WorldWideScience

Sample records for t3ss effector btea

  1. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism.

    Directory of Open Access Journals (Sweden)

    Chen Guttman

    Full Text Available Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

  2. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC.

    Science.gov (United States)

    Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi

    2011-11-01

    The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.

    Science.gov (United States)

    Alteri, Christopher J; Himpsl, Stephanie D; Zhu, Kevin; Hershey, Haley L; Musili, Ninette; Miller, Jessa E; Mobley, Harry L T

    2017-11-01

    Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector.

  4. Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Lu, Defen; Shang, Guijun; Yu, Qian; Zhang, Heqiao; Zhao, Yanyu; Cang, Huaixing; Gu, Lichuan; Xu, Sujuan; Huang, Yan

    2013-01-01

    Tse3, one of the effectors of the type VI secretion system in Pseudomonas aeruginosa, has been crystallized and diffracted to 1.5 Å resolution. Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to inject effector proteins into rival cells in niche competition. Tse3, one of the effectors of T6SS, is delivered into the periplasm of recipient cells. Tse3 functions as a muramidase that degrades the β-1,4-linkage between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan, thus leading to lysis of the recipient cells and providing a competitive advantage to the donor cells. Here, the preliminary crystallographic study of Tse3 is reported. A crystal of Tse3 diffracted to 1.5 Å resolution. It belonged to space group C121, with unit-cell parameters a = 166.99, b = 70.13, c = 41.94 Å, α = 90.00, β = 90.52, γ = 90.00° and one molecule per asymmetric unit

  5. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.

    Directory of Open Access Journals (Sweden)

    Marcela de Souza Santos

    2017-06-01

    Full Text Available The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS production using the Type III Secretion System 2 (T3SS2 effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

  6. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  7. New players in the same old game: a system level in silico study to predict type III secretion system and effector proteins in bacterial genomes reveals common themes in T3SS mediated pathogenesis.

    Science.gov (United States)

    Sadarangani, Vineet; Datta, Sunando; Arunachalam, Manonmani

    2013-07-26

    Type III secretion system (T3SS) plays an important role in virulence or symbiosis of many pathogenic or symbiotic bacteria [CHM 2:291-294, 2007; Physiology (Bethesda) 20:326-339, 2005]. T3SS acts like a tunnel between a bacterium and its host through which the bacterium injects 'effector' proteins into the latter [Nature 444:567-573, 2006; COSB 18:258-266, 2008]. The effectors spatially and temporally modify the host signalling pathways [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe5:571-579, 2009]. In spite its crucial role in host-pathogen interaction, the study of T3SS and the associated effectors has been limited to a few bacteria [Cell Microbiol 13:1858-1869, 2011; Nat Rev Microbiol 6:11-16, 2008; Mol Microbiol 80:1420-1438, 2011]. Before one set out to perform systematic experimental studies on an unknown set of bacteria it would be beneficial to identify the potential candidates by developing an in silico screening algorithm. A system level study would also be advantageous over traditional laboratory methods to extract an overriding theme for host-pathogen interaction, if any, from the vast resources of data generated by sequencing multiple bacterial genomes. We have developed an in silico protocol in which the most conserved set of T3SS proteins was used as the query against the entire bacterial database with increasingly stringent search parameters. It enabled us to identify several uncharacterized T3SS positive bacteria. We adopted a similar strategy to predict the presence of the already known effectors in the newly identified T3SS positive bacteria. The huge resources of biochemical data [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe 5:571-579, 2009; BMC Bioinformatics 7(11):S4, 2010] on the T3SS effectors enabled us to search for the common theme in T3SS mediated pathogenesis. We identified few cellular signalling networks in the host, which are manipulated by most of the T3SS containing pathogens. We went on to look for

  8. A second wave of Salmonella T3SS1 activity prolongs the lifespan of infected epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ciaran E Finn

    2017-04-01

    Full Text Available Type III secretion system 1 (T3SS1 is used by the enteropathogen Salmonella enterica serovar Typhimurium to establish infection in the gut. Effector proteins translocated by this system across the plasma membrane facilitate invasion of intestinal epithelial cells. One such effector, the inositol phosphatase SopB, contributes to invasion and mediates activation of the pro-survival kinase Akt. Following internalization, some bacteria escape from the Salmonella-containing vacuole into the cytosol and there is evidence suggesting that T3SS1 is expressed in this subpopulation. Here, we investigated the post-invasion role of T3SS1, using SopB as a model effector. In cultured epithelial cells, SopB-dependent Akt phosphorylation was observed at two distinct stages of infection: during and immediately after invasion, and later during peak cytosolic replication. Single cell analysis revealed that cytosolic Salmonella deliver SopB via T3SS1. Although intracellular replication was unaffected in a SopB deletion mutant, cells infected with ΔsopB demonstrated a lack of Akt phosphorylation, earlier time to death, and increased lysis. When SopB expression was induced specifically in cytosolic Salmonella, these effects were restored to levels observed in WT infected cells, indicating that the second wave of SopB protects this infected population against cell death via Akt activation. Thus, T3SS1 has two, temporally distinct roles during epithelial cell colonization. Additionally, we found that delivery of SopB by cytosolic bacteria was translocon-independent, in contrast to canonical effector translocation across eukaryotic membranes, which requires formation of a translocon pore. This mechanism was also observed for another T3SS1 effector, SipA. These findings reveal the functional and mechanistic adaptability of a T3SS that can be harnessed in different microenvironments.

  9. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.

    Science.gov (United States)

    Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee

    2010-10-15

    Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of

  10. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Tong Minyan

    2010-10-01

    Full Text Available Abstract Background Effectors of Type III Secretion System (T3SS play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i comprehensive annotation of experimental status of effectors, ii submission and curation review of records by users of the database, and iii the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%. Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors

  11. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora.

    Science.gov (United States)

    Dugé De Bernonville, Thomas; Gaucher, Matthieu; Flors, Victor; Gaillard, Sylvain; Paulin, Jean-Pierre; Dat, James F; Brisset, Marie-Noëlle

    2012-06-01

    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. MxiA, MxiC and IpaD Regulate Substrate Selection and Secretion Mode in the T3SS of Shigella flexneri.

    Science.gov (United States)

    Shen, Da-Kang; Blocker, Ariel J

    2016-01-01

    Type III secretion systems (T3SSs) are central virulence devices for many Gram-negative bacterial pathogens of humans, animals & plants. Upon physical contact with eukaryotic host cells, they translocate virulence-mediating proteins, known as effectors, into them during infection. T3SSs are gated from the outside by host-cell contact and from the inside via two cytoplasmic negative regulators, MxiC and IpaD in Shigella flexneri, which together control the effector secretion hierarchy. Their absence leads to premature and increased secretion of effectors. Here, we investigated where and how these regulators act. We demonstrate that the T3SS inner membrane export apparatus protein MxiA plays a role in substrate selection. Indeed, using a genetic screen, we identified two amino acids located on the surface of MxiA's cytoplasmic region (MxiAC) which, when mutated, upregulate late effector expression and, in the case of MxiAI674V, also secretion. The cytoplasmic region of MxiA, but not MxiAN373D and MxiAI674V, interacts directly with the C-terminus of MxiC in a two-hybrid assay. Efficient T3S requires a cytoplasmic ATPase and the proton motive force (PMF), which is composed of the ΔΨ and the ΔpH. MxiA family proteins and their regulators are implicated in utilization of the PMF for protein export. However, our MxiA point mutants show similar PMF utilisation to wild-type, requiring primarily the ΔΨ. On the other hand, lack of MxiC or IpaD, renders the faster T3S seen increasingly dependent on the ΔpH. Therefore, MxiA, MxiC and IpaD act together to regulate substrate selection and secretion mode in the T3SS of Shigella flexneri.

  13. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-09-01

    Full Text Available Hydroxycinnamic acids (HCAs are typical monocyclic phenylpropanoids, including cinnamic acid (Cin, coumaric acid (Cou, caffeic acid (Caf, ferulic acid (FA and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS in Ralstonia solanacearum. FA significantly induced the expression of the T3SS and some type III effectors (T3Es genes in hrp-inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum, was able to promote its infection process in host plants under hydroponics condition.

  14. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane.

    Science.gov (United States)

    Ji, Hongtao; Dong, Hansong

    2015-09-01

    Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  15. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    Science.gov (United States)

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  16. Shigella IpaH family effectors as a versatile model for studying pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Hiroshi eAshida

    2016-01-01

    Full Text Available Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis. Via the type III secretion system (T3SS, Shigella deliver a subset of virulence proteins (effectors that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC. Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  17. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  18. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  19. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities.

    Science.gov (United States)

    Ray, Ann; Schwartz, Nika; de Souza Santos, Marcela; Zhang, Junmei; Orth, Kim; Salomon, Dor

    2017-11-01

    Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    Science.gov (United States)

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  1. Type IV secretion system of Brucella spp. and its effectors.

    Science.gov (United States)

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  2. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein.

    Science.gov (United States)

    Alcoforado Diniz, Juliana; Coulthurst, Sarah J

    2015-07-01

    The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057-6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion system is a weapon that

  3. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri.

    Science.gov (United States)

    Burgess, Jamie L; Jones, Heather B; Kumar, Prashant; Toth, Ronald T; Middaugh, C Russell; Antony, Edwin; Dickenson, Nicholas E

    2016-05-01

    Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents. © 2016 The Protein Society.

  4. AtlasT4SS: a curated database for type IV secretion systems.

    Science.gov (United States)

    Souza, Rangel C; del Rosario Quispe Saji, Guadalupe; Costa, Maiana O C; Netto, Diogo S; Lima, Nicholas C B; Klein, Cecília C; Vasconcelos, Ana Tereza R; Nicolás, Marisa F

    2012-08-09

    The type IV secretion system (T4SS) can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC) design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive), one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH) relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and evolutionary relationships: (i) F-T4SS, (ii) P-T4SS, (iii

  5. Type IV Secretion System of Brucella spp. and its Effectors

    Directory of Open Access Journals (Sweden)

    Yuehua eKe

    2015-10-01

    Full Text Available Brucella spp. cause brucellosis in domestic and wild animals. They are intracellular bacterial pathogens and used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we will discuss roles of Brucella VirB T4SS and in more detail of all 15 identified effectors, which may be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells, suggesting that it plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. So, we listed some key molecular events in the intracellular life cycle of Brucella potentially targeted by the VirB T4SS effectors. Elucidating functions of the effectors secreted will be crucial to clarifying mechanism of T4SS during infection. Studying the effectors secreted by Brucella spp. might provide insights into the mechanisms by which the bacteria hijack the host signaling pathways, which help us to develop better vaccines and therapies against brucellosis.

  6. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Science.gov (United States)

    Harms, Alexander; Liesch, Marius; Körner, Jonas; Québatte, Maxime; Engel, Philipp; Dehio, Christoph

    2017-10-01

    Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the

  7. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Directory of Open Access Journals (Sweden)

    Alexander Harms

    2017-10-01

    Full Text Available Host-targeting type IV secretion systems (T4SS evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery domain-similar to the Bartonella effector proteins (Beps that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping

  8. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  9. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  10. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  11. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    Energy Technology Data Exchange (ETDEWEB)

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  12. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing.

    Science.gov (United States)

    Goldufsky, Josef; Wood, Stephen J; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A; Shafikhani, Sasha H

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. © 2015 by the Wound Healing Society.

  13. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  14. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  15. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Science.gov (United States)

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  16. The cytotoxic type 3 secretion system 1 of Vibrio rewires host gene expression to subvert cell death and activate cell survival pathways.

    Science.gov (United States)

    De Nisco, Nicole J; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-05-16

    Bacterial effectors potently manipulate host signaling pathways. The marine bacterium Vibrio parahaemolyticus ( V. para ) delivers effectors into host cells through two type 3 secretion systems (T3SSs). T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate nonapoptotic cell death. To understand how the concerted action of T3SS1 effectors globally affects host cell signaling, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1 + ) to those in cells infected with V. para lacking T3SS1 (T3SS1 - ). Overall, the host transcriptional response to both T3SS1 + and T3SS1 - V. para was rapid, robust, and temporally dynamic. T3SS1 rewired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors targeted host cells at the posttranslational level to cause cytotoxicity, V. para T3SS1 also precipitated a host transcriptional response that initially activated cell survival and repressed cell death networks. The increased expression of several key prosurvival transcripts mediated by T3SS1 depended on a host signaling pathway that is silenced posttranslationally later in infection. Together, our analysis reveals a complex interplay between the roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. Copyright © 2017, American Association for the Advancement of Science.

  17. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2011-11-01

    Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.

  18. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3.

    Science.gov (United States)

    Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S

    2014-05-29

    Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.

  19. Assessing the ability of Salmonella enterica to translocate Type III effectors into plant cells

    Science.gov (United States)

    Salmonella enterica, a human enteric pathogen, has the ability to multiply and survive endophytically in plants, and mutations in genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to this colonization. Two reporter plasmids for T3E translocation into plant ce...

  20. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  1. CD4+ T cells are required to contain early extrathoracic TB dissemination and sustain multi-effector functions of CD8+ T and CD3− lymphocytes

    Science.gov (United States)

    Yao, Shuyu; Huang, Dan; Chen, Crystal Y.; Halliday, Lisa; Wang, Richard C.; Chen, Zheng W.

    2014-01-01

    The possibility that CD4+ T cells can act as “innate-like” cells to contain very-early M. tuberculosis (Mtb) dissemination and function as master helpers to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes during development of adaptive immunity against primary tuberculosis(TB) has not been demonstrated. We showed that pulmonary Mtb infection of CD4-depleted macaques surprisingly led to very-early extrathoracic Mtb dissemination, whereas CD4 deficiency clearly resulted in rapid TB progression. CD4 depletion during Mtb infection revealed the ability of CD8+ T cells to compensate and rapidly differentiate to Th17-like/Th1-like, and cytotoxic-like effectors, but these effector functions were subsequently unsustainable due to CD4 deficiency. While CD3-negative non-T lymphocytes in presence of CD4+ T cells developed predominant Th22-like and NK-like (perforin production) responses to Mtb infection, CD4 depletion abrogated these Th22-/NK-like effector functions and favored IL-17 production by CD3-negative lymphocytes. CD4-depleted macaques exhibited no or few pulmonary T effector cells constitutively producing IFN-γ, TNFα, IL-17, IL-22, and perforin at the endpoint of more severe TB, but presented pulmonary IL-4+ T effectors. TB granulomas in CD4-depleted macaques contained fewer IL-22+ and perforin+ cells despite presence of IL-17+ and IL-4+ cells. These results implicate previously-unknown “innate-like” ability of CD4+ T cells to contain extrathoracic Mtb dissemination at very early stage. Data also suggest that CD4+ T cells are required to sustain multiple effector functions of CD8+ T cells and CD3-negative lymphocytes and to prevent rapid TB progression during Mtb infection of nonhuman primates. PMID:24489088

  2. An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach.

    Directory of Open Access Journals (Sweden)

    Zhila Esna Ashari

    Full Text Available Type IV secretion systems (T4SS are multi-protein complexes in a number of bacterial pathogens that can translocate proteins and DNA to the host. Most T4SSs function in conjugation and translocate DNA; however, approximately 13% function to secrete proteins, delivering effector proteins into the cytosol of eukaryotic host cells. Upon entry, these effectors manipulate the host cell's machinery for their own benefit, which can result in serious illness or death of the host. For this reason recognition of T4SS effectors has become an important subject. Much previous work has focused on verifying effectors experimentally, a costly endeavor in terms of money, time, and effort. Having good predictions for effectors will help to focus experimental validations and decrease testing costs. In recent years, several scoring and machine learning-based methods have been suggested for the purpose of predicting T4SS effector proteins. These methods have used different sets of features for prediction, and their predictions have been inconsistent. In this paper, an optimal set of features is presented for predicting T4SS effector proteins using a statistical approach. A thorough literature search was performed to find features that have been proposed. Feature values were calculated for datasets of known effectors and non-effectors for T4SS-containing pathogens for four genera with a sufficient number of known effectors, Legionella pneumophila, Coxiella burnetii, Brucella spp, and Bartonella spp. The features were ranked, and less important features were filtered out. Correlations between remaining features were removed, and dimensional reduction was accomplished using principal component analysis and factor analysis. Finally, the optimal features for each pathogen were chosen by building logistic regression models and evaluating each model. The results based on evaluation of our logistic regression models confirm the effectiveness of our four optimal sets of

  3. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    Science.gov (United States)

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  4. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  5. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species

    Directory of Open Access Journals (Sweden)

    Thao Thi Nguyen

    2018-02-01

    Full Text Available Type VI secretion system (T6SS has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM of T6SEs that possess markers for type VI effectors (MIX motif (MIX T6SEs, 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

  6. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion.

    Science.gov (United States)

    Li, Peng; Tian, Mingxing; Bao, Yanqing; Hu, Hai; Liu, Jiameng; Yin, Yi; Ding, Chan; Wang, Shaohui; Yu, Shengqing

    2017-01-01

    Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS) and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant Δ rfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the molecular

  7. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-09-01

    Full Text Available Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant ΔrfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the

  8. The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions

    Directory of Open Access Journals (Sweden)

    Gunnar N. Schroeder

    2018-01-01

    Full Text Available The defective in organelle trafficking/intracellular multiplication (Dot/Icm Type IVb secretion system (T4SS is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal.

  9. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host.

    Science.gov (United States)

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-01-01

    Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.

  10. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  11. Functional heterogeneity of human effector CD8+ T cells.

    Science.gov (United States)

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  12. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    Science.gov (United States)

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism.

    Science.gov (United States)

    Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan

    2014-06-01

    The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.

  14. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  15. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  16. TNFR2 expression on CD25hiFOXP3+ T cells induced upon TCR stimulation of CD4 T cells identifies maximal cytokine-producing effectors.

    Directory of Open Access Journals (Sweden)

    Chindu eGovindaraj

    2013-08-01

    Full Text Available In this study, we show that CD25hiTNFR2+ cells can be rapidly generated in vitro from circulating CD4 lymphocytes by polyclonal stimuli anti-CD3 in the presence of anti-CD28. The in vitro induced CD25hiTNFR2+ T cells express a conventional Treg phenotype FOXP3+CTLA4+CD127lo/-, but produce effector and immunoregulatory cytokines including IL-2, IL-10 and IFN-g. These induced CD25hiTNFR2+ T cells do not suppress target cell proliferation, but enhance it instead. Thus the CD25hiTNFR2+ phenotype induced rapidly following CD3/28 cross linking of CD4 T cells identifies cells with maximal proliferative and effector cytokine producing capability. The in vivo counterpart of this cell population may play an important role in immune response initiation.

  17. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  18. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    International Nuclear Information System (INIS)

    Wang, Tianyu; Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng; Liu, Wei

    2013-01-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair

  19. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianyu [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng, E-mail: dcwang@ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Wei, E-mail: dcwang@ibp.ac.cn [The Third Military Medical University, Chongqing 400038 (China); Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-10-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.

  20. Differential Role of the T6SS in Acinetobacter baumannii Virulence

    Science.gov (United States)

    Foucault-Grunenwald, Marie-Laure; Borges, Vitor; Charpentier, Xavier; Limansky, Adriana S.; Gomes, João Paulo; Viale, Alejandro M.; Salcedo, Suzana P.

    2015-01-01

    Gram-negative bacteria, such as Acinetobacter baumannii, are an increasing burden in hospitals worldwide with an alarming spread of multi-drug resistant (MDR) strains. Herein, we compared a type strain (ATCC17978), a non-clinical isolate (DSM30011) and MDR strains of A. baumannii implicated in hospital outbreaks (Ab242, Ab244 and Ab825), revealing distinct patterns of type VI secretion system (T6SS) functionality. The T6SS genomic locus is present and was actively transcribed in all of the above strains. However, only the A. baumannii DSM30011 strain was capable of killing Escherichia coli in a T6SS-dependent manner, unlike the clinical isolates, which failed to display an active T6SS in vitro. In addition, DSM30011 was able to outcompete ATCC17978 as well as Pseudomonas aeruginosa and Klebsiella pneumoniae, bacterial pathogens relevant in mixed nosocomial infections. Finally, we found that the T6SS of DSM30011 is required for host colonization of the model organism Galleria mellonella suggesting that this system could play an important role in A. baumannii virulence in a strain-specific manner. PMID:26401654

  1. Differential Role of the T6SS in Acinetobacter baumannii Virulence.

    Directory of Open Access Journals (Sweden)

    Guillermo D Repizo

    Full Text Available Gram-negative bacteria, such as Acinetobacter baumannii, are an increasing burden in hospitals worldwide with an alarming spread of multi-drug resistant (MDR strains. Herein, we compared a type strain (ATCC17978, a non-clinical isolate (DSM30011 and MDR strains of A. baumannii implicated in hospital outbreaks (Ab242, Ab244 and Ab825, revealing distinct patterns of type VI secretion system (T6SS functionality. The T6SS genomic locus is present and was actively transcribed in all of the above strains. However, only the A. baumannii DSM30011 strain was capable of killing Escherichia coli in a T6SS-dependent manner, unlike the clinical isolates, which failed to display an active T6SS in vitro. In addition, DSM30011 was able to outcompete ATCC17978 as well as Pseudomonas aeruginosa and Klebsiella pneumoniae, bacterial pathogens relevant in mixed nosocomial infections. Finally, we found that the T6SS of DSM30011 is required for host colonization of the model organism Galleria mellonella suggesting that this system could play an important role in A. baumannii virulence in a strain-specific manner.

  2. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Mesquita Júnior, D.; Cruvinel, W.M.; Araujo, J.A.P.; Salmazi, K.C.; Kallas, E.G.; Andrade, L.E.C.

    2014-01-01

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25 +/high CD127 Ø/low FoxP3 + , and effector T cells were defined as CD25 + CD127 + FoxP3 Ø . The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4 + TREG and CD28 + TREG cells and an increased frequency of CD40L + TREG cells. There was a decrease in the TREG/effector-T ratio for GITR + , HLA-DR + , OX40 + , and CD45RO + cells, and an increased ratio of TREG/effector-T CD40L + cells in patients with SLE. In addition, CD40L + TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease

  3. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  4. Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2017-06-01

    Full Text Available Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs technology to interrupt type IV secretion system (T4SS effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1, which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.

  5. Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida

    Directory of Open Access Journals (Sweden)

    Lingzhi Zhang

    2018-02-01

    Full Text Available Many bacterial pathogens inject effectors directly into host cells to target a variety of host cellular processes and promote bacterial dissemination and survival. Identifying the bacterial effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Edwardsiella piscicida is a pathogen with a wide host range, and very few of its effectors have been identified to date. Here, based on the genes significantly regulated by macrophage infection, we identified 25 intracellular translocation-positive candidate effectors, including all five previously reported effectors, namely EseG, EseJ, EseH, EseK, and EvpP. A subsequent secretion analysis revealed diverse secretion patterns for the 25 effector candidates, suggesting that multiple transport pathways were involved in the internalization of these candidate effectors. Further, we identified two novel type VI secretion system (T6SS putative effectors and three outer membrane vesicles (OMV-dependent putative effectors among the candidate effectors described above, and further analyzed their contribution to bacterial virulence in a zebrafish model. This work demonstrates an effective approach for screening bacterial effectors and expands the effectors repertoire in E. piscicida.

  6. EFFECTS OF HISTONE DEACETYLASE INHIBITOR, SAHA, ON EFFECTOR AND FOXP3+ REGULATORY T CELLS IN RHESUS MACAQUES

    Science.gov (United States)

    Johnson, Jennifer; Pahuja, Anil; Graham, Melanie; Hering, Bernhard; Hancock, Wayne W.; Pratima, Bansal-Pakala

    2008-01-01

    SAHA, a histone deacetylase inhibitor (HDACi), is clinically approved for treatment of cutaneous T-cell lymphoma. Although the exact underlying mechanisms are unknown, HDACi arrest the cell cycle in rapidly proliferating tumor cells and promote their apoptosis. HDACi were also recently shown to enhance the production and suppressive functions of Foxp3+ regulatory T (Treg) cells in rodents, leading us to begin to investigate the actions of HDACi on rhesus monkey T cells for the sake of potential preclinical applications. In this study, we show that SAHA inhibits polyclonal activation and proliferation of rhesus T cells and that the anti-proliferative effects are due to inhibition of T effector (Teff) cells and enhancement of Treg cells. Cryopreserved rhesus macaque splenocytes were CFSE labeled, stimulated with anti-CD3/anti-CD28 and cultured for 5 days in the presence of varying concentrations of SAHA. Samples were then co-stained to evaluate CD4 and CD8 expression. 10 and 5μM concentrations of SAHA were toxic to splenocytes. Proliferation was inhibited by 57% in CD4 cells and 47% in CD8 cells when unseparated splenocytes were cultured with 3 μM SAHA. Effector cells alone showed a decreased inhibition to proliferation when cultured with 3 μM and 1 μM SAHA when compared to Teff plus Treg cells. Our data suggest that SAHA can be used as part of an immunosuppressive protocol to enhance graft survival by limiting Teff cell proliferation as well as increasing Treg cells, thereby promoting tolerance. PMID:18374101

  7. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Science.gov (United States)

    McNally, Alice; Hill, Geoffrey R.; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J.

    2011-01-01

    CD4+CD25+ regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8+ T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4+CD25+ Treg, by critically regulating IL-2 homeostasis, modulate CD8+ T-cell effector differentiation. Expansion and effector differentiation of CD8+ T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8+ effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8+ effector T cells, where IL-2 produced during CD8+ T-cell effector differentiation promotes Treg expansion. PMID:21502514

  8. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells

    NARCIS (Netherlands)

    van Leeuwen, Ester M.; Gamadia, Laila E.; Baars, Paul A.; Remmerswaal, Ester B.; ten Berge, Ineke J.; van Lier, René A.

    2002-01-01

    Two prototypic types of virus-specific CD8(+) T cells can be found in latently infected individuals: CD45R0(+)CD27(+)CCR7(-) effector-memory, and CD45RA(+)CD27(-)CCR7(-) effector-type cells. It has recently been implied that CD45RA(+)CD27(-)CCR7(-) T cells are terminally differentiated effector

  9. The post-transcriptional regulator rsmA/csrA activates T3SS by stabilizing the 5' UTR of hrpG, the master regulator of hrp/hrc genes, in Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Maxuel O Andrade

    2014-02-01

    Full Text Available The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC but also contributes to triggering the hypersensitive response (HR in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5' untranslated region (UTR of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host plants. RsmA also stabilizes the transcripts of another T3SS-associated hrpD operon by directly binding to the 5' UTR region. Taken together, these data revealed that RsmA primarily activates T3SS by acting as a positive regulator of hrpG and that this regulation is critical to the pathogenicity of XCC.

  10. The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression.

    Science.gov (United States)

    Kroken, Abby R; Chen, Camille K; Evans, David J; Yahr, Timothy L; Fleiszig, Suzanne M J

    2018-05-01

    Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103Δ exoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is often referred to as an extracellular

  11. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.

    Science.gov (United States)

    Chourashi, Rhishita; Das, Suman; Dhar, Debarpan; Okamoto, Keinosuke; Mukhopadhyay, Asish K; Chatterjee, Nabendu Sekhar

    2018-05-01

    Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

  12. Phenotypic and Genomic Analysis of Hypervirulent Human-associated Bordetella bronchiseptica

    Directory of Open Access Journals (Sweden)

    Ahuja Umesh

    2012-08-01

    Full Text Available Abstract Background B. bronchiseptica infections are usually associated with wild or domesticated animals, but infrequently with humans. A recent phylogenetic analysis distinguished two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Complex IV isolates appear to have a bias for infecting humans; however, little is known regarding their epidemiology, virulence properties, or comparative genomics. Results Here we report a characterization of the virulence of human-associated complex IV B. bronchiseptica strains. In in vitro cytotoxicity assays, complex IV strains showed increased cytotoxicity in comparison to a panel of complex I strains. Some complex IV isolates were remarkably cytotoxic, resulting in LDH release levels in A549 cells that were 10- to 20-fold greater than complex I strains. In vivo, a subset of complex IV strains was found to be hypervirulent, with an increased ability to cause lethal pulmonary infections in mice. Hypercytotoxicity in vitro and hypervirulence in vivo were both dependent on the activity of the bsc T3SS and the BteA effector. To clarify differences between lineages, representative complex IV isolates were sequenced and their genomes were compared to complex I isolates. Although our analysis showed there were no genomic sequences that can be considered unique to complex IV strains, there were several loci that were predominantly found in complex IV isolates. Conclusion Our observations reveal a T3SS-dependent hypervirulence phenotype in human-associated complex IV isolates, highlighting the need for further studies on the epidemiology and evolutionary dynamics of this B. bronchiseptica lineage.

  13. CD4+ FOXP3+ Regulatory T Cells Exhibit Impaired Ability to Suppress Effector T Cell Proliferation in Patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Young Ah Lee

    Full Text Available We investigated whether the frequency, phenotype, and suppressive function of CD4+ FOXP3+ regulatory T cells (Tregs are altered in young TS patients with the 45,X karyotype compared to age-matched controls.Peripheral blood mononuclear cells from young TS patients (n = 24, 17.4-35.9 years and healthy controls (n = 16 were stained with various Treg markers to characterize their phenotypes. Based on the presence of thyroid autoimmunity, patients were categorized into TS (- (n = 7 and TS (+ (n = 17. Tregs sorted for CD4+ CD25bright were co-cultured with autologous CD4+ CD25- target cells in the presence of anti-CD3 and -CD28 antibodies to assess their suppressive function.Despite a lower frequency of CD4+ T cells in the TS (- and TS (+ patients (mean 30.8% and 31.7%, vs. 41.2%; P = 0.003 and P < 0.001, respectively, both groups exhibited a higher frequency of FOXP3+ Tregs among CD4+ T cells compared with controls (means 1.99% and 2.05%, vs. 1.33%; P = 0.029 and P = 0.004, respectively. There were no differences in the expression of CTLA-4 and the frequency of Tregs expressing CXCR3+, and CCR4+ CCR6+ among the three groups. However, the ability of Tregs to suppress the in vitro proliferation of autologous CD4+ CD25- T cells was significantly impaired in the TS (- and TS (+ patients compared to controls (P = 0.003 and P = 0.041. Meanwhile, both the TS (- and TS (+ groups had lower frequencies of naïve cells (P = 0.001 for both but higher frequencies of effector memory cells (P = 0.004 and P = 0.002 than did the healthy control group.The Tregs of the TS patients could not efficiently suppress the proliferation of autologous effector T cells, despite their increased frequency in peripheral CD4+ T cells.

  14. X-linked inhibitor of apoptosis regulates T cell effector function

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonnière, Lyne; Moore, Craig S

    2007-01-01

    To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice with exper......To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice...... dramatically reduced within the CNS. Flow cytometry showed an 88-93% reduction in T cells. The proportion of TUNEL(+) apoptotic CD4(+) T cells in the CNS was increased from Neurons...... and oligodendrocytes were not affected; neither did apoptosis increase in liver, where XIAP knockdown also occurred. ASO-XIAP increased susceptibility of T cells to activation-induced apoptosis in vitro. Our results identify XIAP as a critical controller of apoptotic susceptibility of effector T cell function...

  15. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    Science.gov (United States)

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  16. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair.

    Science.gov (United States)

    Whitney, John C; Chou, Seemay; Russell, Alistair B; Biboy, Jacob; Gardiner, Taylor E; Ferrin, Michael A; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D

    2013-09-13

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.

  17. Identification, Structure, and Function of a Novel Type VI Secretion Peptidoglycan Glycoside Hydrolase Effector-Immunity Pair*

    Science.gov (United States)

    Whitney, John C.; Chou, Seemay; Russell, Alistair B.; Biboy, Jacob; Gardiner, Taylor E.; Ferrin, Michael A.; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D.

    2013-01-01

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity. PMID:23878199

  18. Exoenzyme T Plays a Pivotal Role in the IFN-γ Production after Pseudomonas Challenge in IL-12 Primed Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Mickael Vourc’h

    2017-10-01

    Full Text Available Pseudomonas aeruginosa (PA expresses the type III secretion system (T3SS and effector exoenzymes that interfere with intracellular pathways. Natural killer (NK cells play a key role in antibacterial immunity and their activation is highly dependent on IL-12 produced by myeloid cells. We studied PA and NK cell interactions and the role of IL-12 using human peripheral blood mononuclear cells, sorted human NK cells, and a human NK cell line (NK92. We used a wild-type (WT strain of PA (PAO1 or isogenic PA-deleted strains to delineate the role of T3SS and exoenzymes. Our hypotheses were tested in vivo in a PA-pneumonia mouse model. Human NK cells or NK92 cell line produced low levels of IFN-γ in response to PA without IL-12 stimulation, whereas PA significantly increased IFN-γ after IL-12 priming. The modulation of IFN-γ production by PA required bacteria-to-cell contact. Among T3SS effectors, exoenzyme T (ExoT upregulates IFN-γ production and control ERK activation. In vivo, ExoT also increases IFN-γ levels and the percentage of IFN-γ+ NK cells in lungs during PA pneumonia, confirming in vitro data. In conclusion, our results suggest that T3SS could modulate the production of IFN-γ by NK cells after PA infection through ERK activation.

  19. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.

    Science.gov (United States)

    Xin, Annie; Masson, Frederick; Liao, Yang; Preston, Simon; Guan, Tianxia; Gloury, Renee; Olshansky, Moshe; Lin, Jian-Xin; Li, Peng; Speed, Terence P; Smyth, Gordon K; Ernst, Matthias; Leonard, Warren J; Pellegrini, Marc; Kaech, Susan M; Nutt, Stephen L; Shi, Wei; Belz, Gabrielle T; Kallies, Axel

    2016-04-01

    T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.

  20. miRNA profiling of naive, effector and memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Haoquan Wu

    Full Text Available microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific naïve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs was observed in effector T cells compared to naïve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to naïve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.

  1. alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.

    Science.gov (United States)

    Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B

    2000-12-01

    Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.

  2. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Niemann, George; Baker, Erin Shammel; Belov, Mikhail E.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; McDermott, Jason E.

    2010-11-08

    Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. While it has been determined that the first 20 - 30 N-terminal residues usually contain the ‘secretion signal’ that targets effector proteins for translocation, the molecular basis for recognition of this signal is not understood. Recent machine-learning approaches, such as SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structures systematically probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The signal-CyaA fusion assay showed that the native and SseJ-H fusion constructs were secreted into J774 macrophage at similar levels via the SPI-2 secretion pathway while secretion of the SseJ-L fusion construct was substantially retarded, suggesting that the SseJ secretion signal was sequence order dependent. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with only a small predisposition to adopt nascent helical structure in the presence of the powerful structure stabilizing agent, 1,1,1,3,3,3

  3. Identification and characterization of a type III secretion-associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus.

    Science.gov (United States)

    Akeda, Yukihiro; Okayama, Kanna; Kimura, Tomomi; Dryselius, Rikard; Kodama, Toshio; Oishi, Kazunori; Iida, Tetsuya; Honda, Takeshi

    2009-07-01

    Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus. In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30-100 amino acids and an amino terminal secretion signal encompassing the first 5-20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.

  4. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    Science.gov (United States)

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  5. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities.

    Science.gov (United States)

    Lian, Yi-Tian; Yang, Xiao-Fang; Wang, Zhao-Hui; Yang, Yong; Yang, Ying; Shu, Yan-Wen; Cheng, Long-Xian; Liu, Kun

    2013-09-01

    Curcumin, the principal active component of turmeric, has long been used to treat various diseases in India and China. Recent studies show that curcumin can serve as a therapeutic agent for autoimmune diseases via a variety of mechanisms. Effector memory T cells (T(EM), CCR7⁻ CD45RO⁺ T lymphocyte) have been demonstrated to play a crucial role in the pathogenesis of T cell-mediated autoimmune diseases, such as multiple sclerosis (MS) or rheumatoid arthritis (RA). Kv1.3 channels are predominantly expressed in T(EM) cells and control T(EM) activities. In the present study, we examined the effect of curcumin on human Kv1.3 (hKv1.3) channels stably expressed in HEK-293 cells and its ability to inhibit proliferation and cytokine secretion of T(EM) cells isolated from patients with MS or RA. Curcumin exhibited a direct blockage of hKv1.3 channels in a time-dependent and concentration-dependent manner. Moreover, the activation curve was shifted to a more positive potential, which was consistent with an open-channel blockade. Paralleling hKv1.3 inhibition, curcumin significantly inhibited proliferation and interferon-γ secretion of T(EM) cells. Our findings demonstrate that curcumin is able to inhibit proliferation and proinflammatory cytokine secretion of T(EM) cells probably through inhibition of hKv1.3 channels, which contributes to the potency of curcumin for the treatment of autoimmune diseases. This is probably one of pharmacological mechanisms of curcumin used to treat autoimmune diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Analysis of T4SS-induced signaling by H. pylori using quantitative phosphoproteomics

    Directory of Open Access Journals (Sweden)

    Frithjof eGlowinski

    2014-07-01

    Full Text Available Helicobacter pylori is a Gram-negative bacterial pathogen colonizing the human stomach. Infection with H. pylori causes chronic inflammation of the gastric mucosa and may lead to peptic ulceration and/or gastric cancer. A major virulence determinant of H. pylori is the type IV secretion system (T4SS, which is used to inject the virulence factor CagA into the host cell, triggering a wide range of cellular signaling events. Here, we used a phosphoproteomic approach to investigate tyrosine signaling in response to host-pathogen interaction, using stable isotope labeling in cell culture (SILAC of AGS cells to obtain a differential picture between multiple infection conditions. Cells were infected with wild type H. pylori P12, a P12ΔCagA deletion mutant, and a P12ΔT4SS deletion mutant to compare signaling changes over time and in the absence of CagA or the T4SS. Tryptic peptides were enriched for tyrosine (Tyr phosphopeptides and analysed by nano-LC-Orbitrap MS. In total, 58 different phosphosites were found to be regulated following infection. The majority of phosphosites identified were kinases of the MAPK familiy. CagA and the T4SS were found to be key regulators of Tyr phosphosites. Our findings indicate that CagA primarily induces activation of ERK1 and integrin linked factors, whereas the T4SS primarily modulates JNK and p38 activation.

  7. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    Science.gov (United States)

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  10. The Shigella flexneri OspB effector: an early immunomodulator.

    Science.gov (United States)

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Small-Molecule Inhibitors of the Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Lingling Gu

    2015-09-01

    Full Text Available Drug-resistant pathogens have presented increasing challenges to the discovery and development of new antibacterial agents. The type III secretion system (T3SS, existing in bacterial chromosomes or plasmids, is one of the most complicated protein secretion systems. T3SSs of animal and plant pathogens possess many highly conserved main structural components comprised of about 20 proteins. Many Gram-negative bacteria carry T3SS as a major virulence determinant, and using the T3SS, the bacteria secrete and inject effector proteins into target host cells, triggering disease symptoms. Therefore, T3SS has emerged as an attractive target for antimicrobial therapeutics. In recent years, many T3SS-targeting small-molecule inhibitors have been discovered; these inhibitors prevent the bacteria from injecting effector proteins and from causing pathophysiology in host cells. Targeting the virulence of Gram-negative pathogens, rather than their survival, is an innovative and promising approach that may greatly reduce selection pressures on pathogens to develop drug-resistant mutations. This article summarizes recent progress in the search for promising small-molecule T3SS inhibitors that target the secretion and translocation of bacterial effector proteins.

  12. Structural and Biochemical Characterization of SrcA, a Multi-cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.; Zhang, K; Andres, S; Fnag, Y; Kaniuk, N; Hannemann, M; Brumell, J; Foster, L; Junop, M; Coombes, B

    2010-01-01

    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 {angstrom} revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  13. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.

    Directory of Open Access Journals (Sweden)

    Colin A Cooper

    2010-02-01

    Full Text Available Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2 is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2 and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  14. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection.

    Directory of Open Access Journals (Sweden)

    Eva Rothmeier

    2013-09-01

    Full Text Available The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS to form in phagocytes a distinct "Legionella-containing vacuole" (LCV, which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.

  15. Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection

    Science.gov (United States)

    Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert

    2013-01-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924

  16. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance

    Directory of Open Access Journals (Sweden)

    Sylvaine eYou

    2015-05-01

    Full Text Available Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this minireview, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.

  17. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    2015-08-01

    Full Text Available The type VI secretion system (T6SS is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are "orphan" effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.

  18. Microbiological features and clinical impact of the type VI secretion system (T6SS) in Acinetobacter baumannii isolates causing bacteremia.

    Science.gov (United States)

    Kim, Jungok; Lee, Ji-Young; Lee, Haejeong; Choi, Ji Young; Kim, Dae Hun; Wi, Yu Mi; Peck, Kyong Ran; Ko, Kwan Soo

    2017-10-03

    We investigated the genetic background and microbiological features of T6SS-positive Acinetobacter baumannii isolates and clinical impact of the T6SS in patients with A. baumannii bacteremia. One hundred and 62 A. baumannii isolates from patients with bacteremia in 2 tertiary-care hospitals in Korea were included in this study. Approximately one-third (51/162, 31.5%) of the A. baumannii clinical isolates possessed the hcp gene, and the hcp-positive isolates were found in several genotypes in multilocus sequence typing. The expression and secretion of Hcp protein varied among the clinical isolates. A. baumannii isolates with detectable Hcp secretion (T6SS+) could better outcompete Escherichia coli compared with T6SS- isolates, including hcp-negative and inactivated hcp-positive isolates. In addition, T6SS+ isolates showed higher biofilm-forming activity and better survival in the presence of normal human serum than the T6SS- isolates. T6SS+ isolates were more frequently detected in patients with catheter-related bloodstream infection, haematopoietic stem cell transplant recipients, and patients receiving immunosuppressive agents. However, T6SS was not a prognostic factor for mortality. Our results suggest that the T6SS of A. baumannii is associated with virulence and contributes to infections in immunocompromised patients and those with implanted medical devices.

  19. Repertoire Development and the Control of Cytotoxic/Effector Function in Human γδ T Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Urban

    2010-01-01

    Full Text Available T cells develop into two major populations distinguished by their T cell receptor (TCR chains. Cells with the αβ TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate γδ TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant Vγ2Vδ2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on γδ T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive Vγ2Vδ2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for γδ T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy.

  20. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    Directory of Open Access Journals (Sweden)

    Sema eKurtulus

    2013-01-01

    Full Text Available Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of

  1. Interdependence of the kinetics of NTP hydrolysis and the stability of the RecA-ssDNA complex.

    Science.gov (United States)

    Katz, F S; Bryant, F R

    2001-09-18

    The ssDNA-dependent NTP hydrolysis activity of the RecA protein was examined using a series of dTn oligomers ranging in size from dT10 to dT2000 as the ssDNA effector. There were three distinct manifestations of the dTn-dependent NTP hydrolysis reaction, depending on the length of the dTn effector that was used. With longer dTn oligomers, NTP hydrolysis occurred with a turnover number of 20-25 min(-1) and the observed S0.5 value for the NTP was independent of the concentration of the dTn oligomer (DNA concentration-independent hydrolysis). With dTn oligomers of intermediate length, NTP hydrolysis still occurred with a turnover number of 20-25 min(-1), but the observed S0.5 for the NTP decreased with increasing dTn concentration until reaching a value similar to that obtained with the longer dTn oligomers (DNA concentration-dependent hydrolysis). With shorter dTn oligomers, the NTP hydrolysis activity was effectively eliminated. Although this general progression of kinetic behavior was observed for the three structurally related NTPs (dATP, ATP, and GTP), the dTn oligomer length at which DNA concentration-independent, DNA concentration-dependent, and no NTP hydrolysis was observed depended on the NTP being considered. For example, dATP (S0.5 = 35 microM) was hydrolyzed in the presence of dT20, whereas ATP (S0.5 = 70 microM) and GTP (S0.5 = 1200 microM) required at least dT50 and dT200 for hydrolysis, respectively. These results are discussed in terms of a kinetic model in which the stability of the RecA-ssDNA-NTP complex is dependent on the intrinsic S0.5 value of the NTP being hydrolyzed.

