WorldWideScience

Sample records for t-gate gaas phemts

  1. SEMICONDUCTOR DEVICES: Structural and electrical characteristics of lanthanum oxide gate dielectric film on GaAs pHEMT technology

    Science.gov (United States)

    Chia-Song, Wu; Hsing-Chung, Liu

    2009-11-01

    This paper investigates the feasibility of using a lanthanum oxide thin film (La2O3) with a high dielectric constant as a gate dielectric on GaAs pHEMTs to reduce gate leakage current and improve the gate to drain breakdown voltage relative to the conventional GaAs pHEMT. An E/D mode pHEMT in a single chip was realized by selecting the appropriate La2O3 thickness. The thin La2O3 film was characterized: its chemical composition and crystalline structure were determined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. La2O3 exhibited good thermal stability after post-deposition annealing at 200, 400 and 600 °C because of its high binding-energy (835.6 eV). Experimental results clearly demonstrated that the La2O3 thin film was thermally stable. The DC and RF characteristics of Pt/La2O3/Ti/Au gate and conventional Pt/Ti/Au gate pHEMTs were examined. The measurements indicated that the transistor with the Pt/La2O3/Ti/Au gate had a higher breakdown voltage and lower gate leakage current. Accordingly, the La2O3 thin film is a potential high-k material for use as a gate dielectric to improve electrical performance and the thermal effect in high-power applications.

  2. Comparative studies of MOS-gate/oxide-passivated AlGaAs/InGaAs pHEMTs by using ozone water oxidation technique

    International Nuclear Information System (INIS)

    Lee, Ching-Sung; Hung, Chun-Tse; Chou, Bo-Yi; Hsu, Wei-Chou; Liu, Han-Yin; Ho, Chiu-Sheng; Lai, Ying-Nan

    2012-01-01

    Al 0.22 Ga 0.78 As/In 0.24 Ga 0.76 As pseudomorphic high-electron-mobility transistors (pHEMTs) with metal-oxide-semiconductor (MOS)-gate structure or oxide passivation by using ozone water oxidation treatment have been comprehensively investigated. Annihilated surface states, enhanced gate insulating property and improved device gain have been achieved by the devised MOS-gate structure and oxide passivation. The present MOS-gated or oxide-passivated pHEMTs have demonstrated superior device performances, including superior breakdown, device gain, noise figure, high-frequency characteristics and power performance. Temperature-dependent device characteristics of the present designs at 300–450 K are also studied. (paper)

  3. Design of a low noise distributed amplifier with adjustable gain control in 0.15 μm GaAs PHEMT

    International Nuclear Information System (INIS)

    Zhang Ying; Wang Zhigong; Xu Jian; Luo Yin

    2012-01-01

    A low noise distributed amplifier consisting of 9 gain cells is presented. The chip is fabricated with 0.15-μm GaAs pseudomorphic high electron mobility transistor (PHEMT) technology from Win Semiconductor of Taiwan. A special optional gate bias technique is introduced to allow an adjustable gain control range of 10 dB. A novel cascode structure is adopted to extend the output voltage and bandwidth. The measurement results show that the amplifier gives an average gain of 15 dB with a gain flatness of ±1 dB in the 2–20 GHz band. The noise figure is between 2 and 4.1 dB during the band from 2 to 20 GHz. The amplifier also provides 13.8 dBm of output power at a 1 dB gain compression point and 10.5 dBm of input third order intercept point (IIP3), which demonstrates the excellent performance of linearity. The power consumption is 300 mW with a supply of 5 V, and the chip area is 2.36 × 1.01 mm 2 . (semiconductor integrated circuits)

  4. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, K.; Limiti, E.; Paoloni, C.

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  5. Remote PECVD silicon nitride films with improved electrical properties for GaAs P-HEMT passivation

    CERN Document Server

    Sohn, M K; Kim, K H; Yang, S G; Seo, K S

    1998-01-01

    In order to obtain thin silicon nitride films with excellent electrical and mechanical properties, we employed RPECVD (Remote Plasma Enhanced Chemical Vapor Deposition) process which produces less plasma-induced damage than the conventional PECVD. Through the optical and electrical measurements of the deposited films, we optimized the various RPECVD process parameters. The optimized silicon nitride films showed excellent characteristics such as small etch rate (approx 33 A/min by 7:1 BHF), high breakdown field (>9 MV/cm), and low compressive stress (approx 3.3x10 sup 9 dyne/cm sup 2). We successfully applied thin RPECVD silicon nitride films to the surface passivation of GaAs pseudomorphic high electron mobility transistors (P-HEMTs) with negligible degradations in DC and RF characteristics.

  6. 10 Gb/s OEIC optical receiver front-end and 3.125 Gb/s PHEMT limiting amplifier

    International Nuclear Information System (INIS)

    Fan Chao; Jiao Shilong; Wu Yunfeng; Ye Yutang; Chen Tangsheng; Yang Lijie; Feng Ou

    2009-01-01

    A 10 Gb/s OEIC (optoelectronic integrated circuit) optical receiver front-end has been studied and fabricated based on the Φ-76 mm GaAs PHEMT process; this is the first time that a limiting amplifier (LA) has been designed and realized using depletion mode PHEMT. An OEIC optical receiver front-end mode composed of an MSM photodiode and a current mode transimpedance amplifier (TIA) has been established and optimized by simulation software ATLAS. The photodiode has a bandwidth of 10 GHz, a capacitance of 3 fF/μm and a photosensitive area of 50 x 50 μm 2 . The whole chip has an area of 1511 x 666 μm 2 . The LA bandwidth is expanded by spiral inductance which has been simulated by software HFSS. The chip area is 1950 x 1910 μm 2 and the measured results demonstrate an input dynamic range of 34 dB (10-500 mVpp) with constant output swing of 500 mVpp.

  7. 10 Gb/s OEIC optical receiver front-end and 3.125 Gb/s PHEMT limiting amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Fan Chao; Jiao Shilong; Wu Yunfeng; Ye Yutang [School of Opto-Electronic Information, UESTC, Chengdu 610054 (China); Chen Tangsheng; Yang Lijie; Feng Ou, E-mail: fanchao41@126.co [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2009-10-15

    A 10 Gb/s OEIC (optoelectronic integrated circuit) optical receiver front-end has been studied and fabricated based on the {Phi}-76 mm GaAs PHEMT process; this is the first time that a limiting amplifier (LA) has been designed and realized using depletion mode PHEMT. An OEIC optical receiver front-end mode composed of an MSM photodiode and a current mode transimpedance amplifier (TIA) has been established and optimized by simulation software ATLAS. The photodiode has a bandwidth of 10 GHz, a capacitance of 3 fF/{mu}m and a photosensitive area of 50 x 50 {mu}m{sup 2}. The whole chip has an area of 1511 x 666 {mu}m{sup 2}. The LA bandwidth is expanded by spiral inductance which has been simulated by software HFSS. The chip area is 1950 x 1910 {mu}m{sup 2} and the measured results demonstrate an input dynamic range of 34 dB (10-500 mVpp) with constant output swing of 500 mVpp.

  8. Enhancement of the 2DEG density in AlGaAs/InGaAs/GaAs P-HEMTs structures grown by MBE on (311)A and (111)A GaAs substrates

    International Nuclear Information System (INIS)

    Rekaya, S.; Sfaxi, L.; Bouzaiene, L.; Maaref, H.; Bru-Chevallier, C.

    2008-01-01

    The pseudomorphic high electron mobility transistor (P-HEMT) structure materials Al 0.33 Ga 0.7 As/In 0.1 Ga 0.9 As/GaAs have been grown by molecular beam epitaxy (MBE) on (311)A and (111)A GaAs substrates. The epitaxy of strain heterostructure on high index GaAs substrate has led to new growth phenomena, material properties and device applications. The photoluminescence (PL) spectra of the structures have been measured at low temperature. The dominant emission in the PL spectra is due to the recombination from the first electron (e1) subband to the first heavy-hole (hh1) subband (E 11 : e1-hh1). This feature (E 11 ) is a relatively broad peak and has a typical asymmetric line shape. The transformation of the PL spectra in the close vicinity of the Fermi edge (E F ) under different excitation densities gives strong evidence for the Fermi Edge Singularity (FES) existence. The density of the quasi-two-dimensional electron gas (2DEG) determined by PL study (n s PL ), is in sufficient agreement with the values found from Hall measurements n s Hall at 77 K. The results prove an increase of the electron density in sample grown on GaAs (111)A and (311)A rather than in equivalent sample grown on (001) GaAs substrate. This effect is in good agreement with our theoretical prediction, which is based on a self-consistent solution of the coupled Schroedinger and Poisson equations

  9. A Ka-band low-noise amplifier with a coplanar waveguide (CPW) structure with 0.15-μm GaAs pHEMT technology

    International Nuclear Information System (INIS)

    Wu Chia-Song; Chang Chien-Huang; Liu Hsing-Chung; Lin Tah-Yeong; Wu Hsien-Ming

    2010-01-01

    This investigation explores a low-noise amplifier (LNA) with a coplanar waveguide (CPW) structure, in which a two-stage amplifier is associated with a cascade schematic circuit, implemented in 0.15-μm GaAs pseudomorphic high electron mobility transistor (pHEMT) technology in a Ka-band (26.5-40.0 GHz) microwave monolithic integrated circuit (MMIC). The experimental results demonstrate that the proposed LNA has a peak gain of 12.53 dB at 30 GHz and a minimum noise figure of 3.3 dB at 29.5 GHz, when biased at a V ds of 2 V and a V gs of -0.6 V with a drain current of 16 mA in the circuit. The results show that the millimeter-wave LNA with coplanar waveguide structure has a higher gain and wider bandwidth than a conventional circuit. Finally, the overall LNA characterization exhibits high gain and low noise, indicating that the LNA has a compact circuit and favorable RF characteristics. The strong RF character exhibited by the LNA circuit can be used in millimeter-wave circuit applications. (semiconductor integrated circuits)

  10. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    Science.gov (United States)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  11. Fabrication of GaAs nanowire devices with self-aligning W-gate electrodes using selective-area MOVPE

    International Nuclear Information System (INIS)

    Ooike, N.; Motohisa, J.; Fukui, T.

    2004-01-01

    We propose and demonstrate a novel self-aligning process for fabricating the tungsten (W) gate electrode of GaAs nanowire FETs by using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) where SiO 2 /W composite films are used to mask the substrates. First, to study the growth process and its dependence on mask materials, GaAs wire structures were grown on masked substrates partially covered with a single W layer or SiO 2 /W composite films. We found that lateral growth over the masked regions could be suppressed when a wire along the [110] direction and a SiO 2 /W composite mask were used. Using this composite mask, we fabricated GaAs narrow channel FETs using W as a Schottky gate electrode, and we were able to observe FET characteristics at room temperature

  12. ECV profiling of GaAs and GaN HEMT heterostructures

    Science.gov (United States)

    Yakovlev, G.; Zubkov, V.

    2018-03-01

    AlGaAs/InGaAs/GaAs and AlGaN/GaN HEMT heterostructures were investigated by means of electrochemical capacitance-voltage technique. A set of test structures were fabricated using various doping techniques: standard doping, δ-doping GaAs pHEMT and nondoping GaN HEMT. The concentration profiles of free charge carriers across the samples were experimentally obtained. The QW filling was analyzed and compared for different mechanisms of emitter doping and 2DEG origins.

  13. Evaluation of the drain—source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method

    International Nuclear Information System (INIS)

    Ma Lin; Feng Shiwei; Zhang Yamin; Deng Bing; Yue Yuan

    2014-01-01

    The effect of drain—source voltage on AlGaAs/InGaAs PHEMTs thermal resistance is studied by experimental measuring and simulation. The result shows that AlGaAs/InGaAs PHEMTs thermal resistance presents a downward trend under the same power dissipation when the drain—source voltage (V DS ) is decreased. Moreover, the relatively low V DS and large drain—source current (I DS ) result in a lower thermal resistance. The chip-level and package-level thermal resistance have been extracted by the structure function method. The simulation result indicated that the high electric field occurs at the gate contact where the temperature rise occurs. A relatively low V DS leads to a relatively low electric field, which leads to the decline of the thermal resistance. (semiconductor devices)

  14. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    International Nuclear Information System (INIS)

    Liu Chaowen; Xu Jingping; Liu Lu; Lu Hanhan; Huang Yuan

    2016-01-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. (paper)

  15. Effects of Y incorporation in TaON gate dielectric on electrical performance of GaAs metal-oxide-semiconductor capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li Ning; Choi, Hoi Wai; Lai, Pui To [Department of Electrical and Electronic Engineering, The University of Hong Kong (China); Xu, Jing Ping [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China)

    2016-09-15

    In this study, GaAs metal-oxide-semiconductor (MOS) capacitors using Y-incorporated TaON as gate dielectric have been investigated. Experimental results show that the sample with a Y/(Y + Ta) atomic ratio of 27.6% exhibits the best device characteristics: high k value (22.9), low interfacestate density (9.0 x 10{sup 11} cm{sup -2} eV{sup -1}), small flatband voltage (1.05 V), small frequency dispersion and low gate leakage current (1.3 x 10{sup -5}A/cm{sup 2} at V{sub fb} + 1 V). These merits should be attributed to the complementary properties of Y{sub 2}O{sub 3} and Ta{sub 2}O{sub 5}:Y can effectively passivate the large amount of oxygen vacancies in Ta{sub 2}O{sub 5}, while the positively-charged oxygen vacancies in Ta{sub 2}O{sub 5} are capable of neutralizing the effects of the negative oxide charges in Y{sub 2}O{sub 3}. This work demonstrates that an appropriate doping of Y content in TaON gate dielectric can effectively improve the electrical performance for GaAs MOS devices. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    Science.gov (United States)

    Chaowen, Liu; Jingping, Xu; Lu, Liu; Hanhan, Lu; Yuan, Huang

    2016-02-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. Project supported by the National Natural Science Foundation of China (No. 61176100).

  17. Comparisons of single event vulnerability of GaAs SRAMS

    Science.gov (United States)

    Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.

    1986-12-01

    A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.

  18. Analytical drain current formulation for gate dielectric engineered dual material gate-gate all around-tunneling field effect transistor

    Science.gov (United States)

    Madan, Jaya; Gupta, R. S.; Chaujar, Rishu

    2015-09-01

    In this work, an analytical drain current model for gate dielectric engineered (hetero dielectric)-dual material gate-gate all around tunnel field effect transistor (HD-DMG-GAA-TFET) has been developed. Parabolic approximation has been used to solve the two-dimensional (2D) Poisson equation with appropriate boundary conditions and continuity equations to evaluate analytical expressions for surface potential, electric field, tunneling barrier width and drain current. Further, the analog performance of the device is studied for three high-k dielectrics (Si3N4, HfO2, and ZrO2), and it has been investigated that the problem of lower ION, can be overcome by using the hetero-gate architecture. Moreover, the impact of scaling the gate oxide thickness and bias variations has also been studied. The HD-DMG-GAA-TFET shows an enhanced ION of the order of 10-4 A. The effectiveness of the proposed model is validated by comparing it with ATLAS device simulations.

  19. A Novel Extraction Approach of Extrinsic and Intrinsic Parameters of InGaAs/GaN pHEMTs

    Science.gov (United States)

    2015-07-01

    A Novel Extraction Approach of Extrinsic and Intrinsic Parameters of InGaAs/GaN pHEMTs Andong Huang1, 2, ZhengZhong2, 3, and Yongxin Guo2, 3...Suzhou Research Institute, Suzhou, China Abstract — A novel extraction approach of extrinsic and intrinsic parameters of InGaAs/GaN pHEMTs is...parameter error function. The extrinsic elements are optimized at multi-bias points and the intrinsic ones at specific bias points. Only broad ranges

  20. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    DEFF Research Database (Denmark)

    Ullah, A. R.; Gluschke, J. G.; Jeppesen, Peter Krogstrup

    2017-01-01

    -gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good......GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin–orbit effects, motivating...... our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top...

  1. Transient four-wave mixing in T-shaped GaAs quantum wires

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Gislason, Hannes; Hvam, Jørn Märcher

    1999-01-01

    The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement. In thi...

  2. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    International Nuclear Information System (INIS)

    Xi Xiao-Wen; Chai Chang-Chun; Liu Yang; Yang Yin-Tang; Fan Qing-Yang; Shi Chun-Lei

    2016-01-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. (paper)

  3. Reduction of skin effect losses in double-level-T-gate structure

    Energy Technology Data Exchange (ETDEWEB)

    Mikulics, M., E-mail: m.mikulics@fz-juelich.de; Hardtdegen, H.; Arango, Y. C.; Adam, R.; Fox, A.; Grützmacher, D. [Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Jülich-Aachen Research Alliance, JARA, Fundamentals of Future Information Technology, D-52425 Jülich (Germany); Gregušová, D.; Novák, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, SK-84104 Bratislava (Slovakia); Stanček, S. [Department of Nuclear Physic and Technique, Slovak University of Technology, SK-81219 Bratislava (Slovakia); Kordoš, P. [Institute of Electronics and Photonics, Slovak University of Technology, SK-81219 Bratislava (Slovakia); Sofer, Z. [Department of Inorganic Chemistry, Institute of Chemical Technology, Technická 5, Prague 6 (Czech Republic); Juul, L.; Marso, M. [Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, L-1359 Luxembourg (Luxembourg)

    2014-12-08

    We developed a T-gate technology based on selective wet etching yielding 200 nm wide T-gate structures used for fabrication of High Electron Mobility Transistors (HEMT). Major advantages of our process are the use of only standard photolithographic process and the ability to generate T-gate stacks. A HEMT fabricated on AlGaN/GaN/sapphire with gate length L{sub g} = 200 nm and double-stacked T-gates exhibits 60 GHz cutoff frequency showing ten-fold improvement compared to 6 GHz for the same device with 2 μm gate length. HEMTs with a double-level-T-gate (DLTG) structure exhibit up to 35% improvement of f{sub max} value compared to a single T-gate device. This indicates a significant reduction of skin effect losses in DLTG structure compared to its standard T-gate counterpart. These results agree with the theoretical predictions.

  4. Effects of surface states on device and interconnect isolation in GaAs MESFET and InP MISFET integrated circuits

    International Nuclear Information System (INIS)

    Hasegawa, H.; Kitagawa, T.; Masuda, H.; Yano, H.; Ohno, H.

    1985-01-01

    Surface electrical breakdown and side-gating which cause failure of device and interconnect isolation are investigated for GaAs MESFET and InP MISFET integrated circuit structures. Striking differences in behavior are observed between GaAs and InP as regards to the surface conduction, surface breakdown and side-gating. These differences are shown to be related to the surface state properties of the insulator-semiconductor interface. In GaAs, high density of surface states rather than bulk trap states control the surface I-V characteristics and side-gating, causing serious premature avalanche breakdown and triggering side-gating at a low nominal field intensity of 1-3 kV/cm. On the other hand, InP MISFET integrated circuits are virtually free from these premature breakdown and side-gating effect under normal dark operating condition because of very low surface state density

  5. Ion induced charge collection in GaAs MESFETs

    International Nuclear Information System (INIS)

    Campbell, A.; Knudson, A.; McMorrow, D.; Anderson, W.; Roussos, J.; Espy, S.; Buchner, S.; Kang, K.; Kerns, D.; Kerns, S.

    1989-01-01

    Charge collection measurements on GaAs MESFET test structures demonstrate that more charge can be collected at the gate than is deposited in the active layer and more charge can be collected at the drain than the total amount of charge produced by the ion. Enhanced charge collection at the gate edge is also observed. The current transients produced by the energetic ions have been measured directly with about 20 picosecond resolution

  6. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    International Nuclear Information System (INIS)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-01-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs

  7. Sn nanothreads in GaAs: experiment and simulation

    Science.gov (United States)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  8. GIDL analysis of the process variation effect in gate-all-around nanowire FET

    Science.gov (United States)

    Kim, Shinkeun; Seo, Youngsoo; Lee, Jangkyu; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    In this paper, the gate-induced drain leakage (GIDL) is analyzed on gate-all-around (GAA) Nanowire FET (NW FET) with ellipse-shaped channel induced by process variation effect (PVE). The fabrication process of nanowire can lead to change the shape of channel cross section from circle to ellipse. The effect of distorted channel shape is investigated and verified by technology computer-aided design (TCAD) simulation in terms of the GIDL current. The simulation results demonstrate that the components of GIDL current are two mechanisms of longitudinal band-to-band tunneling (L-BTBT) at body/drain junction and transverse band-to-band tunneling (T-BTBT) at gate/drain junction. These two mechanisms are investigated on channel radius (rnw) and aspect ratio of ellipse-shape respectively and together.

