite-magnetite mineralization is widespread in this shear zone. This study aims at deciphering the physico-chemical evolution of magnetite mineralization in relation to progressive shearing integrating field relations, micro-textures, structures and compositions of magnetite in the Banduhurang uranium mine. Apatite-magnetite ores occur as discrete patches, tongues, and veins in the strongly deformed, fine grained quartz-chlorite schist. Textures and microstructures of magnetite indicate at least three stages of magnetite formation. Coarse-grained magnetite (magnetite-1) with long, rotational, and complex strain fringes, defined by fibrous and elongate quartz, is assigned to a stage of pre-/early-shearing magnetite formation. Medium grained magnetite (magnetite-2), characterized by single non-rotational strain fringe equivalent to the youngest fringe of magnetite-1, grew likely at the mid-/late-stage of shearing. Fine grained magnetite (magnetite-3) is generally devoid of any pressure shadow. This indicates even a much later stage of formation of this magnetite, presumably towards the closing stage of shearing. Some of the magnetite-1 grains are optically heterogeneous with a dark, pitted Cr-Ti-bearing core overgrown by lighter, fresh rim locally containing pyrite, chalcopyrite, and chlorite inclusions. The cores are also locally characterized by high AI and Si content. Homogeneous magnetite-1 is optically and compositionally similar to the overgrowth of heterogeneous magnetite-1. This homogeneous magnetite-1 that grew as separate phase is contemporaneous with the overgrowth on pitted core of heterogeneous magnetite-1. Magnetite-2 is compositionally very similar to homogeneous magnetite-1, but is devoid of sulfide inclusion. Magnetite-3 is generally devoid of any silicate or sulfide inclusion and is most pure with least

  10. The Origin of Magnetite Crystals in ALH84001 Carbonate Disks

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Wentworth, S. J.; McKay, D. S.; Gibson, E. K., Jr.

    2012-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx 3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.

  11. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Science.gov (United States)

    Wang, Yongliang; Li, Baoqiang; Zhou, Yu; Jia, Dechang

    2009-09-01

    Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS-Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4 and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3 and hydroxyapatite.

  12. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Wang Yongliang

    2009-01-01

    Full Text Available Abstract Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS–Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3and hydroxyapatite.

  13. Aqueous immune magnetite nanoparticles for immunoassay

    International Nuclear Information System (INIS)

    Zhang Guoxin; Liu Yanbo; Zhang Chunfu; Hu Weiqing; Xu Wanbang; Li Zheng; Liang Sheng; Cao Jinquan; Wang Yongxian

    2009-01-01

    Immune magnetite nanoparticles (MNPs) are prepared by four successive reactions, which are MNPs preparation, silica-coating, surface modification with amino group, and conjugation with bio-molecule, respectively. The crystal structure and morphology of intermediate products are characterized by XRD, TEM and AFM. Qualitative and quantitative assays for amino group on the MNPs' surface are made by FTIR and Organic Element Assay. Ultraviolet-visible absorption spectrum can indirectly illustrate the quantity of bio-molecule conjugated with MNPs. In addition, specific combination and nonspecific combination of immune MNPs are measured by commercial RIA box. The results show that the size of MNPs prepared is 10 ± 5 nm, and silica-coated MNPs with spinel structure have quasi-spherical morphology. Infrared absorption bands of -NH 2 are appeared around 3380-3200 cm -1 and 1650-1510 cm -1 , and the amino group content is 0.5 μmol -NH 2 per mg MNPs. The specific immune combination of immune MNPs is up to 75%, and nonspecific combination is under 5%.

  14. Development and Characterization of a Camelid Single Domain Antibody-Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Uger, Marni D; Wisniewski, Pawel; Chao, Heman

    2017-01-01

    Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody-urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MS E peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[( N -maleimidopropionamido)-diethyleneglycol] ester (SM(PEG) 2 ), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol

  15. Development and Characterization of a Camelid Single Domain Antibody–Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2

    Directory of Open Access Journals (Sweden)

    Baomin Tian

    2017-08-01

    Full Text Available Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs. In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21 and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody–urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MSE peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3 pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[(N-maleimidopropionamido-diethyleneglycol] ester (SM(PEG2, which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis

  16. Strong adsorption of chlorotetracycline on magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Di; Niu, Hongyun; Zhang, Xiaole; Meng, Zhaofu; Cai, Yaqi

    2011-01-01

    Highlights: → Fe 3 O 4 MNPs selectively adsorb CTC through chelation between CTC and Fe atoms. → Fe 3 O 4 MNPs remain high adsorption ability to CTC in environmental water samples. → Fe 3 O 4 MNPs sorbed with CTC are easily collected from water under a magnetic field. → The collected Fe 3 O 4 MNPs are regenerated by treatment with H 2 O 2 or calcination. - Abstract: In this work, environmentally friendly magnetite nanoparticles (Fe 3 O 4 MNPs) were used to adsorb chlorotetracycline (CTC) from aqueous media. Fe 3 O 4 MNPs exhibit ultrahigh adsorption ability to this widely used antibiotic. The adsorption behavior of CTC on Fe 3 O 4 MNPs fitted the pseudo-second-order kinetics model, and the adsorption equilibrium was achieved within 10 h. The maximum Langmuir adsorption capacity of CTC on Fe 3 O 4 (476 mg g -1 ) was obtained at pH 6.5. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was endothermic and spontaneous. Low concentration of NaCl and foreign divalent cations hardly affected the adsorption. Negative effect of coexisting humic acid (HA) on CTC adsorption was also observed when the concentration of HA was lower than 20 mg L -1 . But high concentration of HA (>20 mg L -1 ) increased the CTC adsorption on Fe 3 O 4 MNPs. The matrix effect of several environmental water samples on CTC adsorption was not evident. Fe 3 O 4 MNPs were regenerated by treatment with H 2 O 2 or calcination at 400 o C in N 2 atmosphere after separation from water solution by an external magnet. This research provided a high efficient and reusable adsorbent to remove CTC selectively from aqueous media.

  17. The Communicability of Graphical Alternatives to Tabular Displays of Statistical Simulation Studies

    Science.gov (United States)

    Cook, Alex R.; Teo, Shanice W. L.

    2011-01-01

    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form. PMID:22132184

  18. A techno-typological analysis of fan (tabular scrapers from Ein Zippori, Israel

    Directory of Open Access Journals (Sweden)

    Katia Zutovski

    2016-09-01

    Full Text Available Fan (or tabular scrapers are a diagnostic  tool type in Chalcolithic Ghassulian and Early Bronze Age lithic assemblages from  the southern Levant. To date, only small numbers of fan scrapers have been reported from the Late Pottery Neolithic Wadi Rabah culture. In this paper we present a techno-typological analysis of a fair sample of fan scrapers and fan scrapers spalls from Wadi Rabah and Early Bronze Age layers at Ein Zippori, Lower Galilee, Israel. Techno-typological similarities and differences of Wadi Rabah, Chalcolithic Ghassulian and Early Bronze Age fan scrapers from Ein Zippori and other sites in the region are presented, trends of change along time are noted, and an updated definition is proposed. Our results indicate that fan scrapers are highly efficient tools for accurate and prolonged animal butchering and hide working. The main advantage of fan scrapers is their mostly flat, thin morphology and large size that permits the creation of several relatively long working edges, various retouched angles (from sharp to abrupt, extensive resharpening, and a comfortable grasp. While fan scrapers were products of a local trajectory in Late Pottery Neolithic Wadi Rabah lithic industries at Ein Zippori, a standardized, off-site manufacturing of fan scrapers is evident during the Early Bronze Age.

  19. The effects of multi-domain versus single-domain cognitive training in non-demented older people: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Cheng Yan

    2012-03-01

    Full Text Available Abstract Background Whether healthy older people can benefit from cognitive training (CogTr remains controversial. This study explored the benefits of CogTr in community dwelling, healthy, older adults and compared the effects of single-domain with multi-domain CogTr interventions. Methods A randomized, controlled, 3-month trial of CogTr with double-blind assessments at baseline and immediate, 6-month and 12-month follow-up after training completion was conducted. A total of 270 healthy Chinese older people, 65 to 75 years old, were recruited from the Ganquan-area community in Shanghai. Participants were randomly assigned to three groups: multi-domain CogTr, single-domain CogTr, and a wait-list control group. Twenty-four sessions of CogTr were administrated to the intervention groups over a three-month period. Six months later, three booster training sessions were offered to 60% of the initial training participants. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS, Form A, the Color Word Stroop test (CWST, the Visual Reasoning test and the Trail Making test (TMT were used to assess cognitive function. Results Multi-domain CogTr produced statistically significant training effects on RBANS, visual reasoning, and immediate and delayed memory, while single-domain CogTr showed training effects on RBANS, visual reasoning, word interference, and visuospatial/constructional score (all P Conclusions Cognitive training can improve memory, visual reasoning, visuospatial construction, attention and neuropsychological status in community-living older people and can help maintain their functioning over time. Multi-domain CogTr enhanced memory proficiency, while single-domain CogTr augmented visuospatial/constructional and attention abilities. Multi-domain CogTr had more advantages in training effect maintenance. Clinical Trial Registration Chinese Clinical Trial Registry. Registration number: ChiCTR-TRC-09000732.

  20. Flux mapping at 77 K and local measurement at lower temperature of thin-wall YBaCuO single-domain samples oxygenated under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chaud, X., E-mail: Xavier.chaud@grenoble.cnrs.f [CRETA, CNRS, 25, Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Noudem, J. [CRISMAT/ENSICAEN, CNRS, 6 bd Marechal Juin, 14050 Caen (France); Prikhna, T.; Savchuk, Y. [ISM, National Acad. of Sciences of Ukraine, 2 Avtozavodskaya Street, Kiev, 04074 (Ukraine); Haanappel, E. [LNCMP, UMR 5147, 143 avenue de Rangueil, 31400 Toulouse (France); Diko, P. [IEP, Slovak Acad. of Sciences, Watsonova 47, 043 53, Kosice (Slovakia); Zhang, C.P. [SMRC, NIN, 96 Weiyang Road, Xi' an 710016 (China)

    2009-10-15

    YBCO single-domain samples are suitable for the production of high trapped fields in the range 20-77 K using a cryocooler or liquid nitrogen. But the oxygenation process required to actually transform the single domains into superconductors induces an extensive crack network that is limiting the material performances. Thin-wall geometry has been introduced to reduce the diffusion paths and to enable a progressive oxygenation strategy. As a consequence cracks are drastically reduced. In addition the use of a high oxygen pressure (16 MPa) speeds up further the process by displacing the oxygen-temperature equilibrium towards the higher temperature of the phase diagram. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample. Remarkable results are obtained without any doping by the combination of thin walls and oxygen high pressure. While classical plain samples yield 300-400 mT, a trapped field of 840 mT has been measured at 77 K on a 16 mm diameter Y123 thin-wall single-domain sample with an annealing time as short as 3 days. Local measurements with a fixed Hall probe on top of the sample were performed at lower temperature after magnetization either in a static field or in a pulse field. The trapped field is significantly higher at lower temperature. Cryocoolers become the key to compromise between performances and cryogenic cost around 40 K.

  1. Magnetisation of magnetite nanoparticles medium with dipol-dipol interaction

    International Nuclear Information System (INIS)

    Ali-zade, R. A.

    2005-01-01

    Full text: Magnetisation expression for magnetite nanoparticles medium with dipo-dipol interaction has been obtained. We suggested, that energy magnetic dipol-dipol interaction of magnetite nanopaticles is determined by: E d-d = - m 2 /4πμ 0 r 3 (cth x -1/x) 2 where x=mH/kT. This expression has been substituted in statistical sum of magnetite nanoparticles medium. Obtained statistical sum consists the production of two statistical sums. The first statistical sum described non-interacting magnetite nanoparticle medium and from this is obtained Langevan equation. Second statistical sum is: Z 2 -∫exp(Σm 2 /4π 0 r 3 (cth x -1/x) 2 ) dΩ 2 . The second statistical sum has been expanded in Taylor's set and taken into consideration first two terms. Integration has been carried out over all volume. In this case take into account that, number twice interactions of magnetite nanoparticles in unit volume is equal to N(N-1)/2 at N>>1 to N 2 /2. We obtain expressions for magnetisation and initial magnetic susceptibility of interacting magnetite nanoparticles medium take into account that Φ=-kT ln Z, M=-dΦ/dH, χ=dM/dH: M=M Sφm (cth x -1/x)+ 1/3 M S 2 φ m 2 (1μ 0 H) ln(VM S /kT).(cth x -1/x)(-xcsch 2 x+1/x) χ 0 =1/3 (m/kT)+ 1/27 M S 2 φ m 2 (1μ 0 )ln(VM S /kT).(m/kT) 2 . Second term in the magnetisation is sufficient at weak and middle magnetic fields. At large magnetic fields, it leads to zero. The second term of magnetisation has maximum at x=1.566. The values of experimental and calculated magnetic field corresponding to magnetisation maximum for magnetite nanoparticles medium (mean diameter of nanoparticle is 9.4 nm) are 1.19 10 4 A/m and 1.25 10 4 A/m respectively. Magnetic dipol-dipol interaction influence to magnetisation of magnetite nanoparticles. Magnetite nanoparticles lined along external magnetic fields line and formatted chains. Magnetisation of medium occurs by the 'parallel' mechanism method magnetisation of chains

  2. Electrochemistry and dissolution kinetics of magnetite and ilmenite

    Science.gov (United States)

    White, A.F.; Peterson, M.L.; Hochella, M.F.

    1994-01-01

    Natural samples of magnetite and ilmenite were experimentally weathered in pH 1-7 anoxic solutions at temperatures of 2-65 ??C. Reaction of magnetite is described as [Fe2+Fe23+]O4(magnetite) + 2H+ ??? ??[Fe23+]O3(maghemite) + Fe2+ + H2O. Dynamic polarization experiments using magnetite electrodes confirmed that this reaction is controlled by two electrochemical half cells, 3[Fe2+Fe23+]O4(magnetite) ??? 4??[Fe23+]O3(maghemite) + Fe2+ + 2e- and [Fe2+Fe23+]O4(magnetite) + 8 H+ + 2e- ??? 3Fe2+ + 4H2O, which result in solid state Fe3+ reduction, formation of an oxidized layer and release of Fe(II) to solution. XPS data revealed that iron is present in the ferric state in the surfaces of reacted magnetite and ilmenite and that the Ti Fe ratio increased with reaction pH for ilmenite. Short-term (<36 h) release rates of Fe(II) were linear with time. Between pH 1 and 7, rates varied between 0.3 and 13 ?? 10-14 mol ?? cm-2 ?? s-1 for magnetite and 0.05 and 12.3 ?? 10-14 mol ?? cm-2 ?? s-1 for ilmenite. These rates are two orders of magnitude slower than electrochemical rates determined by Tafel and polarization resistance measurements. Discrepancies are due to both differences in geometric and BET surface area estimates and in the oxidation state of the mineral surface. In long-term closed-system experiments (<120 days), Fe(II) release slowed with time due to the passivation of the surfaces by increasing thicknesses of oxide surface layers. A shrinking core model, coupling surface reaction and diffusion transport, predicted that at neutral pH, the mean residence time for sand-size grains of magnetite and ilmenite will exceed 107 years. This agrees with long-term stability of these oxides in the geologic record. ?? 1994.

  3. Synthesis of magnetite nanoparticles-β-cyclodextrin complex

    International Nuclear Information System (INIS)

    Cobos Cruz, L.A.; Martinez Perez, C.A.; Monreal Romero, H.A.; Garcia Casillas, P.E.

    2008-01-01

    In this work, the synthesis and characterization of a magnetite (M) and β-cyclodextrin (CD) complex is presented. The chemical bonding between the magnetite and CD was studied as evidence of host-guest interaction; therefore the CD works like a reactor with the magnetite inside of it, as consequence the growth of the particle is restricted by the electrostatic interaction of M-CD complex. The particle size of the magnetite-cyclodextrin complex (M-CD) decreased 79.1% with 0.5% of CD. The average particle size of the M-CD complex was 10 nm. The saturation magnetization (σ s ) and intrinsic coercivity (H c ) increased 10% and 20%, respectively. In order to understand how the the CD affects the results obtained, the second derivate of remission function was obtained from the ultraviolet-visible spectra (UV-vis). Fourier transform infrared spectroscopy (FTIR) was used to elucidate the interaction between the magnetite and CD. The thermal analysis was measured by thermogravimetric and differential thermal analysis (TGA-DTA). The magnetic properties, intrinsic coercivity (H c ) and the saturation magnetization were determined by vibrating sample magnetometry (VSM); the size and shape of nanoparticles were determined by scanning electron microscopy (SEM). The identification of phases was made by X-ray diffraction

  4. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  5. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Zapata, Edna V.; Martinez Perez, Carlos A.; Rodriguez Gonzalez, Claudia A.; Castro Carmona, Javier S. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico); Quevedo Lopez, Manuel A. [Departamento de Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora (Mexico); Garcia-Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Chitosan silica magnetite adsorbs antineoplastic drug. Black-Right-Pointing-Pointer Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV-Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  6. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    International Nuclear Information System (INIS)

    Cotten, G.B.

    2000-01-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable

  7. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    International Nuclear Information System (INIS)

    Escobar Zapata, Edna V.; Martínez Pérez, Carlos A.; Rodríguez González, Claudia A.; Castro Carmona, Javier S.; Quevedo Lopez, Manuel A.; García-Casillas, Perla E.

    2012-01-01

    Highlights: ► Chitosan silica magnetite adsorbs antineoplastic drug. ► Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV–Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  8. Hydrothermal Preparation of Apatite Composite with Magnetite or Anatase

    International Nuclear Information System (INIS)

    Murakami, Setsuaki; Ishida, Emile H.; Ioku, Koji

    2006-01-01

    Microstructure designed porous hydroxyapatite (Ca10(PO4)6(OH)2) composites with magnetite (Fe3O4) particles or anatase (TiO2) dispersion were prepared by hydrothermal treatment. These composites had micro-pores of about 0.1-0.5 μm in size. Magnetite / Hydroxyapatite composites should be suitable for medical treatment of cancer, especially in bones, because HA can bond to bones directly and magnetite can generate heat. They must be used for hyperthermia therapies of cancer in bones. Meanwhile, anatase / Hydroxyapatite composite should be suitable for environmental purification, because HA rod-shape particles expose the specific crystal face, which adsorbs organic contaminants and so on

  9. Evaluation of magnetite nanoparticles as molybdenum ions adsorbent

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko; Sousa, Jose Silva; Freitas, Antonio Alves

    2011-01-01

    Molybdenum-99 is the generator radionuclide of the most used radioisotope for preparation of radiopharmaceuticals with diagnostic purposes in nuclear medicine, technetium-99m (Tc-99m). One way of Mo-99 obtaining is as fission product of irradiated uranium targets in reactor. In this work, the potential application of magnetite particles in the separation of Mo-99 from a dissolution solution of U targets was evaluated. Synthetic magnetite nanoparticles were prepared by alkaline precipitation method from Fe 2+ ions and heat-treated via microwave irradiation in a conventional household oven. Adsorption kinetics was studied. It was observed that the adsorption of Mo by magnetite nanoparticles is fast and followed the model of pseudo-second order. (author)

  10. Kinetics of dissolution of magnetite in PDCA based formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Prince, A.A.M.; Raghavan, P.S.; Gopalan, R. [Madras Christian Coll., Tambaram (India); Srinivasan, M.P.; Narasimhan, S.V.

    1997-08-01

    Magnetite is one of the important corrosion products of pressurized heavy water reactors (PHWRs) where carbon steel is the dominant surface in the primary heat transport system. Designing of formulations capable of dissolving magnetite is important for effective decontamination of such surfaces. The rate of dissolution of synthetically prepared magnetite was studied in low concentrations of PDCA containing acidic formulations. The effect of addition of ascorbic acid, citric acid, Fe{sup 2+}-PDCA complex on the rate was also studied. The effects of pH and the temperature on the dissolution rate were determined. The PDCA as a complexant has some positive factors like low protonation constant and enhanced stability to radiation. (author)

  11. Critical Parametric Study on Final Size of Magnetite Nanoparticles

    Science.gov (United States)

    Yusoff, A. H. M.; Salimi, M. N.; Jamlos, M. F.

    2018-03-01

    The great performance of magnetite nanoparticle in varsity field are mainly depended on their size since size determine the saturation magnetisation and also the phase purity. Magnetite nanoparticles were prepared using a simple co-precipitation method in order to study the influence of synthesis condition on the final size. Variable parameters include stirring rate, reaction temperature and pH of the solution can finely tuned the size of the resulting nanoparticles. Generally, any increase in these parameters had a gently reduction on particle size. But, the size was promoted to increase back at certain point due to the specific reason. Nucleation and growth processes are involved to clarify the impact of synthesis condition on the particle sizes. The result obtained give the correct conditions for pure magnetite synthesis at nanoscale size of dimensions less than 100 nm.

  12. Synthesis of magnetite nanoparticles by microwave irradiation and characterization

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko

    2009-01-01

    Nanometer-scale magnetic particles have been research target because of their peculiar magnetic properties as observed in magnetite nanoparticles. These nanoparticles exhibit superparamagnetic characteristics with potential applications in biomedical, environmental, and engineering fields. In this work, magnetite nanoparticles from Fe 2+ ions were obtained from two different processes, by precipitation and heating in a boiling water bath and by precipitation and heating in a domestic microwave oven. Influence of heating time of both systems for obtaining of magnetite particles was investigated. The characterization of the products was done by Scanning Electron Microscopy to determine the morphology, X-ray Diffractometry to estimate the crystal structure and the size of crystallite and Fourier Transform Infrared Spectroscopy to show the principal bands of absorption. (author)

  13. Synthesis of Stabilized Myrrh-Capped Hydrocolloidal Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM, and X-ray diffraction (XRD was used to examine the crystal structure of the produced magnetite nanoparticles.

  14. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    Science.gov (United States)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  15. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    International Nuclear Information System (INIS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Juárez, Josué; Valdez, Miguel A; Burboa, María G; Taboada, Pablo

    2015-01-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air–water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction. (paper)

  16. High-Throughput Tabular Data Processor - Platform independent graphical tool for processing large data sets.

    Science.gov (United States)

    Madanecki, Piotr; Bałut, Magdalena; Buckley, Patrick G; Ochocka, J Renata; Bartoszewski, Rafał; Crossman, David K; Messiaen, Ludwine M; Piotrowski, Arkadiusz

    2018-01-01

    High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp).

  17. Synthesis of magnetite from iron-rich mine water using sodium carbonate

    CSIR Research Space (South Africa)

    Akinwekomi, V

    2017-06-01

    Full Text Available is highly mineralised and technologies are required for the processing of the final sludge for possible industrial application. Conventionally, magnetite is synthesized using iron-rich, industrial grade chemical reagents making magnetite expensive to produce...

  18. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    Science.gov (United States)

    Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru

    2013-01-01

    This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669

  19. Emerging investigator series: As( v ) in magnetite: incorporation and redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Huhmann, Brittany L. [Department of Civil and Environmental Engineering; University of Iowa; Iowa City; USA; Neumann, Anke [School of Engineering; Newcastle University; Newcastle upon Tyne; UK; Boyanov, Maxim I. [Biosciences Division; Argonne National Laboratory; Argonne; USA; Institute of Chemical Engineering; Kemner, Kenneth M. [Biosciences Division; Argonne National Laboratory; Argonne; USA; Scherer, Michelle M. [Department of Civil and Environmental Engineering; University of Iowa; Iowa City; USA

    2017-01-01

    As coprecipitated with magnetite remained incorporated over time whereas sorbed As was redistributed and became increasingly incorporated into magnetite, both the absence and presence of aqueous Fe(ii).

  20. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    Directory of Open Access Journals (Sweden)

    Tomohiro Iwasaki

    2013-04-01

    Full Text Available This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments.

  1. Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes.

    Science.gov (United States)

    Jeon, Soon-Hyeok; Son, Yeong-Ho; Choi, Won-Ik; Song, Geun Dong; Hur, Do Haeng

    2018-01-02

    In nuclear power plants, the main corrosion product that is deposited on the outside of steam generator tubes is porous magnetite. The objective of this study was to simulate porous magnetite that is deposited on thermally treated (TT) Alloy 690 steam generator tubes. A magnetite layer was electrodeposited on an Alloy 690TT substrate in an Fe(III)-triethanolamine solution. After electrodeposition, the dense magnetite layer was immersed to simulate porous magnetite deposits in alkaline solution for 50 days at room temperature. The dense morphology of the magnetite layer was changed to a porous structure by reductive dissolution reaction. The simulated porous magnetite layer was compared with flakes of steam generator tubes, which were collected from the secondary water system of a real nuclear power plant during sludge lancing. Possible nuclear research applications using simulated porous magnetite specimens are also proposed.

  2. Adsorption of uranyl ions in nanoparticles of magnetite

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko

    2009-01-01

    This work studied the uranium (VI) adsorption, in the form of UO 2 2+ ions, of the nitride solution by the syntetic magnetite. This solution was prepared by precipitation adding a solution of NaOH to the solution containing the ions Fe 2+ . The time of contact and the isothermal of equilibrium of ions UO 2 2+ adsorption was verified. The isothermal of equilibrium presented more concordance with the Freundlich model, which characterized a heterogeneous adsorption surface of the magnetite. The great advantage of this technology is the combination of two separation techniques, by adsorption and magnetic, resulting in a highly efficient and reusable system

  3. Arsenic Sorption on Mechanically Activated Magnetite and Olivine

    Directory of Open Access Journals (Sweden)

    Zdenka Bujňáková

    2012-12-01

    Full Text Available Arsenic sorption on mechanically activated minerals such as magnetite Fe3O4 (Kiruna, Sweden and olivine (Mg,Fe2SiO4 (Ǻheim,Norway has been studied and compared in this work. Experiments were carried out with non-activated and mechanically activatedsamples. The activation of both minerals was performed in a planetary mill at different milling conditions. The specific surface areaand consequent sorption activity were enhanced by mechanical activation. The using of olivine seems to be better than magnetite fromthe point of view of milling time, which is necessary for achievement of the same sorption effect.

  4. Magnetite effect in radionuclide retention : cesium, strontium, molybdenum and selenium

    International Nuclear Information System (INIS)

    Rovira, M.; Casas, I.; Gimenez, J.; Clarens, F.; Pablo, J. de

    2004-01-01

    In this work we have investigated the interaction of magnetite with cesium, strontium, molybdenum and selenium, in the frame of radionuclide retention by canister corrosion products. For each radionuclide, the retention on magnetite has been studied as a function of pH and the mass/ volume ratio. The experimental results have been modeled by means of Surface Complexation Models (SCM), that constitute a tool that allows an approach to sorption mechanisms in a wide range of experimental conditions taking into account electrostatic interactions at the mineral-water interface.(Author)

  5. Magnetic interactions, bonding, and motion of positive muons in magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local magnetic field is observed to be 4.02 kOe directed along the axis, the easy axis of magnetization. Possible origins of this field are discussed in terms which include local muon diffusion and a supertransfer hyperfine interaction resulting from muon-oxygen bonding. An anomaly in the muon hyperfine interactions is observed at 247 K

  6. Next-Generation DNA Sequencing of VH/VL Repertoires: A Primer and Guide to Applications in Single-Domain Antibody Discovery.

    Science.gov (United States)

    Henry, Kevin A

    2018-01-01

    Immunogenetic analyses of expressed antibody repertoires are becoming increasingly common experimental investigations and are critical to furthering our understanding of autoimmunity, infectious disease, and cancer. Next-generation DNA sequencing (NGS) technologies have now made it possible to interrogate antibody repertoires to unprecedented depths, typically by sequencing of cDNAs encoding immunoglobulin variable domains. In this chapter, we describe simple, fast, and reliable methods for producing and sequencing multiplex PCR amplicons derived from the variable regions (V H , V H H or V L ) of rearranged immunoglobulin heavy and light chain genes using the Illumina MiSeq platform. We include complete protocols and primer sets for amplicon sequencing of V H /V H H/V L repertoires directly from human, mouse, and llama lymphocytes as well as from phage-displayed V H /V H H/V L libraries; these can be easily be adapted to other types of amplicons with little modification. The resulting amplicons are diverse and representative, even using as few as 10 3 input B cells, and their generation is relatively inexpensive, requiring no special equipment and only a limited set of primers. In the absence of heavy-light chain pairing, single-domain antibodies are uniquely amenable to NGS analyses. We present a number of applications of NGS technology useful in discovery of single-domain antibodies from phage display libraries, including: (i) assessment of library functionality; (ii) confirmation of desired library randomization; (iii) estimation of library diversity; and (iv) monitoring the progress of panning experiments. While the case studies presented here are of phage-displayed single-domain antibody libraries, the principles extend to other types of in vitro display libraries.

  7. Synthesis and characterization of magnetite/hydroxyapatite tubes ...

    Indian Academy of Sciences (India)

    The first step is the formation of magnetite (Fe 3 O 4 ) tubes on natural template followed by hydroxyapatite (HAp) bioceramic coated on the Fe 3 O 4 tubes. HAp improves the biocompatibility and stability of the prepared tubes. Sintering at 900 ∘ C improves the crystalline stability of nanotubes and removes the natural ...

  8. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  9. Adsorptive removal of bisphenol A using synthesized magnetite nanoparticles

    Science.gov (United States)

    Orimolade, B. O.; Adekola, F. A.; Adebayo, G. B.

    2018-03-01

    Bisphenol A (BPA) is an organic compound which is often used as plasticizer and has been reported to be hazardous to man. In this research the efficiency of removal of BPA from water by magnetite through adsorption process was studied. The magnetite was synthesized using reverse co-precipitation method and fully characterized. Various physicochemical parameters affecting the adsorption of BPA using magnetite were studied as well. The optimum time for the adsorption process was found to be 60 min at pH of 6, adsorbent dose of 0.2 g and 50 ppm of BPA. The adsorption data were fitted by the Langmuir adsorption isotherm best with a regression value of 0.957. The R L value was 0.179 which revealed that the process is favorable. The Freundlich constant n which was 1.901 also revealed that the adsorption is normal and favorable. The data were in agreement with the pseudo-second-order kinetics with regression value of 0.98. From the thermodynamic studies, the process was found to be exothermic and the Gibb's free energy value which was negative showed that the adsorption was spontaneous. The synthesized magnetite therefore offers great potential for the remediation of bisphenol A-contaminated media.

  10. Ion from Aqueous Solution using Magnetite, Activated Carbon

    African Journals Online (AJOL)

    ADOWIE PERE

    Thermodynamic studies on Adsorption of lead (II) Ion from Aqueous Solution using. Magnetite ... process industries and agricultural activities, which tends to ... osmosis. These processes are however, not economically feasible for small scale industries .... Freundlich coefficient. ..... from binary component system, Beni-suef.

  11. Effect of magnetite nanoparticles on dye absorption properties of ...

    Indian Academy of Sciences (India)

    Magnetite@carbon (Fe 3 O 4 @C) composites were prepared using three kinds of Fe 3 O 4 nanoparticles (NPs). All the Fe 3 O 4 @C composites could be easily separated from water by an external magnet. The Fe 3 O 4 NPs synthesized by a microreactor system have the smallest size and narrowest size distribution among ...

  12. Experimental and theoretical studies of manganite and magnetite compounds

    International Nuclear Information System (INIS)

    Srinitiwarawong, Chatchai

    2002-01-01

    In the recent years interest in the transition oxide compounds has renewed among researchers in the field of condensed matter physics. This thesis presents the studies of the two families of the transition oxides, the manganite and magnetite compounds. Manganite has regained the interest since the discovery of the large magnetoresistance around its Curie temperature in 1990s. Magnetite on the other hand is the oldest magnetic material known to man however some of its physical properties are still controversial. The experimental works address some basic properties of these compounds when fabricated in the form of thin films. These include the resistivity measurements and magnetic measurements as well as the Hall effect. The various models of transport mechanism have been compared. The magnetic field and the temperature dependence of magnetoresistance have also been studied. Simple devices such as an artificial grain boundary and bilayers thin film have been investigated. The second part of this thesis concentrates on the theoretical aspects of the fundamental physics behind these two compounds. The problem of electrons tunnelling between the magnetite electrodes has been addressed taking into account the surface effect with distortion. The last chapter presents a theoretical study of the spinless-Hubbard model which is the simplest approximation of the conduction electrons in magnetite and manganite. The results are obtained from the Hartree-Fock and the Hubbard-I approximations as well as the exact diagonalisation method. (author)

  13. Benefaction studies on the Hasan Celebi magnetite deposit, Turkey

    Science.gov (United States)

    Pressler, Jean W.; Akar, Ali

    1972-01-01

    Bench-scale and semicontinuous tests were performed on surface, trench, and diamond drill core samples from the Hasan Celebi low-grade magnetite deposit to determine the optimum benefication procedures utilizing wet magnetic separation techniques. Composite core samples typically contain about 27 percent recoverable magnetite and require crushing and grinding through 1 mm in size to insure satisfactory separation of the gangue from the magnetite. Regrinding and cleaning the magnetite concentrate to 80 percent minus 150-mesh is necessary to obtain an optimum of 66 percent iron. Semicontinuous pilot-plant testing with the wet magnetic drum using the recycled middling technique indicates that as much as 83 percent of the acid-soluble iron can be recovered into a concentrate containing 66 percent iron, with minimum deleterious elements. This represents 27 weight percent of the original ore. Further tests will continue when the Maden Tetkik ve Arama Enstitusu (MTA) receives 24 tons of bulk sample from an exploratory drift and cross-cut now being driven through a section of the major reserve area.