  2. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function.

    Science.gov (United States)

    Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang

    2017-07-21

    B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.

  3. Cytokine Secreting Microparticles Engineer the Fate and the Effector Functions of T-Cells.

    Science.gov (United States)

    Majedi, Fatemeh S; Hasani-Sadrabadi, Mohammad Mahdi; Kidani, Yoko; Thauland, Timothy J; Moshaverinia, Alireza; Butte, Manish J; Bensinger, Steven J; Bouchard, Louis-S

    2018-02-01

    T-cell immunotherapy is a promising approach for cancer, infection, and autoimmune diseases. However, significant challenges hamper its therapeutic potential, including insufficient activation, delivery, and clonal expansion of T-cells into the tumor environment. To facilitate T-cell activation and differentiation in vitro, core-shell microparticles are developed for sustained delivery of cytokines. These particles are enriched by heparin to enable a steady release of interleukin-2 (IL-2), the major T-cell growth factor, over 10+ d. The controlled delivery of cytokines is used to steer lineage specification of cultured T-cells. This approach enables differentiation of T-cells into central memory and effector memory subsets. It is shown that the sustained release of stromal cell-derived factor 1α could accelerate T-cell migration. It is demonstrated that CD4+ T-cells could be induced to high concentrations of regulatory T-cells through controlled release of IL-2 and transforming growth factor beta. It is found that CD8+ T-cells that received IL-2 from microparticles are more likely to gain effector functions as compared with traditional administration of IL-2. Culture of T-cells within 3D scaffolds that contain IL-2-secreting microparticles enhances proliferation as compared with traditional, 2D approaches. This yield a new method to control the fate of T-cells and ultimately to new strategies for immune therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis

    Directory of Open Access Journals (Sweden)

    Hai-Lei Wei

    2018-05-01

    Full Text Available Summary: The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. : Wei et al. used a Pseudomonas syringae strain lacking all known type III effectors with a modularized library expressing the 29 active effectors in the strain’s native repertoire, individually and in pairs, to comprehensively determine effector actions and interplay in inducing and suppressing responses associated with plant pathogenesis and immunity. Keywords: effector-triggered-immunity, pattern-triggered-immunity, Hop proteins, plant immunity, mini-Tn7

  5. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    Science.gov (United States)

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  6. GITR ligand-costimulation activates effector and regulatory functions of CD4+ T cells

    International Nuclear Information System (INIS)

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-01-01

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25 - CD4 + effector (Teff) and CD25 + CD4 + regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4 + T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4 + T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists

  7. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  8. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  9. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets

    Directory of Open Access Journals (Sweden)

    Diana M. Elizondo

    2017-11-01

    Full Text Available Allograft inflammatory factor-1 (AIF1 is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c+ dendritic cells (DC and silencing of expression restrains induction of antigen-specific CD4+ T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25+Foxp3+ T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

  10. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ayelet Kaminitz

    Full Text Available BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff and regulatory T cells (Treg to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-, FoxP3(- and suppressor (CD25(+, FoxP3(+ CD4(+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL in both strains. The effector and suppressor CD4(+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+CD25(- T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.

  11. Differential modulation of plant immune responses by diverse members of the Pseudomonas savastanoi pv. savastanoi HopAF type III effector family.

    Science.gov (United States)

    Castañeda-Ojeda, M Pilar; López-Solanilla, Emilia; Ramos, Cayo

    2017-06-01

    The Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system (T3SS) effector repertoire includes 33 candidates, seven of which translocate into host cells and interfere with plant defences. The present study was performed to investigate the co-existence of both plasmid- and chromosomal-encoded members of the HopAF effector family, HopAF1-1 and HopAF1-2, respectively, in the genome of NCPPB 3335. Here, we show that the HopAF1 paralogues are widely distributed in the Pseudomonas syringae complex, where HopAF1-1 is most similar to the homologues encoded by other P. syringae pathovars infecting woody hosts that belong to phylogroups 1 and 3. We show that the expression of both HopAF1-1 and HopAF-2 is transcriptionally dependent on HrpL and demonstrate their delivery into Nicotiana tabacum leaves. Although the heterologous delivery of either HopAF1-1 or HopAF1-2 significantly suppressed the production of defence-associated reactive oxygen species levels, only HopAF1-2 reduced the levels of callose deposition. Moreover, the expression of HopAF1-2 by functionally effectorless P. syringae pv. tomato DC3000D28E completely inhibited the hypersensitive response in tobacco and significantly increased the competitiveness of the strain in Nicotiana benthamiana. Despite their functional differences, subcellular localization studies reveal that green fluorescent protein (GFP) fusions to either HopAF1-1 or HopAF1-2 are targeted to the plasma membrane when they are expressed in plant cells, a process that is completely dependent on the integrity of their N-myristoylation motif. Our results further support the notion that highly similar T3SS effectors might differentially interact with diverse plant targets, even when they co-localize in the same cell compartment. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  12. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL domain effector of Rhizobium sp. strain NGR234.

    Directory of Open Access Journals (Sweden)

    Da-Wei Xin

    Full Text Available Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

  13. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2014-03-01

    Full Text Available Infection of the vascular system by Pseudomonas aeruginosa (Pa occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-types were sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349. VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.

  14. Dibenzotetraaza[14]annulene-adenine conjugate recognizes complementary poly dT among ss-DNA/ss-RNA sequences.

    Science.gov (United States)

    Radić Stojković, Marijana; Škugor, Marko; Tomić, Sanja; Grabar, Marina; Smrečki, Vilko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2013-06-28

    Among three novel DBTAA derivatives only the DBTAA-propyl-adenine conjugate showed recognition of the consecutive oligo dT sequence by increased affinity and specific induced chirooptical response in comparison to other single stranded RNA and DNA; whereby of particular importance is the up until now unique efficient differentiation between dT and rU. At variance, its close analogue DBTAA-hexyl-adenine did not reveal any selectivity between ss-DNA/RNA pointing out the important role of steric factors (linker length); moreover non-selectivity of the reference compound (, lacking adenine) stressed the importance of adenine interactions in the selectivity.

  15. Serial Assessment of Immune Status by Circulating CD8+ Effector T Cell Frequencies for Posttransplant Infectious Complications

    Directory of Open Access Journals (Sweden)

    Shinji Uemoto

    2008-01-01

    Full Text Available To clarify the role of CD8+ effector T cells for infectious complications, 92 recipients were classified according to the hierarchical clustering of preoperative CD8+CD45 isoforms: Group I was naive, Group II was effector memory, and Group III was effector (E T cell-dominant. The posttransplant infection rates progressively increased from 29% in Group I to 64.3% in Group III recipients. The posttransplant immune status was compared with the pretransplant status, based on the measure (% difference and its graphical form (scatter plot. In Groups I and II, both approaches showed a strong upward deviation from pretransplant status upon posttransplant infection, indicating an enhanced clearance of pathogens. In Group III, in contrast, both approaches showed a clear downward deviation from preoperative status, indicating deficient cytotoxicity. The % E difference and scatter plot can be used as a useful indicator of a posttransplant infectious complication.

  16. Profiling calcium signals of in vitro polarized human effector CD4+ T cells.

    Science.gov (United States)

    Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia

    2018-06-01

    Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle.

    Science.gov (United States)

    Marchesini, María I; Morrone Seijo, Susana M; Guaimas, Francisco F; Comerci, Diego J

    2016-01-01

    Brucella abortus , the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus , ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for α-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus .

  18. Deep sequencing and flow cytometric characterization of expanded effector memory CD8+CD57+ T cells frequently reveals T-cell receptor Vβ oligoclonality and CDR3 homology in acquired aplastic anemia.

    Science.gov (United States)

    Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S

    2018-05-01

    Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.

  19. Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Brittany A Goods

    Full Text Available Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1 have been highly successful in the treatment of cancer. While PD-1 expression has been widely investigated, its role in CD4+ effector T cells in the setting of health and cancer remains unclear, particularly in the setting of glioblastoma multiforme (GBM, the most aggressive and common form of brain cancer. We examined the functional and molecular features of PD-1+CD4+CD25-CD127+Foxp3-effector cells in healthy subjects and in patients with GBM. In healthy subjects, we found that PD-1+CD4+ effector cells are dysfunctional: they do not proliferate but can secrete large quantities of IFNγ. Strikingly, blocking antibodies against PD-1 did not rescue proliferation. RNA-sequencing revealed features of exhaustion in PD-1+ CD4 effectors. In the context of GBM, tumors were enriched in PD-1+ CD4+ effectors that were similarly dysfunctional and unable to proliferate. Furthermore, we found enrichment of PD-1+TIM-3+ CD4+ effectors in tumors, suggesting that co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. RNA-sequencing of blood and tumors from GBM patients revealed distinct differences between CD4+ effectors from both compartments with enrichment in multiple gene sets from tumor infiltrating PD-1-CD4+ effectors cells. Enrichment of these gene sets in tumor suggests a more metabolically active cell state with signaling through other co-receptors. PD-1 expression on CD4 cells identifies a dysfunctional subset refractory to rescue with PD-1 blocking antibodies, suggesting that the influence of immune checkpoint inhibitors may involve recovery of function in the PD-1-CD4+ T cell compartment. Additionally, co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial.

  20. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    Directory of Open Access Journals (Sweden)

    Xinxia Zhao

    2016-03-01

    Full Text Available Myostatin (MSTN is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs in tandem with single-stranded DNA oligonucleotides (ssODNs. We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  1. Persistent expansion of CD4(+) effector memory T cells in Wegener's granulomatosis

    NARCIS (Netherlands)

    Abdulahad, W. H.; van der Geld, Y. M.; Stegeman, C. A.; Kallenberg, C. G. M.

    In order to test the hypothesis that Wegener's granulomatosis (WG) is associated with an ongoing immune effector response, even in remission, we examined the distribution of peripheral naive and memory T-lymphocytes in this disease, and analyzed the function-related phenotypes of the memory T-cell

  2. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR.

    Science.gov (United States)

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J

    2015-12-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    Science.gov (United States)

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  4. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    Science.gov (United States)

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Altered T cell memory and effector cell development in chronic lymphatic filarial infection that is independent of persistent parasite antigen.

    Directory of Open Access Journals (Sweden)

    Cathy Steel

    2011-04-01

    Full Text Available Chronic lymphatic filarial (LF infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN, microfilaria (mf positive infected patients (Inf had a reduced CD4 central memory (T(CM compartment. In addition, Inf patients tended to have more effector memory cells (T(EM and fewer effector cells (T(EFF than did ENs giving significantly smaller T(EFF:T(EM ratios. These contracted T(CM and T(EFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf. Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells, was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted T(CM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children

  6. Urinary CD4+ Effector Memory T Cells Reflect Renal Disease Activity in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis

    NARCIS (Netherlands)

    Abdulahad, Wayel H.; Kallenberg, Cees G. M.; Limburg, Pieter C.; Stegeman, Coen A.

    Objective. Numbers of circulating CD4+ effector memory T cells are proportionally increased in patients with proteinase 3 antineutrophil cytoplasmic antibody-associated vasculitis (AAV) whose disease is in remission and are decreased during active disease, which presumably reflects their migration

  7. BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures.

    Science.gov (United States)

    Truttmann, Matthias C; Guye, Patrick; Dehio, Christoph

    2011-01-01

    The gram-negative, zoonotic pathogen Bartonella henselae (Bhe) translocates seven distinct Bartonella effector proteins (Beps) via the VirB/VirD4 type IV secretion system (T4SS) into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation.

  8. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  9. α4β7+ CD4+ Effector/Effector Memory T Cells Differentiate into Productively and Latently Infected Central Memory T Cells by Transforming Growth Factor β1 during HIV-1 Infection.

    Science.gov (United States)

    Cheung, Ka-Wai; Wu, Tongjin; Ho, Sai Fan; Wong, Yik Chun; Liu, Li; Wang, Hui; Chen, Zhiwei

    2018-04-15

    HIV-1 transmission occurs mainly through mucosal tissues. During mucosal transmission, HIV-1 preferentially infects α 4 β 7 + gut-homing CCR7 - CD4 + effector/effector memory T cells (T EM ) and results in massive depletion of these cells and other subsets of T EM in gut-associated lymphoid tissues. However, besides being eliminated by HIV-1, the role of T EM during the early stage of infection remains inconclusive. Here, using in vitro -induced α 4 β 7 + gut-homing T EM (α 4 β 7 + T EM ), we found that α 4 β 7 + T EM differentiated into CCR7 + CD4 + central memory T cells (T CM ). This differentiation was HIV-1 independent but was inhibited by SB431542, a specific transforming growth factor β (TGF-β) receptor I kinase inhibitor. Consistently, T EM -to-T CM differentiation was observed in α 4 β 7 + T EM stimulated with TGF-β1 (TGF-β). The T CM properties of the TGF-β-induced T EM -derived T CM (α 4 β 7 + T CM ) were confirmed by their enhanced CCL19 chemotaxis and the downregulation of surface CCR7 upon T cell activation in vitro Importantly, the effect of TGF-β on T CM differentiation also held in T EM directly isolated from peripheral blood. To investigate the significance of the TGF-β-dependent T EM -to-T CM differentiation in HIV/AIDS pathogenesis, we observed that both productively and latently infected α 4 β 7 + T CM could differentiate from α 4 β 7 + T EM in the presence of TGF-β during HIV-1 infection. Collectively, this study not only provides a new insight for the plasticity of T EM but also suggests that the TGF-β-dependent T EM -to-T CM differentiation is a previously unrecognized mechanism for the formation of latently infected T CM after HIV-1 infection. IMPORTANCE HIV-1 is the causative agent of HIV/AIDS, which has led to millions of deaths in the past 30 years. Although the implementation of highly active antiretroviral therapy has remarkably reduced the HIV-1-related morbidity and mortality, HIV-1 is not eradicated in

  10. Differential responses of human regulatory T cells (Treg and effector T cells to rapamycin.

    Directory of Open Access Journals (Sweden)

    Laura Strauss

    Full Text Available BACKGROUND: The immunosuppressive drug rapamycin (RAPA promotes the expansion of CD4(+ CD25(highFoxp3(+ regulatory T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-gamma chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA. METHODOLOGY/PRINCIPAL FINDINGS: CD4(+CD25(+ and CD4(+CD25(neg T cells were isolated from PBMC of normal controls (n = 21 using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1-100 nM was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4(+CD25(high and CD4(+CD25(neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4(+CD25(neg or CD8(+CD25(neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4(+CD25(+ T cells in the presence of 1-100 nM RAPA (p<0.001. RAPA-expanded Treg were largely CD4(+CD25(highFoxp3(+ cells and were resistant to apoptosis, while CD4(+CD25(neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4(+CD25(neg cells. Activated Treg+/-RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/mTOR pathway. CONCLUSIONS/SIGNIFICANCE: RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation.

  11. Effector/memory CD4 T cells making either Th1 or Th2 cytokines commonly co-express T-bet and GATA-3.

    Directory of Open Access Journals (Sweden)

    Arundhoti Das

    Full Text Available Naïve CD4 T (NCD4T cells post-activation undergo programming for inducible production of cytokines leading to generation of memory cells with various functions. Based on cytokine based polarization of NCD4T cells in vitro, programming for either 'Th1' (interferon-gamma [IFNg] or 'Th2' (interleukin [IL]-4/5/13 cytokines is thought to occur via mutually exclusive expression and functioning of T-bet or GATA-3 transcription factors (TFs. However, we show that a high proportion of mouse and human memory-phenotype CD4 T (MCD4T cells generated in vivo which expressed either Th1 or Th2 cytokines commonly co-expressed T-bet and GATA-3. While T-bet levels did not differ between IFNg-expressing and IL-4/5/13-expressing MCD4T cells, GATA-3 levels were higher in the latter. These observations were also confirmed in MCD4T cells from FVB/NJ or aged C57BL/6 or IFNg-deficient mice. While MCD4T cells from these strains showed greater Th2 commitment than those from young C57BL/6 mice, pattern of co-expression of TF was similar. Effector T cells generated in vivo following immunization also showed TF co-expression in Th1 or Th2 cytokine producing cells. We speculated that the difference in TF expression pattern of MCD4T cells generated in vivo and those generated in cytokine polarized cultures in vitro could be due to relative absence of polarizing conditions during activation in vivo. We tested this by NCD4T cell activation in non-polarizing conditions in vitro. Anti-CD3 and anti-CD28-mediated priming of polyclonal NCD4T cells in vitro without polarizing milieu generated cells that expressed either IFNg or IL-4/5/13 but not both, yet both IFNg- and IL-4/5/13-expressing cells showed upregulation of both TFs. We also tested monoclonal T cell populations activated in non-polarizing conditions. TCR-transgenic NCD4T cells primed in vitro by cognate peptide in non-polarizing conditions which expressed either IFNg or IL-4/5/13 also showed a high proportion of cells co

  12. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    KAUST Repository

    Zimaro, Tamara; Thomas, Ludivine; Marondedze, Claudius; Sgro, Germá n G; Garofalo, Cecilia G; Ficarra, Florencia A; Gehring, Christoph A; Ottado, Jorgelina; Gottig, Natalia

    2014-01-01

    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system

  13. Timing of in utero malaria exposure influences fetal CD4 T cell regulatory versus effector differentiation

    Directory of Open Access Journals (Sweden)

    Mary Prahl

    2016-10-01

    Full Text Available Abstract Background In malaria-endemic areas, the first exposure to malaria antigens often occurs in utero when the fetal immune system is poised towards the development of tolerance. Children exposed to placental malaria have an increased risk of clinical malaria in the first few years of life compared to unexposed children. Recent work has suggested the potential of pregnancy-associated malaria to induce immune tolerance in children living in malaria-endemic areas. A study was completed to evaluate the effect of malaria exposure during pregnancy on fetal immune tolerance and effector responses. Methods Using cord blood samples from a cohort of mother-infant pairs followed from early in pregnancy until delivery, flow cytometry analysis was completed to assess the relationship between pregnancy-associated malaria and fetal cord blood CD4 and dendritic cell phenotypes. Results Cord blood FoxP3+ Treg counts were higher in infants born to mothers with Plasmodium parasitaemia early in pregnancy (12–20 weeks of gestation; p = 0.048, but there was no association between Treg counts and the presence of parasites in the placenta at the time of delivery (by loop-mediated isothermal amplification (LAMP; p = 0.810. In contrast, higher frequencies of activated CD4 T cells (CD25+FoxP3−CD127+ were observed in the cord blood of neonates with active placental Plasmodium infection at the time of delivery (p = 0.035. This population exhibited evidence of effector memory differentiation, suggesting priming of effector T cells in utero. Lastly, myeloid dendritic cells were higher in the cord blood of infants with histopathologic evidence of placental malaria (p < 0.0001. Conclusion Together, these data indicate that in utero exposure to malaria drives expansion of both regulatory and effector T cells in the fetus, and that the timing of this exposure has a pivotal role in determining the polarization of the fetal immune response.

  14. The Many Faces of IpaB

    Directory of Open Access Journals (Sweden)

    William D Picking

    2016-02-01

    Full Text Available The type III secretion system (T3SS is Shigella’s most important virulence factor. The T3SS apparatus (T3SA is comprised of an envelope-spanning basal body and an external needle topped by a tip complex protein called IpaD. This nanomachine is used to deliver effector proteins into host cells to promote pathogen entry. A key component of the matured T3SS needle tip complex is the translocator protein IpaB. IpaB can exist in multiple states when prepared as a recombinant protein, however, it has also been described as having additional roles in Shigella pathogenesis. This mini-review will briefly describe some of the features of IpaB as a T3SS needle tip protein, as a pore-forming translocator protein and as an effector protein. Reflection on the potential importance of the different in vitro states of IpaB on its function and importance in serotype-independent vaccines is also provided.

  15. Effector T-cells are expanded in systemic lupus erythematosus patients with high disease activity and damage indexes.

    Science.gov (United States)

    Piantoni, S; Regola, F; Zanola, A; Andreoli, L; Dall'Ara, F; Tincani, A; Airo', P

    2018-01-01

    Background and objectives T-cell activation may be one of the pathogenic mechanisms of systemic lupus erythematosus (SLE). After repeated antigenic stimulation, T-cells undergo different modifications, leading to the differentiation into effector memory T-cells (CCR7-CD45RA-) and terminally differentiated effector memory (TDEM) T-cells (CCR7-CD45RA+). Similarly, down-modulation of CD28 may lead to the expansion of the CD28- T-cells, a subpopulation with peculiar effector activities. The aim of this study was the characterization of T-cell phenotype in a cohort of patients with SLE according to disease activity and damage index. Materials and methods Phenotypic analysis of peripheral blood T lymphocytes of 51 SLE patients and 21 healthy controls was done by flow-cytometry. SLE disease activity was evaluated by SLE Disease Activity Index-2000 (SLEDAI-2K) and damage by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI). The variations between different groups were evaluated by Mann-Whitney test. Bonferroni correction was applied to adjust for multiple comparisons ( p adj ). Spearman rank test was used to evaluate the correlations between quantitative variables. Results CD4+ lymphopenia was found among SLE patients. Patients showed a trend for a higher percentage of TDEM among the CD4+ T-cell subpopulation in comparison with healthy controls ( p = .04). SLE patients were divided into two groups according to disease activity: patients with SLEDAI-2K ≥ 6 ( n = 13) had a higher percentage of circulating CD4+ T-cells with CD28- phenotype ( p adj  = .005) as well as those with an effector memory ( p adj  = .004) and TDEM ( p adj  = .002) phenotype and a trend of decrease of regulatory T-cells (TREGs) ( p = .02), in comparison with patients with low disease activity ( n = 38). Patients with damage (SDI ≥ 1) tended to show an expansion of TDEM among CD4+ T-cells as compared with

  16. BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures.

    Directory of Open Access Journals (Sweden)

    Matthias C Truttmann

    Full Text Available The gram-negative, zoonotic pathogen Bartonella henselae (Bhe translocates seven distinct Bartonella effector proteins (Beps via the VirB/VirD4 type IV secretion system (T4SS into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation.

  17. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages.

    Directory of Open Access Journals (Sweden)

    Ying Zheng

    2011-04-01

    Full Text Available A type III secretion system (T3SS in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJ(KIM has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJ(KIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJ(KIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJ(KIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJ(CO92, YopJ(KIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJ(KIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJ(CO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro

  18. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    Science.gov (United States)

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. The Type IX Secretion System (T9SS: Highlights and Recent Insights into Its Structure and Function

    Directory of Open Access Journals (Sweden)

    Anna M. Lasica

    2017-05-01

    Full Text Available Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS, a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM. Proteins destined for secretion bear a conserved C-terminal domain (CTD that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo

  20. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function

    Science.gov (United States)

    Lasica, Anna M.; Ksiazek, Miroslaw; Madej, Mariusz; Potempa, Jan

    2017-01-01

    Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is

  1. CXCL10 is the key ligand for CXCR3 on CD8+ effector T cells involved in immune surveillance of the lymphocytic choriomeningitis virus-infected central nervous system

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; de Lemos, Carina; Moos, Torben

    2006-01-01

    /ligand pair is thought to play a central role in regulating T cell-mediated inflammation in this organ site. In this report, we investigated the role of CXCL10 in regulating CD8(+) T cell-mediated inflammation in the virus-infected brain. This was done through analysis of CXCL10-deficient mice infected...... indicate a central role for CXCL10 in regulating the accumulation of effector T cells at sites of CNS inflammation, with no apparent compensatory effect of other CXCR3 ligands....

  2. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency.

    Science.gov (United States)

    Umeshappa, Channakeshava S; Nanjundappa, Roopa H; Xie, Yufeng; Freywald, Andrew; Xu, Qingyong; Xiang, Jim

    2013-04-01

    Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions. © 2012 Blackwell Publishing Ltd.

  3. Polymorphism and solvates of 3,3'-dihydroxy-ss,ss-carotene-4,4'-dione: Screening and their thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.; Ulrich, J. [Martin Luther University Halle-Wittenberg, Center for Engineering Sciences/ TVT, 06099, Halle Saale (Germany)

    2010-03-15

    3,3'-dihydroxy-ss,ss-carotene-4,4'-dione (DCD) is a carotenoid used for the pink coloration in animal and fish foods. Two nonsolvated and two solvated forms of this compound have been discovered and characterized using different analytical techniques. The thermodynamic stability of the relevant polymorphs is revealed. The transformation rate depends strongly on the selection of solvent medium. Moreover, different chemical stability refers to the shelf life is studied correlating to the different polymorphs. The results show the possibilities to improve the pigmentation efficiency and chemical stability by a changing in the crystal polymorphs. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells.

    Science.gov (United States)

    Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M

    2011-10-15

    Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.

  5. Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires.

    Science.gov (United States)

    Li, Peng; Kinch, Lisa N; Ray, Ann; Dalia, Ankur B; Cong, Qian; Nunan, Linda M; Camilli, Andrew; Grishin, Nick V; Salomon, Dor; Orth, Kim

    2017-07-01

    Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a "selfish plasmid" encoding the deadly binary toxins PirA vp /PirB vp To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus , we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control. IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus Although the plasmid-encoded binary toxins PirA vp /PirB vp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type

  6. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach.

    Science.gov (United States)

    Nissan, Gal; Gershovits, Michael; Morozov, Michael; Chalupowicz, Laura; Sessa, Guido; Manulis-Sasson, Shulamit; Barash, Isaac; Pupko, Tal

    2018-02-01

    Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation.

    Directory of Open Access Journals (Sweden)

    Sujit V Janardhan

    Full Text Available Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.

  8. Allogeneic effector/memory Th-1 cells impair FoxP3+ regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia.

    Science.gov (United States)

    Janikashvili, Nona; LaCasse, Collin J; Larmonier, Claire; Trad, Malika; Herrell, Amanda; Bustamante, Sara; Bonnotte, Bernard; Har-Noy, Michael; Larmonier, Nicolas; Katsanis, Emmanuel

    2011-02-03

    Therapeutic strategies combining the induction of effective antitumor immunity with the inhibition of the mechanisms of tumor-induced immunosuppression represent a key objective in cancer immunotherapy. Herein we demonstrate that effector/memory CD4(+) T helper-1 (Th-1) lymphocytes, in addition to polarizing type-1 antitumor immune responses, impair tumor-induced CD4(+)CD25(+)FoxP3(+) regulatory T lymphocyte (Treg) immunosuppressive function in vitro and in vivo. Th-1 cells also inhibit the generation of FoxP3(+) Tregs from naive CD4(+)CD25(-)FoxP3(-) T cells by an interferon-γ-dependent mechanism. In addition, in an aggressive mouse leukemia model (12B1), Th-1 lymphocytes act synergistically with a chaperone-rich cell lysate (CRCL) vaccine, leading to improved survival and long-lasting protection against leukemia. The combination of CRCL as a source of tumor-specific antigens and Th-1 lymphocytes as an adjuvant has the potential to stimulate efficient specific antitumor immunity while restraining Treg-induced suppression.

  9. Novel effector phenotype of Tim-3+ regulatory T cells leads to enhanced suppressive function in head and neck cancer patients.

    Science.gov (United States)

    Liu, Zhuqing; McMichael, Elizabeth L; Shayan, Gulidanna; Li, Jing; Chen, Kevin; Srivastava, Raghvendra M; Kane, Lawrence P; Lu, Binfeng; Ferris, Robert L

    2018-04-30

    Regulatory T (Treg) cells are important suppressive cells among tumor infiltrating lymphocytes (TIL). Treg express the well-known immune checkpoint receptor PD-1, which is reported to mark "exhausted" Treg with lower suppressive function. T cell immunoglobulin mucin (Tim)-3, a negative regulator of Th1 immunity, is expressed by a sizeable fraction of TIL Tregs, but the functional status of Tim-3+ Tregs remains unclear. CD4+CTLA-4+CD25high Treg were sorted from freshly excised head and neck squamous cell carcinoma (HNSCC) TIL based on Tim-3 expression. Functional and phenotypic features of these Tim-3+ and Tim-3- TIL Tregs were tested by in vitro suppression assays and multi-color flow cytometry. Gene expression profiling and NanoString analysis of Tim-3+ TIL Treg were performed. A murine HNSCC tumor model was used to test the effect of anti-PD-1 immunotherapy on Tim-3+ Treg.  Results: Despite high PD-1 expression, Tim-3+ TIL Treg displayed a greater capacity to inhibit naïve T cell proliferation than Tim-3- Treg. Tim-3+ Treg from human HNSCC TIL also displayed an effector-like phenotype, with more robust expression of CTLA-4, PD-1, CD39 and IFN-γ receptor. Exogenous IFN-γ treatment could partially reverse the suppressive function of Tim-3+ TIL Treg. Anti-PD-1 immunotherapy downregulated Tim-3 expression on Tregs isolated from murine HNSCC tumors, and this treatment reversed the suppressive function of HNSCC TIL Tregs. Tim-3+ Treg are functionally and phenotypically distinct in HNSCC TIL, and are highly effective at inhibiting T cell proliferation despite high PD-1 expression.  IFN-γ induced by anti-PD-1 immunotherapy may be beneficial by reversing Tim-3+ Treg suppression. Copyright ©2018, American Association for Cancer Research.

  10. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    Science.gov (United States)

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues.

    Science.gov (United States)

    Brinkman, C Colin; Peske, J David; Engelhard, Victor Henry

    2013-01-01

    T cell activation induces homing receptors that bind ligands on peripheral tissue vasculature, programing movement to sites of infection and injury. There are three major types of CD8 effector T cells based on homing receptor expression, which arise in distinct lymphoid organs. Recent publications indicate that naïve, effector, and memory T cell migration is more complex than once thought; while many effectors enter peripheral tissues, some re-enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors also control CD8 T cell tumor entry. Tumor vasculature has low levels of many peripheral tissue homing receptor ligands, but portions of it resemble high endothelial venules (HEV), enabling naïve T cell entry, activation, and subsequent effector activity. This vasculature is associated with positive prognoses in humans, suggesting it may sustain ongoing anti-tumor responses. These findings reveal new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling entry into lymphoid and non-lymphoid tissues.

  12. Yeast as a Heterologous Model System to Uncover Type III Effector Function.

    Directory of Open Access Journals (Sweden)

    Crina Popa

    2016-02-01

    Full Text Available Type III effectors (T3E are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations

  13. Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System*

    Science.gov (United States)

    Fritsch, Maximilian J.; Trunk, Katharina; Diniz, Juliana Alcoforado; Guo, Manman; Trost, Matthias; Coulthurst, Sarah J.

    2013-01-01

    It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial

  14. Genome-wide identification of HrpL-regulated genes in the necrotrophic phytopathogen Dickeya dadantii 3937.

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    Full Text Available BACKGROUND: Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. METHODOLOGY/PRINCIPAL FINDINGS: To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937, transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cut-off value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA. In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner. CONCLUSION/SIGNIFICANCES: We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937 through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for

  15. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Feng Mei

    Full Text Available Quetiapine (Que, a commonly used atypical antipsychotic drug (APD, can prevent myelin from breakdown without immune attack. Multiple sclerosis (MS, an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells. In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE, a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55 peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+/CD8(+ populations and the proliferation of effector T cells (CD4(+CD25(- in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+/CD8(+ T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+/CD8(+ T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55 or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+CD25(- isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.

  16. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Science.gov (United States)

    Margoles, Lindsay M; Mittal, Rohit; Klingensmith, Nathan J; Lyons, John D; Liang, Zhe; Serbanescu, Mara A; Wagener, Maylene E; Coopersmith, Craig M; Ford, Mandy L

    2016-01-01

    Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  17. Melanoma inhibitor of apoptosis protein (ML-IAP) specific cytotoxic T lymphocytes cross-react with an epitope from the auto-antigen SS56

    DEFF Research Database (Denmark)

    Baek Sørensen, Rikke; Faurschou, Mikkel; Troelsen, Lone

    2009-01-01

    A large proportion of melanoma patients host a spontaneous T-cell response specifically against ML-IAP-derived peptides. In this study, we describe that some ML-IAP-specific cytotoxic T cells isolated from melanoma patients cross react with an epitope from the auto-antigen SS56. SS56 is a recentl...

  18. Substantially Modified Ratios of Effector to Regulatory T Cells During Chemotherapy in Ovarian Cancer Patients Return to Pre-Treatment Levels at Completion: Implications for Immunotherapy

    International Nuclear Information System (INIS)

    Park, Anthony; Govindaraj, Chindu; Xiang, Sue D.; Halo, Julene; Quinn, Michael; Scalzo-Inguanti, Karen; Plebanski, Magdalena

    2012-01-01

    Ovarian cancer is the leading cause of death from gynaecological malignancy. Despite improved detection and treatment options, relapse rates remain high. Combining immunotherapy with the current standard treatments may provide an improved prognosis, however, little is known about how standard chemotherapy affects immune potential (particularly T cells) over time, and hence, when to optimally combine it with immunotherapy (e.g., vaccines). Herein, we assess the frequency and ratio of CD8+ central memory and effector T cells as well as CD4+ effector and regulatory T cells (Tregs) during the first 18 weeks of standard chemotherapy for ovarian cancer patients. In this pilot study, we observed increased levels of recently activated Tregs with tumor migrating ability (CD4+CD25 hi Foxp3+CD127−CCR4+CD38+ cells) in patients when compared to controls. Although frequency changes of Tregs as well as the ratio of effector T cells to Tregs were observed during treatment, the Tregs consistently returned to pre-chemotherapy levels at the end of treatment. These results indicate T cell subset distributions associated with recurrence may be largely resistant to being “re-set” to healthy control homeostatic levels following standard treatments. However, it may be possible to enhance T effector to Treg ratios transiently during chemotherapy. These results suggest personalized immune monitoring maybe beneficial when combining novel immuno-therapeutics with standard treatment for ovarian cancer patients

  19. Substantially Modified Ratios of Effector to Regulatory T Cells During Chemotherapy in Ovarian Cancer Patients Return to Pre-Treatment Levels at Completion: Implications for Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Anthony; Govindaraj, Chindu; Xiang, Sue D., E-mail: Sue.Xiang@monash.edu [Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004 (Australia); Halo, Julene; Quinn, Michael [Department of Oncology, Royal Women’s Hospital, Melbourne, Victoria 3052 (Australia); Scalzo-Inguanti, Karen; Plebanski, Magdalena, E-mail: Sue.Xiang@monash.edu [Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004 (Australia)

    2012-06-18

    Ovarian cancer is the leading cause of death from gynaecological malignancy. Despite improved detection and treatment options, relapse rates remain high. Combining immunotherapy with the current standard treatments may provide an improved prognosis, however, little is known about how standard chemotherapy affects immune potential (particularly T cells) over time, and hence, when to optimally combine it with immunotherapy (e.g., vaccines). Herein, we assess the frequency and ratio of CD8+ central memory and effector T cells as well as CD4+ effector and regulatory T cells (Tregs) during the first 18 weeks of standard chemotherapy for ovarian cancer patients. In this pilot study, we observed increased levels of recently activated Tregs with tumor migrating ability (CD4+CD25{sup hi}Foxp3+CD127−CCR4+CD38+ cells) in patients when compared to controls. Although frequency changes of Tregs as well as the ratio of effector T cells to Tregs were observed during treatment, the Tregs consistently returned to pre-chemotherapy levels at the end of treatment. These results indicate T cell subset distributions associated with recurrence may be largely resistant to being “re-set” to healthy control homeostatic levels following standard treatments. However, it may be possible to enhance T effector to Treg ratios transiently during chemotherapy. These results suggest personalized immune monitoring maybe beneficial when combining novel immuno-therapeutics with standard treatment for ovarian cancer patients.

  20. Effector/memory T cells of the weanling mouse exhibit Type 2 cytokine polarization in vitro and in vivo in the advanced stages of acute energy deficit.

    Science.gov (United States)

    Steevels, Tessa A M; Hillyer, Lyn M; Monk, Jennifer M; Fisher, Megan E; Woodward, Bill D

    2010-06-01

    Our objective was to determine whether the polarizing cytokine profile of the effector/memory T-cell compartment reflects the profound decline of cell-mediated inflammatory competence that characterizes acute prepubescent malnutrition. Weanling C57BL/6J mice were permitted free access to a complete purified diet, free access to an isocaloric low-protein diet or restricted intake of the complete diet for 14 days. First, interleukin (IL)-4 and interferon (IFN)-gamma concentrations generated in vitro by splenic and nodal effector/memory T cells were assessed following exposure to plate-bound anti-CD3. Second, net systemic production of IFN-gamma and IL-4 by the effector/memory T-cell compartment was assessed by the in vivo cytokine capture assay following anti-CD3 stimulation. In vitro stimulation generated less IFN-gamma (P=.002) but more IL-4 (P=.05) by T cells from the restricted-intake group relative to the age-matched control group. Similarly, in vivo stimulation generated low serum levels of antibody-captured IFN-gamma in the restricted-intake group vis-à-vis the age-matched control group (P=.01), while the IL-4 response was sustained (P=.39). By contrast, the 14-day low-protein model exhibited no change in T-cell cytokine signature either in vitro or in vivo. However, following extended consumption of the low-protein diet (26 days), carcass energy losses exceeded those of the 14-day protocol and serum levels of in vivo antibody-captured IFN-gamma were low after anti-CD3 challenge relative to the age-matched control group (P=.02), while levels of captured IL-4 remained unaffected (P=.07). Acute weanling malnutrition elicits a Type 2 polarizing cytokine character on the part of the effector/memory T-cell compartment, but only in the most advanced stages of energy decrement. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Increased numbers of pre-existing memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells1

    Science.gov (United States)

    Joshi, Nikhil S.; Cui, Weiguo; Dominguez, Claudia; Chen, Jonathan H.; Hand, Timothy W.; Kaech, Susan M.

    2011-01-01

    Memory CD8 T cells acquire TEM properties following reinfection, and may reach terminally differentiated, senescent states (“Hayflick limit”) after multiple infections. The signals controlling this process are not well understood, but we found that the degree of 2o effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and pre-existing memory CD8 T cell number (i.e., 1o memory CD8 T cell precursor frequency) present during secondary infection. Compared to naïve cells, memory CD8 T cells were predisposed towards terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of antigen. TE cell formation following 2o or 3o infections was dependent on increased T-bet expression because T-bet+/− cells were resistant to these phenotypic changes. Larger numbers of pre-existing memory CD8 T cells limited the duration of 2o infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2o TE CD8 T cells that formed. Together, these data show that, over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with antigen or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by pre-existing memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies. PMID:21930973

  2. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeremy A Sullivan

    2012-02-01

    Full Text Available CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory. Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-deficient mice with Lymphocytic Choriomeningitis Virus (LCMV. We found that FOXO3 deficiency induced a marked increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically, the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance vaccine-induced protective immunity against intracellular pathogens.

  3. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Torrealdea Javier

    2011-07-01

    Full Text Available Abstract Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS. Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus, T-cell activation, T-cell memory, cross-regulation (negative feedback between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS

  4. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Directory of Open Access Journals (Sweden)

    Lindsay M Margoles

    Full Text Available Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43 and effector molecules (IFN-γ, TNF as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  5. Nodulation outer proteins: double-edged swords of symbiotic rhizobia.

    Science.gov (United States)

    Staehelin, Christian; Krishnan, Hari B

    2015-09-15

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research. © 2015 Authors; published by Portland Press Limited.

  6. Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity

    Directory of Open Access Journals (Sweden)

    Astrid M. Westendorf

    2017-03-01

    Full Text Available Background/Aims: Hypoxia occurs in many pathological conditions, including inflammation and cancer. Within this context, hypoxia was shown to inhibit but also to promote T cell responses. Due to this controversial function, we aimed to explore whether an insufficient anti-tumour response during colitis-associated colon cancer could be ascribed to a hypoxic microenvironment. Methods: Colitis-associated colon cancer was induced in wildtype mice, and hypoxia as well as T cell immunity were analysed in the colonic tumour tissues. In addition, CD4+ effector T cells and regulatory T cells were cultured under normoxic and hypoxic conditions and examined regarding their phenotype and function. Results: We observed severe hypoxia in the colon of mice suffering from colitis-associated colon cancer that was accompanied by a reduced differentiation of CD4+ effector T cells and an enhanced number and suppressive activity of regulatory T cells. Complementary ex vivo and in vitro studies revealed that T cell stimulation under hypoxic conditions inhibited the differentiation, proliferation and IFN-γ production of TH1 cells and enhanced the suppressive capacity of regulatory T cells. Moreover, we identified an active role for HIF-1α in the modulation of CD4+ T cell functions under hypoxic conditions. Conclusion: Our data indicate that oxygen availability can function as a local modulator of CD4+ T cell responses and thus influences tumour immune surveillance in inflammation-associated colon cancer.

  7. OPNET simulation Signaling System No.7 (SS7) network interfaces

    OpenAIRE

    Ow, Kong Chung.

    2000-01-01

    This thesis presents an OPNET model and simulation of the Signaling System No.7 (SS7) network, which is dubbed the world's largest data communications network. The main focus of the study is to model one of its levels, the Message Transfer Part Level 3, in accordance with the ITU.T recommendation Q.704. An overview of SS7 that includes the evolution and basics of SS7 architecture is provided to familarize the reader with the topic. This includes the protocol stack, signaling points, signaling...

  8. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation

    NARCIS (Netherlands)

    Arens, Ramon; Schepers, Koen; Nolte, Martijn A.; van Oosterwijk, Michiel F.; van Lier, René A. W.; Schumacher, Ton N. M.; van Oers, Marinus H. J.

    2004-01-01

    In vivo priming of antigen-specific CD8+ T cells results in their expansion and differentiation into effector T cells followed by contraction into a memory T cell population that can be maintained for life. Recent evidence suggests that after initial antigenic stimulation, the magnitude and kinetics

  9. Age related changes in T cell mediated immune response and effector memory to Respiratory Syncytial Virus (RSV in healthy subjects

    Directory of Open Access Journals (Sweden)

    Campoccia Giuseppe

    2010-10-01

    Full Text Available Abstract Respiratory syncytial virus (RSV is the major pathogen causing respiratory disease in young infants and it is an important cause of serious illness in the elderly since the infection provides limited immune protection against reinfection. In order to explain this phenomenon, we investigated whether healthy adults of different age (20-40; 41-60 and > 60 years, have differences in central and effector memory, RSV-specific CD8+ T cell memory immune response and regulatory T cell expression status. In the peripheral blood of these donors, we were unable to detect any age related difference in term of central (CD45RA-CCR7+ and effector (CD45RA-CCR7- memory T cell frequency. On the contrary, we found a significant increase in immunosuppressive regulatory (CD4+25+FoxP3+ T cells (Treg in the elderly. An immunocytofluorimetric RSV pentamer analysis performed on these donors' peripheral blood mononuclear cells (PBMCs, in vitro sensitized against RSV antigen, revealed a marked decline in long-lasting RSV specific CD8+ memory T cell precursors expressing interleukin 7 receptor α (IL-7Rα, in the elderly. This effect was paralleled by a progressive switch from a Th1 (IFN-γ and TNF-α to a Th2 (IL-10 functional phenotype. On the contrary, an increase in Treg was observed with aging. The finding of Treg over-expression status, a prominent Th2 response and an inefficient RSV-specific effector memory CD8+ T cell expansion in older donors could explain the poor protection against RSV reinfection and the increased risk to develop an RSV-related severe illness in this population. Our finding also lays the basis for new therapeutic perspectives that could limit or prevent severe RSV infection in elderly.