  9. High microwave performance ion-implanted GaAs MESFETs on InP substrates

    International Nuclear Information System (INIS)

    Wada, M.; Kato, K.

    1990-01-01

    Ion implantation was employed, for the first time, in fabricating GaAs MESFETs in undoped 2 μm thick GaAs epitaxial layers directly grown on InP substrates by low-pressure MOVPE. The Si-ion-implanted GaAs layer on InP substrates showed excellent electrical characteristics: a mobility of 4300 cm 2 /Vs with a carrier density of 2 x 10 17 cm -3 at room temperature. The MESFET (0.8 μm gate length) exhibited a current-gain cutoff frequency of 25 GHz and a maximum frequency of oscillation of 53 GHz, the highest values yet reported to GaAs MESFETs on InP substrates. These results demonstrate the high potential of ion-implanted MESFETs as electronic devices for high-speed InP-based OEICs. (author)

  10. STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs

    Science.gov (United States)

    Lee, Donghun; Daughton, David; Gupta, Jay

    2009-03-01

    Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)

  11. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease

    Directory of Open Access Journals (Sweden)

    Erik van der Wal

    2017-06-01

    Full Text Available The most common variant causing Pompe disease is c.-32-13T>G (IVS1 in the acid α-glucosidase (GAA gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity.

  12. Superconductivity and its pressure variation in GaAs

    International Nuclear Information System (INIS)

    Nirmala Louis, C.; Jayam, Sr. Gerardin; Amalraj, A.

    2005-01-01

    The electronic band structure, metallization, phase transition and superconducting transition of gallium arsenide under pressure are studied using TB-LMTO method. Metallization occurs via indirect closing of band gap between Γ and X points. GaAs becomes superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The ground state properties are analyzed by fitting the calculated total energies to the Birch-Murnaghan's equation of state. The superconducting transition temperatures (T c ) obtained as a function of pressure for both the ZnS and NaCl structures and GaAs comes under the class of pressure induced superconductor. When pressure is increased T c increases in both the normal and high pressure structures. The dependence of T c on electron-phonon mass enhancement factor λ shows that GaAs is an electron-phonon-mediated superconductor. Also it is found that GaAs retained in their normal structure under high pressure give appreciably high T c . (author)

  13. Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor

    International Nuclear Information System (INIS)

    Yu Xin-Hai; Chai Chang-Chun; Liu Yang; Yang Yin-Tang; Xi Xiao-Wen

    2015-01-01

    The high power microwave (HPM) damage effect on the AlGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ −0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device burn-out and the location beneath the gate near the source side is most susceptible to burn-out, which is in accordance with the simulated results. (paper)

  14. Low-voltage high-speed programming gate-all-around floating gate memory cell with tunnel barrier engineering

    Science.gov (United States)

    Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali

    2018-06-01

    The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.

  15. GaAs Wideband Low Noise Amplifier Design for Breast Cancer Detection System

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Delcourt, Sebastien

    2009-01-01

    Modern wideband systems require low-noise receivers with bandwidth approaching 10 GHz. This paper presents ultra-wideband stable low-noise amplifier MMIC with cascode and source follower buffer configuration using GaAs technology. Source degeneration, gate and shunt peaking inductors are used...

  16. Design and characterisation of high electron mobility transistors for use in a monolithic GaAs X-ray imaging sensor

    International Nuclear Information System (INIS)

    Boardman, D.A.; Sellin, P.J.

    2001-01-01

    A new design of monolithic GaAs pixel detector is proposed for medical and synchrotron applications. In this device a semi-insulating GaAs wafer will be used as both the detector element and the substrate for the integrated charge readout matrix. The charge readout matrix consists of High Electron Mobility Transistors (HEMTs), which are grown epitaxially onto the GaAs substrate. Experimental characterisation of HEMTs has been carried out and their suitability for the proposed imaging device is assessed. Temperature measurements on initial devices showed the threshold voltage to be stable from room temperature down to -15 degree sign C. HEMT designs with lower leakage current that operate in enhancement mode have been fabricated and modelled using the Silvaco simulation package. These optimised devices have been fabricated using a gate recess, and exhibit enhancement mode operation and significantly reduced gate leakage currents

  17. Near-thermal limit gating in heavily doped III-V semiconductor nanowires using polymer electrolytes

    Science.gov (United States)

    Ullah, A. R.; Carrad, D. J.; Krogstrup, P.; Nygârd, J.; Micolich, A. P.

    2018-02-01

    Doping is a common route to reducing nanowire transistor on-resistance but it has limits. A high doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the Be doping in our GaAs nanowires is so high that traditional metal-oxide gates fail. In this regime we obtain a combination of subthreshold swing and contact resistance that surpasses the best existing p -type nanowire metal-oxide semiconductor field-effect transistors (MOSFETs). Our subthreshold swing of 75 mV/dec is within 25 % of the room-temperature thermal limit and comparable with n -InP and n -GaAs nanowire MOSFETs. Our results open a new path to extending the performance and application of nanowire transistors, and motivate further work on improved solid electrolytes for nanoscale device applications.

  18. Off state breakdown behavior of AlGaAs / InGaAs field plate pHEMTs

    International Nuclear Information System (INIS)

    Palma, John; Mil'shtein, Samson

    2014-01-01

    Off-state breakdown voltage, V br , is an important parameter determining the maximum power output of microwave Field Effect Transistors (FETs). In recent years, the use of field plates has been widely adopted to significantly increase V br . This important technological development has extended FET technologies into new areas requiring these higher voltages and power levels. Keeping with this goal, field plates were added to an existing AlGaAs / InGaAs pseudomorphic High Electron Mobility Transistor (pHEMT) process with the aim of determining the off-state breakdown mechanism and the dependency of V br on the field plate design. To find the mechanism responsible for breakdown, temperature dependent off-state breakdown measurements were conducted. It was found that at low current levels, the temperature dependence indicates thermionic field emission at the Schottky gate and at higher current levels, impact ionization is indicated. The combined results imply that impact ionization is ultimately the mechanism that is responsible for the breakdown in the tested transistors, but that it is preceded by thermionic field emission from the gate. To test the dependence of V br upon the field plate design, the field plate length and the etch depth through the highly-doped cap layer under the field plate were varied. Also, non-field plate devices were tested along side field plate transistors. It was found that the length of the etched region under the field plate is the dominant factor in determining the off-state breakdown of the more deeply etched devices. For less deeply etched devices, the length of the field plate is more influential. The influence of surface states between the highly doped cap layer and the passivation layer along the recess are believed to have a significant influence in the case of the more deeply etched examples. It is believed that these traps spread the electric field, thus raising the breakdown voltage. Three terminal breakdown voltages

  19. Temperature Effects on The Electrical Characteristics of In0.15Ga0.85As Pseudomorphic High-Electron-Mobility Transistors

    Directory of Open Access Journals (Sweden)

    BECHLAGHEM Fatima Zohra

    2017-10-01

    Full Text Available Nowadays, GaAs-based HEMTs and pseudomorphic HEMTs are speedily replacing conventional MESFET technology in military and commercial applications including, communication, radar and automotive technologies having need of high gain, and low noise figures especially at millimeter-wave frequencies. In this work, a short gate length pseudomorphic HEMT "p-HEMT" on GaAs substrate is treated. As temperature dependence study is a very important part of the complete characterization on active devices, the impact of temperature variation on the electrical properties of our 30nm short gate length pseudomorphic high-electron mobility In0.15Ga0.85As device is investigated. All our static DC device characteristics and RF response have been obtained using a device simulator that is Silvaco software to examine temperature impact on our device output current, transconductance and cutoff frequency. The 30nm gate pseudomorphic HEMT reported here exhibit superior DC and RF performances, Our results reveals a maximum drain-source current IDS up to 537.16 mA/mm, a peak extrinsic transconductance Gm of 345.4 mS/mm, a cutoff frequency Ft of 285.9 GHz, and a maximum frequency Fmax of 1580 GHz at room temperature.

  20. On-chip electro-static discharge (ESD) protection for radio-frequency integrated circuits

    CERN Document Server

    Cui, Qiang; Hajjar, Jean-Jacques; Salcedo, Javier; Zhou, Yuanzhong; Srivatsan, Parthasarathy

    2015-01-01

    This book enables readers to design effective ESD protection solutions for all mainstream RF fabrication processes (GaAs pHEMT, SiGe HBT, CMOS). The new techniques introduced by the authors have much higher protection levels and much lower parasitic effects than those of existing ESD protection devices. The authors describe in detail the ESD phenomenon, as well as ESD protection fundamentals, standards, test equipment, and basic design strategies. Readers will benefit from realistic case studies of ESD protection for RFICs and will learn to increase significantly modern RFICs’ ESD safety level, while maximizing RF performance. Describes in detail the ESD phenomenon, as well as ESD protection fundamentals, standards, test equipment, and basic design strategies; Enables readers to design effective ESD protection solutions for all mainstream RF fabrication processes (GaAs pHEMT, SiGe HBT, CMOS); Includes realistic case studies of ESD protection for RFICs that resulted in significantly increased ESD safety leve...

  1. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    Science.gov (United States)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  2. Investigation of Landau level spin reversal in (110) oriented p-type GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Nebile

    2009-09-01

    In this thesis, the Landau level crossing or anticrossing of hole levels has been investigated in p-type GaAs 400 Aa wide quantum wells. In magneto-transport measurements, this is evidenced with the presence of an anomalous peak in the longitudinal resistance measurements at {nu}=1. In the transversal resistance measurements, no signature of this anomalous peak is observed. By increasing the hole density in the quantum well by applying a top gate voltage, the position of the anomalous peak shifts to higher magnetic fields. At very high densities, anomalous peak disappears. By applying a back gate voltage, the electric field in the quantum well is tuned. A consequence is that the geometry of the quantum well is tuned from square to triangular. The anomalous peak position is shown to depend also on the back gate voltage applied. Temperature dependence of the peak height is consistent with thermal activation energy gap ({delta}/2= 135 {mu}eV). The activation energy gap as a function of the magnetic field has a parabolic like dependence, with the minimum of 135 {mu}eV at 4 T. The peak magnitude is observed to decrease with increasing temperature. An additional peak is observed at {nu}=2 minimum. This additional peak at {nu}=2 might be due to the higher Landau level crossing. The p-type quantum wells have been investigated by photoluminescence spectroscopy, as a function of the magnetic field. The polarization of the emitted light has been analyzed in order to distinguish between the transitions related to spin of electron {+-} 1/2 and spin of hole -+ 3/2. The transition energies of the lowest electron Landau levels with spin {+-} 1/2 and hole Landau levels with spin -+ 3/2 versus magnetic field show crossing at 4 T. The heavy hole Landau levels with spins {+-} 3/2 are obtained by the substraction of transition energies from the sum of lowest electron Landau level energy and the energy gap of GaAs. The heavy hole Landau levels show a crossing at 4 T. However, due to the

  3. Dual transimpedance amplifier for 43 Gbps applications

    NARCIS (Netherlands)

    Wanum, M. van; Graaf, M.W. van der; Hoogland, J.A.H.; Heijningen, M. van

    2002-01-01

    A 3-stage dual TransImpedance Ampffier (TIA) on one 2x7.8 mm2 GaAs chip with 0.2 pm pHEMT technologt has been designed for fiberoptic communication applications. It uses cascode connected common source FETs in a Constant-K configuration. The operating frequency ranges from DC to 3 5 GHz, The TIA is

  4. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    Directory of Open Access Journals (Sweden)

    Takeshi Aoki

    2015-08-01

    Full Text Available This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD, with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD. The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm−2 eV−1. Using a (111A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  5. Arsenic ambient conditions preventing surface degradation of GaAs during capless annealing at high temperatures

    Science.gov (United States)

    Kang, C. H.; Kondo, K.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    Changes in surface morphology and composition caused by capless annealing of GaAs were studied as a function of annealing temperature, T(GaAs), and the ambient arsenic pressure controlled by the temperature, T(As), of an arsenic source in the annealing ampul. It was established that any degradation of the GaAs surface morphology could be completely prevented, providing that T(As) was more than about 0.315T(GaAs) + 227 C. This empirical relationship is valid up to the melting point temperature of GaAs (1238 C), and it may be useful in some device-processing steps.

  6. Substrate and Mg doping effects in GaAs nanowires

    Directory of Open Access Journals (Sweden)

    Perumal Kannappan

    2017-10-01

    Full Text Available Mg doping of GaAs nanowires has been established as a viable alternative to Be doping in order to achieve p-type electrical conductivity. Although reports on the optical properties are available, few reports exist about the physical properties of intermediate-to-high Mg doping in GaAs nanowires grown by molecular beam epitaxy (MBE on GaAs(111B and Si(111 substrates. In this work, we address this topic and present further understanding on the fundamental aspects. As the Mg doping was increased, structural and optical investigations revealed: i a lower influence of the polytypic nature of the GaAs nanowires on their electronic structure; ii a considerable reduction of the density of vertical nanowires, which is almost null for growth on Si(111; iii the occurrence of a higher WZ phase fraction, in particular for growth on Si(111; iv an increase of the activation energy to release the less bound carrier in the radiative state from nanowires grown on GaAs(111B; and v a higher influence of defects on the activation of nonradiative de-excitation channels in the case of nanowires only grown on Si(111. Back-gate field effect transistors were fabricated with individual nanowires and the p-type electrical conductivity was measured with free hole concentration ranging from 2.7 × 1016 cm−3 to 1.4 × 1017 cm−3. The estimated electrical mobility was in the range ≈0.3–39 cm2/Vs and the dominant scattering mechanism is ascribed to the WZ/ZB interfaces. Electrical and optical measurements showed a lower influence of the polytypic structure of the nanowires on their electronic structure. The involvement of Mg in one of the radiative transitions observed for growth on the Si(111 substrate is suggested.

  7. 2.5 Gb/s laser-driver GaAS IC

    DEFF Research Database (Denmark)

    Riishøj, Jesper

    1993-01-01

    A laser-diode driver GaAs IC incorporating an optional NRZ/RZ (non-return-to-zero/return-to-zero) conversion facility, having ECL (emitter-coupled logic) and SCFL (source-coupled FET logic)-compatible inputs and providing a 0-60-mA adjustable output current into a 50-Ω/5-V termination at bit rates...... obtained. To verify laser driving performance a back-to-back optical-fiber transmission experiment was performed, giving good optical eye diagrams at 2.5 Gb/s. The electrooptical interplay between laser-diode driver and laser-diode has been demonstrated using SPICE simulations...... up to 2 Gb/s NRZ and maintaining a clear eye opening of 50 mA at 2.5 Gb/s NRZ bit rate has been designed, using a commercial 1-μm gate-length (Fτ=12 GHz) GaAs MESFET foundry service. The high maximum output current is obtained by implementing the output driver as a cascode differential amplifier...

  8. A 1–2 GHz high linearity transformer-feedback power-to-current LNA

    NARCIS (Netherlands)

    Li, X.; Serdijn, W.A.; Woestenburg, B.E.M.; Bij de Vaate, J.G.

    2009-01-01

    This paper demonstrates that a double-loop transformer-feedback power-to-current low noise amplifier, to be implemented in a 0.2 lm GaAs p-HEMT IC process, is able to obtain a noise figure less than 0.8 dB, an input return loss less than -12 dB, a flat voltage-to-current signal transfer of 180 mS,

  9. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.

    Science.gov (United States)

    Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su; Jung, Inhwa; Kim, Hoon-Sik; Meitl, Matthew; Menard, Etienne; Li, Xiuling; Coleman, James J; Paik, Ungyu; Rogers, John A

    2010-05-20

    Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

  10. Effective mass approximation versus full atomistic model to calculate the output characteristics of a gate-all-around germanium nanowire field effect transistor (GAA-GeNW-FET)

    Science.gov (United States)

    Bayani, Amir Hossein; Voves, Jan; Dideban, Daryoosh

    2018-01-01

    Here, we compare the output characteristics of a gate-all-around germanium nanowire field effect transistor (GAA-GeNW-FET) with 2.36 nm2 square cross-section area using tight-binding (TB) sp3d5s∗ model (full atomistic model (FAM)) and effective mass approximation (EMA). Synopsys/QuantumWise Atomistix ToolKit (ATK) and Silvaco Atlas3D are used to consider the TB model and EMA, respectively. Results show that EMA predicted only one quantum state (QS) for quantum transport, whereas FAM predicted three QSs. A cosine function behavior is obtained by both methods for the first quantum state. The calculated bandgap value by EMA is almost twice smaller than that of the FAM. Also, a fluctuating current is predicted by both methods but in different oscillation values.

  11. New gate opening hours

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  12. ITER TASK T252 (1995):Gamma radiation testing of a GaAs operational amplifier for instrument applications

    International Nuclear Information System (INIS)

    Hiemstra, D.

    1996-03-01

    The purpose of this 1995 ITER task was : to build an improved operational amplifier using GaAs MESFET technology, to build a reference voltage subcircuit using GaAs MESFET technology and to investigate the potential of GaAs HBT's to improve the noise performance of the GaAs MESFET operational amplifier. This work addresses the need for instrumentation-grade components to read sensors in an experimental fusion reactor, where the anticipated total dose for a useful service life is 3Grad(GaAs). It is an extension of our 1994 work. 3 tabs., 6 figs

  13. High-fidelity gates in quantum dot spin qubits.

    Science.gov (United States)

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  14. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    International Nuclear Information System (INIS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-01-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4 A 2 ( 4 F) → 4 T 1 ( 4 G) and 4 T 1 ( 4 G) → 6 A 1 ( 6 S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs

  15. Si3N4/Si/In0.05Ga0.95As/n endash GaAs metal endash insulator endash semiconductor devices

    International Nuclear Information System (INIS)

    Park, D.; Li, D.; Tao, M.; Fan, Z.; Botchkarev, A.E.; Mohammad, S.N.; Morkoc, H.

    1997-01-01

    We report a novel metal endash insulator endash semiconductor (MIS) structure exhibiting a pseudomorphic In 0.05 Ga 0.95 As layer on GaAs with interface state densities in the low 10 11 eV -1 cm -2 . The structure was grown by a combination of molecular beam epitaxy and chemical vapor deposition methods. The hysteresis and frequency dispersion of the MIS capacitor were lower than 100 mV, some of them as low as 30 mV under a field swing of about ±1.3 MV/cm. The 150-Angstrom-thick In 0.05 Ga 0.95 As channel between Si and GaAs is found to bring about a change in the minority carrier recombination behavior of the GaAs channel, in the same way as done by In 0.53 Ga 0.47 As channel MIS structures. Self-aligned gate depletion mode In 0.05 Ga 0.95 As metal endash insulator endash semiconductor field-effect transistors having 3 μm gate lengths exhibited field-effect bulk mobility of 1400 cm 2 /Vs and transconductances of about 170 mS/mm. copyright 1997 American Institute of Physics

  16. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  17. Electron transport in nanometer GaAs structure under radiation exposure

    CERN Document Server

    Demarina, N V

    2002-01-01

    One investigates into effect of neutron and proton irradiation on electron transport in nanometer GaAs structures. Mathematical model takes account of radiation defects via introduction of additional mechanisms od scattering of carriers at point defects and disordered regions. To investigate experimentally into volt-ampere and volt-farad characteristics one used a structure based on a field-effect transistor with the Schottky gate and a built-in channel. Calculation results of electron mobility, drift rate of electrons, time of energy relaxation and electron pulse are compared with the experimental data

  18. Partial flip angle spin-echo imaging to obtain T1 weighted images with electrocardiographic gating

    International Nuclear Information System (INIS)

    Kawamitsu, Hideaki; Sugimura, Kazuro; Kasai, Toshifumi; Kimino, Katsuji

    1993-01-01

    ECG-gated spin-echo (SE) imaging can reduce physiologic motion artifact. However, it does not provide strong T 1 -weighted images, because the repetition time (TR) depends on heart rate (HR). For odd-echo SE imaging, T 1 contrast can be maximized by using a smaller flip angle (FA) of initial excitation RF pulses. We investigated the usefulness of partial FA SE imaging in order to obtain more T 1 -dependent contrast with ECG gating and determined the optimal FA at each heart rate. In computer simulation and phantom study, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each FA (0∼180deg) and each HR (55∼90 beats per minute (bpm)) were compared with those obtained with conventional T 1 -weighted SE imaging (TR=500 ms, TE=20 ms, FA=90deg). The optimal FA was decreased by reducing HR. The FA needed to obtain T 1 -dependent contrast identical to that with T 1 -weighted SE imaging was 43deg at a HR of 65 bpm, 53deg at 70 bpm, 60deg at 75 bpm. This predicted FA were in excellent agreement with that obtained with clinical evaluation. The predicted SNR was decreased by reducing FA. The SNR of partial FA SE imaging at HR of 65 bpm (FA=43deg) was 80% of that with conventional T 1 -weighted SE imaging. However, this imaging method presented no marked clinical problem. ECG-gated partial FA SE imaging provides better T 1 -dependent contrast than conventional ECG-gated SE imaging, especially for Gd-DTPA enhanced imaging. (author)

  19. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    Science.gov (United States)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  20. A 1T Dynamic Random Access Memory Cell Based on Gated Thyristor with Surrounding Gate Structure for High Scalability.