  14. Wet milling versus co-precipitation in magnetite ferrofluid preparation

    Directory of Open Access Journals (Sweden)

    Almásy László

    2015-01-01

    Full Text Available Various uses of ferrofluids for technical applications continuously raise the interest in improvement and optimization of preparation methods. This paper deals with preparation of finely granulated magnetite particles coated with oleic acid in hydrocarbon suspensions following either chemical co-precipitation from iron salt precursors or wet milling of micron size magnetite powder with the goal to compare the benefits and disadvantages of each method. Microstructural measurements showed that both methods gave similar magnetite particle size of 10-15 nm. Higher saturation magnetization was achieved for the wet-milled magnetite suspension compared to relatively rapid co-precipitation synthesis. Different efficacies of ferrophase incorporation into kerosene could be related to the different mechanisms of oleic acid bonding to nanoparticle surface. The comparative data show that wet milling represents a practicable alternative to the traditional co-precipitation since despite of longer processing time, chemicals impact on environment can be avoided as well as the remnant water in the final product.

  15. Correlation Study of Magnetite Dissolution in Hybrid Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Byeong; Won, Hui-Jun; Park, Jung-Sun; Park, Sang-Yoon; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the operating plants, the localized corrosion on SG tubes which are transporters of thermal energy to the secondary side lowers the reduction heat transfer efficiency as well as degrades the lifetime of SG. Magnetite, Fe3O4, is a commonly found corrosion product on the inner surface of reactor coolant system. Simply magnetite can be reduced to hematite, Fe{sub 2}O{sub 3}, and further to iron when oxygen is limited or ample reducing agents are supplied. Along this line, number of decontamination processes has been developed since 1970s and most of them contain organic acid and additive chelating agents. However, many reports have pointed out the negative environmental effect of those chemicals, and currently there are new approaches to overcome the limited decontamination efficiency and large volume of secondary waste from other alternate processes without using such those organic chemicals. In present study, we investigated the magnetite dissolution in HyBRID solution as newly developing decontamination process. As a preliminary study for empirical modeling of decontamination by HyBRID solution, simply correlation study between variable and magnetite dissolution was introduced with studied mechanism and experimental results.

  16. Synthesis of magnetite nanoparticles obtained by the thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Renilma de Sousa Pinheiro; Sinfronio, Francisco Savio Mendes; Menezes, Alan Silva de; Sharma, Surender Kumar; Silva, Fernando Carvalho, E-mail: renilma.ufma@gmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil); Moscoso-Londono, Oscar; Muraca, Diego; Knobel, Marcelo [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: Magnetite nanoparticles have found numerous applications in biomedicine such as magnetic separation, drug delivery, magnetic resonance imaging (MRI) and hyperthermia agents [1]. These features are related to their superparamagnetic behavior, low toxicity and high functionalization [2]. Thus, this work aims to obtain oleylamine-coated magnetite nanoparticles by means of thermal decomposition method at different temperatures and reaction time. All samples were characterized by FTIR, XRD and SQUID magnetometer. The infrared spectra showed two vibrational modes at 2920 and 2850 cm{sup -1}, assigned to the asymmetrical and symmetrical stretching of C-H groups of the oleic acid and oleylamine, respectively. The XRD pattern of the samples confirmed the formation of magnetite phase (ICSD 36314) at all temperatures. The average size of the crystallites was determined by Debye-Scherrer equation with values in the range of 1.1-1.5 nm. Field-cooled and zero field-cooled analysis demonstrate that the blocking temperature (T{sub B}) is below room temperature in all cases, indicating that all magnetite nanoparticles are superparamagnetic at room temperature and ferrimagnetic at low temperature. (author)

  17. Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Alves, André F.; Mendo, Sofia G. [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal); Ferreira, Liliana P. [Universidade de Lisboa, Biosystems and Integrative Sciences Institute, Faculdade de Ciências (Portugal); Mendonça, Maria Helena [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal); Ferreira, Paula [University of Aveiro, Department of Materials and Ceramic Engineering, CICECO - Aveiro Institute of Materials (Portugal); Godinho, Margarida; Cruz, Maria Margarida [Universidade de Lisboa, Biosystems and Integrative Sciences Institute, Faculdade de Ciências (Portugal); Carvalho, Maria Deus, E-mail: mdcarvalho@ciencias.ulisboa.pt [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal)

    2016-01-15

    Magnetite nanoparticles were synthesized by the co-precipitation method exploring the use of gelatine and agar as additives. For comparison, magnetite nanoparticles were also prepared by standard co-precipitation, by co-precipitation with the addition of a surfactant (sodium dodecyl sulphate) and by the thermal decomposition method. The structure and morphology of the synthesized nanoparticles were investigated by powder X-ray diffraction and transmission electron microscopy. Their magnetic properties were studied by SQUID magnetometry and {sup 57}Fe Mössbauer spectroscopy. The nanoparticles potential for applications in magnetic hyperthermia was evaluated through heating efficiency under alternating magnetic field. The results show that all synthesis methods produce Fe{sub 3−x}O{sub 4} nanoparticles with similar sizes. The nanoparticles synthesized in the gelatine medium display the narrowest particle size distribution, the lowest oxidation degree, one of the highest saturation magnetization values and the best hyperthermia efficiency, proving that this gelatine-assisted synthesis is an efficient, environmental friendly, and low-cost method to produce magnetite nanoparticles. Graphical Abstract: A new gelatine-assisted method is an efficient and low-cost way to synthesize magnetite nanoparticles with enhanced magnetic hyperthermia.

  18. Synthesis of magnetite nanoparticles obtained by the thermal decomposition method

    International Nuclear Information System (INIS)

    Fonseca, Renilma de Sousa Pinheiro; Sinfronio, Francisco Savio Mendes; Menezes, Alan Silva de; Sharma, Surender Kumar; Silva, Fernando Carvalho; Moscoso-Londono, Oscar; Muraca, Diego; Knobel, Marcelo

    2016-01-01

    Full text: Magnetite nanoparticles have found numerous applications in biomedicine such as magnetic separation, drug delivery, magnetic resonance imaging (MRI) and hyperthermia agents [1]. These features are related to their superparamagnetic behavior, low toxicity and high functionalization [2]. Thus, this work aims to obtain oleylamine-coated magnetite nanoparticles by means of thermal decomposition method at different temperatures and reaction time. All samples were characterized by FTIR, XRD and SQUID magnetometer. The infrared spectra showed two vibrational modes at 2920 and 2850 cm -1 , assigned to the asymmetrical and symmetrical stretching of C-H groups of the oleic acid and oleylamine, respectively. The XRD pattern of the samples confirmed the formation of magnetite phase (ICSD 36314) at all temperatures. The average size of the crystallites was determined by Debye-Scherrer equation with values in the range of 1.1-1.5 nm. Field-cooled and zero field-cooled analysis demonstrate that the blocking temperature (T B ) is below room temperature in all cases, indicating that all magnetite nanoparticles are superparamagnetic at room temperature and ferrimagnetic at low temperature. (author)

  19. Neutron magnetic multiple diffraction in a natural magnetite crystal

    International Nuclear Information System (INIS)

    Mazzocchi, V.L.; Parente, C.B.R.

    1988-09-01

    Neutron multiple diffraction has been employed in the study of the magnetism in magnetite (Fe 3 O 4 ). Magnetite has a crystallographic structure of an inverted spinel with tetrahedral A sites occupied solely by trivalent Fe 3+ ions and octahedral B sites occupied both by divalent Fe 2+ ions and the remaining Fe 3+ ions in random distribution. At room temperature magnetite is a Neel A-B ferrimagnet where the ions on the A, B sites are coupled antiferromagneticaly. This coupling disappears at T sup c approx. or approx.= 580 0 C. Employing a natural single crystal of magnetite experimental neutron multiple diffraction patterns were obtained for the primary reflection 111 at room temperature and 703 0 C. This reflection is almost entirely magnetic in origin resulting in 'Aufhellung' patterns below T c and mixed 'Aufhellung-Umweganregung' patterns above T c . Theoretical patterns were calculated employing the iterative method for the approximation of intensities by a Taylor series and compared to the experimental results. (author) [pt

  20. The effect of cobalt substitution on magnetic hardening of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M., E-mail: mozafari@sci.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Hadadian, Y. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Oveisy Moakhar, M. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of)

    2014-03-15

    In this work cobalt-substituted magnetite (Co{sub x}Fe{sub 1−x}Fe{sub 2}O{sub 4}, x=0, 0.25, 0.50 and 0.75) nanoparticles were synthesized by coprecipitation method and their structural and magnetic properties were investigated. X-ray diffraction was carried out and the results show that all of the samples have single phase spinel structure. Microstructure of the samples was studied using a field emission scanning electron microscope and the results show that particle sizes of the prepared nanoparticles were uniform and in the 50–55 nm range. Room temperature magnetic properties of the nanoparticles were measured by an alternating gradient force magnetometer and the results revealed that substituting cobalt for iron in magnetite structure, changes the magnetite from a soft magnetic material to a hard one. So that coercivity changes from 0 (a superparamagnetic state) to 337 Oe (a hard magnetic material), which is a remarkable change. Curie temperatures of the samples were determined by recording their susceptibility-temperature (χ–T) curves and the results show that by increasing cobalt content, Curie temperature of the samples also increases. Also χ–T curves of the samples were recorded from above Curie temperature to room temperature (first cooling), while the curves in the second heating and second cooling have the same behaviour as the first cooling curve. The results depict that all samples have different behaviour in the first cooling and in the first heating processes. This shows remarkable changes of the cation distribution in the course of first heating. - Highlights: • It is possible to get Co substituted magnetite nanoparticles by coprecipitation method. • Prepared nanoparticles have different cation distribution in comparison with that of bulk counterparts. • Co substitution increases coercivity of the magnetite.

  1. Identification and paleoclimatic significance of magnetite nanoparticles in soils

    Science.gov (United States)

    Ahmed, Imad A. M.; Maher, Barbara A.

    2018-02-01

    In the world-famous sediments of the Chinese Loess Plateau, fossil soils alternate with windblown dust layers to record monsoonal variations over the last ˜3 My. The less-weathered, weakly magnetic dust layers reflect drier, colder glaciations. The fossil soils (paleosols) contain variable concentrations of nanoscale, strongly magnetic iron oxides, formed in situ during the wetter, warmer interglaciations. Mineralogical identification of the magnetic soil oxides is essential for deciphering these key paleoclimatic records. Formation of magnetite, a mixed Fe2+/Fe3+ ferrimagnet, has been linked to soil redox oscillations, and thence to paleorainfall. An opposite hypothesis states that magnetite can only form if the soil is water saturated for significant periods in order for Fe3+ to be reduced to Fe2+, and suggests instead the temperature-dependent formation of maghemite, an Fe3+-oxide, much of which ages subsequently into hematite, typically aluminum substituted. This latter, oxidizing pathway would have been temperature, but not rainfall dependent. Here, through structural fingerprinting and scanning transmission electron microscopy and electron energy loss spectroscopy analysis, we prove that magnetite is the dominant soil-formed ferrite. Maghemite is present in lower concentrations, and shows no evidence of aluminum substitution, negating its proposed precursor role for the aluminum-substituted hematite prevalent in the paleosols. Magnetite dominance demonstrates that magnetite formation occurs in well-drained, generally oxidizing soils, and that soil wetting/drying oscillations drive the degree of soil magnetic enhancement. The magnetic variations of the Chinese Loess Plateau paleosols thus record changes in monsoonal rainfall, over timescales of millions of years.

  2. Novel humic acid-bonded magnetite nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakci, Mevlut, E-mail: mevlutbayrakci@gmail.com [Ulukisla Vocational School, Nigde University, 51100 Ulukisla, Nigde (Turkey); Gezici, Orhan [Department of Chemistry, Nigde University, 51100 Nigde (Turkey); Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra [Department of Chemistry, Selcuk University, 42031 Konya (Turkey)

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz–Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJ mol{sup −1}) and HSA bonded HA-APS-MNPs (33.42 kJ mol{sup −1}) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. - Highlights: • A new magnetite nanoparticle based humic acid was prepared for the first time. • Protein binding studies of magnetite nanoparticle based humic acid were performed. • Kinetic parameters of protein and/or humic acid bonded nanoparticles were evaluated.

  3. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-01-01

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles

  4. FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology

    International Nuclear Information System (INIS)

    Usman, M.; Abdelmoula, M.; Hanna, K.

    2012-01-01

    The Mössbauer spectroscopy was used to monitor the mineralogical transformations of ferrihydrite (F), lepidocrocite (L) and goethite (G) into magnetite as a function of aging time. Ferric oxyhydroxides were reacted with soluble Fe II and OH – in stoichiometric amounts to form magnetite at an initial pH of ∼9.7. Observed transformation extent into magnetite followed the order: F>L>G with almost 30% of untransformed G after 1 month. The departure from stoichiometry, δ, of magnetite (Fe 3−δ O 4 ) generated from F (δ∼0.04) and L (δ∼0.05) was relatively low as compared to that in magnetite from G (δ∼0.08). The analysis by transmission electron microscopy and BET revealed that generated magnetite was also different in terms of morphology, particle size and surface area depending on the nature of initial ferric oxyhydroxide. This method of preparation is a possible way to form nano-sized magnetite. - Graphical abstract: Mössbauer spectrum of the early stage of magnetite formation formed from the interaction of adsorbed Fe II species with goethite. Highlights: ► Ferric oxides were reacted with hydroxylated Fe II to form magnetite. ► Magnetite formation was quantified as a function of aging time. ► Complete transformation of ferrihydrite and lepidocrocite was achieved. ► Almost 70% of initial goethite was transformed. ► Resulting magnetites have differences in stoichiometry and morphological properties.

  5. The electrochemical property of the electrodeposited magnetite electrode with different pH values

    International Nuclear Information System (INIS)

    Kim, Myong-Jin; Kim, Dong Jin; Kim, Hong Pyo

    2014-01-01

    Flow accelerated corrosion (FAC) is influenced by many factors such as the water chemistry (temperature, pH, dissolved oxygen (D.O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of the change in the magnetite layer. On the other hand, it is necessary to measure the experimental solubility to compare the theoretical data and the experimental data. In addition, the solubility of magnetite can be predicted by measuring the electrochemical experiments. However, there are few studies related to the electrochemical property of magnetite owing to the difficulty of the electrode fabrication. In the present work, a magnetite electrode was prepared using the electrochemical-assisted precipitation method, and the electrochemical property of the fabricated magnetite electrode was measured in an alkaline solution. The magnetite electrode was fabricated by using the electrochemical-assisted precipitation method for the measurement of the solubility of the magnetite. The prepared magnetite electrode showed the characteristic of the magnetite by an XRD spectrum

  6. From iron(III) precursor to magnetite and vice versa

    International Nuclear Information System (INIS)

    Gotic, M.; Jurkin, T.; Music, S.

    2009-01-01

    The syntheses of nanosize magnetite particles by wet-chemical oxidation of Fe 2+ have been extensively investigated. In the present investigation the nanosize magnetite particles were synthesised without using the Fe(II) precursor. This was achieved by γ-irradiation of water-in-oil microemulsion containing only the Fe(III) precursor. The corresponding phase transformations were monitored. Microemulsions (pH ∼ 12.5) were γ-irradiated at a relatively high dose rate of ∼22 kGy/h. Upon 1 h of γ-irradiation the XRD pattern of the precipitate showed goethite and unidentified low-intensity peaks. Upon 6 h of γ-irradiation, reductive conditions were achieved and substoichiometric magnetite (∼Fe 2.71 O 4 ) particles with insignificant amount of goethite particles found in the precipitate. Hydrated electrons (e aq - ), organic radicals and hydrogen gas as radiolytic products were responsible for the reductive dissolution of iron oxide in the microemulsion and the reduction Fe 3+ → Fe 2+ . Upon 18 h of γ-irradiation the precipitate exhibited dual behaviour, it was a more oxidised product than the precipitate obtained after 6 h of γ-irradiation, but it contained magnetite particles in a more reduced form (∼Fe 2.93 O 4 ). It was presumed that the reduction and oxidation processes existed as concurrent competitive processes in the microemulsion. After 18 h of γ-irradiation the pH of the medium shifted from the alkaline to the acidic range. The high dose rate of ∼22 kGy/h was directly responsible for this shift to the acidic range. At a slightly acidic pH a further reduction of Fe 3+ → Fe 2+ resulted in the formation of more stoichiometric magnetite particles, whereas the oxidation conditions in the acidic medium permitted the oxidation Fe 2+ → Fe 3+ . The Fe 3+ was much less soluble in the acidic medium and it hydrolysed and recrystallised as goethite. The γ-irradiation of the microemulsion for 25 h at a lower dose rate of 16 kGy/h produced pure

  7. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile

    Science.gov (United States)

    Broughm, Shannon G.; Hanchar, John M.; Tornos, Fernando; Westhues, Anne; Attersley, Samuel

    2017-12-01

    Interpretation of the mineralizing environment of magnetite-apatite deposits remains controversial with theories that include a hydrothermal or magmatic origin or a combination of those two processes. To address this controversy, we have analyzed the trace element content of magnetite from precisely known geographic locations and geologic environments from the Precambrian magnetite-apatite ore and host rocks in Kiruna, Sweden, and the Pliocene-Holocene El Laco volcano in the Atacama desert of Chile. Magnetite samples from Kiruna have low trace element concentrations with little chemical variation between the ore, host, and related intrusive rocks. Magnetite from andesite at El Laco, and dacite from the nearby Láscar volcano, has high trace element concentrations typical of magmatic magnetite. El Laco ore magnetite have low trace element concentrations and displays growth zoning in incompatible elements (Si, Ca, and Ce), compatible elements (Mg, Al, and Mn), large-ion lithophile element (Sr), and high field strength element (Y, Nb, and Th). The El Laco ore magnetite are similar in composition to magnetite that has been previously interpreted to have crystallized from hydrothermal fluids; however, there is a significant difference in the internal zoning patterns. At El Laco, each zoned element is either enriched or depleted in the same layers, suggesting the magnetite crystallized from a volatile-rich, iron-oxide melt. In general, the compositions of magnetite from these two deposits plot in very wide fields that are not restricted to the proposed fields in published discriminant diagrams. This suggests that the use of these diagrams and genetic models based on them should be used with caution.

  8. Estudios morfológicos y taxonómicos en Blechnum (Blechnaceae-Pteridophyta: B. tabulare y B. magellanicum

    Directory of Open Access Journals (Sweden)

    Rolleri, Cristina H.

    2008-12-01

    Full Text Available Specimens of B. tabulare and B. magellanicum from their whole geographical area were studied, and taxa were treated as different species. The following characters were analyzed: rhizomes, rhizomatic scales, stipes, division of dimorphic laminae, outline, texture, size, margins, indument, venation, epidermal patterns, stomata (size and density, mesophyll of pinnae in transversal section, mucilaginiferous unicellular glands of axes and laminae, and spores. Habit of plants, type of rhizome, rhizomatic scales, mucilage glands, and type of ornamentation of the perispore are characters shared by the two species, while the other traits vary at the specific level, allowing them to be identified as two separate taxa. Blechnum tabulare is distributed in the tropics and subtropics of South America, África, and Islands of the Atlantic and Indic Oceans, while B. magellanicum is a subantarctic, more restricted species, that grows in humid areas of Argentina and Chile, South America. New descriptions of both species are given, along with comments on their affinities with other arborescent species of the genus.Especímenes de B. tabulare y B. magellanicum procedentes de toda su área de distribución fueron estudiados en detalle y considerados especies diferentes. Se estudiaron los siguientes caracteres: rizomas, escamas rizomáticas, estípites, división de las láminas dimórficas, contorno, textura, tamaño, margen, indumento, venación, modelo epidérmico, estomas (densidad y dimensiones, mesofilo de las pinnas estériles en sección transversal y esporas. El hábito de las plantas, el tipo de rizoma, las escamas rizomáticas y el tipo de ornamentación del perisporio son rasgos compartidos por ambos táxones, pero los restantes caracteres varían en el nivel específico y permiten distinguirlos como especies diferentes. Blechnum tabulare se distribuye en los trópicos y subtrópicos de Sudamérica, África e islas de los océanos Atlántico e

  9. UV pulsed laser deposition of magnetite thin films

    International Nuclear Information System (INIS)

    Parames, M.L.; Mariano, J.; Rogalski, M.S.; Popovici, N.; Conde, O.

    2005-01-01

    Magnetite thin films were grown by pulsed laser deposition in O 2 reactive atmosphere from Fe 3 O 4 targets. The ablated material was deposited onto Si(1 0 0) substrates at various temperatures up to 623 K. The temperature dependence of structure and stoichiometry was investigated by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). The XRD results show that films grown between 483 and 623 K are obtained as pure phase magnetite with an estimated average crystallite size increasing from 14 to 35 nm, respectively. This is in agreement with the CEMS spectra analysis, indicating isomer shift and internal field values for both the T d and O h sites close to those reported for the bulk material and a random orientation of the magnetic moments. The influence of the deposition temperature on the estimated Fe (9-x)/3 O 4 stoichiometry is related to an increase in the vacancy concentration from 483 to 623 K

  10. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    Science.gov (United States)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  11. UO2/magnetite concrete interaction and penetration study

    International Nuclear Information System (INIS)

    Farhadieh, R.; Purviance, R.; Carlson, N.

    1983-01-01

    The concrete structure represents a line of defense in safety assessment of containment integrity and possible minimization of radiological releases following a reactor accident. The penetration study of hot UO 2 particles into limestone concrete and basalt concrete highlighted some major differences between the two concretes. These included penetration rate, melting and dissolution phenomena, released gases, pressurization of the UO 2 chamber, and characteristics of post-test concrete. The present study focuses on the phenomena associated with core debris interaction with and penetration into magnetite type concrete. The real material experiment was carried out with UO 2 particles and magnetite concrete in a test apparatus similar to the one utilized in the UO 2 /limestone experiment

  12. Uniaxial anisotropy in magnetite thin film-Magnetization studies

    International Nuclear Information System (INIS)

    Wiechec, A.; Korecki, J.; Handke, B.; Kakol, Z.; Owoc, D.; Antolak, D.A.; Kozlowski, A.

    2006-01-01

    Magnetization and electrical resistivity measurements have been performed on a stoichiometric single crystalline magnetite Fe 3 O 4 thin film (thickness of ca. 500 nm) MBE deposited on MgO (1 0 0) substrate. The aim of these studies was to check the influence of preparation method and sample form (bulk vs. thin film) on magnetic anisotropy properties in magnetite. The film magnetization along versus applied magnetic field has been determined both in the direction parallel and perpendicular to the film surface, and at temperatures above and below the Verwey transition. We have found, in agreement with published results, that the in-plane field of 10 kOe was not sufficient to saturate the sample. This can be understood if some additional factor, on top of the bulk magnetocrystalline anisotropy, is taken into account

  13. Thermomagnetic analysis of the initial permeability in magnetite samples

    International Nuclear Information System (INIS)

    Iniquez, J.; Francisco, C. de; Munoz, J.M.; Sanchez, O.

    1987-01-01

    A study on the thermomagnetic analysis of the initial permeability in magnetite samples and its dependence with the sintering conditions is presented. The measurements, for temperatures ranging from liquid nitrogen to the Curie temperature, were performed with the help of a very simple system which is also described here. The experimental results allow us to consider this study as a sensitive test of the sintering conditions (author) 21 refs

  14. Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes

    OpenAIRE

    Zhang, Qian

    2007-01-01

    Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functi...

  15. Interactions between magnetite and humic substances: redox reactions and dissolution processes.

    Science.gov (United States)

    Sundman, Anneli; Byrne, James M; Bauer, Iris; Menguy, Nicolas; Kappler, Andreas

    2017-10-19

    Humic substances (HS) are redox-active compounds that are ubiquitous in the environment and can serve as electron shuttles during microbial Fe(III) reduction thus reducing a variety of Fe(III) minerals. However, not much is known about redox reactions between HS and the mixed-valent mineral magnetite (Fe 3 O 4 ) that can potentially lead to changes in Fe(II)/Fe(III) stoichiometry and even dissolve the magnetite. To address this knowledge gap, we incubated non-reduced (native) and reduced HS with four types of magnetite that varied in particle size and solid-phase Fe(II)/Fe(III) stoichiometry. We followed dissolved and solid-phase Fe(II) and Fe(III) concentrations over time to quantify redox reactions between HS and magnetite. Magnetite redox reactions and dissolution processes with HS varied depending on the initial magnetite and HS properties. The interaction between biogenic magnetite and reduced HS resulted in dissolution of the solid magnetite mineral, as well as an overall reduction of the magnetite. In contrast, a slight oxidation and no dissolution was observed when native and reduced HS interacted with 500 nm magnetite. This variability in the solubility and electron accepting and donating capacity of the different types of magnetite is likely an effect of differences in their reduction potential that is correlated to the magnetite Fe(II)/Fe(III) stoichiometry, particle size, and crystallinity. Our study suggests that redox-active HS play an important role for Fe redox speciation within minerals such as magnetite and thereby influence the reactivity of these Fe minerals and their role in biogeochemical Fe cycling. Furthermore, such processes are also likely to have an effect on the fate of other elements bound to the surface of Fe minerals.

  16. Synthesis and characterization of Cu{sup 2+} substituted magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A. L. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Velasquez, A. A., E-mail: avelas26@eafit.edu.co [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Urquijo, J. P. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Baggio, E. [Centro Brasileiro de Pesquisas Fisicas (Brazil)

    2011-11-15

    Samples of magnetite, both pure and doped with divalent copper, Fe{sub 3 - x}Cu{sub x}O{sub 4}, with x = 0, 0.05, 0.10 and 0.20 atm.%, were synthesized hydrothermally. The samples were characterized by Atomic Absorption Spectroscopy, Moessbauer Spectroscopy, X-ray diffraction, Scanning Electron Microscopy and SQUID magnetometry. The analyses made by the above techniques showed that as the Cu{sup 2+} concentration increases, a simultaneous reduction in the magnetic and structural parameters takes place, namely: magnetic hyperfine interactions at octahedral sites, particle size and lattice constant. Degradation in the particles morphology as well as a distribution of their size were also observed. Our study points two important effects of Cu{sup 2+} in magnetite, the first one is its incorporation within the structure, replacing Fe{sup 2+} ions and decreasing both the magnetic hyperfine interactions at octahedral sites and the bulk magnetization, the second one is the contraction of the crystalline lattice of magnetite, because incorporation of Cu{sup 2+} within the structure, generation of vacancies or both simultaneous effects.

  17. Synthesis and characterization of Cu2+ substituted magnetite

    International Nuclear Information System (INIS)

    Morales, A. L.; Velásquez, A. A.; Urquijo, J. P.; Baggio, E.

    2011-01-01

    Samples of magnetite, both pure and doped with divalent copper, Fe 3 − x Cu x O 4 , with x = 0, 0.05, 0.10 and 0.20 atm.%, were synthesized hydrothermally. The samples were characterized by Atomic Absorption Spectroscopy, Mössbauer Spectroscopy, X-ray diffraction, Scanning Electron Microscopy and SQUID magnetometry. The analyses made by the above techniques showed that as the Cu 2+ concentration increases, a simultaneous reduction in the magnetic and structural parameters takes place, namely: magnetic hyperfine interactions at octahedral sites, particle size and lattice constant. Degradation in the particles morphology as well as a distribution of their size were also observed. Our study points two important effects of Cu 2+ in magnetite, the first one is its incorporation within the structure, replacing Fe 2+ ions and decreasing both the magnetic hyperfine interactions at octahedral sites and the bulk magnetization, the second one is the contraction of the crystalline lattice of magnetite, because incorporation of Cu 2+ within the structure, generation of vacancies or both simultaneous effects.

  18. "Clickable", trifunctional magnetite nanoparticles and their chemoselective biofunctionalization.

    Science.gov (United States)

    Das, Manasmita; Bandyopadhyay, Debarati; Mishra, Debasish; Datir, Satyajit; Dhak, Prasanta; Jain, Sanyog; Maiti, Tapas Kumar; Basak, Amit; Pramanik, Panchanan

    2011-06-15

    A multifunctional iron oxide based nanoformulation for combined cancer-targeted therapy and multimodal imaging has been meticulously designed and synthesized using a chemoselective ligation approach. Novel superparamagnetic magnetite nanoparticles simultaneously functionalized with amine, carboxyl, and azide groups were fabricated through a sequence of stoichiometrically controllable partial succinylation and Cu (II) catalyzed diazo transfer on the reactive amine termini of 2-aminoethylphosphonate grafted magnetite nanoparticles (MNPs). Functional moieties associated with MNP surface were chemoselectively conjugated with rhodamine B isothiocyanate (RITC), propargyl folate (FA), and paclitaxel (PTX) via tandem nucleophic addition of amine to isothithiocyanates, Cu (I) catalyzed azide--alkyne click chemistry and carbodiimide-promoted esterification. An extensive in vitro study established that the bioactives chemoselectively appended to the magnetite core bequeathed multifunctionality to the nanoparticles without any loss of activity of the functional molecules. Multifunctional nanoparticles, developed in the course of the study, could selectively target and induce apoptosis to folate-receptor (FR) overexpressing cancer cells with enhanced efficacy as compared to the free drug. In addition, the dual optical and magnetic properties of the synthesized nanoparticles aided in the real-time tracking of their intracellular pathways also as apoptotic events through dual fluorescence and MR-based imaging.

  19. Growth of magnetite films by a hydrogel method

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, A.A., E-mail: avelas26@eafit.edu.edu.co [Grupo de Electromagnetismo Aplicado, Universidad EAFIT, A.A. 3300, Medellín (Colombia); Marín, C.C. [Grupo de Electromagnetismo Aplicado, Universidad EAFIT, A.A. 3300, Medellín (Colombia); Urquijo, J.P. [Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia, A.A. 1226, Medellín (Colombia)

    2017-06-15

    Magnetite (Fe{sub 3}O{sub 4}) films were grown on glass substrates by formation and condensation of complex of iron oxides in an agarose hydrogel. The obtained films were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Room Temperature Mössbauer Spectroscopy (TMS), Vibrating Sample Magnetometry (VSM), Atomic Force Microscopy (AFM) and Voltage vs. Current measurements by the four-point method. FTIR and TGA measurements showed that some polymer chains of agarose remain linked to the surface of the magnetic particles of the films after heat treatment. SEM measurements showed that the films are composed by quasi spherical particles with sizes around 55 nm. Mössbauer spectroscopy measurements showed two sextets with broaden lines, which were assigned to magnetite with a distributed particle size, and two doublets, which were assigned to superparamagnetic phases of magnetite. For the specific dimensions of the films prepared, measurements of Voltage vs. Current showed an ohmic behavior for currents between 0 and 200 nA, with a resistance of 355 kΩ.

  20. Growth of magnetite films by a hydrogel method

    International Nuclear Information System (INIS)

    Velásquez, A.A.; Marín, C.C.; Urquijo, J.P.

    2017-01-01

    Magnetite (Fe 3 O 4 ) films were grown on glass substrates by formation and condensation of complex of iron oxides in an agarose hydrogel. The obtained films were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Room Temperature Mössbauer Spectroscopy (TMS), Vibrating Sample Magnetometry (VSM), Atomic Force Microscopy (AFM) and Voltage vs. Current measurements by the four-point method. FTIR and TGA measurements showed that some polymer chains of agarose remain linked to the surface of the magnetic particles of the films after heat treatment. SEM measurements showed that the films are composed by quasi spherical particles with sizes around 55 nm. Mössbauer spectroscopy measurements showed two sextets with broaden lines, which were assigned to magnetite with a distributed particle size, and two doublets, which were assigned to superparamagnetic phases of magnetite. For the specific dimensions of the films prepared, measurements of Voltage vs. Current showed an ohmic behavior for currents between 0 and 200 nA, with a resistance of 355 kΩ.

  1. Development of Antibody-Coated Magnetite Nanoparticles for Biomarker Immobilization

    Directory of Open Access Journals (Sweden)

    Christian Chapa Gonzalez

    2014-01-01

    Full Text Available Magnetic nanoparticles (MNPs have great potential in biomedical applications because of their magnetic response offers the possibility to direct them to specific areas and target biological entities. Magnetic separation of biomolecules is one of the most important applications of MNPs because their versatility in detecting cancer biomarkers. However, the effectiveness of this method depends on many factors, including the type of functionalization onto MNPs. Therefore, in this study, magnetite nanoparticles have been developed in order to separate the 5′-nucleotidase enzyme (5eNT. The 5eNT is used as a bio-indicator for diagnosing diseases such as hepatic ischaemia, liver tumor, and hepatotoxic drugs damage. Magnetic nanoparticles were covered in a core/shell type with silica, aminosilane, and a double shell of silica-aminosilane. A ScFv (fragment antibody and anti-CD73 antibody were attached to the coated nanoparticles in order to separate the enzyme. The magnetic separation of this enzyme with fragment antibody was found to be 28% higher than anti-CD73 antibody and the enzyme adsorption was improved with the double shell due to the increased length of the polymeric chain. Magnetite nanoparticles with a double shell (silica-aminosilane were also found to be more sensitive than magnetite with a single shell in the detection of biomarkers.