  10. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  11. A Context-Dependent Role for IL-21 in Modulating the Differentiation, Distribution, and Abundance of Effector and Memory CD8 T Cell Subsets.

    Science.gov (United States)

    Tian, Yuan; Cox, Maureen A; Kahan, Shannon M; Ingram, Jennifer T; Bakshi, Rakesh K; Zajac, Allan J

    2016-03-01

    The activation of naive CD8 T cells typically results in the formation of effector cells (TE) as well as phenotypically distinct memory cells that are retained over time. Memory CD8 T cells can be further subdivided into central memory, effector memory (TEM), and tissue-resident memory (TRM) subsets, which cooperate to confer immunological protection. Using mixed bone marrow chimeras and adoptive transfer studies in which CD8 T cells either do or do not express IL-21R, we discovered that under homeostatic or lymphopenic conditions IL-21 acts directly on CD8 T cells to favor the accumulation of TE/TEM populations. The inability to perceive IL-21 signals under competitive conditions also resulted in lower levels of TRM phenotype cells and reduced expression of granzyme B in the small intestine. IL-21 differentially promoted the expression of the chemokine receptor CX3CR1 and the integrin α4β7 on CD8 T cells primed in vitro and on circulating CD8 T cells in the mixed bone marrow chimeras. The requirement for IL-21 to establish CD8 TE/TEM and TRM subsets was overcome by acute lymphocytic choriomeningitis virus infection; nevertheless, memory virus-specific CD8 T cells remained dependent on IL-21 for optimal accumulation in lymphopenic environments. Overall, this study reveals a context-dependent role for IL-21 in sustaining effector phenotype CD8 T cells and influencing their migratory properties, accumulation, and functions. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Signs of impaired immunoregulation and enhanced effector T-cell responses in the primary antiphospholipid syndrome.

    Science.gov (United States)

    Jakiela, B; Iwaniec, T; Plutecka, H; Celinska-Lowenhoff, M; Dziedzina, S; Musial, J

    2016-04-01

    We investigated whether primary antiphospholipid syndrome (PAPS) is characterized by a deficiency in immunoregulatory pathways, a phenomenon recently implicated in the pathogenesis of autoimmune diseases. Serum levels of immunoregulatory (e.g., IL-10 and TGF-β1) and proinflammatory (e.g., IL-17A) cytokines were measured in PAPS, systemic lupus erythematosus (SLE) with secondary APS (SAPS), or without APS, and in healthy controls (n = 40 in each group). In a subgroup of PAPS patients we also compared phenotype and function (flow cytometry) of regulatory T-cells (Treg) and cytokine production by effector T-cells. Our major finding was decreased levels of TGF-β1 in PAPS and SAPS as compared to SLE without APS and controls. TGF-β1 was the lowest in PAPS patients showing high levels of aPL IgG with significant negative correlation with the titer. SLE patients were characterized by lower serum levels of IL-2 and increased IL-17A, as compared to the other groups. The numbers of circulating Treg cells and their phenotype (e.g., FoxP3 isoforms) were not disturbed in PAPS. However, surface expression of latency associated peptide (binds TGF-β) in activated FoxP3 + cells and in vitro production of TGF-β1 were decreased in PAPS patients with high titers of aPL IgG. Moreover, frequencies of cytokine producing effector T-helper cells (including Th17) were significantly elevated in this group. PAPS patients with high titers of aPL IgG antibodies were characterized by decreased systemic levels of TGF-β1 and its impaired production in vitro, suggesting impaired immunoregulation and enhanced adaptive autoimmune responses leading to the production of aPL antibodies. © The Author(s) 2015.

  13. A novel SIV gag-specific CD4(+)T-cell clone suppresses SIVmac239 replication in CD4(+)T cells revealing the interplay between antiviral effector cells and their infected targets.

    Science.gov (United States)

    Ayala, Victor I; Trivett, Matthew T; Coren, Lori V; Jain, Sumiti; Bohn, Patrick S; Wiseman, Roger W; O'Connor, David H; Ohlen, Claes; Ott, David E

    2016-06-01

    To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective. Gag68 TCR cloning and gene transfer into CD4(+)T cells enabled additional experiments with this unique specificity after the original clone senesced. Our data supports the idea that CD4(+)T cells can directly limit AIDS virus spread in T cells. Furthermore, Gag68 TCR transfer into CD4(+)T-cell clones with differing properties holds promise to better understand the suppressive effector mechanisms used by this important component of the antiviral response using the rhesus macaque model. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini.

    Science.gov (United States)

    Wang, Yu; Guo, Yanzhi; Pu, Xuemei; Li, Menglong

    2017-11-01

    Various bacterial pathogens can deliver their secreted substrates also called as effectors through type IV secretion systems (T4SSs) into host cells and cause diseases. Since T4SS secreted effectors (T4SEs) play important roles in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T4SSs. A few computational methods using machine learning algorithms for T4SEs prediction have been developed by using features of C-terminal residues. However, recent studies have shown that targeting information can also be encoded in the N-terminal region of at least some T4SEs. In this study, we present an effective method for T4SEs prediction by novelly integrating both N-terminal and C-terminal sequence information. First, we collected a comprehensive dataset across multiple bacterial species of known T4SEs and non-T4SEs from literatures. Then, three types of distinctive features, namely amino acid composition, composition, transition and distribution and position-specific scoring matrices were calculated for 50 N-terminal and 100 C-terminal residues. After that, we employed information gain represent to rank the importance score of the 150 different position residues for T4SE secretion signaling. At last, 125 distinctive position residues were singled out for the prediction model to classify T4SEs and non-T4SEs. The support vector machine model yields a high receiver operating curve of 0.916 in the fivefold cross-validation and an accuracy of 85.29% for the independent test set.

  15. Effector Regulatory T Cells Reflect the Equilibrium between Antitumor Immunity and Autoimmunity in Adult T-cell Leukemia.

    Science.gov (United States)

    Ureshino, Hiroshi; Shindo, Takero; Nishikawa, Hiroyoshi; Watanabe, Nobukazu; Watanabe, Eri; Satoh, Natsuko; Kitaura, Kazutaka; Kitamura, Hiroaki; Doi, Kazuko; Nagase, Kotaro; Kimura, Hiromi; Samukawa, Makoto; Kusunoki, Susumu; Miyahara, Masaharu; Shin-I, Tadasu; Suzuki, Ryuji; Sakaguchi, Shimon; Kimura, Shinya

    2016-08-01

    The regulatory T cells (Treg) with the most potent immunosuppressive activity are the effector Tregs (eTreg) with a CD45RA(-)Foxp3(++)CCR4(+) phenotype. Adult T-cell leukemia (ATL) cells often share the Treg phenotype and also express CCR4. Although mogamulizumab, a monoclonal antibody to CCR4, shows marked antitumor effects against ATL and peripheral T-cell lymphoma, concerns have been raised that it may induce severe autoimmune immunopathology by depleting eTregs. Here, we present case reports for two patients with ATL who responded to mogamulizumab but developed a severe skin rash and autoimmune brainstem encephalitis. Deep sequencing of the T-cell receptor revealed that ATL cells and naturally occurring Tregs within the cell population with a Treg phenotype can be clearly distinguished according to CADM1 expression. The onset of skin rash and brainstem encephalitis was coincident with eTreg depletion from the peripheral blood, whereas ATL relapses were coincident with eTreg recovery. These results imply that eTreg numbers in the peripheral blood sensitively reflect the equilibrium between antitumor immunity and autoimmunity, and that mogamulizumab might suppress ATL until the eTreg population recovers. Close monitoring of eTreg numbers is crucial if we are to provide immunomodulatory treatments that target malignancy without severe adverse events. Cancer Immunol Res; 4(8); 644-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Cognate antigen stimulation generates potent CD8+ inflammatory effector T cells.

    Directory of Open Access Journals (Sweden)

    Hsueh-Cheng eSung

    2013-12-01

    Full Text Available Inflammatory reactions are believed to be triggered by innate signals and have a major protective role by recruiting innate immunity cells, favoring lymphocyte activation and differentiation, and thus contributing to the sequestration and elimination of the injurious stimuli. Although certain lymphocyte types such as TH17 cells co-participate in inflammatory reactions, their generation from the naïve pool requires the pre-existence of an inflammatory milieu. In this context, inflammation is always regarded as beginning with an innate response that may be eventually perpetuated and amplified by certain lymphocyte types. In contrast, we here show that even in sterile immunizations or in MyD88 deficient mice, CD8 T cells produce a burst of pro-inflammatory cytokines and chemokines. These functions follow opposite rules to the classic CD8 effector functions since they are generated prior to cell expansion and decline before antigen elimination. As few as 56 CD8+ inflammatory effector cells in a lymph node can mobilize 107 cells in 24h, including lymphocytes, natural killer cells and several accessory cell types involved in inflammatory reactions. Thus, although inflammation modulates cognate responses, CD8 cognate responses also initiate local inflammatory reactions.

  17. Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: A possible mechanism for therapeutic modulation of T cells

    OpenAIRE

    van Loosdregt, Jorg; Spreafico, Roberto; Rossetti, Maura; Prakken, Berent J; Lotz, Martin; Albani, Salvatore

    2013-01-01

    Although hydroxychloroquine is used for treatment of numerous autoimmune disorders the mechanism is unclear. We here demonstrate that hydroxychloroquine preferentially induces apoptosis of CD45RO+ memory and effector T cells by inhibiting the survival pathway of autophagy.

  18. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    International Nuclear Information System (INIS)

    Rouse, B.T.; Hartley, D.; Doherty, P.C.

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation

  19. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, B.T.; Hartley, D.; Doherty, P.C. (Univ. of Tennessee, Knoxville (USA))

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation.

  20. Identification and monitoring of effector and regulatory T cells during experimental arthritis based on differential expression of CD25 and CD134

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.M.; Boot, E.P.J.; Wagenaar-Hilbers, J.P.A.; Bilsen, J.H.M. van; Arkesteijn, G.J.A.; Storm, G.; Everse, L.A.; Eden, W. van; Wauben, M.H.M.

    2008-01-01

    Major problems in the analysis of CD4+ effector cell and regulatory T cell (Treg) populations in an activated immune system are caused by the facts that both cell types can express CD25 and that the discriminatory marker forkhead box p3 can only be analyzed in nonviable (permeabilized) cells. Here,

  1. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    Science.gov (United States)

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  2. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Boehm Franziska

    2012-07-01

    Full Text Available Abstract Background Mice lacking Foxp3+ regulatory T (Treg cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Methods Foxp3-GFP-DTR (human diphtheria toxin receptor C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin. The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag−/− C57BL/6 mice and the acute DSS-colitis model. Results Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag−/− C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Conclusion Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.

  3. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  4. Swiss Army Pathogen: The Salmonella Entry Toolkit

    Directory of Open Access Journals (Sweden)

    Peter J. Hume

    2017-08-01

    Full Text Available Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS, a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.

  5. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus Streptococcus

    Science.gov (United States)

    Chen, Chen; Gao, George F.

    2012-01-01

    A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296

  6. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    KAUST Repository

    Zimaro, Tamara

    2014-04-18

    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis. 2014 Zimaro et al.; licensee BioMed Central Ltd.

  7. The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa.

    Science.gov (United States)

    Dong, Yi-Hu; Zhang, Xi-Fen; Zhang, Lian-Hui

    2013-02-01

    The opportunistic pathogen Pseudomonas aeruginosa utilizes type III secretion system (T3SS) to translocate effector proteins into eukaryotic host cells that subvert normal host cell functions to the benefit of the pathogen, and results in serious infections. T3SS in P. aeruginosa is controlled by a complex system of regulatory mechanisms and signaling pathways. In this study, we described that Crc, an RNA-binding protein, exerts a positive impact on T3SS in P. aeruginosa, as evidenced by promoter activity assays of several key T3SS genes, transcriptomics, RT-PCR, and immunoblotting in crc mutant. We further demonstrated that the regulatory function of Crc on the T3SS was mediated through the T3SS master regulator ExsA and linked to the Cbr/Crc signaling system. Expression profiling of the crc mutant revealed a downregulation of flagship T3SS genes as well as 16 other genes known to regulate T3SS gene expression in P. aeruginosa. On the basis of these data, we proposed that Crc may exert multifaceted control on the T3SS through various pathways, which may serve to fine-tune this virulence mechanism in response to environmental changes and nutrient sources. © 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  8. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.

    Science.gov (United States)

    Lazzaro, Martina; Feldman, Mario F; García Véscovi, Eleonora

    2017-08-22

    The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens , it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter , which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia 's RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. IMPORTANCE Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was

  9. A TALE of transposition: Tn3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads.

    Science.gov (United States)

    Ferreira, Rafael Marini; de Oliveira, Amanda Carolina P; Moreira, Leandro M; Belasque, José; Gourbeyre, Edith; Siguier, Patricia; Ferro, Maria Inês T; Ferro, Jesus A; Chandler, Michael; Varani, Alessandro M

    2015-02-17

    Members of the genus Xanthomonas are among the most important phytopathogens. A key feature of Xanthomonas pathogenesis is the translocation of type III secretion system (T3SS) effector proteins (T3SEs) into the plant target cells via a T3SS. Several T3SEs and a murein lytic transglycosylase gene (mlt, required for citrus canker symptoms) are found associated with three transposition-related genes in Xanthomonas citri plasmid pXAC64. These are flanked by short inverted repeats (IRs). The region was identified as a transposon, TnXax1, with typical Tn3 family features, including a transposase and two recombination genes. Two 14-bp palindromic sequences within a 193-bp potential resolution site occur between the recombination genes. Additional derivatives carrying different T3SEs and other passenger genes occur in different Xanthomonas species. The T3SEs include transcription activator-like effectors (TALEs). Certain TALEs are flanked by the same IRs as found in TnXax1 to form mobile insertion cassettes (MICs), suggesting that they may be transmitted horizontally. A significant number of MICs carrying other passenger genes (including a number of TALE genes) were also identified, flanked by the same TnXax1 IRs and delimited by 5-bp target site duplications. We conclude that a large fraction of T3SEs, including individual TALEs and potential pathogenicity determinants, have spread by transposition and that TnXax1, which exhibits all of the essential characteristics of a functional transposon, may be involved in driving MIC transposition. We also propose that TALE genes may diversify by fork slippage during the replicative Tn3 family transposition. These mechanisms may play a crucial role in the emergence of Xanthomonas pathogenicity. Xanthomonas genomes carry many insertion sequences (IS) and transposons, which play an important role in their evolution and architecture. This study reveals a key relationship between transposons and pathogenicity determinants in

  10. Primary and Chronic HIV Infection Differently Modulates Mucosal Vδ1 and Vδ2 T-Cells Differentiation Profile and Effector Functions.

    Directory of Open Access Journals (Sweden)

    Eleonora Cimini

    Full Text Available Gut-associated immune system has been identified as a major battlefield during the early phases of HIV infection. γδ T-cells, deeply affected in number and function after HIV infection, are able to act as a first line of defence against invading pathogens by producing antiviral soluble factors and by killing infected cells. Despite the relevant role in mucosal immunity, few data are available on gut-associated γδ T-cells during HIV infection. Aim of this work was to evaluate how primary (P-HIV and chronic (C-HIV HIV infection affects differentiation profile and functionality of circulating and gut-associated Vδ1 and Vδ2 T-cells. In particular, circulating and mucosal cells were isolated from respectively whole blood and residual gut samples from HIV-infected subjects with primary and chronic infection and from healthy donors (HD. Differentiation profile and functionality were analyzed by multiparametric flow cytometry. P-HIV and C-HIV were characterized by an increase in the frequency of effector Vδ1-T cells both in circulating and mucosal compartments. Moreover, during P-HIV mucosal Vδ1 T-cells expressed high levels of CD107a, suggesting a good effector cytotoxic capability of these cells in the early phase of infection that was lost in C-HIV. P-HIV induced an increase in circulating effector Vδ2 T-cells in comparison to C-HIV and HD. Notably, P-HIV as well as HD were characterized by the ability of mucosal Vδ2 T-cells to spontaneously produce IFN-γ that was lost in C-HIV. Altogether, our data showed for the first time a functional capability of mucosal Vδ1 and Vδ2 T-cells during P-HIV that was lost in C-HIV, suggesting exhaustion mechanisms induced by persistent stimulation.

  11. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. GSM SiNYALLERİNİN .IP OMURGASI İİZERiNI>E TAŞINMASI (SS7 OVER IP- NettcSS7)

    OpenAIRE

    Tülü, Çağatay Neftali; Demirkol, Aşkın

    2003-01-01

    Bu çalışmada günümüzün en popüler nıobilhaberleşme sistemi olan GSM [1 l sisteminin, kendiöğeleri aras1ndaki en temel sinyalleşme sistemi olannumara 7 (SS7 [2) ) sinyallerinin, günümüzün enyaygın iletim omurgast olan ve tüm dünyadakibilgisayarları birbirine bağlayan IP (3] omurgasıüzerinden taşınabilmesi için gerekli si stemin tasar11n1ve gerçeklenınesi üzerinde çahş1lmtştır. Klasil\\ SS7iletimine göre en büyül< faydası çok düşül{ maliyetiolan bu sistem sayesinde, dünyadaki b i r çok GS...

  13. Expansion of PD-1-positive effector CD4 T cells in an experimental model of SLE: contribution to the self-organized criticality theory.

    Science.gov (United States)

    Miyazaki, Yumi; Tsumiyama, Ken; Yamane, Takashi; Ito, Mitsuhiro; Shiozawa, Shunichi

    2013-04-18

    We have developed a systems biology concept to explain the origin of systemic autoimmunity. From our studies of systemic lupus erythematosus (SLE) we have concluded that this disease is the inevitable consequence of over-stimulating the host's immune system by repeated exposure to antigen to levels that surpass a critical threshold, which we term the system's "self-organized criticality". We observed that overstimulation of CD4 T cells in mice led to the development of autoantibody-inducing CD4 T cells (aiCD4 T) capable of generating various autoantibodies and pathological lesions identical to those observed in SLE. We show here that this is accompanied by the significant expansion of a novel population of effector T cells characterized by expression of programmed death-1 (PD-1)-positive, CD27(low), CD127(low), CCR7(low) and CD44(high)CD62L(low) markers, as well as increased production of IL-2 and IL-6. In addition, repeated immunization caused the expansion of CD8 T cells into fully-matured cytotoxic T lymphocytes (CTL) that express Ly6C(high)CD122(high) effector and memory markers. Thus, overstimulation with antigen leads to the expansion of a novel effector CD4 T cell population that expresses an unusual memory marker, PD-1, and that may contribute to the pathogenesis of SLE.

  14. Recombinant Arthrobacter β-1, 3-glucanase as a potential effector molecule for paratransgenic control of Chagas disease.

    Science.gov (United States)

    Jose, Christo; Klein, Nicole; Wyss, Sarah; Fieck, Annabeth; Hurwitz, Ivy; Durvasula, Ravi

    2013-03-14

    Chagas disease is most often transmitted to humans by Trypanosoma cruzi infected triatomine bugs, and remains a significant cause of morbidity and mortality in Central and South America. Control of Chagas disease has relied mainly on vector eradication. However, development of insect resistance has prompted us to develop a paratransgenic strategy to control vectorial transmission of T. cruzi. Here, the potential role of recombinant endoglucanases as anti-trypanosomal agents for paratransgenic application is examined. The surface of T. cruzi is covered by a thick coat of mucin-like glycoproteins that have been proposed to play a role in the binding of T. cruzi to the membrane surface of the vector gut. We hypothesize that disruption of these glycoconjugates could arrest parasite development in the vector and abort the transmission cycle. In this work, we examine the effects of recombinant Arthrobacter luteus β-1, 3-glucanase expressed via Rhodococcus rhodnii on T. cruzi Sylvio II strain. The coding sequence for β-1, 3-glucanase was cloned in-frame to a heterologous promoter/signal sequence from the Mycobacterium kansasii alpha antigen gene resident in an E. coli/R. rhodnii shuttle vector. The resulting construct was confirmed by sequencing, and electroporated into R. rhodnii. Expression products from positive clones were purified from log phase cultures followed by dialysis into physiological buffers. Lysates and media were quantitated by ELISA against rabbit antibody specific to β-1,3-glucanase. Glucanase-positive samples were applied to live T. cruzi parasites in culture and viability accessed by spectrophotometric and fluorescent microscopic measurements. R. rhodnii-expressed β-1,3-glucanase exhibited toxicity against T. cruzi compared to controls when applied at 5 and 10% of the total culture volume. The decrease in cell viability ranged from a maximum of 50% for the media treatments to 80% for the filtered lysates. These results suggest that recombinant

  15. Decreased numbers of CD4+ naive and effector memory T cells, and CD8+ naïve T cells, are associated with trichloroethylene exposure

    Directory of Open Access Journals (Sweden)

    H Dean eHosgood

    2012-01-01

    Full Text Available Trichloroethylene (TCE is a volatile chlorinated organic compound that is commonly used as a solvent for lipophilic compounds. Although recognized as an animal carcinogen, TCE’s carcinogenic potential in humans is still uncertain. We have carried out a cross-sectional study of 80 workers exposed to TCE and 96 unexposed controls matched on age and sex in Guangdong, China to study TCE’s early biologic effects. We previously reported that the total lymphocyte count and each of the major lymphocyte subsets (i.e., CD4+ T cells, CD8+ T cells, natural killer (NK cells, and B cells were decreased in TCE-exposed workers compared to controls, suggesting a selective effect on lymphoid progenitors and/or lymphocyte survival. To explore which T lymphocyte subsets are affected, we investigated the effect of TCE exposure on the numbers of CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells by FACS analysis. Linear regression of each subset was used to test for differences between exposed workers and controls adjusting for potential confounders. We observed that CD4+ and CD8+ naïve T cell counts were about 8% (p = 0.056 and 17% (p = 0.0002 lower, respectively, among exposed workers. CD4+ effector memory T cell counts were decreased by about 20% among TCE exposed workers compared to controls (p = 0.001. The selective targeting of TCE on CD8+ naïve and possibly CD4+ naive T cells, and CD4+ effector memory T cells, provide further insights into the immunosuppression-related response of human immune cells upon TCE exposure.

  16. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  17. Digipelaamisen hyödyt mielenterveystyössä

    OpenAIRE

    Simula, Kristiina

    2017-01-01

    Mielenterveyshäiriöitä ilmenee joka viidennellä suomalaisella. Avohoitopainotteiseen mielenterveystyöhön siirryttäessä tarvitaan uusia näkökulmia asiakastyöhön. DIgipelien suosion myötä on tärkeää miettiä niiden käyttömahdollisuuksia mielenterveystyössä. Jotta uudet menetelmät voidaan ottaa käyttöön, tarvitaan digipelien hyödyistä tutkimustietoa. Opinnäytetyön tarkoituksena on kuvata mitä tutkimustietoa on saatavilla digipelaamisen hyödyistä mielenterveystyössä. Opinnäytetyön tavoitteena ...

  18. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome

    Science.gov (United States)

    Pinaud, Laurie; Ferrari, Mariana L.; Friedman, Robin; Jehmlich, Nico; von Bergen, Martin; Phalipon, Armelle; Sansonetti, Philippe J.

    2017-01-01

    Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed. PMID:29073283

  19. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome.

    Directory of Open Access Journals (Sweden)

    Laurie Pinaud

    Full Text Available Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA, including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC. These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176 have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed.

  20. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.

    Science.gov (United States)

    Haas, Jan D; González, Frano H Malinarich; Schmitz, Susanne; Chennupati, Vijaykumar; Föhse, Lisa; Kremmer, Elisabeth; Förster, Reinhold; Prinz, Immo

    2009-12-01

    Gammadelta T cells are a potent source of innate IL-17A and IFN-gamma, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24(low) CD44(high) effector gammadelta T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ gammadelta T cells produced IL-17A, while NK1.1+ gammadelta T cells were efficient producers of IFN-gamma but not of IL-17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ gammadelta T cells. Accordingly, both gammadelta T-cell subsets were rare in gut-associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL-17A and IFN-gamma in response to TCR-specific and TCR-independent stimuli. IL-12 and IL-18 induced IFN-gamma and IL-23 induced IL-17A production by NK1.1+ or CCR6+ gammadelta T cells, respectively. Importantly, we show that CCR6+ gammadelta T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL-17A-producing gammadelta T cells derive from less TCR-dependent selection events than IFN-gamma-producing NK1.1+ gammadelta T cells.

  1. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...

  2. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype.

    Science.gov (United States)

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D; Lombardi, Giovanna; Nestle, Frank O

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.

  3. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype.

    Directory of Open Access Journals (Sweden)

    Niwa Ali

    Full Text Available The occurrence of Graft-versus-Host Disease (GvHD is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice" are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null, notably the NOD-scid IL-2Rγ(null (NSG and BALB/c-Rag2(null IL-2Rγ(null (BRG mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+ compartment and higher engraftment levels of CD3(+ T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM phenotype and high levels of cutaneous lymphocyte antigen (CLA expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM-cell driven GvHD.

  4. Tytöt pelitoiminnallisessa nuorisotyössä : Helsingin nuorisoasiainkeskuksen Pelitalon tyttökävijöiden kokemuksia toiminnasta

    OpenAIRE

    Renman, Niklas

    2016-01-01

    TIIVISTELMÄ Renman, Niklas. Tytöt pelitoiminnallisessa nuorisotyössä: Helsingin nuorisoasiainkeskuksen Pelitalon tyttökävijöiden kokemuksia toiminnasta. Helsinki, kevät 2016, 66 sivua, 1 liite. Diakonia-ammattikorkeakoulu, sosiaalialan koulutusohjelma, Sosionomi (AMK) + kirkon nuorisotyönohjaajan virkakelpoisuus. Opinnäytetyön tarkoituksena oli kartoittaa tyttöjen asenteita, toiveita ja koke-muksia pelitoiminnallisesta nuorisotyöstä. Tavoitteena oli selvittää, mitkä tekijät vaikuttava...

  5. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    Full Text Available Proanthocyanidins (PAs play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides, to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1 and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR and late anthocyanin structural genes (NtDFR and NtANS, but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering.

  6. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    Full Text Available Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS, which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  7. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Science.gov (United States)

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  8. Effector/memory CD8+ T cells synergize with co-stimulation competent macrophages to trigger autoimmune peripheral neuropathy.

    Science.gov (United States)

    Yang, Mu; Shi, Xiang Qun; Peyret, Corentin; Oladiran, Oladayo; Wu, Sonia; Chambon, Julien; Fournier, Sylvie; Zhang, Ji

    2018-04-05

    Autoimmune peripheral neuropathy (APN) such as Guillain Barre Syndrome (GBS) is a debilitating illness and sometimes life threatening. The molecular and cellular mechanisms remain elusive but exposure to environmental factors including viral/bacterial infection and injury is highly associated with disease incidence. We demonstrated previously that both male and female B7.2 (CD86) transgenic L31 and L31/CD4KO mice develop spontaneous APN. Here we further reveal that CD8 + T cells in these mice exhibit an effector/memory phenotype, which bears a resemblance to the CD8 + T cell response following persistent cytomegalovirus (CMV) infection in humans and mice, whilst CMV has been considered as one of the most relevant pathogens in APN development. These activated, peripheral myelin Ag specific CD8 + T cells are required for the disease initiation. While an injury to a peripheral nerve results in Wallerian degeneration in control littermates, the same injury accelerates the development of APN in other non-injured nerves of L31 mice which have a predisposed inflammatory background consisting of effector/memory CD8 + T (CD8 + T EM ) cells. However, CD8 + T EM cells alone are not sufficient. A certain threshold of B7.2 expression on nerve macrophages is an additional requisite. Our findings reveal that indeed, the synergism between CD8 + T EM cells and co-stimulation competent macrophages is crucial in inducing autoimmune-mediated peripheral neuropathy. The identification of decisive molecular/cellular players connecting environmental triggers and the occurrence of APN provides opportunities to prevent disease onset, reduce relapses and develop new therapeutic strategies. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  9. Cardiac MOLLI T1 mapping at 3.0 T: comparison of patient-adaptive dual-source RF and conventional RF transmission.

    Science.gov (United States)

    Rasper, Michael; Nadjiri, Jonathan; Sträter, Alexandra S; Settles, Marcus; Laugwitz, Karl-Ludwig; Rummeny, Ernst J; Huber, Armin M

    2017-06-01

    To prospectively compare image quality and myocardial T 1 relaxation times of modified Look-Locker inversion recovery (MOLLI) imaging at 3.0 T (T) acquired with patient-adaptive dual-source (DS) and conventional single-source (SS) radiofrequency (RF) transmission. Pre- and post-contrast MOLLI T 1 mapping using SS and DS was acquired in 27 patients. Patient wise and segment wise analysis of T 1 times was performed. The correlation of DS MOLLI measurements with a reference spin echo sequence was analysed in phantom experiments. DS MOLLI imaging reduced T 1 standard deviation in 14 out of 16 myocardial segments (87.5%). Significant reduction of T 1 variance could be obtained in 7 segments (43.8%). DS significantly reduced myocardial T 1 variance in 16 out of 25 patients (64.0%). With conventional RF transmission, dielectric shading artefacts occurred in six patients causing diagnostic uncertainty. No according artefacts were found on DS images. DS image findings were in accordance with conventional T 1 mapping and late gadolinium enhancement (LGE) imaging. Phantom experiments demonstrated good correlation of myocardial T 1 time between DS MOLLI and spin echo imaging. Dual-source RF transmission enhances myocardial T 1 homogeneity in MOLLI imaging at 3.0 T. The reduction of signal inhomogeneities and artefacts due to dielectric shading is likely to enhance diagnostic confidence.

  10. CD4(+) T cells producing interleukin (IL)-17, IL-22 and interferon-? are major effector T cells in nickel allergy

    DEFF Research Database (Denmark)

    Dyring Andersen, Beatrice; Skov, Lone; Løvendorf, Marianne B

    2013-01-01

    the frequencies of CD4(+) , CD8(+) and γδ T cells producing IL-17, IL-22 and interferon (IFN)-γ in the blood and skin from nickel-allergic patients. Patients/materials/methods Blood samples were collected from 14 patients and 17 controls, and analysed by flow cytometry. Biopsies were taken from 5 patients and 6......-allergic patients, there was massive cellular infiltration dominated by CD4(+) T cells producing IL-17, IL-22 and IFN-γ in nickel-challenged skin but not in vehicle-challenged skin. Conclusion CD4(+) T cells producing IL-17, IL-22 and IFN-γ are important effector cells in the eczematous reactions of nickel......Background It has been suggested that interleukin (IL)-17 and IL-22 play important roles in the elicitation of human allergic contact dermatitis; however, the frequencies of T cell subtypes producing IL-17 and IL-22 in human allergic contact dermatitis are unknown. Objectives To determine...

  11. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae.

    Directory of Open Access Journals (Sweden)

    Astrid C Engel

    Full Text Available Chlamydia pneumoniae is an intracellular Gram-negative bacterium that possesses a type III secretion system (T3SS, which enables the pathogen to deliver, in a single step, effector proteins for modulation of host-cell functions into the human host cell cytosol to establish a unique intracellular niche for replication. The translocon proteins located at the top of the T3SS needle filament are essential for its function, as they form pores in the host-cell membrane. Interestingly, unlike other Gram-negative bacteria, C. pneumoniae has two putative translocon operons, named LcrH_1 and LcrH_2. However, little is known about chlamydial translocon proteins. In this study, we analyzed CPn0809, one of the putative hydrophobic translocators encoded by the LcrH_1 operon, and identified an 'SseC-like family' domain characteristic of T3S translocators. Using bright-field and confocal microscopy, we found that CPn0809 is associated with EBs during early and very late phases of a C. pneumoniae infection. Furthermore, CPn0809 forms oligomers, and interacts with the T3SS chaperone LcrH_1, via its N-terminal segment. Moreover, expression of full-length CPn0809 in the heterologous host Escherichia coli causes a grave cytotoxic effect that leads to cell death. Taken together, our data indicate that CPn0809 likely represents one of the translocon proteins of the C. pneumoniae T3SS, and possibly plays a role in the translocation of effector proteins in the early stages of infection.

  12. Rekrytointi Myyntityössä : vaikutus & kehittäminen

    OpenAIRE

    Koskinen, Severi

    2017-01-01

    Opinnäytetyön tavoitteena oli tutkia rekrytointia myyntityössä, sen vaikutusta ja miten kehittää rekrytointia. Tätä lähdettiin selvittämään käsittelemällä teoriaosuudessa rekrytoinnin vaikutuksia, vaikutuksia myyntityössä sekä rekrytointiprosessin suorittamista. Tutkimusosuudessa tätä pyrittiin selvittämään etsimällä onnistuneista rekrytoinneista yhteisiä tekijöitä sekä epäonnistuneille rekrytoinneille syitä. Näitä tunnistamalla pystytään kehittämään ennalta toimivia rekrytointeja sekä välttä...

  13. Lenalidomide-based maintenance therapy reduces TNF receptor 2 on CD4 T cells and enhances immune effector function in acute myeloid leukemia patients.

    Science.gov (United States)

    Govindaraj, Chindu; Madondo, Mutsa; Kong, Ying Ying; Tan, Peter; Wei, Andrew; Plebanski, Magdalena

    2014-08-01

    A major limitation to improved outcomes in acute myelogenous leukemia (AML) is relapse resulting from leukemic cells that persist at clinical remission. Regulatory T cells (Tregs), which are increased in AML patients, can contribute to immune evasion by residual leukemic cells. Tumor necrosis factor (TNF), a pro-inflammatory cytokine present at high levels within patients, can induce TNF receptor-2 (TNFR2) expression on Tregs. We hypothesized that since TNFR2 is required for Treg stabilization and TNFR2+ Tregs are potent suppressors, targeting TNFR2+ Tregs may restore the effectiveness of immune-surveillance mechanisms. In this pilot study, we report AML patients in clinical remission have substantially increased levels of TNFR2+ T cells, including TNFR2+ Tregs and impaired effector CD4 T cell function with reduced IL-2 and IFNγ production. The immunomodulatory drug, lenalidomide, and the demethylating agent, azacitidine have been moderately successful in treating AML patients, but their combined effects on TNFR2+ T cells, including Tregs are currently unknown. Our data indicates that although treatment with lenalidomide and azacitidine increased cytokine production by effector T cells in all patients, durable clinical remissions may be observed in patients with a concomitant reduction in TNFR2+ T cells and TNFR2+ Tregs. In vitro studies further demonstrated that lenalidomide can reduce TNFR2 expression and can augment effector cytokine production by T cells, which can be further enhanced by azacitidine. These results indicate that reduction of TNFR2+ T cells in AML postremission phase may result from combined azacitidine/lenalidomide therapy and may contribute to an improved clinical outcome. © 2014 Wiley Periodicals, Inc.

  14. Oomycetes, effectors, and all that jazz.

    Science.gov (United States)

    Bozkurt, Tolga O; Schornack, Sebastian; Banfield, Mark J; Kamoun, Sophien

    2012-08-01

    Plant pathogenic oomycetes secrete a diverse repertoire of effector proteins that modulate host innate immunity and enable parasitic infection. Understanding how effectors evolve, translocate and traffic inside host cells, and perturb host processes are major themes in the study of oomycete-plant interactions. The last year has seen important progress in the study of oomycete effectors with, notably, the elucidation of the 3D structures of five RXLR effectors, and novel insights into how cytoplasmic effectors subvert host cells. In this review, we discuss these and other recent advances and highlight the most important open questions in oomycete effector biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Microstructural studies of suck cast (Zr-SS)-3 and 5 AI alloys for nuclear metallic waste form

    International Nuclear Information System (INIS)

    Kumar, P.; Das, N.; Sengupta, P.; Arya, A.; Dey, G.K.

    2015-01-01

    Management of radioactive metallic waste using 'alloy melting route' is currently being investigated. For disposal of Zr and SS base nuclear metallic wastes, Zr-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) alloys. In this context Zr-16 wt. %55 has been selected for MWF alloy in our previous study. In present study, to include amorphous phase in this alloy, 3 and 5 wt. % Al has been added in order to improve desirable properties and useful features of MWF and the two alloys have been prepared by suck casting techniques. Microstructure of these alloys have been investigated by optical and electron microscopy which shows occurrence of two different phases, e.g. dark grey and white phases, in (Zr-16 SS)-3 Al and three different phases, e.g. grey, dark grey and white phases in (Zr-16 SS)-5 AI. Electron diffraction and X-ray diffraction (XRD) analyses of these two alloy specimens revealed the occurrence of Zr (Fe, Cr, AI) (dark grey) and Zr 2 (Fe, Cr, AI) (white) phases in (Zr-16 SS)-3 Al whereas, Zr (Fe, Cr, AI) (dark grey), Zr 2 (Fe, Cr, AI) (grey) and Zr 3 (Fe, Cr, AI) (white) phases were found in (Zr-16 SS)-5 AI. In addition, presence of amorphous phase was indicated by XRD analysis that could be confirmed by transmission electron microscopy of these two alloys. (author)

  16. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Brender, C; Nielsen, M; Kaltoft, K

    2001-01-01

    ) obtained from affected skin from a patient with mycosis fungoides (MF) and from peripheral blood from a patient with Sezary syndrome (SS). In contrast, constitutive SOCS-3 expression is not found in the leukemic Jurkat T-cell line, the MOLT-4 acute lymphoblastic leukemia cell line, and the monocytic......, it has been hypothesized that an aberrant SOCS expression plays a role in neoplastic transformation. This study reports on a constitutive SOCS-3 expression in cutaneous T-cell lymphoma (CTCL) cell lines. SOCS-3 protein is constitutively expressed in tumor cell lines (but not in nonmalignant T cells...... leukemic cell line U937. Expression of SOCS-3 coincides with a constitutive activation of STAT3 in CTCL tumor cells, and stable transfection of CTCL tumor cells with a dominant negative STAT3 strongly inhibits SOCS-3 expression, whereas transfection with wild-type STAT3 does not. Moreover, the reduced SOCS...

  17. [J. Tapio. Suljetut vaunut, eli, Kadonnutta aikaa etsimässä ; Jukka Kostiainen. Kinnises tõllas, ehk, Kadunud aega otsimas ; Tatu Vaaskivi. Maarjamaa] / Hannu Oittinen

    Index Scriptorium Estoniae

    Oittinen, Hannu, 1959-

    2013-01-01

    Arvustus: Tapio, J. Suljetut vaunut, eli, Kadonnutta aikaa etsimässä. Porvoo : J. Kostiainen, 2012 ; Kostiainen, Jukka. Kinnises tõllas, ehk, Kadunud aega otsimas / tõlkinud Ants Paikre. Tartu : Atlex, 2013 ; Vaaskivi, Tatu. Maarjamaa / tõlkinud Ants Paikre. Tallinn : Kultuurileht, 2013. (Loomingu raamatukogu)

  18. Gamma delta T-cell differentiation and effector function programming, TCR signal strength, when and how much?

    Science.gov (United States)

    Zarin, Payam; Chen, Edward L Y; In, Tracy S H; Anderson, Michele K; Zúñiga-Pflücker, Juan Carlos

    2015-07-01

    γδ T-cells boast an impressive functional repertoire that can paint them as either champions or villains depending on the environmental and immunological cues. Understanding the function of the various effector γδ subsets necessitates tracing the developmental program of these subsets, including the point of lineage bifurcation from αβ T-cells. Here, we review the importance of signals from the T-cell receptor (TCR) in determining αβ versus γδ lineage fate, and further discuss how the molecular components of this pathway may influence the developmental programming of γδ T-cells functional subsets. Additionally, we discuss the role of temporal windows in restricting the development of IL-17 producing γδ T-cell subtypes, and explore whether fetal and adult hematopoietic progenitors maintain the same potential for giving rise to this important subset. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. NS1 specific CD8+ T-cells with effector function and TRBV11 dominance in a patient with parvovirus B19 associated inflammatory cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Mathias Streitz

    Full Text Available BACKGROUND: Parvovirus B19 (B19V is the most commonly detected virus in endomyocardial biopsies (EMBs from patients with inflammatory cardiomyopathy (DCMi. Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity. METHODOLOGY AND PRINCIPAL FINDINGS: An exceptionally high B19V viral load in EMBs (115,091 viral copies/mug nucleic acids, peripheral blood mononuclear cells (PBMCs and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+ T-cell responses were elicited to the 10-amino-acid peptides SALKLAIYKA (19.7% of all CD8(+ cells and QSALKLAIYK (10% and additional weaker responses to GLCPHCINVG (0.71% and LLHTDFEQVM (0.06%. Real-time RT-PCR of IFNgamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV 11 expression in this population. Furthermore, dominant expression of type-1 (IFNgamma, IL2, IL27 and T-bet and of cytotoxic T-cell markers (Perforin and Granzyme B was found, whereas gene expression indicating type-2 (IL4, GATA3 and regulatory T-cells (FoxP3 was low. CONCLUSIONS: Our results indicate that B19V Ag-specific CD8(+ T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+ T-cell responses to the identified epitopes.

  20. Elastic-plastic analysis of the SS-3 tensile specimen

    International Nuclear Information System (INIS)

    Majumdar, S.

    1998-01-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior

  1. Pitting Corrosion Behavior of 304 SS and 316 SS Alloys in Aqueous Chloride and Bromide Solutions

    Directory of Open Access Journals (Sweden)

    Ibtehal Kareem Shakir

    2018-01-01

    Full Text Available The importance of the present work falls on the pitting corrosion behavior investigation of 304 SS and 316 SS alloys in 3.5 wt% of aqueous solution bearing with chloride and bromide anion at different solutions temperature range starting from (20-50oC due to the pitting corrosion tremendous effect on the economic, safety and materials loss due to leakage. The impact of solution temperatures on the pitting corrosion resistance at 3.5wt% (NaCl and NaBr solutions for the 304 SS and 316 SS has been investigated utilizing the cyclic polarization techniques at the potential range -400 to1000 mV vs. SCE at 40 mV/sec scan rate followed by the surface characterization employing Scanning Electron Microscope. The results show that a significant decline in the pitting corrosion potential Ep values of both stainless steel alloys in chloride and bromide solution during temperature increase attributed to the pitting corrosion potential decreased arises from the modification of the passive film properties. The surface examination using optical microscope and scanning electron microscope prove the occurring of higher pitting density over 304 SS in chloride solution than that observed in bromide solution with a non-circular lacy cover pitfall out at the center and falls inside the pits hall in comparison to the isolated circular lacy cover pit formed on 316 SS in 3.5wt% NaBr solution at 50 oC.

  2. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Symbiotic System SS73 17 seen with Suzaku

    Science.gov (United States)

    Smith, Randall K.; Mushotzky, Richard; Kallman, Tim; Tueller, Jack; Mukai, Koji; Markwardt, Craig

    2007-01-01

    We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > loz3 emp2, equivalent to Av > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe XXVI. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.