    Science.gov (United States)

    Kim, Hyungjin; Kim, Sihyun; Kim, Hyun-Min; Lee, Kitae; Kim, Sangwan; Pak, Byung-Gook

    2018-09-01

    In this study, we investigate a one-transistor (1T) dynamic random access memory (DRAM) cell based on a gated-thyristor device utilizing voltage-driven bistability to enable high-speed operations. The structural feature of the surrounding gate using a sidewall provides high scalability with regard to constructing an array architecture of the proposed devices. In addition, the operation mechanism, I-V characteristics, DRAM operations, and bias dependence are analyzed using a commercial device simulator. Unlike conventional 1T DRAM cells utilizing the floating body effect, excess carriers which are required to be stored to make two different states are not generated but injected from the n+ cathode region, giving the device high-speed operation capabilities. The findings here indicate that the proposed DRAM cell offers distinct advantages in terms of scalability and high-speed operations.

  1. Spin dynamics in GaAs and (110)-GaAs heterostructures; Spindynamik in GaAs und (110)-GaAs-Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Stefan

    2012-07-01

    This thesis investigates the spin dynamics in both bulk GaAs and (llO)GaAs heterostructures using time- and polarization-resolved photoluminescence spectroscopy. In bulk GaAs the spin relaxation t ime is measured for the first time in the high temperature regime from 280 K to 400 K and is compared to numerical calculations. The numerical calculations are based on the spin relaxation theory of the Dyakonov-Perel mechanism effected by momentum scattering with polar optical phonons and electron-electron scattering and are in good agreement with the experimental results. Measurements of the dependence on the electron density serve to determine the energy dependent proportional factor between the electron density and the effective electron-electron scattering time. Also in bulk GaAs the interaction between the electron spin system and the nuclear spin system is investigated. The measured electron Lande g-factor under the influence of the nuclear magnetic field is used as an indicator to monitor the temporal evolution of the nuclear magnetic field under sustained dynamic nuclear polarization. Measurements with polarization modulated excitation enable the determination of the relevant time scale at which dynamic nuclear polarization takes place. Furthermore, the temporal evolution of the measured electron Lande g-factor shows the complex interplay of the dynamic nuclear polarization, the nuclear spin diffusion and the nuclear spin relaxation. In symmetric (110)-GaAs quantum wells the dependence of the inplane anisotropy of the electron Lande g-factor on the quantum well thickness is determined experimentally. The measurements are in very good agreement with calculations based upon k . p-theory and reveal a maximum of the anisotropy at maximum carrier localization in the quantum well. The origin of the anisotropy that is not present in symmetric (001) quantum wells is qualitatively described by means of a simplified model based on fourth-order perturbation theory. A

  2. Analysis of GAA/TTC DNA triplexes using nuclear magnetic resonance and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam

    2004-11-15

    The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.

  3. Characteristics of GaAs MESFET inverters exposed to high energy neutrons

    International Nuclear Information System (INIS)

    Bloss, W.L.; Yamada, W.E.; Young, A.M.; Janousek, B.K.

    1988-01-01

    GaAs MESFET circuits have been exposed to high energy neutrons with fluences ranging from 1x10/sup 14/ n/cm/sup 2/ to 2x10/sup 15/ m/cm/sup 2/. Discrete transistors, inverters, and ring oscillators were characterized at each fluence. While the MESFETs exhibit significant threshold voltage shifts and transconductance and saturation current degradation over this range of neutron fluences, the authors have observed improvement in the DC characteristics of Schottky Diode FET Logic (SDFL) inverters. This unusual result has been successfully simulated using device parameters extracted from FETs damaged by exposure to high energy neutrons. Although the decrease in device transconductance results in an increase in inverter gate delay, as reflected in ring oscillator frequency measurements, the authors conclude that GaAs ICs fabricated from this logic family will remain functional after exposure to extreme neutron fluences. This is a consequence of the observed improvement in inverter noise margin evident in both measured and simulated circuit performance

  4. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-03-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N+ pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  5. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate.

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-12-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N + pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g  = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  6. Barrier versus tilt exchange gate operations in spin-based quantum computing

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2018-04-01

    We present a theory for understanding the exchange interaction between electron spins in neighboring quantum dots, either by changing the detuning of the two quantum dots or independently tuning the tunneling barrier between quantum dots. The Hubbard model and a more realistic confining-potential model are used to investigate how the tilting and barrier control affect the effective exchange coupling and thus the gate fidelity in both the detuning and symmetric regimes. We show that the exchange coupling is less sensitive to the charge noise through tunnel barrier control (while allowing for exchange coupling operations on a sweet spot where the exchange interaction has zero derivative with respect to the detuning). Both GaAs and Si quantum dots are considered, and we compare our results with experimental data showing qualitative agreements. Our results answer the open question of why barrier gates are preferable to tilt gates for exchange-based gate operations.

  7. Probing temperature-driven flow lines in a gated two-dimensional electron gas with tunable spin-splitting

    International Nuclear Information System (INIS)

    Wang, Yi-Ting; Huang, C F; Chen, Wei-Jen; Chang, Y H; Liang, C-T; Kim, Gil-Ho; Lo, Shun-Tsung; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Dolan, B P

    2012-01-01

    We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.

  8. T-gate aligned nanotube radio frequency transistors and circuits with superior performance.

    Science.gov (United States)

    Che, Yuchi; Lin, Yung-Chen; Kim, Pyojae; Zhou, Chongwu

    2013-05-28

    In this paper, we applied self-aligned T-gate design to aligned carbon nanotube array transistors and achieved an extrinsic current-gain cutoff frequency (ft) of 25 GHz, which is the best on-chip performance for nanotube radio frequency (RF) transistors reported to date. Meanwhile, an intrinsic current-gain cutoff frequency up to 102 GHz is obtained, comparable to the best value reported for nanotube RF transistors. Armed with the excellent extrinsic RF performance, we performed both single-tone and two-tone measurements for aligned nanotube transistors at a frequency up to 8 GHz. Furthermore, we utilized T-gate aligned nanotube transistors to construct mixing and frequency doubling analog circuits operated in gigahertz frequency regime. Our results confirm the great potential of nanotube-based circuit applications and indicate that nanotube transistors are promising building blocks in high-frequency electronics.

  9. New opening hours of the gates

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  10. X-ray photoelectron spectroscopy study of Schottky barrier formation and thermal stability of the LaB6/GaAs(001) c (4 x 4) interface

    International Nuclear Information System (INIS)

    Yokotsuka, T.; Narusawa, T.; Uchida, Y.; Nakashima, H.

    1987-01-01

    Schottky barrier formation and thermal stability of the LaB 6 /GaAs(001) c (4 x 4) interface were investigated by x-ray photoelectron spectroscopy. Results show an excellent thermal stability without any appreciable interface reactions such as interdiffusion. Band bending induced by LaB 6 deposition is found to depend on the evaporation condition. However, the Fermi level pinning position does not change due to heat treatments between 300 and 700 0 C. This indicates that LaB 6 is a promising gate material for GaAs integrated circuits

  11. Hydrogenation of GaAs covered by GaAlAs and subgrain boundary passivation

    Science.gov (United States)

    Djemel, A.; Castaing, J.; Chevallier, J.; Henoc, P.

    1992-12-01

    Cathodoluminescence (CL) has been performed to study the influence of hydrogen on electronic properties of GaAs with and without a GaAlAs layer. Recombination at sub-boundaries has been examined. These extended defects have been introduced by high temperature plastic deformation. The results show that they are passivated by hydrogen. The penetration of hydrogen is slowed down by the GaAlAs layer. La cathodoluminescence (CL) a été utilisée pour étudier l'influence de l'hydrogène sur les propriétés électroniques de GaAs nu et recouvert d'une couche de GaAlAs. Le caractère recombinant des sous-joints de grains a été examiné. Ces défauts étendus ont été introduits par déformation plastique à chaud. Les résultats montrent que l'hydrogène passive ces défauts. La pénétration de l'hydrogène à l'intérieur de GaAs est retardée par la présence de la couche de GaAlAs.

  12. Hydrodynamic electronic fluid instability in GaAs MESFETs at terahertz frequencies

    Science.gov (United States)

    Li, Kang; Hao, Yue; Jin, Xiaoqi; Lu, Wu

    2018-01-01

    III-V compound semiconductor field effect transistors (FETs) are potential candidates as solid state THz emitters and detectors due to plasma wave instability in these devices. Using a 2D hydrodynamic model, here we present the numerical studies of electron fluid instability in a FET structure. The model is implemented in a GaAs MESFET structure with a gate length of 0.2 µm as a testbed by taking into account the non-equilibrium transport and multi-valley non-parabolicity energy bands. The results show that the electronic density instability in the channel can produce stable periodic oscillations at THz frequencies. Along with stable oscillations, negative differential resistance in output characteristics is observed. The THz emission energy density increases monotonically with the drain bias. The emission frequency of electron density oscillations can be tuned by both gate and drain biases. The results suggest that III-V FETs can be a kind of versatile THz devices with good tunability on both radiative power and emission frequency.

  13. Coronary endothelial function assessment using self-gated cardiac cine MRI and k-t sparse SENSE.

    Science.gov (United States)

    Yerly, Jérôme; Ginami, Giulia; Nordio, Giovanna; Coristine, Andrew J; Coppo, Simone; Monney, Pierre; Stuber, Matthias

    2016-11-01

    Electrocardiogram (ECG)-gated cine MRI, paired with isometric handgrip exercise, can be used to accurately, reproducibly, and noninvasively measure coronary endothelial function (CEF). Obtaining a reliable ECG signal at higher field strengths, however, can be challenging due to rapid gradient switching and an increased heart rate under stress. To address these limitations, we present a self-gated cardiac cine MRI framework for CEF measurements that operates without ECG signal. Cross-sectional slices of the right coronary artery (RCA) were acquired using a two-dimensional golden angle radial trajectory. This sampling approach, combined with the k-t sparse SENSE algorithm, allows for the reconstruction of both real-time images for self-gating signal calculations and retrospectively reordered self-gated cine images. CEF measurements were quantitatively compared using both the self-gated and the standard ECG-gated approach. Self-gated cine images with high-quality, temporal, and spatial resolution were reconstructed for 18 healthy volunteers. CEF as measured in self-gated images was in good agreement (R 2  = 0.60) with that measured by its standard ECG-gated counterpart. High spatial and temporal resolution cross-sectional cine images of the RCA can be obtained without ECG signal. The coronary vasomotor response to handgrip exercise compares favorably with that obtained with the standard ECG-gated method. Magn Reson Med 76:1443-1454, 2015. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  14. The effect of (NH4)2Sx passivation on the (311)A GaAs surface and its use in AlGaAs/GaAs heterostructure devices.

    Science.gov (United States)

    Carrad, D J; Burke, A M; Reece, P J; Lyttleton, R W; Waddington, D E J; Rai, A; Reuter, D; Wieck, A D; Micolich, A P

    2013-08-14

    We have studied the efficacy of (NH4)2Sx surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH4)2Sx solution removes surface oxide and sulfidizes both surfaces. Passivation is often characterized using photoluminescence measurements; we show that while (NH4)2Sx treatment gives a 40-60 ×  increase in photoluminescence intensity for the (100) surface, an increase of only 2-3 ×  is obtained for the (311)A surface. A corresponding lack of reproducible improvement in the gate hysteresis of (311)A heterostructure transistor devices made with the passivation treatment performed immediately prior to gate deposition is also found. We discuss possible reasons why sulfur passivation is ineffective for (311)A GaAs, and propose alternative strategies for passivation of this surface.

  15. The effect of (NH4)2Sx passivation on the (311)A GaAs surface and its use in AlGaAs/GaAs heterostructure devices

    International Nuclear Information System (INIS)

    Carrad, D J; Burke, A M; Reece, P J; Lyttleton, R W; Waddington, D E J; Micolich, A P; Rai, A; Reuter, D; Wieck, A D

    2013-01-01

    We have studied the efficacy of (NH 4 ) 2 S x surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH 4 ) 2 S x solution removes surface oxide and sulfidizes both surfaces. Passivation is often characterized using photoluminescence measurements; we show that while (NH 4 ) 2 S x treatment gives a 40–60 × increase in photoluminescence intensity for the (100) surface, an increase of only 2–3 × is obtained for the (311)A surface. A corresponding lack of reproducible improvement in the gate hysteresis of (311)A heterostructure transistor devices made with the passivation treatment performed immediately prior to gate deposition is also found. We discuss possible reasons why sulfur passivation is ineffective for (311)A GaAs, and propose alternative strategies for passivation of this surface. (paper)

  16. Fermi edge singularity evidence from photoluminescence spectroscopy of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs grown on (3 1 1)A GaAs substrates

    International Nuclear Information System (INIS)

    Rekaya, S.; Sfaxi, L.; Bru-Chevallier, C.; Maaref, H.

    2011-01-01

    InGaAs/AlGaAs/GaAs pseudomorphic high electron mobility transistor (P-HEMT) structures were grown by Molecular Beam Epitaxy (MBE) on (3 1 1)A GaAs substrates with different well widths, and studied by photoluminescence (PL) spectroscopy as a function of temperature and excitation density. The PL spectra are dominated by one or two spectral bands, corresponding, respectively, to one or two populated electron sub-bands in the InGaAs quantum well. An enhancement of PL intensity at the Fermi level energy (E F ) in the high-energy tail of the PL peak is clearly observed and associated with the Fermi edge singularity (FES). This is practically detected at the same energy for all samples, in contrast with energy transitions in the InGaAs channel, which are shifted to lower energy with increasing channel thickness. PL spectra at low temperature and low excitation density are used to optically determine the density of the two-dimensional electron gas (2DEG) in the InGaAs channel for different thicknesses. The results show an enhancement of the 2DEG density when the well width increases, in good agreement with our previous theoretical study.

  17. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  18. Electrical performance of conducting polymer (SPAN) grown on GaAs with different substrate orientations

    Science.gov (United States)

    Jameel, D. A.; Aziz, M.; Felix, J. F.; Al Saqri, N.; Taylor, D.; Albalawi, H.; Alghamdi, H.; Al Mashary, F.; Henini, M.

    2016-11-01

    This article reports the effect of n-type GaAs substrate orientation, namely (100), (311)A and (311)B, on the electrical properties of sulfonated polyaniline (SPAN)/GaAs heterojunction devices. In addition, the inhomogeneity of the interface between various GaAs substrates and SPAN is investigated in terms of barrier height and ideality factor by performing I-V measurements at different temperatures (20-420 K). The I-V results indicate that the value of the rectification ratio (IF/IR) at 0.5 V is higher for SPAN/(311)B GaAs samples than for SPAN/(100) GaAs and SPAN/(311)A GaAs samples. Moreover, the barrier height decreases and the ideality factor increases with decreasing temperature for all three heterostructure devices. The high value of mean barrier Φbarb of SPAN/(311)B (calculated from the plots of Φb 0 as a function of 1/2kT) confirms that the GaAs substrate orientation results in an increase of barrier homogeneities. Furthermore, the C-V characteristics were obtained at room temperature. The C-V measurements showed that the carrier distributions at the interface and away from the interface in high index (311) GaAs orientations are more uniform and have better barrier homogeneity than those grown on the conventional (100) GaAs substrates.

  19. AlGaAs/InGaAs/AlGaAs double pulse doped pseudomorphic high electron mobility transistor structures on InGaAs substrates

    Science.gov (United States)

    Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.

    1997-10-01

    Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.

  20. Lithium compensation of GaAs

    International Nuclear Information System (INIS)

    Alexiev, D.; Tavendale, A.J.

    1988-08-01

    Defects generated following Li diffusion into GaAs were studied by optical deep level transient spectroscopy (ODLTS) and deep level transient spectroscopy (DLTS). In an exploratory series of experiments, the effect of Li diffusion on existing trap spectra, defect generation and as a means for the compensation of GaAs was studied. The variables included diffusion temperature, initial trap spectra of GaAs and annealing periods. Detailed measurements of trap energies were made

  1. Thirty-five-nm T-Gate In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMTs with an ultrahigh fmax of 610 GHz

    International Nuclear Information System (INIS)

    Choi, Do-Young; Kim, Sung-Ho; Choi, Gil-Bok; Jung, Sung-Woo; Jeong, Yoon-Ha

    2010-01-01

    Thirty-five-nanometer T-gate GaAs-based In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As metamorphic high electron mobility transistors (mHEMTs) are successfully fabricated using a zigzag-shaped T-gate. We obtain a maximum extrinsic transconductance (g m ) of 1060 mS/mm and a maximum oscillation frequency (f max ) of 610 GHz. These superior results are obtained by reducing the T-gate's length to 35 nm without the assistance of a supporting layer and by fabricating a wide-recessed-gate structure. The stand-alone 35-nm T-gate effectively improves the device performance because it doesn't cause additional parasitic capacitances. The wide-recessed-gate structure alleviates impact ionization in the channel, which suppresses the kink effect in the output characteristic and reduces the output conductance (g ds ). In addition, the wide-recessed-gate structure reduces the gate-to-drain capacitance (C gd ); consequently realizing a state-of-the-art f max . The f max of 610 GHz, to our knowledge, is the highest value reported to date for GaAs-based HEMTs.

  2. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  3. Preferential adsorption of gallium on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires

    International Nuclear Information System (INIS)

    Shu Haibo; Chen Xiaoshuang; Ding Zongling; Dong Ruibin; Lu Wei

    2010-01-01

    The mechanism of the preferential adsorption of Ga on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires is studied by using first-principles calculations within density functional theory. The calculated results show that Au preadsorption on GaAs(111)B surface significantly enhances the stability of the Ga adatom in comparison with the adsorption of Ga on clean GaAs(111)B surface. The stabilization of the Ga adatom is due to charge transfers from the Ga 4p and 4s states to the Au 6s and As 4p states. The number of Ga adatoms stabilized on GaAs(111)B surfaces depends on the size of surface Au cluster. The reason is that Au acted as an electron acceptor on GaAs(111)B surface assists the charge transfer of Ga adatoms for filling the partial unoccupied bands of GaAs(111)B surface. Our results are helpful to understand the growth of Au-assisted GaAs nanowires.

  4. GaAs FETs and novel heteroepitaxial quaternary lasers grown on InP substrates by organometallic chemical vapor deposition

    International Nuclear Information System (INIS)

    Lo, Y.H.; Bhat, R.; Chang-Hasnain, C.; Caneau, C.; Zah, C.E.; Lee, T.P.

    1988-01-01

    This paper reports the GaAs MESFETs and 1.3μm buried hetero-structure lasers with AlGaAs/GaAs lateral confinement layers simultaneously grown by OMCVD and fabricated on InP structures. The 1μm recessed gate MESFET has a transconductance of 220 mS/mm and the novel structured laser has a CW threshold current of 45 mA. The heteroepitaxy technology and devices show great promises for long wavelength opto-electronic integrated circuits

  5. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants.

    Science.gov (United States)

    Shis, David L; Bennett, Matthew R

    2013-03-26

    The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host's native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits.

  6. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET.