  2. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    Science.gov (United States)

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  3. Effect of elastic compliances and higher order Landau coefficients on the phase diagram of single domain epitaxial Pb(Zr,TiO3 (PZT thin films

    Directory of Open Access Journals (Sweden)

    M. Mtebwa

    2014-12-01

    Full Text Available We report the qualitative study of the influence of both elastic compliances and higher order terms of Landau free energy potential on the phase diagram of Pb(Zr0.5Ti0.5O3 thin films by using a single domain Landau theory. Although the impact of elastic compliances and higher order terms of the Landau free energy potential on the phase diagram of ferroelectric thin films are known, the sensitivity of the phase diagram of PZT thin film on these parameters have not been reported. It is demonstrated that, while values of elastic compliances affect the positions of the phase boundaries including phase transition temperature of the cubic phase; higher order terms can potentially introduce an a1a2-phase previously predicted in PbTiO3 phase diagram.

  4. A nonadaptive origin of a beneficial trait: in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins.

    Science.gov (United States)

    Pagan, Rafael F; Massey, Steven E

    2014-02-01

    Proteins are regarded as being robust to the deleterious effects of mutations. Here, the neutral emergence of mutational robustness in a population of single domain proteins is explored using computer simulations. A pairwise contact model was used to calculate the ΔG of folding (ΔG folding) using the three dimensional protein structure of leech eglin C. A random amino acid sequence with low mutational robustness, defined as the average ΔΔG resulting from a point mutation (ΔΔG average), was threaded onto the structure. A population of 1,000 threaded sequences was evolved under selection for stability, using an upper and lower energy threshold. Under these conditions, mutational robustness increased over time in the most common sequence in the population. In contrast, when the wild type sequence was used it did not show an increase in robustness. This implies that the emergence of mutational robustness is sequence specific and that wild type sequences may be close to maximal robustness. In addition, an inverse relationship between ∆∆G average and protein stability is shown, resulting partly from a larger average effect of point mutations in more stable proteins. The emergence of mutational robustness was also observed in the Escherichia coli colE1 Rop and human CD59 proteins, implying that the property may be common in single domain proteins under certain simulation conditions. The results indicate that at least a portion of mutational robustness in small globular proteins might have arisen by a process of neutral emergence, and could be an example of a beneficial trait that has not been directly selected for, termed a "pseudaptation."

  5. Using a spatial and tabular database to generate statistics from terrain and spectral data for soil surveys

    Science.gov (United States)

    Horvath , E.A.; Fosnight, E.A.; Klingebiel, A.A.; Moore, D.G.; Stone, J.E.; Reybold, W.U.; Petersen, G.W.

    1987-01-01

    A methodology has been developed to create a spatial database by referencing digital elevation, Landsat multispectral scanner data, and digitized soil premap delineations of a number of adjacent 7.5-min quadrangle areas to a 30-m Universal Transverse Mercator projection. Slope and aspect transformations are calculated from elevation data and grouped according to field office specifications. An unsupervised classification is performed on a brightness and greenness transformation of the spectral data. The resulting spectral, slope, and aspect maps of each of the 7.5-min quadrangle areas are then plotted and submitted to the field office to be incorporated into the soil premapping stages of a soil survey. A tabular database is created from spatial data by generating descriptive statistics for each data layer within each soil premap delineation. The tabular data base is then entered into a data base management system to be accessed by the field office personnel during the soil survey and to be used for subsequent resource management decisions.Large amounts of data are collected and archived during resource inventories for public land management. Often these data are stored as stacks of maps or folders in a file system in someone's office, with the maps in a variety of formats, scales, and with various standards of accuracy depending on their purpose. This system of information storage and retrieval is cumbersome at best when several categories of information are needed simultaneously for analysis or as input to resource management models. Computers now provide the resource scientist with the opportunity to design increasingly complex models that require even more categories of resource-related information, thus compounding the problem.Recently there has been much emphasis on the use of geographic information systems (GIS) as an alternative method for map data archives and as a resource management tool. Considerable effort has been devoted to the generation of tabular

  6. Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil

    Science.gov (United States)

    Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri

    2018-05-01

    The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.

  7. The Desulfurization of Magnetite Ore by Flotation with a Mixture of Xanthate and Dixanthogen

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2016-07-01

    Full Text Available The contamination of sulfur emanating from pyrrhotite in magnetite concentrates has been a problem in iron ore processing. This study utilized froth flotation to float pyrrhotite away from magnetite using collectors of xanthate and dixanthogen. It was found that xanthate or dixanthogen alone could not achieve selective separation between pyrrhotite and magnetite in flotation. A high loss of magnetite was obtained with xanthate, while a low desulfurization degree was obtained with dixanthogen. It was interesting that a high desulfurization ratio was achieved with little loss of magnetite when xanthate was mixed with dixanthogen as the collector. The synergistic effect of the mixed collector on pyrrhotite was studied by electrokinectic studies and FTIR measurements. It was found that xanthate was the anchor on pyrrhotite and determined its selectivity against magnetite, while dixanthogen associated with xanthate, enhancing its hydrophobicity. This study provides new insights into the separation of iron minerals.

  8. Mechanism of magnetite formation in high temperature corrosion by model naphthenic acids

    International Nuclear Information System (INIS)

    Jin, Peng; Robbins, Winston; Bota, Gheorghe

    2016-01-01

    Highlights: • Magnetite scales were found in naphthenic acid (NAP) corrosion. • Magnetite scales were formed due to thermal decomposition of iron naphthenates. • Formation and protectiveness of magnetite scales depended on structure of NAP. • Carboxylic acids confirm corrosion observations for commercial NAP. - Abstract: Naphthenic acid (NAP) corrosion is a major concern for refineries. The complexity of NAP in crude oil and the sulfidation process hinder a fundamental knowledge of their corrosive behavior. Studies with model acids were performed to explore the corrosion mechanism and magnetite scales were found on carbon steel. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray diffraction methods detected differences in the quantity and quality of magnetite formed by model acids. These scales exhibited different resistance to higher severity NAP corrosion in a flow through apparatus. Magnetite is proposed to be formed by thermal decomposition of iron naphthenates.

  9. Environmentally Compatible Synthesis of Superparamagnetic Magnetite (Fe3O4 Nanoparticles with Prehydrolysate from Corn Stover

    Directory of Open Access Journals (Sweden)

    Chunming Zheng

    2013-12-01

    Full Text Available An environmentally compatible and size-controlled method has been employed for synthesis of superparamagnetic magnetite nanoparticles with prehydrolysate from corn stover. Various characterizations involving X-ray diffraction (XRD, standard and high-resolution transmission electron microscopy (TEM and HRTEM, selected area electron diffraction (SAED, and thermogravimetric analysis (TGA have integrally confirmed the formation of magnetite nanoparticles with homogeneous morphology and the formation mechanism of magnetite only from ferric precursor. Organic materials in the prehydrolysate act as a bifunctional agent: (1 a reducing agent to reduce ferric ions to prepare magnetite with the coexistence of ferric and ferrous ions; and (2 a coating agent to prevent particle growth and agglomeration and to promote the formation of nanoscale and superparamagnetic magnetite. The size of the magnetite nanoparticles can be easily controlled by tailoring the reducing sugar concentration, reaction time, or hydrothermal temperature.

  10. Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles

    Science.gov (United States)

    Al-Ghamdi, Ahmed A.; Al-Hazmi, Faten; Al-Tuwirqi, R. M.; Alnowaiser, F.; Al-Hartomy, Omar A.; El-Tantawy, Farid; Yakuphanoglu, F.

    2013-05-01

    The superparamagnetic magnetite (Fe3O4) nanoparticles with an average size of 7 nm were synthesized using a rapid and facile microwave hydrothermal technique. The structure of the magnetite nanoparticles was characterized by X-ray diffraction (X-ray), field effect scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The prepared Fe3O4 was shown to have a cubic phase of pure magnetite. Magnetization hysteresis loop shows that the synthesized magnetite exhibits no hysteretic features with a superparamagnetic behavior. The ethanol gas sensing properties of the synthesized magnetite were investigated, and it was found that the responsibility time is less than 10 s with good reproducibility for ethanol sensor. Accordingly, it is evaluated that the magnetite nanoparticles can be effectively used as a solid state ethanol sensor in industrial commercial product applications.

  11. Removal of Cr (VI) for the handling of industrial effluent using the magnetite

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Camilo, Ruth L.; Cohen, Victor H.; Goncalves, Maria A.

    2000-01-01

    This work deals of Cr (VI) adsorption behaviour on synthetic magnetite. Magnetite was prepared by adding an alkaline solution in an aqueous solution containing both Fe(II) and Fe(III) ions. Characterization by X-ray diffraction analysis was verified. Distribution coefficients and adsorption isotherms of chromium on magnetite were studied and magnetic field influence from 0 to 0.35 Tesla on adsorption capacity is also verified. (author)

  12. Ionic Copolymer-Magnetite Complexes for Magnetic Resonance Imaging and Drug Delivery

    OpenAIRE

    Zhang, Rui

    2015-01-01

    This thesis is focused on the design, synthesis and characterization of magnetite-ionic copolymer complexes as nanocarriers for drug delivery and magnetic resonance imaging. The polymers included phosphonate and carboxylate-containing graft and block copolymers. Oleic-acid coated magnetite nanoparticles (8-nm and 16-nm diameters) were investigated. Cisplatin and carboplatin were used as sample drugs. The potentials of the magnetite-ionomer complexes as dual drug delivery carriers and magneti...

  13. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum

    OpenAIRE

    Schumann, Dirk; Raub, Timothy D.; Kopp, Robert E.; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V.; Sears, S. Kelly; Lücken, Uwe; Tikoo, Sonia M.; Hesse, Reinhard; Kirschvink, Joseph L.; Vali, Hojatollah

    2008-01-01

    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, New Jersey. Aside from previously-described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 μm long and hexaoctahedral prisms up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical...

  14. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Yamaura, M.; Camilo, R.L.; Sampaio, L.C.; Macedo, M.A.; Nakamura, M.; Toma, H.E.

    2004-01-01

    Magnetite nanoparticles coated with (3-aminopropyl)triethoxysilane, NH 2 (CH 2 ) 3 Si(OC 2 H 5 ) 3 , were prepared by silanization reaction and characterized by X-ray diffractometry, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and magnetization measurements. Both uncoated and organosilane-coated magnetite exhibited superparamagnetic behavior and strong magnetization at room temperature. Basic groups anchored on the external surface of the coated magnetite were observed. The superparamagnetic particles of coated magnetite are able to bind to biological molecules, drugs and metals and in this way remove them from medium by magnetic separation procedures

  15. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method

    International Nuclear Information System (INIS)

    Mao Baodong; Kang Zhenhui; Wang Enbo; Lian Suoyuan; Gao Lei; Tian Chungui; Wang Chunlei

    2006-01-01

    Magnetite (Fe 3 O 4 ) octahedral particles were fabricated from iron powders through a simple one-step alkali-assisted hydrothermal process. The crystallinity, morphology, and structural features of the as-prepared magnetite particles were investigated using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The values of saturation magnetization (M s ) and coercivity (H) of the magnetite octahedrons characterized on a vibrating sample magnetometer (VSM) are 89.81 emu/g and 70.6 Oe, respectively. The concentration of NaOH and the reaction temperature played a key role in the formation of the magnetite octahedrons

  16. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu

    2014-01-01

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  17. Defects/strain influenced magnetic properties and inverse of surface spin canting effect in single domain CoFe_2O_4 nanoparticles

    International Nuclear Information System (INIS)

    Singh, Simrjit; Khare, Neeraj

    2016-01-01

    Graphical abstract: - Highlights: • Synthesized single domain CoFe_2O_4 nanoparticles with different amount of strain. • Demonstrated a correlation between size, strain and magnetic properties of CoFe_2O_4. • Strain induces cationic redistribution at tetrahedral and octahedral sites of CoFe_2O_4. • Inverse of spin canting effect due to the redistribution of Fe"3"+ ions is demonstrated. - Abstract: Single domain CoFe_2O_4 nanoparticles with different amount of defects/strain have been synthesized by varying the growth temperature in the hydrothermal method. Nanoparticles grown at lower temperature are of larger size and exhibit more planar defects and oxygen vacancies as compared to nanoparticles grown at higher temperatures which are of smaller sizes and exhibit less planar defects and oxygen vacancies. The nanoparticles with larger amount of defects also possess a higher value of intrinsic strain as compared to nanoparticles with fewer defects. The presence of intrinsic strain in the nanoparticles is found to shift the cationic distribution at the tetrahedral and octahedral sites. The saturation magnetization (M_s) of the nanoparticles is found to depend upon both the intrinsic strain and size of the nanoparticles. The M_s increases with the decrease in the nanoparticles size from 32 nm to 20 nm, and this is correlated to the inverse of spin canting effect due to decrease in the intrinsic strain which leads to shifting of Co"2"+ ions from tetrahedral to octahedral sites. However, with further decrease in the size of the nanoparticles (16 nm), the size effect dominates over the strain effect leading to decrease in M_s. The coercivity is found to be higher in the nanoparticles with larger amount of defects/strain and has been attributed to strain induced strong spin canting and pinning due to defect sites. The variation of coercivity with particle size (D) exhibits deviation from D"3"/"2 dependence for the nanoparticles with larger amount of strain/defects.

  18. Patterned magnetite films prepared via soft lithography and thermal decomposition

    International Nuclear Information System (INIS)

    An Lijuan; Li, Zhaoqiang; Li Wei; Nie Yaru; Chen Zhimin; Wang Yanping; Yang Bai

    2006-01-01

    A method for the fabrication of patterned magnetite (Fe 3 O 4 ) films is presented. We first prepared an ordered 2D array of Fe(acac) 3 through a selective deposition technique on patterned self-assembled monolayers. Using thermal decomposition at elevated temperature (300 o C), we transformed the patterned Fe(acac) 3 into patterned Fe 3 O 4 films in a short reaction time. These patterned films have been confirmed by using optical photographs, field emission scanning electron microscopy and atomic force microscopy

  19. Deposition of magnetite particles onto alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H. [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, NB (Canada)

    1998-07-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m{sup 2} . A concentration of suspended magnetite of 5.0E-03kg/m{sup 3} was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1{mu}m) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was

  20. Surface modification of magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Barrera, Carola; Herrera, Adriana; Zayas, Yashira; Rinaldi, Carlos

    2009-01-01

    The preparation of magnetite nanoparticles with narrow size distributions using poly(ethylene glycol) (PEG-COOH) or carboxymethyl dextran (CMDx) chains covalently attached to the particle surface using carbodiimide chemistry is described. Particles were synthesized by thermal decomposition and modified with 3-aminopropyl trimethoxysilane (APS) to render particles with reactive amine groups (-NH 2 ) on their surface. Amines were then reacted with carboxyl groups in PEG-COOH or CMDx using carbodiimide chemistry in water. The size and stability of the functionalized magnetic nanoparticles was studied as a function of pH and ionic strength using dynamic light scattering and zeta potential measurements.

  1. Deposition of magnetite particles onto alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H.

    1998-01-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m 2 . A concentration of suspended magnetite of 5.0E-03kg/m 3 was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1μm) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was considered

  2. A Novel Affinity Tag, ABTAG, and Its Application to the Affinity Screening of Single-Domain Antibodies Selected by Phage Display

    Directory of Open Access Journals (Sweden)

    Greg Hussack

    2017-10-01

    Full Text Available ABTAG is a camelid single-domain antibody (sdAb that binds to bovine serum albumin (BSA with low picomolar affinity. In surface plasmon resonance (SPR analyses using BSA surfaces, bound ABTAG can be completely dissociated from the BSA surfaces at low pH, over multiple cycles, without any reduction in the capacity of the BSA surfaces to bind ABTAG. A moderate throughput, SPR-based, antibody screening assay exploiting the unique features of ABTAG is described. Anti-carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 sdAbs were isolated from a phage-displayed sdAb library derived from the heavy chain antibody repertoire of a llama immunized with CEACAM6. Following one or two rounds of panning, enriched clones were expressed as ABTAG fusions in microtiter plate cultures. The sdAb-ABTAG fusions from culture supernatants were captured on BSA surfaces and CEACAM6 antigen was then bound to the captured molecules. The SPR screening method gives a read-out of relative expression levels of the fusion proteins and kinetic and affinity constants for CEACAM6 binding by the captured molecules. The library was also panned and screened by conventional methods and positive clones were subcloned and expressed for SPR analysis. Compared to conventional panning and screening, the SPR-based ABTAG method yielded a considerably higher diversity of binders, some with affinities that were three orders of magnitude higher affinity than those identified by conventional panning.

  3. The Biotechnological Applications of Recombinant Single-Domain Antibodies are Optimized by the C-Terminal Fusion to the EPEA Sequence (C Tag

    Directory of Open Access Journals (Sweden)

    Selma Djender

    2014-04-01

    Full Text Available We designed a vector for the bacterial expression of recombinant antibodies fused to a double tag composed of 6xHis and the EPEA amino acid sequence. EPEA sequence (C tag is tightly bound by a commercial antibody when expressed at the C-term end of a polypeptide. The antigen is released in the presence of 2 M MgCl2. Consequently, constructs fused to the 6xHis-C tags can be purified by two successive and orthogonal affinity steps. Single-domain antibodies were produced either in the periplasmic or in the cytoplasmic space of E. coli. Surprisingly, the first affinity purification step performed using the EPEA-binding resin already yielded homogeneous proteins. The presence of the C tag did not interfere with the binding activity of the antibodies, as assessed by FACS and SPR analyses, and the C tag was extremely effective for immunoprecipitating HER2 receptor. Finally, the Alexa488-coupled anti-C tag allowed for simplification of FACS and IF analyses. These results show that a tag of minimal dimensions can be effectively used to improve the applicability of recombinant antibodies as reagents. In our hands, C tag was superior to His-tag in affinity purification and pull-down experiments, and practical in any other standard immune technique.

  4. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    Energy Technology Data Exchange (ETDEWEB)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Marco, Ario de, E-mail: ario.demarco@ung.si [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Dept. Environmental Sciences, University of Nova Gorica (UNG), Vipavska 13, P.O. Box 301-SI-5000, Rozna Dolina, Nova Gorica (Slovenia)

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  5. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    International Nuclear Information System (INIS)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo; Marco, Ario de

    2011-01-01

    Highlights: → Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. → These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. → The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  6. Characterization of an entomopathogenic fungi target integument protein, Bombyx mori single domain von Willebrand factor type C, in the silkworm, Bombyx mori.

    Science.gov (United States)

    Han, F; Lu, A; Yuan, Y; Huang, W; Beerntsen, B T; Huang, J; Ling, E

    2017-06-01

    The insect cuticle works as the first line of defence to protect insects from pathogenic infections and water evaporation. However, the old cuticle must be shed in order to enter the next developmental stage. During each ecdysis, moulting fluids are produced and secreted into the area among the old and new cuticles. In a previous study, the protein Bombyx mori single domain von Willebrand factor type C (BmSVWC; BGIBMGA011399) was identified in the moulting fluids of Bo. mori and demonstrated to regulate ecdysis. In this study we show that in Bo. mori larvae, BmSVWC primarily locates to the integument (epidermal cells and cuticle), wing discs and head. During the moulting stage, BmSVWC is released into the moulting fluids, and is then produced again by epidermal cells after ecdysis. Fungal infection was shown to decrease the amount of BmSVWC in the cuticle, which indicates that BmSVWC is a target protein of entomopathogenic fungi. Thus, BmSVWC is mainly involved in maintaining the integrity of the integument structure, which serves to protect insects from physical damage and pathogenic infection. © 2017 The Royal Entomological Society.

  7. Iodoacetyl-functionalized pullulan: A supplemental enhancer for single-domain antibody-polyclonal antibody sandwich enzyme-linked immunosorbent assay for detection of survivin.

    Science.gov (United States)

    Matsushita, Takahiko; Arai, Hidenao; Koyama, Tetsuo; Hatano, Ken; Nemoto, Naoto; Matsuoka, Koji

    2017-11-01

    Survivin, an inhibitor of the apoptosis protein family, is a potent tumor marker for diagnosis and prognosis. The enzyme-linked immunosorbent assay (ELISA) is one of the methods that has been used for detection of survivin. However, ELISA has several disadvantages caused by the use of conventional antibodies, and we have therefore been trying to develop a novel ELISA system using camelid single-domain antibodies (VHHs) as advantageous replacements. Here we report a supplemental approach to improve the VHH-polyclonal antibody sandwich ELISA for survivin detection. Iodoacetyl-functionalized pullulan was synthesized, and its thiol reactivity was characterized by a model reaction with l-cysteine. The thiophilic pullulan was applied to an immunoassay asan additive upon coating of standard assay plates with an anti-survivin VHH fusion protein with C-terminal cysteine. The results showed that the mole ratio of the additive to VHH had a significant effect on the consequent response. Mole ratios of 0.07, 0.7, and 7 led to 90% lower, 15% higher, and 69% lower responses, respectively, than the response of a positive control in which no additive was used. The background levels observed in any additive conditions were as low as that of a negative control lacking both VHH and the additive. These results indicate the applicability of the thiol-reactive pullulan as a response enhancer to VHH-based ELISA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies

    Science.gov (United States)

    Hafian, Hilal; Sukhanova, Alyona; Chames, Patrick; Baty, Daniel; Pluot, Michel; Cohen, Jacques H. M.; Nabiev, Igor R.; Millot, Jean-Marc

    2012-10-01

    Semiconductor fluorescent quantum dots (QDs) have just demonstrated their numerous advantages over organic dyes in bioimaging and diagnostics. One of characteristics of QDs is a very large cross section of their twophoton absorption. A common approach to biodetection by means of QDs is to use monoclonal antibodies (mAbs) for targeting. Recently, we have engineered ultrasmall diagnostic nanoprobes (sdAb-QD) based on highly oriented conjugates of QDs with the single-domain antibodies (sdAbs) against cancer biomarkers. With a molecular weight of only 13 kDa (12-fold smaller than full-size mAbs) and extreme stability and capacity to refolding, sdAbs are the smallest functional Ab fragments capable of binding antigens with affinities comparable to those of conventional Abs. Ultrasmall diagnostic sdAb-QD nanoprobes were engineered through oriented conjugation of QDs with sdAbs. This study is the first to demonstrate the possibility of immunohistochemical imaging of colon carcinoma biomarkers with sdAb-QD conjugates by means of two-photon excitation. The optimal excitation conditions for imaging of the markers in clinical samples with sdAb-QD nanoprobes have been determined. The absence of sample autofluorescence significantly improves the sensitivity of biomarker detection with the use of the two-photon excitation diagnostic setup.

  9. Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa

    CSIR Research Space (South Africa)

    Cloete, M

    1999-11-01

    Full Text Available , orientation contrast imagery and magnetic force microscopy. The opaque particles have been identified as nano- to micro-sized magnetite that occurs in several distinct modes. III one sample magnetite occurs along relict planar deformation features (PDF...

  10. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  11. ELECTRON MICROSCOPY OF ANIONIC SURFACTANT-DIRECTED SYNTHESIS OF MAGNETITE NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Sharali Malik

    2016-06-01

    Full Text Available We have synthesized a variety of magnetite nanoparticles which appear to have biogenic signatures and could give insights into how the nanomagnetite particles form in biological systems, and how they are associated with Alzheimer’s disease. We have also synthesized mesoporous magnetite nanoparticles which have potential use in the targeted drug delivery.

  12. Investigation on the effects of milling atmosphere on synthesis of barium ferrite/magnetite nanocomposite

    NARCIS (Netherlands)

    Molaei, M.J.; Ataie, A.; Raygan, S.; Picken, S.J.

    2011-01-01

    In this research, barium ferrite /magnetite nanocomposites synthesized via a mechano-chemical route. Graphite was used in order to reduce hematite content of barium ferrite to magnetite to produce a magnetic nanocomposite. The effects of processing conditions on the powder characteristics were

  13. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion.

    Science.gov (United States)

    Peng, Hong; Zhang, Yaobin; Tan, Dongmei; Zhao, Zhiqiang; Zhao, Huimin; Quan, Xie

    2018-02-01

    Granular activated carbon (GAC) or magnetite could promote methane production from organic wastes, but their roles in enhancing anaerobic sludge digestion have not been clarified. GAC, magnetite and their combination were complemented into sludge digesters, respectively. Experimental results showed that average methane production increased by 7.3% for magnetite, 13.1% for GAC, and 20% for the combination of magnetite and GAC, and the effluent TCOD of the control, magnetite, GAC and magnetite-GAC digesters on day 56 were 53.2, 49.6, 48.0 and 46.6 g/L, respectively. Scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR) and microbial analysis indicated that magnetite enriched iron-reducing bacteria responsible for sludge hydrolysis while GAC enhanced syntrophic metabolism between iron-reducing bacteria and methanogens due to its high electrical conductivity and large surface area. Supplementing magnetite and GAC together into an anaerobic digester simultaneously accelerated sludge hydrolysis and methane production, resulting in better sludge digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin

    International Nuclear Information System (INIS)

    Pan Bifeng; Gao Feng; Ao Limei

    2005-01-01

    We investigated the interactions between dendrimer-coated magnetite nanoparticles (MNPs) and the protein serum albumin. The investigation was based on the fluorescence quenching of tryptophan residue of serum albumin after binding with the dendrimer-coated magnetite nanoparticles. The extent of the interactions between bovine serum albumin and dendrimer-coated MNPs strongly depends on their surface groups and pH value

  15. The dissolution kinetics of magnetite under regenerative conditions

    International Nuclear Information System (INIS)

    Ranganathan, S.

    2004-01-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H + from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe 3 O 4 in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  16. The dissolution kinetics of magnetite under regenerative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Frederiction (Canada). Dept. of Chemical Engineering; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (BARC) (India)

    2004-07-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H{sup +} from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe{sub 3}O{sub 4} in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  17. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  18. Neutron diffuse scattering in magnetite due to molecular polarons

    International Nuclear Information System (INIS)

    Yamada, Y.; Wakabayashi, N.; Nicklow, R.M.

    1980-01-01

    A detailed neutron diffuse scattering study has been carried out in order to verify a model which describes the property of valence fluctuations in magnetite above T/sub V/. This model assumes the existence of a complex which is composed of two excess electrons and a local displacement mode of oxygens within the fcc primitive cell. The complex is called a molecular polaron. It is assumed that at sufficiently high temperatures there is a random distribution of molecular polarons, which are fluctuating independently by making hopping motions through the crystal or by dissociating into smaller polarons. The lifetime of each molecular polaron is assumed to be long enough to induce an instantaneous strain field around it. Based on this model, the neutron diffuse scattering cross section due to randomly distributed dressed molecular polarons has been calculated. A precise measurement of the quasielastic scattering of neutrons has been carried out at 150 K. The observed results definitely show the characteristics which are predicted by the model calculation and, thus, give evidence for the existence of the proposed molecular polarons. From this standpoint, the Verwey transition of magnetite may be viewed as the cooperative ordering process of dressed molecular polarons. Possible extensions of the model to describe the ordering and the dynamical behavior of the molecular polarons are discussed

  19. Magnetic concentration of a retroviral vector using magnetite cationic liposomes.

    Science.gov (United States)

    Ito, Akira; Takahashi, Tetsuya; Kameyama, Yujiro; Kawabe, Yoshinori; Kamihira, Masamichi

    2009-03-01

    For tissue engineering purposes, retroviral vectors represent an efficient method of delivering exogenous genes such as growth factors to injured tissues because gene-transduced cells can produce stable and constant levels of the gene product. However, retroviral vector technology suffers from low yields. In the present study, we used magnetite nanoparticles and magnetic force to concentrate the retroviral vectors to enhance the transduction efficiency and to enable their magnetic manipulation. Magnetite nanoparticles modified with cationic liposomes were added to a solution containing a retroviral vector pseudotyped with vesicular stomatitis virus glycoprotein. The magnetic particles that captured the viral vectors were collected using a magnetic force and seeded into mouse neuroblastoma Neuro2a cells. The viral titer was up to 55 times greater (up to 3 x 10(8) infectious units/mL). Additionally, the magnetically labeled retroviral vectors can be directed to the desired regions for infection by applying magnetic fields, and micro-patterns of gene-transduced cell regions could be created on a cellular monolayer using micro-patterned magnetic concentrators. These results suggest that this technique provides a promising approach to capturing and concentrating viral vectors, thus achieving high transduction efficiency and the ability to deliver genes to a specific injured site by applying a magnetic field.

  20. Surfactant effects in magnetite nanoparticles of controlled size

    International Nuclear Information System (INIS)

    Guardia, P.; Batlle-Brugal, B.; Roca, A.G.; Iglesias, O.; Morales, M.P.; Serna, C.J.; Labarta, A.; Batlle, X.

    2007-01-01

    Magnetite Fe 3 O 4 nanoparticles of controlled size within 6 and 20 nm in diameter were synthesised by thermal decomposition of an iron organic precursor in an organic medium. Particles were coated with oleic acid. For all samples studied, saturation magnetisation M s is size-independent, and reaches a value close to that expected for bulk magnetite, in contrast to results in small particle systems for which M s is usually much smaller due to surface spin disorder. The coercive field for the 6 nm particles is in agreement with coherent rotation, taking the bulk magnetocrystalline anisotropy into account. Both results suggest that the oleic acid molecules covalently bonded to the nanoparticle surface yield a strong reduction in the surface spin disorder. However, although the saturated state may be similar, the approach to saturation is different and, in particular, the high-field differential susceptibility is one order of magnitude larger than in bulk materials. The relevance of these results in biomedical applications is discussed

  1. Moessbauer Characterization of Magnetite/Polyaniline Magnetic Nanocomposite

    International Nuclear Information System (INIS)

    Rodriguez, Anselmo F. R.; Faria, Fernando S. E. D. V.; Lopez, Jorge L.; Mesquita, Antonio G. G.; Coaquira, Jose A. H.; Oliveira, Aderbal C.; Morais, Paulo C.; Azevedo, Ricardo B.; Araujo, Ana C. V. de; Alves, Severino Jr.; Azevedo, Walter M. de

    2010-01-01

    Aniline surface coated Fe 3 O 4 nanoparticles have been successfully synthesized by UV irradiation varying the time and the acid media (HCl, HNO 3 , or H 2 SO 4 ). The synthesized material represents a promising platform for application in nerve regeneration. XRD patterns are consistent with the crystalline structure of magnetite. Nevertheless, for UV irradiation times longer than 2 h, extra XRD lines reveal the presence of goethite. The mean crystallite size of uncoated particles is estimated to be 25.4 nm, meanwhile that size is reduced to 19.9 nm for the UV irradiated sample in HCl medium for 4 h. Moessbauer spectra of uncoated nanoparticles reveal the occurrence of thermal relaxation at room temperature, while the 77 K-Moessbauer spectrum suggests the occurrence of electron localization effects similar to that expected in bulk magnetite. The Mossbauer spectra of UV irradiated sample in HCl medium during 4 h, confirms the presence of the goethite phase. For this sample, the thermal relaxation is more evident, since the room temperature spectrum shows larger spectral area for the nonmagnetic component due to the smaller crystallite size. Meanwhile, the 77 K-Moessbauer spectrum suggests the absence of the electron localization effect above 77 K.

  2. Structural and magnetic domains characterization of magnetite nanoparticles

    International Nuclear Information System (INIS)

    Santoyo-Salazar, J.; Castellanos-Roman, M.A.; Beatriz Gomez, L.

    2007-01-01

    Recently, important advances have been achieved in application, reproducibility and response ability of magnetic materials due to the relationships among processing, structure and nanometric size particle. Features like homogeneity of compounds and nanoparticle-sizing have improved some magnetic properties of materials and their field application. Of particular interest is the study of magnetic materials at the atomic and microstuctural level because the orientation and magnetic domains (large numbers of atoms moments coupled together in a preferential direction) can be observed. In this work, magnetite (Fe 3 O 4 ) powders which were obtained by precipitation route in alkaline medium are analyzed to identify the structure and mechanism formation of domains over the core and border of nanoparticles. Results obtained by XRD, atomic force microscopy (AFM) and magnetic force microscopy (MFM) showed a structural phase corresponding to Fe 3 O 4 and nanoparticles in a range of 20-40 nm. Samples scanned by MFM in nanometric resolution and profile images showed orientation of magnetic domains in the border and cores of the material. Finally, an analysis of repulsion and attraction in magnetic field and direction changes of domains formed by magnetite (Fe 3 O 4 ) powders were done

  3. Hydrothermal synthesis of magnetite particles with uncommon crystal facets

    Directory of Open Access Journals (Sweden)

    Junki Sato

    2014-09-01

    Full Text Available Hydrothermal synthesis of Fe3O4 (magnetite particles was carried out using organic compounds as morphology control agents to obtain magnetite crystals with uncommon facets. It was established that the morphology of Fe3O4 crystals obtained by hydrothermal treatment of an aqueous solution containing Fe2+ and organic compounds depended on the organic compound used. The shape of the Fe3O4 particles obtained when no additives were used was quasi-octahedral. In contrast, the addition of picolinic acid, citric acid or pyridine resulted in the formation of polyhedral crystals, indicating the presence of not only {1 1 1}, {1 0 0} and {1 1 0} facets but also high-index facets including at least {3 1 1} and {3 3 1}. When citric acid was used as an additive, octahedral crystals with {1 1 1} facets also appeared, and their size decreased as the amount of citric acid was increased. Thus, control of Fe3O4 particle morphology was achieved by a simple hydrothermal treatment using additives.