  4. The CXC Chemokine Receptor 3 Inhibits Autoimmune Cholangitis via CD8+ T Cells but Promotes Colitis via CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Qing-Zhi Liu

    2018-05-01

    Full Text Available CXC chemokine receptor 3 (CXCR3, a receptor for the C-X-C motif chemokines (CXCL CXCL9, CXCL10, and CXCL11, which not only plays a role in chemotaxis but also regulates differentiation and development of memory and effector T cell populations. Herein, we explored the function of CXCR3 in the modulation of different organ-specific autoimmune diseases in interleukin (IL-2 receptor deficiency (CD25−/− mice, a murine model for both cholangitis and colitis. We observed higher levels of CXCL9 and CXCL10 in the liver and colon and higher expression of CXCR3 on T cells of the CD25−/− mice compared with control animals. Deletion of CXCR3 resulted in enhanced liver inflammation but alleviated colitis. These changes in liver and colon pathology after CXCR3 deletion were associated with increased numbers of hepatic CD4+ and CD8+ T cells, in particular effector memory CD8+ T cells, as well as decreased T cells in mesenteric lymph nodes and colon lamina propria. In addition, increased interferon-γ response and decreased IL-17A response was observed in both liver and colon after CXCR3 deletion. CXCR3 modulated the functions of T cells involved in different autoimmune diseases, whereas the consequence of such modulation was organ-specific regarding to their effects on disease severity. Our findings emphasize the importance of extra caution in immunotherapy for organ-specific autoimmune diseases, as therapeutic interventions aiming at a target such as CXCR3 for certain disease could result in adverse effects in an unrelated organ.

  5. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis.

    Science.gov (United States)

    Wei, Hai-Lei; Zhang, Wei; Collmer, Alan

    2018-05-08

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of the VirB/D4 Type IV Secretion System in Bartonella.

    Science.gov (United States)

    Harms, Alexander; Segers, Francisca H I D; Quebatte, Maxime; Mistl, Claudia; Manfredi, Pablo; Körner, Jonas; Chomel, Bruno B; Kosoy, Michael; Maruyama, Soichi; Engel, Philipp; Dehio, Christoph

    2017-03-01

    The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Rakennusten 3d-mallinnusmenetelmät

    OpenAIRE

    Gangsö, Tanja

    2006-01-01

    ssä opinnäytetyössä käsitellään rakennuksen 3D-mallinnusmenetelmiä. Pääasiassa perehdytäänn rakennusten tuotemalleihin sekä rakennusmallinnukseen visuaalisena projektina. Työssä pyritään tuomaan esille kuinka 3D-malleja voidaan rakennusten yhteydessä monipuolisesti hyödyntää. Keskitytään rakennusten mallinnusmenetelmiin, joita vasta suunnitellaan tai joita ei ole enää olemassa. Työn tavoitteena on esittää rakennusten CAD-mallien sekä visuaalisten mallien ominaisuuksia sekä eroavaisuu...

  8. Taloushallintoprosessien kehittäminen Iisalmen Putkiasennus Oy:ssä

    OpenAIRE

    Juntunen, Tiia

    2015-01-01

    Tämä opinnäytetyö käsittelee taloushallintoprosessien kehittämistä Iisalmen Putkiasennus Oy:ssä. Kehittämistyötä päädyttiin rajaamaan keskittyen myynti- ja ostolaskuprosessien kehittämiseen, koska niissä oli havaittu olevan eniten kehitettävää. Iisalmen Putkiasennus Oy on LVI-alalla työskentelevä perheyritys, joka on ollut toiminnassa jo yli 35 vuotta. Yritys sijaitsee Iisalmessa ja työllistää noin 50 henkilöä. Tässä opinnäytetyössä taloushallintoprosessien kehittäminen alkoi tilanteesta...

  9. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling

    Directory of Open Access Journals (Sweden)

    Lance K. Blevins

    2017-11-01

    Full Text Available Streptococcus pneumoniae (Spn causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.

  10. Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems.

    Directory of Open Access Journals (Sweden)

    Duccio Medini

    2006-12-01

    Full Text Available From the analysis of 251 prokaryotic genomes stored in public databases, the 761,260 deduced proteins were used to reconstruct a complete set of bacterial proteic families. Using the new Overlap algorithm, we have partitioned the Protein Homology Network (PHN, where the proteins are the nodes and the links represent homology relationships. The algorithm identifies the densely connected regions of the PHN that define the families of homologous proteins, here called PHN-Families, recognizing the phylogenetic relationships embedded in the network. By direct comparison with a manually curated dataset, we assessed that this classification algorithm generates data of quality similar to a human expert. Then, we explored the network to identify families involved in the assembly of Type III and Type IV secretion systems (T3SS and T4SS. We noticed that, beside a core of conserved functions (eight proteins for T3SS, seven for T4SS, a variable set of accessory components is always present (one to nine for T3SS, one to five for T4SS. Each member of the core corresponds to a single PHN-Family, while accessory proteins are distributed among different pure families. The PHN-Family classification suggests that T3SS and T4SS have been assembled through a step-wise, discontinuous process, by complementing the conserved core with subgroups of nonconserved proteins. Such genetic modules, independently recruited and probably tuned on specific effectors, contribute to the functional specialization of these organelles to different microenvironments.

  11. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Joëlle Mounier

    2009-01-01

    Full Text Available Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial stages of Shigella entry. Src recruitment occurred at bacterial-cell contact sites independent of actin polymerization at the onset of the invasive process and was still observed in Shigella strains mutated for translocated T3S effectors of invasion. A Shigella strain with a polar mutation that expressed low levels of the translocator components IpaB and IpaC was fully proficient for Src recruitment and bacterial invasion. In contrast, a Shigella strain mutated in the IpaC carboxyterminal effector domain that was proficient for T3S effector translocation did not induce Src recruitment. Consistent with a direct role for IpaC in Src activation, cell incubation with the IpaC last 72 carboxyterminal residues fused to the Iota toxin Ia (IaC component that translocates into the cell cytosol upon binding to the Ib component led to Src-dependent ruffle formation. Strikingly, IaC also induced actin structures resembling bacterial entry foci that were enriched in activated Src and were inhibited by the Src inhibitor PP2. These results indicate that the IpaC effector domain determines Src-dependent actin polymerization and ruffle formation during bacterial invasion.

  12. T cells in vascular inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Lucas L Lintermans

    2014-10-01

    Full Text Available Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T cells. This expanded population of effector memory T cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, NK cells, B cells and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of effector memory T cells in uniquely dependent on the voltage-gated Kv1.3 potassium channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic effector memory T cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation.

  13. Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.

  14. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Derek B Danahy

    2017-09-01

    Full Text Available Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM provide robust protection in a variety of infectious models. TRM rapidly 'sense' infection in non-lymphoid tissues and 'alarm' the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their 'sensing and alarming' functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9 on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM

  15. Management efficiency improvement promotion of SS; SS no unei koritsuka sokushin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Full amount fund petroleum product marketer and Sumisyo petroleum of Sumitomo accelerate management efficiency improvement of service station (SS). National about 300 places have been developed in within the year Within SS, it aims at break-even point achievement of gasoline, coarse advantage 10 yen per light oil of 1 liter in 84 all tied SS stores. SS which has realized the system of 10 yen in the current is whole about 50%. But, by doing personnel configurations and operational procedures, that they reexamine the balance management, etc. in half remaining SS 12 yen-13 yen; the efficiency improvement is done thoroughly. (translated by NEDO)

  16. High immunosuppressive burden in advanced hepatocellular carcinoma patients: Can effector functions be restored?

    Science.gov (United States)

    Lugade, Amit A; Kalathil, Suresh; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin

    2013-07-01

    The accumulation of immunosuppressive cells and exhausted effector T cells highlight an important immune dysfunction in advanced stage hepatocellular carcinoma (HCC) patients. These cells significantly hamper the efficacy immunotherapies and facilitate HCC progression. We have recently demonstrated that the multipronged depletion of immunosuppressive cells potentially restores effector T-cell function in HCC.

  17. Innate Effector-Memory T-Cell Activation Regulates Post-Thrombotic Vein Wall Inflammation and Thrombus Resolution.

    Science.gov (United States)

    Luther, Natascha; Shahneh, Fatemeh; Brähler, Melanie; Krebs, Franziska; Jäckel, Sven; Subramaniam, Saravanan; Stanger, Christian; Schönfelder, Tanja; Kleis-Fischer, Bettina; Reinhardt, Christoph; Probst, Hans Christian; Wenzel, Philip; Schäfer, Katrin; Becker, Christian

    2016-12-09

    Immune cells play an important role during the generation and resolution of thrombosis. T cells are powerful regulators of immune and nonimmune cell function, however, their role in sterile inflammation in venous thrombosis has not been systematically examined. This study investigated the recruitment, activation, and inflammatory activity of T cells in deep vein thrombosis and its consequences for venous thrombus resolution. CD4 + and CD8 + T cells infiltrate the thrombus and vein wall rapidly on deep vein thrombosis induction and remain in the tissue throughout the thrombus resolution. In the vein wall, recruited T cells largely consist of effector-memory T (T EM ) cells. Using T-cell receptor transgenic reporter mice, we demonstrate that deep vein thrombosis-recruited T EM receive an immediate antigen-independent activation and produce IFN-γ (interferon) in situ. Mapping inflammatory conditions in the thrombotic vein, we identify a set of deep vein thrombosis upregulated cytokines and chemokines that synergize to induce antigen-independent IFN-γ production in CD4 + and CD8 + T EM cells. Reducing the number of T EM cells through a depletion recovery procedure, we show that intravenous T EM activation determines neutrophil and monocyte recruitment and delays thrombus neovascularization and resolution. Examining T-cell recruitment in human venous stasis, we show that superficial varicose veins preferentially contain activated memory T cells. T EM orchestrate the inflammatory response in venous thrombosis affecting thrombus resolution. © 2016 American Heart Association, Inc.

  18. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells.

    Science.gov (United States)

    Laranjeira, Paula; Pedrosa, Monia; Pedreiro, Susana; Gomes, Joana; Martinho, Antonio; Antunes, Brigida; Ribeiro, Tania; Santos, Francisco; Trindade, Helder; Paiva, Artur

    2015-01-05

    The different distribution of T cells among activation/differentiation stages in immune disorders may condition the outcome of mesenchymal stromal cell (MSC)-based therapies. Indeed, the effect of MSCs in the different functional compartments of T cells is not completely elucidated. We investigated the effect of human bone marrow MSCs on naturally occurring peripheral blood functional compartments of CD4(+) and CD8(+) T cells: naive, central memory, effector memory, and effector compartments. For that, mononuclear cells (MNCs) stimulated with phorbol myristate acetate (PMA) plus ionomycin were cultured in the absence/presence of MSCs. The percentage of cells expressing tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), and interleukin-2 (IL-2), IL-17, IL-9, and IL-6 and the amount of cytokine produced were assessed by flow cytometry. mRNA levels of IL-4, IL-10, transforming growth factor-beta (TGF-β), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) in purified CD4(+) and CD8(+) T cells, and phenotypic and mRNA expression changes induced by PMA + ionomycin stimulation in MSCs, were also evaluated. MSCs induced the reduction of the percentage of CD4(+) and CD8(+) T cells producing TNF-α, IFNγ, and IL-2 in all functional compartments, except for naive IFNγ(+)CD4(+) T cells. This inhibitory effect differentially affected CD4(+) and CD8(+) T cells as well as the T-cell functional compartments; remarkably, different cytokines showed distinct patterns of inhibition regarding both the percentage of producing cells and the amount of cytokine produced. Likewise, the percentages of IL-17(+), IL-17(+)TNF-α(+), and IL-9(+) within CD4(+) and CD8(+) T cells and of IL-6(+)CD4(+) T cells were decreased in MNC-MSC co-cultures. MSCs decreased IL-10 and increased IL-4 mRNA expression in stimulated CD4(+) and CD8(+) T cells, whereas TGF-β was reduced in CD8(+) and augmented in CD4(+) T cells, with no changes for CTLA4. Finally, PMA

  19. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    Science.gov (United States)

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  20. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Nansen, Anneline; Moos, Torben

    2004-01-01

    T-cells play an important role in controlling viral infections inside the CNS. To study the role of the chemokine receptor CXCR3 in the migration and positioning of virus-specific effector T-cells within the brain, CXCR3-deficient mice were infected intracerebrally with lymphocytic choriomeningitis......-cell-mediated immunopathology. Quantitative analysis of the cellular infiltrate in CSF of infected mice revealed modest, if any, decrease in the number of mononuclear cells recruited to the meninges in the absence of CXCR3. However, immunohistological analysis disclosed a striking impairment of CD8+ T-cells from CXCR3...

  1. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, Hong Y; Woetmann, Anders

    2006-01-01

    In this study, we demonstrated that STAT3, a well-characterized transcription factor expressed in continuously activated oncogenic form in the large spectrum of cancer types, induces in malignant T lymphocytes the expression of DNMT1, the key effector of epigenetic gene silencing. STAT3 binds in ...

  2. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  3. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    Science.gov (United States)

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  4. Switch from perforin-expressing to perforin-deficient CD8(+) T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo.

    Science.gov (United States)

    Meiraz, Avihai; Garber, Orit Gal; Harari, Shaul; Hassin, David; Berke, Gideon

    2009-09-01

    Although CD8(+) cytotoxic T lymphocytes (CTL) exhibit both Fas ligand (FasL) -based and perforin-based lytic activities, the accepted hallmark of a fully active CTL remains its perforin killing machinery. Yet the origin, rationale for possessing both a slow-acting (FasL) and a fast-acting (perforin) killing mechanism has remained enigmatic. Here we have investigated perforin expression in CTL directly involved in acute tumour (i.e. leukaemias EL4 and L1210) allograft rejection occurring within the peritoneal cavity. We show that at the height of the immune response, the majority of conjugate-forming CD8(+) CTL express high levels of perforin messenger RNA and protein, and kill essentially via perforin. Later however, coinciding with complete rejection, fully cytocidal CTL emerge which exhibit a stark decrease in perforin and now kill preferentially via constitutively expressed FasL. Although late in emergence, and persistent, these powerful CTL are neither effector-memory nor memory CTL. This finding has implications for the monitoring of anti-transplant responses in clinical settings, based on assessing perforin expression in graft infiltrating CD8(+) T cells. The results show that as the immune response progresses in vivo, targeted cellular suicide mainly prunes high perforin-expressing CD8(+) cells, resulting in the gradual switch in effector CTL, from mostly perforin-based to largely Fas/FasL-based killers. Hence, two kinds of CD8(+) CTL have two killing strategies.

  5. Switch from perforin-expressing to perforin-deficient CD8+ T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo

    Science.gov (United States)

    Meiraz, Avihai; Garber, Orit Gal; Harari, Shaul; Hassin, David; Berke, Gideon

    2009-01-01

    Although CD8+ cytotoxic T lymphocytes (CTL) exhibit both Fas ligand (FasL) -based and perforin-based lytic activities, the accepted hallmark of a fully active CTL remains its perforin killing machinery. Yet the origin, rationale for possessing both a slow-acting (FasL) and a fast-acting (perforin) killing mechanism has remained enigmatic. Here we have investigated perforin expression in CTL directly involved in acute tumour (i.e. leukaemias EL4 and L1210) allograft rejection occurring within the peritoneal cavity. We show that at the height of the immune response, the majority of conjugate-forming CD8+ CTL express high levels of perforin messenger RNA and protein, and kill essentially via perforin. Later however, coinciding with complete rejection, fully cytocidal CTL emerge which exhibit a stark decrease in perforin and now kill preferentially via constitutively expressed FasL. Although late in emergence, and persistent, these powerful CTL are neither effector-memory nor memory CTL. This finding has implications for the monitoring of anti-transplant responses in clinical settings, based on assessing perforin expression in graft infiltrating CD8+ T cells. The results show that as the immune response progresses in vivo, targeted cellular suicide mainly prunes high perforin-expressing CD8+ cells, resulting in the gradual switch in effector CTL, from mostly perforin-based to largely Fas/FasL-based killers. Hence, two kinds of CD8+ CTL have two killing strategies. PMID:19689737

  6. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113.

    Science.gov (United States)

    Barret, Matthieu; Egan, Frank; Moynihan, Jennifer; Morrissey, John P; Lesouhaitier, Olivier; O'Gara, Fergal

    2013-06-01

    Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar beet rhizosphere. The recent annotation of the F113 genome sequence has revealed that this strain encodes a wide array of secretion systems, including two complete type three secretion systems (T3SSs) belonging to the Hrp1 and SPI-1 families. While Hrp1 T3SSs are frequently encoded in other P. fluorescens strains, the presence of a SPI-1 T3SS in a plant-beneficial bacterial strain was unexpected. In this work, the genetic organization and expression of these two T3SS loci have been analysed by a combination of transcriptional reporter fusions and transcriptome analyses. Overexpression of two transcriptional activators has shown a number of genes encoding putative T3 effectors. In addition, the influence of these two T3SSs during the interaction of P. fluorescens F113 with some bacterial predators was also assessed. Our data revealed that the transcriptional activator hilA is induced by amoeba and that the SPI-1 T3SS could potentially be involved in resistance to amoeboid grazing. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Hoitajien kokemuksia Theraplay-ryhmäsovelluksesta lastenpsykiatrisessa hoitotyössä

    OpenAIRE

    Manninen, Niina; Ollikainen, Laura

    2011-01-01

    Tämän opinnäytetyön tarkoituksena oli selvittää hoitajien kokemuksia ja ajatuksia Theraplay-ryhmäsovelluksesta lastenpsykiatrisessa hoitotyössä sekä kartoittaa hoitajien mielipiteitä mahdollisesta tanssin ja musiikin käytöstä osana tätä sovellusta. Opinnäytetyön tehtävänä oli selvittää millaisia kokemuksia hoitajilla on Theraplay-ryhmäsovelluksesta, mitä ajatuksia mahdollinen musiikin ja tanssin käyttö osana Theraplay-ryhmäsovellusta herättää sekä mitä kehitettävää tämän sovelluksen käytössä ...

  8. Kehityshankkeena tasa-arvo : Sukupuolinäkökulman huomioon ottaminen teknologiaosaamisen johtamisessa Yritys Oyj:ssä

    OpenAIRE

    Syrjäläinen, Suvi

    2010-01-01

    Tämä opinnäytetyö tehtiin suurelle kansainväliselle teknologiayritykselle, josta käytän tässä opinnäytetyössä työssä nimeä Yritys Oyj. Opinnäytetyön johtoajatuksena oli tehdä suomalainen sukupuolijärjestelmä, -stereotypiat sekä sukupuolten välinen tasa-arvo näkyväksi ja osoittaa, kuinka näitä parantamalla voidaan lisätä Yritys Oyj:n tuottavuutta ja sitä kautta menestystä. Työn sukupuolta ja sukupuolieroja käsittelevässä teoriaosuudessa selvitettiin sukupuolistereotypioiden olemassao...

  9. N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD.

    Science.gov (United States)

    Dickenson, Nicholas E; Arizmendi, Olivia; Patil, Mrinalini K; Toth, Ronald T; Middaugh, C Russell; Picking, William D; Picking, Wendy L

    2013-12-10

    The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri , providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is composed of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g., deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. Although the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study because of the hydrophobic nature of the IpaB and IpaC translocator proteins. Here, we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11-27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together, these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation.

  10. CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells

    Science.gov (United States)

    Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2013-01-01

    The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942

  11. Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

    Science.gov (United States)

    Wu, Yvonne T.; Tam, Connie; Zhu, Lucia S.; Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ~108 cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ~180-fold (pbacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (p=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (p=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (p = 0.04) and 1.89 ± 0.26-fold (p<.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis. PMID:27670247

  12. Pala-animaatiohahmojen animointi 2D- ja 3D-ympäristössä

    OpenAIRE

    Koivisto, Ida

    2011-01-01

    Opinnäytetyö käsittelee hahmoanimointia digitaalisessa pala-animaatiossa. Työssä keskitytään pääasiassa vertailemaan keskenään kahta hyvin erityyppistä ohjelmaa hahmoanimaattorin työskentely-ympäristöinä. Ohjelmat, joita opinnäytetyössä on käytetty animoimiseen, ovat 3D-ohjelma Cinema 4D sekä 2D-2.5D -ohjelma After Effects. Opinnäytetyö on kirjoitettu hahmoanimaattorin näkökulmasta perustuen käytännön animointityöskentelyyn lasten animaatiosarjassa Ella & Aleksi. Työn tekijä on toiminut p...

  13. Effector region of the translation elongation factor EF-Tu.GTP complex stabilizes an orthoester acid intermediate structure of aminoacyl-tRNA in a ternary complex.

    Science.gov (United States)

    Förster, C; Limmer, S; Zeidler, W; Sprinzl, M

    1994-01-01

    tRNA(Val) from Escherichia coli was aminoacylated with [1-13C]valine and its complex with Thermus thermophilus elongation factor EF-Tu.GTP was analyzed by 13C NMR spectroscopy. The results suggest that the aminoacyl residue of the valyl-tRNA in ternary complex with bacterial EF-Tu and GTP is not attached to tRNA by a regular ester bond to either a 2'- or 3'-hydroxyl group; instead, an intermediate orthoester acid structure with covalent linkage to both vicinal hydroxyls of the terminal adenosine-76 is formed. Mutation of arginine-59 located in the effector region of EF-Tu, a conserved residue in protein elongation factors and the alpha subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins), abolishes the stabilization of the orthoester acid structure of aminoacyl-tRNA. PMID:8183898

  14. T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers.

    Directory of Open Access Journals (Sweden)

    Wai-Ping Fung-Leung

    Full Text Available Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.

  15. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.

    Science.gov (United States)

    Van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S; Britton, Robert A

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution.

  16. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  17. Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110δ-Akt-Mediated Signals.

    Science.gov (United States)

    Mauro, Claudio; Smith, Joanne; Cucchi, Danilo; Coe, David; Fu, Hongmei; Bonacina, Fabrizia; Baragetti, Andrea; Cermenati, Gaia; Caruso, Donatella; Mitro, Nico; Catapano, Alberico L; Ammirati, Enrico; Longhi, Maria P; Okkenhaug, Klaus; Norata, Giuseppe D; Marelli-Berg, Federica M

    2017-03-07

    Low-grade systemic inflammation associated to obesity leads to cardiovascular complications, caused partly by infiltration of adipose and vascular tissue by effector T cells. The signals leading to T cell differentiation and tissue infiltration during obesity are poorly understood. We tested whether saturated fatty acid-induced metabolic stress affects differentiation and trafficking patterns of CD4 + T cells. Memory CD4 + T cells primed in high-fat diet-fed donors preferentially migrated to non-lymphoid, inflammatory sites, independent of the metabolic status of the hosts. This was due to biased CD4 + T cell differentiation into CD44 hi -CCR7 lo -CD62L lo -CXCR3 + -LFA1 + effector memory-like T cells upon priming in high-fat diet-fed animals. Similar phenotype was observed in obese subjects in a cohort of free-living people. This developmental bias was independent of any crosstalk between CD4 + T cells and dendritic cells and was mediated via direct exposure of CD4 + T cells to palmitate, leading to increased activation of a PI3K p110δ-Akt-dependent pathway upon priming. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Multi-functional characteristics of the Pseudomonas aeruginosa type III needle-tip protein, PcrV; comparison to orthologs in other gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Hiromi eSato

    2011-07-01

    Full Text Available Pseudomonas aeruginosa possesses a type III secretion system (T3SS to intoxicate host cells and evade innate immunity. This virulence-related machinery consists of a molecular syringe and needle assembled on the bacterial surface, which allows delivery of T3 effector proteins into infected cells. To accomplish a one-step effector translocation, a tip protein is required at the top end of the T3 needle structure. Strains lacking expression of the functional tip protein fail to intoxicate host cells.P. aeruginosa encodes a T3S that is highly homologous to the proteins encoded by Yersinia species. The needle tip proteins of Yersinia, LcrV, and P. aeruginosa, PcrV, share 37% identity and 65% similarity. Other known tip proteins are AcrV (Aeromonas, IpaD (Shigella, SipD (Salmonella, BipD (Burkholderia, EspA (EPEC, EHEC, Bsp22 (Bordetella, with additional proteins identified from various Gram negative species, such as Vibrio and Bordetella. The tip proteins can serve as a protective antigen or may be critical for sensing host cells and evading innate immune responses. Recognition of the host microenvironment transcriptionally activates synthesis of T3SS components. The machinery appears to be mechanically controlled by the assemblage of specific junctions within the apparatus. These junctions include the tip and base of the T3 apparatus, the needle proteins and components within the bacterial cytoplasm. The tip proteins likely have chaperone functions for translocon proteins, allowing the proper assembly of translocation channels in the host membrane and completing vectorial delivery of effector proteins into the host cytoplasm. Multifunctional features of the needle-tip proteins appear to be intricately controlled. In this review, we highlight the functional aspects and complex controls of T3 needle-tip proteins with particular emphasis on PcrV and LcrV.

  19. A Key Role for NF-κB Transcription Factor c-Rel in T-Lymphocyte-Differentiation and Effector Functions

    Directory of Open Access Journals (Sweden)

    Alexander Visekruna

    2012-01-01

    Full Text Available The transcription factors of the Rel/NF-κB family function as key regulators of innate and adoptive immunity. Tightly and temporally controlled activation of NF-κB-signalling pathways ensures prevention of harmful immune cell dysregulation, whereas a loss of control leads to pathological conditions such as severe inflammation, autoimmune disease, and inflammation-associated oncogenesis. Five family members have been identified in mammals: RelA (p65, c-Rel, RelB, and the precursor proteins NF-κB1 (p105 and NF-κB2 (p100, that are processed into p50 and p52, respectively. While RelA-containing dimers are present in most cell types, c-Rel complexes are predominately found in cells of hematopoietic origin. In T-cell lymphocytes, certain genes essential for immune function such as Il2 and Foxp3 are directly regulated by c-Rel. Additionally, c-Rel-dependent IL-12 and IL-23 transcription by macrophages and dendritic cells is crucial for T-cell differentiation and effector functions. Accordingly, c-Rel expression in T cells and antigen-presenting cells (APCs controls a delicate balance between tolerance and immunity. This review gives a selective overview on recent progress in understanding of diverse roles of c-Rel in regulating adaptive immunity.

  20. The role of complement in CD4⁺ T cell homeostasis and effector functions.

    Science.gov (United States)

    Kolev, Martin; Le Friec, Gaëlle; Kemper, Claudia

    2013-02-01

    The complement system is among the evolutionary oldest 'players' of the immune system. It was discovered in 1896 by Jules Bordet as a heat-labile fraction of the serum responsible for the opsonisation and subsequent killing of bacteria. The decades between the 1920s and 1990s then marked the discovery and biochemical characterization of the proteins comprising the complement system. Today, complement is defined as a complex system consisting of more than 30 membrane-bound and soluble plasma proteins, which are activated in a cascade-like manner, very similarly to the caspase proteases and blood coagulation systems. Complement is engrained in the immunologist's mind as a serum-effective, quintessential part of innate immunity, vitally required for the detection and removal of pathogens or other dangerous entities. Three decades ago, this rather confined definition was challenged and then refined when it was shown that complement participates vitally in the induction and regulation of B cell responses, thus adaptive immunity. Similarly, research work published in more recent years supports an equally important role for the complement system in shaping T cell responses. Today, we are again facing paradigm shifts in the field: complement is actively involved in the negative control of T cell effector immune responses, and thus, by definition in immune homeostasis. Further, while serum complement activity is without doubt fundamental in the defence against invading pathogens, local immune cell-derived production of complement emerges as key mediator of complement's impact on adaptive immune responses. And finally, the impact of complement on metabolic pathways and the crosstalk between complement and other immune effector systems is likely more extensive than previously anticipated and is fertile ground for future discoveries. In this review, we will discuss these emerging new roles of complement, with a focus on Th1 cell biology. Copyright © 2013 Elsevier Ltd. All

  1. Quaternary Benzyltriethylammonium Ion Binding to the Na,K-ATPase: a Tool to Investigate Extracellular K+ Binding Reactions†

    Science.gov (United States)

    Peluffo, R. Daniel; González-Lebrero, Rodolfo M.; Kaufman, Sergio B.; Kortagere, Sandhya; Orban, Branly; Rossi, Rolando C.; Berlin, Joshua R.

    2009-01-01

    This study examined how the quaternary organic ammonium ion, benzyltriethylamine (BTEA), binds to the Na,K-ATPase to produce membrane potential (VM)-dependent inhibition and tested the prediction that such a VM-dependent inhibitor would display electrogenic binding kinetics. BTEA competitively inhibited K+ activation of Na,K-ATPase activity and steady-state 86Rb+ occlusion. The initial rate of 86Rb+ occlusion was decreased by BTEA to a similar degree whether it was added to the enzyme prior to or simultaneously with Rb+, a demonstration that BTEA inhibits the Na,K-ATPase without being occluded. Several BTEA structural analogues reversibly inhibited Na,K-pump current, but none blocked current in a VM-dependent manner except BTEA and its para-nitro derivative, pNBTEA. Under conditions that promoted electroneutral K+-K+ exchange by the Na,K-ATPase, step changes in VM elicited pNBTEA-activated ouabain-sensitive transient currents that had similarities to those produced with the K+ congener, Tl+. pNBTEA- and Tl+-dependent transient currents both displayed saturation of charge moved at extreme negative and positive VM, equivalence of charge moved during and after step changes in VM, and similar apparent valence. The rate constant (ktot) for Tl+-dependent transient current asymptotically approached a minimum value at positive VM. In contrast, ktot for pNBTEA-dependent transient current was a “U”-shaped function of VM with a minimum value near 0 mV. Homology models of the Na,K-ATPase alpha subunit suggested that quaternary amines can bind to two extracellularly-accessible sites, one of them located at K+ binding sites positioned between transmembrane helices 4, 5, and 6. Altogether, these data revealed important information about electrogenic ion binding reactions of the Na,K-ATPase that are not directly measurable during ion transport by this enzyme. PMID:19621894

  2. Involvement of hrpX and hrpG in the Virulence of Acidovorax citrulli Strain Aac5, Causal Agent of Bacterial Fruit Blotch in Cucurbits

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Zhang

    2018-03-01

    Full Text Available Acidovorax citrulli causes bacterial fruit blotch, a disease that poses a global threat to watermelon and melon production. Despite its economic importance, relatively little is known about the molecular mechanisms of pathogenicity and virulence of A. citrulli. Like other plant-pathogenic bacteria, A. citrulli relies on a type III secretion system (T3SS for pathogenicity. On the basis of sequence and operon arrangement analyses, A. citrulli was found to have a class II hrp gene cluster similar to those of Xanthomonas and Ralstonia spp. In the class II hrp cluster, hrpG and hrpX play key roles in the regulation of T3SS effectors. However, little is known about the regulation of the T3SS in A. citrulli. This study aimed to investigate the roles of hrpG and hrpX in A. citrulli pathogenicity. We found that hrpG or hrpX deletion mutants of the A. citrulli group II strain Aac5 had reduced pathogenicity on watermelon seedlings, failed to induce a hypersensitive response in tobacco, and elicited higher levels of reactive oxygen species in Nicotiana benthamiana than the wild-type strain. Additionally, we demonstrated that HrpG activates HrpX in A. citrulli. Moreover, transcription and translation of the type 3-secreted effector (T3E gene Aac5_2166 were suppressed in hrpG and hrpX mutants. Notably, hrpG and hrpX appeared to modulate biofilm formation. These results suggest that hrpG and hrpX are essential for pathogenicity, regulation of T3Es, and biofilm formation in A. citrulli.

  3. The presence of lytic HSV-1 transcripts and clonally expanded T cells with a memory effector phenotype in human sensory ganglia.

    Science.gov (United States)

    Derfuss, Tobias; Arbusow, Viktor; Strupp, Michael; Brandt, Thomas; Theil, Diethilde

    2009-05-01

    Herpes simplex virus type 1 (HSV-1) latent persistence in human trigeminal ganglia (TG) is accompanied by a chronic CD8 T-cell infiltration. Thus far, during HSV-1 latency only a single transcript, namely the latency-associated transcript (LAT), has been identified to be synthesized but not translated into a protein. In contrast, the chronic CD8 T-cell infiltration suggests that an antigen trigger must be present. The focus of the current work was to look for HSV-1 transcription activity as a potential trigger of the immune response and to demonstrate whether the immune cells are clonally expanded and have a phenotype that suggests that they have been triggered by viral antigen. By combining in situ hybridization, laser cutting microscopy, and single-cell real time RT-PCR, we demonstrated expression of the HSV-1 immediate early (IE) genes ICP0 and ICP4 in human trigeminal neurons. Using CDR3 spectratyping, we showed that the infiltrating T cells are clonally expanded, indicating an antigen-driven immune response. Moreover, the persisting CD8(+) T cells had prominent features of the memory effector phenotype. Chemokines CCL5 and CXCL10 were expressed by a subpopulation of infiltrating cells and the corresponding chemokine receptors CCR5 and CXCR3 were co-expressed on virtually all T cells bearing the CD8 phenotype. Thus, HSV-1 IE genes are expressed in human TG, and the infiltrating T cells bear several characteristics that suggest viral antigenic stimulation.

  4. SS433: the second Wolf-Rayet X-ray binary ?

    OpenAIRE

    Fuchs, Yael; Koch-Miramond, Lydie; Abraham, Peter

    2002-01-01

    We present mid-infrared spectrophotometric observations of SS433 with ISOPHOT. The HeI+HeII lines in both spectra of SS433 and of the Wolf-Rayet star WR147, a wind-colliding WN8+BO5 binary system, closely match. The 2.5-12 micron continuum radiation is due to an expanding wind free-free emission in an intermediate case between optically thick and optically thin regimes. The inferred mass loss rate evaluation gives ~10^{-4} Msun/yr. Our results are consistent with a Wolf-Rayet-like companion t...

  5. GSM SiNYALLERİNİN .IP OMURGASI İİZERiNI>E TAŞINMASI (SS7 OVER IP- NettcSS7

    Directory of Open Access Journals (Sweden)

    Çağatay Neftali Tülü

    2003-08-01

    Full Text Available Bu çalışmada günümüzün en popüler nıobilhaberleşme sistemi olan GSM [1 l sisteminin, kendiöğeleri aras1ndaki en temel sinyalleşme sistemi olannumara 7 (SS7 [2 sinyallerinin, günümüzün enyaygın iletim omurgast olan ve tüm dünyadakibilgisayarları birbirine bağlayan IP (3] omurgasıüzerinden taşınabilmesi için gerekli si stemin tasar11n1ve gerçeklenınesi üzerinde çahş1lmtştır. Klasil\\ SS7iletimine göre en büyüllt; faydası çok düşül{ maliyetiolan bu sistem sayesinde, dünyadaki b i r çok GSMşebekesi ara bağlanti harcanıalarıııda büyükmiktarda tasarrufa gideceklerdir. Aralarındakiklasik 64 KB/sn 'lik ara bağlantı yerine, bununüzerinde bir bağlantı hızı ile iki şebeke haberleşmişolacaktır. Bu değişimierin etkisi abonelere fiyatlardadüşüş ve servis kalitesinde yükseliş olarakyansıyacaktır.

  6. A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue.

    Science.gov (United States)

    Hou, Aihua; Bose, Tanima; Chandy, K George; Tong, Louis

    2017-06-07

    Dry eye disease is a very common condition that causes morbidity and healthcare burden and decreases the quality of life. There is a need for a suitable dry eye animal model to test novel therapeutics to treat autoimmune dry eye conditions. This protocol describes a chronic autoimmune dry eye rat model. Lewis rats were immunized with an emulsion containing lacrimal gland extract, ovalbumin, and complete Freund's adjuvant. A second immunization with the same antigens in incomplete Freund's adjuvant was administered two weeks later. These immunizations were administered subcutaneously at the base of the tail. To boost the immune response at the ocular surface and lacrimal glands, lacrimal gland extract and ovalbumin were injected into the forniceal subconjunctiva and lacrimal glands 6 weeks after the first immunization. The rats developed dry eye features, including reduced tear production, decreased tear stability, and increased corneal damage. Immune profiling by flow cytometry showed a preponderance of CD3 + effector memory T cells in the eyeball.

  7. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.

    Science.gov (United States)

    Han, Wenyuan; Li, Yingjun; Deng, Ling; Feng, Mingxia; Peng, Wenfang; Hallstrøm, Søren; Zhang, Jing; Peng, Nan; Liang, Yun Xiang; White, Malcolm F; She, Qunxin

    2017-02-28

    The CRISPR (clustered regularly interspaced short palindromic repeats) system protects archaea and bacteria by eliminating nucleic acid invaders in a crRNA-guided manner. The Sulfolobus islandicus type III-B Cmr-α system targets invading nucleic acid at both RNA and DNA levels and DNA targeting relies on the directional transcription of the protospacer in vivo. To gain further insight into the involved mechanism, we purified a native effector complex of III-B Cmr-α from S. islandicus and characterized it in vitro. Cmr-α cleaved RNAs complementary to crRNA present in the complex and its ssDNA destruction activity was activated by target RNA. The ssDNA cleavage required mismatches between the 5΄-tag of crRNA and the 3΄-flanking region of target RNA. An invader plasmid assay showed that mutation either in the histidine-aspartate acid (HD) domain (a quadruple mutation) or in the GGDD motif of the Cmr-2α protein resulted in attenuation of the DNA interference in vivo. However, double mutation of the HD motif only abolished the DNase activity in vitro. Furthermore, the activated Cmr-α binary complex functioned as a highly active DNase to destroy a large excess DNA substrate, which could provide a powerful means to rapidly degrade replicating viral DNA. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Conservation of Salmonella infection mechanisms in plants and animals.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs. In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.

  9. The human CD8β M-4 isoform dominant in effector memory T cells has distinct cytoplasmic motifs that confer unique properties.

    Directory of Open Access Journals (Sweden)

    Deepshi Thakral

    Full Text Available The CD8 co-receptor influences T cell recognition and responses in both anti-tumor and anti-viral immunity. During evolution in the ancestor of humans and chimpanzees, the CD8B gene acquired two additional exons. As a result, in humans, there are four CD8β splice variants (M1 to M4 that differ in their cytoplasmic tails. The M-1 isoform which is the equivalent of murine CD8β, is predominantly expressed in naïve T cells, whereas, the M-4 isoform is predominantly expressed in effector memory T cells. The characteristics of the M-4 isoform conferred by its unique 36 amino acid cytoplasmic tail are not known. In this study, we identified a dihydrophobic leucine-based receptor internalization motif in the cytoplasmic tail of M-4 that regulated its cell surface expression and downregulation after activation. Further the M-4 cytoplasmic tail was able to associate with ubiquitinated targets in 293T cells and mutations in the amino acids NPW, a potential EH domain binding site, either enhanced or inhibited the interaction. In addition, the M-4 tail was itself mono-ubiquitinated on a lysine residue in both 293T cells and a human T cell line. When peripheral blood human T cells expressed CD8αβ M-4, the frequency of MIP-1β secreting cells responding to antigen presenting cells was two-fold higher as compared to CD8αβ M-1 expressing T cells. Thus, the cytoplasmic tail of the CD8β M-4 isoform has unique characteristics, which likely contributed to its selective expression and function in human effector memory T cells.

  10. The N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD

    Science.gov (United States)

    Dickenson, Nicholas E.; Arizmendi, Olivia; Patil, Mrinalini K.; Toth, Ronald T.; Middaugh, C. Russell; Picking, William D.; Picking, Wendy L.

    2014-01-01

    The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri, providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is comprised of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g. deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. While the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study due to the hydrophobic nature of the IpaB and IpaC translocator proteins. Here we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11–27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation. PMID:24236510

  11. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients.

    Science.gov (United States)

    Clark, Rachael A; Watanabe, Rei; Teague, Jessica E; Schlapbach, Christoph; Tawa, Marianne C; Adams, Natalie; Dorosario, Andrew A; Chaney, Keri S; Cutler, Corey S; Leboeuf, Nicole R; Carter, Joi B; Fisher, David C; Kupper, Thomas S

    2012-01-18

    Cutaneous T cell lymphoma (CTCL) is a cancer of skin-homing T cells with variants that include leukemic CTCL (L-CTCL), a malignancy of central memory T cells (T(CM)), and mycosis fungoides (MF), a malignancy of skin resident effector memory T cells (T(EM)). We report that low-dose alemtuzumab (αCD52) effectively treated patients with refractory L-CTCL but not MF. Alemtuzumab depleted all T cells in blood and depleted both benign and malignant T(CM) from skin, but a diverse population of skin resident T(EM) remained in skin after therapy. T cell depletion with alemtuzumab required the presence of neutrophils, a cell type frequent in blood but rare in normal skin. These data suggest that T(CM) were depleted because they recirculate between the blood and the skin, whereas skin resident T(EM) were spared because they are sessile and non-recirculating. After alemtuzumab treatment, skin T cells produced lower amounts of interleukin-4 and higher amounts of interferon-γ. Moreover, there was a marked lack of infections in alemtuzumab-treated L-CTCL patients despite the complete absence of T cells in the blood, suggesting that skin resident T(EM) can protect the skin from pathogens even in the absence of T cell recruitment from the circulation. Together, these data suggest that alemtuzumab may treat refractory L-CTCL without severely compromising the immune response to infection by depleting circulating T(CM) but sparing the skin resident T(EM) that provide local immune protection of the skin.

  12. HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions.

    Science.gov (United States)

    Foldi, Julia; Kozhaya, Lina; McCarty, Bret; Mwamzuka, Mussa; Marshed, Fatma; Ilmet, Tiina; Kilberg, Max; Kravietz, Adam; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka

    2017-09-15

    During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. NanoRNase from Aeropyrum pernix shows nuclease activity on ssDNA and ssRNA.

    Science.gov (United States)

    Deng, Yong-Jie; Feng, Lei; Zhou, Huan; Xiao, Xiang; Wang, Feng-Ping; Liu, Xi-Peng

    2018-05-01

    In cells, degrading DNA and RNA by various nucleases is very important. These processes are strictly controlled and regulated to maintain DNA integrity and to mature or recycle various RNAs. NanoRNase (Nrn) is a 3'-exonuclease that specifically degrades nanoRNAs shorter than 5 nucleotides. Several Nrns have been identified and characterized in bacteria, mainly in Firmicutes. Archaea often grow in extreme environments and might be subjected to more damage to DNA/RNA, so DNA repair and recycling of damaged RNA are very important in archaea. There is no report on the identification and characterization of Nrn in archaea. Aeropyrum pernix encodes three potential Nrns: NrnA (Ape1437), NrnB (Ape0124), and an Nrn-like protein Ape2190. Biochemical characterization showed that only Ape0124 could degrade ssDNA and ssRNA from the 3'-end in the presence of Mn 2+ . Interestingly, unlike bacterial Nrns, Ape0124 prefers ssDNA, including short nanoDNA, and degrades nanoRNA with lower efficiency. The 3'-DNA backbone was found to be required for efficiently hydrolyzing the phosphodiester bonds. In addition, Ape0124 also degrads the 3'-overhang of double-stranded DNA. Interestingly, Ape0124 could hydrolyze pAp into AMP, which is a feature of bacterial NrnA, not NrnB. Our results indicate that Ape0124 is a novel Nrn with a combined substrate profile of bacterial NrnA and NrnB. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Tolerance induced by anti-DNA Ig peptide in (NZB×NZW)F1 lupus mice impinges on the resistance of effector T cells to suppression by regulatory T cells.