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2017-09-06

    The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state current and high switching ratio. The dual-gate TFET (DG-TFET) DRAM cell with the capacitorless structure has the superior performance-higher retention time (RT) and weak temperature dependence. But the performance of TFET DRAM cell is sensitive to programming condition. In this paper, the guideline of programming optimization is discussed in detail by using simulation tool-Silvaco Atlas. Both the writing and reading operations of DG-TFET DRAM depend on the band-to-band tunneling (BTBT). During the writing operation, the holes coming from BTBT governed by Gate2 are stored in potential well under Gate2. A small negative voltage is applied at Gate2 to retain holes for a long time during holding "1". The BTBT governed by Gate1 mainly influences the reading current. Using the optimized programming condition, the DG-TFET DRAM obtains the higher current ratio of reading "1" to reading "0" (10 7 ) and RT of more than 2 s. The higher RT reduces the refresh rate and dynamic power consumption of DRAM.

  7. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2017-09-01

    The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state current and high switching ratio. The dual-gate TFET (DG-TFET) DRAM cell with the capacitorless structure has the superior performance-higher retention time (RT) and weak temperature dependence. But the performance of TFET DRAM cell is sensitive to programming condition. In this paper, the guideline of programming optimization is discussed in detail by using simulation tool—Silvaco Atlas. Both the writing and reading operations of DG-TFET DRAM depend on the band-to-band tunneling (BTBT). During the writing operation, the holes coming from BTBT governed by Gate2 are stored in potential well under Gate2. A small negative voltage is applied at Gate2 to retain holes for a long time during holding "1". The BTBT governed by Gate1 mainly influences the reading current. Using the optimized programming condition, the DG-TFET DRAM obtains the higher current ratio of reading "1" to reading "0" (107) and RT of more than 2 s. The higher RT reduces the refresh rate and dynamic power consumption of DRAM.

  8. Design optimization of GaAs betavoltaic batteries

    International Nuclear Information System (INIS)

    Chen Haiyanag; Jiang Lan; Chen Xuyuan

    2011-01-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm -2 63 Ni, the open circuit voltage of the optimized batteries is about ∼0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P + PN + junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm -2 , which indicates a carrier diffusion length of less than 1 μm. The overall results show that multi-layer P + PN + junctions are the preferred structures for GaAs betavoltaic battery design.

  9. Ion/Ioff ratio enhancement and scalability of gate-all-around nanowire negative-capacitance FET with ferroelectric HfO2

    Science.gov (United States)

    Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2017-10-01

    We have investigated the energy efficiency and scalability of ferroelectric HfO2 (FE:HfO2)-based negative-capacitance field-effect-transistor (NCFET) with gate-all-around (GAA) nanowire (NW) channel structure. Analytic simulation is conducted to characterize NW-NCFET by varying NW diameter and/or thickness of gate insulator as device structural parameters. Due to the negative-capacitance effect and GAA NW channel structure, NW-NCFET is found to have 5× higher Ion/Ioff ratio than classical NW-MOSFET and 2× higher than double-gate (DG) NCFET, which results in wider design window for high Ion/Ioff ratio. To analyze these obtained results from the viewpoint of the device scalability, we have considered constraints regarding very limited device structural spaces to fit by the gate insulator and NW channel for aggresively scaled gate length (Lg) and/or very tight NW pitch. NW-NCFET still has design point with very thinned gate insulator and/or narrowed NW. Therefore, FE:HfO2-based NW-NCFET is applicable to the aggressively scaled technology node of sub-10 nm Lg and to the very tight NW integration of sub-30 nm NW pitch for beyond 7 nm technology. From 2011 to 2014, he engaged in developing high-speed optical transceiver module as an alternative military service in Republic of Korea. His research interest includes the development of steep slope MOSFETs for high energy-efficient operation and ferroelectric HfO2-based semiconductor devices, and fabrication of nanostructured devices. He joined the IBM T.J. Watson Research Center, Yorktown Heights, NY, in 2010, where he worked on advanced CMOS technologies such as FinFET, nanowire FET, SiGe channel and III-V channel. He was also engaged in launching 14 nm SOI FinFET and RMG technology development. Since 2014, he has been an Associate Professor in Institute of Industrial Science, University of Tokyo, Tokyo, Japan, where he has been working on ultralow power transistor and memory technology. Dr. Kobayashi is a member of IEEE

  10. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.

    2018-02-01

    The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.

  11. Spin-Relaxation Anisotropy in a GaAs Quantum Dot

    NARCIS (Netherlands)

    Scarlino, P.; Kawakami, E.; Stano, P.; Shafiei, M.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit

  12. Investigation of spin-polarized transport in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, B D; Day, T E; Goodnick, S M [Department of Electrical Engineering and Center for Solid State Electronics Research Arizona State University, Tempe, AZ 85287-5706 (United States)], E-mail: brian.tierney@asu.edu

    2008-03-15

    A spin field effect transistor (spin-FET) has been fabricated that employs nanomagnets as components of quantum point contact (QPC) structures to inject spin-polarized carriers into the high-mobility two-dimensional electron gas (2DEG) of a GaAs quantum well and to detect them. A centrally-placed non-magnetic Rashba gate controls both the density of electrons in the 2DEG and the electronic spin precession. Initial results are presented for comparable device structures modeled with an ensemble Monte Carlo (EMC) method. In the EMC the temporal and spatial evolution of the ensemble carrier spin polarization is governed by a spin density matrix formalism that incorporates the Dresselhaus and Rashba contributions to the D'yakanov-Perel spin-flip scattering mechanism, the predominant spin scattering mechanism in AlGaAs/GaAs heterostructures from 77-300K.

  13. Heterostructure-based high-speed/high-frequency electronic circuit applications

    Science.gov (United States)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  14. Fabrication and characterization of novel gate-all-around polycrystalline silicon junctionless field-effect transistors with ultrathin horizontal tube-shape channel

    Science.gov (United States)

    Chang, You-Tai; Peng, Kang-Ping; Li, Pei-Wen; Lin, Horng-Chih

    2018-04-01

    In this paper, we report on a novel fabrication process for the production of junctionless field-effect transistors with an ultrathin polycrystalline silicon (poly-Si) tube channel in a gate-all-around (GAA) configuration. The core of the poly-Si tube channel is filled with either a silicon nitride or a silicon oxide layer, and the effects of the core layers on the device characteristics are evaluated. The devices show excellent switching performance, thanks to the combination of the ultrathin tube channel and the GAA structure. Hysteresis loops in the transfer characteristics of the nitride-core devices are observed, owing to the dynamic trapping of electrons in the nitride core.

  15. Spin Qubits in GaAs Heterostructures and Gating of InAs Nanowires for Lowtemperature Measurements

    DEFF Research Database (Denmark)

    Nissen, Peter Dahl

    of the contenders in the race to build a large-scale quantum computer, is such a component, and research aiming to build, manipulate and couple spin qubits is looking at many materials systems to nd one where the requirements for fast control and long coherence time can be combined with ecient coupling between...... distant qubits. This thesis presents electric measurement on two of the materials systems currently at the forefront of the spin qubit race, namely InAs nanowires and GaAs/AlGaAs heterostructures. For the InAs nanowires we investigate dierent gating geometries towards the goal of dening stable quantum...... electrodes induces tunable barriers of up to 0:25 eV. From the temperature dependence of the conductance, the barrier height is extracted and mapped as a function of gate voltage. Top and bottom gates are similar to each other in terms of electrostatic couplings (lever arms 0:10:2 eV=V) and threshold...

  16. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles

    DEFF Research Database (Denmark)

    Poulsen, Christian B; Al-Mashhadi, Rozh H; Cribbs, Leanne L

    2011-01-01

    Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar...... tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium. The T-type voltage-gated calcium channel antagonists mibefradil and nickel blocked this potassium...... by immunocytochemistry to be located in mouse efferent arterioles, human pre- and postglomerular vasculature, and Ca(v)3.2 in rat glomerular arterioles. Inhibition of endothelial nitric oxide synthase by L-NAME or its deletion by gene knockout changed the potassium-elicited transient constriction to a sustained response...

  17. Peeled film GaAs solar cell development

    International Nuclear Information System (INIS)

    Wilt, D.M.; Thomas, R.D.; Bailey, S.G.; Brinker, D.J.; DeAngelo, F.L.

    1990-01-01

    Thin film, single crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/Kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity (>10 6 ) of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofloric acid (HF). The intent of this work is to demonstrate the feasibility of using the peeled film technique to fabricate high efficiency, low mass GaAs solar cells. We have successfully produced a peeled film GaAs solar cell. The device, although fractured and missing the aluminum gallium arsenide (Al x Ga 1 - x As) window and antireflective (AR) coating, had a Voc of 874 mV and a fill factor of 68% under AMO illumination

  18. Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices

    Science.gov (United States)

    Hou, H.; Chung, Y.; Rughoobur, G.; Hsiao, T. K.; Nasir, A.; Flewitt, A. J.; Griffiths, J. P.; Farrer, I.; Ritchie, D. A.; Ford, C. J. B.

    2018-06-01

    In a model of a gate-patterned quantum device, it is important to choose the correct electrostatic boundary conditions (BCs) in order to match experiment. In this study, we model gated-patterned devices in doped and undoped GaAs heterostructures for a variety of BCs. The best match is obtained for an unconstrained surface between the gates, with a dielectric region above it and a frozen layer of surface charge, together with a very deep back boundary. Experimentally, we find a  ∼0.2 V offset in pinch-off characteristics of 1D channels in a doped heterostructure before and after etching off a ZnO overlayer, as predicted by the model. Also, we observe a clear quantised current driven by a surface acoustic wave through a lateral induced n-i-n junction in an undoped heterostructure. In the model, the ability to pump electrons in this type of device is highly sensitive to the back BC. Using the improved boundary conditions, it is straightforward to model quantum devices quite accurately using standard software.

  19. Singularities of current-voltage characteristics of GaAs films fabricated by pulsed ions ablation

    International Nuclear Information System (INIS)

    Kabyshev, A.V.; Konusov, F.V.; Lozhnikov, S.N.; Remnev, G.E.; Saltymakov, M.S.

    2009-01-01

    A singularities and advantages of the optical, photoelectric and electrical properties of GaAs in comparison with other available materials for electronics, for example, silicon allow to manufacture on it base the devices having an advanced characteristics. The GaAs for electronics, obtained from the dense ablation plasma, possess some preferences as compared to material manufactured by traditional methods of vacuum deposition. The electrical characteristics of GaAs produced by chemical deposition were extensively studied. Purpose of this work is investigation the current-voltage characteristics of thin films of GaAs, deposited on polycrystalline corundum (polycor) from plasma forming the power ions bunch and determination of the thermal vacuum annealing effect on photoelectric and electrical properties of films. Peculiarities of optical, photoelectric and current-voltage characteristics of films obtained by ions ablation are determined by deposition conditions and resistance of initial target GaAs. The transitions between the states with low- and high conduction were revealed directly after deposition in films having the optical properties similar to amorphous materials and/or after annealing in films with properties similar to initial target GaAs. Behavior of current-voltage characteristics at vacuum annealing correlates with Schottky barrier height and photosensitivity and is accompanies of the transport mechanism change. The stable properties of films are formed at its dark conduction 10 -10 -10 -8 s and after annealing at T an =600-700 K. (authors)

  20. An optimized junctionless GAA MOSFET design based on multi-objective computation for high-performance ultra-low power devices

    International Nuclear Information System (INIS)

    Bendib, T.; Djeffal, F.; Meguellati, M.

    2014-01-01

    An analytical investigation has been proposed to study the subthreshold behavior of junctionless gates all around (JLGAA) MOSFET for nanoscale CMOS analog applications. Based on 2-D analytical analysis, a new subthreshold swing model for short-channel JLGAA MOSFETs is developed. The analysis has been used to calculate the subthreshold swing and to compare the performance of the investigated design and conventional GAA MOSFET, where the comparison of device architectures shows that the JLGAA MOSFET exhibits a superior performance with respect to the conventional inversion-mode GAA MOSFET in terms of the fabrication process and electrical behavior in the subthreshold domain. The analytical models have been validated by 2-D numerical simulations. The proposed analytical models are used to formulate the objectives functions. The overall objective function is formulated by means of a weighted sum approach to search the optimal electrical and dimensional device parameters in order to obtain the better scaling capability and the electrical performance of the device for ultra-low power applications. (semiconductor devices)

  1. SU-E-T-350: Verification of Gating Performance of a New Elekta Gating Solution: Response Kit and Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X; Cao, D; Housley, D; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2014-06-01

    Purpose: In this work, we have tested the performance of new respiratory gating solutions for Elekta linacs. These solutions include the Response gating and the C-RAD Catalyst surface mapping system.Verification measurements have been performed for a series of clinical cases. We also examined the beam on latency of the system and its impact on delivery efficiency. Methods: To verify the benefits of tighter gating windows, a Quasar Respiratory Motion Platform was used. Its vertical-motion plate acted as a respiration surrogate and was tracked by the Catalyst system to generate gating signals. A MatriXX ion-chamber array was mounted on its longitudinal-moving platform. Clinical plans are delivered to a stationary and moving Matrix array at 100%, 50% and 30% gating windows and gamma scores were calculated comparing moving delivery results to the stationary result. It is important to note that as one moves to tighter gating windows, the delivery efficiency will be impacted by the linac's beam-on latency. Using a specialized software package, we generated beam-on signals of lengths of 1000ms, 600ms, 450ms, 400ms, 350ms and 300ms. As the gating windows get tighter, one can expect to reach a point where the dose rate will fall to nearly zero, indicating that the gating window is close to beam-on latency. A clinically useful gating window needs to be significantly longer than the latency for the linac. Results: As expected, the use of tighter gating windows improved delivery accuracy. However, a lower limit of the gating window, largely defined by linac beam-on latency, exists at around 300ms. Conclusion: The Response gating kit, combined with the C-RAD Catalyst, provides an effective solution for respiratorygated treatment delivery. Careful patient selection, gating window design, even visual/audio coaching may be necessary to ensure both delivery quality and efficiency. This research project is funded by Elekta.

  2. Nitridation of porous GaAs by an ECR ammonia plasma

    International Nuclear Information System (INIS)

    Naddaf, M; Hullavarad, S S; Ganesan, V; Bhoraskar, S V

    2006-01-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy

  3. Nitridation of porous GaAs by an ECR ammonia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Department of Physics, Atomic Energy Commission of Syria, PO Box 6091, Damascus (Syrian Arab Republic); Hullavarad, S S [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ganesan, V [Inter University Consortium, Indore (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2006-02-15

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  4. Nitridation of porous GaAs by an ECR ammonia plasma

    Science.gov (United States)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  5. A surface-gated InSb quantum well single electron transistor

    International Nuclear Information System (INIS)

    Orr, J M S; Buckle, P D; Fearn, M; Storey, C J; Buckle, L; Ashley, T

    2007-01-01

    Single electron charging effects in a surface-gated InSb/AlInSb QW structure are reported. This material, due to its large g-factor and light effective mass, offers considerable advantages over more commonly used materials, such as GaAs, for quantum information processing devices. However, differences in material and device technology result in significant processing challenges. Simple Coulomb blockade and quantized confinement models are considered to explain the observation of conductance oscillations in these structures. The charging energy (e 2 /C) is found to be comparable with the energy spectrum for single particle states (ΔE)

  6. A voltage-gated pore for translocation of tRNA

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com

    2013-09-13

    Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.

  7. Optical orientation of Mn{sup 2+} ions in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Lukas; Bayer, Manfred [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Akimov, Ilya A.; Yakovlev, Dmitri R. [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Dzhioev, Roslan I.; Korenev, Vladimir L.; Kusrayev, Yuri G.; Sapega, Victor F. [A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2011-07-01

    We report on optical orientation of Mn{sup 2+} ions in bulk GaAs under application of weak longitudinal magnetic fields (B {<=}150 mT). The studied samples were grown by liquid phase epitaxy and Czochralski method and were doped with a low Mn acceptor concentration of 8 x 10{sup 18} cm{sup -3}. Time resolved measurements of circular polarization for donor-acceptor photoluminescence in Faraday geometry reveal nontrivial spin dynamics of donor localized electrons. Initially the degree of polarization of the electron spins is 40%. It then decays within some tens of ns to reach a plateau. The plateau is absent at B=0 T and saturates at B=150 mT reaching the value of 35%. It's sign changes with the helicity of incident light. It follows that the s-d exchange interaction with optically oriented electrons induces a steady state non-equilibrium polarization of the Mn{sup 2+} ions. The latter maintain their spin and return part of the polarization back to the electron spin system, resulting in the plateau. This provides a long-lived electron spin memory in GaAs doped with Mn. The dynamical polarization of ionized Mn acceptors was also directly monitored using spin flip Raman scattering spectroscopy, in agreement with time-resolved data.

  8. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    Science.gov (United States)

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-08-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.

  9. Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates

    International Nuclear Information System (INIS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.; Keyes, B. M.

    2000-01-01

    Minority carrier lifetimes and interface recombination velocities for GaAs grown on a Si wafer using compositionally graded GeSi buffers have been investigated as a function of GaAs buffer thickness using monolayer-scale control of the GaAs/Ge interface nucleation during molecular beam epitaxy. The GaAs layers are free of antiphase domain disorder, with threading dislocation densities measured by etch pit density of 5x10 5 -2x10 6 cm -2 . Analysis indicates no degradation in either minority carrier lifetime or interface recombination velocity down to a GaAs buffer thickness of 0.1 μm. In fact, record high minority carrier lifetimes exceeding 10 ns have been obtained for GaAs on Si with a 0.1 μm GaAs buffer. Secondary ion mass spectroscopy reveals that cross diffusion of Ga, As, and Ge at the GaAs/Ge interface formed on the graded GeSi buffers are below detection limits in the interface region, indicating that polarity control of the GaAs/Ge interface formed on GeSi/Si substrates can be achieved. (c) 2000 American Institute of Physics

  10. Three-dimensional lattice rotation in GaAs nanowire growth on hydrogen-silsesquioxane covered GaAs (001) using molecular beam epitaxy

    Science.gov (United States)

    Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi

    2018-05-01

    We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be -oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.

  11. The fabrication of a back-gated high electron mobility transistor - a novel approach using MBE regrowth on an in situ ion beam patterned epilayer

    International Nuclear Information System (INIS)

    Linfield, E.H.; Jones, G.A.C.; Ritchie, D.A.; Thompson, J.H.

    1993-01-01

    A new technique for the fabrication of GaAs/AlGaAs back-gated high electron mobility transistors (HEMTs) is described in this paper. First we demonstrate that a dose of > 2 x 10 13 cm -2 Ga ions at an energy of 10 keV can be used to damage a 67 nm n + GaAs layer, rendering the implanted regions non-conducting. After implantation the epilayer has a 4 K sheet resistivity which is increased by a factor of ∼ 10 7 when compared with the original unimplanted value. This isolation procedure is then used to form a patterned back-gated HEMT by MBE regrowth on top of an in situ ion-implanted n + GaAs layer. The resulting structure is designed so that the back gate is rendered highly resistive under the regions where the ohmic contacts to the two-dimensional electron gas (2DEG) are formed, thus making shallow ohmic contacts unnecessary. The results obtained characteristic of a high-quality 2DEG with mobility limited by remote ionized impurity scattering. This technique can therefore be used as a means of controlling the 2DEG carrier concentration, whilst leaving the surface of the HEMT structure free for conventional lithographic processing. (Author)

  12. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  13. Structure and homoepitaxial growth of GaAs(6 3 1)

    International Nuclear Information System (INIS)

    Mendez-Garcia, V.H.; Ramirez-Arenas, F.J.; Lastras-Martinez, A.; Cruz-Hernandez, E.; Pulzara-Mora, A.; Rojas-Ramirez, J.S.; Lopez-Lopez, M.