  4. Solubility of magnetite in coolant of NPP boiling reactor

    International Nuclear Information System (INIS)

    Zarembo, V.I.; Kritskij, V.G.; Slobodov, A.A.; Puchkov, L.V.

    1988-01-01

    To improve water-chemical NPP regimes calculations of iron solubility up to 600 K temperature in Fe 3 O 4 -H 2 O-O 2 and Fe(OH) 3 -H 2 O systems are performed using a system of selected and consistent values of thermal constants of various chemical iron forms in standard aqueous solution state. Calculations have shown that up to 423 K in aqueous medium containing oxygen, magnetite is unstable and is oxidized first up to Fe(OH) 3 and then - up to Fe OOH and Fe 2 O 3 . Calculations complying with experimental data have demonstrated the presence of maximum on the curve solubility-temperature in desalinized water containing 10 μkg/kg of oxygen. A sequence of processes of oxygen effect on water regime and corrosion prduct deposition in a condensate-feed circuit of NPP boiling reactor is proposed. It is proved that under oxygen water chemistry of condensate-feed circuit after magnetite transfomation into gematite, reduction of soluble iron form inlet to reactor loop occurs, which allows one to expect reduction of γ-radiation dose rate buildup around the primary loop pipelines

  5. Phase separation in the nonequilibrium Verwey transition in magnetite

    Science.gov (United States)

    Randi, F.; Vergara, I.; Novelli, F.; Esposito, M.; Dell'Angela, M.; Brabers, V. A. M.; Metcalf, P.; Kukreja, R.; Dürr, H. A.; Fausti, D.; Grüninger, M.; Parmigiani, F.

    2016-02-01

    We present equilibrium and out-of-equilibrium studies of the Verwey transition in magnetite. In the equilibrium optical conductivity, we find a steplike change at the phase transition for photon energies below about 2 eV. The possibility of triggering a nonequilibrium transient metallic state in insulating magnetite by photo excitation was recently demonstrated by an x-ray study. Here we report a full characterization of the optical properties in the visible frequency range across the nonequilibrium phase transition. Our analysis of the spectral features is based on a detailed description of the equilibrium properties. The out-of-equilibrium optical data bear the initial electronic response associated to localized photoexcitation, the occurrence of phase separation, and the transition to a transient metallic phase for excitation density larger than a critical value. This allows us to identify the electronic nature of the transient state, to unveil the phase transition dynamics, and to study the consequences of phase separation on the reflectivity, suggesting a spectroscopic feature that may be generally linked to out-of-equilibrium phase separation.

  6. Magnetic and microscopic characterization of magnetite nanoparticles adhered to clay surfaces

    DEFF Research Database (Denmark)

    Galindo-Gonzalez, C; Feinberg, JM; Kasama, Takeshi

    2009-01-01

    samples behave superparamagnetically at room temperature, and show increasing levels of single domain behavior as the samples are cooled to liquid nitrogen temperatures. At such low temperatures, magnetostatic interactions are observed to partially stabilize otherwise superparamagnetic grains in flux...

  7. What is the correct Fe L{sub 23} X-ray absorption spectrum of magnetite?

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaohui; Kalirai, Samanbir S. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Bazylinski, Dennis A. [School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004 (United States)

    2015-02-15

    Highlights: • Fe L{sub 3} X-ray absorption spectra of biological (MV-1 magnetotactic bacteria) and abiotic (Sigma–Aldrich) nano-magnetite are reported. • An inconsistency in the literature for this spectrum is documented. • Powder diffraction shows the abiotic sample is partly oxidized, toward maghemite. • H{sub 2} thermal reduction converts the Fe L{sub 3} spectrum of the abiotic sample to that of the biotic. • Strong oxidation (air, 600 °C) is needed to convert the spectrum of the biotic magnetite to that of maghemite; magnetosome chains are protected by an air-impervious membrane. - Abstract: Various groups have reported Fe L{sub 23} X-ray absorption spectra (XAS) of magnetite (Fe{sub 3}O{sub 4}), each claiming to be that of magnetite, but which contradict each other. Here we report an XAS study of two kinds of magnetite: one is biogenic magnetite nanocrystals extracted from the magnetotactic bacterium Magnetovibrio blakemorei strain MV-1; the other is synthetic, abiogenically produced nano-magnetite. We see significantly different XAS spectra of these two materials. Only when the abiogenic magnetite was reduced under H{sub 2} did it give the same spectrum as the biogenic sample. Extensive heating of the biogenic magnetite in air produced spectra similar to that of the abiogenic magnetite. These two spectra are typical of the range of published Fe L{sub 23} spectra of magnetite. X-ray diffraction confirmed that the biogenic material is stoichiometric Fe{sub 3}O{sub 4}, and showed that the as-received or partly reduced abiogenic material is a non-stoichiometric oxide, intermediate between magnetite and maghemite (γ-Fe{sub 2}O{sub 3}). When the membrane which surrounds magnetosome chains was intact, the biotic magnetite single crystals were surprisingly resistant to oxidation. This study clarifies a significant confusion existing in the literature as to the correct Fe L{sub 23} X-ray absorption spectra of magnetite and maghemite.

  8. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  9. Effects of common groundwater ions on chromate removal by magnetite: importance of chromate adsorption.

    Science.gov (United States)

    Meena, Amanda H; Arai, Yuji

    2016-01-01

    Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (important as the reductive precipitation of Cr(III) in describing the removal of Cr(VI) by magnetite, and these interfacial adsorption processes could be impacted by common groundwater ions like sulfate and nitrate. The results of this study highlight new information about the large quantity of adsorbed Cr(VI) surface complexes at the magnetite-water interface. It has implications for predicting the long-term stability of Cr at the magnetite-water interface.Graphical abstractEffects of background anions (sulfate and nitrate) on the Cr(VI) surface coverage at the magnetite-water interface at pH 4 and 9.

  10. In situ immobilized, magnetite nanoplatelets over holey graphene nanoribbons for high performance solid state supercapacitor

    International Nuclear Information System (INIS)

    Lalwani, Shubra; Sahu, Vikrant; Marichi, Ram Bhagat; Singh, Gurmeet; Sharma, Raj Kishore

    2017-01-01

    Highlights: • Hexagonal platelet morphology of magnetite offers efficient material utilization. • Enhanced electronic conductivity of Fe 3 O 4 /GNR nanocomposites via GNR-GNR network. • Exploring the best optimized 30 wt. (%) Fe 3 O 4 on GNR as solid state supercapacitor. - ABSTRACT: Among major phases of iron oxide, magnetite (Fe 3 O 4 ) is potential candidate for pseudocapacitors. Yet, the clustering of magnetite nanoparticles confines them from being exploited as charge storage material. Herein, magnetite hexagonal nanoplatelets are synthesized on holey graphene nanoribbons (GNRs) by hydrothermal route and tested for charge storage performance in solid-state supercapacitor incorporating gel electrolyte (PVA-H 2 SO 4 ). GNR besides providing large surface for adsorption of magnetite platelets also improved the charge collection ability of nanocomposite through interconnected nanoribbon network. Mass loading over GNR is optimized to a maximum of 30 wt. (%) by ensuring mono dispersion of magnetite nanoplatelets and high conductivity (14.0 S m −1 ) of nanocomposite. Above 50 wt. (%) magnetite loading, structural identity of nanoribbon is tempered and as a consequence increased network resistivity depletion in charge storage capacity is observed. Mass loading of magnetite over nanoribbon showed an inverse relationship with ion diffusion and electronic conduction. Balanced ionic and electronic conduction in 30 wt. (%) magnetite loaded nanoribbon results in a supercapacitor cell delivering 1241.5 W kg −1 while maintaining 26.9 Wh kg −1 energy density. About 95% capacitance retention over 3000 charge discharge cycles at 2.3 A g −1 demonstrate magnetite as a high performance supercapacitor electrode.

  11. Influence of magnetite deposit on operational result. Exposition of fuel loading at 3rd unit in the 18th cycle

    International Nuclear Information System (INIS)

    Szecsenyi, Z.; Beliczai, B.

    2003-01-01

    Nowadays the magnetite deposit on the surface of pins causes lot of problem in the NPP of Paks. In this paper there are presented the influence of magnetite deposit on safety and production at a profit. Wit an example will be illustrated that what could be caused by the magnetite deposit (Authors)

  12. Magnetite as the indicator of ore genesis for the Huangshaping polymetallic deposit, southern Hunan Province, China

    Science.gov (United States)

    Ding, T.; Ma, D.; Lu, J.; Zhang, R.

    2017-12-01

    Huangshaping polymetallic deposit, located in southern Hunan Province, China, hosts abundant W-Mo-Pb-Zn mineralization which linked with the skarn system located between late Mesozoic high-K calc-alkaline to shoshonitic granitoids and the Carboniferous carbonate in this deposit. In this study, concentrations of trace and minor elements of the magnetites from different skarn stages are obtained by in situ LA-ICP-MS analysis, in order to further understand the polymetallic mineralization processes within this deposit. The generally high concentrations of spinel elements, including Mg, Al, Ti, Mn, V, Cr, Co, Ni, Ga, Ge, and Sn, in all magnetites from this deposit suggest that these elements are incorporated into magnetite lattice by substituting Fe3+ and/or Fe2+. However, the various concentrations of Na, Si, K, Ca, and W elements in magnetites, combining the abnormal time-resolved analytical signals of LA-ICP-MS analyses, suggest that these elements are significantly affected by the fluid inclusions in magnetites. Two groups of magnetites can be further distinguished based on their trace and minor elements concentrations: Group-1 magnetites, including those in medium grain garnets and calcite, have obvious lower Na, Si, K, Ca, Sn, W, but higher Mg, Al, Ti, V, Co, Ni, Zn concentrations compared with Group-2 magnetites, which including those in coarse grain garnets, tremolite, and bulk magnetite ores. This suggests that the hydrothermal fluids where Group-2 magnetites precipitated are evolved magmatic fluids which have undergone the crystal fractionation during the early skarn stages (eg. Garnet and tremolite), the high Na, Si, K, and Ca in the hydrothermal fluids probably result from the dissolution of the host rocks, such as limestone, sandstone, and evaporite horizons in this deposit. However, the Group-1 magnetites probably precipitated in the hydrothermal fluids with low salinity, which result the low Na, Si, K, and Ca in these magnitites. Furthermore, these

  13. Variation of intrinsic magnetic parameters of single domain Co-N interstitial nitrides synthesized via hexa-ammine cobalt nitrate route

    Energy Technology Data Exchange (ETDEWEB)

    Ningthoujam, R.S. [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India); Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Panda, R.N., E-mail: rnp@bits-goa.ac.in [Chemistry Group, Birla Institute of Technology and Science-Pilani, Goa Campus, Zuari Nagar, Goa 403726 (India); Gajbhiye, N.S. [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Variation of intrinsic magnetic parameters of Co-N. Black-Right-Pointing-Pointer Synthesis by hexa-ammine cobalt complex route. Black-Right-Pointing-Pointer Tuning of coercivity by variation of size. - Abstract: We report the variation of Curie temperature (T{sub c}) and coercivity (H{sub c}) of the single domain Co-N interstitial materials synthesized via nitridation of the hexa-ammine Cobalt(III) nitrate complex at 673 K. Co-N materials crystallize in the fcc cubic structure with unit cell parameter, a = 3.552 Angstrom-Sign . The X-ray diffraction (XRD) peaks are broader indicating the materials to be nano-structured with crystallite sizes of 5-14 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirm the nanocrystalline nature of the materials. TEM images show chain-like clusters indicating dipolar interactions between the particles. Magnetic studies focus on the existence of giant magnetic Co atoms in the Co-N lattice that are not influenced by the thermal relaxation. The values of the H{sub c} could be tuned with the dimension of the particles. The values of T{sub c} of the nitride materials are masked by the onset of the ferromagnetic to superparamagnetic transition at higher temperatures. Thermomagnetic studies show an increasing trend in the Curie temperature, T{sub c}, with decrease in particle dimension. This result has been explained qualitatively on the basis of ferromagnetic to superparamagnetic transition and finite size scaling effects.

  14. Using virtual reality to distinguish subjects with multiple- but not single-domain amnestic mild cognitive impairment from normal elderly subjects.

    Science.gov (United States)

    Mohammadi, Alireza; Kargar, Mahmoud; Hesami, Ehsan

    2018-03-01

    Spatial disorientation is a hallmark of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease. Our aim was to use virtual reality to determine the allocentric and egocentric memory deficits of subjects with single-domain aMCI (aMCIsd) and multiple-domain aMCI (aMCImd). For this purpose, we introduced an advanced virtual reality navigation task (VRNT) to distinguish these deficits in mild Alzheimer's disease (miAD), aMCIsd, and aMCImd. The VRNT performance of 110 subjects, including 20 with miAD, 30 with pure aMCIsd, 30 with pure aMCImd, and 30 cognitively normal controls was compared. Our newly developed VRNT consists of a virtual neighbourhood (allocentric memory) and virtual maze (egocentric memory). Verbal and visuospatial memory impairments were also examined with Rey Auditory-Verbal Learning Test and Rey-Osterrieth Complex Figure Test, respectively. We found that miAD and aMCImd subjects were impaired in both allocentric and egocentric memory, but aMCIsd subjects performed similarly to the normal controls on both tasks. The miAD, aMCImd, and aMCIsd subjects performed worse on finding the target or required more time in the virtual environment than the aMCImd, aMCIsd, and normal controls, respectively. Our findings indicated the aMCImd and miAD subjects, as well as the aMCIsd subjects, were more impaired in egocentric orientation than allocentric orientation. We concluded that VRNT can distinguish aMCImd subjects, but not aMCIsd subjects, from normal elderly subjects. The VRNT, along with the Rey Auditory-Verbal Learning Test and Rey-Osterrieth Complex Figure Test, can be used as a valid diagnostic tool for properly distinguishing different forms of aMCI. © 2018 Japanese Psychogeriatric Society.

  15. Isolation of Single-Domain Antibody Fragments That Preferentially Detect Intact (146S Particles of Foot-and-Mouth Disease Virus for Use in Vaccine Quality Control

    Directory of Open Access Journals (Sweden)

    Michiel M. Harmsen

    2017-08-01

    Full Text Available Intact (146S foot-and-mouth disease virus (FMDVs can dissociate into specific (12S viral capsid degradation products. FMD vaccines normally consist of inactivated virions. Vaccine quality is dependent on 146S virus particles rather than 12S particles. We earlier isolated two llama single-domain antibody fragments (VHHs that specifically recognize 146S particles of FMDV strain O1 Manisa and shown their potential use in quality control of FMD vaccines during manufacturing. These 146S-specific VHHs were specific for particular O serotype strains and did not bind strains from other FMDV serotypes. Here, we describe the isolation of 146S-specific VHHs against FMDV SAT2 and Asia 1 strains by phage display selection from llama immune libraries. VHHs that bind both 12S and 146S particles were readily isolated but VHHs that bind specifically to 146S particles could only be isolated by phage display selection using prior depletion for 12S particles. We obtained one 146S-specific VHH—M332F—that binds to strain Asia 1 Shamir and several VHHs that preferentially bind 146S particles of SAT2 strain SAU/2/00, from which we selected VHH M379F for further characterization. Both M332F and M379F did not bind FMDV strains from other serotypes. In a sandwich enzyme-linked immunosorbent assay (ELISA employing unlabeled and biotinylated versions of the same VHH M332F showed high specificity for 146S particles but M379F showed lower 146S-specificity with some cross-reaction with 12S particles. These ELISAs could detect 146S particle concentrations as low as 2.3–4.6 µg/l. They can be used for FMD vaccine quality control and research and development, for example, to identify virion stabilizing excipients.

  16. From steep feeders to tabular plutons - Emplacement controls of syntectonic granitoid plutons in the Damara Belt, Namibia

    Science.gov (United States)

    Hall, Duncan; Kisters, Alexander

    2016-01-01

    Granitoid plutons in the deeply eroded south Central Zone of the Damara Belt in Namibia commonly show tabular geometries and pronounced stratigraphic controls on their emplacement. Subhorizontal, sheet-like pluton geometries record emplacement during regional subhorizontal shortening, but the intrusion of spatially and temporally closely-related granitoid plutons at different structural levels and in distinct structural settings suggests independent controls on their levels of emplacement. We describe and evaluate the controls on the loci of the dyke-to-sill transition that initiated the emplacement of three syntectonic (560-530 Ma) plutons in the basement-cover stratigraphy of the Erongo region. Intrusive relationships highlight the significance of (1) rigidity anisotropies associated with competent sedimentary packages or pre-existing subhorizontal granite sheets and (2) rheological anisotropies associated with the presence of thick ductile marble horizons. These mechanical anisotropies may lead to the initial deflection of steep feeder conduits as well as subsequent pluton assembly by the repeated underaccretion of later magma batches. The upward displacement of regional isotherms due to the heat advection associated with granite emplacement is likely to have a profound effect on the mechanical stratification of the upper crust and, consequently, on the level at which granitoid pluton emplacement is initiated. In this way, pluton emplacement at progressively shallower crustal depths may have resulted in the unusually high apparent geothermal gradients recorded in the upper crustal levels of the Damara Belt during its later evolution.

  17. supraHex: An R/Bioconductor package for tabular omics data analysis using a supra-hexagonal map☆

    Science.gov (United States)

    Fang, Hai; Gough, Julian

    2014-01-01

    Biologists are increasingly confronted with the challenge of quickly understanding genome-wide biological data, which usually involve a large number of genomic coordinates (e.g. genes) but a much smaller number of samples. To meet the need for data of this shape, we present an open-source package called ‘supraHex’ for training, analysing and visualising omics data. This package devises a supra-hexagonal map to self-organise the input data, offers scalable functionalities for post-analysing the map, and more importantly, allows for overlaying additional data for multilayer omics data comparisons. Via applying to DNA replication timing data of mouse embryogenesis, we demonstrate that supraHex is capable of simultaneously carrying out gene clustering and sample correlation, providing intuitive visualisation at each step of the analysis. By overlaying CpG and expression data onto the trained replication-timing map, we also show that supraHex is able to intuitively capture an inherent relationship between late replication, low CpG density promoters and low expression levels. As part of the Bioconductor project, supraHex makes accessible to a wide community in a simple way, what would otherwise be a complex framework for the ultrafast understanding of any tabular omics data, both scientifically and artistically. This package can run on Windows, Mac and Linux, and is freely available together with many tutorials on featuring real examples at http://supfam.org/supraHex. PMID:24309102

  18. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    International Nuclear Information System (INIS)

    Goya, G.F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M.R.

    2007-01-01

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ ' '(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3 O 4 nanoparticles, whereas a second Fe 3 O 4 -based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles

  19. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)

    2007-09-15

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  20. Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates

    Directory of Open Access Journals (Sweden)

    Vinod Vellora Thekkae Padil

    2014-01-01

    Full Text Available Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus 32P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms.

  1. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  2. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  3. Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films

    International Nuclear Information System (INIS)

    Cortes, M.; Gomez, E.; Sadler, J.; Valles, E.

    2011-01-01

    Research highlights: → Adherent low roughness magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au/glass substrates under galvanostatic control. → X-ray diffraction and magnetic measurements corroborates the purity of the electrodeposited magnetite. → Both dodecanethiol and oleic acid are shown to adsorb on the magnetite prepared at low temperature, significantly inducing the hydrophobicity of the surface. → Contact angle and voltammetric measurements, as well as XPS confirm the monolayers formation. - Abstract: The formation of monolayers of two organic compounds (oleic acid and dodecanethiol) over magnetite films was studied. Magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au on glass substrates under galvanostatic control, with deposition parameters optimized for minimum surface roughness. Films were characterised by SEM and AFM, showing granular deposits with a low rms roughness of 5-40 nm measured over an area of 1 μm 2 . The growth rate was estimated by measuring cross-sections of the thin films. Pure magnetite with an fcc structure is observed in XRD diffractograms. The adsorption of both oleic acid and dodecanethiol on the magnetite films was tested by immersing them in ethanol solutions containing the organic molecules, for different deposition time, temperature and cleaning procedure. Monolayer formation in both cases was studied by contact angle and voltammetric measurements, as well as XPS.

  4. The construction of a magnetite electrode for measurement of the electrochemical property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myongjin; Kim, Hong Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Flow accelerated corrosion (FAC) causes severe damage to secondary piping systems. An accident from FAC occurred at the Oyster Creek nuclear power plant (NPP) in 1978. Other NPPs such as Surry 2 and Mihama 3 have also experienced an FAC that induced damage to the carbon steel piping. FAC is influenced by many factors such as the water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of the change in the magnetite layer. On the other hand, it is necessary to measure the experimental solubility to compare the theoretical data and the experimental data. In addition, the solubility of magnetite can be predicted by measuring the electrochemical experiments. However, there are few studies related to the electrochemical property of magnetite owing to the difficulty of the electrode fabrication. In the present work, a magnetite electrode was prepared using a dipping method, and the electrochemical property of the magnetite electrode was measured in an alkaline solution.

  5. Evidence for artificial magnetite coating on Iberian armoury

    Directory of Open Access Journals (Sweden)

    García, L.

    2011-04-01

    Full Text Available A metallographic study of two pre-roman Iberian arms, affected by a cremation process, revealed the presence of an outer magnetite layer, providing highly protective properties. This layer is extraordinarily tenacious and of very homogeneous thickness, indicating an intentional manufacturing process rather than an accidental formation during the severe heating/cooling cycles the artefact suffered. Up to date, the intentional production of these types of layers has been attributed to a welding process of three different metallic sheets, here an alternative model is proposed, allowing, as could be simulated in the laboratory, the virtually exclusive formation of a magnetite coating.

    Se presenta un estudio metalográficos de dos armas prerromanas afectadas por un proceso de cremación. Las armas poseen un recubrimiento exterior de magnetita que las confieren unas altas propiedades de protección frente a la corrosión. Esta capa es extraordinariamente tenaz y posee un espesor muy homogéneo, indicando que son producto de un proceso de fabricación intencionado más que una formación accidental durante los varios ciclos de calentamiento/ enfriamiento que han sufrido los objetos. Hasta la fecha, la producción intencional de este tipo de recubrimientos ha sido atribuida a un proceso de soldadura de tres láminas metálicas diferentes. En este trabajo se propone un modelo alternativo de formación, el cual permite una simulación en el laboratorio en la que se forma exclusivamente una capa de magnetita.

  6. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D. (UIUC); (Scripps); (UCSF)

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  7. PET Imaging of Macrophage Mannose Receptor-Expressing Macrophages in Tumor Stroma Using 18F-Radiolabeled Camelid Single-Domain Antibody Fragments.

    Science.gov (United States)

    Blykers, Anneleen; Schoonooghe, Steve; Xavier, Catarina; D'hoe, Kevin; Laoui, Damya; D'Huyvetter, Matthias; Vaneycken, Ilse; Cleeren, Frederik; Bormans, Guy; Heemskerk, Johannes; Raes, Geert; De Baetselier, Patrick; Lahoutte, Tony; Devoogdt, Nick; Van Ginderachter, Jo A; Caveliers, Vicky

    2015-08-01

    Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing (18)F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer (18)F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. (18)F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%-10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a (99m)Tc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2-deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the (18)F tracer for MMR and macrophages, respectively. Anti

  8. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human VH/VL Single-Domain Antibodies from In Vitro Display Libraries.

    Science.gov (United States)

    Henry, Kevin A; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J; Yang, Qingling; Schrag, Joseph D; Hussack, Greg; MacKenzie, C Roger; Tanha, Jamshid

    2017-01-01

    Human autonomous V H /V L single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged V H /V L domains. Here, we describe the design and characterization of three novel human V H /V L sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential V H /V L sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three V H /V L sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three V H /V L libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 V H s and 7 V L s in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2-3 µM), but had highly variable expression yields (range: 0.1-19 mg/L). Despite our efforts to identify the most stable V H /V L scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing V H /V L sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some V H /V L sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence

  9. Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Zakaria, S.; Ong, B.H.; Ahmad, S.H.; Abdullah, M.; Yamauchi, T.

    2005-01-01

    Magnetic pulps were prepared from unbleached kenaf (hibiscus cannabinus L.) kraft pulps. Fe 3 O 4 or magnetite powder was used to load into the pulp's lumen and pit. Aluminum sulphate [Al 2 (SO 4 ) 3 ] (alum) and polyethylenimine (PEI), both mainly function as retention aid were used throughout the experiment and found to be beneficial in the preparation of this magnetic pulps. The ash content method was used to determine the amount of magnetite retained in the lumen and pit. The utilization of PEI up to 2% per pulp fibres was found to be the best result on lumen loading. The deposition of magnetite powder in lumen and pit is found decrease as the addition of PEI used is more than 2% per pulp fibres. Scanning electron microscope (SEM) clearly shows the distribution of magnetite deposited in the lumen. Tensile index and folding endurance of the loaded fibre decreased slightly as the percentage of loading pigment increased

  10. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions

    International Nuclear Information System (INIS)

    Józefczak, A.; Leszczyński, B.; Skumiel, A.; Hornowski, T.

    2016-01-01

    Magnetic nanoparticles show unique properties and find many applications because of the possibility to control their properties using magnetic field. Magnetic nanoparticles are usually synthesized chemically and modification of the particle surface is necessary. Another source of magnetic nanoparticles are various magnetotactic bacteria. These biogenic nanoparticles (magnetosomes) represent an attractive alternative to chemically synthesized iron oxide particles because of their unique characteristics and a high potential for biotechnological and biomedical applications. This work presents a comparison between acoustic properties of biogenic and abiotic magnetite nanoparticle suspensions. Experimental studies have shown the influence of a biological membrane on the ultrasound properties of magnetosomes suspension. Finally the heat effect in synthetic and biogenic magnetite nanoparticles is also discussed. The experimental study shows that magnetosomes present good heating efficiency. - Highlights: • A biogenic and abiotic magnetite nanoparticle suspensions are investigated. • A comparison between ultrasonic properties and heat effects is presented. • Magnetosomes and abiotic magnetite nanoparticles exhibit good heating efficiency.

  11. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications.

    Science.gov (United States)

    Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  13. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method

    International Nuclear Information System (INIS)

    Petcharoen, K.; Sirivat, A.

    2012-01-01

    Highlights: ► Size-controlled magnetite nanoparticles were prepared via the chemical co-precipitation method in the range of 10–40 nm. ► The electrical conductivity of the smallest particle size is 1.3 × 10 −3 S/cm which belongs to the semiconductor material group. ► The surface modification of magnetite nanoparticles can provide the suspension stability over 1 week. - Abstract: Magnetite nanoparticles were synthesized via the chemical co-precipitation method using ammonium hydroxide as the precipitating agent. The size of the magnetite nanoparticles was carefully controlled by varying the reaction temperature and through the surface modification. Herein, the hexanoic acid and oleic acid were introduced as the coating agents during the initial crystallization phase of the magnetite. Their structure and morphology were characterized by the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and the field-emission scanning electron microscopy (FE-SEM). Moreover, the electrical and magnetic properties were studied by using a conductivity meter and a vibrating sample magnetometer (VSM), respectively. Both of the bare magnetite and the coated magnetite were of the cubic spinel structure and the spherical-shaped morphology. The reaction temperature and the surface modification critically affected the particle size, the electrical conductivity, and the magnetic properties of these particles. The particle size of the magnetite was increased through the surface modification and reaction temperature. In this study, the particle size of the magnetite nanoparticles was successfully controlled to be in the range of 10–40 nm, suitable for various biomedical applications. The electrical conductivity of the smallest particle size was 1.3 × 10 −3 S/cm, within the semi-conductive materials range, which was higher than that of the largest particle by about 5 times. All of the magnetite nanoparticles showed the superparamagnetic behavior with

  14. Rock-magnetism and ore microscopy of the magnetite-apatite ore deposit from Cerro de Mercado, Mexico

    Science.gov (United States)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.; Caballero-Miranda, C.; Vivallo, W.

    2001-03-01

    Rock-magnetic and microscopic studies of the iron ores and associated igneous rocks in the Cerro de Mercado, Mexico, were carried out to determine the magnetic mineralogy and origin of natural remanent magnetization (NRM), related to the thermo-chemical processes due to hydrothermalism. Chemical remanent magnetization (CRM) seems to be present in most of investigated ore and wall rock samples, replacing completely or partially an original thermoremanent magnetization (TRM). Magnetite (or Ti-poor titanomagnetite) and hematite are commonly found in the ores. Although hematite may carry a stable CRM, no secondary components are detected above 580°, which probably attests that oxidation occurred soon enough after the extrusion and cooling of the ore-bearing magma. NRM polarities for most of the studied units are reverse. There is some scatter in the cleaned remanence directions of the ores, which may result from physical movement of the ores during faulting or mining, or from perturbation of the ambient field during remanence acquisition by inhomogeneous internal fields within these strongly magnetic ore deposits. The microscopy study under reflected light shows that the magnetic carriers are mainly titanomagnetite, with significant amounts of ilmenite-hematite minerals, and goethite-limonite resulting from alteration processes. Magmatic titanomagnetites, which are found in igneous rocks, show trellis, sandwich, and composite textures, which are compatible with high temperature (deuteric) oxy-exsolution processes. Hydrothermal alteration in ore deposits is mainly indicated by martitization in oxide minerals. Grain sizes range from a few microns to >100 mm, and possible magnetic state from single to multidomain, in agreement with hysteresis measurements. Thermal spectra, continuous susceptibility measurements, and IRM (isothermal remanent magnetization) acquisition suggest a predominance of spinels as magnetic carriers, most probably titanomagnetites with low

  15. The enhanced coercivity for the magnetite/silica nanocomposite at room temperature

    International Nuclear Information System (INIS)

    Wu Mingzai; Xiong Ying; Peng Zhenmeng; Jiang Nan; Qi Haiping; Chen Qianwang

    2004-01-01

    Magnetite/silica nanocomposite was synthesized by a facile solvothermal processing at 150 deg. C for about 10 h. X-ray diffraction (XRD) analysis revealed the effect of annealing on the crystallinity of silica. Transmission electron microscopy (TEM) images showed the good dispersion of magnetite in the silica matrix. Magnetic properties of the nanocomposite were characterized by vibration sample magnetometer (VSM), and the enhanced coercivity was explained by the intrinsic anisotropy of the particles enhanced by the interparticle dipolar fields

  16. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Heidari, Fatemeh [Department of Materials Science and Engineering, School of Engineering, Yasouj University, Yasuj 75918-74934 (Iran, Islamic Republic of); Razavi, Mehdi [BCAST, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Brunel Institute for Bioengineering, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Bahrololoom, Mohammad E. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bazargan-Lari, Reza [Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht (Iran, Islamic Republic of); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Kotturi, Hari [Department of Biology, University of Central Oklahoma, Edmond, OK 73034 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom)

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe{sub 3}O{sub 4}) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. - Highlights: • Chitosan (CS)/magnetite composite presented the maximum bending strength. • Adding hydroxyapatite and magnetite to the CS enhances its mechanical properties. • Magnetic does not have reverse effect on the cyto-compatibility of samples.

  17. Characterizing and quantifying superparamagnetic magnetite particles in serpentinized mantle peridotite observed in continental ophiolite complexes.

    Science.gov (United States)

    Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.

    2017-12-01

    Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.

  18. Analysis of magnetite crystals and inclusion bodies inside magnetotactic bacteria from different environmental locations

    Science.gov (United States)

    Oestreicher, Z.; Lower, B.; Lower, S.; Bazylinski, D. A.

    2011-12-01

    Biomineralization occurs throughout the living world; a few common examples include iron oxide in chiton teeth, calcium carbonate in mollusk shells, calcium phosphate in animal bones and teeth, silica in diatom shells, and magnetite crystals inside the cells of magnetotactic bacteria. Biologically controlled mineralization is characterized by biominerals that have species-specific properties such as: preferential crystallographic orientation, consistent particle size, highly ordered spatial locations, and well-defined composition and structure. It is well known that magnetotactic bacteria synthesize crystals of magnetite inside of their cells, but how they mineralize the magnetite is poorly understood. Magnetosomes have a species-specific morphology that is due to specific proteins involved in the mineralization process. In addition to magnetite crystals, magnetotactic bacteria also produce inclusion bodies or granules that contain different elements, such as phosphorus, calcium, and sulfur. In this study we used the transmission electron microscope to analyze the structure of magnetite crystals and inclusion bodies from different species of magnetotactic bacteria in order to determine the composition of the inclusion bodies and to ascertain whether or not the magnetite crystals contain elements other than iron and oxygen. Using energy dispersive spectroscopy we found that different bacteria from different environments possess inclusion bodies that contain different elements such as phosphorus, calcium, barium, magnesium, and sulfur. These differences may reflect the conditions of the environment in which the bacteria inhabit.

  19. Characteristics of Crushing Energy and Fractal of Magnetite Ore under Uniaxial Compression

    Science.gov (United States)

    Gao, F.; Gan, D. Q.; Zhang, Y. B.