    Science.gov (United States)

    Yu, Yiyun; Liu, Yaoyang; Shi, Fu-Dong; Zou, Hejian; Hahn, Bevra H; La Cava, Antonio

    2012-03-01

    We have previously shown that immune tolerance induced by the anti-DNA Ig peptide pCons in (NZB×NZW)F(1) (NZB/W) lupus mice prolonged survival of treated animals and delayed the appearance of autoantibodies and glomerulonephritis. Part of the protection conferred by pCons could be ascribed to the induction of regulatory T cells (T(Reg)) that suppressed the production of anti-DNA antibodies in a p38 MAPK-dependent fashion. Here we show that another effect of pCons in the induction of immune tolerance in NZB/W lupus mice is the facilitation of effector T cell suppression by T(Reg). These new findings indicate that pCons exerts protective effects in NZB/W lupus mice by differentially modulating the activity of different T cell subsets, implying new considerations in the design of T(Reg)-based approaches to modulate T cell autoreactivity in SLE. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems.

    Directory of Open Access Journals (Sweden)

    Sophie S Abby

    2012-09-01

    Full Text Available Type 3 secretion systems (T3SSs are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS, which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.

  16. The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains.

    Directory of Open Access Journals (Sweden)

    Suomeng Dong

    Full Text Available Root and stem rot disease of soybean is caused by the oomycete Phytophthora sojae. The avirulence (Avr genes of P. sojae control race-cultivar compatibility. In this study, we identify the P. sojae Avr3c gene and show that it encodes a predicted RXLR effector protein of 220 amino acids. Sequence and transcriptional data were compared for predicted RXLR effectors occurring in the vicinity of Avr4/6, as genetic linkage of Avr3c and Avr4/6 was previously suggested. Mapping of DNA markers in a F(2 population was performed to determine whether selected RXLR effector genes co-segregate with the Avr3c phenotype. The results pointed to one RXLR candidate gene as likely to encode Avr3c. This was verified by testing selected genes by a co-bombardment assay on soybean plants with Rps3c, thus demonstrating functionality and confirming the identity of Avr3c. The Avr3c gene together with eight other predicted genes are part of a repetitive segment of 33.7 kb. Three near-identical copies of this segment occur in a tandem array. In P. sojae strain P6497, two identical copies of Avr3c occur within the repeated segments whereas the third copy of this RXLR effector has diverged in sequence. The Avr3c gene is expressed during the early stages of infection in all P. sojae strains examined. Virulent alleles of Avr3c that differ in amino acid sequence were identified in other strains of P. sojae. Gain of virulence was acquired through mutation and subsequent sequence exchanges between the two copies of Avr3c. The results illustrate the importance of segmental duplications and RXLR effector evolution in the control of race-cultivar compatibility in the P. sojae and soybean interaction.

  17. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Clark, Andrea J; Coury, Emma L; Meilhac, Alexandra M; Petty, Howard R

    2016-01-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO 3 /Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO 3 /Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO 3 /Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer. (paper)

  18. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    Science.gov (United States)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  19. Safe and effective error rate monitors for SS7 signaling links

    Science.gov (United States)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  20. A ROLE FOR INTERLEUKIN 8 IN DIRECT REGULATION OF T CELL FUNCTIONAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    M. E. Meniailo

    2017-01-01

    Full Text Available CD3+T lymphocytes were isolated from normal donors by positive magnetic separation. Activation of the T cells with particles conjugated with antibodies to CD3, СD28 and СD2 molecules led to substantial increase in T cell production of interleukin-8 (IL-8. An interleukin-8 receptor (CXCR1, CD181 was initially expressed in 13.3% of T lymphocytes. Activation of T lymphocytes resulted into a detectable increase of CD181+ cell number among CD4+ naïve cells and CD4+ terminally-differentiated effector cells, and, conversely, into decrease of their number among CD4+ effector memory cells. Activation of T lymphocytes was assessed by membrane expression of CD25 molecule (receptor for IL-2. IL-8 (0.01-10.0 ng/ml was shown to markedly reduce activation of both CD4- and CD4+ effector memory T cells, as well as terminallydifferentiated T effectors, without significantly affecting activation of naive T lymphocytes and central memory T cells. IL-8 noticeably increased IL-2 production by activated Т cells, caused a reduced IL-10 production, and did not significantly affect the secretion of IFNγ and IL-4. The data obtained suggest a significance of IL-8 for direct regulation of adaptive T cell responses.

  1. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway.

    Science.gov (United States)

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S; Ariño, Joaquín; Valls, Marc

    2016-06-03

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.

  2. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy.

    Science.gov (United States)

    Tyler, Paul M; Servos, Mariah M; de Vries, Romy C; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K

    2017-03-01

    Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T-cell development and function. We determined the minimum concentration of selinexor required to block T-cell activation and showed that T-cell-inhibitory effects of selinexor occur at levels above 100 nmol/L, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 4-day drug holiday led to intratumoral IFNγ + , granzyme B + cytotoxic CD8 T cells that were comparable with vehicle-treated mice. Overall, selinexor treatment leads to transient inhibition of T-cell activation, but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T-cell functioning and development of antitumor immunity. Mol Cancer Ther; 16(3); 428-39. ©2017 AACR See related article by Farren et al., p. 417 . ©2017 American Association for Cancer Research.

  3. CCR9 Is Not Required for the Homing of Pro-inflammatory Effector T cells, but Is Crucial for Recruitment and Expansion of FoxP3+ CD8+ Tregs in the Small Intestine

    DEFF Research Database (Denmark)

    Gomez-Casado, Cristina; Joeris, Thorsten; Holmkvist, Petra

    Chemokine receptor 9 (CCR9) is required for the homeostatic recruitment of T cells to the mucosa of the small intestine. Accordingly, CCR9 has been suggested as a potential target to inhibit the recruitment of proinflammatory effector T cells (Teff) in inflammatory bowel disease (IBD). Since...... the contribution of CCR9 to the recruitment of Teff in inflammation is not entirely clear, we aimed to address this question using IFABPtOva mice. These mice express Ovalbumin (Ova) specifically in small intestinal epithelial cells, which allows triggering of acute inflammation following transfer of Ova......-specific CD8+ T cells (OT-I cells) and adjuvant treatment. Strikingly, intestinal inflammation in IFABP-tOva mice could also be triggered following transfer of CCR9-deficient OT-I cells, demonstrating that CCR9 is not required for homing of Teff cells. Interestingly, OTI cells transferred to IFABP-tOva mice...

  4. French validation of the Maslach Burnout Inventory-Student Survey (MBI-SS).

    Science.gov (United States)

    Faye-Dumanget, Christine; Carré, Julie; Le Borgne, Margaux; Boudoukha, Pr Abdel Halim

    2017-12-01

    Several international studies have been conducted on student burnout. To contribute to the clinical examination as well as research on the mental health of students, the MBI-SS (Maslach Burnout Inventory-Student Survey) has been validated and used in different countries but not in French. The aim of this study is to examine the validity of the 3-dimensional model of the French version of the MBI-SS, which is characterized by emotional "Emotional Exhaustion" (EE); "Cynicism" (CY); and low scores in "Academic Efficacy" (AE). A total of 667 university students were questioned to study the 3-dimensional structure of the French translation of the MBI-SS. The results validate the 3-dimensional structure of the MBI-SS and indicate satisfactory psychometric values. It is concluded that the MBI-SS can be used to assess burnout in French students. © 2017 John Wiley & Sons, Ltd.

  5. The Role of CD39 in Modulating Effector Immune Responses in Inflammatory Bowel Disease

    OpenAIRE

    Huang, Huang

    2015-01-01

    Inflammatory bowel disease is associated with excessive inflammation of the bowel and intestinal tissues in genetically susceptible individuals. IBD can manifest in two major forms, ulcerative colitis and Crohn’s disease. T helper type 17 cells (Th17) are effector lymphocytes that have been linked to intestinal inflammation in both mice and humans. Effector Th17 cells and regulatory T cells (Treg) – a subset pivotal to immune-tolerance maintenance – derive from the same CD4 progenitors. Our i...

  6. Suklaajälkiruoat ja niiden valmistamisen haasteet ammattikeittiössä

    OpenAIRE

    Lappalainen, Arto

    2016-01-01

    Tämä opinnäytetyö on osa palvelujen tuottamisen ja johtamisen koulutusohjelmaa. Opinnäytetyön aiheena on suklaajälkiruuat ja niiden valmistamisen haasteet ammattikeittiössä. Opinnäytetyön teoriaosuudessa käsitellään suklaan historiaa, lajikkeita, tuottajamaita, valmistusmenetelmiä, suklaan laatuja, tärkeimpiä valmistajia sekä suklaan käyttöä ja tekniikoita ammattikeittiössä. Tutkimuksessa selvitettiin yleisimpiä suklaajälkiruokia ja niiden valmistuksessa olevia haasteita ammattikeitti...

  7. Investigating The Anti-apoptotic Effects of Shigella Flexneri Infection In Epithelial Cells

    Science.gov (United States)

    2009-08-13

    Infect. Immun. 72:6012-6022. 103. Suzuki, T., L. Franchi , C. Toma, H. Ashida, M. Ogawa, Y. Yoshikawa, H. Mimuro, N. Inohara, C. Sasakawa, and G... rule out the 106 possibility that a bacterial T3SS effector protein expressed intracellularly also contributes to the induction of JUN...of the point-counting stereological method (79) using an intraocular reticle of 27-mm diameter, covering 3578 μm 2 (Kr409, Klarman Rulings ) (68

  8. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi.

    Science.gov (United States)

    Swain, Durga Madhab; Yadav, Sunil Kumar; Tyagi, Isha; Kumar, Rahul; Kumar, Rajeev; Ghosh, Srayan; Das, Joyati; Jha, Gopaljee

    2017-09-01

    Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.

  9. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    Science.gov (United States)

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM

  10. [Study and development of a new automatic suction system (SS) of intratracheal sputum in order to improve QOL of many patients with tracheostomy mechanical ventilation (TMV) and their family members by this new autonomic SS].

    Science.gov (United States)

    Hokezu, Youichi; Yamamoto, Makoto; Tokunaga, Syuichi; Niikura, Makoto; Nagamatsu, Keiji; Kira, Jun-ichi; Fukunaga, Toshihide; Shima, Kouji; Kikuchi, Seiji; Kimura, Itaru; Kondo, Kiyohiko; Mori, Teruhiko; Goto, Katumasa; Takigami, Shigeru; Shioya, Keiichi; Uehara, Minako

    2009-11-01

    In Japan, many patients equipped with TMV are under medical treatment at home after 1990. These patients can't put out sputa in trachea, so that these patient's family members must suck these patient's intratracheal sputa all days. Mr Yamamoto and Mr Tokunaga, main researchers of this study, began the study on the automatic SS of itratracheal sputa from 1999. In first stage, They developed the intermittent SS in detaining the suction tube within tracheal cannula, monitering the intratracheal pressure, but this system takes the ventilation away from the patient. Hypoventilation caused by this SS may cause the serious accident in patient. Therefore, we remodel the SS from intermittent SS to rollerpomp-type SS continuing to suck the itratracheal sputa with low volume from 2004, and thereafter we made up the SS of piston pomp type-SS finally at 2007. We developed the tracheal cannula with double suction holes of inner and lower hole in the lower part of its cannula together with the suction machine. We think that the practical use of this automatic SS will bring these patients with TMV and their family members great benefits. We desire that the practical use of this SS will be realized as soon as possible.

  11. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T

    International Nuclear Information System (INIS)

    Morelli, John; Porter, David; Ai, Fei

    2013-01-01

    Background: Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. Purpose: To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Material and Methods: Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. Results: SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P -4 at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Conclusion: Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain

  12. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells.

    Directory of Open Access Journals (Sweden)

    Ryunosuke Muro

    Full Text Available The Ras-mitogen-activated protein kinase (MAPK pathway is crucial for T cell receptor (TCR signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3 is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.

  13. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    Science.gov (United States)

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  14. Targeting of T Lymphocytes to Melanoma Cells Through Chimeric Anti-GD3 Immunoglobulin T-Cell Receptors

    Directory of Open Access Journals (Sweden)

    C.O. Yun

    2000-09-01

    Full Text Available Immunoglobulin T-cell receptors (IgTCRs combine the specificity of antibodies with the potency of cellular killing by grafting antibody recognition domains onto TCR signaling chains. IgTCR-modified T cells are thus redirected to kill tumor cells based on their expression of intact antigen on cell surfaces, bypassing the normal mechanism of activation through TCR—peptide—major histocompatibility complex (MHC recognition. Melanoma is one of the most immunoresponsive of human cancers and has served as a prototype for the development of a number of immunotherapies. The target antigen for this study is the ganglioside GD3, which is highly expressed on metastatic melanoma with only minor immunologic cross-reaction with normal tissues. To determine an optimal configuration for therapy, four combinations of IgTCRs were prepared and studied: sFv-ɛ, sFv-ζ, Fab-ɛ, Fab-ζ. These were expressed on the surface of human T cells by retroviral transduction. IgTCR successfully redirected T-cell effectors in an MHC-unrestricted manner, in this case against a non—T-dependent antigen, with specific binding, activation, and cytotoxicity against GD3+ melanoma cells. Soluble GD3 in concentrations up to 100 μg/ml did not interfere with recognition and binding of membrane-bound antigen. Based on the outcomes of these structural and functional tests, the sFv-ζ construct was selected for clinical development. These results demonstrate key features that emphasize the potential of anti-GD3 IgTCR-modified autologous T cells for melanoma therapies.

  15. 3D-mallinnuksen oppimistehtävät

    OpenAIRE

    Lepistö, Timo

    2016-01-01

    Työn tarkoituksena on selvittää miten luodaan selkeitä ja yksinkertaisia tehtäviä 3D-mallinnuksen opiskeluun. Näiden asioiden perusteella tehdään kolme erilaista oppimistehtävää 3D-mallinnuksen opiskeluun. Taustana on oma osaaminen 3D-mallinnuksesta, joten tavoitteena on parantaa omaa 3D-mallinnuksen osaamista. Työssä käsitellään yleisesti 3D-mallinnuksen tekniikoita, joita käytetään oppimistehtävissä sekä työssä käytettävää 3ds Max Design-mallinnusohjelmaa. Näiden lisäksi tutustutaan oppi...

  16. Clinical dosing regimen of selinexor maintains normal immune homeostasis and T cell effector function in mice: implications for combination with immunotherapy

    Science.gov (United States)

    Tyler, Paul M.; Servos, Mariah M.; de Vries, Romy C.; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K.

    2017-01-01

    Selinexor (KPT-330) is a first in class nuclear transport inhibitor currently in clinical trials as an anti-cancer agent. To determine how selinexor might impact anti-tumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T cell development, a progressive loss of CD8 T cells and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T cell development and function. We determined the minimum concentration of selinexor required to block T cell activation, and showed that T cell inhibitory effects of selinexor occur at levels above 100nM, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 5 day drug holiday led to intratumoral IFNγ+, granzyme B+ cytotoxic CD8 T cells that were comparable to vehicle treated mice. Overall, selinexor treatment leads to transient inhibition of T cell activation but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T cell functioning and development of anti-tumor immunity. PMID:28148714

  17. Milk-derived GM3 and GD3 differentially inhibit dendritic cell maturation and effector functionalities

    DEFF Research Database (Denmark)

    Brønnum, H.; Seested, T.; Hellgren, Lars

    2005-01-01

    value of gangliosides in breast milk has yet to be elucidated but when milk is ingested, dietary gangliosides might conceptually affect immune cells, such as dendritic cells (DCs). In this study, we address the in vitro effect of GD(3) and GM(3) on DC effector functionalities. Treatment of bone marrow......Gangliosides are complex glycosphingolipids, which exert immune-modulating effects on various cell types. Ganglioside GD(3) and GM(3) are the predominant gangliosides of human breast milk but during the early phase of lactation, the content of GD(3) decreases while GM(3) increases. The biological...... by GM(3,) and the potency of DCs to activate CD4(+) cells in MLR was unaffected by GM(3). However, both gangliosides suppressed expression of CD40, CD80, CD86 and major histocompatibility complex class II on DCs. Because GD(3) overall inhibits DC functionalities more than GM(3), the immune modulating...

  18. Milk-derived GM(3) and GD(3) differentially inhibit dendritic cell maturation and effector functionalities

    DEFF Research Database (Denmark)

    Bronnum, H.; Seested, T.; Hellgren, Lars

    2005-01-01

    value of gangliosides in breast milk has yet to be elucidated but when milk is ingested, dietary gangliosides might conceptually affect immune cells, such as dendritic cells (DCs). In this study, we address the in vitro effect of GD(3) and GM(3) on DC effector functionalities. Treatment of bone marrow......Gangliosides are complex glycosphingolipids, which exert immune-modulating effects on various cell types. Ganglioside GD(3) and GM(3) are the predominant gangliosides of human breast milk but during the early phase of lactation, the content of GD(3) decreases while GM(3) increases. The biological...... by GM(3,) and the potency of DCs to activate CD4(+) cells in MLR was unaffected by GM(3). However, both gangliosides suppressed expression of CD40, CD80, CD86 and major histocompatibility complex class II on DCs. Because GD(3) overall inhibits DC functionalities more than GM(3), the immune modulating...

  19. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism.

    Science.gov (United States)

    Guzmán-Guzmán, Paulina; Alemán-Duarte, Mario Iván; Delaye, Luis; Herrera-Estrella, Alfredo; Olmedo-Monfil, Vianey

    2017-02-15

    Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T

  20. Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells.

    Science.gov (United States)

    Leal Rojas, Ingrid M; Mok, Wai-Hong; Pearson, Frances E; Minoda, Yoshihito; Kenna, Tony J; Barnard, Ross T; Radford, Kristen J

    2017-01-01

    Dendritic cells (DC) initiate the differentiation of CD4 + helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4 + T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1β, IL-6, and IL-23, by human blood monocytes, CD1c + DC, CD141 + DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4 + T cells. Human CD1c + DC produced IL-12p70, IL-1β, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141 + DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c + DC. Activated CD1c + DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4 + T cells, characterized by high production of interferon-γ, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c + DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis.

  1. miR-466a Targeting of TGF-β2 Contributes to FoxP3+ Regulatory T Cell Differentiation in a Murine Model of Allogeneic Transplantation

    Directory of Open Access Journals (Sweden)

    William Becker

    2018-04-01

    Full Text Available The promise of inducing immunological tolerance through regulatory T cell (Treg control of effector T cell function is crucial for developing future therapeutic strategies to treat allograft rejection as well as inflammatory autoimmune diseases. In the current study, we used murine allograft rejection as a model to identify microRNA (miRNA regulation of Treg differentiation from naïve CD4 cells. We performed miRNA expression array in CD4+ T cells in the draining lymph node (dLN of mice which received syngeneic or allogeneic grafts to determine the molecular mechanisms that hinder the expansion of Tregs. We identified an increase in miRNA cluster 297-669 (C2MC after allogeneic transplantation, in CD4+ T cells, such that 10 of the 27 upregulated miRNAs were all from this cluster, with one of its members, mmu-miR-466a-3p (miR-466a-3p, targeting transforming growth factor beta 2 (TGF-β2, as identified through reporter luciferase assay. Transfection of miR-466a-3p in CD4+ T cells led to a decreased inducible FoxP3+ Treg generation while inhibiting miR-466a-3p expression through locked nucleic acid resulting in increased Tregs and a reduction in effector T cells. Furthermore, in vivo inhibition of miR-466a-3p in an allogeneic skin-graft model attenuated T cell response against the graft through an increase in TGF-β2. TGF-β2 was as effective as TGF-β1 at both inducing Tregs and through adoptive transfer, mitigating host effector T cell response against the allograft. Together, the current study demonstrates for the first time a new role for miRNA-466a-3p and TGF-β2 in the regulation of Treg differentiation and thus offers novel avenues to control inflammatory disorders.

  2. EFFECTS OF HISTONE DEACETYLASE INHIBITOR, SAHA, ON EFFECTOR AND FOXP3+ REGULATORY T CELLS IN RHESUS MACAQUES

    OpenAIRE

    Johnson, Jennifer; Pahuja, Anil; Graham, Melanie; Hering, Bernhard; Hancock, Wayne W.; Pratima, Bansal-Pakala

    2008-01-01

    SAHA, a histone deacetylase inhibitor (HDACi), is clinically approved for treatment of cutaneous T-cell lymphoma. Although the exact underlying mechanisms are unknown, HDACi arrest the cell cycle in rapidly proliferating tumor cells and promote their apoptosis. HDACi were also recently shown to enhance the production and suppressive functions of Foxp3+ regulatory T (Treg) cells in rodents, leading us to begin to investigate the actions of HDACi on rhesus monkey T cells for the sake of potenti...

  3. Green tea epigallocatechin-3-gallate modulates differentiation of naive CD4+ T cells into specific lineage effector cells

    Science.gov (United States)

    CD4+ T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We previously showed that epigallocatechin-3-gallate (EGCG) attenuated experimental autoimmune encephalomyelitis (EAE) and altered CD4+ T cell subpo...

  4. SseK3 Is a Salmonella Effector That Binds TRIM32 and Modulates the Host's NF-κB Signalling Activity.

    Directory of Open Access Journals (Sweden)

    Zhe Yang

    Full Text Available Salmonella Typhimurium employs an array of type III secretion system effectors that facilitate intracellular survival and replication during infection. The Salmonella effector SseK3 was originally identified due to amino acid sequence similarity with NleB; an effector secreted by EPEC/EHEC that possesses N-acetylglucoasmine (GlcNAc transferase activity and modifies death domain containing proteins to block extrinsic apoptosis. In this study, immunoprecipitation of SseK3 defined a novel molecular interaction between SseK3 and the host protein, TRIM32, an E3 ubiquitin ligase. The conserved DxD motif within SseK3, which is essential for the GlcNAc transferase activity of NleB, was required for TRIM32 binding and for the capacity of SseK3 to suppress TNF-stimulated activation of NF-κB pathway. However, we did not detect GlcNAc modification of TRIM32 by SseK3, nor did the SseK3-TRIM32 interaction impact on TRIM32 ubiquitination that is associated with its activation. In addition, lack of sseK3 in Salmonella had no effect on production of the NF-κB dependent cytokine, IL-8, in HeLa cells even though TRIM32 knockdown suppressed TNF-induced NF-κB activity. Ectopically expressed SseK3 partially co-localises with TRIM32 at the trans-Golgi network, but SseK3 is not recruited to Salmonella induced vacuoles or Salmonella induced filaments during Salmonella infection. Our study has identified a novel effector-host protein interaction and suggests that SseK3 may influence NF-κB activity. However, the lack of GlcNAc modification of TRIM32 suggests that SseK3 has further, as yet unidentified, host targets.

  5. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors.

    Directory of Open Access Journals (Sweden)

    Bijay S Jaiswal

    Full Text Available BACKGROUND: Oncogenic RAS is a highly validated cancer target. Attempts at targeting RAS directly have so far not succeeded in the clinic. Understanding downstream RAS-effectors that mediate oncogenesis in a RAS mutant setting will help tailor treatments that use RAS-effector inhibitors either alone or in combination to target RAS-driven tumors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have investigated the sufficiency of targeting RAS-effectors, RAF, MEK and PI3-Kinase either alone or in combination in RAS mutant lines, using an inducible shRNA in vivo mouse model system. We find that in colon cancer cells harboring a KRAS(G13D mutant allele, knocking down KRAS alone or the RAFs in combination or the RAF effectors, MEK1 and MEK2, together is effective in delaying tumor growth in vivo. In melanoma cells harboring an NRAS(Q61L or NRAS(Q61K mutant allele, we find that targeting NRAS alone or both BRAF and CRAF in combination or both BRAF and PIK3CA together showed efficacy. CONCLUSION/SIGNIFICANCE: Our data indicates that targeting oncogenic NRAS-driven melanomas require decrease in both pERK and pAKT downstream of RAS-effectors for efficacy. This can be achieved by either targeting both BRAF and CRAF or BRAF and PIK3CA simultaneously in NRAS mutant tumor cells.

  6. TAL effectors and the executor R genes.

    Science.gov (United States)

    Zhang, Junli; Yin, Zhongchao; White, Frank

    2015-01-01

    Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  7. TAL effectors and the executor R genes

    Directory of Open Access Journals (Sweden)

    Junli eZhang

    2015-08-01

    Full Text Available Transcription activation-like (TAL effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R genes have been characterized - recessive, dominant non-transcriptional and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  8. Omaa ääntä etsimässä : syntetisaattorin käyttö Orbit-yhtyeessä

    OpenAIRE

    Myrskog, Mikael

    2014-01-01

    Musiikkikappaleessa on mielestäni oleellisinta sen sisäinen, esteettinen maailma ja se tunne, joka tästä välittyy. Tässä kokonaisuudessa yksi tärkeimmistä tekijöistä on mielestäni kappaleen eri instrumenttien luoma yhteinen saundimaailma. Opinnäytetyössäni tutkin ja kuvailen, miten käytän syntetisaattoreita saundien luomiseen fuusiojazzyhtyeessä Orbit. Mielestäni on tärkeää olla tietoinen siitä musiikin perinteestä, minkä jatkumon osana itse on. Näin esittelen ja analysoin kappaleita,...

  9. Tapahtuman mallintaminen kauppakeskusmiljöössä

    OpenAIRE

    Mäenpää, Piia

    2016-01-01

    Opinnäytetyön tarkoituksena oli luoda kauppakeskusmiljööseen sopiva tapahtumakonsepti kohdennetulle asiakaskohderyhmälle, tässä tapauksessa seniori-ikäisille yli 65-vuotiaille. Kokonaisvaltaisesti tapahtuman mallinnuksen tavoitteeksi määriteltiin lisäksi uudenlaisen asiakaslähtöisen palvelukulttuurin luominen kauppakeskusmiljööseen, asiakkaiden aktivointi palveluiden sekä synergian luominen yksityisten eri toimijoiden välillä kauppakeskuksessa ja osuuskaupan sisällä. Konseptoinnin tausto...

  10. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    Science.gov (United States)

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE.

    Directory of Open Access Journals (Sweden)

    Puthayalai Treerat

    Full Text Available Many Gram-negative pathogens use a type III secretion system (TTSS for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.

  12. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2015-12-01

    Full Text Available The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen’s advantage. Proteinaceous effectors are synthesised intracellularly and must be externalised to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localisation predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.

  13. Genotyping of polymorphic effectors of Toxoplasma gondii isolates from China

    Directory of Open Access Journals (Sweden)

    Weisheng Cheng

    2017-11-01

    Full Text Available Abstract Background Toxoplasma gondii is an opportunistic protozoan apicomplexan and obligate intracellular parasite that infects a wide range of animals and humans. Rhoptry proteins 5 (ROP5, ROP16, ROP18 and dense granules 15 (GRA15 are the important effectors secreted by T. gondii which link to the strain virulence for mice and modulate the host’s response to the parasite. Little has been known about these molecules as well as GRA3 in type Chinese 1 strains that show polymorphism among strains of archetypical genotypes. This study examined the genetic diversity of these effectors and its correlated virulence in mice among T. gondii isolates from China. Results Twenty-one isolates from stray cats were detected, of which 15 belong to Chinese 1, and 6 to ToxoDB #205. Wh6 isolate, a Chinese 1 strain, has an avirulent phenotype. PCR-RFLP results of ROP5 and ROP18 presented few variations among the strains. Genotyping of GRA15 and ROP16 revealed that all the strains belong to type II allele except Xz7 which carries type I allele. ROP16 amino acid alignment at 503 locus demonstrated that 17 isolates are featured as type I or type III (ROP16I/III, and the other 4 as type II (ROP16II. The strains investigated may be divided into four groups based on GRA3 amino acid alignment, and all isolates of type Chinese 1 belong to the μ-1 allele except Wh6 which is identical to type II strain. Conclusions PCR-RFLP and sequence alignment analyses of ROP5, ROP16, ROP18, GRA3, and GRA15 in T. gondii revealed that strains with the same genotype may have variations in some of their key genes. GRA3 variation exhibited by Wh6 strain may be associated with the difference in phenotype and pathogenesis.

  14. DSCu/SS joining techniques development and testing

    International Nuclear Information System (INIS)

    Sato, Satoshi; Hatano, Toshihisa; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki

    1998-01-01

    Joining techniques of alumina dispersion strengthened copper alloy (DSCu) and type 316L stainless steel (SS) has been investigated aiming at applying to the fabrication of the ITER first wall/blanket. As the joining method, Hot Isostatic Pressing (HIP) of solid plates and/or blocks has been pursued. By a screening test including HIP temperatures of 980-1050degC, it was concluded that the HIP temperature of 1050degC would be optimum for the simultaneous HIPping of DSCu/DSCu, DSCu/SS and SS/SS. With DSCu/SS joint specimens HIPped at 1050degC, tensile, impact, fatigue, crack propagation, and fracture toughness tests were performed as well as mechanical test of structural model with one SS circular tube embedded. Typically, the properties of the joints were almost the same as those of DSCu or SS base metal with the same heat treatment of the HIP process, thus good joints were obtained, though parts of properties were decreased at elevated test temperature. Typical results of the mechanical test of structural mode indicated that a crack initiated at the inner surface of the SS tube under cyclic operation, and the lifetime of the first wall structure could be evaluated by existing SS fatigue data. Two HIPped first wall panel mock-ups were successfully fabricated with built-in coolant tubes: one was 300 mm long and the other 800 mm long. The former was thermo-mechanically tested with high heat fluxes corresponding to the ITER operation conditions. The mock-up showed good heat removal performance during the high heat flux tests. In addition, there were no cracks and delaminations found at HIPped interfaces by microscopic observation after all tests. Ultrasonic testing have been tried as a non-destructive examination method, and detectable defect size at SS/SS, DSCu/DSCu and DSCu/SS joint interfaces were estimated. (author)

  15. Conservation of the Type IV secretion system throughout Wolbachia evolution

    DEFF Research Database (Denmark)

    Pichon, Samuel; Bouchon, Didier; Cordaux, Richard

    2009-01-01

    , encoding a T4SS were previously identified and characterized at two separate genomic loci. Using the largest data set of Wolbachia strains studied so far, we show that vir gene sequence and organization are strictly conserved among 37 Wolbachia strains inducing various phenotypes such as cytoplasmic...... incompatibility, feminization, or oogenesis in their arthropod hosts. In sharp contrast, extensive variation of genomic sequences flanking the virB8-D4 operon suggested its distinct location among Wolbachia genomes. Long term conservation of the T4SS may imply maintenance of a functional effector translocation...... system in Wolbachia, thereby suggesting the importance for the T4SS in Wolbachia biology and survival inside host cells....

  16. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  17. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.

    Directory of Open Access Journals (Sweden)

    Antje Bast

    2014-03-01

    Full Text Available The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1

  18. Comparison of single-shot fast spin-echo sequence and T2-weighted fast spin-echo sequence in MR imaging of the brain

    International Nuclear Information System (INIS)

    Cha, Sung Ho; Seo, Jeong Jin; Jeong, Gwang Woo; Kim, Jae Kyu; Kim, Yun Hyeon; Jeong, Yong Yeon; Kang, Heoung Keun; Oh, Hee Yeon; Yoon, Jong Hoon

    1998-01-01

    The purpose of this study was to evaluate the usefulness of the single-shot fast spinecho (SS-FSE) sequence in comparison with the T2-weighted fast spin-echo (T2-FSE) sequence in brain MR imaging. In 41 patients aged 15-75 years with intracranial lesion, both SS-FSE and T2-FES images were obtained using a 1.5-T MR system. Lesions included cerebral ischemia or infarcts (n=3D23), tumors (n=3D10), hemorrhages (n=3D3), inflammatory diseases (n=3D2), arachnoid cysts(n=3D2), and vascular disease (n=3D1), and the MR images were retrospectively evaluated. To calculate contrast-to-noise ratio (CNR), percentage contrast, and signal-to-noise ratio (SNR)-and thus make a quantitative comparison-the mean signal intensities of lesions, normal brain tissue, and noise out-side the patient were measured. For qualitative comparison, the visibility, margin, and extent of the lesions were rated using a five-grade system, and the degree of MR artifacts was also evaluated. Wilcoxon's signed ranks test was used for statistical analysis. The mean CNR of lesions was significantly higher on SS-FSE (31.3) than on T2-FSE images (27.5) (p=3D0.0131). Mean percentage contrast was also higher on SS-FSE (159.0) than on T2-FSE images (108.5) (p=3D0.0222), but mean SNR was higher on T2-FSE (80.3) than on SS-FSE images (53.5) (p=3D0.0000). No significant differences in lesion visibility were observed between the two imaging sequences, though margin and extent of the lesion were worse on SS-FSE images. For MR artifacts, no significant differences were demonstrated. For the evaluation of most intracranial lesions, MR imaging using the SS-FSE sequence appears to be slightly inferior to the T2-FSE sequence, but may be useful where patients are ill or uncooperative, or where children require sedation.=20

  19. Continuous cooling and low temperature sensitization of AISI types 316 SS and 304 SS with different degrees of cold work

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N.; Dayal, R.K.; Gnanamoorthy, J.B. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Programme); Seshadri, S.K. (Indian Inst. of Tech., Madras (India). Dept. of Metallurgical Engineering)

    This paper presents the results of investigations carried out to study the sensitization behaviour of AISI Types 316 SS and 304 SS with various degrees of cold work ranging from 0 to 25%. Initially Time-Temperature-Sensitization (TTS) diagrams were established using ASTM standard A262 Practice A and E tests. From these diagrams it was found that the rate of sensitization and overall susceptibility to intergranular corrosion increases up to 15% cold work and above that starts decreasing. Desensitization was observed to be faster for higher levels of cold work, especially in the higher sensitization temperature range. From the TTS diagrams, the critical linear cooling rate below which sensitization occurs was calculated. From these data, Continuous Cooling Sensitization (CCS) diagrams were established. The results show that as the degree of cold work increases up to 15%, time needed for sensitization decreases and hence faster cooling rates must be used in order to avoid sensitization. At temperatures sufficiently below the nose temperature of the TTS diagram, log t versus 1/T plots follow a linear relationship where t is the time needed for the onset of sensitization at temperature T. From the slope, the apparent activation energy for sensitization was estimated. The validity of extrapolating these linear plots to lower temperatures (725 to 775 K) (which lie in the operating temperature regime of fast reactors) has been verified by experiment. The effect of heat treatment and microstructure on the Low Temperature Sensitization (LTS) behaviour was investigated. The results indicate that carbides of optimum size and distribution are the essential pre-requisites for LTS and cold work enhances susceptibility of stainless steels to LTS. (orig.).

  20. The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB

    Science.gov (United States)

    Yokoyama, Katsushi; Nogami, Hideki; Kabasawa, Mamiko; Ebihara, Sonomi; Shimowasa, Ai; Hashimoto, Keiko; Kawashima, Tsuyoshi; Ishijima, Sanae A.; Suzuki, Masashi

    2009-01-01

    The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship. PMID:19468044

  1. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b.

    Science.gov (United States)

    Kong, Guanghui; Zhao, Yao; Jing, Maofeng; Huang, Jie; Yang, Jin; Xia, Yeqiang; Kong, Liang; Ye, Wenwu; Xiong, Qin; Qiao, Yongli; Dong, Suomeng; Ma, Wenbo; Wang, Yuanchao

    2015-08-01

    Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a "helper" that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b.

  2. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma

    DEFF Research Database (Denmark)

    Zhang, Qian; Raghunath, Puthryaveett N; Xue, Liquan

    2002-01-01

    Accumulating evidence indicates that expression of anaplastic lymphoma kinase (ALK), typically due to t(2;5) translocation, defines a distinct type of T/null-cell lymphoma (TCL). The resulting nucleophosmin (NPM) /ALK chimeric kinase is constitutively active and oncogenic. Downstream effector mol...

  3. Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics

    Directory of Open Access Journals (Sweden)

    Jörg eSchumacher

    2014-07-01

    Full Text Available The plant pathogen Pseudomonas syringae pv. tomato (DC3000 causes virulence by delivering effector proteins into host plant cells through its type three secretion system (T3SS. In response to the plant environment DC3000 expresses hypersensitive response and pathogenicity genes (hrp. Pathogenesis depends on the ability of the pathogen to manipulate the plant metabolism and to inhibit plant immunity, which depends to a large degree on the plant’s capacity to recognise both pathogen and microbial determinants (PAMP/MAMP-triggered immunity. We have developed and employed MS-based shotgun and targeted proteomics to (i elucidate the extracellular and secretome composition of DC3000 and (ii evaluate temporal features of the assembly of the T3SS and the secretion process together with its dependence of pH. The proteomic screen, under hrp inducing in vitro conditions, of extracellular and cytoplasmatic fractions indicated the segregated presence of not only T3SS implicated proteins such as HopK1, HrpK1, HrpA1 and Avrpto1, but also of proteins not usually associated with the T3SS or with pathogenicity. Using multiple reaction monitoring MS (MRM-MS to quantify HrpA1 and Avrpto1, we found that HrpA1 is rapidly expressed, at a strict pH-dependent rate and is post-translationally processed extracellularly. These features appear to not interfere with rapid Avrpto1 expression and secretion but may suggest some temporal post-translational regulatory mechanism of the T3SS assembly. The high specificity and sensitivity of the MRM-MS approach should provide a powerful tool to measure secretion and translocation in infected tissues.

  4. Structural and Biochemical Characterization of Spa47 Provides Mechanistic Insight into Type III Secretion System ATPase Activation and Shigella Virulence Regulation*

    Science.gov (United States)

    Burgess, Jamie L.; Burgess, R. Alan; Morales, Yalemi; Bouvang, Jenna M.; Johnson, Sean J.; Dickenson, Nicholas E.

    2016-01-01

    Like many Gram-negative pathogens, Shigella rely on a complex type III secretion system (T3SS) to inject effector proteins into host cells, take over host functions, and ultimately establish infection. Despite these critical roles, the energetics and regulatory mechanisms controlling the T3SS and pathogen virulence remain largely unclear. In this study, we present a series of high resolution crystal structures of Spa47 and use the structures to model an activated Spa47 oligomer, finding that ATP hydrolysis may be supported by specific side chain contributions from adjacent protomers within the complex. Follow-up mutagenesis experiments targeting the predicted active site residues validate the oligomeric model and determined that each of the tested residues are essential for Spa47 ATPase activity, although they are not directly responsible for stable oligomer formation. Although N-terminal domain truncation was necessary for crystal formation, it resulted in strictly monomeric Spa47 that is unable to hydrolyze ATP, despite maintaining the canonical ATPase core structure and active site residues. Coupled with studies of ATPase inactive full-length Spa47 point mutants, we find that Spa47 oligomerization and ATP hydrolysis are needed for complete T3SS apparatus formation, a proper translocator secretion profile, and Shigella virulence. This work represents the first structure-function characterization of Spa47, uniquely complementing the multitude of included Shigella T3SS phenotype assays and providing a more complete understanding of T3SS ATPase-mediated pathogen virulence. Additionally, these findings provide a strong platform for follow-up studies evaluating regulation of Spa47 oligomerization in vivo as a much needed means of treating and perhaps preventing shigellosis. PMID:27770024

  5. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay.

    Science.gov (United States)

    Kim, G G; Donnenberg, V S; Donnenberg, A D; Gooding, W; Whiteside, T L

    2007-08-31

    Natural killer (NK) cell-or T cell-mediated cytotoxicity traditionally is measured in 4-16 h (51)Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3(-)CD16(+)CD56(+)). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4 h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3 h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8-13% and reliably measures NK cell-or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies.

  6. Generation of specific antitumor cytotoxic T-lymphocytes in the monoculture

    International Nuclear Information System (INIS)

    Lupatov, A.Yu.; Brondz, B.D.

    1992-01-01

    A new model for the generation of specific antitumor cytotoxic T-lymphocytes (CTL) was proposed. In contrast to other models, it allows to generate effector CTL without immunization in vitro. For estimation of cytotoxic activity, chromium-51 release assay was used. It has been shown that effector CTL were absent in the lymph nodes in 1-fold as well as 2-fold immunization. Specific CTL were detected only after secondary immunization and subsequent cultivation in vitro. Effector cells had Thy1.2 + , Lyt2 + , L3T4 - phenotypes. Presence in vitro of exogenous IL-2 was needed for the generation of CTL against MX-11 sarcoma but not against EL4 lymphoma. The release of IL-2 from lymphomas cells could stimulate generation of the effector cells through activation of the endogenous production of IL-2, or due to some other factors

  7. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis.

    Science.gov (United States)

    Andersson, Jourdan A; Sha, Jian; Erova, Tatiana E; Fitts, Eric C; Ponnusamy, Duraisamy; Kozlova, Elena V; Kirtley, Michelle L; Chopra, Ashok K

    2017-01-01

    Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA , which encodes an ATP-binding protein of ribose transport system, and vasK , an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE) , and ypo1119-1120 , identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884 -encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely Δ lpp Δ ypo0815 , Δ lpp Δ ypo2884 , Δ lpp Δ cyoABCDE , Δ vasK Δ hcp6 , and Δ ypo2720-2733 Δ hcp3 . We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with Δ lpp Δ cyoABCDE , Δ vasK Δ hcp6 , and Δ ypo2720-2733 Δ hcp3 mutant strains were 55-100% protected upon subsequent re

  8. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Jourdan A. Andersson

    2017-10-01

    Full Text Available Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS, were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE, and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%, in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55–100% protected upon subsequent re-challenge with wild

  9. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Fábia A. Salvador

    2014-09-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.

  10. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is a bona fide substrate for Legionelle pneumophila effector glucosyltransferases

    DEFF Research Database (Denmark)

    Tzivelekidis, Tina; Jank, Thomas; Pohl, Corinna

    2011-01-01

    Legionella pneumophila, which is the causative organism of Legionnaires disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (Lgt’s), which...

  11. Deoxycholate-Enhanced Shigella Virulence Is Regulated by a Rare π-Helix in the Type Three Secretion System Tip Protein IpaD.

    Science.gov (United States)

    Bernard, Abram R; Jessop, T Carson; Kumar, Prashant; Dickenson, Nicholas E

    2017-12-12

    Type three secretion systems (T3SS) are specialized nanomachines that support infection by injecting bacterial proteins directly into host cells. The Shigella T3SS has uniquely evolved to sense environmental levels of the bile salt deoxycholate (DOC) and upregulate virulence in response to DOC. In this study, we describe a rare i + 5 hydrogen bonding secondary structure element (π-helix) within the type three secretion system tip protein IpaD that plays a critical role in DOC-enhanced virulence. Specifically, engineered mutations within the π-helix altered the pathogen's response to DOC, with one mutant construct in particular exhibiting an unprecedented reduction in virulence following DOC exposure. Fluorescence polarization binding assays showed that these altered DOC responses are not the result of differences in affinity between IpaD and DOC, but rather differences in the DOC-dependent T3SS tip maturation resulting from binding of IpaD to translocator/effector protein IpaB. Together, these findings begin to uncover the complex mechanism of DOC-enhanced Shigella virulence while identifying an uncommon structural element that may provide a much needed target for non-antibiotic treatment of Shigella infection.