    2006-01-01

    We have studied the surface atomic structure of GaAs(6 3 1), and the GaAs growth by molecular beam epitaxy (MBE) on this plane. After the oxide desorption process at 585 deg. Creflection high-energy electron diffraction (RHEED) showed along the [-1 2 0] direction a 2x surface reconstruction for GaAs(6 3 1)A, and a 1x pattern was observed for GaAs(6 3 1)B. By annealing the substrates for 60 min, we observed that on the A surface appeared small hilly-like features, while on GaAs(6 3 1)B surface pits were formed. For GaAs(6 3 1)A, 500 nm-thick GaAs layers were grown at 585 deg. C. The atomic force microscopy (AFM) images at the end of growth showed the self-formation of nanoscale structures with a pyramidal shape enlarged along the [5-9-3] direction. Transversal views of the bulk-truncated GaAs(6 3 1) surface model showed arrays of atomic grooves along this direction, which could influence the formation of the pyramidal structures

  14. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    Science.gov (United States)

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  15. Subnanosecond linear GaAs photoconductive switching, revision 1

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.; Hofer, W. W.

    Research was conducted in photoconductive switching for the purpose of generating subnanosecond pulses in the 25 to 50kV range. The very fast recombination rates of Gallium Arsenide (GaAs) was exploited to explore the potential of GaAs as a closing and opening switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). The closing time of a linear GaAs switch is theoretically limited by the characteristics of the laser pulse used to activate the switch (the carrier generation time in GaAs is (approx. 10(-14) sec) while the opening time is theoretically limited by the recombination time of the carriers. The recombination time is several ns for commercially available semi-insulating GaAs. Doping or neutron irradiation can reduce the recombination time to less than 100 ps. Switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps with neutron irradiated GaAs at fields of tens of kV/cm was observed. The illumination source was a Nd:YAG laser operating at 1.06 microns.

  16. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  17. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  18. Diffusion of $^{52}$Mn in GaAs

    CERN Multimedia

    2002-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of Mn in GaAs under intrinsic conditions in a previously un-investigated temperature region. The aim of the presently proposed experiments is twofold. \\begin{itemize} \\item A quantitative study of Mn diffusion in GaAs at low Mn concentrations would be decisive in providing new information on the diffusion mechanism involved. \\item As Ga vacancies are expected to be involved in the Mn diffusion process it can be predicted that also the GaAs material growth technique most likely plays a role. To clarify this assumption diffusion experiments will be conducted for GaAs material grown by two different techniques. \\end{itemize} For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{52}$Mn$^{+}$ ion beam.

  19. High quality GaAs single photon emitters on Si substrate

    International Nuclear Information System (INIS)

    Bietti, S.; Sanguinetti, S.; Cavigli, L.; Accanto, N.; Vinattieri, A.; Minari, S.; Abbarchi, M.; Isella, G.; Frigeri, C.; Gurioli, M.

    2013-01-01

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer

  20. Gating system design for the space device case using T-Flex CAD

    Directory of Open Access Journals (Sweden)

    Ayusheev Munkhe-Zul

    2017-01-01

    Full Text Available The judicious selection of gating system for the consumable pattern takes a lot of time, labour and other significant resources. The modern design technologies provide quick and effective ways for gating system calculation and casting process simulation. Gating system modeling allows estimating different kinds of defects which can occur at the developing stage of casting process. Moreover, it is possible to modify the whole gating system configuration if some parameters are changed. Analyzing these data and modifying the gating system characteristics high quality of castings can be achieved.

  1. Mapping the T helper cell response to acid α-glucosidase in Pompe mice.

    Science.gov (United States)

    Nayak, Sushrusha; Sivakumar, Ramya; Cao, Ou; Daniell, Henry; Byrne, Barry J; Herzog, Roland W

    2012-06-01

    Pompe disease is a neuromuscular disease caused by an inherited deficiency of the lysosomal enzyme acid α-glucosidase (GAA). The resulting accumulation of glycogen causes muscle weakness with the severe form of the disease resulting in death by cardiorespiratory failure in the first year of life. The only available treatment, enzyme replacement therapy (ERT) with recombinant GAA (rhGAA), is severely hampered by antibody responses that reduce efficacy and cause immunotoxicities. Currently, Pompe mice represent the only pre-clinical model for development of new treatments and for immunological studies. While antibody formation following ERT in this model has been described, the underlying T cell response has not been studied. In order to define the T helper response to rhGAA in Pompe mice, immunodominant CD4(+) T cell epitopes were mapped in GAA(-/-) 129SVE mice using ELISpot. Additionally, cytokine responses and antibody formation against rhGAA during ERT were measured. Among the three CD4(+) T cell epitopes identified, only epitope IFLGPEPKSVVQ, predicted to be the strongest MHC II binder, consistently contributed to IL-4 production. Frequencies of IL-4 producing T cells were considerably higher than those of IL-17 or IFN-γ producing cells, suggesting a predominantly Th2 cell mediated response. This is further supported by IgG1 being the prevalent antibody subclass against rhGAA during ERT and consistent with prior reports on IgE formation and anaphylaxis in this model. These results will facilitate mechanistic studies of the immune response to rhGAA in Pompe mice during development of new therapies and tolerance protocols. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Subnanosecond linear GaAs photoconductive switching: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.; Hofer, W.W.

    1989-01-01

    We are conducting research in photoconductive switching for the purpose of generating subnanosecond pulses in the 25--50kV range. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as a closing and opening switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). The closing time of a linear GaAs switch is theoretically limited by the characteristics of the laser pulse used to activate the switch (the carrier generation time in GaAs is /approximately/10/sup /minus/14/ sec) while the opening time is theoretically limited by the recombination time of the carriers. The recombination time is several ns for commercially available semi-insulating GaAs. Doping or neutron irradiation can reduce the recombination time to less than 100 ps. We have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps with neutron irradiated GaAs at fields of tens of kV/cm. The illumination source was a Nd:YAG laser operating at 1.06 /mu/m. 4 refs., 11 figs.

  3. Strained Silicon Single Nanowire Gate-All-Around TFETs with Optimized Tunneling Junctions

    Directory of Open Access Journals (Sweden)

    Keyvan Narimani

    2018-04-01

    Full Text Available In this work, we demonstrate a strained Si single nanowire tunnel field effect transistor (TFET with gate-all-around (GAA structure yielding Ion-current of 15 μA/μm at the supply voltage of Vdd = 0.5V with linear onset at low drain voltages. The subthreshold swing (SS at room temperature shows an average of 76 mV/dec over 4 orders of drain current Id from 5 × 10−6 to 5 × 10−2 µA/µm Optimized devices also show excellent current saturation, an important feature for analog performance.

  4. Annealing-induced Fe oxide nanostructures on GaAs

    OpenAIRE

    Lu, Y X; Ahmad, E; Xu, Y B; Thompson, S M

    2005-01-01

    We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy...

  5. A novel technique to measure interface trap density in a GaAs MOS capacitor using time-varying magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Aditya N. Roy, E-mail: aditya@physics.iisc.ernet.in; Venkataraman, V. [Dept. of Physics, Indian Institute of Science, Bangalore – 560012 (India)

    2016-05-23

    Interface trap density (D{sub it}) in a GaAs metal-oxide-semiconductor (MOS) capacitor can be measured electrically by measuring its impedance, i.e. by exciting it with a small signal voltage source and measuring the resulting current through the circuit. We propose a new method of measuring D{sub it} where the MOS capacitor is subjected to a (time-varying) magnetic field instead, which produces an effect equivalent to a (time-varying) voltage drop across the sample. This happens because the electron chemical potential of GaAs changes with a change in an externally applied magnetic field (unlike that of the gate metal); this is not the voltage induced by Faraday’s law of electromagnetic induction. So, by measuring the current through the MOS, D{sub it} can be found similarly. Energy band diagrams and equivalent circuits of a MOS capacitor are drawn in the presence of a magnetic field, and analyzed. The way in which a magnetic field affects a MOS structure is shown to be fundamentally different compared to an electrical voltage source.

  6. Synthesis of GaAs quantum dots on Si-layers on AlGaAs films grown on GaAs(100) substrates

    International Nuclear Information System (INIS)

    Mendez-Garcia, V. H.; Zamora-Peredo, L.; Saucedo-Zeni, N.

    2002-01-01

    In this work we report a novel method for obtaining GaAs quantum dots by molecular beam epitaxy (MBE) on an AlGaAs underlying film. We propose to use a Si monolayer (ML) grown on AlGaAs, in order to induce a 3D nucleation during the GaAs overgrowth. The samples were prepared in a Riber 32P MBE system employing undoped Si-GaAs(100) substrates. First, a 500 nm thick layer of Al x Ga 1-x As was grown with a nominal concentration x=0.35. Several samples were grown in order to analyze the effects of changing the Si interlayer thickness, and the amount of GaAs overgrowth, on the final structures. Previous to the Si-exposure, the AlGaAs presented a (1x3) surface reconstruction which gradually turned to a (3x1) structure when the Si-thickness was 1 ML, as observed in the reflection high-energy electron diffraction (RHEED) patterns. When the GaAs overgrowth started on this surface, transmission RHEED spots appeared and showed a considerable increase in intensity until reaching a maximum. This behavior is typical from a 3D island growth. If the GaAs overgrowth continues, the initial streaky RHEED patterns recovered indicating a 2D-growth. Thus, we prepared a sample stopping the GaAs overgrowth at the time when the diffraction 3D spot reached the maximum intensity, equivalent to 2ML of GaAs. The sample surface was analyzed in air by atomic force microscopy (AFM). Islands of 1.5 nm-height and 20x20 nm of base were clearly observed, these dimensions are suitable for applications in quantum dots. (Authors)

  7. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  8. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Po-Yung [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chou, Cheng-Hsu; Chang, Jung-Fang [Product Technology Center, Chimei Innolux Corp., Tainan 741, Taiwan (China)

    2016-03-31

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V{sub T}) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V{sub T} shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V{sub T} shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V{sub T} shift increases with decreasing frequency of the top gate pulses.

  9. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    International Nuclear Information System (INIS)

    Liao, Po-Yung; Chang, Ting-Chang; Hsieh, Tien-Yu; Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo; Chou, Cheng-Hsu; Chang, Jung-Fang

    2016-01-01

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V T ) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V T shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V T shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V T shift increases with decreasing frequency of the top gate pulses.

  10. SU-E-T-401: Feasibility Study of Using ABC to Gate Lung SBRT Treatment

    International Nuclear Information System (INIS)

    Cao, D; Xie, X; Shepard, D

    2014-01-01

    Purpose: The current SBRT treatment techniques include free breathing (FB) SBRT and gated FB SBRT. Gated FB SBRT has smaller target and less lung toxicity with longer treatment time. The recent development of direct connectivity between the ABC and linac allowing for automated beam gating. In this study, we have examined the feasibility of using ABC system to gate the lung SBRT treatment. Methods: A CIRS lung phantom with a 3cm sphere-insert and a moving chest plate was used in this study. Sinusoidal motion was used for the FB pattern. An ABC signal was imported to simulate breath holds. 4D-CT was taken in FB mode and average-intensity-projection (AIP) was used to create FB and 50% gated FB SBRT planning CT. A manually gated 3D CT scan was acquired for ABC gated SBRT planning.An SBRT plan was created for each treatment option. A surface-mapping system was used for 50% gating and ABC system was used for ABC gating. A manually gated CBCT scan was also performed to verify setup. Results: Among three options, the ABC gated plan has the smallest PTV of 35.94cc, which is 35% smaller comparing to that of the FB plan. Consequently, the V20 of the left lung reduced by 15% and 23% comparing to the 50% gated FB and FB plans, respectively. The FB plan took 4.7 minutes to deliver, while the 50% gated FB plan took 18.5 minutes. The ABC gated plan delivery took only 10.6 minutes. A stationary target with 3cm diameter was also obtained from the manually gated CBCT scan. Conclusion: A strategy for ABC gated lung SBRT was developed. ABC gating can significantly reduce the lung toxicity while maintaining the target coverage. Comparing to the 50% gated FB SBRT, ABC gated treatment can also provide less lung toxicity as well as improved delivery efficiency. This research is funded by Elekta

  11. Gate-controlled tunneling of quantum Hall edge states in bilayer graphene

    Science.gov (United States)

    Zhu, Jun; Li, Jing; Wen, Hua

    Controlled tunneling of integer and fractional quantum Hall edge states provides a powerful tool to probe the physics of 1D systems and exotic particle statistics. Experiments in GaAs 2DEGs employ either a quantum point contact or a line junction tunnel barrier. It is generally difficult to independently control the filling factors νL and νR on the two sides of the barrier. Here we show that in bilayer graphene both νL and νR as well as their Landau level structures can be independently controlled using a dual-split-gate structure. In addition, the height of the line-junction tunnel barrier implemented in our experiments is tunable via a 5th gate. By measuring the tunneling resistance across the junction RT we examine the equilibration of the edge states in a variety of νL/νR scenarios and under different barrier heights. Edge states from both sides are fully mixed in the case of a low barrier. As the barrier height increases, we observe plateaus in RT that correspond to sequential complete backscattering of edge states. Gate-controlled manipulation of edge states offers a new angle to the exploration of quantum Hall magnetism and fractional quantum Hall effect in bilayer graphene.

  12. Distribution of barrier heights in Au/porous GaAs Schottky diodes from current-voltage-temperature measurements

    International Nuclear Information System (INIS)

    Harrabi, Z.; Jomni, S.; Beji, L.; Bouazizi, A.

    2010-01-01

    In this work, we have studied the electrical characteristics of the Au/porous GaAs/p-GaAs diodes as a function of temperature. The (I-V)-T characteristics are analysed on the basis of thermionic emission (TE). The temperature behaviour of the barrier height potential and the ideality factor demonstrate that the current transport is controlled by the thermionic emission mechanism (TE) with Gaussian distribution of the barrier height potential. The Gaussian distribution of barrier height potential is due to barrier inhomogeneity, which is suggested to be caused by the presence of the porous GaAs interfacial layer. The experimental (I-V)-T characteristics of the Au/porous GaAs/p-GaAs heterostructure demonstrate the presence of a two Gaussian distributions having a mean barrier height potential Φ b0 -bar of about 0.67 and 0.54 V and standard deviations σ s 2 of about 8.4x10 -3 and 4.2x10 -3 V, respectively. Using the obtained standard deviation, the obtained Richardson constant value is in accordance with the well documented value (79.2 A cm -2 K -2 ) of p-type GaAs and the mean barrier height Φ b0 -bar is closed to the band gap of GaAs. The obtained values prove that the I-V-T characteristics of Au/porous GaAs/p-GaAs heterostructure are governed by the TE mechanism theory with two Gaussian distributions of barrier heights.

  13. Electrode pattern design for GaAs betavoltaic batteries

    International Nuclear Information System (INIS)

    Chen Haiyang; Yin Jianhua; Li Darang

    2011-01-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63 Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63 Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  14. Congruent evaporation temperature of GaAs(001) controlled by As flux

    International Nuclear Information System (INIS)

    Zhou, Z. Y.; Zheng, C. X.; Tang, W. X.; Jesson, D. E.; Tersoff, J.

    2010-01-01

    The congruent evaporation temperature T c is a fundamental surface characteristic of GaAs and similar compounds. Above T c the rate of As evaporation exceeds that of Ga during Langmuir (free) evaporation into a vacuum. However, during molecular beam epitaxy (MBE) there is generally an external As flux F incident on the surface. Here we show that this flux directly controls T c . We introduce a sensitive approach to measure T c based on Ga droplet stability, and determine the dependence of T c on F. This dependence is explained by a simple model for evaporation in the presence of external flux. The capability of manipulating T c via changing F offers a means of controlling congruent evaporation with relevance to MBE, surface preparation methods, and droplet epitaxy.

  15. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa; Smith, Casey Eben; Harris, Harlan Rusty; Young, Chadwin; Tseng, Hsinghuang; Jammy, Rajarao

    2010-01-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  16. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-03-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  17. Structure, magnetism, and interface properties of epitactical thin Fe and FePt films on GaAs(001) substrates; Struktur, Magnetismus und Grenzflaecheneigenschaften epitaktischer duenner Fe- und FePt-Filme auf GaAs(001)-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Ellen Ursula

    2007-12-17

    The research in this thesis is focused on the study of the Fe spin structure and interface magnetism of thin epitaxial Fe layers or epitaxial FePt alloy films with chemical L1{sub 0} order on GaAs(001) surfaces. The main method of investigation was isotope-specific conversion electron Moessbauer spectroscopy (CEMS) combined with the {sup 57}Fe probe-layer technique in the temperature range of 4.2-300 K. The film structure was studied using electron diffraction (RHEED) and X-ray diffraction (XRD). The chemical order parameter S determined by XRD was found to increase with rising growth temperature, T{sub S}, to a maximum value of 0.71, until long range order is destroyed at T{sub S}>350 C by alloying with the substrate. As an important result a linear correlation between short-range order (revealed by the relative spectral area of the L1{sub 0} phase) and long-range order S was observed. The observed perpendicular Fe spin texture, characterized by the mean tilting angle left angle {theta} right angle of the Fe spins (relative to the film normal direction), was found to correlate with the L1{sub 0} phase content and with S. Furthermore, epitaxial Fe(001) films on GaAs(001)-(4 x 6) and on GaAs(001)-LED surfaces were grown successfully. In the initial stage of Fe film growth non-monotonous behavior of the in-plane lattice parameter was observed by RHEED. The magnetic hyperfine field distributions P(B{sub hf}) at the Fe/GaAs interface extracted from CEMS spectra for T{sub S}=-140 C or room temperature (RT) were found to be very similar. The observed large mean hyperfine fields of left angle B{sub hf} right angle {approx}25-27 T at the interface indicate the presence of high average Fe moments of 1.7-1.8 {mu}{sub B}. Nonmagnetic interface layers either can be excluded (Fe/GaAs) or are very thin (0.5 ML,Fe/GaAs-LED). Owing to its island structure an ultrathin (1.9 ML thick) uncoated Fe(001) film on GaAs(001)-(4 x 6) shows superparamagnetism with a blocking temperature of

  18. Performance analysis of gate all around GaAsP/AlGaSb CP-TFET

    Science.gov (United States)

    Lemtur, Alemienla; Sharma, Dheeraj; Suman, Priyanka; Patel, Jyoti; Yadav, Dharmendra Singh; Sharma, Neeraj

    2018-05-01

    Illustration of importance of gate all around (GAA) structure and hetero-junction formed by III-V semiconductor compounds has been analysed through GaAsP/AlGaSb CP-TFET (charge plasma tunnel field effect transistor). Charge plasma concept has been incorporated here to make this device more immune towards random dopant fluctuations (RDF). A high driving current of 1.28 ×10-5 A/μm and transconductance (gm) of 96.4 μS at supply voltages VGS = 1V and VDS = 0.5V is achieved. Further, implications of employing this device in analog/RF circuits have been supported with simulated results showing a high cut-off frequency of 34.5 THz and device efficiency of 3.45 MV-1. Apart from this, an insight of the linearity performances has also been included. Simultaneously, all the results are compared with a conventional gate all around charge plasma TFET.

  19. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  20. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  1. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  2. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  3. Panel fabrication utilizing GaAs solar cells

    Science.gov (United States)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  4. Preparation of GaAs photocathodes at low temperature

    International Nuclear Information System (INIS)

    Mulhollan, G.; Clendenin, J.; Tang, H.

    1996-10-01

    The preparation of an atomically clean surface is a necessary step in the formation of negative electron affinity (NEA) GaAs. Traditional methods to this end include cleaving, heat cleaning and epitaxial growth. Cleaving has the advantage of yielding a fresh surface after each cleave, but is limited to small areas and is not suitable for specialized structures. Heat cleaning is both simple and highly successful, so it is used as a preparation method in virtually all laboratories employing a NEA source on a regular basis. Due to its high cost and complexity, epitaxial growth of GaAs with subsequent in vacuo transfer is not a practical solution for most end users of GaAs as a NEA electron source. While simple, the heating cleaning process has a number of disadvantages. Here, a variety of cleaning techniques related to preparation of an atomically clean GaAs surface without heating to 600 C are discussed and evaluated

  5. Structural and optical properties of vapor-etched porous GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Smida, A.; Laatar, F. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M., E-mail: mhdhassen@yahoo.fr [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-08-15

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO{sub 3} as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  6. Structural and optical properties of vapor-etched porous GaAs

    International Nuclear Information System (INIS)

    Smida, A.; Laatar, F.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO 3 as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  7. Emission of circularly polarized recombination radiation from p-doped GaAs and GaAs0.62P0.38 under the impact of polarized electrons

    International Nuclear Information System (INIS)

    Fromme, B.; Baum, G.; Goeckel, D.; Raith, W.