    2018-03-01

    The crushing mechanism of magnetite ore is a critical theoretical problem on the controlling of energy dissipation and machine crushing quality in ore material processing. Uniaxial crushing tests were carried out to research the deformation mechanism and the laws of the energy evolution, based on which the crushing mechanism of magnetite ore was explored. The compaction stage and plasticity and damage stage are two main compression deformation stages, the main transitional forms from inner damage to fracture are plastic deformation and stick-slip. In the process of crushing, plasticity and damage stage is the key link on energy absorption for that the specimen tends to saturate energy state approaching to the peak stress. The characteristics of specimen deformation and energy dissipation can synthetically reply the state of existed defects inner raw magnetite ore and the damage process during loading period. The fast releasing of elastic energy and the work done by the press machine commonly make raw magnetite ore thoroughly broken after peak stress. Magnetite ore fragments have statistical self-similarity and size threshold of fractal characteristics under uniaxial squeezing crushing. The larger ratio of releasable elastic energy and dissipation energy and the faster energy change rate is the better fractal properties and crushing quality magnetite ore has under uniaxial crushing.

  20. Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface

    International Nuclear Information System (INIS)

    Durdureanu-Angheluta, A.; Dascalu, A.; Fifere, A.; Coroaba, A.; Pricop, L.; Chiriac, H.; Tura, V.; Pinteala, M.; Simionescu, B.C.

    2012-01-01

    This manuscript deals with the synthesis of new hydrophilic magnetite particles by employing a two-step method: in the first step magnetite particles with hydrophobic shell formed in presence of oleic acid–oleylamine complex through a synthesis in mass, without solvent, in a mortar with pestle were obtained; while in the second step the hydrophobic shell was interchanged with an aminosilane monomer. The influence of the Fe 2+ /Fe 3+ molar ratio on the dimension of the particles of high importance for their potential applications was carefully investigated. This paper, also presents an alternative method of synthesis of new core-shell magnetite particles and the complete study of their structure and morphology by FT-IR, XPS, TGA, ESEM and TEM techniques. The rheological properties and magnetization analysis of high importance for magnetic particles were also investigated. - Highlights: ► Magnetite particles are superparamagnetic materials. ► Magnetite has significant role in nanotechnology due to surface properties and applicability in physical and chemical processes. ► We used an ecological method of synthesis, a reaction in mass, without solvent, in a mortar with pestle. ► We prepared hydrophilic magnetite particles, precursors for biomedical applications.

  1. Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface

    Energy Technology Data Exchange (ETDEWEB)

    Durdureanu-Angheluta, A.; Dascalu, A.; Fifere, A.; Coroaba, A.; Pricop, L. [Centre of Advanced Research in Bionanoconjugates and Biopolymers, ' ' Petru Poni' ' Institute of Macromolecular Chemistry of Romanian Academy, 41A Aleea Grigore Ghica Voda, 700487 Iasi (Romania); Chiriac, H. [National Institute of Research and Development in Technical Physics, 700050 Iasi (Romania); Tura, V. [Faculty of Physics, ' ' Al. I. Cuza' ' University, B-dul Carol I, no. 11, 700506 Iasi (Romania); Pinteala, M., E-mail: pinteala@icmpp.ro [Centre of Advanced Research in Bionanoconjugates and Biopolymers, ' ' Petru Poni' ' Institute of Macromolecular Chemistry of Romanian Academy, 41A Aleea Grigore Ghica Voda, 700487 Iasi (Romania); Simionescu, B.C. [Centre of Advanced Research in Bionanoconjugates and Biopolymers, ' ' Petru Poni' ' Institute of Macromolecular Chemistry of Romanian Academy, 41A Aleea Grigore Ghica Voda, 700487 Iasi (Romania); Department of Natural and Synthetic Polymers, ' ' Gh. Asachi' ' Technical University of Iasi, 73 Mangeron Blvd, 700050 Iasi (Romania)

    2012-05-15

    This manuscript deals with the synthesis of new hydrophilic magnetite particles by employing a two-step method: in the first step magnetite particles with hydrophobic shell formed in presence of oleic acid-oleylamine complex through a synthesis in mass, without solvent, in a mortar with pestle were obtained; while in the second step the hydrophobic shell was interchanged with an aminosilane monomer. The influence of the Fe{sup 2+}/Fe{sup 3+} molar ratio on the dimension of the particles of high importance for their potential applications was carefully investigated. This paper, also presents an alternative method of synthesis of new core-shell magnetite particles and the complete study of their structure and morphology by FT-IR, XPS, TGA, ESEM and TEM techniques. The rheological properties and magnetization analysis of high importance for magnetic particles were also investigated. - Highlights: Black-Right-Pointing-Pointer Magnetite particles are superparamagnetic materials. Black-Right-Pointing-Pointer Magnetite has significant role in nanotechnology due to surface properties and applicability in physical and chemical processes. Black-Right-Pointing-Pointer We used an ecological method of synthesis, a reaction in mass, without solvent, in a mortar with pestle. Black-Right-Pointing-Pointer We prepared hydrophilic magnetite particles, precursors for biomedical applications.

  2. Magnetic and structural properties of magnetite in radular teeth of chiton Acanthochiton rubrolinestus.

    Science.gov (United States)

    Han, Yunan; Liu, Chuanlin; Zhou, Dong; Li, Fashen; Wang, Yong; Han, Xiufeng

    2011-04-01

    The teeth of the Polyplacophora Chiton Acanthochiton Rubrolinestus contain biomineralized magnetite crystallites whose biological functions in relation to structure and magnetic properties are not well understood. Here, using superconducting quantum interference device (SQUID) magnetometry, we find that the saturation magnetization (σ(s)) and the Verwey transition temperature (T(v)) of tooth particles are 78.4 emu/g and 105 K, respectively. These values are below those of the stoichiometric magnetite. An in situ examination of the structure of the magnetite-bearing region within an individual tooth using high-resolution transmission electron microscopy indicates magnetite microcrystals form electron dense polycrystalline sheets with typical lengths of about 800 nm and widths of about 150 nm. These polycrystalline sheets are arranged regularly along the longitudinal direction of the tooth cutting surface. In addition, the crystallites in polycrystalline sheets take on generally good crystallinity. The magnetic microstructures of in situ magnetic force microscopy demonstrate that the [111] easy direction of magnetite microcrystals are aligned along the length of the tooth, whereas the [111] direction is parallel to the thickness of the tooth. Both Mössbauer spectra and magnetization versus temperature measurements under field cooled and zero-field cooled conditions do not detect superparamagnetic magnetite crystallites in the mature major lateral tooth particles of this chiton.

  3. Stability of magnetite nanoparticles with different coatings in a simulated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Favela-Camacho, Sarai E.; Pérez-Robles, J. Francisco [Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-Querétaro Unit (Mexico); García-Casillas, Perla E. [Autonomous University of Juarez, Department of Materials Science, Institute of Engineering and Technology (Mexico); Godinez-Garcia, Andrés, E-mail: andgodinez@xanum.uam.mx [Universidad Autónoma Metropolitana, Departamento de Ingeniería de Procesos e Hidráulica (Mexico)

    2016-07-15

    Magnetite nanoparticles (MNPs) have demonstrated to be a potential platform for simultaneous anticancer drug delivery and magnetic resonance imaging (MRI). However, magnetite is unstable at the blood plasma conditions. Therefore, to study their stability in a broad range of particle size, the MNPs were synthesized using two methods, the fast injection co-precipitation method (FIC) and the reflux co-precipitation method (RC). The MNPs obtained by the RC and the FIC methods have an average size of agglomerates of 200 and 45 nm respectively. They were dispersed using sodium citrate as surfactant and were coated with silica and chitosan. A total of four kind of coated MNPs were synthesized: magnetite/sodium citrate, magnetite/silica, magnetite/sodium citrate/silica and magnetite/sodium citrate/silica/chitosan. Different samples of the coated MNPs were immersed in a simulated blood plasma solution (Phosphate-Buffered Saline, PBS, Gibco{sup ®}), for periods of 24, 48 and 72 h. Inductively coupled plasma (ICP) technique was used to analyze the composition of the simulated plasma after those periods of time. The obtained results suggest that the uncoated samples showed an appreciable weight loss, and the iron composition in the simulated plasma increased. This last means that the used coatings avoid iron dissolution from the MNPs.Graphical abstract.

  4. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran

    Science.gov (United States)

    Heidarian, Hassan; Lentz, David; Alirezaei, Saeed; Peighambari, Sima; Hall, Douglas

    2016-12-01

    Textural and compositional data are presented for different types of magnetite in the Chadormalu iron deposit to discern the genesis of various styles of mineralization. Samples were chosen according to their paragenetic relations to apatite and their host setting: magnetite-apatite veins in the altered host rocks, disseminated magnetite-apatite assemblages in the marginal parts of the main ore body, and massive magnetite associated with irregular apatite veinlets from internal part of the main ore body. Scanning electron microscopy - back scatter electron (SEM-BSE) images reveal that there are three main generations of magnetite in each of the different magnetite-apatite assemblages. Primary magnetite (Mag1) features abundant porosity and a dark appearance. A second generation of magnetite (Mag2) replacing Mag1 shows a lighter appearance with both sharp and gradational contacts with the primary magnetite crystals. The two magnetite types are related to dissolution-precipitation processes due to changing physico-chemical parameters of the ore fluids. A third type of magnetite (Mag3) with a recrystallized appearance and foam-like triple junctions was mostly observed in magnetite-apatite veins in the main ore body and in veins hosted by altered rocks. Electron probe microanalyses (EPMA) were utilized to discriminate the various magnetite generations in the different magnetite-apatite assemblages. Applying published elemental discrimination diagrams shows that most primary magnetites fall into the hydrothermal- and Kiruna-type fields. Primary magnetite contains lower FeO (88.77-93.65 wt.%; average 91.5 wt.%), and higher SiO2 (0.21-2.26 wt.%; ave. 0.32 wt.%), Al2O3 (0.001-0.45 wt.%; ave. 0.053 wt.%), and CaO (0.002-0.48 wt.%; ave. 0.078 wt.%) contents, which might be related to magmatically derived fluids. Secondary magnetites have higher FeO (89.23-93.49 wt.%; ave. 92.11 wt.%), lower SiO2 (0.037-0.189 wt.%; ave. 0.072 wt.%), Al2O3 (0.004-0.072 wt.%; ave. 0.019 wt

  5. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Rice, Katherine P.; Russek, Stephen E.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-01-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures

  6. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Katherine P.; Russek, Stephen E., E-mail: stephen.russek@nist.gov; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Geiss, Roy H. [Colorado State University, Fort Collins, Colorado 80523 (United States); Arenholz, Elke [Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, California 94720 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  7. Magnetite nanoparticles as reporters for microcarrier processing in cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Reibetanz, Uta, E-mail: uta.reibetanz@medizin.uni-leipzig.de [Translational Centre for Regenerative Medicine (TRM) Leipzig, Universitaet Leipzig, Philipp-Rosenthal-Strasse 55, 04103 Leipzig (Germany); Institute for Medical Physics and Biophysics, Medical Faculty, Universitaet Leipzig, Haertelstrasse 16-18, 04107 Leipzig (Germany); Jankuhn, Steffen, E-mail: jankuhn@uni-leipzig.de [Division of Nuclear Solid State Physics, Faculty of Physics and Geosciences, Universitaet Leipzig, Linnestrasse 5, 04103 Leipzig (Germany); Office for Environmental Protection and Occupational Safety, Universitaet Leipzig, Ritterstrasse 24, 04109 Leipzig (Germany)

    2011-10-15

    The development and therapeutic application of drug delivery systems based on colloidal microcarriers layer-by-layer coated with biopolyelectrolytes requires the investigation of their processing inside the cell for the successful and efficient transport and release of the active agents. The present study is focused on the time-dependent multilayer decomposition and the subsequent release of active agents to the cytoplasm. Magnetite nanoparticles (MNP) were used as reporter agents integrated into the protamine sulfate/dextran sulfate basis multilayer on colloidal SiO{sub 2} cores. This functionalization allows the monitoring of the multilayer decomposition due to the detection of the MNP release, visualized by means of proton-induced X-ray emission (PIXE) by elemental distribution of Si and Fe. The direct correlation between the microcarrier localization in endolysosomes and cytoplasm of HEK293T/17 cells via confocal laser scanning microscopy (CLSM) and the elemental distribution (PIXE) allows tracing the fate of the MNP-coated microcarriers in cytoplasm, and thus the processing of the multilayer. Microcarrier/cell co-incubation experiments of 6 h, 24 h, 48 h, and 72 h show that a MNP release and a slight expansion into the cytoplasm occurs after a longer co-incubation of 72 h.

  8. Practical cell labeling with magnetite cationic liposomes for cell manipulation.

    Science.gov (United States)

    Ito, Hiroshi; Nonogaki, Yurika; Kato, Ryuji; Honda, Hiroyuki

    2010-07-01

    Personalization of the cell culture process for cell therapy is an ideal strategy to obtain maximum treatment effects. In a previous report, we proposed a strategy using a magnetic manipulation device that combined a palm-top size device and a cell-labeling method using magnetite cationic liposomes (MCLs) to enable feasible personalized cell processing. In the present study, we focused on optimizing the MCL-labeling technique with respect to cell manipulation in small devices. From detailed analysis with different cell types, 4 pg/cell of MCL-label was found to be obtained immediately after mixing with MCLs, which was sufficient for magnetic cell manipulation. The amount of label increased within 24 h depending on cell type, although in all cases it decreased along with cell doubling, indicating that the labeling potential of MCLs was limited. The role of free MCLs not involved in labeling was also investigated; MCLs' role was found to be a supportive one that maximized the manipulation performance up to 100%. We also determined optimum conditions to manipulate adherent cells by MCL labeling using the MCL dispersed in trypsin solution. Considering labeling feasibility and practical performance with 10(3)-10(5) cells for personalized cell processing, we determined that 10 microg/ml of label without incubation time (0 h incubation) was the universal MCL-labeling condition. We propose the optimum specifications for a device to be combined with this method. 2010. Published by Elsevier B.V.

  9. Recyclable magnetite-silver heterodimer nanocomposites with durable antibacterial performance

    Directory of Open Access Journals (Sweden)

    Chunyan Yong

    2018-03-01

    Full Text Available There is a significant need for magnetite-silver nanocomposites that exhibit durable and recyclable antimicrobial activity. In this study, magnetic iron oxide nanoparticles (Fe3O4 NPs coated with ethylenediamine-modified chitosan/polyacrylic acid copolymeric layer (Fe3O4@ECS/PAA were fabricated. Subsequently, directly deposited silver (Ag NPs procedure was carried out to form the antibacterial heterodimers of Fe3O4@ECS/PAA-Ag NPs. The composition and morphology of the resultant nanostructures were confirmed by FT-IR, XRD, TEM and TGA. The overall length of the heterodimers was approximately 45 nm, in which the mean diameter of Fe3O4@ECS/PAA NPs reached up to 35 nm, and that of Ag NPs was around 15 nm. The mass fraction of silver NPs in the nanocomposites was about 63.1%. The obtained Fe3O4@ECS/PAA NPs exhibited good colloidal stability, and excellent response to additional magnetic field, making the NPs easy to recover after antibacterial tests. In particular, the Fe3O4@ECS/PAA-Ag NPs retained nearly 100% biocidal efficiency (106–107 CFU/mg nanoparticles for both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus throughout ten cycles without washing with any solvents or water, exhibiting potent and durable antibacterial activity.

  10. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis; Devaraj, Arun; Kukkadapu, Ravi K.; Droubay, Timothy C.; Nie, Zimin; Kovarik, Libor; Murugesan, Vijayakumar; Manandhar, Sandeep; Nandasiri, Manjula I.; McGrail, Bernard P.; Thallapally, Praveen K.

    2017-10-17

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that could accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.

  11. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  12. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    Science.gov (United States)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  13. Study of the influence of magnetite preparation parameters in the metals adsorption efficiency in the effluents treatment

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Wada, Luciana Yukie; Hauy Junior, Eduardo

    2002-01-01

    Ferrites have been used to remove and concentrate heavy metals of aqueous waste. This work describes the obtaining of the magnetite (Fe 3 O 4 ) varying the pH, the temperature and the drying time. The performance of magnetite was evaluated by values of distribution coefficient of Eu 3+ from nitric solution. The kinetic reaction, the adsorption isotherm of Eu 3+ and the adsorption capacity of the synthetic magnetite were studied. (author)

  14. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior

    Energy Technology Data Exchange (ETDEWEB)

    López-Luna, J., E-mail: jlol_24@hotmail.com [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Silva-Silva, M.J. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Martinez-Vargas, S. [Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche (Mexico); Mijangos-Ricardez, O.F. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); González-Chávez, M.C. [Colegio de Postgraduados en Ciencias Agrícolas, Carr. México–Texcoco km 36.5, Montecillo 56230, Estado de México (Mexico); Solís-Domínguez, F.A. [Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Baja California Norte (Mexico); Cuevas-Díaz, M.C. [Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos 96535, Veracruz (Mexico)

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd{sup 2+} and Cr{sup 6+} levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67 mg Cd{sup 2+} kg{sup −1} and 5.53 mg Cr{sup 6+} kg{sup −1}. However, when magnetite NPs (1000 mg kg{sup −1}) were added, the root length of the plants increased by 25 and 50%. Cd{sup 2+} and Cr{sup 6+} showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. - Highlights: • We assessed the effect of nanomagnetite on heavy metal toxicity in wheat plants. • Citrate-coated magnetite nanoparticles (NPs) exerted very low toxicity to plants. • Cadmium was more toxic than chromium and toxicity was mitigated by magnetite NPs. • Cadmium and chromium had a similar and noninteractive joint action on plants. • Metals showed an interactive infra-additive joint effect by adding magnetite NPs.

  15. Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution.

    Science.gov (United States)

    Ruan, Xiaoxin; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    Iron oxide-magnetite (Fe3O4) as a heterogeneous activator to activate persulphate anions (S2O8(2-)) for trichloroethylene (TCE) degradation was investigated in this study. The experimental results showed that TCE could be completely oxidized within 5 h by using 5 g L(-1) magnetite and 63 mM S2O8(2-), indicating the effectiveness of the process for TCE removal. Various factors of the process, including. (S2O8(2-) and magnetite dosages, and initial solution pH, were evaluated, and TCE degradation fitted well to the pseudo-first-order kinetic model. The calculated kinetic rate constant was increased with increasing S2O8(2-) and magnetite dosages, but it was independent of solution pH. In addition, the changes of magnetite morphology examined by scanning electron microscopy and X-ray powder diffraction, respectively, confirmed the slight corrosion with α-Fe2O3 coated on the magnetite surface. The probe compounds tests clearly identified the generation of the reactive oxygen species in the system. While the free radical quenching studies further demonstrated that •SO4- and •OH were the major radicals responsible for TCE degradation, whereas •O2- contributed less in the system, and therefore the roles of reactive oxygen species on TCE degradation mechanisms were proposed accordingly. To our best knowledge, this is the first time the performance and mechanism of magnetite-activated persulphate oxidation for TCE degradation are reported. The findings of this study provided a new insight into the heterogeneous catalysis mechanism and showed a great potential for the practical application of this technique in in situ TCE-contaminated groundwater remediation.

  16. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA

    Science.gov (United States)

    Childress, Tristan; Simon, Adam C.; Day, Warren C.; Lundstrom, Craig C.; Bindeman, Ilya N.

    2016-01-01

    New O and Fe stable isotope ratios are reported for magnetite samples from high-grade massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore deposits and these results are compared with data for other iron oxide-apatite deposits to shed light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in magnetite) and hydrothermal features of the deposits.

  17. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Peng, E-mail: yuanpeng@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Liu Dong; Fan Mingde; Yang Dan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhu Runliang; Ge Fei [College of Chemical Engineering, Xiangtan University, Xiangtan 411105 (China); Zhu Jianxi; He Hongping [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-01-15

    Diatomite-supported/unsupported magnetite nanoparticles were prepared by co-precipitation and hydrosol methods, and characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the unsupported and supported magnetite nanoparticles are around 25 and 15 nm, respectively. The supported magnetite nanoparticles exist on the surface or inside the pores of diatom shells, with better dispersing and less coaggregation than the unsupported ones. The uptake of hexavalent chromium [Cr(VI)] on the synthesized magnetite nanoparticles was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium [Cr(III)]. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed a pseudo-second-order model. The adsorption data of diatomite-supported/unsupported magnetite fit well with the Langmuir isotherm equation. The supported magnetite showed a better adsorption capacity per unit mass of magnetite than unsupported magnetite, and was more thermally stable than their unsupported counterparts. These results indicate that the diatomite-supported/unsupported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.

  18. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles.

    Science.gov (United States)

    Yuan, Peng; Liu, Dong; Fan, Mingde; Yang, Dan; Zhu, Runliang; Ge, Fei; Zhu, JianXi; He, Hongping

    2010-01-15

    Diatomite-supported/unsupported magnetite nanoparticles were prepared by co-precipitation and hydrosol methods, and characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the unsupported and supported magnetite nanoparticles are around 25 and 15 nm, respectively. The supported magnetite nanoparticles exist on the surface or inside the pores of diatom shells, with better dispersing and less coaggregation than the unsupported ones. The uptake of hexavalent chromium [Cr(VI)] on the synthesized magnetite nanoparticles was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium [Cr(III)]. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed a pseudo-second-order model. The adsorption data of diatomite-supported/unsupported magnetite fit well with the Langmuir isotherm equation. The supported magnetite showed a better adsorption capacity per unit mass of magnetite than unsupported magnetite, and was more thermally stable than their unsupported counterparts. These results indicate that the diatomite-supported/unsupported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.

  19. Geology, Bedrock, Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site Characterization., Published in 1998, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Bedrock dataset current as of 1998. Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site...

  20. The effect of nanocrystalline magnetite size on arsenic removal

    Directory of Open Access Journals (Sweden)

    J.T. Mayo et al

    2007-01-01

    Full Text Available Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III and As(V. Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4 nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III and As(V. The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III and As(V increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.

  1. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-08-02

    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

  2. Novel environmentally friendly synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiro; Kosaka, Kazunori; Watano, Satoru; Yanagida, Takeshi; Kawai, Tomoji

    2010-01-01

    A novel method for synthesizing superparamagnetic magnetite nanoparticles in water system via coprecipitation under an environmentally friendly condition has been developed. In this method, an almost neutral suspension containing ferrous hydroxide and goethite is used as the starting suspension and subjected to a ball-milling treatment. The product was characterized by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, dynamic light scattering, superconducting quantum interference device magnetometry, and Moessbauer spectroscopy. The mechanochemical effect generated by the ball-milling treatment promoted the reaction between ferrous hydroxide and goethite even at room temperature, resulting in the formation of homogeneous magnetite nanoparticles. Simultaneously, it also contributed to crystallize the formed magnetite nanoparticles while inhibiting the particle growth. This resulted in the formation of ultrafine magnetite nanoparticles of about 10 nm having a single crystal structure. This method could provide ferromagnetic magnetite nanoparticles with superparamagnetism under the moderate condition without neither heating nor any additives such as surfactant and organic solvent.

  3. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering

    International Nuclear Information System (INIS)

    Prieto, Pilar; Ruiz, Patricia; Ferrer, Isabel J.; Figuera, Juan de la; Marco, José F.

    2015-01-01

    Highlights: • We have grown tensile and compressive strained nanocrystalline magnetite thin films by dual ion beam sputtering. • The magnetic and thermoelectric properties can be controlled by the deposition conditions. • The magnetic anisotropy depends on the crystalline grain size. • The thermoelectric properties depend on the type of strain induced in the films. • In plane uniaxial magnetic anisotropy develops in magnetite thin films with grain sizes ⩽20 nm. - Abstract: We have explored the influence of an ion-assisted beam in the thermoelectric and magnetic properties of nanocrystalline magnetite thin films grown by ion-beam sputtering. The microstructure has been investigated by XRD. Tensile and compressive strained thin films have been obtained as a function of the parameters of the ion-assisted beam. The evolution of the in-plane magnetic anisotropy was attributed to crystalline grain size. In some films, magneto-optical Kerr effect measurements reveal the existence of uniaxial magnetic anisotropy induced by the deposition process related with a small grain size (⩽20 nm). Isotropic magnetic properties have observed in nanocrystalline magnetite thin film having larger grain sizes. The largest power factor of all the films prepared (0.47 μW/K 2 cm), obtained from a Seebeck coefficient of −80 μV/K and an electrical resistivity of 13 mΩ cm, is obtained in a nanocrystalline magnetite thin film with an expanded out-of-plane lattice and with a grain size ≈30 nm

  4. Doping of magnetite nanoparticles facilitates clean harvesting of diatom oil as biofuel for sustainable energy

    Science.gov (United States)

    Kumar, Vikas; Singh, Ramesh; Thakur, Shipra; Ballabh Joshi, Khashti; Vinayak, Vandana

    2018-04-01

    Photosynthetic unicellular brown algae diatoms are considered as photobioreactors (PBRs) that synthesize and store oil in the form of lipid droplets and the much of the crude oil we use comes from fossil diatoms. The clean extraction of this crude oil from diatoms is difficult task. The construction of green chemical protocols for the clean separation of diatom oil from cells without killing or to harm the diatom cells is still in its primitive stage. In this report we would like to propose that facile doping of magnetite on diatoms can be used for clean oil separation in PBRs. We doped magnetite nanoparticles onto the surface of diatom Diadesmis confervaceae a diatom which oozes oil naturally. Doping magnetite onto diatoms can also facilitate easy separation of oil when cells are kept in an electromagnetic field. The cell wall of diatom besides having SiOH group has 281 amino acids of which 187–188 amino acids are conserved and are known for metal binding sites. The magnetite nanoparticles bind to the SiOH groups and metal binding sites of amino acids. The presence of appropriate amine functionalized linkers forming peptide aminosilane shells can further facilitate the binding of peptide/polypeptides which can be used in drug delivery. Besides this the magnetite doped diatoms have wide applications in removal of phosphates and chromium from waste water too.

  5. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  6. Study on the pelletizing of sulfate residue with magnetite concentrate in grate-kiln system

    Directory of Open Access Journals (Sweden)

    Shufeng Y.

    2010-01-01

    Full Text Available The experiment on the feasibility of pelletizing with magnetite concentrate and the wasted sulfate residue was carried out, to research the performance of pellet in grate-kiln system and simulate the grate-kiln pelletizing process in the micro-pellet roasting simulation system in laboratory, and the process experiments on preheating and roasting sections were conducted. The results show that in order to obtain pellet with good performance and the magnetite concentrate should be over 20 in mass percent, the suitable pelletizing time is about 10 min and moisture is around 12.5%. Also, according to the process parameters of drying and preheating sections obtained from experiment, it will be successful to use magnetite concentrate and the wasted sulfate residue for pelletizing, which exploits a new way for the use of sulfate residue.

  7. Reduction of Magnetite in the Presence of Activated Carbon Using Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Ledwaba Harry Moloto

    2013-01-01

    Full Text Available The reduction behaviour of magnetite using graphite under ball-milling conditions (using a planetary mono mill, Fritsch Pulverisette 6 has been investigated. The reaction of magnetite and graphite at different milling conditions leads to the formation of Fe2+ and Fe3+ species, the former increasing at the expense of Fe3O4. Fe3O4 completely disappeared after a ball to powder ratio of 50 : 1 and beyond. The Fe2+ species were confirmed to be due to FeO using Mössbauer Spectroscopy and X-ray diffraction techniques. Scanning electron microscopy and transmission electron microscopy analyses confirm the reduction of magnetite to wüstite.

  8. Magnetite nanoparticles coated glass wool for As(V) removal from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kango, Sarita; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, District Solan (H.P.)- 173 234 (India)

    2015-08-28

    Arsenic (As) removal from contaminated groundwater is a key environmental concern worldwide. In this study, glass wool was coated with magnetite nanoparticles under argon gas flow and magnetite coated glass wool have been investigated for application as an adsorbent for As(V) removal from water. The adsorbent was characterized by using Scanning Electron Microscopy (SEM) and arsenic contaminated water treated with adsorbent was analyzed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The ICP-MS results showed that 10 g/L of adsorbent removed 99.4% of As(V) within 5 hours at pH-7 and initial arsenic concentration of 360µg/L. Adsorption kinetics data fitted well in pseudo-first-order kinetics model with high correlation coefficient (R{sup 2} = 0.995). As magnetite nanoparticles coated glass wool showed favorable adsorption behavior for As(V), it can be a promising tool for water purification.

  9. Magnetite nanoparticles coated glass wool for As(V) removal from drinking water

    International Nuclear Information System (INIS)

    Kango, Sarita; Kumar, Rajesh

    2015-01-01

    Arsenic (As) removal from contaminated groundwater is a key environmental concern worldwide. In this study, glass wool was coated with magnetite nanoparticles under argon gas flow and magnetite coated glass wool have been investigated for application as an adsorbent for As(V) removal from water. The adsorbent was characterized by using Scanning Electron Microscopy (SEM) and arsenic contaminated water treated with adsorbent was analyzed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The ICP-MS results showed that 10 g/L of adsorbent removed 99.4% of As(V) within 5 hours at pH-7 and initial arsenic concentration of 360µg/L. Adsorption kinetics data fitted well in pseudo-first-order kinetics model with high correlation coefficient (R 2 = 0.995). As magnetite nanoparticles coated glass wool showed favorable adsorption behavior for As(V), it can be a promising tool for water purification

  10. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  11. Galvanic Corrosion between Alloy 690 and Magnetite in Alkaline Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2015-12-01

    Full Text Available The galvanic corrosion behavior of Alloy 690 coupled with magnetite has been investigated in an alkaline solution at 30 °C and 60 °C using a potentiodynamic polarization method and a zero resistance ammeter. The positive current values were recorded in the galvanic couple and the corrosion potential of Alloy 690 was relatively lower. These results indicate that Alloy 690 behaves as the anode of the pair. The galvanic coupling between Alloy 690 and magnetite increased the corrosion rate of Alloy 690. The temperature increase led to an increase in the extent of galvanic effect and a decrease in the stability of passive film. Galvanic effect between Alloy 690 and magnetite is proposed as an additional factor accelerating the corrosion rate of Alloy 690 steam generator tubing in secondary water.

  12. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  13. CIRCUMSTELLAR MAGNETITE FROM THE LAP 031117 CO3.0 CHONDRITE

    Energy Technology Data Exchange (ETDEWEB)

    Zega, Thomas J. [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721-0092 (United States); Haenecour, Pierre; Floss, Christine [Laboratory for Space Sciences and Physics Department, Washington University, One Brookings Drive, Campus Box 1105, St. Louis, MO 63130 (United States); Stroud, Rhonda M., E-mail: tzega@lpl.arizona.edu [Materials Science and Technology Division, Code 6366, Naval Research Laboratory, 4555 Overlook Ave, SW Washington, DC 20375 (United States)

    2015-07-20

    We report the first microstructural confirmation of circumstellar magnetite, identified in a petrographic thin section of the LaPaz Icefield 031117 CO3.0 chondrite. The O-isotopic composition of the grain indicates an origin in a low-mass (∼2.2 M{sub ⊙}), approximately solar metallicity red/asymptotic giant branch (RGB/AGB) star undergoing first dredge-up. The magnetite is a single crystal measuring 750 × 670 nm, is free of defects, and is stoichiometric Fe{sub 3}O{sub 4}. We hypothesize that the magnetite formed via oxidation of previously condensed Fe dust within the circumstellar envelope of its progenitor star. Using an empirically derived rate constant for this reaction, we calculate that such oxidation could have occurred over timescales ranging from approximately ∼9000–500,000 years. This timescale is within the lifetime of estimates for dust condensation within RGB/AGB stars.

  14. Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation

    International Nuclear Information System (INIS)

    Arruebo, Manuel; Fernandez-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M Ricardo; SantamarIa, Jesus

    2006-01-01

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g -1 and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications

  15. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    Science.gov (United States)

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface

    Science.gov (United States)

    Durdureanu-Angheluta, A.; Dascalu, A.; Fifere, A.; Coroaba, A.; Pricop, L.; Chiriac, H.; Tura, V.; Pinteala, M.; Simionescu, B. C.

    2012-05-01

    This manuscript deals with the synthesis of new hydrophilic magnetite particles by employing a two-step method: in the first step magnetite particles with hydrophobic shell formed in presence of oleic acid-oleylamine complex through a synthesis in mass, without solvent, in a mortar with pestle were obtained; while in the second step the hydrophobic shell was interchanged with an aminosilane monomer. The influence of the Fe2+/Fe3+ molar ratio on the dimension of the particles of high importance for their potential applications was carefully investigated. This paper, also presents an alternative method of synthesis of new core-shell magnetite particles and the complete study of their structure and morphology by FT-IR, XPS, TGA, ESEM and TEM techniques. The rheological properties and magnetization analysis of high importance for magnetic particles were also investigated.