  12. MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function.

    Science.gov (United States)

    Zitzer, Nina C; Snyder, Katiri; Meng, Xiamoei; Taylor, Patricia A; Efebera, Yvonne A; Devine, Steven M; Blazar, Bruce R; Garzon, Ramiro; Ranganathan, Parvathi

    2018-06-15

    MicroRNA-155 (miR-155) is a small noncoding RNA critical for the regulation of inflammation as well as innate and adaptive immune responses. MiR-155 has been shown to be dysregulated in both donor and recipient immune cells during acute graft-versus-host disease (aGVHD). We previously reported that miR-155 is upregulated in donor T cells of mice and humans with aGVHD and that mice receiving miR-155-deficient (miR155 -/- ) splenocytes had markedly reduced aGVHD. However, molecular mechanisms by which miR-155 modulates T cell function in aGVHD have not been fully investigated. We identify that miR-155 expression in both donor CD8 + T cells and conventional CD4 + CD25 - T cells is pivotal for aGVHD pathogenesis. Using murine aGVHD transplant experiments, we show that miR-155 strongly impacts alloreactive T cell expansion through multiple distinct mechanisms, modulating proliferation in CD8 + donor T cells and promoting exhaustion in donor CD4 + T cells in both the spleen and colon. Additionally, miR-155 drives a proinflammatory Th1 phenotype in donor T cells in these two sites, and miR-155 -/- donor T cells are polarized toward an IL-4-producing Th2 phenotype. We further demonstrate that miR-155 expression in donor T cells regulates CCR5 and CXCR4 chemokine-dependent migration. Notably, we show that miR-155 expression is crucial for donor T cell infiltration into multiple target organs. These findings provide further understanding of the role of miR-155 in modulating aGVHD through T cell expansion, effector cytokine production, and migration. Copyright © 2018 by The American Association of Immunologists, Inc.

  13. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Joanne M Lumsden

    Full Text Available A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP-specific CD4(+ T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM and/or central memory (T(CM CD4(+ T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM and T(CM cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+ T(E/EM cells and of CD4(+ T(CM cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+ T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+ T(E/EM cells and of CD4(+ T(E/EM cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM and T(CM cells are major producers of IL-2.

  14. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    International Nuclear Information System (INIS)

    Shokri, Leila; Williams, Mark C; Rouzina, Ioulia

    2009-01-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  15. Tributyylitina (TBT) maaympäristössä: esiintyminen, vaikutukset ja riskit

    OpenAIRE

    Lukkari, Tuomas; Koponen, Kari; Tuomi, Pirjo; Dahlbo, Kim; Rossi, Esko; Järvinen, Kimmo

    2006-01-01

    Organometalleihin kuuluvan tributyylitinan (TBT) esiintymisestä, vaikutuksista ja mahdollisista riskeistä maaympäristössä on vain vähän tutkimustietoa. Tiedot perustuvat pääasiassa vesiympäristöissä tehtyihin tutkimuksiin. TBT:a ei esiinny ympäristössä luonnostaan, vaan se on peräisin ihmisen toiminnasta. TBT:n päästöt maaperään ovat peräisin mm. TBT:a sisältävien valmisteiden käytöstä, lähinnä laivojen pohjamaaleista sekä mahdollisesti pilaantuneiden sedimenttien loppusijoituksesta. TBT:n...

  16. Efficacy of Carbopol 974P (Siccafluid in the treatment of severe to moderate keratoconjunctivitis sicca (KCS in patients with primary Sjögren’s syndrome (SS not responding to standard treatment with artificial tears

    Directory of Open Access Journals (Sweden)

    A. Furlan

    2011-09-01

    Full Text Available Objective. To determine efficacy and safety of Carbopol 974P in the treatment of severe to moderate keratoconjunctivitis sicca (KCS in patients with primary Sjögren’s syndrome (SS not responding to standard treatment with artificial tears. Methods. 60 patients (57 F, 3 M, mean age 52.5±12.0, mean disease duration 12.2±7.1 yrs affected with primary SS diagnosed according to the European Community Study Group criteria were studied. Foregoing medications for SS and artificial tears for KCS have not been changed within 3 and 2 months respectively prior to the study onset. In all cases Carbopol 974P was added because symptoms of KCS were not adequately controlled with traditional lubricants. Schirmer I test, B.U.T. (break up time, rose Bengal-stain, clinical ophthalmological examination (i.e. fluorescein staining, keratis, corneal infiltrates and ulcers and a questionnaire for dry eye symptoms (range 0-30 were performed at entry (T0 and after 2 (T1 and 12 (T2 weeks. Assessment of global efficacy was obtained by VAS 0-100 at T2 either by patients and by the ophthalmologist. Results. Lachrymal tests significantly improved after 2 and, even more, after 12 weeks. Clinical ophthalmologic picture also ameliorated: a remarkable reduction of fluorescein positive lesions was demonstrated from 71.6% of the cases at T0 to 38.3% at T2. Total score of symptoms (T0: 16.1±7.3 dropped to 11.9±6.6 (T1 (p=0.000 and then to 6.7±5.3 (T2 (p=0.000. Global efficacy expressed by patients and physician was 74.8±15.9 and 76.6±13.0, respectively. No adverse events (blurred vision, allergy were reported throughout the study. Conclusions. Our study seems to demonstrate that addition of Carbopol 974P to the traditional therapeutic armamentarium for moderate to severe KCS is useful and well accepted in patients with primary SS in which management of ocular symptoms is unsatisfactory.

  17. Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis.

    Science.gov (United States)

    Ota, Yuri; Niiro, Hiroaki; Ota, Shun-Ichiro; Ueki, Naoko; Tsuzuki, Hirofumi; Nakayama, Tsuyoshi; Mishima, Koji; Higashioka, Kazuhiko; Jabbarzadeh-Tabrizi, Siamak; Mitoma, Hiroki; Akahoshi, Mitsuteru; Arinobu, Yojiro; Kukita, Akiko; Yamada, Hisakata; Tsukamoto, Hiroshi; Akashi, Koichi

    2016-03-16

    The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T-B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL(+) effector B cells and their impacts on osteoclast differentiation. Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. RANKL expression was accentuated in CD80(+)CD86(+) B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3(+)RANKL(+) effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL(+) effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Our current findings have shed light on the generation mechanism of pathogenic RANKL(+) effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future.

  18. Circulating gluten-specific FOXP3+CD39+ regulatory T cells have impaired suppressive function in patients with celiac disease.

    Science.gov (United States)

    Cook, Laura; Munier, C Mee Ling; Seddiki, Nabila; van Bockel, David; Ontiveros, Noé; Hardy, Melinda Y; Gillies, Jana K; Levings, Megan K; Reid, Hugh H; Petersen, Jan; Rossjohn, Jamie; Anderson, Robert P; Zaunders, John J; Tye-Din, Jason A; Kelleher, Anthony D

    2017-12-01

    Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3) + Treg cells. Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4 + T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4 + T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4 + T cells were FOXP3 + CD39 + Treg cells, which reside within the pool of memory CD4 + CD25 + CD127 low CD45RO + Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3 + CD39 + Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. This study provides the first estimation of FOXP3 + CD39 + Treg cell frequency within circulating gluten-specific CD4 + T cells after oral gluten challenge of patients with celiac disease. FOXP3 + CD39 + Treg cells comprised a major proportion of all circulating gluten-specific CD4 + T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key

  19. Ostotoiminnan laadunvarmistus ja toiminnanohjauksen kehittäminen Mantsinen Group Ltd Oy:ssä

    OpenAIRE

    Hiltunen, Jarmo

    2012-01-01

    Opinnäytetyön aiheena oli ostotoiminnan laadunvarmistuksen ja toiminnanohjauksen kehittäminen Mantsinen Group Ltd Oy:ssä. Työssä on perehdytty erityisesti niihin ostotoiminnan laadun kehittämisen haasteisiin mitkä liittyvät alihankintaostamisen osa-alueeseen. Opinnäytetyön päätavoitteena oli luoda työkaluja hankinnan laadun jatkuvan parantamisen avuksi. Lisäksi tavoitteena oli perehtyä hankintojen mittaamisen teoriaan. Opinnäytetyön tutkimusmenetelmänä on käytetty käytännön tietoa ostam...

  20. Dendritic cell-mediated T cell polarization

    NARCIS (Netherlands)

    de Jong, Esther C.; Smits, Hermelijn H.; Kapsenberg, Martien L.

    2005-01-01

    Effective defense against diverse types of micro-organisms that invade our body requires specialized classes of antigen-specific immune responses initiated and maintained by distinct subsets of effector CD4(+) T helper (Th) cells. Excessive or detrimental (e.g., autoimmune) responses by effector T

  1. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch

    NARCIS (Netherlands)

    Amsen, Derk; Antov, Andrey; Jankovic, Dragana; Sher, Alan; Radtke, Freddy; Souabni, Abdallah; Busslinger, Meinrad; McCright, Brent; Gridley, Thomas; Flavell, Richard A.

    2007-01-01

    CD4(+) T helper cells differentiate into T helper 1 (Th1) or Th2 effector lineages, which orchestrate immunity to different types of microbes. Both Th1 and Th2 differentiation can be induced by Notch, but what dictates which of these programs is activated in response to Notch is not known. By using

  2. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    Science.gov (United States)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  3. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype.

    Science.gov (United States)

    Munier, C Mee Ling; van Bockel, David; Bailey, Michelle; Ip, Susanna; Xu, Yin; Alcantara, Sheilajen; Liu, Sue Min; Denyer, Gareth; Kaplan, Warren; Suzuki, Kazuo; Croft, Nathan; Purcell, Anthony; Tscharke, David; Cooper, David A; Kent, Stephen J; Zaunders, John J; Kelleher, Anthony D

    2016-10-17

    Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. The Living Eye “Disarms” Uncommitted Autoreactive T Cells by Converting Them to FoxP3+ Regulatory Cells Following Local Antigen Recognition

    Science.gov (United States)

    Zhou, Ru; Horai, Reiko; Silver, Phyllis B; Mattapallil, Mary J; Zárate-Bladés, Carlos R; Chong, Wai Po; Chen, Jun; Rigden, Rachael C; Villasmil, Rafael; Caspi, Rachel R

    2011-01-01

    Immune privilege is used by the eye, brain, reproductive organs and gut to preserve structural and functional integrity in the face of inflammation. The eye is arguably the most vulnerable, and therefore also the most “privileged” of tissues, but paradoxically, remains subject to destructive autoimmunity. It has been proposed, although never proven in vivo, that the eye can induce T regulatory cells (Tregs) locally. Using FoxP3-GFP reporter mice expressing a retina-specific T cell receptor, we now show that uncommitted T cells rapidly convert in the living eye to FoxP3+ Tregs in a process involving retinal antigen recognition, de novo FoxP3 induction and proliferation. This takes place within the ocular tissue and is supported by retinoic acid, which is normally present in the eye due to its function in the chemistry of vision. Non-converted T cells showed evidence of priming, but appeared restricted from expressing effector function in the eye. Preexisting ocular inflammation impeded conversion of uncommitted T cells into Tregs. Importantly, retina-specific T cells primed in vivo before introduction into the eye were resistant to Treg conversion in the ocular environment, and instead caused severe uveitis. Thus, uncommitted T cells can be disarmed, but immune privilege is unable to protect from uveitogenic T cells that have acquired effector function prior to entering the eye. These findings shed new light on the phenomenon of immune privilege and on its role, as well as its limitations, in actively controlling immune responses in the tissue. PMID:22238462

  5. Shigella

    Science.gov (United States)

    Marteyn, Benoit; Gazi, Anastasia; Sansonetti, Philippe

    2012-01-01

    Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the “arms race” in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The “identity” of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this “identity” may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are

  6. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Directory of Open Access Journals (Sweden)

    Agnes S. M. Yong

    2017-04-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01% in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR, which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important

  7. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating

  8. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development.

    Science.gov (United States)

    Hilton, Matthew J; Tu, Xiaolin; Cook, Julie; Hu, Hongliang; Long, Fanxin

    2005-10-01

    Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development, including proliferation and maturation of chondrocytes, osteoblast development and cartilage vascularization. Although it is known that Gli transcription factors are key effectors of hedgehog signaling, it has not been established which Gli protein mediates Ihh activity in skeletal development. Here, we show that removal of Gli3 in Ihh-null mouse embryos restored normal proliferation and maturation of chondrocytes, but only partially rescued the defects in osteoblast development and cartilage vascularization. Remarkably, in both Ihh-/- and Ihh-/-; Gli3-/- embryos, vascularization promoted osteoblast development in perichondrial progenitor cells. Our results not only establish Gli3 as a critical effector for Ihh activity in the developing skeleton, but also identify an osteogenic role for a vasculature-derived signal, which integrates with Ihh and Wnt signals to determine the osteoblast versus chondrocyte fate in the mesenchymal progenitors.

  9. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  10. The Biology of Autoimmune Response in the Scurfy Mice that Lack the CD4+Foxp3+ Regulatory T-Cells.

    Science.gov (United States)

    Ju, Shyr-Te; Sharma, Rahul; Gaskin, Felicia; Kung, John T; Fu, Shu Man

    2012-04-04

    Due to a mutation in the Foxp3 transcription factor, Scurfy mice lack regulatory T-cells that maintain self-tolerance of the immune system. They develop multi-organ inflammation (MOI) and die around four weeks old. The affected organs are skin, tail, lungs and liver. In humans, endocrine and gastrointestinal inflammation are also observed, hence the disease is termed IPEX (Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked) syndrome. The three week period of fatal MOI offers a useful autoimmune model in which the controls by genetics, T-cell subsets, cytokines, and effector mechanisms could be efficiently investigated. In this report, we will review published work, summarize our recent studies of Scurfy double mutants lacking specific autoimmune-related genes, discuss the cellular and cytokine controls by these genes on MOI, the organ-specificities of the MOI controlled by environments, and the effector mechanisms regulated by specific Th cytokines, including several newly identified control mechanisms for organ-specific autoimmune response.

  11. T-cell receptor Vβ skewing frequently occurs in refractory cytopenia of childhood and is associated with an expansion of effector cytotoxic T cells: a prospective study by EWOG-MDS

    International Nuclear Information System (INIS)

    Aalbers, A M; Heuvel-Eibrink, M M van den; Baumann, I; Beverloo, H B; Driessen, G J; Dworzak, M; Fischer, A; Göhring, G; Hasle, H; Locatelli, F; De Moerloose, B; Noellke, P; Schmugge, M; Stary, J; Yoshimi, A; Zecca, M; Zwaan, C M; Dongen, J J M van; Pieters, R; Niemeyer, C M; Velden, V H J van der; Langerak, A W

    2014-01-01

    Immunosuppressive therapy (IST), consisting of antithymocyte globulin and cyclosporine A, is effective in refractory cytopenia of childhood (RCC), suggesting that, similar to low-grade myelodysplastic syndromes in adult patients, T lymphocytes are involved in suppressing hematopoiesis in a subset of RCC patients. However, the potential role of a T-cell-mediated pathophysiology in RCC remains poorly explored. In a cohort of 92 RCC patients, we prospectively assessed the frequency of T-cell receptor (TCR) β-chain variable (Vβ) domain skewing in bone marrow and peripheral blood by heteroduplex PCR, and analyzed T-cell subsets in peripheral blood by flow cytometry. TCRVβ skewing was present in 40% of RCC patients. TCRVβ skewing did not correlate with bone marrow cellularity, karyotype, transfusion history, HLA-DR15 or the presence of a PNH clone. In 28 patients treated with IST, TCRVβ skewing was not clearly related with treatment response. However, TCRVβ skewing did correlate with a disturbed CD4 + /CD8 + T-cell ratio, a reduction in naive CD8 + T cells, an expansion of effector CD8 + T cells and an increase in activated CD8 + T cells (defined as HLA-DR + , CD57 + or CD56 + ). These data suggest that T lymphocytes contribute to RCC pathogenesis in a proportion of patients, and provide a rationale for treatment with IST in selected patients with RCC

  12. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  13. A comparative study on the compatibility of liquid lead–gold eutectic and liquid lead–bismuth eutectic with T91 and SS 316LN steels

    International Nuclear Information System (INIS)

    Dai, Y.; Gao, W.; Zhang, T.; Platacis, E.; Heinitz, S.; Thomsen, K.

    2012-01-01

    Liquid lead–gold eutectic (LGE) is considered as a potential target material for high power spallation sources. In the present work, the corrosion effects of LGE on T91 and SS 316LN steels have been investigated in comparison with that of liquid lead–bismuth eutectic (LBE) under the same testing conditions. Two tests were conducted at 400 °C for 1800 h and at 450 °C for 1300 h, in which specimens of the two steels were exposed to 1 m/s flowing LGE and LBE. Surface inspections showed that the specimens underwent a mixed corrosion mode of dissolution and oxidation. The results obtained from the SS 316LN specimens are very interesting. Firstly, EDX (electron energy dispersion X-ray spectrometry) analyses revealed that Ni, Cr and Mn have a higher dissolution rate in LGE than in LBE. Secondly, it was observed that LBE attacked strongly on grain-boundaries (GBs) and twin-boundaries (TBs), while LGE did not preferentially attack GBs and TBs. Further, the diffusion or penetration paths of LBE look straight, while those of LGE look like a complex network. In the attacked regions the chemical composition of the steel did not change much in the LBE case, but changed greatly in the LGE case. The T91 specimens exhibited considerably weaker corrosion effects under the present testing conditions.

  14. Structural and Biochemical Characterization of Spa47 Provides Mechanistic Insight into Type III Secretion System ATPase Activation and Shigella Virulence Regulation.

    Science.gov (United States)

    Burgess, Jamie L; Burgess, R Alan; Morales, Yalemi; Bouvang, Jenna M; Johnson, Sean J; Dickenson, Nicholas E

    2016-12-09

    Like many Gram-negative pathogens, Shigella rely on a complex type III secretion system (T3SS) to inject effector proteins into host cells, take over host functions, and ultimately establish infection. Despite these critical roles, the energetics and regulatory mechanisms controlling the T3SS and pathogen virulence remain largely unclear. In this study, we present a series of high resolution crystal structures of Spa47 and use the structures to model an activated Spa47 oligomer, finding that ATP hydrolysis may be supported by specific side chain contributions from adjacent protomers within the complex. Follow-up mutagenesis experiments targeting the predicted active site residues validate the oligomeric model and determined that each of the tested residues are essential for Spa47 ATPase activity, although they are not directly responsible for stable oligomer formation. Although N-terminal domain truncation was necessary for crystal formation, it resulted in strictly monomeric Spa47 that is unable to hydrolyze ATP, despite maintaining the canonical ATPase core structure and active site residues. Coupled with studies of ATPase inactive full-length Spa47 point mutants, we find that Spa47 oligomerization and ATP hydrolysis are needed for complete T3SS apparatus formation, a proper translocator secretion profile, and Shigella virulence. This work represents the first structure-function characterization of Spa47, uniquely complementing the multitude of included Shigella T3SS phenotype assays and providing a more complete understanding of T3SS ATPase-mediated pathogen virulence. Additionally, these findings provide a strong platform for follow-up studies evaluating regulation of Spa47 oligomerization in vivo as a much needed means of treating and perhaps preventing shigellosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Effect of alloying elements on the isothermal solidification during TLP bonding of SS 410 and SS 321 using a BNi-2 interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Arafin, M.A. [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, H3G 1M8 (Canada)], E-mail: ma_arafi@encs.concordia.ca; Medraj, M. [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, H3G 1M8 (Canada)], E-mail: mmedraj@encs.concordia.ca; Turner, D.P. [Metallurgical Planning, Pratt and Whitney Canada, Longueuil, Que., J4G 1A1 (Canada)], E-mail: Daniel.P.Turner@pwc.ca; Bocher, P. [Department de Genie Mecanique, Ecole de Technologie Superieure, Montreal, H3C 1K3 (Canada)], E-mail: Philippe.Bocher@etsmtl.ca

    2007-11-15

    The random diffusion of solute atoms during transient liquid phase (TLP) bonding of SS 410 and 321 with nickel-based brazing filler alloy BNi-2 have been modeled using Random Walk Modeling technique. Cumulative probability distributions and probability density functions of isothermal solidification times have been calculated for different process conditions and verified with experimental data. The solubility limit of boron has been found to have decreased from 0.3 at.% at higher temperature bonding operations (1358-1394 K) because of substantial iron-rich base metal dissolution when SS 410 was used as base metals; whereas it remained unchanged for SS 321/BNi-2 combination because of high concentrations of nickel and chromium in the base metal. Silicon diffusion model, based on the EDS analysis, also predicted the isothermal solidification times reasonably well.

  16. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    OpenAIRE

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem; Ojaghian, Mohammad; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-01-01

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-i...

  17. Epigenetic landscapes reveal transcription factors regulating CD8+ T cell differentiation

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J. Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P.; Pereira, Renata M.; Crotty, Shane; Chang, John T.; Pipkin, Matthew E.; Wang, Wei; Goldrath, Ananda W.

    2017-01-01

    Dynamic changes in the expression of transcription factors (TFs) can influence specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that TF expression and binding contributed to establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of differentiation intermediates, facilitating identification of TFs with previously unappreciated roles in CD8+ T cell differentiation. PMID:28288100

  18. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis.

    Science.gov (United States)

    Si, Meiru; Zhao, Chao; Burkinshaw, Brianne; Zhang, Bing; Wei, Dawei; Wang, Yao; Dong, Tao G; Shen, Xihui

    2017-03-14

    Type VI secretion system (T6SS) is a versatile protein export machinery widely distributed in Gram-negative bacteria. Known to translocate protein substrates to eukaryotic and prokaryotic target cells to cause cellular damage, the T6SS has been primarily recognized as a contact-dependent bacterial weapon for microbe-host and microbial interspecies competition. Here we report contact-independent functions of the T6SS for metal acquisition, bacteria competition, and resistance to oxidative stress. We demonstrate that the T6SS-4 in Burkholderia thailandensis is critical for survival under oxidative stress and is regulated by OxyR, a conserved oxidative stress regulator. The T6SS-4 is important for intracellular accumulation of manganese (Mn 2+ ) under oxidative stress. Next, we identified a T6SS-4-dependent Mn 2+ -binding effector TseM, and its interacting partner MnoT, a Mn 2+ -specific TonB-dependent outer membrane transporter. Similar to the T6SS-4 genes, expression of mnoT is regulated by OxyR and is induced under oxidative stress and low Mn 2+ conditions. Both TseM and MnoT are required for efficient uptake of Mn 2+ across the outer membrane under Mn 2+ -limited and -oxidative stress conditions. The TseM-MnoT-mediated active Mn 2+ transport system is also involved in contact-independent bacteria-bacteria competition and bacterial virulence. This finding provides a perspective for understanding the mechanisms of metal ion uptake and the roles of T6SS in bacteria-bacteria competition.

  19. Study on the IFNL4 gene ss469415590 variant in Ukrainian population

    Directory of Open Access Journals (Sweden)

    Kucherenko A. M.

    2014-09-01

    Full Text Available Aim. To determine genotype and allele disribution for the IFNL4 gene ss469415590 and examine it for linkage with the IL28B gene rs12979860 in Ukrainian population. Methods. The studied group consisted of 100 unrelated donors of Eastern European origin representing the population of Ukraine. Genotyping for the IFNL4 gene ss469415590 was performed using the amplification-refractory mutation system PCR. Genotyping for the IL28B gene rs12979860 was performed by the PCR-based restriction fragment length polymorphism assay. Results. Genotype frequencies for both studied variants showed no significant deviation from those expected according to Hardy-Weinberg equilibrium. Allelic distribution for ss469415590 was: TT – 0.665, G – 0.335. Allelic frequencies of rs12979860 were: C – 0.655, T – 0.345. The results of likelihood ratio test indicated a linkage disequilibrium between the studied variants (p > 0.0001, the major alleles ss469415590 TT and rs12979860 C were in phase. The genetic structure of Ukrainian population in terms of two studied polymorphic variants is similar to the European population presented in the «1000 genomes» project. Conclusions. Considering a tight linkage revealed in Ukrainian population between the ss469415590 variant and rs12979860, a crucial genetic marker of chronic hepatitis C treatment efficiency, this polymorphism might be a promising target for further investigation as a pharmacogenetic marker.

  20. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.; Niemann, George S.; Sydor, Michael A.; Sanchez, Octavio; Ansong, Charles; Lu, Shao-Yeh; Choi, Hyungwon; Valleau, Dylan; Weitz, Karl K.; Savchenko, Alexei; Cambronne, Eric D.; Adkins, Joshua N.; McFall-Ngai, Margaret J.

    2016-07-12

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction.

    IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of

  1. The Masses and Evolutionary State of the Stars in the Dwarf Nova SS Cygni

    Science.gov (United States)

    Bitner, Martin A.; Robinson, Edward L.; Behr, Bradford B.

    2007-06-01

    The dwarf nova SS Cygni is a close binary star consisting of a K star transferring mass to a white dwarf by way of an accretion disk. We have obtained new spectroscopic observations of SS Cyg. Fits of synthetic spectra for Roche lobe-filling stars to the absorption-line spectrum of the K star yield the amplitude of the K star's radial velocity curve and the mass ratio, KK=162.5+/-1.0 km s-1 and q=MK/MWD=0.685+/-0.015. The fits also show that the accretion disk and white dwarf contribute a fraction f=0.535+/-0.075 of the total flux at 5500 Å. Taking the weighted average of our results with previously published results obtained using similar techniques, we find =163.7+/-0.7 km s-1 and =0.683+/-0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations, we limit the orbital inclination to the range 45degAustin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  2. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages.

    Directory of Open Access Journals (Sweden)

    Daniel Unterweger

    Full Text Available The type VI secretion system (T6SS mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria and a eukaryote (the social amoeba Dictyostelium discoideum. Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.

  3. On the dopplars SS433

    International Nuclear Information System (INIS)

    Fang Li Zhi; Riffini, R.

    1979-07-01

    A new family of X-ray sources has recently been proposed including SS433. The general relativistic formula to fit the frequency dependence of Hsub(α) lines in SS433 as a function of the phase is presented here. Particularly relevant for the verification of the model are the observations at the phase of minimum shift. (author)

  4. Enhanced Effector Function of CD8+ T Cells From Healthy Controls and HIV-Infected Patients Occurs Through Thrombin Activation of Protease-Activated Receptor 1

    Science.gov (United States)

    Hurley, Amanda; Smith, Mindy; Karpova, Tatiana; Hasley, Rebecca B.; Belkina, Natalya; Shaw, Stephen; Balenga, Nariman; Druey, Kirk M.; Nickel, Erin; Packard, Beverly; Imamichi, Hiromi; Hu, Zonghui; Follmann, Dean; McNally, James; Higgins, Jeanette; Sneller, Michael; Lane, H. Clifford; Catalfamo, Marta

    2013-01-01

    Disruption of vascular integrity by trauma and other tissue insults leads to inflammation and activation of the coagulation cascade. The serine protease thrombin links these 2 processes. The proinflammatory function of thrombin is mediated by activation of protease-activated receptor 1 (PAR-1). We found that peripheral blood effector memory CD4+ and CD8+ T lymphocytes expressed PAR-1 and that expression was increased in CD8+ T cells from human immunodeficiency virus (HIV)–infected patients. Thrombin enhanced cytokine secretion in CD8+ T cells from healthy controls and HIV-infected patients. In addition, thrombin induced chemokinesis, but not chemotaxis, of CD8+ T cells, which led to structural changes, including cell polarization and formation of a structure rich in F-actin and phosphorylated ezrin-radexin-moesin proteins. These findings suggest that thrombin mediates cross-talk between the coagulation system and the adaptive immune system at sites of vascular injury through increased T-cell motility and production of proinflammatory cytokines. PMID:23204166

  5. Enhanced effector function of CD8(+) T cells from healthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1.

    Science.gov (United States)

    Hurley, Amanda; Smith, Mindy; Karpova, Tatiana; Hasley, Rebecca B; Belkina, Natalya; Shaw, Stephen; Balenga, Nariman; Druey, Kirk M; Nickel, Erin; Packard, Beverly; Imamichi, Hiromi; Hu, Zonghui; Follmann, Dean; McNally, James; Higgins, Jeanette; Sneller, Michael; Lane, H Clifford; Catalfamo, Marta

    2013-02-15

    Disruption of vascular integrity by trauma and other tissue insults leads to inflammation and activation of the coagulation cascade. The serine protease thrombin links these 2 processes. The proinflammatory function of thrombin is mediated by activation of protease-activated receptor 1 (PAR-1). We found that peripheral blood effector memory CD4(+) and CD8(+) T lymphocytes expressed PAR-1 and that expression was increased in CD8(+) T cells from human immunodeficiency virus (HIV)-infected patients. Thrombin enhanced cytokine secretion in CD8(+) T cells from healthy controls and HIV-infected patients. In addition, thrombin induced chemokinesis, but not chemotaxis, of CD8(+) T cells, which led to structural changes, including cell polarization and formation of a structure rich in F-actin and phosphorylated ezrin-radexin-moesin proteins. These findings suggest that thrombin mediates cross-talk between the coagulation system and the adaptive immune system at sites of vascular injury through increased T-cell motility and production of proinflammatory cytokines.

  6. Mechanochemical regulations of RPA's binding to ssDNA

    Science.gov (United States)

    Chen, Jin; Le, Shimin; Basu, Anindita; Chazin, Walter J.; Yan, Jie

    2015-03-01

    Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.

  7. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Lasserre, Rémi; Agüera-Gonzalez, Sonia; Cuche, Céline; Danckaert, Anne; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-06-01

    The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation. © 2016 The Authors.

  8. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities.

    Science.gov (United States)

    Wong, Megan; Liang, Xiaoye; Smart, Matt; Tang, Le; Moore, Richard; Ingalls, Brian; Dong, Tao G

    2016-09-16

    In the host and natural environments, microbes often exist in complex multispecies communities. The molecular mechanisms through which such communities develop and persist - despite significant antagonistic interactions between species - are not well understood. The type VI secretion system (T6SS) is a lethal weapon commonly employed by Gram-negative bacteria to inhibit neighboring species through delivery of toxic effectors. It is well established that intra-species protection is conferred by immunity proteins that neutralize effector toxicities. By contrast, the mechanisms for interspecies protection are not clear. Here we use two T6SS active antagonistic bacteria, Aeromonas hydrophila (AH) and Vibrio cholerae (VC), to demonstrate that interspecies protection is dependent on effectors. AH and VC do not share conserved immunity genes but could equally co-exist in a mixture. However, mutants lacking the T6SS or effectors were effectively eliminated by the other competing wild type. Time-lapse microscopy analyses show that mutually lethal interactions drive the segregation of mixed species into distinct single-species clusters by eliminating interspersed single cells. Cluster formation provides herd protection by abolishing lethal interaction inside each cluster and restricting it to the boundary. Using an agent-based modeling approach, we simulated the antagonistic interactions of two hypothetical species. The resulting simulations recapitulate our experimental observation. These results provide mechanistic insights for the general role of microbial weapons in determining the structures of complex multispecies communities. Investigating the warfare of microbes allows us to better understand the ecological relationships in complex microbial communities such as the human microbiota. Here we use the T6SS, a deadly bacterial weapon, as a model to demonstrate the importance of lethal interactions in determining community structures and exchange of genetic materials

  9. Microbial Herd Protection Mediated by Antagonistic Interaction in Polymicrobial Communities

    Science.gov (United States)

    Wong, Megan J. Q.; Liang, Xiaoye; Smart, Matt; Tang, Le; Moore, Richard; Ingalls, Brian

    2016-01-01

    ABSTRACT In host and natural environments, microbes often exist in complex multispecies communities. The molecular mechanisms through which such communities develop and persist, despite significant antagonistic interactions between species, are not well understood. The type VI secretion system (T6SS) is a lethal weapon commonly employed by Gram-negative bacteria to inhibit neighboring species through the delivery of toxic effectors. It is well established that intraspecies protection is conferred by immunity proteins that neutralize effector toxicities. In contrast, the mechanisms for interspecies protection are not clear. Here we use two T6SS-active antagonistic bacterial species, Aeromonas hydrophila and Vibrio cholerae, to demonstrate that interspecies protection is dependent on effectors. A. hydrophila and V. cholerae do not share conserved immunity genes but could coexist equally in a mixture. However, mutants lacking the T6SS or effectors were effectively eliminated by the competing wild-type strain. Time-lapse microscopic analyses showed that mutually lethal interactions drive the segregation of mixed species into distinct single-species clusters by eliminating interspersed single cells. Cluster formation provides herd protection by abolishing lethal interactions inside each cluster and restricting the interactions to the boundary. Using an agent-based modeling approach, we simulated the antagonistic interactions of two hypothetical species. The resulting simulations recapitulated our experimental observations. These results provide mechanistic insights regarding the general role of microbial weapons in determining the structures of complex multispecies communities. IMPORTANCE Investigating the warfare of microbes allows us to better understand the ecological relationships in complex microbial communities such as the human microbiota. Here we use the T6SS, a deadly bacterial weapon, as a model to demonstrate the importance of lethal interactions in

  10. Myocardial Gene Expression of T-bet, GATA-3, Ror-γt, FoxP3, and Hallmark Cytokines in Chronic Chagas Disease Cardiomyopathy: An Essentially Unopposed TH1-Type Response

    Directory of Open Access Journals (Sweden)

    Luciana Gabriel Nogueira

    2014-01-01

    Full Text Available Background. Chronic Chagas disease cardiomyopathy (CCC, a late consequence of Trypanosoma cruzi infection, is an inflammatory cardiomyopathy with prognosis worse than those of noninflammatory etiology (NIC. Although the T cell-rich myocarditis is known to play a pathogenetic role, the relative contribution of each of the functional T cell subsets has never been thoroughly investigated. We therefore assessed gene expression of cytokines and transcription factors involved in differentiation and effector function of each functional T cell subset (TH1/TH2/TH17/Treg in CCC, NIC, and heart donor myocardial samples. Methods and Results. Quantitative PCR showed markedly upregulated expression of IFN-γ and transcription factor T-bet, and minor increases of GATA-3; FoxP3 and CTLA-4; IL-17 and IL-18 in CCC as compared with NIC samples. Conversely, cytokines expressed by TH2 cells (IL-4, IL-5, and IL-13 or associated with Treg (TGF-β and IL-10 were not upregulated in CCC myocardium. Expression of TH1-related genes such as T-bet, IFN-γ, and IL-18 correlated with ventricular dilation, FoxP3, and CTLA-4. Conclusions. Results are consistent with a strong local TH1-mediated response in most samples, possibly associated with pathological myocardial remodeling, and a proportionally smaller FoxP3+CTLA4+ Treg cell population, which is unable to completely curb IFN-γ production in CCC myocardium, therefore fueling inflammation.

  11. Natural Killer (NK- and T-Cell Engaging Antibody-Derived Therapeutics

    Directory of Open Access Journals (Sweden)

    Christoph Stein

    2012-06-01

    Full Text Available Unmodified antibodies (abs have been successful in the treatment of hematologic malignancies, but less so for the treatment of solid tumors. They trigger anti-tumor effects through their Fc-domains, and one way to improve their efficacy is to optimize their interaction with the effectors through Fc-engineering. Another way to empower abs is the design of bispecific abs and related fusion proteins allowing a narrower choice of effector cells. Here we review frequently chosen classes of effector cells, as well as common trigger molecules. Natural Killer (NK- and T-cells are the most investigated populations in therapeutical approaches with bispecific agents until now. Catumaxomab, the first bispecific ab to receive drug approval, targets the tumor antigen Epithelial Cell Adhesion Molecule (EpCAM and recruits T-cells via a binding site for the cell surface protein CD3. The next generation of recombinant ab-derivatives replaces the broadly reactive Fc-domain by a binding domain for a single selected trigger. Blinatumomab is the first clinically successful member of this class, targeting cancer cells via CD19 and engaging T-cells by CD3. Other investigators have developed related recombinant fusion proteins to recruit effectors, such as NK-cells and macrophages. The first such agents currently in preclinical and clinical development will be discussed.

  12. The type VI secretion system impacts bacterial invasion and population dynamics in a model intestinal microbiota

    Science.gov (United States)

    Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer

    Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.

  13. Structural insights of the ssDNA binding site in the multifunctional endonuclease AtBFN2 from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Tsung-Fu Yu

    Full Text Available The multi S1/P1 nuclease AtBFN2 (EC 3.1.30.1 encoded by the Arabidopsis thaliana At1g68290 gene is a glycoprotein that digests RNA, ssDNA, and dsDNA. AtBFN2 depends on three zinc ions for cleaving DNA and RNA at 3'-OH to yield 5'-nucleotides. In addition, AtBFN2's enzymatic activity is strongly glycan dependent. Plant Zn(2+-dependent endonucleases present a unique fold, and belong to the Phospholipase C (PLC/P1 nuclease superfamily. In this work, we present the first complete, ligand-free, AtBFN2 crystal structure, along with sulfate, phosphate and ssDNA co-crystal structures. With these, we were able to provide better insight into the glycan structure and possible enzymatic mechanism. In comparison with other nucleases, the AtBFN2/ligand-free and AtBFN2/PO4 models suggest a similar, previously proposed, catalytic mechanism. Our data also confirm that the phosphate and vanadate can inhibit the enzyme activity by occupying the active site. More importantly, the AtBFN2/A5T structure reveals a novel and conserved secondary binding site, which seems to be important for plant Zn(2+-dependent endonucleases. Based on these findings, we propose a rational ssDNA binding model, in which the ssDNA wraps itself around the protein and the attached surface glycan, in turn, reinforces the binding complex.

  14. Selective Expansion of Memory CD4+ T cells By Mitogenic Human CD28 Generates Inflammatory Cytokines and Regulatory T cells

    Science.gov (United States)

    Singh, Manisha; Basu, Sreemanti; Camell, Christina; Couturier, Jacob; Nudelman, Rodolfo J.; Medina, Miguel A.; Rodgers, John R.; Lewis, Dorothy E.

    2009-01-01

    Co-stimulatory signals are important for development of effector and regulatory T cells. In this case, CD28 signaling is usually considered inert in the absence of signaling through the TCR. By contrast, mitogenic rat CD28 mAbs reportedly expand regulatory T cells without TCR stimulation. We found that a commercially available human CD28 mAb (ANC28) stimulated PBMCs without TCR co-ligation or cross-linking; ANC28 selectively expanded CD4+CD25+FoxP3−(T effector) and CD4+CD25+FoxP3+ (Treg) cells. ANC28 stimulated the CD45RO+ CD4+ (memory) population whereas CD45RA+CD4+ (naïve) cells did not respond. ANC28 also induced inflammatory cytokines. Treg induced by ANC28 retain the Treg phenotype longer than did co-stimulated Treg. Treg induced by ANC28 suppressed CD25− T cells through a contact-dependent mechanism. Purity influenced the response of CD4+CD25+ cells because bead-purified CD4+CD25+ cells (85–90% pure) responded strongly to ANC28, whereas 98% pure FACS-sorted CD4+CD25 bright (T-reg) did not respond. Purified CD4+CD25int cells responded similarly to the bead-purified CD4+CD25+ cells. Thus, pre-activated CD4+ T cells (CD25int) respond to ANC28 rather than Treg (CD25bright). The ability of ANC28 to expand both effectors producing inflammatory cytokines as well as suppressive regulatory T cells might be useful for ex vivo expansion of therapeutic T cells. PMID:18446791

  15. FOXP3 renders activated human regulatory T cells resistant to restimulation-induced cell death by suppressing SAP expression.

    Science.gov (United States)

    Katz, Gil; Voss, Kelsey; Yan, Toria F; Kim, Yong Chan; Kortum, Robert L; Scott, David W; Snow, Andrew L

    2018-05-01

    Restimulation-induced cell death (RICD) is an apoptotic program that regulates effector T cell expansion, triggered by repeated stimulation through the T cell receptor (TCR) in the presence of interleukin-2 (IL-2). Although CD4 + regulatory T cells (Tregs) consume IL-2 and experience frequent TCR stimulation, they are highly resistant to RICD. Resistance in Tregs is dependent on the forkhead box P3 (FOXP3) transcription factor, although the mechanism remains unclear. T cells from patients with X-linked lymphoproliferative disease (XLP-1), that lack the adaptor molecule SLAM-associated protein (SAP), are also resistant to RICD. Here we demonstrate that normal Tregs express very low levels of SAP compared to conventional T cells. FOXP3 reduces SAP expression by directly binding to and repressing the SH2D1A (SAP) promoter. Indeed, ectopic SAP expression restores RICD sensitivity in human FOXP3 + Tregs. Our findings illuminate the mechanism behind FOXP3-mediated RICD resistance in Tregs, providing new insight into their long-term persistence. Published by Elsevier Inc.

  16. Developmental control of integrin expression regulates Th2 effector homing

    Science.gov (United States)

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  17. The SS-SCR Scheme for Dynamic Spectrum Access

    Directory of Open Access Journals (Sweden)

    Vinay Thumar

    2012-01-01

    Full Text Available We integrate the two models of Cognitive Radio (CR, namely, the conventional Sense-and-Scavenge (SS Model and Symbiotic Cooperative Relaying (SCR. The resultant scheme, called SS-SCR, improves the efficiency of spectrum usage and reliability of the transmission links. SS-SCR is enabled by a suitable cross-layer optimization problem in a multihop multichannel CR network. Its performance is compared for different PU activity patterns with those schemes which consider SS and SCR separately and perform disjoint resource allocation. Simulation results depict the effectiveness of the proposed SS-SCR scheme. We also indicate the usefulness of cloud computing for a practical deployment of the scheme.

  18. Dissection of a circulating CD3+ CD20+ T cell subpopulation in patients with psoriasis.

    Science.gov (United States)

    Niu, J; Zhai, Z; Hao, F; Zhang, Y; Song, Z; Zhong, H

    2018-05-01

    CD3 + CD20 + T cells are a population of CD3 + T cells that express CD20 and identified in healthy donors and autoimmune diseases. However, the nature and role of these cells in patients with psoriasis remain unclear. In this study, we aimed to investigate the level, phenotype, functional and clinical relevance of CD3 + CD20 + T cells in the peripheral blood of patients with psoriasis. We found that a small subset of CD3 + T cells expressed CD20 molecule in the peripheral blood of patients with psoriasis, and their levels were similar to those in healthy donors. Circulating CD3 + CD20 + T cells in patients with psoriasis were enriched in CD4 + cells and displayed an activated effector phenotype, as these cells contained fewer CD45RA + -naive and CCR7 + cells with increased activity than those of CD3 + T cells lacking CD20. In addition, compared with healthy donors, circulating CD3 + CD20 + T cells in patients with psoriasis produced more cytokines, interleukin (IL)-17A, tumour necrosis factor (TNF)-α and IL-21, but not IL-4 and IFN-γ. Furthermore, a significantly positive correlation was found between the levels of IL-17A, TNF-α and IL-21-production CD3 + CD20 + T cells with Psoriasis Area and Severity Index scores. Our findings suggest that CD3 + CD20 + T cells may play a role in the pathogenesis of psoriasis. © 2018 British Society for Immunology.

  19. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  20. CXCR3-dependent CD4⁺ T cells are required to activate inflammatory monocytes for defense against intestinal infection.

    Directory of Open Access Journals (Sweden)

    Sara B Cohen

    Full Text Available Chemokines and their receptors play a critical role in orchestrating immunity to microbial pathogens, including the orally acquired Th1-inducing protozoan parasite Toxoplasma gondii. Chemokine receptor CXCR3 is associated with Th1 responses, and here we use bicistronic CXCR3-eGFP knock-in reporter mice to demonstrate upregulation of this chemokine receptor on CD4⁺ and CD8⁺ T lymphocytes during Toxoplasma infection. We show a critical role for CXCR3 in resistance to the parasite in the intestinal mucosa. Absence of the receptor in Cxcr3⁻/⁻ mice resulted in selective loss of ability to control T. gondii specifically in the lamina propria compartment. CD4⁺ T cells were impaired both in their recruitment to the intestinal lamina propria and in their ability to secrete IFN-γ upon stimulation. Local recruitment of CD11b⁺Ly6C/G⁺ inflammatory monocytes, recently reported to be major anti-Toxoplasma effectors in the intestine, was not impacted by loss of CXCR3. However, inflammatory monocyte activation status, as measured by dual production of TNF-α and IL-12, was severely impaired in Cxcr3⁻/⁻ mice. Strikingly, adoptive transfer of wild-type but not Ifnγ⁻/⁻ CD4⁺ T lymphocytes into Cxcr3⁻/⁻ animals prior to infection corrected the defect in inflammatory macrophage activation, simultaneously reversing the susceptibility phenotype of the knockout animals. Our results establish a central role for CXCR3 in coordinating innate and adaptive immunity, ensuring generation of Th1 effectors and their trafficking to the frontline of infection to program microbial killing by inflammatory monocytes.