    1989-01-01

    Circularly polarized light is emitted in radiative transitions of polarized electrons from the conduction to the valence band in GaAs or GaAs 1-x P x crystals. The degree of light polarization is directly related to the polarization of the conduction-band electrons at the instant of recombination and allows conclusions about the depolarization of electrons in the conduction band. The depolarization is caused by spin-relaxation processes. The efficiency of these processes depends on crystal type, crystal temperature, degree of doping, and kinetic energy of the electrons. Highly p-doped GaAs and GaAs 0.62 P 0.38 crystals (N A >1x10 19 atoms/cm 3 ) were bombarded with polarized electrons (initial polarization 38%), and the spectral distribution and the circular polarization of the emitted recombination radiation were measured. The initial kinetic energy of the electrons in the conduction band was varied between 5 and 1000 eV. The measurements of the spectral distribution show that the electrons are thermalized before recombination occurs, independent of their initial energy. An important thermalization process in this energy range is the excitation of crystal electrons by electron-hole pair creation. The circular polarization of the recombination radiation lies below 1% in the whole energy range. It decreases with increasing electron energy but is still of measurable magnitude at 100 eV in the case of GaAs 0.62 P 0.38 . The circular polarization is smaller for GaAs than for GaAs 0.62 P 0.38 , which we attribute to more efficient spin relaxation in GaAs

  8. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  9. Getting started with FortiGate

    CERN Document Server

    Fabbri, Rosato

    2013-01-01

    This book is a step-by-step tutorial that will teach you everything you need to know about the deployment and management of FortiGate, including high availability, complex routing, various kinds of VPN working, user authentication, security rules and controls on applications, and mail and Internet access.This book is intended for network administrators, security managers, and IT pros. It is a great starting point if you have to administer or configure a FortiGate unit, especially if you have no previous experience. For people that have never managed a FortiGate unit, the book helpfully walks t

  10. Anion-antisite defects in GaAs: As and Sb

    International Nuclear Information System (INIS)

    Caldas, M.J.; Fazzio, A.; Dabrowski, J.; Scheffler, M.

    1990-01-01

    We present results of self-consistent, first-principles calculations of total energies for As Ga and Sb Ga in GaAs. We confirm that both impurities in the substitutional T d site behave as double donors, and the first internal excitation appears at around 1 eV. For the neutral systems we obtain a metastable minimum in the total energy surface in a configuration with the impurity atom displaced toward the interstitial site; the transformation to this metastable configuration, however, is not expected to be operative for the Sb Ga defect

  11. MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open high-field MRI scanner with respiratory gating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Huang, Jie; Xu, Yujun; He, Xiangmeng; Lue, Yubo; Liu, Qiang; Li, Chengli [Department of Interventional MRI, Shandong Medical Imaging Research Institute affiliated to Shandong University, Shandong Key Laboratory of Advanced Medical Imaging Technologies and Applications, Jinan, Shandong (China); Li, Lei [Qingdao Central Hospital, Department of Interventional Radiology, Qingdao, Shandong (China); Blanco Sequeiros, Roberto [Turku University Hospital, The South Western Finland Imaging Centre, Turku (Finland)

    2017-04-15

    To prospectively evaluate the feasibility, safety and accuracy of MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open MR scanner with respiratory gating. Sixty-five patients with 65 solitary pulmonary lesions underwent MR-guided percutaneous coaxial cutting needle biopsy using a 1.0-T open MR scanner with respiratory gating. Lesions were divided into two groups according to maximum lesion diameters: ≤2.0 cm (n = 31) and >2.0 cm (n = 34). The final diagnosis was established in surgery and subsequent histology. Diagnostic accuracy, sensitivity and specificity were compared between the groups using Fisher's exact test. Accuracy, sensitivity and specificity of MRI-guided percutaneous pulmonary biopsy in diagnosing malignancy were 96.9 %, 96.4 % and 100 %, respectively. Accuracy, sensitivity and specificity were 96.8 %, 96.3 % and 100 % for lesions 2.0 cm or smaller and 97.1 %, 96.4 % and 100 %, respectively, for lesions larger than 2.0 cm. There was no significant difference between the two groups (P > 0.05). Biopsy-induced complications encountered were pneumothorax in 12.3 % (8/65) and haemoptysis in 4.6 % (3/65). There were no serious complications. MRI-guided percutaneous biopsy using a 1.0-T open MR scanner with respiratory gating is an accurate and safe diagnostic technique in evaluation of pulmonary lesions. (orig.)

  12. Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance

    Directory of Open Access Journals (Sweden)

    O. G. Ibarra-Manzano

    2012-02-01

    Full Text Available Optical spectra of light reflection are detected under an influence of ultrasonic wave (UWon a GaAs wafer. The differential spectrum is calculated as a difference between those taken under UW and without that influence on a sample. This acousto-optic differential reflectance(AODR spectrum contains some bands that represent the energetic levels of the shallow centers in a sample. A physical basis of this technique is related to a perturbation of local states by UW. Here, a method is developed for characterization of local states at the surfaces and interfaces in crystals and low-dimensional epitaxial structures based on microelectronics materials. A theoretical model is presented to explain AODR spectra. Also, experiments using epitaxial GaAs structures doped by Te were made. Finally, theoretical and experimental results show that acousto-optic reflectance is an effective tool for characterization of shallow trapping centers in epitaxial semiconductor structures.En este trabajo, utilizamos el espectro de la luz reflejada en una muestra de Arsenuro de Galio (GaAs bajo la influencia de una onda ultrasónica. El diferencial espectral es calculado como una diferencia entre el espectro del material obtenido bajo la influencia del ultrasonido y aquél obtenido sin dicha influencia. Este diferencial de reflectancia espectral acusto-óptico (AODR contiene algunas bandas que representan los niveles energéticos de los centros en la superficie de la muestra. Esta técnica está basada en la perturbación de los estados locales generada por el ultrasonido. Particularmente, este trabajo presenta un método para caracterizar los estados locales en la superficie y las interfaces en los cristales, así como estructuras epiteliales de baja dimensión basadas en materiales semiconductores. Para ello, se presenta un modelo teórico para explicar dicho espectro de reflectancia diferencial (AODR. También se realizaron experimentos con estructuras de GaAs epitelial

  13. Photoreflectance study of strained GaAsN/GaAs T-junction quantum wires grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Klangtakai, Pawinee; Sanorpim, Sakuntam; Onabe, Kentaro

    2011-12-01

    Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.

  14. Development of GaAs Detectors for Physics at the LHC

    CERN Multimedia

    Chu, Zhonghua; Krais, R; Rente, C; Syben, O; Tenbusch, F; Toporowsky, M; Xiao, Wenjiang; Cavallini, A; Fiori, F; Edwards, M; Geppert, R; Goppert, R; Haberla, C; Hornung, M F; Irsigler, R; Rogalla, M; Beaumont, S; Raine, C; Skillicorn, I; Margelevicius, J; Meshkinis, S; Smetana, S; Jones, B; Santana, J; Sloan, T; Zdansky, K; Alexiev, D; Donnelly, I J; Canali, C; Chiossi, C; Nava, F; Pavan, P; Kubasta, J; Tomiak, Z; Tchmil, V; Tchountonov, A; Tsioupa, I; Dogru, M; Gray, R; Hou, Yuqian; Manolopoulos, S; Walsh, S; Aizenshtadt, G; Budnitsky, D L; Gossen, A; Khludkov, S; Koretskaya, O B; Okaevitch, L; Potapov, A; Stepanov, V E; Tolbanov, O; Tyagev, A; Matulionis, A; Pozela, J; Kavaliauskiene, G; Kazukauskas, V; Kiliulis, R; Rinkevicius, V; Slenys, S; Storasta, J V

    2002-01-01

    % RD-8 Development of GaAs Detectors for Physics at the LHC \\\\ \\\\The aims of the collaboration are to investigate the available material options, performance and limitations of simple pad, pixel and microstrip GaAs detectors for minimum ionising particles with radiation hardness and speed which are competitive with silicon detectors. This new technology was originally developed within our university laboratories but now benefits from increasing industrial interest and collaboration in detector fabrication. Initial steps have also been taken towards the fabrication of GaAs preamplifiers to match the detectors in radiation hardness. The programme of work aims to construct a demonstration detector module for an LHC forward tracker based on GaAs.

  15. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    Directory of Open Access Journals (Sweden)

    Takeo Ohno and Yutaka Oyama

    2012-01-01

    Full Text Available In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE, in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor.

  16. Analysis of electrical characteristics and proposal of design guide for ultra-scaled nanoplate vertical FET and 6T-SRAM

    Science.gov (United States)

    Seo, Youngsoo; Kim, Shinkeun; Ko, Kyul; Woo, Changbeom; Kim, Minsoo; Lee, Jangkyu; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    In this paper, electrical characteristics of gate-all-around (GAA) nanoplate (NP) vertical FET (VFET) were analyzed for single transistor and 6T-SRAM cell through 3D technology computer-aided design (TCAD) simulation. In VFET, gate and extension lengths are not limited by the area of device because theses lengths are vertically located. The height of NP is assumed in 40 nm considering device fabrication method (top-down approach). According to the sizes of devices, we analyzed the performances of device such as total resistance, capacitance, intrinsic gate delay, sub-threshold swing (S.S), drain-induced barrier lowering (DIBL) and static noise margin (SNM). As the gate length becomes larger, the resistance should be smaller because the total height of NP is fixed in 40 nm. Also, when the channel thickness becomes thicker, the total resistance becomes smaller since the sheet resistances of channel and extension become smaller and the contact resistance becomes smaller due to the increasing contact area. In addition, as the length of channel pitch increases, the parasitic capacitance comes to be larger due to the increasing area of gate-drain and gate-source. The performance of RC delay is best in the shortest gate length (12 nm), the thickest channel (6 nm) and the shortest channel pitch (17 nm) owing to the reduced resistance and parasitic capacitance. However, the other performances such as DIBL, S.S, on/off ratio and SNM are worst because the short channel effect is highest in this situation. Also, we investigated the performance of the multi-channel device. As the number of channels increases, the performance of device and the reliability of SRAM improve because of reduced contact resistance, increased gate dimension and multi-channel compensation effect.

  17. An analytic model for gate-all-around silicon nanowire tunneling field effect transistors

    International Nuclear Information System (INIS)

    Liu Ying; He Jin; Chan Mansun; Ye Yun; Zhao Wei; Wu Wen; Deng Wan-Ling; Wang Wen-Ping; Du Cai-Xia

    2014-01-01

    An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling (BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane's expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. 35-kV GaAs subnanosecond photoconductive switches

    Science.gov (United States)

    Pocha, Michael D.; Druce, Robert L.

    1990-12-01

    High-voltage, fast-pulse generation using GaAs photoconductive switches is investigated. It is possible to to generate 35-kV pulses with risetimes as short as 135 ps using 5-mm gap switches, and electric field hold-off of greater than 100 kV/cm is achieved. An approximately 500-ps FWHM on/off electrical pulse is generated with an amplitude of approximately 3 kV using neutron-irradiated GaAs having short carrier lifetimes. Experimental results are described, and fabrication of switches and the diagnostics used to measure these fast signals are discussed. Experience with the nonlinear lock-on and avalanche modes of operation observed in GaAs is also described.

  19. Status of fully integrated GaAs particle detectors

    International Nuclear Information System (INIS)

    Braunschweig, W.; Breibach, J.; Kubicki, Th.; Luebelsmeyer, K.; Maesing, Th.; Rente, C.; Roeper, Ch.; Siemes, A.

    1999-01-01

    GaAs strip detectors are of interest because of their radiation hardness at room temperature and the high absorption coefficient of GaAs for x-rays. The detectors currently under development will be used in the VLQ-experiment at the H1 experiment at the HERA collider. This will be the first high energy physics experiment where GaAs detectors will be used. The detectors have a sensitive area of 5 x 4 cm with a pitch of 62 μ m. Due to the high density of channels the biasing resistors and coupling capacitors are integrated. For the resistors a resistive layer made of Cermet is used. The properties of the first fully integrated strip detector are presented

  20. Atomic hydrogen cleaning of GaAs photocathodes

    International Nuclear Information System (INIS)

    Poelker, M.; Price, J.; Sinclair, C.

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs

  1. Optical pumping of hot phonons in GaAs

    International Nuclear Information System (INIS)

    Collins, C.L.; Yu, P.Y.

    1982-01-01

    Optical pumping of hot LO phonons in GaAs has been studied as a function of the excitation photon frequency. The experimental results are in good agreement with a model calculation which includes both inter- and intra-valley electron-phonon scatterings. The GAMMA-L and GAMMA-X intervalley electron-phonon interactions in GaAs have been estimated

  2. Photovoltaic X-ray detectors based on epitaxial GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Artemov, V.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, 59 Leninski pr., Moscow B-333, 117333 (Russian Federation); Dvoryankin, V.F. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation)]. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Dikaev, Yu.M. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakov, M.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakova, O.N. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Chmil, V.B. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Holodenko, A.G. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Kudryashov, A.A.; Krikunov, A.I.; Petrov, A.G.; Telegin, A.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Vorobiev, A.P. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation)

    2005-12-01

    A new type of the photovoltaic X-ray detector based on epitaxial p{sup +}-n-n'-n{sup +} GaAs structures which provides a high efficiency of charge collection in the non-bias operation mode at room temperature is proposed. The GaAs epitaxial structures were grown by vapor-phase epitaxy on heavily doped n{sup +}-GaAs(1 0 0) substrates. The absorption efficiency of GaAs X-ray detector is discussed. I-V and C-V characteristics of the photovoltaic X-ray detectors are analyzed. The built-in electric field profiles in the depletion region of epitaxial structures are measured by the EBIC method. Charge collection efficiency to {alpha}-particles and {gamma}-radiation are measured. The application of X-ray detectors is discussed.

  3. Lifetime studies of self-activated photoluminescence in heavily silicon-doped GaAs

    Science.gov (United States)

    Sauncy, T.; Palsule, C. P.; Holtz, M.; Gangopadhyay, S.; Massie, S.

    1996-01-01

    We report results of a detailed temperature dependence study of photoluminescence lifetime and continuous emission properties in silicon-doped GaAs. The primary focus is on a defect-related emission at 1.269 eV (T=20 K). GaAs crystals were grown using molecular-beam epitaxy with most of the experiments conducted on a sample having a carrier concentration of 4.9×1018 cm-3. The intensity is seen to decrease above 100 K, with no corresponding decrease in the measured lifetime of 9.63+/-0.25 ns. The intensity decrease implies an activation energy of 19+/-2 meV, which is approximately one order of magnitude smaller than what was previously obtained for similar defects in Czochralski-grown GaAs with other dopants. We interpret our results in terms of a configuration coordinate model and obtain a more complete picture of the energy-level structure. The experiments indicate that the upper level in the recombination process is about 20 meV below the conduction-band continuum, with the lower state approximately 300 meV above the valence band. Our results are consistent with the identification of the corresponding defect complex microstructure as being a silicon-at-gallium substitution, weakly interacting with a gallium vacancy second-nearest neighbor, known as the Si-Y defect complex.

  4. Periodic nanostructures fabricated on GaAs surface by UV pulsed laser interference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Huo, Dayun; Guo, Xiaoxiang; Rong, Chen; Shi, Zhenwu, E-mail: zwshi@suda.edu.cn; Peng, Changsi, E-mail: changsipeng@suda.edu.cn

    2016-01-01

    Graphical abstract: - Highlights: • Periodic nanostructures were fabricated on GaAs wafers by four-beam laser interference patterning which have potential applications in many fields. • Significant different results were obtained on epi-ready and homo-epitaxial GaAs substrate surfaces. • Two-pulse patterning was carried out on homo-epitaxial GaAs substrate, a noticeable morphology transformation induced by the second pulse was observed. • Temperature distribution on sample surface as a function of time and position was calculated by solving the heat diffusion equations. The calculation agrees well with the experiment results. - Abstract: In this paper, periodic nanostructures were fabricated on GaAs wafers by four-beam UV pulsed laser interference patterning. Significant different results were observed on epi-ready and homo-epitaxial GaAs substrate surfaces, which suggests GaAs oxide layer has an important effect on pulsed laser irradiation process. In the case of two-pulse patterning, a noticeable morphology transformation induced by the second pulse was observed on homo-epitaxial GaAs substrate. Based on photo-thermal mode, temperature distribution on sample surface as a function of time and position was calculated by solving the heat diffusion equations.

  5. Improvements of MCT MBE Growth on GaAs

    Science.gov (United States)

    Ziegler, J.; Wenisch, J.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Lutz, H.; Wollrab, R.

    2014-08-01

    In recent years, continuous progress has been published in the development of HgCdTe (MCT) infrared (IR) focal plane arrays (FPAs) fabricated by molecular beam epitaxy on GaAs substrates. In this publication, further characterization of the state-of-the art 1280 × 1024 pixel, 15- μm pitch detector fabricated from this material in both the mid-wavelength (MWIR) and long-wavelength (LWIR) IR region will be presented. For MWIR FPAs, the percentage of defective pixel remains below 0.5% up to an operating temperature ( T OP) of around 100 K. For the LWIR FPA, an operability of 99.25% was achieved for a T OP of 76 K. Additionally, the beneficial effect of the inclusion of MCT layers with a graded composition region was investigated and demonstrated on current-voltage ( IV) characteristics on test diodes in a MWIR FPA.

  6. Toward the 5nm technology: layout optimization and performance benchmark for logic/SRAMs using lateral and vertical GAA FETs

    Science.gov (United States)

    Huynh-Bao, Trong; Ryckaert, Julien; Sakhare, Sushil; Mercha, Abdelkarim; Verkest, Diederik; Thean, Aaron; Wambacq, Piet

    2016-03-01

    In this paper, we present a layout and performance analysis of logic and SRAM circuits for vertical and lateral GAA FETs using 5nm (iN5) design rules. Extreme ultra-violet lithography (EUVL) processes are exploited to print the critical features: 32 nm gate pitch and 24 nm metal pitch. Layout architectures and patterning compromises for enabling the 5nm node will be discussed in details. A distinct standard-cell template for vertical FETs is proposed and elaborated for the first time. To assess electrical performances, a BSIM-CMG model has been developed and calibrated with TCAD simulations, which accounts for the quasi-ballistic transport in the nanowire channel. The results show that the inbound power rail layout construct for vertical devices could achieve the highest density while the interleaving diffusion template can maximize the port accessibility. By using a representative critical path circuit of a generic low power SoCs, it is shown that the VFET-based circuit is 40% more energy efficient than LFET designs at iso-performance. Regarding SRAMs, benefits given by vertical channel orientation in VFETs has reduced the SRAM area by 20%~30% compared to lateral SRAMs. A double exposures with EUV canner is needed to reach a minimum tip-to-tip (T2T) of 16 nm for middle-of-line (MOL) layers. To enable HD SRAMs with two metal layers, a fully self-aligned gate contact for LFETs and 2D routing of the top electrode for VFETs are required. The standby leakage of vertical SRAMs is 4~6X lower than LFET-based SRAMs at iso-performance and iso-area. The minimum operating voltage (Vmin) of vertical SRAMs is 170 mV lower than lateral SRAMs. A high-density SRAM bitcell of 0.014 um2 can be obtained for the iN5 technology node, which fully follows the SRAM scaling trend for the 45nm nodes and beyond.

  7. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Klimov, E. A. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Vasiliev, A. L.; Imamov, R. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Trunkin, I. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation)

    2017-01-15

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.

  8. Implantation annealing in GaAs by incoherent light

    International Nuclear Information System (INIS)

    Davies, D.E.; Ryan, T.G.; Soda, K.J.; Comer, J.J.