  17. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    Science.gov (United States)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  18. Particle characteristics and reduction behavior of synthetic magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Wegdan [Physics Department, Faculty of Science, Alexandria University, Alexandria 21511 (Egypt); Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt); Fouad, Nasr E.; Mekhemer, Gamal A.H. [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt)

    2014-04-15

    Two samples (S1 and S2) of magnetite were synthesized, using two different methods, and characterized by means of X-ray powder diffractometry, infrared and Mössbauer spectroscopy, N{sub 2} sorptiometry and electron microscopy. Particles of sample-S1 were found to be loosely agglomerated, micro-sized spheroids (200–350 nm) composed almost solely of highly aggregated (fused) crystallites (size averaged at 35 nm) of cubic-Fe{sub 3}O{sub 4}. In contrast, particles of sample-S2 were strongly agglomerated, nano-sized spheroids (25–30 nm) composed of slightly aggregated crystallites (size averaged at 11 nm) of cubic-Fe{sub 3}O{sub 4} and noncrystalline domains made-up of FeO(OH) species. Temperature-programed reduction (TPR) profiles obtained for the two samples were similar in monitoring two peaks at >450 °C assignable to a two-step reduction of Fe{sub 3}O{sub 4} (→FeO→Fe), but different in monitoring a peak at<450 °C only for the reduction of FeO(OH) (→Fe{sub 3}O{sub 4}) contained in sample-S2. However, curve fitting analysis of the TPR profiles and molecular stoichiometry calculations based on amounts of hydrogen consumed revealed that the two-step reduction of Fe{sub 3}O{sub 4} is not straightforward. That is by resolving two consecutive pathways for each step and, hence, nonstoichiometric intermediate products whose composition was found to be critically controlled by the composition of the reducing gas atmosphere (5 or 80% H{sub 2}/N{sub 2}) and characteristics of the starting sample particles (chemical and phase composition, and, but to lesser extents, the agglomeration and average size). - Highlights: • Nano or micro, pure Fe{sub 3}O{sub 4} particles are H{sub 2}-reduced in two steps (→FeO→Fe) at >450 °C. • FeO(OH)-impure particles exhibit a third reduction step (FeO(OH)→Fe{sub 3}O{sub 4}) at <450 °C. • FeO disproportion and related autocatalytic effects complicate the reduction course. • Consequently, each of the Fe{sub 3}O{sub 4

  19. Particle characteristics and reduction behavior of synthetic magnetite

    International Nuclear Information System (INIS)

    Ramadan, Wegdan; Zaki, Mohamed I.; Fouad, Nasr E.; Mekhemer, Gamal A.H.

    2014-01-01

    Two samples (S1 and S2) of magnetite were synthesized, using two different methods, and characterized by means of X-ray powder diffractometry, infrared and Mössbauer spectroscopy, N 2 sorptiometry and electron microscopy. Particles of sample-S1 were found to be loosely agglomerated, micro-sized spheroids (200–350 nm) composed almost solely of highly aggregated (fused) crystallites (size averaged at 35 nm) of cubic-Fe 3 O 4 . In contrast, particles of sample-S2 were strongly agglomerated, nano-sized spheroids (25–30 nm) composed of slightly aggregated crystallites (size averaged at 11 nm) of cubic-Fe 3 O 4 and noncrystalline domains made-up of FeO(OH) species. Temperature-programed reduction (TPR) profiles obtained for the two samples were similar in monitoring two peaks at >450 °C assignable to a two-step reduction of Fe 3 O 4 (→FeO→Fe), but different in monitoring a peak at 3 O 4 ) contained in sample-S2. However, curve fitting analysis of the TPR profiles and molecular stoichiometry calculations based on amounts of hydrogen consumed revealed that the two-step reduction of Fe 3 O 4 is not straightforward. That is by resolving two consecutive pathways for each step and, hence, nonstoichiometric intermediate products whose composition was found to be critically controlled by the composition of the reducing gas atmosphere (5 or 80% H 2 /N 2 ) and characteristics of the starting sample particles (chemical and phase composition, and, but to lesser extents, the agglomeration and average size). - Highlights: • Nano or micro, pure Fe 3 O 4 particles are H 2 -reduced in two steps (→FeO→Fe) at >450 °C. • FeO(OH)-impure particles exhibit a third reduction step (FeO(OH)→Fe 3 O 4 ) at 3 O 4 reduction steps resolves two consecutive pathways. • Moreover, various nonstoichiometric reduction intermediate products are genesized

  20. The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian, J.; Tavakoli, R.

    2015-01-01

    Superparamagnetic Y-substituted magnetite (Y x Fe 3–x O 4 ,with x=0.00, 0.10, 0.15, 0.20 and 0.40) nanoparticles were synthesized via hydrothermal reduction route in the presence of citric acid. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM) and gradient field thermomagnetic measurement. The results showed that a minimum amount of citric acid is required to obtain single phase Y-substituted magnetite nanoparticles. Citric acid acts as a modulator and reducing agent in the formation of spinel structure and controls nanoparticle size and crystallinity. Mean crystallite sizes of the single-phase powders were estimated by Williamson–Hall method. Curie temperature measurement of the samples shows that as yttrium content increases, the Curie temperature decreases. Magnetic measurements show that the saturation magnetization of the samples decreases as x increases up to 0.15 and then increases to x=0.20 and finally decreases again for x=0.40. - Highlights: • Single phase yttrium substituted magnetite nanoparticles were synthesized by hydrothermal-reduction route. • Citric acid plays a key role in reduction of Fe 3+ to Fe 2+ , which is necessary for the formation of magnetite phase. • It is possible to substitute yttrium ions for iron ones as high as x=0.4 by hydrothermal reduction route. • Pure magnetite nanoparticles prepared by this route has a high saturation magnetization. • Yttrium substituted magnetite nanoparticles are superparamagnet at room temperature

  1. Magnetite solubility studies under simulated PWR primary-side conditions, using lithiated, hydrogenated water

    International Nuclear Information System (INIS)

    Hewett, John; Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Dickinson, Shirley; Henshaw, Jim

    2014-01-01

    As software for modelling dissolution, precipitation, and transport of metallic species and subsequent CRUD deposition within nuclear plant becomes more advanced, there is an increasing need for accurate and reliable thermodynamic data. The solubility behaviour of magnetite is an example of such data, and is central to any treatment of CRUD solubility due to the prevalence of magnetite and nickel ferrites in CRUD. Several workers have shown the most consistent solubility data comes from once-through flowing systems. However, despite a strong consensus between the results in acidic to mildly alkaline solutions, there is disagreement between the results at approximately pH 25C 9 and higher. A programme of experimental work is on-going at the University of Birmingham, focusing on solubility of metal oxides (e.g., magnetite) in conditions relevant to PWR primary coolant. One objective of this programme is to calculate thermodynamic constants from the data obtained. Magnetite solubility from 200 to 300°C, in lithiated, hydrogenated water of pH 25C 9–11 is being studied using a once-through rig constructed of 316L stainless steel. The feedwater is pumped at 100 bar pressure through a heated bed of magnetite granules, and the output solution is collected and analysed for iron and several other metals by ICP-MS. This paper presents results from preliminary tests without magnetite granules, in which the corroding surface of the rig itself was used as the sole source of soluble iron and of dissolved hydrogen. Levels of iron were generally within an order of magnitude of literature solubility values. Comparison of results at different flow rates and temperatures, in conjunction with conclusions drawn from the published literature, suggests that this is likely due to the presence of particulate matter in a greatly under-saturated solution, compensating for the low surface area of oxide in contact with the solution. (author)

  2. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments.

    Science.gov (United States)

    Zheng, Shiling; Wang, Bingchen; Liu, Fanghua; Wang, Oumei

    2017-11-01

    Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.

  3. Signatures in magnetites formed by (Ca,Mg,Fe)CO3 thermal decomposition: Terrestrial and extraterrestrial implications

    Science.gov (United States)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Carlos; Rodriguez-Navarro, Alejandro; Perez-Gonzalez, Teresa; Bazylinski, Dennis A.; Lauer, Howard V.; Romanek, Christopher S.

    2012-06-01

    It has never been demonstrated whether magnetite synthesized through the heat-dependent decomposition of carbonate precursors retains the chemical and structural features of the carbonates. In this study, synthetic (Ca,Mg,Fe)CO3 was thermally decomposed by heating from 25 to 700 °C under 1 atm CO2, and by in situ exposure under vacuum to the electron beam of a transmission electron microscope. In both cases, the decomposition of the carbonate was topotactic and resulted in porous pseudomorphs composed of oriented aggregates of magnetite nanocrystals. Both calcium and magnesium were incorporated into nanophase magnetite, forming (Ca,Mg)-magnetites and (Ca,Mg)-ferrites when these elements were present in the parent material, thus preserving the chemical signature of the precursor. These results show that magnetites synthesized in this way acquire a chemical and structural inheritance from their carbonate precursor that indicates how they were produced. These results are not only important in the determination of the origin of chemically-impure, oriented nanophase magnetite crystals in general, but they also provide important insights into the origin of the large, euhedral, chemically-pure, [111]-elongated magnetites found within Ca-, Mg- and Fe-rich carbonates of the Martian meteorite ALH84001. Based on our experimental results, the chemically-pure magnetites within ALH84001 cannot be genetically related to the Ca-, Mg- and Fe-rich carbonate matrix within which they are embedded, and an alternative explanation for their occurrence is warranted.

  4. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater Arsenic Treatment Using Zerovalent Iron and Natural Attenuation

    Science.gov (United States)

    Magnetite (Fe3O4) is a zerovalent iron corrosion product; it is also formed in natural soil and sediment. Sorption of arsenate (As(V)) and arsenite (As(III)) on magnetite is an important process of arsenic removal from groundwater using zerovalent iron-based permeable reactive ba...

  5. Magnetite synthesis from ferrous iron solution at pH 6.8 in a continuous stirred tank reactor.

    Science.gov (United States)

    Mos, Yvonne M; Zorzano, Karin Bertens; Buisman, Cees J N; Weijma, Jan

    2018-04-01

    Partial oxidation of defined Fe 2+ solutions is a well-known method for magnetite synthesis in batch systems. The partial oxidation method could serve as basis for an iron removal process in drinking water production, yielding magnetite (Fe 3 O 4 ) as a compact and valuable product. As a first step toward such a process, a series of experiments was carried out, in which magnetite was synthesized from an Fe 2+ solution in a 2 L continuous stirred tank reactor (CSTR) at atmospheric pressure and 32 °C. In four experiments, elevating the pH from an initial value of 5.5 or 6.0 to a final value of 6.8, 7.0 or 7.5 caused green rust to form, eventually leading to magnetite. Formation of NH 4 + in the reactor indicated that NO 3 - and subsequently NO 2 - served as the oxidant. However, mass flow analysis revealed an influx of O 2 to the reactor. In a subsequent experiment, magnetite formation was achieved in the absence of added nitrate. In another experiment, seeding with magnetite particles led to additional magnetite precipitation without the need for a pH elevation step. Our results show, for the first time, that continuous magnetite formation from an Fe 2+ solution is possible under mild conditions, without the need for extensive addition of chemicals.

  6. Magnetite Compensates for the Lack of a Pilin-Associated c-Type Cytochrome in Extracellular Electron Exchange

    DEFF Research Database (Denmark)

    Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin

    2015-01-01

    investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi-heme c-type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an Omc...

  7. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    International Nuclear Information System (INIS)

    Bastami, Tahereh Rohani; Entezari, Mohammad H.

    2013-01-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM). The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm 2 (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months

  8. Influence of Surface Roughness and Agitation on the Morphology of Magnetite Films Electrodeposited on Carbon Steel Substrates

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2016-11-01

    Full Text Available In this work, we investigated the effects of surface roughness and agitation on the morphology of magnetite films electrodeposited from alkaline Fe(III-triethanolamine (TEA solutions on carbon steel substrates. The surface roughness of the carbon steel substrates was maintained in the range of 1.64–0.06 μm by using mechanical grinding and polishing methods. The agitation speed was set at 0 and 900 rpm during the electrodeposition process. The particle size and surface roughness value of the magnetite films gradually decreased with decreasing substrate roughness. However, the influence of the substrate roughness on the thickness of the magnetite film was negligible. The morphology of the magnetite film fabricated at 900 rpm appeared to be highly faceted compared to that of the magnetite film produced at 0 rpm. The thickness and surface roughness of the magnetite film significantly increased with the agitation speed, which also significantly affected the electrodeposition efficiency. The effects of substrate surface roughness and agitation on the morphology of magnetite films electrodeposited on carbon steel substrates were also discussed. The obtained results provide critical information for the simulation of magnetite deposits on carbon steel pipes in the secondary systems of nuclear power plants.

  9. Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties

    International Nuclear Information System (INIS)

    Grumezescu, A M; Ficai, A; Vasile, O R; Cristescu, R; Dorcioman, G; Socol, G; Mihailescu, I N; Chifiriuc, M C; Mihaiescu, D E; Enculescu, M; Chrisey, D B

    2015-01-01

    We report the fabrication of biofunctionalized magnetite core/sodium lauryl sulfate shell/antibiotic adsorption-shell nanoparticles assembled thin coatings by matrix assisted pulsed laser evaporation for antibacterial drug-targeted delivery. Magnetite nanoparticles have been synthesized and subsequently characterized by transmission electron microscopy and x-ray diffraction. The obtained thin coatings have been investigated by FTIR and scanning electron microscope, and tested by in vitro biological assays, for their influence on in vitro bacterial biofilm development and cytotoxicity on human epidermoid carcinoma (HEp2) cells. (paper)

  10. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles

    Science.gov (United States)

    Mejia-Santillan, M. E.; Pariona, N.; Bravo-C., J.; Herrera-Trejo, M.; Montejo-Alvaro, F.; Zarate, A.; Perry, D. L.; Mtz-Enriquez, A. I.

    2018-04-01

    The topotactic transformation from magnetite to maghemite sub-microparticles was demonstrated by a variety of techniques that include X-ray diffraction, Raman spectroscopy, electron microscopy, Mössbauer spectroscopy, magnetic measurements, and vis-NIR diffuse reflectance. The physical, chemical, and morphological properties of the particles were correlated with their adsorptive properties in water with respect to arsenic (V). The adsorptive properties of the iron oxide are increased by changing the crystal phases involved, specifically, the transformation of magnetite to maghemite. Maghemite sub-microparticles are capable of efficiently decreasing the arsenic content in water from 100 ppb to below the World Health Organization (WHO) guideline of 10 ppb.

  11. Influence of Na doping on the magnetic relaxation processes of magnetite

    International Nuclear Information System (INIS)

    Torres, C.; Arias, A. Gonzalez; Hisatake, K.; Francisco, C. de; Hernandez-Gomez, P.; Kim, C.O.; Kim, D.J.

    2007-01-01

    The relaxation of the initial magnetic permeability was measured in polycrystalline Na-doped magnetite samples, with nominal composition Na x Fe 3- x O 4 (x ranging from 0 to 0.05), by means of the magnetic disaccommodation (DA) technique. We found that the increasing amount of Na ions modifies the DA spectra and a very different behaviour depending on the sintering atmosphere. These results were discussed in terms of the presence of Na ions in the magnetite lattice, giving rise to certain modifications in their neighbourhood

  12. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  13. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  14. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Attallah, Olivia A., E-mail: olivia.adly@hu.edu.eg [Center of Nanotechnology, Nile University, 12677 Giza (Egypt); Pharmaceutical Chemistry Department, Heliopolis University, 11777 El Salam, Cairo (Egypt); Girgis, E. [Solid State Physics Department, National Research Center, 12622 Dokki, Giza (Egypt); Advanced Materials and Nanotechnology Lab, CEAS, National Research Center, 12622 Dokki, Giza (Egypt); Abdel-Mottaleb, Mohamed M.S.A. [Center of Nanotechnology, Nile University, 12677 Giza (Egypt)

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  15. Ultrafine Magnetite Nanopowder: Synthesis, Characterization, and Preliminary Use as Filler of Polymethylmethacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2012-01-01

    Full Text Available Magnetite (Fe3O4 nanoparticles prepared by microwave-assisted hydrothermal synthesis have been characterized in terms of morphological and structural features. Electron micrographs collected in both scanning (SEM and transmission (TEM modes and evaluations of X-ray powder diffraction (XRD patterns have indicated the achievement of a monodispersed crystallite structure with particles having an average size around 15–20 nm. Structural investigations by Micro-Raman spectroscopy highlighted the obtainment of magnetite nanocrystals with a partial surface oxidation to maghemite (γ-Fe3O4. Preliminary attention has been also paid to the use of these magnetite nanoparticles as filler for a commercial polymethylmethacrylate resin. Hybrid formulations containing up to 3 wt% of nanoparticles were prepared by melt blending and characterized by calorimetric and thermogravimetric tests. For sake of comparison, same formulations containing commercial Fe3O4 nanoparticles are also reported. Calorimetric characterization indicates an increase of both glass transition temperature and thermal stability of the nanocomposite systems when loaded with the synthesized magnetite nanoparticles rather then loaded with the same amount of commercial Fe3O4. This first observation represents just one aspect of the promising potentiality offered by the novel magnetic nanoparticles when mixed with PMMA.

  16. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    International Nuclear Information System (INIS)

    Pereira Garcia, Monica; Miranda Parca, Renata; Braun Chaves, Sacha; Paulino Silva, Luciano; Djalma Santos, Antonio; Guerrero Marques Lacava, Zulmira; Cesar Morais, Paulo; Azevedo, Ricardo Bentes

    2005-01-01

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner

  17. Electrochemical and dissolution studies on coated film and magnetite pellet in PDCA and NTA based formulations

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Sumathi, S.; Rangarajan, S.; Narasimhan, S.V.

    2000-01-01

    In water cooled nuclear reactors magnetite often exists as both mobile particulate protective film on the inner surface of the PHT system. To determine the mechanism and kinetics of dissolution from a film coated on carbon steel (CS) and magnetite pellet electrochemical measurements were carried out in 2,6-pyridine dicarboxylic acid (PDCA) and nitrilo-triacetic acid (NTA) based formulations containing ascorbic acid (AA) and citric acid (CA) at 28 degC and 60 degC. The solution redox potential arises based on the release of relative amounts of Fe 2+ and Fe 3+ . Complexation, adsorption and reduction affect the concentration of these species in solutions. On coated specimen, the pore size and rate of formation via auto reduction contribute to the observed potential. In PDCA based formulation higher percentage of magnetite dissolution with lower base metal corrosion was observed as compared to that in NTA based formulation. The base metal aided dissolution due to the pores and microcracks in the film (Auto reduction) was observed for coated film. The dominant role of surface adsorption characteristics of PDCA, AA and CA were evident in magnetite pellet dissolution studies. (author)

  18. The magnetic introduction of magnetite nanoparticles into live cells for radiosensibility enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Yurenya, Anton Y., E-mail: antonyurenya@gmail.com [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Polikarpov, Mikhail A. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chukalova, Aynur A. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Moskaleva, Elizaveta Y.; Taldenkov, Alexander N. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Panchenko, Vladislav Y. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2017-04-01

    Earlier we proposed a new radiotherapy enhancement method that entails the administration of {sup 57}Fe iron-oxide nanoparticles into the cells . Within this work we were prompt to investigate the capability of iron oxide nanoparticles with monolayer coating to penetrate into live cells. Magnetite particle samples were synthesized and stabilized with HCl or citric acid. The cells were incubated in the presence of nanoparticles for 1 h, washed and dried. To distinguish inside-cell particles from outside ones a set of experiments with low temperature incubation was carried out. Several cell samples were prepared in the presence of an external magnetic field in order to study the possibility of the nanoparticle uptake enhancement. To evaluate the amount of particles in each cell sample we used a SQUID-magnetometer. The nanoparticle suspension with HCl stabilization turned to be inadequate for intracellular introduction. Approximately 2·10{sup 5} particles with citric acid covering conjugated with each cell after incubation at normal conditions. An application of an external magnetic field increased this amount up to 10{sup 7} particles/cell. Most probably much of these particles penetrated into cells. - Highlights: • Uncoated magnetite nanoparticle suspension is unusable for intracellular introduction. • Magnetite particles stabilized with citric acid penetrate into cells via endocytosis. • An application of a magnetic field enhances cellular uptake of magnetite particles. • The amount of particles in cell samples can be evaluated with a SQUID-magnetometer.

  19. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application.

    Science.gov (United States)

    Shagholani, Hamidreza; Ghoreishi, Sayed Mehdi; Mousazadeh, Mohammad

    2015-01-01

    Magnetite nanoparticles were synthesized by coprecipitation under ultrasonication followed by coating with chitosan. Polyvinyl alcohol (PVA) is then combined with the chitosan that coated the magnetite nanoparticles. The combination occurs by hydrogen binding and ionic cross-linking of the amino and hydroxyl groups of chitosan and PVA respectively. The magnetite nanoparticles have an average size of 10.62 nm that was confirmed by TEM. The VSM measurements showed that nanoparticles were superparamagnetic. The coatings on the core nanoparticles were estimated by AAS and the attachments of coating to the nanoparticles were confirmed by FT-IR analysis. Physicochemical properties of nanoparticles were measured by DLS and zeta potential. Naked magnetite, chitosan and PVA coating have zeta potential of +36.4, +48.1 and -12.5 mV respectively. The unspecific adsorption and interaction between nanoparticles and bovine serum albumin (BSA) were investigated systematically by UV-vis spectroscopy method. The nanoparticles that were modified by PVA present low protein adsorption, which makes them a practical choice for preventing opsonization in clinical application and drug delivery. Copyright © 2015. Published by Elsevier B.V.

  20. In situ formation of magnetite reactive barriers in soil for waste stabilization

    Science.gov (United States)

    Moore, Robert C.

    2003-01-01

    Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  1. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent

    International Nuclear Information System (INIS)

    Yazdani, Farshad; Fattahi, Bahare; Azizi, Najmodin

    2016-01-01

    The aim of this research was the preparation of functionalized magnetite nanoparticles to use as a liver targeting contrast agent in magnetic resonance imaging (MRI). For this purpose, Fe_3O_4 nanoparticles were synthesized via the co-precipitation method. The synthesized nanoparticles were coated with silica via the Stober method and finally the coated nanoparticles were functionalized with mebrofenin. Formation of crystalline magnetite particles was confirmed by X-ray diffraction (XRD) analysis. The Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analyzer (EDX) of the final product showed that silica had been effectively bonded onto the surface of the magnetite nanoparticles and the coated nanoparticles functionalized with mebrofenin. The magnetic resonance imaging of the functional nanoparticles showed that the Fe_3O_4–SiO_2-mebrofenin composite is an effective MRI contrast agent for liver targeting. - Highlights: • Superparamagnetic magnetite nanoparticles have been synthesized by simple and economical method. • Preperation of functional MNPs as a MRI contrast agent for liver targeting. • Gaining a good r_2 relaxivity of the coated functional nanoparticles.

  2. Direct observation of ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Church, Nathan S.; Feinberg, Joshua M.

    2010-01-01

    The magnetic behaviour of magnetite at low temperatures is dominated by its transformation to a monoclinic crystal structure that is simultaneously ferrimagnetic, ferroelastic and ferroelectric below similar to 125 K (the Verwey transition). Here we use electron microscopy to reveal the relations...

  3. Understanding the Mossbauer spectrum of magnetite below the Verwey transition: ab initio calculations, simulation, and experiment

    Czech Academy of Sciences Publication Activity Database

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, Pavel; Żukrowski, J.; Kozlowski, A.; Kakol, Z.; Tarnawski, Z.; Honig, J.M.

    2017-01-01

    Roč. 96, č. 19 (2017), s. 1-10, č. článku 195124. ISSN 2469-9950 Institutional support: RVO:68378271 Keywords : magnetite * Mossbauer effect * density functional theory * modelling Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  4. Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages

    Energy Technology Data Exchange (ETDEWEB)

    Nyiro-Kosa, Ilona, E-mail: kosaili@gmail.com [University of Pannonia, Department of Material Engineering (Hungary); Recnik, Aleksander [Jozef Stefan Institute, Department for Nanostructured Materials (Slovenia); Posfai, Mihaly [University of Pannonia, Department of Earth and Environmental Sciences (Hungary)

    2012-10-15

    There is an increasing technological demand for magnetic nanocrystals with special morphologies and controlled sizes. Several approaches are used for the synthesis of magnetite crystals with irregular or octahedral shapes; however, the room-temperature synthesis of nanocrystals with specific morphologies is not yet established. Here, we describe the synthesis of magnetite crystals (100-300 nm) at a relatively low temperature ({approx}70 Degree-Sign C) from organic precursors, including Fe(II) oxalate or Fe(II) sulfate, and study the effects of ethylene glycol and tetraethylene glycol on the final physical and chemical properties of the crystals. The magnetite crystals formed from different precursor materials (sulfate or oxalate green rust) show specific morphological and textural features. We show that octahedral magnetite crystals can be produced from Fe(II) oxalate via a simple co-precipitation process. Using different kinds and amounts of polyols, various types of particle morphologies and nanocrystal textures can be produced, including hexagonal-shaped clusters of elongated crystals and porous and solid, large, rounded polycrystalline aggregates.

  5. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    International Nuclear Information System (INIS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M.S.A.

    2016-01-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  6. Effects of AC magnetic field and carboxymethyldextran-coated magnetite nanoparticles on mice peritoneal cells

    International Nuclear Information System (INIS)

    Araujo Guedes, Maria Helena; Sadeghiani, Neda; Lima Guedes Peixoto, Danielle; Poubel Coelho, Julia; Santos Barbosa, Luzirlane; Bentes Azevedo, Ricardo; Kueckelhaus, Selma; Silva, Maria de Fatima da; Morais, Paulo Cesar; Guerrero Marques Lacava, Zulmira

    2005-01-01

    A portable apparatus was developed to perform magnetohyperthermia (MHT) assays. In order to investigate its efficiency on cell lysis, biological effects of the AC magnetic field exposure after carboxymethyldextran-coated magnetite-nanoparticles (CMDC) treatment were investigated. Phagocyte capacity, cell viability, and morphology data evidenced that the CMDC sample and the apparatus are useful to further investigate MHT in cancer therapy

  7. Cranberry magnetite deposits Avery County, N.C., and Carter County, Tenn.

    Science.gov (United States)

    Kline, M.H.; Ballard, T.J.

    1948-01-01

    The Cranberry magnetite deposits occur in pre-Cambrian granite-gneiss in a belt extending from 3 miles southeast of Cranberry, N.C., to about 6 miles southwest of Magnetic City, Tenn. The belt forms a curve, elongated to the north, approximately 26 miles in length.

  8. Study on reduction reactions of neptunium(V) on magnetite surface

    International Nuclear Information System (INIS)

    Kitamura, Akira; Kamei, Gento; Nakata, Kotaro; Tanaka, Satoru; Tomura, Tsutomu

    2004-01-01

    Redox reactions between neptunium(V) (Np(V)) and magnetite (Fe(II) 1 Fe(III) 2 O 4 ) surface were investigated in N 2 gas atmosphere. A batch method was applied to the experiment. A magnetite sample and a 0.1 M NaCl solution were mixed in a polypropylene tube, and pH, redox potential and concentration of dissolved neptunium were measured as a function of shaking time, temperature and liquid/solid ratio. The concentration of dissolved neptunium was reduced rapidly within a day, due to the reducing reaction of Np(V) to Np(IV) and the precipitation of Np(IV). The rate constant of the redox reaction and the activation energy for the rate constant were preliminarily obtained. On the other hand, redox reactions between Np(V) and aqueous Fe(II) were hardly observed. Considering the number of transferred electrons, it was suggested that the redox reaction was promoted by not only Fe(II) on the magnetite surface, but also Fe(II) inside the magnetite. (author)

  9. A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film

    Directory of Open Access Journals (Sweden)

    Đorđević Nenad

    2016-01-01

    Full Text Available The morphological, thermal and barrier properties of low-density polyethylene/polycaprolactone-modified nanocellulose hybrid materials were investigated in this paper. Nanonocelulose/magnetite (NC-Fe3O4 nanocomposite and maleic acid functionalized NC/magnetite (NCMA-Fe3O4 nanocomposite were prepared and used as filler at various concentrations (5, 10 and 15 wt. % in polycaprolactone (PCL layer. PE was coated with PCL/NC/magnetite layer. The addition of the filler did not unfavorably affect the inherent properties of the polymer, especially its barrier properties. Oxygen permeation measurements show that the oxygen barrier properties of magnetite enriched PCL film were improved due to chemical activity of added material. The highest level of barrier capacity was observed for PE samples coated with PCL based composite with NCMA-Fe3O4 micro/-nanofiller, which implies the significant contribution of nanocellulose surface modification with maleic anhydride residue to improved barrier properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i br. OI172013

  10. Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages

    International Nuclear Information System (INIS)

    Nyirő-Kósa, Ilona; Rečnik, Aleksander; Pósfai, Mihály

    2012-01-01

    There is an increasing technological demand for magnetic nanocrystals with special morphologies and controlled sizes. Several approaches are used for the synthesis of magnetite crystals with irregular or octahedral shapes; however, the room-temperature synthesis of nanocrystals with specific morphologies is not yet established. Here, we describe the synthesis of magnetite crystals (100–300 nm) at a relatively low temperature (∼70 °C) from organic precursors, including Fe(II) oxalate or Fe(II) sulfate, and study the effects of ethylene glycol and tetraethylene glycol on the final physical and chemical properties of the crystals. The magnetite crystals formed from different precursor materials (sulfate or oxalate green rust) show specific morphological and textural features. We show that octahedral magnetite crystals can be produced from Fe(II) oxalate via a simple co-precipitation process. Using different kinds and amounts of polyols, various types of particle morphologies and nanocrystal textures can be produced, including hexagonal-shaped clusters of elongated crystals and porous and solid, large, rounded polycrystalline aggregates.

  11. Shock experiments in range of 10–45 GPa with small multidomain magnetite in porous targets

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Pesonen, L. J.; Deutsch, A.; Wünnemann, K.; Nowka, D.; Hornemann, U.; Heikinheimo, E.

    2012-01-01

    Roč. 47, č. 10 (2012), s. 1671-1680 ISSN 1086-9379 Institutional research plan: CEZ:AV0Z30130516 Keywords : shock * magnetite * magnetism * magnetic properties * density porosity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.800, year: 2012

  12. Experimental evidence for a Mott-Wigner glass phase of magnetite above the Verwey temperature

    NARCIS (Netherlands)

    Boekema, C.; Lichti, R.L.; Chan, K.C.B.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.

    1986-01-01

    New muon-spin-relaxation (µSR) results on magnetite are reported and discussed in light of earlier Mössbauer, neutron, and µSR results. Modification of the µSR anomaly (observed at 247 K in zero field), when an external magnetic field is applied, provides evidence that the anomaly results from cross

  13. A new polaronic order-disorder phase transition in magnetite as observed through μSR

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Denison, A.B.; Brabers, V.A.M.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.

    1986-01-01

    Recent μSr measurements on the Mott-Wigner glass magnetite, as a function of temperature and external magnetic field have shown the existence of two inequivalent magnetic sites below T A = 247 K. These data are being interpreted in terms of the onset or destruction of local order manifested as local atomic correlations (molecular polarons). (orig.)

  14. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  15. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    International Nuclear Information System (INIS)

    Yu, Zhigang; Zhang, Chang; Zheng, Zuhong; Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming

    2017-01-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe n+ but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe n+ was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where phosphate

  16. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhigang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zheng, Zuhong [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei Province (China); Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-05-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe{sup n+} but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe {sup n+} was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where

  17. First local electrode atom probe analysis of magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Kuhlman, K.R.; Kelly, T.F.; Miller, M.K.

    2004-01-01

    Full text: We have successfully fabricated atom probe samples of a metamorphic magnetite and performed an analysis of one of these samples using a local electrode atom probe (LEAP). This particular magnetite, previously designated LP204-1, was extracted from a polymetamorphosed, granulite-facies marble and contains grain scale heterogeneity in its oxygen isotope ratios. Crystals of LP204-1 contain a high number density of nanometer-scale, disk-shaped Al-Mn-Fe-spinel precipitates making this magnetite particularly attractive for demonstrating the capabilities of the LEAP with regard to geological materials. Field ion microscope images of these magnetite crystals show precipitate size and morphology that agrees with previous results. A sample of LP-204-1 was analyzed in the LEAP, resulting in a cylindrical analyzed volume approx. 26 nm in diameter and 21 nm high. The mass spectrum contained nearly 106,000 atoms, 97.1 % of which were identified. Peaks for singly, doubly and triply ionized species were fully resolved. The analysis volume appeared to be purely magnetite, i.e. no precipitates were observed. If it is assumed that 77 % of the ions in the peak at 16 are O 2 ++ rather than O+, the stoichiometry measured for this sample using electron probe microanalysis is achieved. The high fraction of O 2 ++ can be explained by lack of a peak for O ++ and significant peaks for FeO x indicating a relatively low field strength, which in turn favors molecular ions. This work is an encouraging beginning for analysis of geological materials in atom probes. Refs. 4 (author)

  18. Biogenic magnetite, detrital hematite, and relative paleointensity in Quaternary sediments from the Southwest Iberian Margin

    Science.gov (United States)

    Channell, J. E. T.; Hodell, D. A.; Margari, V.; Skinner, L. C.; Tzedakis, P. C.; Kesler, M. S.