  1. The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues.

    Science.gov (United States)

    De Nisco, Nicole J; Rivera-Cancel, Giomar; Orth, Kim

    2018-01-16

    Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli , Salmonella , and Campylobacter jejuni , are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs), which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks. Copyright © 2018 De Nisco et al.

  2. The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues

    Directory of Open Access Journals (Sweden)

    Nicole J. De Nisco

    2018-01-01

    Full Text Available Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli, Salmonella, and Campylobacter jejuni, are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs, which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks.

  3. INFLUENCE OF MODIFIED BIOFLAVONOIDS UPON EFFECTOR LYMPHOCYTES IN MURINE MODEL OF CONTACT SENSITIVITY

    Directory of Open Access Journals (Sweden)

    D. Z. Albegova

    2015-01-01

    Full Text Available Contact sensitivity reaction (CSR to 2,4-dinitrofluorobenzene (DNFB in mice is a model of in vivo immune response, being an experimental analogue to contact dermatitis in humans. CSR sensitization phase begins after primary contact with antigen, lasting for 10-15 days in humans, and 5-7 days, in mice. Repeated skin exposure to the sensitizing substance leads to its recognition and triggering immune inflammatory mechanisms involving DNFB-specific effector T lymphocytes. The CSR reaches its maximum 18-48 hours after re-exposure to a hapten. There is only scarce information in the literature about effects of flavonoids on CSR, including both stimulatory and inhibitory effects. Flavonoids possessed, predominantly, suppressive effects against the CSR development. In our laboratory, a model of contact sensitivity was reproduced in CBA mice by means of cutaneous sensitization by 2,4-dinitrofluorobenzene. The aim of the study was to identify the mechanisms of immunomodulatory action of quercetin dihydrate and modified bioflavonoids, using the method of adoptive transfer contact sensitivity by splenocytes and T-lymphocytes. As shown in our studies, a 30-min pre-treatment of splenocytes and T-lymphocytes from sensitized mice with modified bioflavonoids before the cell transfer caused complete prevention of contact sensitivity reaction in syngeneic recipient mice. Meanwhile, this effect was not associated with cell death induction due to apoptosis or cytotoxicity. Quercetin dihydrate caused only partially suppression the activity of adaptively formed T-lymphocytes, the contact sensitivity effectors. It was shown that the modified bioflavonoid more stronger suppress adoptive transfer of contact sensitivity in comparison with quercetin dehydrate, without inducing apoptosis of effector cells. Thus, the modified bioflavonoid is a promising compound for further studies in a model of contact sensitivity, due to its higher ability to suppress transfer of CSR with

  4. Changes of plasma SS, SP contents in adult patients with primary hypothyroidism

    International Nuclear Information System (INIS)

    Zheng Xianghong; Song Changyi; Lei Yamei; Ning Ning; Chen Wei; Li Runming

    2008-01-01

    Objective: To investigate the possible mechanism of imparirment of central nervous system function in hypothyroid patients through determination of changes of plasma neuropeptides after thyroid hormone replacement therapy. Methods: Plasma somatostatin (SS) and substance P(SP) contents were measured with RIA in 45 patients with primary hypothyroidism both before and after thyroid hormone replacement therapy as well as in 38 controls. Results: Before treatment, the plasma contents of SP in the patients were significantly lower than those in the controls (P 0.05). However, the plasma contents of SS in the more advanced hypothyroid patients with FT 3 3 , FT 4 levels, the plasma SS, SP increased significantly (vs before treatment P<0.05, P<0.01). Conclusion: The decrease of plasma contents of SS and SP in patients with hypothyroidism might be related to the development of psycho-neurological symptoms in these patients and thyroid hormone replacement therapy was desirable. (authors)

  5. Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System.

    Directory of Open Access Journals (Sweden)

    Federico M Ruiz

    Full Text Available The type VI secretion system (T6SS is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp, which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen.

  6. Azidothymidine Sensitizes Primary Effusion Lymphoma Cells to Kaposi Sarcoma-Associated Herpesvirus-Specific CD4+ T Cell Control and Inhibits vIRF3 Function.

    Directory of Open Access Journals (Sweden)

    Samantha J Williamson

    2016-11-01

    Full Text Available Kaposi sarcoma-associated herpesvirus (KSHV is linked with the development of Kaposi sarcoma and the B lymphocyte disorders primary effusion lymphoma (PEL and multi-centric Castleman disease. T cell immunity limits KSHV infection and disease, however the virus employs multiple mechanisms to inhibit efficient control by these effectors. Thus KSHV-specific CD4+ T cells poorly recognize most PEL cells and even where they can, they are unable to kill them. To make KSHV-infected cells more sensitive to T cell control we treated PEL cells with the thymidine analogue azidothymidine (AZT, which sensitizes PEL lines to Fas-ligand and TRAIL challenge; effector mechanisms which T cells use. PELs co-cultured with KSHV-specific CD4+ T cells in the absence of AZT showed no control of PEL outgrowth. However in the presence of AZT PEL outgrowth was controlled in an MHC-restricted manner. To investigate how AZT sensitizes PELs to immune control we first examined BJAB cells transduced with individual KSHV-latent genes for their ability to resist apoptosis mediated by stimuli delivered through Fas and TRAIL receptors. This showed that in addition to the previously described vFLIP protein, expression of vIRF3 also inhibited apoptosis delivered by these stimuli. Importantly vIRF3 mediated protection from these apoptotic stimuli was inhibited in the presence of AZT as was a second vIRF3 associated phenotype, the downregulation of surface MHC class II. Although both vFLIP and vIRF3 are expressed in PELs, we propose that inhibiting vIRF3 function with AZT may be sufficient to restore T cell control of these tumor cells.

  7. The Yersinia enterocolitica type three secretion chaperone SycO is integrated into the Yop regulatory network and binds to the Yop secretion protein YscM1

    Directory of Open Access Journals (Sweden)

    Heesemann Jürgen

    2007-07-01

    Full Text Available Abstract Background Pathogenic yersiniae (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica share a virulence plasmid encoding a type three secretion system (T3SS. This T3SS comprises more than 40 constituents. Among these are the transport substrates called Yops (Yersinia outer proteins, the specific Yop chaperones (Sycs, and the Ysc (Yop secretion proteins which form the transport machinery. The effectors YopO and YopP are encoded on an operon together with SycO, the chaperone of YopO. The characterization of SycO is the focus of this study. Results We have established the large-scale production of recombinant SycO in its outright form. We confirm that Y. enterocolitica SycO forms homodimers which is typical for Syc chaperones. SycO overproduction in Y. enterocolitica decreases secretion of Yops into the culture supernatant suggesting a regulatory role of SycO in type III secretion. We demonstrate that in vitro SycO interacts with YscM1, a negative regulator of Yop expression in Y. enterocolitica. However, the SycO overproduction phenotype was not mediated by YscM1, YscM2, YopO or YopP as revealed by analysis of isogenic deletion mutants. Conclusion We present evidence that SycO is integrated into the regulatory network of the Yersinia T3SS. Our picture of the Yersinia T3SS interactome is supplemented by identification of the SycO/YscM1 interaction. Further, our results suggest that at least one additional interaction partner of SycO has to be identified.

  8. Enteropathogenic Escherichia coli Uses NleA to Inhibit NLRP3 Inflammasome Activation.

    Directory of Open Access Journals (Sweden)

    Hilo Yen

    2015-09-01

    Full Text Available Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC are related strains capable of inducing severe gastrointestinal disease. For optimal infection, these pathogens actively modulate cellular functions through the deployment of effector proteins in a type three secretion system (T3SS-dependent manner. In response to enteric pathogen invasion, the Nod-like receptor pyrin domain containing (NLRP inflammasome has been increasingly recognized as an important cytoplasmic sensor against microbial infection by activating caspase-1 and releasing IL-1β. EPEC and EHEC are known to elicit inflammasome activation in macrophages and epithelial cells; however, whether the pathogens actively counteract such innate immune responses is unknown. Using a series of compound effector-gene deletion strains of EPEC, we screened and identified NleA, which could subdue host IL-1β secretion. It was found that the reduction is not because of blocked NF-κB activity; instead, the reduction results from inhibited caspase-1 activation by NleA. Immunostaining of human macrophage-like cells following infection revealed limited formation of inflammasome foci with constituents of total caspase-1, ASC and NLRP3 in the presence of NleA. Pulldown of PMA-induced differentiated THP-1 lysate with purified MBP-NleA reveals that NLRP3 is a target of NleA. The interaction was verified by an immunoprecipitation assay and direct interaction assay in which purified MBP-NleA and GST-NLRP3 were used. We further showed that the effector interacts with regions of NLRP3 containing the PYD and LRR domains. Additionally, NleA was found to associate with non-ubiquitinated and ubiquitinated NLRP3 and to interrupt de-ubiquitination of NLRP3, which is a required process for inflammasome activation. Cumulatively, our findings provide the first example of EPEC-mediated suppression of inflammasome activity in which NieA plays a novel role in controlling the host immune response

  9. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    Science.gov (United States)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  10. Läsnäolo ja yleisösuhde : mitä tapahtuu ohjelmatyössä ja ilmaisussa kun tekniikka muuttuu?

    OpenAIRE

    Baer, Titta

    2013-01-01

    Yhden lähtökohdan ja inspiraation tälle työlle antoi mediatutkija Marshall McLuhanin tunnettu lause "väline on viesti". Opinnäytetyössä tarkastellaan, miten teknologian kehitys - kamerat, tietotekniikka - näkyy esimerkiksi TV:n ajankohtaisohjelmien ja uutisten tuotannossa. Työssä selvitetään, miten välineiden tekninen kehitys vaikuttaa, miten tekniikka muuttaa TV-ohjelmien rakennetta, ilmettä ja yleisösuhdetta. Käytetyt menetelmät ovat laadullisia: kirjallisuutta, tutkimuksia ja haastatteluja...

  11. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3

    OpenAIRE

    Meza, Juan Carlos; Auria, Richard; Lomascolo, A.; Sigoillot, J. C.; Casalot, Laurence

    2007-01-01

    Laccase production by the strain Pycnoporus cinnabarinus ss3 was studied in a solid-state culture on sugar-cane bagasse using chemical compounds as inducers (ethanol, methanol, veratryl alcohol and ferulic acid). Laccase productions were about 5- to 8.5-fold higher than non-induced cultures. Liquid-culture experiments with "Glabeled ethanol were conducted. Ninety-eight percent of the initial amount of C-14 from ethanol was recovered as (CO2)-C-14, C-14-biomass and soluble C-14-compounds (main...

  12. Pivotal advance: CTLA-4+ T cells exhibit normal antiviral functions during acute viral infection.

    Science.gov (United States)

    Raué, Hans-Peter; Slifka, Mark K

    2007-05-01

    Previous studies have shown that T cells, which are genetically deficient in CTLA-4/CD152 expression, will proliferate uncontrollably, resulting in lethal autoimmune disease. This and other evidence indicate that CTLA-4 plays a critical role in the negative regulation of effector T cell function. In contrast to expectations, BrdU incorporation experiments demonstrated that CTLA-4 expression was associated with normal or even enhanced in vivo proliferation of virus-specific CD4+ and CD8+ T cells following acute lymphocytic choriomeningitis virus or vaccinia virus infection. When compared with CTLA-4- T cells directly ex vivo, CTLA-4+ T cells also exhibited normal antiviral effector functions following stimulation with peptide-coated cells, virus-infected cells, plate-bound anti-CD3/anti-CTLA-4, or the cytokines IL-12 and IL-18. Together, this indicates that CTLA-4 does not directly inhibit antiviral T cell expansion or T cell effector functions, at least not under the normal physiological conditions associated with either of these two acute viral infections.

  13. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor.

    Science.gov (United States)

    Shishkanova, T V; Volf, R; Krondak, M; Král, V

    2007-05-15

    A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.

  14. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes.

    Science.gov (United States)

    Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin

    2015-02-15

    LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  15. DspA/E contributes to apoplastic accumulation of ROS in nonhost A. thaliana

    Directory of Open Access Journals (Sweden)

    Alban eLaunay

    2016-04-01

    Full Text Available The bacterium Erwinia amylovora is responsible for the fire blight disease of Maleae, which provokes necrotic symptoms on aerial parts. The pathogenicity of this bacterium in hosts relies on its type three-secretion system (T3SS, a molecular syringe that allows the bacterium to inject effectors into the plant cell. E. amylovora-triggered disease in host plants is associated with the T3SS-dependent production of reactive oxygen species (ROS, although ROS are generally associated with resistance in other pathosystems. We showed previously that E. amylovora can multiply transiently in the nonhost plant Arabidopsis thaliana and that a T3SS-dependent production of intracellular ROS occurs during this interaction. In the present work we characterize the localization and source of hydrogen peroxide accumulation following E. amylovora infection. Transmission electron microscope (TEM analysis of infected tissues showed that hydrogen peroxide accumulation occurs in the cytosol, plastids, peroxisomes, and mitochondria as well as in the apoplast. Furthermore, TEM analysis showed that an E. amylovora dspA/E-deficient strain does not induce hydrogen peroxide accumulation in the apoplast. Consistently, a transgenic line expressing DspA/E accumulated ROS in the apoplast. The NADPH oxidase-deficient rbohD mutant showed a very strong reduction in hydrogen peroxide accumulation in response to E. amylovora inoculation. However, we did not find an increase in bacterial titers of E. amylovora in the rbohD mutant and the rbohD mutation did not suppress the toxicity of DspA/E when introgressed into a DspA/E-expressing transgenic line. Co-inoculation of E. amylovora with cycloheximide (CHX, which we found previously to suppress callose deposition and allow strong multiplication of E. amylovora in A. thaliana leaves, led to a strong reduction of apoplastic ROS accumulation but did not affect intracellular ROS. Our data strongly suggest that apoplastic ROS accumulation is

  16. Expansion of CD25-Negative Forkhead Box P3-Positive T Cells during HIV and Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Matías T. Angerami

    2017-05-01

    Full Text Available Tuberculosis (TB and HIV alter the immune system, and coinfected (HIV-TB individuals usually present deregulations of T-lymphocytic immune response. We previously observed an increased frequency of “unconventional” CD4+CD25−FoxP3+ Treg (uTreg population during HIV-TB disease. Therefore, we aimed to explore the phenotype and function of uTreg and conventional CD4+CD25+FoxP3+ Treg subsets (cTreg in this context. We evaluated the expression of CD39, programmed cell death protein 1 (PD1, glucocorticoid-induced tumor necrosis factor receptor (GITR, and the effector/memory distribution by flow cytometry in cTreg and uTreg. Also, IL-10, TGF-β, IFN-γ production, and the suppressor capacity of uTregs were analyzed in cocultures with effector lymphocytes and compared with the effect of regulatory T cells (Tregs. We found diminished expression of CD39 and higher levels of PD1 on uTreg compared to cTreg in both HIV-TB and healthy donors (HD. In addition, uTreg and cTreg showed differences in maturation status in both HIV-TB and HD groups, due to the expansion of effector memory uTregs. Interestingly, both HIV-TB and HD showed a pronounced production of IFN-γ in uTreg population, though no significant differences were observed for IL-10 and TGF-β production between uTreg and cTreg. Moreover, IFN-γ+ cells were restricted to the CD39− uTreg population. Finally, when the suppressor capacity was evaluated, both uTreg and cTreg inhibited polyclonal T cell-proliferation and IFN-γ production in a similar extent. These findings suggest that uTregs, which are expanded during HIV-TB coinfection, exert regulatory functions in a similar way to cTregs despite an altered surface expression of Treg characteristic markers and differences in cytokine production.

  17. Relativistic jets in SS 433

    International Nuclear Information System (INIS)

    Margon, B.

    1982-01-01

    The most unusual characteristic of the star SS 433 emerged in the late 1970's when a series of optical spectra showed intense, broad optical emission lines whose profiles and wavelengths changed drastically from night to night. These features are interpreted as strong Doppler-shifted Balmer and HeI lines. The modulation of the Doppler shifts are observed as being cyclic with a period of about 164 days. It was hypothesized that these phenomena were caused by two collimated, colinear, jets which were ejecting in opposite directions from SS 433. Most authors believe that velocity variations of the emission lines are caused by a cyclic rotation of jet axis inclined to line of sight. This rotation being the result of precession, which leads one to suspect SS 433 as a member of a close binary system. This hypothesis has been confirmed from recent optical, radio, and x-ray observations which are discussed in the article. The combination of optical and radio observations of SS 433, described in the article, gives an accurate measure of the Kinematics of the system and some confidence that the Kinematic equations are understood. However, the specific physical processes of this ejection are poorly understood. Some theoretical difficulties regarding this are given

  18. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  19. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements.

    Science.gov (United States)

    Coyne, Michael J; Roelofs, Kevin G; Comstock, Laurie E

    2016-01-15

    Type VI secretion systems (T6SSs) are contact-dependent antagonistic systems employed by Gram negative bacteria to intoxicate other bacteria or eukaryotic cells. T6SSs were recently discovered in a few Bacteroidetes strains, thereby extending the presence of these systems beyond Proteobacteria. The present study was designed to analyze in a global nature the diversity, abundance, and properties of T6SSs in the Bacteroidales, the most predominant Gram negative bacterial order of the human gut. By performing extensive bioinformatics analyses and creating hidden Markov models for Bacteroidales Tss proteins, we identified 130 T6SS loci in 205 human gut Bacteroidales genomes. Of the 13 core T6SS proteins of Proteobacteria, human gut Bacteroidales T6SS loci encode orthologs of nine, and an additional five other core proteins not present in Proteobacterial T6SSs. The Bacteroidales T6SS loci segregate into three distinct genetic architectures with extensive DNA identity between loci of a given genetic architecture. We found that divergent DNA regions of a genetic architecture encode numerous types of effector and immunity proteins and likely include new classes of these proteins. TheT6SS loci of genetic architecture 1 are contained on highly similar integrative conjugative elements (ICEs), as are the T6SS loci of genetic architecture 2, whereas the T6SS loci of genetic architecture 3 are not and are confined to Bacteroides fragilis. Using collections of co-resident Bacteroidales strains from human subjects, we provide evidence for the transfer of genetic architecture 1 T6SS loci among co-resident Bacteroidales species in the human gut. However, we also found that established ecosystems can harbor strains with distinct T6SS of all genetic architectures. This is the first study to comprehensively analyze of the presence and diversity of T6SS loci within an order of bacteria and to analyze T6SSs of bacteria from a natural community. These studies demonstrate that more than

  20. Direct anti-inflammatory effects of granulocyte colony-stimulating factor (G-CSF) on activation and functional properties of human T cell subpopulations in vitro.

    Science.gov (United States)

    Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich

    2018-03-01

    We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Listwan, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models with implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost

  2. 3D-tulostusmenetelmien käyttö auton osien valmistuksessa

    OpenAIRE

    Löfgren, Jani

    2015-01-01

    Tavoitteena tässä insinöörityössä on tarkastella 3D-tulostusmenetelmiä ja niiden mahdollisuuksia valmistaa auton osia pienerissä tai kustomoituina. Työssä keskitytään kertomaan 3D-tulostusmenetelmistä ja materiaaleista, jotka soveltuvat parhaiten auton osien valmistukseen. Työn alussa käydään läpi 3D-tulostustekniikkaa ja eri valmistusmenetelmiä. Tarkasteluun on valittu neljä parhaiten auton osien valmistukseen soveltuvaksi arvioitua tulostusmenetelmää. Tämän jälkeen työssä tarkastellaan ...

  3. BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors.

    Science.gov (United States)

    Dong, Xiaobao; Lu, Xiaotian; Zhang, Ziding

    2015-01-01

    Gram-negative pathogenic bacteria inject type III secreted effectors (T3SEs) into host cells to sabotage their immune signaling networks. Because T3SEs constitute a meeting-point of pathogen virulence and host defense, they are of keen interest to host-pathogen interaction research community. To accelerate the identification and functional understanding of T3SEs, we present BEAN 2.0 as an integrated web resource to predict, analyse and store T3SEs. BEAN 2.0 includes three major components. First, it provides an accurate T3SE predictor based on a hybrid approach. Using independent testing data, we show that BEAN 2.0 achieves a sensitivity of 86.05% and a specificity of 100%. Second, it integrates a set of online sequence analysis tools. Users can further perform functional analysis of putative T3SEs in a seamless way, such as subcellular location prediction, functional domain scan and disorder region annotation. Third, it compiles a database covering 1215 experimentally verified T3SEs and constructs two T3SE-related networks that can be used to explore the relationships among T3SEs. Taken together, by presenting a one-stop T3SE bioinformatics resource, we hope BEAN 2.0 can promote comprehensive understanding of the function and evolution of T3SEs. © The Author(s) 2015. Published by Oxford University Press.

  4. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yunzhao R Ren

    Full Text Available The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

  5. The Transcription Factor T-Bet Is Regulated by MicroRNA-155 in Murine Anti-Viral CD8+ T Cells via SHIP-1

    Directory of Open Access Journals (Sweden)

    Jennifer L. Hope

    2017-12-01

    Full Text Available We report here that the expression of the transcription factor T-bet, which is known to be required for effector cytotoxic CD8+ T lymphocytes (CTL generation and effector memory cell formation, is regulated in CTL by microRNA-155 (miR-155. Importantly, we show that the proliferative effect of miR-155 on CD8+ T cells is mediated by T-bet. T-bet levels in CTL were controlled in vivo by miR-155 via SH2 (Src homology 2-containing inositol phosphatase-1 (SHIP-1, a known direct target of miR-155, and SHIP-1 directly downregulated T-bet. Our studies reveal an important and unexpected signaling axis between miR-155, T-bet, and SHIP-1 in in vivo CTL responses and suggest an important signaling module that regulates effector CTL immunity.

  6. Regulation of glucose metabolism in T cells; new insight into the role of Phosphoinositide 3-kinases

    Directory of Open Access Journals (Sweden)

    David K Finlay

    2012-08-01

    Full Text Available Naïve T cells are relatively quiescent cells that only require energy to prevent atrophy and for survival and migration. However, in response to developmental or extrinsic cues T cells can engage in rapid growth and robust proliferation, produce of a range of effector molecules and migrate through peripheral tissues. To meet the significantly increased metabolic demands of these activities, T cells switch from primarily metabolizing glucose to carbon dioxide through oxidative phosphorylation to utilizing glycolysis to convert glucose to lactate (termed aerobic glycolysis. This metabolic switch allows glucose to be used as a source of carbon to generate biosynthetic precursors for the production of protein, DNA and phospholipids, and is crucial for T cells to meet metabolic demands. Phosphoinositide 3-kinases (PI3K are a family of inositol lipid kinases linked with a broad range of cellular functions in T lymphocytes that include cell growth, proliferation, metabolism, differentiation, survival and migration. Initial research described a critical role for PI3K signaling through Akt (also called Protein kinase B for the increased glucose uptake and glycolysis that accompanies T cell activation. This review article relates this original research with more recent data and discusses the evidence for and against a role for PI3K in regulating the metabolic switch to aerobic glycolysis in T cells.

  7. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense.

    Science.gov (United States)

    Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K

    2014-07-29

    The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effector-Triggered Self-Replication in Coupled Subsystems.

    Science.gov (United States)

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  10. OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4⁺ T cells.

    Science.gov (United States)

    Yamaki, Satoshi; Ine, Shouji; Kawabe, Takeshi; Okuyama, Yuko; Suzuki, Nobu; Soroosh, Pejman; Mousavi, Seyed Fazlollah; Nagashima, Hiroyuki; Sun, Shu-lan; So, Takanori; Sasaki, Takeshi; Harigae, Hideo; Sugamura, Kazuo; Kudo, Hironori; Wada, Motoshi; Nio, Masaki; Ishii, Naoto

    2014-10-01

    T-cell homeostasis preserves the numbers, the diversity and functional competence of different T-cell subsets that are required for adaptive immunity. Naïve CD4(+) T (TN ) cells are maintained in the periphery via the common γ-chain family cytokine IL-7 and weak antigenic signals. However, it is not clear how memory CD4(+) T-cell subsets are maintained in the periphery and which factors are responsible for the maintenance. To examine the homeostatic mechanisms, CFSE-labeled CD4(+) CD44(high) CD62L(low) effector memory T (TEM ) cells were transferred into sublethally-irradiated syngeneic C57BL/6 mice, and the systemic cell proliferative responses, which can be divided distinctively into fast and slow proliferations, were assessed by CFSE dye dilution. We found that the fast homeostatic proliferation of TEM cells was strictly regulated by both antigen and OX40 costimulatory signals and that the slow proliferation was dependent on IL-7. The simultaneous blockade of both OX40 and IL-7 signaling completely inhibited the both fast and slow proliferation. The antigen- and OX40-dependent fast proliferation preferentially expanded IL-17-producing helper T cells (Th17 cells). Thus, OX40 and IL-7 play synergistic, but distinct roles in the homeostatic proliferation of CD4(+) TEM cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2015-09-01

    Full Text Available Valine glycine repeat G (VgrG proteins are regarded as one of two effectors of Type VI secretion system (T6SS which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.

  12. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis.

    Science.gov (United States)

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem Ullah; Ojaghian, Mohammad Reza; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-09-11

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H₂O₂ and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.

  13. Integral test of KERMA data for SS304 stainless steel in the D-T fusion neutron environment

    International Nuclear Information System (INIS)

    Ikeda, Y.; Kosako, K.; Konno, C.

    1994-01-01

    The KERMA (Kinetic Energy Release Material) data play the fundamental role for estimating nuclear heating in the structural components of fusion reactors. The data are produced from the large body of nuclear data relevant to reaction channels associated with the kinetic energy release. Both contributions by neutron and gamma-ray should be addressed to arrived at the final heating products. Extensive efforts have been devoted to the neutron and γ-ray transport profile in many materials, resulting in the validation of cross section data. However, the experimental verification of KERMA data, which is a highly integrated product of neutron and γ-ray, has been limited from the lack of available experimental data. Through the JAERI/USDOE collaborative program on fusion neutronics, novel experimental technique for the direct nuclear heating due to 14 MeV neutrons has been developed based on a micro calorimetric system. The technique demonstrated excellent capability for detecting the temperature rise due to nuclear heating and pertinent verification for the calculation data and methods. This paper deals with the most recent experimental endeavor for the direct nuclear heating measurement in SS-304 stainless steel assembly, where appreciably large amounts of slow neutron and associated secondary γ-rays dominated the field. The nuclear heating up to 200 mm depth in the SS-304 assembly were derived from detected temperature rise employing large SS-304 block type probe materials

  14. Perspectives on Regulatory T Cell Therapies

    OpenAIRE

    Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S.P.; Buer, Jan

    2009-01-01

    Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (Treg) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, Treg cell therapies and development of drugs that specifically enhance Treg cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human Treg cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 ...

  15. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation.

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-05-01

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8 + T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8 + T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8 + T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8 + T cell differentiation.

  16. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    Full Text Available The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2, double (SPI-1/2 and complete T3SS knockout (SPI-1/SPI-2: flhDC also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.

  17. CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors

    Directory of Open Access Journals (Sweden)

    Markus Chmielewski

    2017-12-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells has achieved remarkable efficacy in the treatment of hematopoietic malignancies. However, eradicating large solid tumors in advanced stages of the disease remains challenging. We explored augmentation of the anti-tumor immune reaction by establishing an acute inflammatory reaction. Systematic screening indicates that IL-18 polarizes CAR T cells toward T-bethigh FoxO1low effectors with an acute inflammatory response. CAR T cells engineered with inducible IL-18 release exhibited superior activity against large pancreatic and lung tumors that were refractory to CAR T cells without cytokines. IL-18 CAR T cell treatment was accompanied by an overall change in the immune cell landscape associated with the tumor. More specifically, CD206− M1 macrophages and NKG2D+ NK cells increased in number, whereas Tregs, suppressive CD103+ DCs, and M2 macrophages decreased, suggesting that “iIL18 TRUCKs” can be used to sensitize large solid tumor lesions for successful immune destruction.

  18. Salmonella enterica Induces And Subverts The Plant Immune System

    Directory of Open Access Journals (Sweden)

    Ana Victoria Garcia

    2014-04-01

    Full Text Available Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Whereas it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs, such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI. Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, the data gathered suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity.

  19. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  20. STAT3 Regulates Proliferation and Survival of CD8+ T Cells: Enhances Effector Responses to HSV-1 Infection, and Inhibits IL-10+ Regulatory CD8+ T Cells in Autoimmune Uveitis

    Directory of Open Access Journals (Sweden)

    Cheng-Rong Yu

    2013-01-01

    Full Text Available STAT3 regulates CD4+ T cell survival and differentiation. However, its effects on CD8+ T cells are not well understood. Here, we show that in comparison to WT CD8+ T cells, STAT3-deficient CD8+ T cells exhibit a preactivated memory-like phenotype, produce more IL-2, proliferate faster, and are more sensitive to activation-induced cell death (AICD. The enhanced proliferation and sensitivity to AICD correlated with downregulation of class-O forkhead transcription factors (FoxO1, FoxO3A, , , Bcl-2, OX-40, and upregulation of FasL, Bax, and Bad. We examined whether STAT3-deficient CD8+ T cells can mount effective response during herpes simplex virus (HSV-1 infection and experimental autoimmune uveitis (EAU. Compared to WT mice, HSV-1-infected STAT3-deficient mice (STAT3KO produced less IFN- and virus-specific KLRG-1+ CD8+ T cells. STAT3KO mice are also resistant to EAU and produced less IL-17-producing Tc17 cells. Resistance of STAT3KO to EAU correlated with marked expansion of IL-10-producing regulatory CD8+ T cells (CD8-Treg implicated in recovery from autoimmune encephalomyelitis. Thus, increases of IL-6-induced STAT3 activation observed during inflammation may inhibit expansion of CD8-Tregs, thereby impeding recovery from uveitis. These results suggest that STAT3 is a potential therapeutic target for upregulating CD8+ T cell-mediated responses to viruses and suggest the successful therapeutic targeting of STAT3 as treatment for uveitis, derived, in part, from promoting CD8-Treg expansion.

  1. Memory T follicular helper CD4 T cells

    Directory of Open Access Journals (Sweden)

    J. Scott eHale

    2015-02-01

    Full Text Available T follicular helper (Tfh cells are the subset of CD4 T helper cells that are required for generation and maintenance of germinal center reactions and the generation of long-lived humoral immunity. This specialized T helper subset provides help to cognate B cells via their expression of CD40 ligand, IL-21, IL-4, and other molecules. Tfh cells are characterized by their expression of the chemokine receptor CXCR5, expression of the transcriptional repressor Bcl6, and their capacity to migrate to the follicle and promote germinal center B cell responses. Until recently, it remained unclear whether Tfh cells differentiated into memory cells and whether they maintain their Tfh commitment at the memory phase. This review will highlight several recent studies that support the idea of Tfh-committed CD4 T cells at the memory stage of the immune response. The implication of these findings is that memory Tfh cells retain their capacity to recall their Tfh-specific effector functions upon reactivation to provide help for B cell responses and play an important role in prime and boost vaccination or during recall responses to infection. The markers that are useful for distinguishing Tfh effector and memory cells, as well as the limitations of using these markers will be discussed. Tfh effector and memory generation, lineage maintenance, and plasticity relative to other T helper lineages (Th1, Th2, Th17, etc will also be discussed. Ongoing discoveries regarding the maintenance and lineage stability versus plasticity of memory Tfh cells will improve strategies that utilize CD4 T cell memory to modulate antibody responses during prime and boost vaccination.

  2. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  3. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex.

    Science.gov (United States)

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-11-10

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. SPRYSEC effector proteins in Globodera rostochiensis

    NARCIS (Netherlands)

    Rehman, S.

    2008-01-01

    Plant pathogens inject so-called effector molecules into the cells of a host plant to promote their growth and reproduction in these hosts. In plant parasitic nematodes, these effector molecules are produced in the salivary glands. The objective of this thesis was to identify and characterize

  5. Effect Of Irradiation Temperature and Dose On Mechanical Properties And Fracture Characteristics Of Cu//SS Joints For ITER

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Peacock, A.; Roedig, M.; Linke, J.; Gervash, A.; Barabash, V.

    2007-01-01

    Full text of publication follows: By now, a number of technologies have been proposed for the production of Cu//SS joints for ITER, such as brazing, friction welding, HIP and cast-copper-to-steel (CC). The two last-mentioned technologies ensure sufficiently high mechanical properties and a high joint quality, when unirradiated. The data, however, on mechanical characteristics of irradiated of Cu//SS HIP joints are limited. In this paper, the authors present the results of investigations into the mechanical characteristics after irradiation of GlidCopAl25/316L(N) and Cu-Cr-Zr/316L(N)-type joints produced by the HIP and CC technologies. Specimens of the joints were irradiated in the RBT-6 reactor in the dose range of 10 -3 - 10 -1 dpa at T irr = 200 deg. C and 300 deg. C. The tensile stress-strain curves for irradiated and unirradiated joint specimens show deformation processes occurring in both the Cu and SS parts of the specimens. Irradiation at T irr = 200 deg. C causes strengthening of the joints specimens (by about 100 MPa at the maximum dose). The uniform elongation drops from 8% in the initial state to 2-3 %. But the total elongation remains at a relatively high level of ∼ 7%. Irradiation at T irr = 300 deg. C causes a slight strengthening of the joints specimens (∼30 MPa). The uniform elongation remains unchanged at ∼ 7%. The total elongation also maintains a relatively high level of ∼9-13%. SEM investigations revealed that fracture occurs only in the copper part of the irradiated specimens, and ductile trans-crystalline fracture predominates in the joints. 3D finite element analysis of the tensile test indicates that the concentration of stresses and deformations in the copper layer adjacent to the joint line is responsible for this typical failure of the irradiated joints specimens. Comparison of the behavior of the joints irradiated at T irr = 200 deg. C and 300 deg. C indicate an increased embrittlement at lower irradiation temperatures. At a

  6. NKp46+CD3+ cells - a novel non-conventional T-cell subset in cattle exhibiting both NK cell and T-cell features

    Science.gov (United States)

    Connelley, Timothy K.; Longhi, Cassandra; Burrells, Alison; Degnan, Kathryn; Hope, Jayne; Allan, Alasdair; Hammond, John A.; Storset, Anne K.; Morrison, W. Ivan

    2014-01-01

    The NKp46 receptor demonstrates a high degree of lineage-specificity, being expressed almost exclusively in natural killer cells. Previous studies have demonstrated NKp46 expression by T-cells, but NKp46+CD3+ cells are rare and almost universally associated with NKp46 acquisition by T-cells following stimulation. In this study we demonstrate the existence of a population of NKp46+CD3+ cells resident in normal bovine PBMC which include cells of both the αβ TCR+ and γδ TCR+ lineages and is present at a frequency of 0.1-1.7%. NKp46+CD3+ cells express transcripts for a broad repertoire of both natural killer (NKR) and T-cell receptors (TCR) and also the CD3ζ, DAP10 and FcεR1γ but not DAP12 adaptor proteins. In vitro functional analysis of NKp46+CD3+ cells confirm that NKp46, CD16 and CD3 signalling pathways are all functionally competent and capable of mediating-re-direct cytolysis. However, only CD3 cross-ligation elicits IFN-γ release. NKp46+CD3+ cells exhibit cytotoxic activity against autologous Theileria parva infected cells in vitro and during in vivo challenge with this parasite an expansion of NKp46+CD3+ cells was observed in some animals, indicating the cells have the potential to act as an anti-pathogen effector population. The results presented herein identifies and describes a novel non-conventional NKp46+CD3+ T-cell subset that is phenotypically and functionally distinct from conventional NK and T-cells. The ability to exploit both NKR and TCR suggests these cells may fill a functional niche at the interface of innate and adaptive immune responses. PMID:24639352

  7. Uncovering the Legionella genus effector repertoire - strength in diversity and numbers

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-01-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266

  8. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Benjamin Mielich-Süss

    2017-11-01

    Full Text Available Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM, a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen.

  9. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination.

    Science.gov (United States)

    Agaisse, Hervé

    2016-01-01

    The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.

  10. Molecular and Cellular mechanisms of Shigella flexneri dissemination

    Directory of Open Access Journals (Sweden)

    Herve eAgaisse

    2016-03-01

    Full Text Available The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs. VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS. The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post

  11. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  12. Graft rejection by cytolytic T cells. Specificity of the effector mechanism in the rejection of allogeneic marrow

    International Nuclear Information System (INIS)

    Nakamura, H.; Gress, R.E.

    1990-01-01

    Cellular effector mechanisms of allograft rejection remain incompletely described. Characterizing the rejection of foreign-marrow allografts rather than solid-organ grafts has the advantage that the cellular composition of the marrow graft, as a single cell suspension, can be altered to include cellular components with differing antigen expression. Rejection of marrow grafts is sensitive to lethal doses of radiation in the mouse but resistant to sublethal levels of radiation. In an effort to identify cells mediating host resistance, lymphocytes were isolated and cloned from spleens of mice 7 days after sublethal TBI (650 cGy) and inoculation with allogeneic marrow. All clones isolated were cytolytic with specificity for MHC encoded gene products of the allogeneic marrow donor. When cloned cells were transferred in vivo into lethally irradiated (1025 cGy) recipients unable to reject allogeneic marrow, results utilizing splenic 125IUdR uptake indicated that these MHC-specific cytotoxic clones could suppress marrow proliferation. In order to characterize the effector mechanism and the ability of the clones to affect final engraftment, double donor chimeras were constructed so that 2 target cell populations differing at the MHC from each other and from the host were present in the same marrow allograft. Results directly demonstrated an ability of CTL of host MHC type to mediate graft rejection and characterized the effector mechanism as one with specificity for MHC gene products

  13. Modulación de la expresión por GA y ABA de los genes Ss1 y Ss2 que codifican sacarosa sintasa en cebada

    OpenAIRE

    Carbonero Zalduegui, Pilar; Barrero Sicilia, Cristina; Oñate Sanchez, Luis; Hernando Amado, Sara; Rueda Romero, Paloma

    2008-01-01

    En este trabajo se ha llevado a cabo un estudio comparativo entre distintas isoformas de SUSy de cereales y arabidopsis. Además se ha realizado un análisis de expresión de HvSs1 y HvSs2 en distintos órganos, incluyendo patrones temporales en semillas en desarrollo y germinación, así como la variación de su respuesta a ácido abscísico (ABA) y giberélico (GA3).

  14. Potential use of [gammadelta] T cell-based vaccines in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Mohd Wajid A. Khan

    2014-10-01

    Full Text Available Immunotherapy is a fast advancing methodology involving one of two approaches: 1 compounds targeting immune checkpoints, and 2 cellular immunomodulators. The latter approach is still largely experimental and features in vitro generated, live immune effector cells or antigen-presenting cells (APC. [gammadelta] T cells are known for their efficient in vitro tumor killing activities. Consequently, many laboratories worldwide are currently testing the tumor killing function of [gammadelta] T cells in clinical trials. Reported benefits are modest; however, these studies have demonstrated that large [gammadelta] T cell infusions were well tolerated. Here, we discuss the potential of using human [gammadelta] T cells not as effector cells but as a novel cellular vaccine for treatment of cancer patients. Antigen-presenting [gammadelta] T cells do not require to home to tumor tissues but, instead, need to interact with endogenous, tumor-specific [alphabeta] T cells in secondary lymphoid tissues. Newly mobilised effector [alphabeta] T cells are then thought to overcome the immune blockade by creating proinflammatory conditions fit for effector T cell homing to and killing of tumor cells. Immunotherapy may include tumor antigen-loaded [gammadelta] T cells alone or in combination with immune checkpoint inhibitors.

  15. Decreased circulating T regulatory lymphocytes in obese patients undergoing bariatric surgery.

    Science.gov (United States)

    Agabiti-Rosei, Claudia; Trapletti, Valentina; Piantoni, Silvia; Airò, Paolo; Tincani, Angela; De Ciuceis, Carolina; Rossini, Claudia; Mittempergher, Francesco; Titi, Amin; Portolani, Nazario; Caletti, Stefano; Coschignano, Maria Antonietta; Porteri, Enzo; Tiberio, Guido A M; Pileri, Paola; Solaini, Leonardo; Kumar, Rajesh; Ministrini, Silvia; Agabiti Rosei, Enrico; Rizzoni, Damiano

    2018-01-01

    It has been previously demonstrated that T lymphocytes may be involved in the development of hypertension and microvascular remodeling, and that circulating T effector lymphocytes may be increased in hypertension. In particular, Th1 and Th 17 lymphocytes may contribute to the progression of hypertension and microvascular damage while T-regulatory (Treg) lymphocytes seem to be protective in this regard. However, no data is available about patients with severe obesity, in which pronounced microvascular alterations were observed. We have investigated 32 severely obese patients undergoing bariatric surgery, as well as 24 normotensive lean subjects and 12 hypertensive lean subjects undergoing an elective surgical intervention. A peripheral blood sample was obtained before surgery for assessment of CD4+ T lymphocyte subpopulations. Lymphocyte phenotype was evaluated by flow cytometry in order to assess T-effector and Treg lymphocytes. A marked reduction of several Treg subpopulations was observed in obese patients compared with controls, together with an increased in CD4+ effector memory T-effector cells. In severely obese patients, Treg lymphocytes are clearly reduced and CD4+ effector memory cells are increased. It may be hypothesized that they might contribute to the development of marked microvascular alterations previously observed in these patients.

  16. VMD-SS: A graphical user interface plug-in to calculate the protein secondary structure in VMD program.

    Science.gov (United States)

    Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid

    2014-01-01

    The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.

  17. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  18. IS GNB3 C825T POLYMORPHISM ASSOCIATED WITH ELITE STATUS OF POLISH ATHLETES?

    Directory of Open Access Journals (Sweden)

    M. Sawczuk

    2014-07-01

    Full Text Available The GNB3 gene encodes the beta 3 subunit of heterotrimeric G-proteins that are key components of intracellular signal transduction between G protein-coupled receptors (GPCR and intracellular effectors and might be considered as a potential candidate gene for physical performance. Objectives: The aim of this study was to compare frequency distribution of the common C to T polymorphism at position 825 (C825T of the GNB3 gene between athletes and nonathletic controls of the Polish population as well as to compare the genotype distribution and allele frequency of C825T variants within a group of athletes, i.e. between athletes of sports of different metabolic demands and competitive levels. Methods: The study was performed in a group of 223 Polish athletes of the highest nationally competitive standard (123 endurance-oriented athletes and 100 strength/power athletes. Control samples were prepared from 354 unrelated, sedentary volunteers. Results: The χ2 test revealed no statistical differences between the endurance-oriented athletes and the control group or between sprint/strength athletes and the control group across the GNB3 825C/T genotypes. There were no male-female genotype or allele frequency differences in controls or in either strength/power or endurance-oriented athletes. No statistically significant differences in either allele frequencies or genotype distribution were noted between the top-elite, elite or sub-elite of endurance-oriented and strength/power athletes and the control group. Conclusions: No association between elite status of Polish athletes and the GNB3 C825T polymorphic site has been found.