    1983-01-01

    Implanted GaAs has been successfully activated through concentrating the output of quartz halogen lamps to anneal in times of the order of 1 sec. The resulting layers are not restricted by the reduced mobilities and thermal instabilities of laser annealed GaAs. Better activation can be obtained than with furnace annealing but this generally requires maximum temperatures >= 1050degC. (author)

  9. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    International Nuclear Information System (INIS)

    Tsai, I.C.; Lee, Tain; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2007-01-01

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  10. Growth and characteristics of p-type doped GaAs nanowire

    Science.gov (United States)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  11. MR respiratory navigator echo gated coronary angiography at 3 T

    International Nuclear Information System (INIS)

    Chang Shixin; Wang Yibin; Zong Genlin; Hao Nanxin; Du Yushan

    2007-01-01

    Objective: To investigate the techniques and influence factors for the respiratory navigator echo triggered whole-heart coronary MR angiography (WH-CMRA) and evaluate its application in visualizing coronary arteries and the image quality. Methods: Ninety two volunteers were acquired with WH-CMRA at 3 T MR scanner using respiratory navigator-echo gated TFE sequence. Imaging quality was visually graded as 0-IV grade according to the visual inspection, average length, diameter and sharpness of coronary arteries. The correlation between the imaging quality and respiratory pattern, heart rate and navigator efficiency was analyzed. Results: The imaging quality in 92 cases was that 28 were graded as IV, 53 were graded as III, 9 were graded as II and 2 were graded as I. The successful rate of scan was 88% (81/92). The imaging quality is mainly graded as IV when the heart rate was less than 75 beats per minute (bpm) and the sharpness of vessel was (48±11)%. When heart rate was more than 75 bpm, the image quality was mostly graded as 111 and the sharpness was (33±15)%. The correlation between heart rate and imaging quality score was negative (r= -0.726, P O.05). Conclusion: 3 T WH-CMRA technique could facilitated the visualization of whole coronary arteries at free breathing but having indications on heart rate. (authors)

  12. Terahertz emission from semi-insulating GaAs with octadecanthiol-passivated surface

    International Nuclear Information System (INIS)

    Wu, Xiaojun; Xu, Xinlong; Lu, Xinchao; Wang, Li

    2013-01-01

    Terahertz (THz) emission from octadecanthiol (ODT) passivated (1 0 0) surface of the semi-insulating GaAs was measured, and compared with those from the native oxidized and the fresh surfaces. It was shown that the self-assembled ODT monolayer can stabilize the GaAs (1 0 0) surface, and maintain a THz surface emission 1.4 times as efficient as the native oxidized surface under equal conditions. Surface passivation can reduce the built-in electric field in the depletion region of the GaAs (1 0 0), resulting in the suppression of the THz radiation to a different extent. Oxidation of GaAs surface reduces the THz amplitude mainly in the low-frequency region. These results indicate that GaAs can be made a more effective THz source by choosing molecular passivation technique. Conversely, the THz emission features such as polarity, amplitude, and phase from molecule-passivated surfaces may be used to characterize the attached molecules.

  13. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate

    Science.gov (United States)

    2010-01-01

    We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038

  14. Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser

    Science.gov (United States)

    Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.

    1982-04-01

    Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.

  15. Microwave GaAs Integrated Circuits On Quartz Substrates

    Science.gov (United States)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  16. Temperature dependent magnetic properties of the GaAs substrate of spin-LEDs

    International Nuclear Information System (INIS)

    Ney, A; Harris, J S Jr; Parkin, S S P

    2006-01-01

    The temperature dependence of the magnetization of a light emitting diode having a ferromagnetic contact (spin-LED) is measured from 2 to 300 K in magnetic fields from 30 to 70 kOe and it is found that it originates from the GaAs substrate. The magnetization of GaAs comprises a van Vleck-type paramagnetic contribution to the susceptibility which scales inversely with the band gap of the semiconductor. Thus, the temperature dependence of the band gap of GaAs accounts for the non-linear temperature dependent magnetic susceptibility of GaAs and thus, at large magnetic fields, for the spin-LED

  17. Effect of GaAs interlayer thickness variations on the optical properties of multiple InAs QD structure

    International Nuclear Information System (INIS)

    Park, C.Y.; Park, K.W.; Kim, J.M.; Lee, Y.T.

    2009-01-01

    Multiple InAs/GaAs self-assembled quantum dots (QDs) with vertically stacked structure are grown by molecular beam epitaxy and the effects of GaAs interlayer thickness variation on optical properties are studied. The growth conditions are optimized by in-situ RHEED, AFM, and PL measurement. The five InAs QD layers are embedded in GaAs and Al0.3Ga0.7As layer. The PL intensity is increased with increasing GaAs interlayer thickness. The thin GaAs interlayer has strain field, the strain-induced intermixing of indium atoms in the InAs QDs (blue-shift) can overcompensate for the effect on the increased QD size (red-shift) (H. Heidemeyer et al. Appl. Phys. Lett. 80, 1544 (2002); T. Nakaoka et al. J. Appl. Phys. Lett. 96, 150 (2004)[1, 2], respectively). For the interlayer thickness larger than about 7 nm, the blue-shifts are correlated to the dominant high-energy excited state transitions due to the successive state filling of the ground and higher excited states in the QDs. The energy separation of double PL peaks, originated from two different excited states, was kept at around 50 meV at room temperature. A possible mechanism concerning this phenomenon is also discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Dosimetry in radiotherapy and brachytherapy by Monte-Carlo GATE simulation on computing grid; Dosimetrie en radiotherapie et curietherapie par simulation Monte-Carlo GATE sur grille informatique

    Energy Technology Data Exchange (ETDEWEB)

    Thiam, Ch O

    2007-10-15

    Accurate radiotherapy treatment requires the delivery of a precise dose to the tumour volume and a good knowledge of the dose deposit to the neighbouring zones. Computation of the treatments is usually carried out by a Treatment Planning System (T.P.S.) which needs to be precise and fast. The G.A.T.E. platform for Monte-Carlo simulation based on G.E.A.N.T.4 is an emerging tool for nuclear medicine application that provides functionalities for fast and reliable dosimetric calculations. In this thesis, we studied in parallel a validation of the G.A.T.E. platform for the modelling of electrons and photons low energy sources and the optimized use of grid infrastructures to reduce simulations computing time. G.A.T.E. was validated for the dose calculation of point kernels for mono-energetic electrons and compared with the results of other Monte-Carlo studies. A detailed study was made on the energy deposit during electrons transport in G.E.A.N.T.4. In order to validate G.A.T.E. for very low energy photons (<35 keV), three models of radioactive sources used in brachytherapy and containing iodine 125 (2301 of Best Medical International; Symmetra of Uro- Med/Bebig and 6711 of Amersham) were simulated. Our results were analyzed according to the recommendations of task group No43 of American Association of Physicists in Medicine (A.A.P.M.). They show a good agreement between G.A.T.E., the reference studies and A.A.P.M. recommended values. The use of Monte-Carlo simulations for a better definition of the dose deposited in the tumour volumes requires long computing time. In order to reduce it, we exploited E.G.E.E. grid infrastructure where simulations are distributed using innovative technologies taking into account the grid status. Time necessary for the computing of a radiotherapy planning simulation using electrons was reduced by a factor 30. A Web platform based on G.E.N.I.U.S. portal was developed to make easily available all the methods to submit and manage G.A.T.E

  19. A NIM (Nuclear Instrumentation Module) system conjugated with optional input for pHEMT amplifier for beta and gamma spectroscopy; Um sistema de modulos NIM conjugados com entrada opcional por amplificador pHEMT para espectroscopia beta e gama

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Barbara; Lüdke, Everton, E-mail: barbarakonradmev@gmail.com, E-mail: eludke@smail.ufsm.br [Universidade Federal de Santa Maria (LAE/UFSM), RS (Brazil). Lab. de Astrofisica e Eletronica

    2014-07-01

    This work presents a high speed NIM module (Nuclear Instrumentation Module) to detect radiation, gamma and muons, as part of a system for natural radiation monitoring and of extraterrestrial origin. The subsystem developed consists of a preamplifier and an integrated SCA (Single Channel Analyzer), including power supplies of ± 12 and ± 24V with derivations of +3.6 and ± 5V. The single channel analyzer board, consisting of discrete logic components, operating in window modes, normal and integral. The pulse shaping block is made up of two voltage comparators working at 120 MHz with a response time > 60 ns and a logic anticoincidence system. The preamplifier promotes a noise reduction and introduces the impedance matching between the output of anode / diode photomultiplier tubes (PMTs) and subsequent equipment, providing an input impedance of 1MΩ and output impedance of 40 to 140Ω. The shaper amplifier is non-inverting and has variable input capacitance of 1000 pF. The upper and lower thresholds of the SCA are adjustable from 0 to ± 10V, and the equipment is compatible with various types of detectors, like PMTs coupled to sodium iodide crystals. For use with liquid scintillators and photodiodes with crystals (CsI: Tl) is proposed to include a preamplifier circuit pHEMT (pseudomorphic High Electron Mobility Transistor) integrated. Yet, the system presents the possibility of applications for various purposes of gamma spectroscopy and automatic detection of events producing of beta particles.

  20. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Science.gov (United States)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  1. Self-gated fat-suppressed cardiac cine MRI.

    Science.gov (United States)

    Ingle, R Reeve; Santos, Juan M; Overall, William R; McConnell, Michael V; Hu, Bob S; Nishimura, Dwight G

    2015-05-01

    To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP. © 2014 Wiley Periodicals, Inc.

  2. Photon counting microstrip X-ray detectors with GaAs sensors

    Science.gov (United States)

    Ruat, M.; Andrä, M.; Bergamaschi, A.; Barten, R.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Lozinskaya, A. D.; Mezza, D.; Mozzanica, A.; Novikov, V. A.; Ramilli, M.; Redford, S.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Tolbanov, O. P.; Tyazhev, A.; Vetter, S.; Zarubin, A. N.; Zhang, J.

    2018-01-01

    High-Z sensors are increasingly used to overcome the poor efficiency of Si sensors above 15 keV, and further extend the energy range of synchrotron and FEL experiments. Detector-grade GaAs sensors of 500 μm thickness offer 98% absorption efficiency at 30 keV and 50% at 50 keV . In this work we assess the usability of GaAs sensors in combination with the MYTHEN photon-counting microstrip readout chip developed at PSI. Different strip length and pitch are compared, and the detector performance is evaluated in regard of the sensor material properties. Despite increased leakage current and noise, photon-counting strips mounted with GaAs sensors can be used with photons of energy as low as 5 keV, and exhibit excellent linearity with energy. The charge sharing is doubled as compared to silicon strips, due to the high diffusion coefficient of electrons in GaAs.

  3. Linearity of photoconductive GaAs detectors to pulsed electrons

    International Nuclear Information System (INIS)

    Ziegler, L.H.

    1995-01-01

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined

  4. Performance of a GaAs electron source

    International Nuclear Information System (INIS)

    Calabrese, R.; Ciullo, G.; Della Mea, G.; Egeni, G.P.; Guidi, V.; Lamanna, G.; Lenisa, P.; Maciga, B.; Rigato, V.; Rudello, V.; Tecchio, L.; Yang, B.; Zandolin, S.

    1994-01-01

    We discuss the performance improvement of a GaAs electron source. High quantum yield (14%) and constant current extraction (1 mA for more than four weeks) are achieved after a little initial decay. These parameters meet the requirements for application of the GaAs photocathode as a source for electron cooling devices. We also present the preliminary results of a surface analysis experiment, carried out by means of the RBS technique to check the hypothesis of cesium evaporation from the surface when the photocathode is in operation. (orig.)

  5. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F. [University of Tsukuba, Institute of Applied Physics, Tsukuba, Ibaraki 305-8573 (Japan)

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerance of GaAs and that Ti can protected GaAs from erosion by NH{sub 3}. By depositing Ti on GaAs(111)A surface, a mirror-like GaN layer could be grown at 1000 C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET

    Science.gov (United States)

    Bala, Shashi; Khosla, Mamta

    2018-04-01

    A double-gate tunnel field-effect transistor (DG tunnel FET) has been designed and investigated for various channel materials such as silicon (Si), gallium arsenide (GaAs), alminium gallium arsenide (Al x Ga1‑x As) and CNT using a nano ViDES Device and TCAD SILVACO ATLAS simulator. The proposed devices are compared on the basis of inverse subthreshold slope (SS), I ON/I OFF current ratio and leakage current. Using Si as the channel material limits the property to reduce leakage current with scaling of channel, whereas the Al x Ga1‑x As based DG tunnel FET provides a better I ON/I OFF current ratio (2.51 × 106) as compared to other devices keeping the leakage current within permissible limits. The performed silmulation of the CNT based channel in the double-gate tunnel field-effect transistor using the nano ViDES shows better performace for a sub-threshold slope of 29.4 mV/dec as the channel is scaled down. The proposed work shows the potential of the CNT channel based DG tunnel FET as a futuristic device for better switching and high retention time, which makes it suitable for memory based circuits.

  7. Ensemble Monte Carlo particle investigation of hot electron induced source-drain burnout characteristics of GaAs field-effect transistors

    Science.gov (United States)

    Moglestue, C.; Buot, F. A.; Anderson, W. T.

    1995-08-01

    The lattice heating rate has been calculated for GaAs field-effect transistors of different source-drain channel design by means of the ensemble Monte Carlo particle model. Transport of carriers in the substrate and the presence of free surface charges are also included in our simulation. The actual heat generation was obtained by accounting for the energy exchanged with the lattice of the semiconductor during phonon scattering. It was found that the maximum heating rate takes place below the surface near the drain end of the gate. The results correlate well with a previous hydrodynamic energy transport estimate of the electronic energy density, but shifted slightly more towards the drain. These results further emphasize the adverse effects of hot electrons on the Ohmic contacts.

  8. Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.

    Science.gov (United States)

    1995-10-05

    improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop

  9. The GaAs electron source: simulations and experiments

    International Nuclear Information System (INIS)

    Aleksandrov, A.V.; Ciullo, G.; Guidi, V.; Kudelainen, V.I.; Lamanna, G.; Lenisa, P.; Logachov, P.V.; Maciga, B.; Novokhatsky, A.; Tecchio, L.; Yang, B.

    1994-01-01

    In this paper we calculate electron emission from GaAs photocathodes using the Monte Carlo technique. Typical data of energy spread of the electron beam are presented. For photoenergy ranging from 1.6 to 2.1 eV, the calculated longitudinal and transverse energy spreads are 14.4-78 and 4-14.7 meV respectively. Temporal measurement of GaAs photocathodes has been performed. The preliminary results show that the temporal response is faster than 200 ps. (orig.)

  10. 35-kV GaAs subnanosecond photoconductive switches

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L. (Lawrence Livermore National Lab., CA (United States))

    1990-12-01

    Photoconductive switches are one of the few devices that allow the generation of high-voltage electrical pulses with subnanosecond rise time. The authors are exploring high-voltage, fast-pulse generation using GaAs photoconductive switches. They have been able to generate 35-kV pulses with rise times as short as 135 ps using 5-mm gap switches and have achieved electric field hold-off of greater than 100 kV/cm. They have also been able to generate an approximately 500-ps FWHM on/off electrical pulse with an amplitude of approximately 3 kV using neutron-irradiated GaAs having short carrier life times. This paper describes the experimental results and discusses fabrication of switches and the diagnostics used to measure these fast signals. They also describe the experience with the nonlinear lock-on and avalanche modes of operation observed in GaAs.

  11. Structural Evolution During Formation and Filling of Self-patterned Nanoholes on GaAs (100 Surfaces

    Directory of Open Access Journals (Sweden)

    Zhou Lin

    2008-01-01

    Full Text Available Abstract Nanohole formation on an AlAs/GaAs superlattice gives insight to both the “drilling” effect of Ga droplets on AlAs as compared to GaAs and the hole-filling process. The shape and depth of the nanoholes formed on GaAs (100 substrates has been studied by the cross-section transmission electron microscopy. The Ga droplets “drill” through the AlAs layer at a much slower rate than through GaAs due to differences in activation energy. Refill of the nanohole results in elongated GaAs mounds along the [01−1] direction. As a result of capillarity-induced diffusion, GaAs favors growth inside the nanoholes, which provides the possibility to fabricate GaAs and AlAs nanostructures.

  12. Polarization and charge limit studies of strained GaAs photocathodes

    International Nuclear Information System (INIS)

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of ∼ 2.5 A/cm 2 at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don't have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes

  13. Effects of silicon-nitride passivation on the electrical behavior of 0.1-μm pseudomorphic high-electron-mobility transistors

    International Nuclear Information System (INIS)

    Oh, Jung-Hun; Sul, Woo-Suk; Han, Hyo-Jong; Jang, Hae-Kang; Son, Myung-Sik; Rhee, Jin-Koo; Kim, Sam- Dong

    2004-01-01

    We examine the effects of surface state formation due to silicon-nitride passivation on the electrical characteristics of GaAs-based 0.1-μm pseudomorphic high-electron-mobility transistors (pHEMTs). In this study, DC and noise characteristic are investigated before and after the passivation of the pHEMTs. After the passivation, we observe significant degradation of noise performance in the frequency range of 55 - 62 GHz. We also observe clear increases in the drain-source saturation current at a gate voltage of 0 V and in the extrinsic transconductance at a drain voltage of 1 V from 325 and 264 to 365 mA/mm and 304 mS/mm, respectively, with no significant variation in pinchoff voltage. We propose that the observed variations in the DC and the noise characteristics are due to the positively charged surface state after deposition of the silicon nitride passivation film. Hydrodynamic device model simulations were performed based upon the proposed mechanisms for the change in electrical behavior, and the calculated results show good agreement with the experimental results.

  14. Lateral terahertz hot-electron bolometer based on an array of Sn nanothreads in GaAs

    Science.gov (United States)

    Ponomarev, D. S.; Lavrukhin, D. V.; Yachmenev, A. E.; Khabibullin, R. A.; Semenikhin, I. E.; Vyurkov, V. V.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2018-04-01

    We report on the proposal and the theoretical and experimental studies of the terahertz hot-electron bolometer (THz HEB) based on a gated GaAs structure like the field-effect transistor with the array of parallel Sn nanothreads (Sn-NTs). The operation of the HEB is associated with an increase in the density of the delocalized electrons due to their heating by the incoming THz radiation. The quantum and the classical device models were developed, the quantum one was based on the self-consistent solution of the Poisson and Schrödinger equations, the classical model involved the Poisson equation and density of states omitting quantization. We calculated the electron energy distributions in the channels formed around the Sn-NTs for different gate voltages and found the fraction of the delocalized electrons propagating across the energy barriers between the NTs. Since the fraction of the delocalized electrons strongly depends on the average electron energy (effective temperature), the proposed THz HEB can exhibit an elevated responsivity compared with the HEBs based on more standard heterostructures. Due to a substantial anisotropy of the device structure, the THz HEB may demonstrate a noticeable polarization selectivity of the response to the in-plane polarized THz radiation. The features of the THz HEB might be useful in their practical applications in biology, medicine and material science.

  15. Investigation of the gate-bias induced instability for InGaZnO TFTs under dark and light illumination

    International Nuclear Information System (INIS)

    Chen, T.C.; Chang, T.C.; Hsieh, T.Y.; Tsai, C.T.; Chen, S.C.; Lin, C.S.; Jian, F.Y.; Tsai, M.Y.

    2011-01-01

    Mechanism of the instability for indium–gallium–zinc oxide thin film transistors caused by gate-bias stress performed in the dark and light illumination was investigated in this paper. The parallel V t shift with no degradation of subthreshold swing (S.S) and the fine fitting to the stretched-exponential equation indicate that charge trapping model dominates the degradation behavior under positive gate-bias stress. In addition, the significant gate-bias dependence of V t shift demonstrates that electron trapping effect easily occurs under large gate-bias since the average effective energy barrier of electron injection decreases with increasing gate bias. Moreover, the noticeable decrease of threshold voltage (V t ) shift under illuminated positive gate-bias stress and the accelerated recovery rate in the light indicate that the charge detrapping mechanism occurs under light illumination. Finally, the apparent negative V t shift under illuminated negative gate-bias stress was investigated in this paper. The average effectively energy barrier of electron and hole injection were extracted to clarify that the serious V t degradation behavior comparing with positive gate-bias stress was attributed to the lower energy barrier for hole injection.

  16. GaAs strip detectors: the Australian production program

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Alexiev, D.

    1995-01-01

    The Australian High Energy Physics consortium (composed of the University of Melbourne, the University of Sydney and ANSTO) has been investigating the possibility of producing a large area wheel of SI GaAs detectors for the ATLAS detector array. To help assess the extent of Australia's role in this venture a few SI GaAs microstrip detectors are to be manufactured under contract by the CSIRO division of Radiophysics GaAs IC Prototyping Facility. The planned production of the devices is discussed. First, the reasons for producing the detectors here in Australia are examined, then some basic characteristics of the material are considered, and finally details are provided of the design used for the manufacture of the devices. Two sets of detectors will be produced using the standard Glasgow production recipe; SIGaAs and GaN. The Glasgow mask set is being used as a benchmark against which to compare the Australian devices

  17. Donor level of interstitial hydrogen in GaAs

    International Nuclear Information System (INIS)

    Dobaczewski, L.; Bonde Nielsen, K.; Nylandsted Larsen, A.; Peaker, A.R.