    2013-08-01

    Magnetic properties of late Quaternary sediments on the SW Iberian Margin are dominated by bacterial magnetite, observed by transmission electron microscopy (TEM), with contributions from detrital titanomagnetite and hematite. Reactive hematite, together with low organic matter concentrations and the lack of sulfate reduction, lead to dissimilatory iron reduction and availability of Fe(II) for abundant magnetotactic bacteria. Magnetite grain-size proxies (κARM/κ and ARM/IRM) and S-ratios (sensitive to hematite) vary on stadial/interstadial timescales, contain orbital power, and mimic planktic δ18O. The detrital/biogenic magnetite ratio and hematite concentration are greater during stadials and glacial isotopic stages, reflecting increased detrital (magnetite) input during times of lowered sea level, coinciding with atmospheric conditions favoring hematitic dust supply. Magnetic susceptibility, on the other hand, has a very different response being sensitive to coarse detrital multidomain (MD) magnetite associated with ice-rafted debris (IRD). High susceptibility and/or magnetic grain-size coarsening, mark Heinrich stadials (HS), particularly HS2, HS3, HS4, HS5, HS6 and HS7, as well as older Heinrich-like detrital layers, indicating the sensitivity of this region to fluctuations in the position of the polar front. Relative paleointensity (RPI) records have well-constrained age models based on planktic δ18O correlation to ice-core chronologies, however, they differ from reference records (e.g. PISO) particularly in the vicinity of glacial maxima, mainly due to inefficient normalization of RPI records in intervals of enhanced hematite input.

  19. The Stability of Magnetite and its Significance as a Passivating Film in the Repository Environment

    International Nuclear Information System (INIS)

    Hermansson, Hans-Peter

    2004-01-01

    A literature review was made in order to highlight if magnetite could be formed as a passivating film on iron in the expected repository environment. The possibility to form other types of passivating films has also been regarded, e.g. other iron oxides or mixed oxides of iron and copper and also sulfides. The conditions for the formation of different types of films have been discussed as well as their compositions and properties. It is concluded that magnetite could certainly be formed on iron at repository combinations of Eh and pH in the absence of sulphide and chloride. However, magnetite could easily be outnumbered by other solid phases that could be formed at the simultaneous presence of copper. CuFeO 2 is such a phase that could appear in a simple Fe-Cu-O-H system. As soon as sulphide and chloride are present other phases like CuFeS 2 could also be responsible for the passivation of iron. The probability that magnetite is the passivating film on cast iron at the actual conditions is therefore not very large. It is more likely that the passivating film instead consists of CuFeO 2 and/or CuFeS 2 , the latter depending on the concentration of sulphur in the system. The protective ability of the alternate compounds as passivating films could be discussed. A suggested ranking order of the protective ability is given in the discussion part. If magnetite is not stable, the integrity of the cast iron insert could therefore in such cases be dependent on the protection by less effective passivating substances. The hypothesis of the formation and nature of alternative passivating films should be tested at relevant conditions in laboratory experiments

  20. The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions

    Directory of Open Access Journals (Sweden)

    Bobik Magdalena

    2017-06-01

    Full Text Available Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI, Pb(II, Cr(III, Cu(II, Zn(II, Ni(II and Cd(II. The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD, the nanosized crystallites in the sample were agglomerated (SEM and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET. The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

  1. Synthesis of environmentally friendly highly dispersed magnetite nanoparticles based on rosin cationic surfactants as thin film coatings of steel.

    Science.gov (United States)

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2014-04-22

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.

  2. Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-04-01

    Full Text Available This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy propyl-triethyl ammonium chloride (LPMQA as capping agent. Fourier transform infrared spectroscopy (FTIR was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM and X-ray powder diffraction (XRD were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS. Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.

  3. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria.

    Science.gov (United States)

    Arakaki, Atsushi; Yamagishi, Ayana; Fukuyo, Ayumi; Tanaka, Masayoshi; Matsunaga, Tadashi

    2014-08-01

    Magnetotactic bacteria synthesize magnetosomes comprised of membrane-enveloped single crystalline magnetite (Fe3 O4 ). The size and morphology of the nano-sized magnetite crystals (Mms (Mms5, Mms6, Mms7, and Mms13), was previously isolated from the surface of cubo-octahedral magnetite crystals in Magnetospirillum magneticum strain AMB-1. Analysis of an mms6 gene deletion mutant suggested that the Mms6 protein plays a major role in the regulation of magnetite crystal size and morphology. In this study, we constructed various mms gene deletion mutants and characterized the magnetite crystals formed by the mutant strains. Comparative analysis showed that all mms genes were involved in the promotion of crystal growth in different manners. The phenotypic characterization of magnetites also suggested that these proteins are involved in controlling the geometries of the crystal surface structures. Thus, the co-ordinated functions of Mms proteins regulate the morphology of the cubo-octahedral magnetite crystals in magnetotactic bacteria. © 2014 John Wiley & Sons Ltd.

  4. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Brower, M.C. [Brower & Company, Andover, MA (United States); Factor, T. [Iowa Wind Energy Institute, Fairfield, IA (United States)

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  5. Charge-Orbital Ordering and Verwey Transition in Magnetite Measured by Resonant Soft X-Ray Scattering

    International Nuclear Information System (INIS)

    Huang, D.J.; Lin, H.-J.; Okamoto, J.; Hsu, C.-H.; Huang, C.-M.; Yang, C.S.; Chao, K.S.; Wu, W.B.; Jeng, H.-T.; Guo, G.Y.; Ling, D.C.; Chen, C.T.

    2006-01-01

    We report experimental evidence for the charge-orbital ordering in magnetite below the Verwey transition temperature T V . Measurements of O K-edge resonant x-ray scattering on magnetite reveal that the O 2p states in the vicinity of the Fermi level exhibit a charge-orbital ordering along the c axis with a spatial periodicity of the doubled lattice parameter of the undistorted cubic phase. Such a charge-orbital ordering vanishes abruptly above T V and exhibits a thermal hysteresis, correlating closely with the Verwey transition in magnetite

  6. Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.

    Science.gov (United States)

    Vidojkovic, Sonja M; Rakin, Marko P

    2017-07-01

    Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge

  7. The dissolution rate constant of magnetite in water at different temperatures and pH conditions

    International Nuclear Information System (INIS)

    Mohajery, Khatereh; Deydier de Pierrefeu, Laurent; Lister, Derek H.

    2012-09-01

    Under the nominal conditions of power system coolants, the corrosion of components made of carbon steel is limited by the magnetite films that develop on surfaces. In some situations, the magnetite film loses much of its protective ability and corrosion and loss of iron to the system are exacerbated. Common examples of such situations occur when the system is non-isothermal so that temperature gradients cause differences in magnetite solubility around the circuit; the resulting areas of under-saturation in iron give rise to dissolution of normally protective films. Condensing steam in two-phase systems may also promote oxide dissolution. When the turbulence in the system is high, oxide degradation is aggravated and flow-accelerated corrosion (FAC) results. The subsequent increased loading of systems with iron leads to fouling of flow passages and heat transfer surfaces and in reactor primary coolants to rising radiation fields, while FAC can have disastrous results in terms of pipe wall thinning and eventual rupture. Magnetite dissolution is clearly a key contributor to these processes. Thus, the conventional mechanistic description of FAC postulates magnetite dissolution in series with mass transfer of iron from the film to the bulk coolant. In the resulting equations, if the dissolution rate constant is considerably less than the mass transfer coefficient for a particular situation, dissolution will control and flow should have no effect. This is clearly untenable for FAC, so it is often assumed that mass transfer controls and the contribution from oxide dissolution is ignored - on occasion when data on dissolution kinetics are available and sometimes when those data show that dissolution should control. In most cases, however, dissolution rate constants for magnetite are not available. At UNB Nuclear we have a research program using a high-temperature loop to measure dissolution rates of magnetite in water under various conditions of flow, temperature and

  8. Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia

    Science.gov (United States)

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-06-01

    Dextran-coated magnetite (Fe3O4) nanoparticles with average particle sizes of 4 and 19 nm were synthesized through in situ and semi-two-step co-precipitation methods, respectively. The experimental results confirm the formation of pure phase of magnetite as well as the presence of dextran layer on the surface of modified magnetite nanoparticles. The results also reveal that both samples have the superparamagnetic behavior. Furthermore, calorimetric measurements show that the dextran-coated Fe3O4 nanoparticles with an average size of 4 nm cannot produce any appreciable heat under a biologically safe alternating magnetic field used in hyperthermia therapy; whereas, the larger ones (average size of 19 nm) are able to increase the temperature of their surrounding medium up to above therapeutic range. In addition, measured specific absorption rate (SAR) values confirm that magnetite nanoparticles with an average size of 19 nm are very excellent candidates for application in magnetic hyperthermia therapy.

  9. Trace Element Geochemistry of Magnetite and Accesory Phases from El Romeral Iron Oxide-Apatite Deposit, Northern Chile

    Science.gov (United States)

    Barra, F.; Rojas, P.; Reich, M.; Deditius, A.; Simon, A. C.

    2017-12-01

    Iron oxide-apatite (IOA) or "Kiruna-type" deposits are an important source of Fe, P, REE, among other essential elements for society. Three main hypotheses have been proposed to explain the genesis of these controversial deposits, which invoke liquid immiscibility, hydrothermal replacement or a magmatic-hydrothermal origin driven by flotation of magnetite-bubble pairs. Here we focus on the El Romeral, one of the largest IOA deposits located in the southernmost part of the Cretaceous Chilean Iron Belt. We combined SEM observations and EMPA analyses of magnetite, actinolite, pyrite, and apatite, with micro-Raman determinations of mineral inclusions within magnetite grains. Two textural types of magnetite were identified at El Romeral: (i) inclusion-rich magnetite (Mag I), and (ii) inclusion-poor magnetite (Mag II) that are commonly surrounding the inclusion-rich Mag I grains. Mag I is characterized by high V ( 2500-2800 ppm) and Ti (300-1000 ppm) contents with high-temperature mineral inclusions such as ilmenite, Ti-pargasite and clinochlore at depth, and quartz and phlogopite inclusions in shallower samples. These characteristics are consistent with a magmatic origin for Mag I. Inclusion-poor magnetite (Mag II) have high V (2400-2600 ppm) and lower Ti (70-200 ppm) contents than Mag I, which point to chemical changes of the mineralizing fluid(s). An increase in thermal gradient with depth is evidenced by the presence of high-temperature (low #Fe) actinolite, as well as F-rich apatite and pyrite with high Co:Ni (>1) in the deep zones. In contrast, lower Co:Ni ratios (<0.5) in pyrite and higher Cl contents in OH-rich apatite are detected in samples from shallower levels. This vertical chemical variation supports a magmatic-hydrothermal origin for the El Romeral deposit, and point to compositional changes driven by decompression of a magnetite-fluid suspension.

  10. Atomic scale study of thermal reduction of nano goethite coexisting with magnetite

    Science.gov (United States)

    singh, L. Herojit; Govindaraj, R.; Mythili, R.; Amarendra, G.; Sundar, C. S.

    2013-02-01

    Evolution of the local structure and magnetic properties of nano particles of goethite having magnetite as a composite due to controlled annealing treatments in vacuum has been studied using Mossbauer spectroscopy. Importance of size, defect associated with structural OH- for the observed structural and magnetic properties of goethite has been emphasized in this study. Present Mossbauer results show that thermal annealing at low temperatures (420-550 K) lead to a partial conversion / reduction of orthorhombic goethite to cubic spinel oxides such as maghemite and off-stochiometric magnetite. This study further establishes that annealing treatments beyond 650 K predominantly results in topotactic conversion of goethite to haematite. Underlying physics of the transitions of goethite to iron oxides and the important role of desorbed hydrogen for the orthorhombic to cubic structural transitions has been elucidated in this study.

  11. Atomic scale study of thermal reduction of nano goethite coexisting with magnetite

    Directory of Open Access Journals (Sweden)

    L. Herojit singh

    2013-02-01

    Full Text Available Evolution of the local structure and magnetic properties of nano particles of goethite having magnetite as a composite due to controlled annealing treatments in vacuum has been studied using Mossbauer spectroscopy. Importance of size, defect associated with structural OH- for the observed structural and magnetic properties of goethite has been emphasized in this study. Present Mossbauer results show that thermal annealing at low temperatures (420-550 K lead to a partial conversion / reduction of orthorhombic goethite to cubic spinel oxides such as maghemite and off-stochiometric magnetite. This study further establishes that annealing treatments beyond 650 K predominantly results in topotactic conversion of goethite to haematite. Underlying physics of the transitions of goethite to iron oxides and the important role of desorbed hydrogen for the orthorhombic to cubic structural transitions has been elucidated in this study.

  12. Preparation and characterization of ω-functionalized polystyrene-magnetite nanocomposites

    International Nuclear Information System (INIS)

    Jiang Liming; Sun Weilin; Kim, Jungahn

    2007-01-01

    Magnetite (Fe 3 O 4 ) nanoparticles were prepared by in situ precipitation and oxidation of ferrous ions in the presence of ω-functionalized polystyrenes having carboxylate, sulfonate, thiol, and thiolated groups. Based on the results for the orthogonal experimental design, both the ratio of the concentration of iron precursor to polymer and the reaction temperature were the major factors controlling the particle size and its shape morphology. By adjusting the reaction conditions, the iron oxide particle size can be effectively controlled in the range between 2 and 20 nm. The magnetite-based polymer composite was characterized by UV-vis spectroscopy, thermogravimetric analysis, transmission electron microscopy, and X-ray diffraction. Magnetization measurements revealed that the nanocomposite materials exhibit superparamagnetic behavior at room temperature

  13. Preparation and characterization of {omega}-functionalized polystyrene-magnetite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liming [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)]. E-mail: cejlm@zju.edu.cn; Sun Weilin [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Kim, Jungahn [Polymer Hybrids Center, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)

    2007-02-15

    Magnetite (Fe{sub 3}O{sub 4}) nanoparticles were prepared by in situ precipitation and oxidation of ferrous ions in the presence of {omega}-functionalized polystyrenes having carboxylate, sulfonate, thiol, and thiolated groups. Based on the results for the orthogonal experimental design, both the ratio of the concentration of iron precursor to polymer and the reaction temperature were the major factors controlling the particle size and its shape morphology. By adjusting the reaction conditions, the iron oxide particle size can be effectively controlled in the range between 2 and 20 nm. The magnetite-based polymer composite was characterized by UV-vis spectroscopy, thermogravimetric analysis, transmission electron microscopy, and X-ray diffraction. Magnetization measurements revealed that the nanocomposite materials exhibit superparamagnetic behavior at room temperature.

  14. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Candace C. P. [University of South Australia, Ian Wark Research Institute (Australia); Gallard, Herve [Universite de Poitiers, Laboratoire de Chimie et Microbiologie de l' Eau (LCME)-UMR CNRS 6008 (France); Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [Mawson Institute, University of South Australia, School of Advanced Manufacturing and Mechanical Engineering (Australia)

    2012-03-15

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV{sub 254}) after the treatment of the water samples at various doses and treatment times.

  15. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Desoil, M [Biological Physics Department, University of Mons-Hainaut (Belgium); Gillis, P [Biological Physics Department, University of Mons-Hainaut (Belgium); Gossuin, Y [Biological Physics Department, University of Mons-Hainaut (Belgium); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-en-Trent, ST4 7QB (United Kingdom)

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe{sub 3}O{sub 4}) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  16. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    International Nuclear Information System (INIS)

    Chan, Candace C. P.; Gallard, Hervé; Majewski, Peter

    2012-01-01

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV 254 ) after the treatment of the water samples at various doses and treatment times.

  17. Detecting bacterial magnetite in sediments: strengths and limitations of FMR spectroscopy

    Science.gov (United States)

    Winklhofer, M.

    2012-04-01

    Ferromagnetic resonance spectroscopy (FMR) is increasingly being used as a diagnostic tool for identifying bacterial magnetite in sediments [e.g., Kopp et al. 2007; Kind et al. 2011, Roberts et al. 2011 ], the reason being that magnetic bacteria have a characteristic FMR fingerprint which is not known from inorganic geological samples [Kopp & Kirschvink, 2008]. The diagnostic FMR features of single-stranded magnetite chains are a g-value 2, quite opposite to what we know from single-stranded chains. Therefore, in order to better understand possible biogenic FMR fingerprints and to refine the screen, there is a clear need to acquire FMR spectra of magnetic bacteria with different chain configurations and, in particular, of greigite producing bacteria.

  18. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  19. Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Nishio, K.; Ikeda, M.; Gokon, N.; Tsubouchi, S.; Narimatsu, H.; Mochizuki, Y.; Sakamoto, S.; Sandhu, A.; Abe, M.; Handa, H.

    2007-01-01

    Size-controlled magnetite nanoparticles (MNPs) with several dozen nanometers (nm) were synthesized for biomedical applications. Nanoparticles of single-phase magnetite, as revealed by X-ray analyses and magnetic measurements, were prepared by oxidizing ferrous hydroxide (Fe(OH) 2 ) with a weak oxidant NaNO 3 in an N 2 -deaerated aqueous NaOH solution (pH=12-13) at various temperatures below 37 deg. C. As the synthesis temperature increases from 4 to 37 deg. C, the MNPs are decreased in size (d) from 102±5.6 to 31.7±4.9 nm and widened in size distribution, Δd/d increases from 5.5% to 15%. Prepared without using any surfactant, the MNPs are advantageous for immobilizing functional molecules stably on the surfaces for biomedical applications

  20. Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties

    KAUST Repository

    Noh, Jung Hyun

    2015-08-04

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide which has also a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms can be more stable than bulk-like terminations. These surfaces show different surface chemistry, electronic structures and distinctive spin polarization features near the Fermi level from those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLED and spintronic devices.

  1. Magnetite Nanoparticles Coated with Rifampicin and Chlortetracycline for Drug Delivery Applications

    International Nuclear Information System (INIS)

    Nadejde, Claudia; Ciurlica, Ecaterina Foca-nici; Creanga, Dorina; Carlescu, Aurelian; Badescu, Vasile

    2010-01-01

    Four types of biocompatible magnetic fluids based on superparamagnetic nanoparticles with Fe 3 O 4 cores were functionalized with antibiotics (rifampicin or chlortetracycline) as potential candidates for in vivo biomedical applications, such as magnetically controlled drug delivery. The synthesis consisted in coprecipitation of iron oxide in basic, as well as in acid medium, followed by the dispersion of the resulted magnetite nanoparticles in aqueous solution containing the antibiotic. The chosen method to prepare the magnetite-core/drug-shell systems avoided intermediate organic coating of the magnetic nanoparticles. Comparative analysis of the rheological features of the aqueous magnetic fluid samples was performed. The structural features of the coated magnetic particles were investigated by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometry (VSM). Good crystallinity and adequate stability in time were evidenced. Drug delivery curves were spectrophotometrically provided.

  2. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  3. Contribution to the thermodynamics of the solubilisation of magnetite in water

    International Nuclear Information System (INIS)

    Lambert, I.; Montel, J.; Beslu, P.; Lalet, A.

    1979-01-01

    Magnetite is solubilized in the presence of hydrogen according to three reactions. The variations of its solubility as a function of temperature and pH can be calculated on the basis of thermodynamic data for every species used. Solubility measurements have been carried out under autoclave conditions between 25 0 C and 300 0 C in aqueous potassium solution 10 -2 N. The measurements have helped to determine the solubility factor. They have also shown the variation of the mean magnetite crystal size with the experimental conditions and its influence on solubility. At higher temperatures, solubility is reduced with time and the crystals become larger while the reverse phenomenon occurs at normal temperature. (orig.) [de

  4. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Science.gov (United States)

    Desoil, M.; Gillis, P.; Gossuin, Y.; Pankhurst, Q. A.; Hautot, D.

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  5. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    International Nuclear Information System (INIS)

    Desoil, M; Gillis, P; Gossuin, Y; Pankhurst, Q A; Hautot, D

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe 3 O 4 ) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin

  6. Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties

    KAUST Repository

    Noh, Jung Hyun; Osman, Osman I; Aziz, Saadullah G.; Winget, Paul; Bredas, Jean-Luc

    2015-01-01

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide which has also a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms can be more stable than bulk-like terminations. These surfaces show different surface chemistry, electronic structures and distinctive spin polarization features near the Fermi level from those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLED and spintronic devices.

  7. High pressure in-situ X-ray diffraction study on Zn-doped magnetite nanoparticles

    Science.gov (United States)

    Ferrari, S.; Bilovol, V.; Pampillo, L. G.; Grinblat, F.; Errandonea, D.

    2018-03-01

    We have performed high pressure synchrotron X-ray powder diffraction experiments on two different samples of Zn-doped magnetite nanoparticles (formula Fe(3-x)ZnxO4; x = 0.2, 0.5). The structural behavior of then a noparticles was studied up to 13.5 GPa for x = 0.2, and up to 17.4 GPa for x = 0.5. We have found that both systems remain in the cubic spinel structure as expected for this range of applied pressures. The analysis of the unit cell volume vs. pressure results in bulk modulus values lower than in both end-members, magnetite (Fe3O4) and zinc ferrite (ZnFe2O4), suggesting that chemical disorder may favor compressibility, which is expected to improve the increase of the Neel temperature under compression.

  8. Experimental evidence for a Mott-Wigner glass phase of magnetite above the Verwey temperature

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Chan, K.C.B.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.

    1986-01-01

    New muon-spin-relaxation (μSR) results on magnetite are reported and discussed in light of earlier Moessbauer, neutron, and μSR results. Modification of the μSR anomaly (observed at 247 K in zero field), when an external magnetic field is applied, provides evidence that the anomaly results from cross relaxation between the muon Larmor precession and the electron-correlation process in the B sublattice. The combined results strongly indicate that phonon-assisted electron hopping is the principal conduction mechanism above the Verwey transition temperature (T/sub V/). Together with theoretical evidence, these data support Mott's suggestion that above T/sub V/ magnetite is in the Wigner-glass state

  9. Carboxylic acid effects on the size and catalytic activity of magnetite nanoparticles.

    Science.gov (United States)

    Hosseini-Monfared, Hassan; Parchegani, Fatemeh; Alavi, Sohaila

    2015-01-01

    Magnetite nanoparticles (Fe3O4-NPs) were successfully synthesized in diethylene glycol in the presence of carboxylic acids. They were characterized using XRD, SEM and FTIR. Carboxylic acid plays a critical role in determining the morphology, particle size and size distribution of the resulting particles. The results show that as-prepared magnetite nanoparticles are monodisperse and highly crystalline. The nanoparticles can be easily dispersed in aqueous media and other polar solvents due to coated by a layer of hydrophilic polyol and carboxylic acid ligands in situ. Easily prepared Fe3O4-NPs have been shown to be an active, recyclable, and highly selective catalyst for the epoxidation of cyclic olefins with aqueous 30% H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Squid measurement of the Verwey transition on epitaxial (1 0 0) magnetite thin films

    International Nuclear Information System (INIS)

    Dediu, V.; Arisi, E.; Bergenti, I.; Riminucci, A.; Solzi, M.; Pernechele, C.; Natali, M.

    2007-01-01

    We report results on epitaxial magnetite (Fe 3 O 4 ) thin films grown by electron beam ablation on (1 0 0) MgAl 2 O 4 substrates. At 120 K magnetite undergoes a structural and electronic transition, the so-called Verwey transition, at which magnetic and conducting properties of the material change. We observed the Verwey transition on epitaxial films with a thickness of 50 nm by comparing zero-field cooling (ZFC) and field cooling (FC) curves measured with a superconducting quantum interference device (SQUID) magnetometer. Observation of the Verwey transition by SQUID measurements in the films is sign of their high crystalline quality. Room temperature ferromagnetism has also been found by magneto-optical Kerr rotation (MOKE) and confirmed by SQUID measurements, with a hysteresis loop showing a coercive field of hundreds of Oe

  11. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  12. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  13. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Zhong, Yuanhong; Zhu, Sanyuan; Ma, Lingya; Yuan, Peng; Zhu, Jianxi; He, Hongping; Jiang, Zheng

    2012-01-01

    Highlights: ► Ti-V co-doped magnetite has strong catalytic activity in UV-Fenton reaction. ► Ti 4+ is more positive to adsorption and catalytic activity of magnetite than V 3+ . ► Mechanism of substitution increasing the adsorption and catalytic activity. ► The obtained results are benefit for application of magnetite in treating wastewater. - Abstract: This study investigated the methylene blue (MB) decolorization through heterogeneous UV-Fenton reaction catalyzed by V-Ti co-doped magnetites, with emphasis on comparing the contribution of V and Ti cations on improving the adsorption and catalytic activity of magnetite. In the well crystallized spinel structure, both Ti 4+ and V 3+ occupied the octahedral sites. Ti 4+ showed a more obvious effect on increasing specific surface area and superficial hydroxyl amount than V 3+ did, resulting in a significant improvement of the adsorption ability of magnetite to MB. The UV introduction greatly accelerated MB degradation. And magnetite with more Ti and less V displayed better catalytic activity in MB degradation through heterogeneous UV-Fenton reaction. The transformation of degradation products and individual contribution from vanadium and titanium on improving adsorption and catalytic activity of magnetite were also investigated. These new insights are of high importance for well understanding the interface interaction between contaminants and metal doped magnetites, and the environmental application of natural and synthetic magnetites.

  14. Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Celis, J. Almazán, E-mail: jony-jac-5@hotmail.com; Olea Mejía, O. F., E-mail: oleaoscar@yahoo.com [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable UAEMéx-UNAM (Mexico); Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; García-Sosa, I., E-mail: irma.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares (Mexico); Derat-Escudero, R., E-mail: escu@unam.mx [Instituto de Investigación de materiales de la UNAM (Mexico); Baggio Saitovitch, E. M., E-mail: esaitovitch@yahoo.com.br; Alzamora Camarena, M., E-mail: mariella.alzamora@gmail.com [Centro Brasileiro de Pesquizas Físicas (Brazil)

    2017-11-15

    Nanometric magnetite (nm-Fe{sub 3}O{sub 4}) particles were prepared by the reverse co-precipitation synthesis method, obtaining particle sizes that ranged from 4 to 8.5 nm. In their synthesis, the concentration of iron salts of ferric nitrate, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O, and ferrous sulfate, FeSO{sub 4}⋅7H{sub 2}O, were varied relative to the chemical reaction volume and by using different surfactants such as oleic acid (OA) and hexadecyltrimethylammonium bromide (CTAB). The nm-Fe{sub 3}O{sub 4} particles were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), magnetic and X-ray diffraction (XRD) measurements. Typical asymmetrical and/or broad lines shapes appeared in all Mössbauer spectra of the as prepared samples suggesting strong magnetic inter-particle interactions, reducing these interactions to some extent by gentle mechanical grinding. For the smallest particles, maghemite instead of magnetite was the main preparation product as low temperature Mössbauer and magnetic measurements indicated. For the intermediate and largest particles a mixture of magnetite and maghemite phases were produced as the saturation magnetization values of M{sub S} ∼ 60 emu/g indicated; these values were measured for most samples, independently of the coating surfactant concentration, and according to the ZFC-FC curves the blocking temperatures were 225K and 275K for the smallest and largest magnetite nanoparticles, respectively. The synthesis method was highly reproducible.

  15. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.

    Science.gov (United States)

    Kobayashi, Atsuko; Horikawa, Masamoto; Kirschvink, Joseph L; Golash, Harry N

    2018-05-22

    In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe 3 O 4 ) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect. Copyright © 2018 the Author(s). Published by PNAS.

  16. Redox reactions of Tc{sup VII} with magnetite and mackinawite. Solving an old enigma

    Energy Technology Data Exchange (ETDEWEB)

    Yalcintas, E.; Gaona, X.; Altmeier, M. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    While the reduction of heptavalent technetium, Tc(VII), by magnetite and mackinawite under anoxic conditions is well known, the identification of the resulting Tc(IV) species shows substantial disagreement between different studies. Here we use a systematic variation of initial Tc concentration, loading and pH to decipher the Tc species by EXAFS spectroscopy and to shine light on their formation pathways.

  17. Study of the surface chemistry and morphology of single walled carbon nanotube-magnetite composites

    International Nuclear Information System (INIS)

    Marquez-Linares, F.; Uwakweh, O.N.C.; Lopez, N.; Chavez, E.; Polanco, R.; Morant, C.; Sanz, J.M.; Elizalde, E.; Neira, C.; Nieto, S.; Roque-Malherbe, R.

    2011-01-01

    The study of the morphologies of the single walled carbon nanotube (SWCNT), magnetite nanoparticles (MNP), and the composite based on them was carried with combined X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). These techniques together with thermogravimetric analyses (TGA) and diffuse reflectance infrared transform spectroscopy (DRIFTS) confirmed the production of pure single phases, and that the composite material consisted of MNP attached to the outer surface of the SWCNT. The Moessbauer spectroscopy (MS) research showed the presence of a large quantity of Lewis acid sites in the highly dispersed magnetite particles supported on the SWCNT outer surface. The DRIFTS carbon dioxide adsorption study of the composites revealed significant adsorption of carbon dioxide, fundamentally in the Lewis acid sites. Then, the Lewis acid sites were observed to be catalytically active. Further, the electron exchange between the Lewis acid sites and the basic or amphoteric adsorbed molecules could influence the magnetic properties of the magnetite. Consequently, together with this first ever use of MS in the study of Lewis acid sites, this investigation revealed the potential of the composites for catalytic and sensors applications. -- Graphical abstract: A large amount of Lewis acid sites were found in the highly dispersed magnetite which is supported on the SWCNT outer surface. Display Omitted Research highlights: → The obtained materials were completely characterized with XRD, Raman and SEM-TEM. → DRIFT, TGA and adsorption of the composites allowed understand the material formation. → This is the first report of a study of Lewis sites by Moessbauer spectroscopy.

  18. Atomistic model application to the problem of magnetite adhesion on iron BCC

    International Nuclear Information System (INIS)

    Forti; M; Alonso, P; Gargano, P; Rubiolo, G

    2012-01-01

    Oxide scale adhesion on a metal substrate has been investigated in the Magnetite - BCC Iron system. An Universal Binding Energy Relation (UBER) has been applied to obtain the interface energy from a fitting parameter. The interface energy thus calculated is in a reasonable order of magnitude when compared to experimental data for similar systems. This result allows this technique to be used to develop a comparative scale based on quantitative data which otherwise would require complex experiments to be obtained (author)

  19. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  20. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    Science.gov (United States)

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  1. Physicochemical characteristics of gamma irradiation crosslinked poly(vinyl alcohol)/magnetite ferrogel composite

    OpenAIRE

    Marinović-Cincović, Milena T.; Radosavljević, Aleksandra N.; Krstić, Jelena I.; Spasojević, Jelena P.; Bibić, Nataša M.; Mitrić, Miodrag N.; Kačarević-Popović, Zorica M.

    2014-01-01

    Magnetic field sensitive gels, ferrogels are new promising class of hydrogels. The coupling of hydrogels and magnetic particles has potential application in soft actuators such as artificial muscles or for hyperthermia application. Here a composite of magnetite particles (Fe3O4) and poly(vinyl alcohol) (PVA) hydrogel is developed using gamma irradiation as a crosslinking agent. PVA and Fe3O4 were chosen because of their well-established biocompatibility, ra...

  2. TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: Sand columns demonstration.

    Science.gov (United States)

    Jia, Daqing; Sun, Sheng-Peng; Wu, Zhangxiong; Wang, Na; Jin, Yaoyao; Dong, Weiyang; Chen, Xiao Dong; Ke, Qiang

    2018-03-15

    Trichloroethylene (TCE) degradation in sand columns has been investigated to evaluate the potential of chelates-enhanced Fenton-like reaction with magnetite as iron source for in situ treatment of TCE-contaminated groundwater. The results showed that successful degradation of TCE in sand columns was obtained by nitrilotriacetic acid (NTA)-assisted Fenton-like reaction of magnetite. Addition of ethylenediaminedisuccinic acid (EDDS) resulted in an inhibitory effect on TCE degradation in sand columns. Similar to EDDS, addition of ethylenediaminetetraacetic acid (EDTA) also led to an inhibition of TCE degradation in sand column with small content of magnetite (0.5 w.t.%), but enhanced TCE degradation in sand column with high content of magnetite (7.0 w.t.%). Additionally, the presence of NTA, EDDS and EDTA greatly decreased H 2 O 2 uptake in sand columns due to the competition between chelates and H 2 O 2 for surface sites on magnetite (and sand). Furthermore, the presented results show that magnetite in sand columns remained stable in a long period operation of 230 days without significant loss of performance in terms of TCE degradation and H 2 O 2 uptake. Moreover, it was found that TCE was degraded mainly to formic acid and chloride ion, and the formation of chlorinated organic intermediates was minimal by this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Evidences of the stability of magnetite in soil from Northeastern Argentina by Moessbauer spectroscopy and magnetization measurements

    International Nuclear Information System (INIS)

    Causevic, H.; Morras, H.; Mijovilovich, A.; Saragovi, C.