  19. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity.

    Directory of Open Access Journals (Sweden)

    Barbara A Fox

    2016-07-01

    Full Text Available Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP and dense granule (GRA proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately

  20. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    2010-08-01

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  1. Autoalan työssäoppiminen : Case: Autoalan merkkiliikkeet

    OpenAIRE

    Kalliomäki, Marko

    2013-01-01

    Tutkimuksen tavoitteena oli selvittää Jyväskylän ammattiopiston autoalan työssäoppimista Jyväskylän autoalan merkkiliikkeissä työnantajien näkökulmasta. Työssä selvitettiin yhteistyön nykytilanne ja millaisia ongelmia yhteistyössä koetaan olevan. Mukaan otettiin myös oppilaitoksen näkemyksiä ja kokemuksia yhteistyöstä autoalan merkkiliikkeiden kanssa työssäoppimisesta. Tutkimustulosten perusteella rakennettiin kehittämissuunnitelma yhteistyön kehittämisen pohjaksi. Tutkimusaineisto saatii...

  2. Evidence of the immunomodulatory role of dual PI3K/mTOR inhibitors in transplantation: an experimental study in mice.

    Science.gov (United States)

    Vilchez, Valery; Turcios, Lilia; Butterfield, David A; Mitov, Mihail I; Coquillard, Cristin L; Brandon, Ja Anthony; Cornea, Virgilius; Gedaly, Roberto; Marti, Francesc

    2017-10-01

    The PI3K/mTOR signaling cascade is fundamental in T-cell activation and fate decisions. We showed the distinct regulation of PI3K/mTOR in regulatory and effector T-cells and proposed the potential therapeutic benefit of targeting this pathway to control the balance between effector and regulatory T-cell activities. Substantial adverse effects in long-term clinical usage of rapamycin suggest the use of alternative treatments in restraining effector T-cell function in transplant patients. We hypothesize that dual PI3K/mTOR inhibitors may represent an immunosuppressant alternative. Here we show that dual PI3K/mTOR PI-103 and PKI-587 inhibitors interfered IL-2-dependent responses in T-cells. However, in contrast to the inhibitory effects in non-Treg T-cell proliferation and effector functions, dual inhibitors increased the differentiation, preferential expansion, and suppressor activity of iTregs. Rapamycin, PI-103, and PKI-587 targeted different signaling events and induced different metabolic patterns in primary T-cells. Similar to rapamycin, in vivo administration of PI-103 and PKI-587 controlled effectively the immunological response against allogeneic skin graft. These results characterize specific regulatory mechanisms of dual PI3K/mTOR inhibitors in T-cells and support their potential as a novel therapeutic option in transplantation. © 2017 Steunstichting ESOT.

  3. IDIS-menetelmäsalkku työntekijän ammattitaidon vahvistajana lastensuojelun identiteettityössä

    OpenAIRE

    Palm, David

    2014-01-01

    Opinnäytetyön tarkoituksena oli vahvistaa lastensuojelutyön työntekijän ammattitaitoa lasten ja nuorten kanssa tehtävässä identiteettityössä. Tavoitteena oli IDIS-menetelmäsalkun avulla toteuttaa ja testata pienryhmäkodissa toiminnallisia lasten ja nuorten arvon näkyväksi tekemiseen tähtääviä menetelmiä. IDIS-menetelmäsalkulla tavoiteltiin myös pysyvää toimintamenetelmää pienryhmäkodin arkeen. IDIS-menetelmäsalkku oli opinnäytetyön tekijän itse suunnittelema kokonaisuus. Tutkimukselli...

  4. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double-deficient......T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  5. Special-purpose multifingered robotic end-effectors

    International Nuclear Information System (INIS)

    Crowder, R.M.

    1990-01-01

    A number of advanced multifingered robotic end-effectors have been developed recently in which the finger joints are powered from external actuators. Although this gives dexterous performance, there are considerable problems with power transmission, due to the use of flexible tendons between the external actuators and the individual finger joints. If a multifingered robotic end-effector is to be operated in a confined space, local actuation of the fingers needs to be fully considered, even if there is a reduction in hand dexterity over that of an externally mounted actuator system. The University of Southampton has developed a number of end-effectors that incorporate integral finger actuators and mechanisms, two examples of which are discussed in this paper

  6. Foxp3+ regulatory T cells control persistence of viral CNS infection.

    Directory of Open Access Journals (Sweden)

    Dajana Reuter

    Full Text Available We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified mice and recombinant measles virus (MV. Using this model infection we investigated the role of regulatory T cells (Tregs as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+ CD25(+ Foxp3(+ Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+ T cells predominantly recognising the H-2D(b-presented viral hemagglutinin epitope MV-H(22-30 (RIVINREHL were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p. application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT in DEREG (depletion of regulatory T cells-mice induced an increase of virus-specific CD8(+ effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.

  7. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy.

    Science.gov (United States)

    Schlenker, Ramona; Olguín-Contreras, Luis Felipe; Leisegang, Matthias; Schnappinger, Julia; Disovic, Anja; Rühland, Svenja; Nelson, Peter J; Leonhardt, Heinrich; Harz, Hartmann; Wilde, Susanne; Schendel, Dolores J; Uckert, Wolfgang; Willimsky, Gerald; Noessner, Elfriede

    2017-07-01

    Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    Science.gov (United States)

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  9. Advanced drug delivery nanosystems (aDDnSs): a mini-review.

    Science.gov (United States)

    Demetzos, Costas; Pippa, Natassa

    2014-06-01

    Significant progress has been made in nanoscale drugs and delivery systems employing diverse chemical formulations to facilitate the rate of drug delivery and to improve its pharmacokinetics. Biocompatible nanomaterials have been used as biological markers, contrast agents for imaging, healthcare products, pharmaceuticals, drug-delivery systems as well as in detection, diagnosis and treatment of various types of diseases. The classification of drug delivery nanosystems (DDnSs) is a crucial issue and fundamental efforts on this subject are missing from the literature. This article deals with the classification of DDnSs with a modulatory controlled release profile (MCR) denoted as modulatory controlled release nanosystems (MCRnSs). Conventional (c) and advanced (a) DDnSs are denoted by the acronyms cDDnSs and aDDnSs, and can be composed of a single or more than one biomaterials, respectively. The classification was based on their characteristics such as: surface functionality (f), the nature of biomaterials used and the kind of interactions between biomaterials. The aDDnSs can be classified as hybridic (Hy-) or chimeric (Chi-) based on the nature - same or different respectively - of biomaterials and inorganic materials used. The nature of the elements used for producing advanced biomaterials is of great importance and medicinal chemistry contributes effectively to the production of aDDnSs.

  10. Role of Blimp-1 in programing Th effector cells into IL-10 producers

    Science.gov (United States)

    Neumann, Christian; Heinrich, Frederik; Neumann, Katrin; Junghans, Victoria; Mashreghi, Mir-Farzin; Ahlers, Jonas; Janke, Marko; Rudolph, Christine; Mockel-Tenbrinck, Nadine; Kühl, Anja A.; Heimesaat, Markus M.; Esser, Charlotte; Im, Sin-Hyeog; Radbruch, Andreas

    2014-01-01

    Secretion of the immunosuppressive cytokine interleukin (IL) 10 by effector T cells is an essential mechanism of self-limitation during infection. However, the transcriptional regulation of IL-10 expression in proinflammatory T helper (Th) 1 cells is insufficiently understood. We report a crucial role for the transcriptional regulator Blimp-1, induced by IL-12 in a STAT4-dependent manner, in controlling IL-10 expression in Th1 cells. Blimp-1 deficiency led to excessive inflammation during Toxoplasma gondii infection with increased mortality. IL-10 production from Th1 cells was strictly dependent on Blimp-1 but was further enhanced by the synergistic function of c-Maf, a transcriptional regulator of IL-10 induced by multiple factors, such as the Notch pathway. We found Blimp-1 expression, which was also broadly induced by IL-27 in effector T cells, to be antagonized by transforming growth factor (TGF) β. While effectively blocking IL-10 production from Th1 cells, TGF-β shifted IL-10 regulation from a Blimp-1–dependent to a Blimp-1–independent pathway in IL-27–induced Tr1 (T regulatory 1) cells. Our findings further illustrate how IL-10 regulation in Th cells relies on several transcriptional programs that integrate various signals from the environment to fine-tune expression of this critical immunosuppressive cytokine. PMID:25073792

  11. Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls.

    Science.gov (United States)

    Chen, Xiaopeng; Walter, Kyla M; Miller, Galen W; Lein, Pamela J; Puschner, Birgit

    2018-06-01

    Environmental toxicants that interfere with thyroid hormone (TH) signaling can impact growth and development in animals and humans. Zebrafish represent a model to study chemically induced TH disruption, prompting the need for sensitive detection of THs. Simultaneous quantification of 3,3',5-triiodo-l-thyronine (T3), thyroxine (T4), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2) and 3,3'-diiodo-l-thyronine (3,3'-T2) in zebrafish larvae was achieved by ultra-performance liquid chromatography-tandem mass spectrometry in positive ion mode. Solid-phase extraction with SampliQ cartridges and derivatization with 3 m hydrochloric acid in n-butanol reduced matrix effects. Derivatized compounds were separated on an Acquity UPLC BEH C 18 column with mobile phases consisting of 0.1% acetic acid in deionized water and 0.1% acetic acid in methanol. The limits of detection ranged from 0.5 to 0.6 pg injected on column. The method was validated by evaluating recovery (77.1-117.2%), accuracy (87.3-123.9%) and precision (0.5-12.4%) using diluted homogenized zebrafish embryos spiked with all target compounds. This method was then applied to zebrafish larvae collected after 114 h of exposure to polychlorinated biphenyls (PCBs), including PCB 28, PCB 66 and PCB 95, or the technical mixture Aroclor 1254. Exposure to PCB 28 and PCB 95 increased the T4:T3 ratio and decreased the T3:rT3 ratio, demonstrating that this method can effectively detect PCB-induced alterations in THs. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    Science.gov (United States)

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  13. Polymorphisms rs12998 and rs5780218 in KiSS1 Suppressor Metastasis Gene in Mexican Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Edhit Guadalupe Cruz Quevedo

    2015-01-01

    Full Text Available Aims. KiSS1 is a metastasis suppressor gene associated with inhibition of cellular chemotaxis and invasion attenuating the metastasis in melanoma and breast cancer cell lines. Along the KiSS-1 gene at least 294 SNPs have been described; however the association of these polymorphisms as genetic markers for metastasis in breast cancer studies has not been investigated. Here we describe two simple PCR-RFLPs protocols to identify the rs5780218 (9DelT and the rs12998 (E20K KiSS1 polymorphisms and the allelic, genotypic, and haplotypic frequencies in Mexican general population (GP and patients with benign breast disease (BBD or breast cancer (BC. Results. The rs5780218 polymorphism was individually associated with breast cancer (P=0.0332 and the rs12998 polymorphism shows statistically significant differences when GP versus case (BC and BBD groups were compared (P<0.0001. The H1 Haplotype (G/- occurred more frequently in BC group (0.4256 whereas H2 haplotype (G/T was the most prevalent in BBD group (0.4674. Conclusions. Our data indicated that the rs5780218 polymorphism individually confers susceptibility for development of breast cancer in Mexican population and a possible role as a genetic marker in breast cancer metastasis for H1 haplotype (Wt/variant in KiSS1 gene must be analyzed in other populations.

  14. Construction, characterization and evaluation of the protective efficacy of the Streptococcus suis double mutant strain ΔSsPep/ΔSsPspC as a live vaccine candidate in mice.

    Science.gov (United States)

    Hu, Jin; You, Wujin; Wang, Bin; Hu, Xueying; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng

    2015-01-01

    Streptococcus suis serotype 2 (S. suis 2) causes sepsis and meningitis in piglets and humans, and results in one of the most serious bacterial diseases affecting the production of commercial pigs around the world. Due to the failure of the current inactivated vaccine to protect against the disease, development of a new attenuated live vaccine against S. suis 2 by deleting essential virulence factors is urgently needed. We have previously reported the construction and characterization of an SsPep single gene deletion mutant strain ΔSsPep based on S. suis 2. Our previous results have shown that SsPep plays a critical role in the pathogenesis of S. suis 2. In this study, a precisely defined double-deletion mutant ΔSsPep/ΔSsPspC of S. suis 2 without antibiotic-resistance markers was constructed based on ΔSsPep, and the levels of virulence of the wild-type (WT) and ΔSsPep/ΔSsPspC were compared in a mouse experimental infection model. We demonstrated that the double mutant ΔSsPep/ΔSsPspC was less virulent than the WT, and could induce a noticeable antibody response. Analysis of IgG subclasses (IgG1 and IgG2a) indicated that both Th1 and Th2 responses were induced by ΔSsPep/ΔSsPspC, although the IgG2a (Th1) response predominated over the IgG1 (Th2) response. Moreover, ΔSsPep/ΔSsPspC could confer 90% protective efficacy against challenge with a lethal dose of fully virulent S. suis 2. Taken together, these data demonstrate that ΔSsPep/ΔSsPspC can be used as an effective live vaccine and provide a novel strategy against infection of S. suis 2. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.

    Science.gov (United States)

    Kast, David J; Yang, Changsong; Disanza, Andrea; Boczkowska, Malgorzata; Madasu, Yadaiah; Scita, Giorgio; Svitkina, Tatyana; Dominguez, Roberto

    2014-04-01

    The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.

  16. Interferon-alpha triggers B cell effector 1 (Be1 commitment.

    Directory of Open Access Journals (Sweden)

    Marie-Ghislaine de Goër de Herve

    Full Text Available B-cells can contribute to the pathogenesis of autoimmune diseases not only through auto-antibody secretion but also via cytokine production. Therapeutic depletion of B-cells influences the functions and maintenance of various T-cell subsets. The mechanisms governing the functional heterogeneity of B-cell subsets as cytokine-producing cells are poorly understood. B-cells can differentiate into two functionally polarized effectors, one (B-effector-1-cells producing a Th-1-like cytokine pattern and the other (Be2 producing a Th-2-like pattern. IL-12 and IFN-γ play a key role in Be1 polarization, but the initial trigger of Be1 commitment is unclear. Type-I-interferons are produced early in the immune response and prime several processes involved in innate and adaptive responses. Here, we report that IFN-α triggers a signaling cascade in resting human naive B-cells, involving STAT4 and T-bet, two key IFN-γ gene imprinting factors. IFN-α primed naive B-cells for IFN-γ production and increased IFN-γ gene responsiveness to IL-12. IFN-γ continues this polarization by re-inducing T-bet and up-regulating IL-12Rβ2 expression. IFN-α and IFN-γ therefore pave the way for the action of IL-12. These results point to a coordinated action of IFN-α, IFN-γ and IL-12 in Be1 polarization of naive B-cells, and may provide new insights into the mechanisms by which type-I-interferons favor autoimmunity.

  17. Robotic end-effector for rewaterproofing shuttle tiles

    Science.gov (United States)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-11-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  18. Sosiaalisen median rooli kunnan viestinnässä

    OpenAIRE

    Selkämaa, Kati

    2016-01-01

    Opinnäytetyön tavoitteena oli selvittää sosiaalisen median roolia kunnan viestinnässä sekä tutkia, miten sosiaalista mediaa hyödynnetään kuntien viestinnässä. Teoriaosuudessa tarkasteltiin sosiaalista mediaa, tutustuttiin sen tunnetuimpiin sovelluksiin sekä perehdyttiin kuntien viestintään yleisesti. Työssä tarkasteltiin myös kuntien viestintään vaikuttavia ja sitä sääteleviä lakeja. Kuntien sosiaalisen median käyttöön tutustuttiin Kuntaliiton tekemän viestintätutkimuksen tulosten pohjalt...

  19. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  20. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  1. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  2. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.

    Directory of Open Access Journals (Sweden)

    David Burstein

    2009-07-01

    Full Text Available A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine

  3. EspC, an Autotransporter Protein Secreted by Enteropathogenic Escherichia coli, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage

    Directory of Open Access Journals (Sweden)

    Antonio Serapio-Palacios

    2016-06-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC has the ability to antagonize host apoptosis during infection through promotion and inhibition of effectors injected by the type III secretion system (T3SS, but the total number of these effectors and the overall functional relationships between these effectors during infection are poorly understood. EspC produced by EPEC cleaves fodrin, paxillin, and focal adhesion kinase (FAK, which are also cleaved by caspases and calpains during apoptosis. Here we show the role of EspC in cell death induced by EPEC. EspC is involved in EPEC-mediated cell death and induces both apoptosis and necrosis in epithelial cells. EspC induces apoptosis through the mitochondrial apoptotic pathway by provoking (i a decrease in the expression levels of antiapoptotic protein Bcl-2, (ii translocation of the proapoptotic protein Bax from cytosol to mitochondria, (iii cytochrome c release from mitochondria to the cytoplasm, (iv loss of mitochondrial membrane potential, (v caspase-9 activation, (vi cleavage of procaspase-3 and (vii an increase in caspase-3 activity, (viii PARP proteolysis, and (ix nuclear fragmentation and an increase in the sub-G1 population. Interestingly, EspC-induced apoptosis was triggered through a dual mechanism involving both independent and dependent functions of its EspC serine protease motif, the direct cleavage of procaspase-3 being dependent on this motif. This is the first report showing a shortcut for induction of apoptosis by the catalytic activity of an EPEC protein. Furthermore, this atypical intrinsic apoptosis appeared to induce necrosis through the activation of calpain and through the increase of intracellular calcium induced by EspC. Our data indicate that EspC plays a relevant role in cell death induced by EPEC.

  4. CellSs: Scheduling Techniques to Better Exploit Memory Hierarchy

    Directory of Open Access Journals (Sweden)

    Pieter Bellens

    2009-01-01

    Full Text Available Cell Superscalar's (CellSs main goal is to provide a simple, flexible and easy programming approach for the Cell Broadband Engine (Cell/B.E. that automatically exploits the inherent concurrency of the applications at a task level. The CellSs environment is based on a source-to-source compiler that translates annotated C or Fortran code and a runtime library tailored for the Cell/B.E. that takes care of the concurrent execution of the application. The first efforts for task scheduling in CellSs derived from very simple heuristics. This paper presents new scheduling techniques that have been developed for CellSs for the purpose of improving an application's performance. Additionally, the design of a new scheduling algorithm is detailed and the algorithm evaluated. The CellSs scheduler takes an extension of the memory hierarchy for Cell/B.E. into account, with a cache memory shared between the SPEs. All new scheduling practices have been evaluated showing better behavior of our system.

  5. Transcriptional Reprogramming during Effector-to-Memory Transition Renders CD4+ T Cells Permissive for Latent HIV-1 Infection.

    Science.gov (United States)

    Shan, Liang; Deng, Kai; Gao, Hongbo; Xing, Sifei; Capoferri, Adam A; Durand, Christine M; Rabi, S Alireza; Laird, Gregory M; Kim, Michelle; Hosmane, Nina N; Yang, Hung-Chih; Zhang, Hao; Margolick, Joseph B; Li, Linghua; Cai, Weiping; Ke, Ruian; Flavell, Richard A; Siliciano, Janet D; Siliciano, Robert F

    2017-10-17

    The latent reservoir for HIV-1 in resting memory CD4 + T cells is the major barrier to curing HIV-1 infection. Studies of HIV-1 latency have focused on regulation of viral gene expression in cells in which latent infection is established. However, it remains unclear how infection initially becomes latent. Here we described a unique set of properties of CD4 + T cells undergoing effector-to-memory transition including temporary upregulation of CCR5 expression and rapid downregulation of cellular gene transcription. These cells allowed completion of steps in the HIV-1 life cycle through integration but suppressed HIV-1 gene transcription, thus allowing the establishment of latency. CD4 + T cells in this stage were substantially more permissive for HIV-1 latent infection than other CD4 + T cells. Establishment of latent HIV-1 infection in CD4 + T could be inhibited by viral-specific CD8 + T cells, a result with implications for elimination of latent HIV-1 infection by T cell-based vaccines. Copyright © 2017. Published by Elsevier Inc.

  6. n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells.

    Science.gov (United States)

    Monk, Jennifer M; Hou, Tim Y; Turk, Harmony F; McMurray, David N; Chapkin, Robert S

    2013-09-01

    Little is known about the impact of n33) PUFAs on polarization of CD4(+) T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4(+) T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3(+)) cells] or Th17 cells [interleukin (IL)-17A(+) and retinoic acid receptor-related orphan receptor (ROR) γτ(+) cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4(+) IL-17A(+) (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA-dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset.

  7. Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon

    Science.gov (United States)

    Dickenson, Nicholas E; Choudhari, Shyamal P; Adam, Philip R; Kramer, Ryan M; Joshi, Sangeeta B; Middaugh, C Russell; Picking, Wendy L; Picking, William D

    2013-01-01

    The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n-octyl-oligo-oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N-dimethyldodecylamine N-oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size-dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore. PMID:23456854

  8. The Ratio of Blood T Follicular Regulatory Cells to T Follicular Helper Cells Marks Ectopic Lymphoid Structure Formation While Activated Follicular Helper T Cells Indicate Disease Activity in Primary Sjögren's Syndrome.

    Science.gov (United States)

    Fonseca, Valter R; Romão, Vasco C; Agua-Doce, Ana; Santos, Mara; López-Presa, Dolores; Ferreira, Ana Cristina; Fonseca, João Eurico; Graca, Luis

    2018-05-01

    To investigate whether the balance of blood follicular helper T (Tfh) cells and T follicular regulatory (Tfr) cells can provide information about ectopic lymphoid neogenesis and disease activity in primary Sjögren's syndrome (SS). We prospectively recruited 56 patients clinically suspected of having SS. Sixteen of these patients subsequently fulfilled the American-European Consensus Group criteria for SS and were compared to 16 patients with non-SS sicca syndrome. Paired blood and minor salivary gland (MSG) biopsy samples were analyzed to study Tfr cells and subsets of Tfh cells in both compartments. Patients with primary SS had normal Tfh cell counts in peripheral blood; however, activated programmed death 1-positive (PD-1+) inducible costimulator-positive (ICOS+) Tfh cells in peripheral blood were strongly associated with disease activity assessed by the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (r = 0.8547, P = 0.0008). Conversely, the blood Tfr cell:Tfh cell ratio indicated ectopic lymphoid structure formation in MSGs, being strongly associated with B cell, CD4+ T cell, and PD-1+ICOS+ T cell infiltration in MSGs, and was especially increased in patients with focal sialadenitis. Further analysis showed that the blood Tfr cell:Tfh cell ratio allowed discrimination between SS patients and healthy donors with excellent accuracy and was a strong predictor of SS diagnosis (odds ratio [OR] 12.96, P = 0.028) and the presence of focal sialadenitis (OR 10, P = 0.022) in patients investigated for sicca symptoms, thus highlighting the potential clinical value of this marker. The blood Tfr cell:Tfh cell ratio and PD-1+ICOS+ Tfh cells constitute potential novel biomarkers for different features of primary SS. While the blood Tfr cell:Tfh cell ratio is associated with ectopic lymphoid neogenesis, activated Tfh cells indicate disease activity. © 2018, American College of Rheumatology.

  9. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida.

    Science.gov (United States)

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M; de Lorenzo, Víctor

    2011-03-18

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5'-TTAAACGTTTCA-3' (K(D) = 26.3 ± 3.1 nM) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a K(D) of 209 ± 20 nM. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida.

  10. Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida*

    Science.gov (United States)

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M.; de Lorenzo, Víctor

    2011-01-01

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of Gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5′-TTAAACGTTTCA-3′ (KD = 26.3 ± 3.1 nm) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a KD of 209 ± 20 nm. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida. PMID:21239488

  11. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2017-01-01

    Full Text Available Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.

  12. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  13. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  14. Predicting the biodistribution of radiolabeled cMORF effector in MORF-pretargeted mice

    International Nuclear Information System (INIS)

    Liu, Guozheng; Dou, Shuping; He, Jiang; Liu, Xinrong; Rusckowski, Mary; Hnatowich, Donald J.

    2007-01-01

    Pretargeting with phosphorodiamidate morpholino oligomers (MORFs) involves administration of a MORF-conjugated anti-tumor antibody such as MN14 as a pretargeting agent before that of the radiolabeled complementary MORF (cMORF) as the effector. The dosages of the pretargeting agent and effector, the pretargeting interval, and the detection time are the four pretargeting variables. The goal of this study was to develop a semiempirical description capable of predicting the biodistribution of the radiolabeled effector in pretargeted mice and then to compare predictions with experimental results from pretargeting studies in tumored animals in which the pretargeting interval and the detection time were both fixed but the dosages of both the effector and the pretargeting agent were separately varied. Pretargeting studies in LS174T tumored mice were performed using the anti-CEA antibody MN14 conjugated with MORF and the cMORF radiolabeled with 99m Tc. A description was developed based on our previous observations in the same mouse model of the blood and tumor levels of MORF-MN14, accessibility of MORF-MN14 to labeled cMORF, the tumor accumulation of labeled cMORF relative to MORF-MN14 levels therein, and the kidney accumulation of labeled cMORF. The predicted values were then compared with the experimental values. The predicted biodistribution of the radiolabeled effector and the experimental data were in gratifying agreement in normal organs, suggesting that the description of the pretargeting process was reliable. The tumor accumulations occasionally fell outside two standard deviations of that predicted, but after tumor size correction, good agreement between predicted and experimental values was observed here as well. A semiempirical description of the biodistribution of labeled cMORF was capable of predicting the biodistribution of the radiolabeled effector in the pretargeted tumored mouse model, demonstrating that the underlying pretargeting concepts are correct. We

  15. Benchmark test of JENDL-3T and -3T/Rev.1

    International Nuclear Information System (INIS)

    Takano, Hideki; Kaneko, Kunio.

    1989-10-01

    The fast reactor 70-group constant set JFS-3-J3T has been generated by using the JENDL-3T nuclear data. One-dimensional 21-benchmark cores and the ZPPR-9 core were analysed with the JFS-3-J3T set. The results obtained are summarized as follows: (1) The values of keff are underestimated by 0.6% for Pu-fueled cores and overestimated by 2% for U-fueled cores. (2) The central reaction rate ratio 239 σ f φ/ 235 σ f φ is in a good agreement with the experimental value, though 238 σ c φ/ 239 σ f φ and 238 σ f φ/ 235 σ f φ are overestimated. (3) Doppler and Na-void reactivities are in a good agreement with the measured data. (4) The prediction accuracy of radial reaction rate distributions are improved in the comparison of the results obtained with the JENDL-2 data. Furthermore, the benchmark test of JENDL-3T/Rev. 1 which was revised from JENDL-3T for several important nuclides has been again performed. It was shown that JENDL-3T/Rev. 1 would predict nuclear characteristics more satisfactorily than JENDL-3T. (author)

  16. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.

    Science.gov (United States)

    Contreras, Francisco; Prado, Carolina; González, Hugo; Franz, Dafne; Osorio-Barrios, Francisco; Osorio, Fabiola; Ugalde, Valentina; Lopez, Ernesto; Elgueta, Daniela; Figueroa, Alicia; Lladser, Alvaro; Pacheco, Rodrigo

    2016-05-15

    Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. [111In-DOTA]LTT-SS28, a first pansomatostatin radioligand for in vivo targeting of somatostatin receptor-positive tumors.

    Science.gov (United States)

    Maina, Theodosia; Cescato, Renzo; Waser, Beatrice; Tatsi, Aikaterini; Kaloudi, Aikaterini; Krenning, Eric P; de Jong, Marion; Nock, Berthold A; Reubi, Jean Claude

    2014-08-14

    Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.

  18. Eihän "leikkitäti" voi väsyä, vai voiko? : Käytännön olosuhteet ja työstä aiheutuva stressi musiikkileikkikoulunopettajan työssä

    OpenAIRE

    Busk, Vilma

    2012-01-01

    TIIVISTELMÄ Tässä opinnäytetyössä tarkastellaan musiikkileikkikoulunopettajan työtä ja sen haasteita. Keskiössä ovat työn käytännön olosuhteet ja työstä aiheutuva stressi. Opinnäytetyötäni varten tein kyselytutkimuksen, jonka toteutin Internet-kyselynä Facebookissa, Muskari-ideoita-sivustolla. Kyselyyn vastasi 48 musiikkileikkikoulunopettajaa, joilla oli vaihteleva määrä kokemusta ja jotka olivat iältään 21—50-vuotiaita. Vastaajien taustatietojen lisäksi kartoitin mahdollisimman mon...

  19. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4+ T cells.

    Science.gov (United States)

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Exact positioning of the robotic arm end effector

    Science.gov (United States)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  1. Katariina kirikus algab Geeniuste mäss / Kai Ilustrumm

    Index Scriptorium Estoniae

    Ilustrumm, Kai

    2004-01-01

    Briti Nõukogu toetusel Pärnus, Tartus ja Tallinnas toimuvatel inglise filmide päevadel "Geeniuste mäss" näidatakse ka 3 Lindsay Andersoni nn. Travise triloogia filmi "Kui..." (1968), "Oo, õnneseen!" (1973) ja "Ravila Britannia" (1982), kus Mick Travise rollis on Malcolm McDowell (1943). Lisatud kava

  2. Clinical characteristics of RA patients with secondary SS and association with joint damage

    OpenAIRE

    Brown, Lindsay E.; Frits, Michelle L.; Iannaccone, Christine K.; Weinblatt, Michael E.; Shadick, Nancy A.; Liao, Katherine P.

    2014-01-01

    Objectives. Secondary SS (sSS) is a common extra-articular manifestation of RA. There are conflicting data regarding the association of sSS with worse joint damage. This study aims to characterize sSS patients in an RA cohort and study the association between sSS and joint damage.

  3. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato.

    Science.gov (United States)

    Jelinski, Nicolas A; Broz, Karen; Jonkers, Wilfried; Ma, Li-Jun; Kistler, H Corby

    2017-07-01

    Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.

  4. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells

    DEFF Research Database (Denmark)

    Eriksen, K W; Kaltoft, K; Mikkelsen, G

    2001-01-01

    are IL-2Ralpha negative. An aberrant expression of IL-2Ralpha has recently been described in cutaneous T-cell lymphoma (CTCL). Here, we study the regulation of IL-2Ralpha expression and STATs in a tumor cell line obtained from peripheral blood from a patient with Sezary syndrome (SS), a leukemic variant...... of CTCL. We show that (1) STAT3 (a transcription factor known to regulate IL-2Ralpha transcription) is constitutively tyrosine-phosphorylated in SS tumor cells, but not in non-malignant T cells; (2) STAT3 binds constitutively to a STAT-binding sequence in the promotor of the IL-2Ralpha gene; (3) the Janus...... kinase inhibitor, tyrphostine AG490, inhibits STAT3 activation, STAT3 DNA binding, and IL-2Ralpha mRNA and protein expression in parallel; and (4) tyrphostine AG490 inhibits IL-2 driven mitogenesis and triggers apoptosis in SS tumor cells. In conclusion, we provide the first example of a constitutive...

  5. An MC-SS Platform for Short-Range Communications in the Personal Network Context

    Directory of Open Access Journals (Sweden)

    Bakirtzoglou Zeta

    2008-01-01

    Full Text Available Abstract Wireless personal area networks (WPANs have gained interest in the last few years, and several air interfaces have been proposed to cover WPAN applications. A multicarrier spread spectrum (MC-SS air interface specified to achieve 130 Mbps in typical WPAN channels is presented in this paper. It operates in the 5.2 GHz ISM band and achieves a spectral efficiency of 3.25  . Besides the robustness of the MC-SS approach, this air interface yields to reasonable implementation complexity. This paper focuses on the hardware design and prototype of this MC-SS air interface. The prototype includes RF, baseband, and IEEE802.15.3 compliant medium access control (MAC features. Implementation aspects are carefully analyzed for each part of the prototype, and key hardware design issues and solutions are presented. Hardware complexity and implementation loss are compared to theoretical expectations, as well as flexibility is discussed. Measurement results are provided for a real condition of operations.

  6. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire.

    Science.gov (United States)

    Wang, Qunqing; Han, Changzhi; Ferreira, Adriana O; Yu, Xiaoli; Ye, Wenwu; Tripathy, Sucheta; Kale, Shiv D; Gu, Biao; Sheng, Yuting; Sui, Yangyang; Wang, Xiaoli; Zhang, Zhengguang; Cheng, Baoping; Dong, Suomeng; Shan, Weixing; Zheng, Xiaobo; Dou, Daolong; Tyler, Brett M; Wang, Yuanchao

    2011-06-01

    The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.

  7. A kinematic model for SS433

    International Nuclear Information System (INIS)

    Abell, G.O.; Margon, B.

    1979-01-01

    A model is suggested to explain the bizarre object SS433 which was first noted because of its H α emission and most recently because it is the optical counterpart of a variable radio and X-ray source and exhibits an extraordinary optical spectrum. It is considered that the radiation, with emission lines which show variable Doppler shift, is emitted by hot matter ejected by the central object at high but nearly constant velocity in oppositely directed narrow streams, possible along a magnetic axis. Rotation of the beam axis provides the observed radial velocity variations. The red and blue shifts of SS433 measured by a number of workers on 55 nights during 1978-79 and folded with a 164-d period are shown, from which it is predicted that on or about 1 July 1979 the two moving emission line systems in SS433 will briefly merge into one, similar to a previously reported episode, and that for the following 40 days the lines will separate again, but by an amount much less than previously observed. (author)

  8. Excessive counterion condensation on immobilized ssDNA in solutions of high ionic strength.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujiwara, Tsuyoshi; Fujita, Shozo; Tornow, Marc; Yokoyama, Naoki; Abstreiter, Gerhard

    2003-12-01

    We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.

  9. Death Receptor 3 Signaling Controls the Balance between Regulatory and Effector Lymphocytes in SAMP1/YitFc Mice with Crohn’s Disease-Like Ileitis

    Directory of Open Access Journals (Sweden)

    Zhaodong Li

    2018-03-01

    Full Text Available Death receptor 3 (DR3, a member of the tumor necrosis factor receptor (TNFR superfamily, has been implicated in regulating T-helper type-1 (TH1, type-2 (TH2, and type-17 (TH17 responses as well as regulatory T cell (Treg and innate lymphoid cell (ILC functions during immune-mediated diseases. However, the role of DR3 in controlling lymphocyte functions in inflammatory bowel disease (IBD is not fully understood. Recent studies have shown that activation of DR3 signaling modulates Treg expansion suggesting that stimulation of DR3 represents a potential therapeutic target in human inflammatory diseases, including Crohn’s disease (CD. In this study, we tested a specific DR3 agonistic antibody (4C12 in SAMP1/YitFc (SAMP mice with CD-like ileitis. Interestingly, treatment with 4C12 prior to disease manifestation markedly worsened the severity of ileitis in SAMP mice despite an increase in FoxP3+ lymphocytes in mesenteric lymph node (MLN and small-intestinal lamina propria (LP cells. Disease exacerbation was dominated by overproduction of both TH1 and TH2 cytokines and associated with expansion of dysfunctional CD25−FoxP3+ and ILC group 1 (ILC1 cells. These effects were accompanied by a reduction in CD25+FoxP3+ and ILC group 3 (ILC3 cells. By comparison, genetic deletion of DR3 effectively reversed the inflammatory phenotype in SAMP mice by promoting the expansion of CD25+FoxP3+ over CD25−FoxP3+ cells and the production of IL-10 protein. Collectively, our data demonstrate that DR3 signaling modulates a multicellular network, encompassing Tregs, T effectors, and ILCs, governing disease development and progression in SAMP mice with CD-like ileitis. Manipulating DR3 signaling toward the restoration of the balance between protective and inflammatory lymphocytes may represent a novel and targeted therapeutic modality for patients with CD.

  10. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    Science.gov (United States)

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  11. Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Robb, Craig S.; Assmus, Mark; Nano, Francis E.; Boraston, Alisdair B.

    2013-01-01

    The crystal structure of the type VI secretion-system protein TssJ1 from P. aeruginosa was solved by iodide SAD at a resolution of 1.4 Å. The type VI secretion system of Pseudomonas aeruginosa has been shown to be responsible for the translocation of bacteriolytic effectors into competing bacteria. A mechanistic understanding of this widely distributed secretion system is developing and structural studies of its components are ongoing. Two representative structures of one highly conserved component, TssJ, from Escherichia coli and Serratia marcescens have been published. Here, the X-ray crystal structure of TssJ1 from P. aeruginosa is presented at 1.4 Å resolution. The overall structure is conserved among the three proteins. This finding suggests that the homologues function in a similar manner and bolsters the understanding of the structure of this family of proteins

  12. Forkhead-Box-P3 Gene Transfer in Human CD4+ T Conventional Cells for the Generation of Stable and Efficient Regulatory T Cells, Suitable for Immune Modulatory Therapy

    Directory of Open Access Journals (Sweden)

    Laura Passerini

    2017-10-01

    Full Text Available The development of novel approaches to control immune responses to self- and allogenic tissues/organs represents an ambitious goal for the management of autoimmune diseases and in transplantation. Regulatory T cells (Tregs are recognized as key players in the maintenance of peripheral tolerance in physiological and pathological conditions, and Treg-based cell therapies to restore tolerance in T cell-mediated disorders have been designed. However, several hurdles, including insufficient number of Tregs, their stability, and their antigen specificity, have challenged Tregs clinical applicability. In the past decade, the ability to engineer T cells has proven a powerful tool to redirect specificity and function of different cell types for specific therapeutic purposes. By using lentivirus-mediated gene transfer of the thymic-derived Treg transcription factor forkhead-box-P3 (FOXP3 in conventional CD4+ T cells, we converted effector T cells into Treg-like cells, endowed with potent in vitro and in vivo suppressive activity. The resulting CD4FOXP3 T-cell population displays stable phenotype and suppressive function. We showed that this strategy restores Treg function in T lymphocytes from patients carrying mutations in FOXP3 [immune-dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX], in whom CD4FOXP3 T cell could be used as therapeutics to control autoimmunity. Here, we will discuss the potential advantages of using CD4FOXP3 T cells for in vivo application in inflammatory diseases, where tissue inflammation may undermine the function of natural Tregs. These findings pave the way for the use of engineered Tregs not only in IPEX syndrome but also in autoimmune disorders of different origin and in the context of stem cell and organ transplantation.

  13. Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control.

    Science.gov (United States)

    Rothenberg, Ellen V; Ungerbäck, Jonas; Champhekar, Ameya

    2016-01-01

    T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. © 2016 Elsevier Inc. All rights reserved.

  14. n3 PUFAs Reduce Mouse CD4+ T-Cell Ex Vivo Polarization into Th17 Cells123

    Science.gov (United States)

    Monk, Jennifer M.; Hou, Tim Y.; Turk, Harmony F.; McMurray, David N.; Chapkin, Robert S.

    2013-01-01

    Little is known about the impact of n33) PUFAs on polarization of CD4+ T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4+ T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3+) cells] or Th17 cells [interleukin (IL)-17A+ and retinoic acid receptor-related orphan receptor (ROR) γτ+ cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4+ IL-17A+ (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA–dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset. PMID:23864512

  15. Development and characterization of radioimmunoassay methods for the measurement of iodothyronines (T4, T3 and rT3)

    International Nuclear Information System (INIS)

    Russo, E.M.K.; Vieira, J.G.H.; Barros Maciel, R.M. de; Fonseca, R.M.G.

    1982-01-01

    The experience acquired in the development of radioimmunoassay for T 4 , T 3 and rT 3 in unextrated serum is described. Antisera were produced in rabbits using iodothyronines conjugated to bovine serum albumin: the antisera selected provided the development of sensitive and specific radioassay methods. Stable high activity T 3 , T 4 and rT 3 tracers were prepared by iodination of 3,5 T 2 , T 3 and 3,3' T 2 by the chloramine-T method, and purified by column chromatography on Sephadex G25. Binding of those iodothyronines to endogenous serum proteins was blocked by including 8-aniline-1-naphtalene sulphonic acid (ANSA) in the T 4 and T 3 assays and thymerosal in the rT 3 assay. Normal values were defined in 46 healthy euthyroid adults of both sexes: T 4 = 7,1 +- 1,3μg/dl; T 3 = 139 +- 35ng/dl and rT 3 = 18,0 +- 7,9ng/dl. (Author) [pt

  16. Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system.

    Science.gov (United States)

    Lu, Yun-Yueh; Franz, Bettina; Truttmann, Matthias C; Riess, Tanja; Gay-Fraret, Jérémie; Faustmann, Marco; Kempf, Volkhard A J; Dehio, Christoph

    2013-05-01

    The Gram-negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae - each displaying multiple functions in host cell interaction - have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that most isolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4-dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA-dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of

  17. Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA

    International Nuclear Information System (INIS)

    Li Guangjiu; Liu Lihua; Qi Xiaowei; Guo Yaqing; Sun Wei; Li Xiaolin

    2012-01-01

    Graphical abstract: - Abstract: A novel and sensitive electrochemical DNA biosensor was fabricated by using the 4-aminothiophenol (4-ATP) self-assembled on electrodeposited gold nanoparticles (NG) modified electrode to anchor capture ssDNA sequences and Au nanoparticles (AuNPs) labeled with reporter ssDNA sequences, which were further coupled with electroactive indicator of hexaammineruthenium (III) ([Ru(NH 3 ) 6 ] 3+ ) to amplify the electrochemical signal of hybridization reaction. Different modified electrodes were prepared and characterized by cyclic voltammetry, scanning electron microscope and electrochemical impedance spectroscopy. By using a sandwich model for the capture of target ssDNA sequences, which was based on the shorter probe ssDNA and AuNPs label reporter ssDNA hybridized with longer target ssDNA, the electrochemical behavior of [Ru(NH 3 ) 6 ] 3+ was monitored by differential pulse voltammetry (DPV). The fabricated electrochemical DNA sensor exhibited good distinguish capacity for the complementary ssDNA sequence and two bases mismatched ssDNA. The dynamic detection range of the target ssDNA sequences was from 1.4 × 10 −11 to 2.0 × 10 −9 mol/L with the detection limit as 9.5 × 10 −12 mol/L (3σ). So in this paper a new electrochemical DNA sensor was designed with gold nanoparticles as the immobilization platform and the signal amplifier simultaneously.

  18. Trans-sialidase-based vaccine candidate protects against Trypanosoma cruzi infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype

    Science.gov (United States)

    Prochetto, Estefanía; Roldán, Carolina; Bontempi, Iván A.; Bertona, Daiana; Peverengo, Luz; Vicco, Miguel H.; Rodeles, Luz M.; Pérez, Ana R.; Marcipar, Iván S.; Cabrera, Gabriel

    2017-01-01

    Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested. PMID:28938533

  19. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.

    Science.gov (United States)

    Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel

    2018-05-16

    Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. CD11c-Expressing Cells Affect Regulatory T Cell Behavior in the Meninges during Central Nervous System Infection.

    Science.gov (United States)

    O'Brien, Carleigh A; Overall, Christopher; Konradt, Christoph; O'Hara Hall, Aisling C; Hayes, Nikolas W; Wagage, Sagie; John, Beena; Christian, David A; Hunter, Christopher A; Harris, Tajie H

    2017-05-15

    Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4 + T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4 + T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c + cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c + cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c + cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c + cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c + populations regulates their local behavior during T. gondii infection. Copyright © 2017 by The American Association of Immunologists, Inc.