    2004-01-01

    In red soils from southern Brazil magnetite was reported to be pedogenically unstable, weathering to maghemite. However, in similar soils from northeastern Argentina magnetite was found in all size fractions. This finding motivates the mineralogical study of an Ultisol at different depths in order to understand the influence of anthropic and natural factors in the weathering of the magnetic minerals of these subtropical soils. The sand fraction of the B t22 horizon (105-155 cm depth) of a clayey red Ultisol from the subtropical forest of Misiones, Argentina, was studied by X-ray diffraction, saturation magnetization σ s , optical microscopy and Moessbauer spectroscopy. Saturation magnetization for the whole sand fraction (wsf), the non-magnetic sand fraction (nmsf) and the magnetic sand fraction (msf) are 10.79, 1.50 and 16.92 JT -1 kg -1 , respectively. Mainly quartz, ilmenite, Al-substituted hematite, goethite, maghemite and magnetite are found. Magnetite-maghemite contents are high, and magnetite is predominant in the msf. Results are compared with those from the upper B 1 horizon (10-35 cm depth) of the same soil in which a lower σ s(wsf) value, and higher values of σ s(msf) and of (σ s(msf) -σ s(wsf) ) were measured. These results confirm the stability of magnetite in this soil contrasting with other results on soils from neighbouring areas

  4. Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Yingqing; Zhao Rui; Meng Fanbing; Lei Yajie; Zhong Jiachun; Yang Xulin [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu Xiaobo, E-mail: liuxb@uestc.edu.cn [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-06-15

    Highlights: > Novel CNTs/magnetite hybrid materials were prepared via covalently bonded method. > Stable interaction between nitriles and iron ion promoted the oriented growth of magnetite. > The hybrid material exhibited higher magnetism and electromagnetic properties - Abstract: A new type of CNTs/magnetite hybrid material was prepared via covalently bonded method in a simple solvothermal system using FeCl{sub 3} as iron source, ethylene glycol as the reducing agent, and 4-aminophenoxyphthalonitrile-grafted CNTs as templates. The magnetite nanoparticles, with the diameters of 70-80 nm, were self-assembled along the CNTs. The FTIR, UV-vis and DSC revealed that a stable covalent bond between nitriles group and iron ion promoted the oriented growth of magnetite nanoparticles along the CNTs, resulting in good dispersibility and solution storage stability. The magnetic properties measurements indicated that a higher saturated magnetization (70.7 emu g{sup -1}) existed in the CNTs/magnetite hybrid material, which further enhanced the electromagnetic properties. The magnetic loss was caused mainly by natural resonance, which is in good agreement with the Kittel equation results. The novel electromagnetic hybrid material is believed to have potential applications in the microwave absorbing performances.

  5. Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system

    International Nuclear Information System (INIS)

    Zhan Yingqing; Zhao Rui; Meng Fanbing; Lei Yajie; Zhong Jiachun; Yang Xulin; Liu Xiaobo

    2011-01-01

    Highlights: → Novel CNTs/magnetite hybrid materials were prepared via covalently bonded method. → Stable interaction between nitriles and iron ion promoted the oriented growth of magnetite. → The hybrid material exhibited higher magnetism and electromagnetic properties - Abstract: A new type of CNTs/magnetite hybrid material was prepared via covalently bonded method in a simple solvothermal system using FeCl 3 as iron source, ethylene glycol as the reducing agent, and 4-aminophenoxyphthalonitrile-grafted CNTs as templates. The magnetite nanoparticles, with the diameters of 70-80 nm, were self-assembled along the CNTs. The FTIR, UV-vis and DSC revealed that a stable covalent bond between nitriles group and iron ion promoted the oriented growth of magnetite nanoparticles along the CNTs, resulting in good dispersibility and solution storage stability. The magnetic properties measurements indicated that a higher saturated magnetization (70.7 emu g -1 ) existed in the CNTs/magnetite hybrid material, which further enhanced the electromagnetic properties. The magnetic loss was caused mainly by natural resonance, which is in good agreement with the Kittel equation results. The novel electromagnetic hybrid material is believed to have potential applications in the microwave absorbing performances.

  6. The effect of magnetite on corrosion of stainless steel (SUS309S) in deaerated synthetic sea water

    International Nuclear Information System (INIS)

    Taniguchi, N.; Honda, A.

    1999-10-01

    The assessment of lifetime of carbon steel overpack needs to clear the effects of corrosion products on the corrosion rate of carbon steel. It is reported that the corrosion of carbon steel was accelerated under the presence of magnetite as simulated corrosion products. Therefore, it is important to clear the mechanism of the acceleration of corrosion under the presence of magnetite. If carbon steel overpack will not be able to avoid the acceleration of corrosion under repository condition, some countermeasures have to be taken. One of the countermeasures against the effect of magnetite is considered to be the addition of alloying elements to a steel. The immersion test of stainless steel (SUS309S) as the extreme case of alloying was conducted under the presence of magnetite on the metal surface in synthetic sea water. As the result of this test, the corrosion of stainless steel (SUS309S) was not accelerated by the presence of magnetite. Therefore, it is expected that the susceptibility to the effect of magnetite is able to be reduced by addition of alloying elements to a steel. (author)

  7. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin

    2016-10-01

    In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis, structure, morphology and stoichiometry characterization of cluster and nano magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Singh, L. Herojit; Pati, S.S. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Guimarães, Edi M. [Institute of Geoscience, University of Brasilia, 70910-900, Brasilia, DF (Brazil); Rodrigues, P.A.M.; Oliveira, Aderbal C. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Garg, V.K., E-mail: vijgarg@gmail.com [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil)

    2016-08-01

    We have studied the stoichiometry of magnetite nanoparticles using three spectroscopic techniques: Mössbauer, photoacoustic and ferromagnetic resonance (FMR). By varying the weight ratio of the Fe precursor to the reducing agent (sodium acetate) and a post-synthesis annealing, we were able to synthesize samples with different amounts of Fe vacancies, from stoichiometric Fe{sub 3}O{sub 4} to γ-Fe{sub 2}O{sub 3}. By synthesizing magnetite in the presence of zeolite we obtained nanoparticles within the 3–10 nm diameter range. The spectroscopic results show that there is a correlation between the amount of Fe vacancies and (i) the optical absorption and (ii) the g-values from the Electron paramagnetic resonance EPR spectra of the nanoparticles. - Highlights: • Magnetite nanoparticles and cluster synthesized. • Photoacoustic spectroscopy is effective in determining the stoichiometry. • Particles with 9 nm size has 0 < δ < 0.14. • Less than 9 nm gives 0.14 < δ < 0.3 and size <3 nm have δ = 0.33 (i.e. γ-Fe{sub 2}O{sub 3}).

  9. PLA-b-PEG/magnetite hyperthermic agent prepared by Ugi four component condensation

    Directory of Open Access Journals (Sweden)

    L. P. Icart

    2016-03-01

    Full Text Available Ugi four component condensation (UFCC, is an important tool for the synthesis of different types of bioconjugate species. In this study, a PLA-PEG/magnetite magnetic composite was prepared by a synthetic-route approach based on UFCC. In particular, poly(lactic acid (PLA was synthesized by autocatalytic polycondensation. Also, poly(ethyleneglycol bis-amine (bis-amine PEG was synthesized by two different methods: via carbonyldiimidazol (CDI/ethylenediamine (ED (75% yield and via chlorate monochlorated acetyl (CCA/ED (95% yield. All products were characterized by gel permeation chromatography (GPC, hydrogen-1 nuclear magnetic resonance (NMR 1H, Fourier transform infrared (FTIR, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. In addition, magnetite was prepared and modified to generate aldehyde groups which are also necessary for UFCC. This product was characterized by DSC, TGA, X-ray diffraction (XRD and magnetic force (MF techniques. Also, the magnetic composite PLA-PEG/magnetite was synthesized by UFCC. The calculated yield was equal to 80%. Furthermore, magnetic microspheres were prepared by the procedure of emulsion solvent-evaporation and characterized by scanning electron microscopy (SEM and magnetic induction hyperthermia (MIH. The main contribution of these results is to propose a new application for UFCC in the preparation of biomasked magnetic drug delivery systems able to improve the cancer treatment and even the welfare of the patients.

  10. Ultrasonic-assisted synthesis of magnetite based MRI contrast agent using cysteine as the biocapping coating

    International Nuclear Information System (INIS)

    Ahmadi, Reza; Malek, Mahrooz; Hosseini, Hamid Reza Madaah; Shokrgozar, Mohammad Ali; Oghabian, Mohammad Ali; Masoudi, Afshin; Gu Ning; Zhang Yu

    2011-01-01

    Highlights: ► We used cysteine as surfactant to synthesize stable magnetite-based ferrofluids. ► pH increase from 11 to 12 led to particle size decrease from 19.58 to 10.02 nm. ► Cytotoxicity assay showed that synthesized particles were biocompatible. ► MRI results showed that magnetite particles were accumulated in lymph nodes. - Abstract: Magnetite nanoparticles (mean particle size ranging from 10 to 20 nm) were prepared by a biomolecule-assisted solution-phase approach under ultrasonic irradiation. Cysteine was used as the capping agent in the solution. The results show that cysteine could be an efficient biocapping agent in producing Fe 3 O 4 nanoparticles. The crystal structure and magnetic properties of the nanoparticles were characterized by XRD and VSM techniques, respectively. FT-IR was used to investigate the presence of cysteine on the nanoparticles surface. The influence of pH value of the solution on the size distribution and hydrodynamic size of nanoparticles were studied by TEM and DLS methods, respectively. The MTT assay performed by incubation of L929 cells, showed the good biocompability of synthesized ferrofluids. In vitro T1 and T2 relaxivity measurements along with in vivo studies, which were conducted on rats, demonstrate that synthesized nanoparticles are applicable as the contrast agents, especially for imaging of the lymphatic system.

  11. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  12. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    Science.gov (United States)

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H 2 O 2 concentration, and pH value were evaluated. The effect of different radical species including HO · and HO 2 · /O 2 ·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H 2 O 2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO · radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  13. Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.

    Science.gov (United States)

    Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan

    2017-09-28

    We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.

  14. Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junran [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu, Wenqing [York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom); Zhang, Minhao; Zhang, Xiaoqian; Niu, Wei; Gao, Ming [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wang, Xuefeng, E-mail: xfwang@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Du, Jun [School of Physics, Nanjing University, Nanjing 210093 (China); Zhang, Rong [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Yongbing, E-mail: ybxu@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom)

    2017-06-15

    Highlights: • Quasi-2D Fe{sub 3}O{sub 4} films were obtained by PLD. • RHEED under different oxygen pressure were observed. • Influence of oxygen pressure on Fe{sub 3}O{sub 4} films were investigated. • Epitaxy and magnetic properties were tuned by oxygen pressure. • The ratio of Fe{sup 2+}/Fe{sup 3+} fitted by XPS is the tuned factor of M{sub s}. - Abstract: Quasi-two-dimensional magnetite epitaxial thin films have been synthesized by pulsed laser deposition technique at various oxygen pressures. The saturation magnetizations of the magnetite films were found to decrease from 425 emu/cm{sup 3}, which is close to the bulk value, to 175 emu/cm{sup 3} as the growth atmospheres varying from high vacuum (∼1 × 10{sup −8} mbar) to oxygen pressure of 1 × 10{sup −3} mbar. The ratio of the Fe{sup 3+} to Fe{sup 2+} increases from 2 to 2.7 as oxygen pressure increasing shown by XPS fitting, which weakens the net magnetic moment generated by Fe{sup 2+} at octahedral sites as the spins of the Fe{sup 3+} ions at octahedral and tetrahedral sites are aligned in antiparallel. The results offer direct experimental evidence of the influence to the Fe{sup 3+}/Fe{sup 2+} ratio and the magnetic moment in magnetite epitaxy films by oxygen pressure, which is significant for spintronic applications.

  15. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra; Kale, Sonia; Shastry, Padma; Pasricha, Renu; Lefez, Benoit; Hannoyer, Beatrice

    2011-01-01

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  16. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lasheen, M.R., E-mail: ragaei24@link.net [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Sherif, Iman Y., E-mail: iman57us@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); Tawfik, Magda E., E-mail: magdaemileta@yahoo.com [Polymers and Pigments Department, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Wakeel, S.T., E-mail: shaimaa_tw@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Shahat, M.F., E-mail: elshahatmf@hotmail.com [Faculty of Science, Ain Shams University, Khalifa El-Maamon St., Abbasiya Sq., 11566, Cairo (Egypt)

    2016-08-15

    Highlights: • Nano magnetite–chitosan films were prepared by casting method. • The efficiency of the prepared films for removing heavy metals was investigated. • The adsorption mechanism was studied using different isotherm and kinetic models. • Films reuse and metals recovery were studied. - Abstract: Nano magnetite chitosan (NMag–CS) film was prepared and characterized with different analytical methods. X-ray diffraction (XRD) patterns confirmed the formation of a pure magnetite structure and NMag–CS nanocomposite. TEM image of the film, revealed the uniform dispersion of magnetite nanoparticles inside chitosan matrix. The adsorption properties of the prepared film for copper, lead, cadmium, chromium and nickel metal ions were evaluated. Different factors affecting the uptake behavior by the composite films such as time, initial pH and film dose were investigated. The adsorption equilibrium attained using 2 g/L of the film after 120 min of reaction. The equilibrium data were analyzed using Langmuir and Freundlich models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all metals. The metals regenerated from films with an efficiency greater than 95% using 0.1 M ethylene diamine tetra acetic acid (EDTA) and films were successfully reused for adsorption.

  17. Long-term clearance of inhaled magnetite and polystyrene latex from the lung: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, R.B.; Halpern, M.; Lippmann, M. (New York Univ., NY (USA). Inst. of Environmental Medicine)

    1982-01-01

    As part of a larger study evaluating the applicability of a magnetic detection technique for monitoring lung retention of inhaled particles, simultaneous radiological measurements of the retention of magnetite and polystyrene latex particles in four donkeys were performed. The radiometric measurements were performed using a scintillation detector series modified for separation of the higher energy ..gamma..-emissions of /sup 59/Fe and /sup 85/Sr. In all animals, after 24 hr post-exposure, both polystyrene and magnetite exhibited a relatively rapid phase for 80 days (Tsub(1/2) = 15-22 days) which, in three donkeys, was clearly followed by a slower phase (Tsub(1/2) = 42-173 days); activity levels after 80 days in the fourth donkey were too low to permit determination of clearance rate. During the second phase, a deviation in pattern was clearly observed between the two aerosols, the polystyrene being cleared consistently faster than the magnetite. It is suggested that this deviation implies that, beginning at this time, there were functional differences between the dominant clearance mechanisms for the two aerosols. Exactly what these mechanisms were, or whether the difference was attributable to specific differences in particle characteristics, could not be determined.

  18. Long-term clearance of inhaled magnetite and polystyrene latex from the lung: a comparison

    International Nuclear Information System (INIS)

    Schlesinger, R.B.; Halpern, M.; Lippmann, M.

    1982-01-01

    As part of a larger study evaluating the applicability of a magnetic detection technique for monitoring lung retention of inhaled particles, simultaneous radiological measurements of the retention of magnetite and polystyrene latex particles in four donkeys were performed. The radiometric measurements were performed using a scintillation detector series modified for separation of the higher energy γ-emissions of 59 Fe and 85 Sr. In all animals, after 24 hr post-exposure, both polystyrene and magnetite exhibited a relatively rapid phase for 80 days (Tsub(1/2) = 15-22 days) which, in three donkeys, was clearly followed by a slower phase (Tsub(1/2) = 42-173 days); activity levels after 80 days in the fourth donkey were too low to permit determination of clearance rate. During the second phase, a deviation in pattern was clearly observed between the two aerosols, the polystyrene being cleared consistently faster than the magnetite. It is suggested that this deviation implies that, beginning at this time, there were functional differences between the dominant clearance mechanisms for the two aerosols. Exactly what these mechanisms were, or whether the difference was attributable to specific differences in particle characteristics, could not be determined. (U.K.)

  19. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems

    International Nuclear Information System (INIS)

    Toghraie, Davood; Alempour, Seyed Mohammadbagher; Afrand, Masoud

    2016-01-01

    In this paper, experimental determination of dynamic viscosity of water based magnetite nanofluid (Fe 3 O 4 /water) was performed. The viscosity was measured in the temperature range of 20–55 °C for various samples with solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. The results showed that the viscosity considerably decreases with increasing temperature. Moreover, the viscosity enhances with an increase in the solid volume fraction, remarkably. The calculated viscosity ratios showed that the maximum viscosity enhancement was 129.7%. Using experimental data, a new correlation has been proposed to predict the viscosity of magnetite nanofluid (Fe 3 O 4 /water). A comparison between the experimental results and the correlation outputs showed that the proposed model has a suitable accuracy. - Highlights: • Preparing Magnetite nanofluids with solid volume fractions up to 3%. • Measuring viscosity in temperature range of 20–55 °C using Brookfield Viscometer. • Maximum viscosity enhancement occurred at volume fraction of 3% and was 129.7%. • Proposing new correlation to predict the viscosity of Fe3O4/water nanofluid.

  20. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.R., E-mail: iglesias@ugr.es [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Delgado, A.V.; González-Caballero, F. [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Ramos-Tejada, M.M. [Department of Physics, University of Jaén, Linares 23700 (Spain)

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles. - Highlights: • Magnetite NPs coated with polymers are used for drug delivery and hyperthermia. • The SAR of polyelectrolyte-coated NPs is larger because of their improved stability. • The antitumor drug doxorubicin is adsorbed on the coated particles. • The release rate of the drug is not affected by the ac magnetic field used in hyperthermia.

  1. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka

    2015-01-01

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition

  2. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition.

  3. Interaction of uranium with in situ anoxically generated magnetite on steel

    International Nuclear Information System (INIS)

    Rovira, Miquel; El Aamrani, Souad; Duro, Lara; Gimenez, Javier; Pablo, Joan de; Bruno, Jordi

    2007-01-01

    In the high level nuclear waste repository concept, spent nuclear fuel is designed to be encapsulated in steel canisters. Thus, it is necessary to study the influence of the steel and/or its corrosion products on the behaviour of the radionuclides released from the fuel. In this sense, the main objective of this work is to contribute to the knowledge of the influence of the steel and/or its corrosion products on the uranium(VI) retention. To this aim, magnetite (Fe 3 O 4 ) has been generated by anaerobic steel corrosion in an autoclave reactor at an overpressure of 8 atm of H 2 (g). After characterisation by X-ray diffraction (XRD), the obtained corroded steel coupons were contacted, at two different H 2 (g) pressures (1 atm and 7.6 atm), with a U(VI) solution. The evolution of the uranium concentration in solution is determined and a study of the composition of the coupons at the end of the experiments is carried out. The main conclusion obtained from this work is that magnetite generated on a steel coupon is able not only to retain uranium via sorption, but also to reduce hexavalent to tetravalent uranium in a higher extent than commercial magnetite, thus, providing an effective retardation path to the migration of uranium (and, potentially, other actinides) out of the repository

  4. Spectral methods. Fundamentals in single domains

    International Nuclear Information System (INIS)

    Canuto, C.

    2006-01-01

    Since the publication of ''Spectral Methods in Fluid Dynamics'' 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded. (orig.)

  5. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    Science.gov (United States)

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier

  6. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  7. Composition of coarse-grained magnetite from pegmatite dikes related to plutons of quartz monzonite in the Jabal Lababa area, Kingdom of Saudi Arabia

    Science.gov (United States)

    Overstreet, William C.; Mousa, Hassan; Matzko, John J.

    1985-01-01

    Crystals of magnetite as large as 30 mm long and 7 mm thick are locally present in quartz-rich zones of interior and exterior pegmatite dikes related to plutons of quartz monzonite in the Jabal Lababa area. Niobium, tin, and yttrium are strongly enriched in six specimens of magnetite from interior pegmatite dikes in a small pluton where these elements form geochemical anomalies in nonmagnetic heavy-mineral concentrates from wadi sediment. Less abundant anomalous elements in the magnetite are molybdenum, lead, and zirconium, which also tend to be present in anomalous amounts in the nonmagnetic concentrates from the niobium-bearing pluton. The most anomalous trace element in the magnetite is zinc, which is at least 10 times as abundant as it is in the quartz monzonite plutons or in the nonmagnetic concentrates. The capacity of magnetite to scavenge molybdenum, zinc, niobium, lead, tin, yttrium, and zirconium suggests the possible utility of magnetite as a geochemical sample medium.

  8. Hydrochemical constraints between the karst Tabular Middle Atlas Causses and the Saïs basin (Morocco): implications of groundwater circulation

    Science.gov (United States)

    Miche, Hélène; Saracco, Ginette; Mayer, Adriano; Qarqori, Khaoula; Rouai, Mohamed; Dekayir, Abdelilah; Chalikakis, Konstantinos; Emblanch, Christophe

    2018-02-01

    The karst Tabular Middle Atlas Causses reservoir is the main drinking-water supply of Fez-Meknes region (Saïs Basin) in Morocco. Recent analyses showed a decline in associated groundwater chemical quality and increased turbidity. To understand this hydrosystem, four surveys were undertaken during fall and spring, 2009-2011. Hydrogeochemical studies coupled with isotopic analyses (δ18O, δD and 222Rn) showed that the aquifers between the causses (mountains) and the Saïs Basin are of Liassic origin and at the southern extremities are of Triassic origin. Five recharge zones of different altitudes have been defined, including two main mixing zones in the south. Deuterium excess results suggest local recharge, while a plot of δ18O versus δD characterizes a confined aquifer in the eastern sector. 222Rn results reveal areas of rapid exchanges with an upwelling time of less than 2 weeks. A schematic conceptual model is presented to explain the groundwater circulation system and the behavior of this karst system.

  9. Dissolution of nickel ferrite and rare earths containing magnetites in citric acid - EDTA - gallic acid (CEG) formulation

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Kishore, K.; Venkateswaran, G.; Balaji, V.

    2002-01-01

    It has been shown by us earlier that gallic acid can be used as a reductant in dilute chemical decontaminant formulations containing EDTA as chelant. The results on the dissolution of magnetite in such a formulation were quite promising. Moreover, the superior radiation stability of gallic acid vis-a-vis other reductants such as ascorbic acid or oxalic acid is another plus point for this formulation. Besides having an inherent stability against radiation degradation, it is able to protect even EDTA against radiation induced decomposition to a great extent unlike the case of ascorbic acid. In an extension of that work, dissolution experiments have now been carried out on nickel ferrite and magnetites containing rare earths like La, Ce and Zr This is to simulate the presence of fission product oxides in magnetite resulting from a possible phase of operation with leaky fuel. The rate constants have been determined using the inverse cubic rate law. In the case of nickel ferrite, although there is an initial induction period, the rate constants for the dissolution were determined to be at 1.6 x 10 -2 and 3.6 x 10 -3 min -1 at 353 K and 333 K respectively. Presence of Ce in particular either alone or in combination with Zr/La at a level of 1 at.% equivalent each in magnetite is seen to increase the surface area of the oxide. The rate constants for the dissolution at 353 K in a 11:44:4 mM CEG formulation taken with magnetite and rare earth containing magnetites equivalent to yielding 22 mM Fe upon complete dissolution are as follows: 5.09 x 10 -2 min -1 (magnetite), 7.06 x 10 -2 min -1 (Ce 2 O 3 containing magnetite), 6.33 x 10 -2 min -1 (Ce 2 O 3 , ZrO 2 containing magnetite), 1 x 10 -1 min -1 (Ce 2 O 3 , ZrO 2 , La 2 O 3 containing magnetite). The presence of Ce, Zr and La at 1 at.% level each has not resulted in any turbidity in solution at the end of magnetite dissolution suggesting chemical dissolution of these rare earth oxides in the formulation. Simple magnetite

  10. Dissolution of nickel ferrite and rare earths containing magnetites in citric acid - EDTA - gallic acid (CEG) formulation

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhar, A.G.; Kishore, K.; Venkateswaran, G.; Balaji, V. [Applied Chemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-07-01

    It has been shown by us earlier that gallic acid can be used as a reductant in dilute chemical decontaminant formulations containing EDTA as chelant. The results on the dissolution of magnetite in such a formulation were quite promising. Moreover, the superior radiation stability of gallic acid vis-a-vis other reductants such as ascorbic acid or oxalic acid is another plus point for this formulation. Besides having an inherent stability against radiation degradation, it is able to protect even EDTA against radiation induced decomposition to a great extent unlike the case of ascorbic acid. In an extension of that work, dissolution experiments have now been carried out on nickel ferrite and magnetites containing rare earths like La, Ce and Zr This is to simulate the presence of fission product oxides in magnetite resulting from a possible phase of operation with leaky fuel. The rate constants have been determined using the inverse cubic rate law. In the case of nickel ferrite, although there is an initial induction period, the rate constants for the dissolution were determined to be at 1.6 x 10{sup -2} and 3.6 x 10{sup -3} min{sup -1} at 353 K and 333 K respectively. Presence of Ce in particular either alone or in combination with Zr/La at a level of 1 at.% equivalent each in magnetite is seen to increase the surface area of the oxide. The rate constants for the dissolution at 353 K in a 11:44:4 mM CEG formulation taken with magnetite and rare earth containing magnetites equivalent to yielding 22 mM Fe upon complete dissolution are as follows: 5.09 x 10{sup -2} min{sup -1} (magnetite), 7.06 x 10{sup -2} min{sup -1} (Ce{sub 2}O{sub 3} containing magnetite), 6.33 x 10{sup -2} min{sup -1} (Ce{sub 2}O{sub 3}, ZrO{sub 2} containing magnetite), 1 x 10{sup -1} min{sup -1} (Ce{sub 2}O{sub 3}, ZrO{sub 2}, La{sub 2}O{sub 3} containing magnetite). The presence of Ce, Zr and La at 1 at.% level each has not resulted in any turbidity in solution at the end of magnetite dissolution

  11. Postmagmatic magnetite-apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia

    Science.gov (United States)

    Apukhtina, Olga B.; Kamenetsky, Vadim S.; Ehrig, Kathy; Kamenetsky, Maya B.; McPhie, Jocelyn; Maas, Roland; Meffre, Sebastien; Goemann, Karsten; Rodemann, Thomas; Cook, Nigel J.; Ciobanu, Cristiana L.

    2016-01-01

    An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper-gold (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite-apatite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite-apatite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite-ilmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite-apatite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite-apatite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks.

  12. Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2014-10-01

    Full Text Available Introduction There is an iron mining complex called Shahrak 60 km east of Takab town, NW Iran. The exploration in the Shahrak deposit (general name for all iron deposits of the area started in 1992 by Foolad Saba Noor Co. and continued in several periods until 2008. The Shahrak deposit comprising 10 ore deposits including Korkora-1, Korkora-2, Shahrak-1, Shahrak-2, Shahrak-3, Cheshmeh, Golezar, Sarab-1, Sarab-2, and Sarab-3 deposits Sheikhi, 1995 with total 60 million tons of proved ore reserves. The Fe grade ranges from 45 to 65% (average 50%. The ore reserves of these deposits vary and the largest one is Korkora-1 with 15 million tons of 55% Fe and 0.64% S. The Korkora-1 ore deposit is located in western Azarbaijan and Urumieh-Dokhtar volcanic zone, at the latitude of 36°21.8´, and longitude of 47°32´. Materials and methods Six thin-polished sections were made on magnetite, garnet, and amphibole for EPMA (Electron Probe Micro Analysis. EPMA was performed using a JEOL JXA-733 electron microprobe at the University of New Brunswick, Canada, with wavelength-dispersive spectrometers. Results and discussion Outcropped units of the area are calc-alkaline volcanics of rhyolite, andesite and dacite and carbonate rocks of Qom Formation in which intrusion of diorite to granodiorite and quartzdoirite caused contact metamorphism, alteration plus skarnization and formation of actinolite, talc, chlorite, phlogopite, quartz, calcite, epidote and marblization in the vicinity of the ore deposit. Iron mineralization formed at the contacts of andesite and dacite with carbonates in Oligo-Miocene. The study area consists of skarn, metamorphic rocks, and iron ore zones. The shape of the deposit is lentoid to horizontal with some alteration halos. The ore occurred as replacement, massive, disseminated, open-space filling and breccia. The ore minerals of the deposit include low Ti-magnetite (0.04 to 0.2 wt % Ti, minor apatite, and sulfide minerals such as pyrite

  13. Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM)

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Stipp, S. L. S.; McEnroe, S. A.

    2004-01-01

    ), the internal domain structure was determined for individual grains. In general, the lamellae were pseudo-single-domain grains with open-flux domain magnetisations parallel to their long axes. The domain sizes were, in cross-section, on the order of a micrometer for the longer lamellae and about 300 nm...

  14. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    Science.gov (United States)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  15. I-Xe dating of aqueous alteration in the CI chondrite Orgueil: I. Magnetite and ferromagnetic separates

    Science.gov (United States)

    Pravdivtseva, O.; Krot, A. N.; Hohenberg, C. M.

    2018-04-01

    The I-Xe system was studied in a ferromagnetic sample separated from the Orgueil CI carbonaceous chondrite with a hand-held magnet and in two magnetite samples, one chemically separated before and the other one after neutron irradiation. This work was done in order to investigate the effects of chemical separation by LiCl and NaOH on the I-Xe system in magnetite. Our test demonstrated that the chemical separation of magnetite before irradiation using either LiCl or NaOH, or both, does not contaminate the sample with iodine and thus cannot lead to erroneous I-Xe ages due to introduction of uncorrelated 128∗Xe. The I-Xe ages of two Orgueil magnetite samples are mutually consistent within experimental uncertainties and, when normalized to an absolute time scale with the reevaluated Shallowater aubrite standard, place the onset of aqueous alteration on the CI parent body at 4564.3 ± 0.3 Ma, 2.9 ± 0.3 Ma after formation of the CV Ca-AI-rich inclusions (CAIs). The I-Xe age of the ferromagnetic Orgueil separate is 3.4 Ma younger, corresponding to a closure of the I-Xe system at 4560.9 ± 0.2 Ma. These and previously published I-Xe data for Orgueil (Hohenberg et al., 2000) indicate that aqueous alteration on the CI parent body lasted for at least 5 Ma. Although the two magnetite samples gave indistinguishable I-Xe ages, their temperature release profiles differed. One of the two Orgueil magnetites released less radiogenic Xe than the other, 80% of it corresponding to the low-temperature peak of the release profile, compared to only 6% in case of the second Orgueil magnetite sample. This could be due to the difference in iodine trapping efficiencies for magnetite grains of different morphologies. Alternatively, the magnetite grains with the lower radiogenic Xe concentrations may have formed at a later stage of alteration when iodine in an aqueous solution was depleted.

  16. Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (equatorial Pacific Ocean)

    Science.gov (United States)

    Channell, J. E. T.; Ohneiser, C.; Yamamoto, Y.; Kesler, M. S.

    2013-02-01

    AbstractSediments from the equatorial Pacific Ocean, at the Integrated Ocean Drilling Program sites U1334 and U1335, record reliable magnetic polarity stratigraphies back to ~26.5 Ma (late Oligocene) at sedimentation rates usually in the 5-20 m/Myr range. Putative polarity subchrons that do not appear in current polarity timescales occur within Chrons C5ACr, C5ADn, and C5Bn.1r at Site U1335; and within Chrons C6AAr.2r, C6Br, C7Ar, and C8n.1n at Site U1334. Subchron C5Dr.1n (~17.5 Ma) is recorded at both sites, supporting its apparent recording in the South Atlantic Ocean, and has an estimated duration of ~40 kyr. The Oligocene-Miocene calcareous oozes have magnetizations carried by submicron magnetite, as indicated by thermal demagnetization of magnetic remanences, the anhysteretic remanence to susceptibility ratio, and magnetic hysteresis parameters. Transmission electron microscopy of magnetic separates indicates the presence of low-titanium iron oxide (magnetite) grains with size (50-100 nm) and shape similar to modern and fossil bacterial magnetite, supporting other evidence that biogenic submicron magnetite is the principal remanence carrier in these sediments. In the equatorial Pacific Ocean, low organic-carbon burial arrests microbial pore-water sulfate reduction, thereby aiding preservation of bacterial magnetite.

  17. Structural Modification and Self-Assembly of Nanoscale Magnetite Synthesised in the Presence of an Anionic Surfactant

    Directory of Open Access Journals (Sweden)

    Malik S.

    2014-07-01

    Full Text Available The earliest reported medical use of magnetite powder for internal applications was in the 10th century A.D. by the Persian physician and philosopher Avicenna of Bokhara [1,2]. Today magnetic nanoparticles are used for magnetic resonance imaging (MRI and are potential colloidal mediators for cancer magnetic hyperthermia [3]. Twenty years ago magnetite (Fe3O4 was found to be present in the human brain [4] and more recently it has been reported that nanoscale biogenic magnetite (origin and formation uncertain is associated with neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s [5]. Here we show that the synthesis of magnetite in the presence of the surfactant sodium dodecyl sulphate (SDS gives rise to a variety of nanoscale morphologies, some of which look remarkably similar to magnetite found in organisms, suggesting that similar processes may be involved. Furthermore, these 1D materials with diameters of quantum confined size are of interest in the areas of biosensors [6] and biomedical imaging [7].

  18. Study of Cr(VI) adsorption onto magnetite nanoparticles using synchrotron-based X-ray absorption spectroscopy

    Science.gov (United States)

    Chen, Yen-Hua; Liu, Dian-Yu; Lee, Jyh-Fu

    2018-04-01

    In this study, the efficiency of Cr(VI) adsorption onto nano-magnetite was examined by batch experiments, and the Cr(VI) adsorption mechanism was investigated using synchrotron-based X-ray absorption spectroscopy. Magnetite nanoparticles with a mean diameter of 10 nm were synthesized using an inexpensive and si