    2006-01-01

    The first data evidencing the existence of the donor level of the interstitial hydrogen in GaAs are presented. The abundant formation of the (0/+) donor level after in situ low-temperature implantation of hydrogen into the depletion layer of GaAs Schottky diodes has been observed and the activation energy and annealing properties have been determined by Laplace DLTS. The activation energy for electron emission of this donor state is 0.14eV. Above 100K the hydrogen deep donor state is unstable, converting to a more stable form when there are electrons available for the capture process. A slightly perturbed form of the hydrogen donor in its neutral charge state can be recovered by illuminating the sample. This process releases twice as many electrons as the ionisation process of the hydrogen donor state itself. This fact, by analogy with the silicon case, evidences the negative-U behaviour of hydrogen in GaAs

  18. The effects of gate oxide thickness on radiation damage in MOS system

    International Nuclear Information System (INIS)

    Zhu Hui; Yan Rongliang; Wang Yu; He Jinming

    1988-01-01

    The dependences of the flatband voltage shift (ΔV FB ) and the threshold voltage shift (ΔV TH ) in MOS system on the oxide thickness (T ox ) and on total irradiated dose (D) of electron-beam and 60 Co γ-ray have been studied. It has been found that ΔV FB ∝ T ox 3 , with +10V of gate bias during irradiation for n-Si substrate MOS capacitors; ΔV TH ∝ T ox 3 D 2/3 , with 'on' gate bias during irradiation for n- and P-channel MOS transistors; ΔV TP ∝ T ox 2 D 2/3 , with 'off' gate bias during irradiation for P-channel MOS transistors. These results are explained by Viswanathan model. According to ∼T ox 3 dependence, the optimization of radiation hardening process for MOS system is also simply discussed

  19. Molecular-beam epitaxy on shallow mesa gratings patterned on GaAs(311)A and (100) substrates

    NARCIS (Netherlands)

    Gong, Q.; Nötzel, R.; Schönherr, H.-P.; Ploog, K.H.

    2002-01-01

    We report on the morphology and properties of the surface formed by molecular-beam epitaxy on shallow mesa gratings on patterned GaAs(311)A and GaAs(100). On GaAs(311)A substrates, the corrugated surface formed after GaAs growth on shallow mesa gratings along [011] is composed of monolayer high

  20. Multilayer self-organization of InGaAs quantum wires on GaAs surfaces

    International Nuclear Information System (INIS)

    Wang, Zhiming M.; Kunets, Vasyl P.; Xie, Yanze Z.; Schmidbauer, Martin; Dorogan, Vitaliy G.; Mazur, Yuriy I.; Salamo, Gregory J.

    2010-01-01

    Molecular-Beam Epitaxy growth of multiple In 0.4 Ga 0.6 As layers on GaAs (311)A and GaAs (331)A has been investigated by Atomic Force Microscopy and Photoluminescence. On GaAs (311)A, uniformly distributed In 0.4 Ga 0.6 As quantum wires (QWRs) with wider lateral separation were achieved, presenting a significant improvement in comparison with the result on single layer [H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84 (2004) 1756]. On GaAs (331)A, In 0.4 Ga 0.6 As QWRs were revealed to be much straighter than in the previous report on multilayer growth [Z. Gong, Z. Niu, Z. Fang, Nanotechnology 17 (2006) 1140]. These observations are discussed in terms of the strain-field interaction among multilayers, enhancement of surface mobility at high temperature, and surface stability of GaAs (311)A and (331)A surfaces.

  1. Design of 20-44 GHz broadband doubler MMIC

    International Nuclear Information System (INIS)

    Li Qin; Wang Zhigong; Li Wei

    2010-01-01

    This paper presents the design and performance of a broadband millimeter-wave frequency doubler MMIC using active 0.15 μm GaAs PHEMT and operating at output frequencies from 20 to 44 GHz. This chip is composed of a single ended-into differential-out active Balun, balanced FETs in push-push configuration, and a distributed amplifier. The MMIC doubler exhibits more than 4 dB conversion gain with 12 dBm of output power, and the fundamental frequency suppression is typically -20 dBc up to 44 GHz. The MMIC works at V DD = 3.5 V, V SS = -3.5 V, I d = 200 mA and the chip size is 1.5 x 1.8 mm 2 . (semiconductor integrated circuits)

  2. Electronic structure of GaAs with InAs (001) monolayer

    International Nuclear Information System (INIS)

    Tit, N.; Peressi, M.

    1995-04-01

    The effect on the electronic structure of an InAs monomolecular plane inserted in bulk GaAs is investigated theoretically. The (InAs) 1 (GaAs) n (001) strained superlattice is studied via ab-initio self-consistent pseudopotential calculations. Both electrons and holes are localized nearby the inserted InAs monolayer, which therefore acts as a quantum well for all the charge carriers. The small thickness of the inserted InAs slab is responsible of high confinement energies for the charge carriers, and therefore the interband electron-heavy-hole transition energy is close to the energy gap of the bulk GaAs, in agreement with recent experimental data. (author). 18 refs, 4 figs

  3. Paths to light trapping in thin film GaAs solar cells.

    Science.gov (United States)

    Xiao, Jianling; Fang, Hanlin; Su, Rongbin; Li, Kezheng; Song, Jindong; Krauss, Thomas F; Li, Juntao; Martins, Emiliano R

    2018-03-19

    It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures. Here, we study light trapping structures that are implemented in a high-bandgap material on the back of the GaAs active layer, thereby not perturbing the integrity of the GaAs active layer. We study photonic crystal and quasi-random nanostructures both by simulation and by experiment and find that the photonic crystal structures are superior because they exhibit fewer but stronger resonances that are better matched to the narrow wavelength range where GaAs benefits from light trapping. In fact, we show that a 1500 nm thick cell with photonic crystals achieves the same short circuit current as an unpatterned 4000 nm thick cell. These findings are significant because they afford a sizeable reduction in active layer thickness, and therefore a reduction in expensive epitaxial growth time and cost, yet without compromising performance.

  4. Comparison of recessed gate-head structures on normally-off AlGaN/GaN high-electron-mobility transistor performance.

    Science.gov (United States)

    Khan, Mansoor Ali; Heo, Jun-Woo; Kim, Hyun-Seok; Park, Hyun-Chang

    2014-11-01

    In this work, different gate-head structures have been compared in the context of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). Field-plate (FP) technology self-aligned to the gate electrode leads to various gate-head structures, most likely gamma (γF)-gate, camel (see symbol)-gate, and mushroom-shaped (T)-gate. In-depth comparison of recessed gate-head structures demonstrated that key performance metrics such as transconductance, output current, and breakdown voltage are better with the T-gate head structure. The recessed T-gate with its one arm toward the source side not only reduces the source-access resistance (R(g) +R(gs)), but also minimizes the source-side dispersion and current leakage, resulting in high transconductance (G(m)) and output current (I(DS)). At the same time, the other arm toward the drain-side reduces the drain-side dispersion and tends to distribute electric field peaks uniformly, resulting in high breakdown voltage (V(BR)). DC and RF analysis showed that the recessed T-gate FP-HEMT is a suitable candidate not only for high-frequency operation, but also for high-power applications.

  5. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Tchernycheva, M; Harmand, J C; Patriarche, G; Travers, L; Cirlin, G E

    2006-01-01

    Molecular beam epitaxial growth of GaAs nanowires using Au particles as a catalyst was investigated. Prior to the growth during annealing, Au alloyed with Ga coming from the GaAs substrate, and melted. Phase transitions of the resulting particles were observed in situ by reflection high-energy electron diffraction (RHEED). The temperature domain in which GaAs nanowire growth is possible was determined. The lower limit of this domain (320 deg. C) is close to the observed catalyst solidification temperature. Below this temperature, the catalyst is buried by GaAs growth. Above the higher limit (620 deg. C), the catalyst segregates on the surface with no significant nanowire formation. Inside this domain, the influence of growth temperature on the nanowire morphology and crystalline structure was investigated in detail by scanning electron microscopy and transmission electron microscopy. The correlation of the nanowire morphology with the RHEED patterns observed during the growth was established. Wurtzite GaAs was found to be the dominant crystal structure of the wires

  6. Optimal control of universal quantum gates in a double quantum dot

    Science.gov (United States)

    Castelano, Leonardo K.; de Lima, Emanuel F.; Madureira, Justino R.; Degani, Marcos H.; Maialle, Marcelo Z.

    2018-06-01

    We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a model that describes the process of loading and unloading the DQD taking into account the overlap between the electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we demonstrate the possibility of performing within high efficiency a universal set of quantum gates {cnot, H, and T } , where cnot is the controlled-not gate, H is the Hadamard gate, and T is the π /8 gate, even in the presence of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied magnetic field B , the optimized fidelity of the gates oscillates with a period inversely proportional to the gate operation time tf. This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by appropriately choosing B and tf to produce a maximum of the oscillation.

  7. The Development of Si and SiGe Technologies for Microwave and Millimeter-Wave Integrated Circuits

    Science.gov (United States)

    Ponchak, George E.; Alterovitz, Samuel A.; Katehi, Linda P. B.; Bhattacharya, Pallab K.

    1997-01-01

    Historically, microwave technology was developed by military and space agencies from around the world to satisfy their unique radar, communication, and science applications. Throughout this development phase, the sole goal was to improve the performance of the microwave circuits and components comprising the systems. For example, power amplifiers with output powers of several watts over broad bandwidths, low noise amplifiers with noise figures as low as 3 dB at 94 GHz, stable oscillators with low noise characteristics and high output power, and electronically steerable antennas were required. In addition, the reliability of the systems had to be increased because of the high monetary and human cost if a failure occurred. To achieve these goals, industry, academia and the government agencies supporting them chose to develop technologies with the greatest possibility of surpassing the state of the art performance. Thus, Si, which was already widely used for digital circuits but had material characteristics that were perceived to limit its high frequency performance, was bypassed for a progression of devices starting with GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and ending with InP Pseudomorphic High Electron Mobility Transistors (PHEMTs). For each new material or device structure, the electron mobility increased, and therefore, the high frequency characteristics of the device were improved. In addition, ultra small geometry lithographic processes were developed to reduce the gate length to 0.1 pm which further increases the cutoff frequency. The resulting devices had excellent performance through the millimeter-wave spectrum.

  8. Testing a GaAs cathode in SRF gun

    International Nuclear Information System (INIS)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-01-01

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10 -12 Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to ∼10 -9 Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high accelerating

  9. Muon track induced current measurements in semi-insulating GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Eshchenko, D.G., E-mail: dimitry.eshchenko@psi.c [Physik-Institut der Universitaet Zuerich, CH-8057 Zuerich (Switzerland); Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Storchak, V.G. [Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq. 1, Moscow 123182 (Russian Federation); Cottrell, S.P. [ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 OQX (United Kingdom)

    2009-04-15

    We report on preliminary muon-track-induced current measurements in semi-insulating (SI-) GaAs. At T=70K, after simultaneous treatment of the sample by muon irradiation and a strong electric field (a square wave with |E|>10kV/cm and the polarity changed every 1/(50) s) for approximately 2 h, the sample is transferred to a metastable-like state which is characterized by increased life-times for non-equilibrium electrons and holes. The sample can be returned to the original state by heating up to 250 K. Our results for SI-GaAs suggest a muon-track-induced electric-field-assisted neutralization process for the deep traps.

  10. Investigations on liquid phase electroepitaxial growth kinetics of GaAs

    International Nuclear Information System (INIS)

    Mouleeswaran, D.; Dhanasekaran, R.

    2004-01-01

    This paper presents a model based on solving a two-dimensional diffusion equation incorporating the electromigration effect by numerical simulation method corresponding to liquid phase electroepitaxial (LPEE) growth of GaAs, whose growth is limited by diffusion and electro migration of solute species. Using the numerical simulation method, the concentration profiles of As in Ga rich solution during the electroepitaxial growth of GaAs have been constructed in front of the growing crystal interface. Using the concentration gradient at the interface, the growth rate and thickness of the epitaxial layer of GaAs have been determined for different experimental growth conditions. The proposed model is based on the assumption that there is no convection in the solution. The results are discussed in detail

  11. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  12. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G. [University of Oxford, Oxford (United Kingdom)

    2008-11-15

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  13. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    International Nuclear Information System (INIS)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G.

    2008-01-01

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  14. Bistable Si dopants in the GaAs (1 1 0) surface

    International Nuclear Information System (INIS)

    Smakman, E P; Koenraad, P M

    2015-01-01

    In this review, recent work is discussed on bistable Si dopants in the GaAs (1 1 0) surface, studied by scanning tunneling microscopy (STM). The bistability arises because the dopant atom can switch between a positive and a negative charge state, which are associated with two different lattice configurations. Manipulation of the Si atom charge configuration is achieved by tuning the local band bending with the STM tip. Furthermore, illuminating the sample with a laser also influences the charge state, allowing the operation of the dopant atom as an optical switch. The switching dynamics without illumination is investigated in detail as a function of temperature, lateral tip position, and applied tunneling conditions. A physical model is presented that independently describes the thermal and quantum tunneling contributions to the switching frequency and charge state occupation of a single Si atom. The basic functionality of a memory cell is demonstrated employing a single bistable Si dopant as the active element, using the STM tip as a gate to write and read the information. (topical review)

  15. Reflectance-anisotropy study of the dynamics of molecular beam epitaxy growth of GaAs and InGaAs on GaAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Balderas-Navarro, R.E. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Facultad de Ciencias, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico)

    2008-07-01

    Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E{sub 1} optical transition as a probe. We follow the kinetics of the deposition of GaAs and In{sub 0.3}Ga{sub 0.7}As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As{sub 4} or As{sub 2} flux pressure of 5 x 10{sup -6} Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Reflectance-anisotropy study of the dynamics of molecular beam epitaxy growth of GaAs and InGaAs on GaAs(001)

    International Nuclear Information System (INIS)

    Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F.; Balderas-Navarro, R.E.

    2008-01-01

    Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E 1 optical transition as a probe. We follow the kinetics of the deposition of GaAs and In 0.3 Ga 0.7 As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As 4 or As 2 flux pressure of 5 x 10 -6 Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. A model for arsenic anti-site incorporation in GaAs grown by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, K. L.; Kuech, T. F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-12-28

    GaAs growth by hydride vapor phase epitaxy (HVPE) has regained interest as a potential route to low cost, high efficiency thin film photovoltaics. In order to attain the highest efficiencies, deep level defect incorporation in these materials must be understood and controlled. The arsenic anti-site defect, As{sub Ga} or EL2, is the predominant deep level defect in HVPE-grown GaAs. In the present study, the relationships between HVPE growth conditions and incorporation of EL2 in GaAs epilayers were determined. Epitaxial n-GaAs layers were grown under a wide range of deposition temperatures (T{sub D}) and gallium chloride partial pressures (P{sub GaCl}), and the EL2 concentration, [EL2], was determined by deep level transient spectroscopy. [EL2] agreed with equilibrium thermodynamic predictions in layers grown under conditions in which the growth rate, R{sub G}, was controlled by conditions near thermodynamic equilibrium. [EL2] fell below equilibrium levels when R{sub G} was controlled by surface kinetic processes, with the disparity increasing as R{sub G} decreased. The surface chemical composition during growth was determined to have a strong influence on EL2 incorporation. Under thermodynamically limited growth conditions, e.g., high T{sub D} and/or low P{sub GaCl}, the surface vacancy concentration was high and the bulk crystal was close to equilibrium with the vapor phase. Under kinetically limited growth conditions, e.g., low T{sub D} and/or high P{sub GaCl}, the surface attained a high GaCl coverage, blocking As adsorption. This competitive adsorption process reduced the growth rate and also limited the amount of arsenic that incorporated as As{sub Ga}. A defect incorporation model which accounted for the surface concentration of arsenic as a function of the growth conditions, was developed. This model was used to identify optimal growth parameters for the growth of thin films for photovoltaics, conditions in which a high growth rate and low [EL2] could be

  18. Dosimetry in radiotherapy and brachytherapy by Monte-Carlo GATE simulation on computing grid

    International Nuclear Information System (INIS)

    Thiam, Ch.O.

    2007-10-01

    Accurate radiotherapy treatment requires the delivery of a precise dose to the tumour volume and a good knowledge of the dose deposit to the neighbouring zones. Computation of the treatments is usually carried out by a Treatment Planning System (T.P.S.) which needs to be precise and fast. The G.A.T.E. platform for Monte-Carlo simulation based on G.E.A.N.T.4 is an emerging tool for nuclear medicine application that provides functionalities for fast and reliable dosimetric calculations. In this thesis, we studied in parallel a validation of the G.A.T.E. platform for the modelling of electrons and photons low energy sources and the optimized use of grid infrastructures to reduce simulations computing time. G.A.T.E. was validated for the dose calculation of point kernels for mono-energetic electrons and compared with the results of other Monte-Carlo studies. A detailed study was made on the energy deposit during electrons transport in G.E.A.N.T.4. In order to validate G.A.T.E. for very low energy photons (<35 keV), three models of radioactive sources used in brachytherapy and containing iodine 125 (2301 of Best Medical International; Symmetra of Uro- Med/Bebig and 6711 of Amersham) were simulated. Our results were analyzed according to the recommendations of task group No43 of American Association of Physicists in Medicine (A.A.P.M.). They show a good agreement between G.A.T.E., the reference studies and A.A.P.M. recommended values. The use of Monte-Carlo simulations for a better definition of the dose deposited in the tumour volumes requires long computing time. In order to reduce it, we exploited E.G.E.E. grid infrastructure where simulations are distributed using innovative technologies taking into account the grid status. Time necessary for the computing of a radiotherapy planning simulation using electrons was reduced by a factor 30. A Web platform based on G.E.N.I.U.S. portal was developed to make easily available all the methods to submit and manage G.A.T.E

  19. Effects of surface passivation on twin-free GaAs nanosheets.

    Science.gov (United States)

    Arab, Shermin; Chi, Chun-Yung; Shi, Teng; Wang, Yuda; Dapkus, Daniel P; Jackson, Howard E; Smith, Leigh M; Cronin, Stephen B

    2015-02-24

    Unlike nanowires, GaAs nanosheets exhibit no twin defects, stacking faults, or dislocations even when grown on lattice mismatched substrates. As such, they are excellent candidates for optoelectronic applications, including LEDs and solar cells. We report substantial enhancements in the photoluminescence efficiency and the lifetime of passivated GaAs nanosheets produced using the selected area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). Measurements are performed on individual GaAs nanosheets with and without an AlGaAs passivation layer. Both steady-state photoluminescence and time-resolved photoluminescence spectroscopy are performed to study the optoelectronic performance of these nanostructures. Our results show that AlGaAs passivation of GaAs nanosheets leads to a 30- to 40-fold enhancement in the photoluminescence intensity. The photoluminescence lifetime increases from less than 30 to 300 ps with passivation, indicating an order of magnitude improvement in the minority carrier lifetime. We attribute these enhancements to the reduction of nonradiative recombination due to the compensation of surface states after passivation. The surface recombination velocity decreases from an initial value of 2.5 × 10(5) to 2.7 × 10(4) cm/s with passivation.

  20. Electric field effect of GaAs monolayer from first principles

    Directory of Open Access Journals (Sweden)

    Jiongyao Wu

    2017-03-01

    Full Text Available Using first-principle calculations, we investigate two-dimensional (2D honeycomb monolayer structures composed of group III-V binary elements. It is found that such compound like GaAs should have a buckled structure which is more stable than graphene-like flat structure. This results a polar system with out-of-plane dipoles arising from the non-planar structure. Here, we optimized GaAs monolayer structure, then calculated the electronic band structure and the change of buckling height under external electric field within density functional theory using generalized gradient approximation method. We found that the band gap would change proportionally with the electric field magnitude. When the spin-orbit coupling (SOC is considered, we revealed fine spin-splitting at different points in the reciprocal space. Furthermore, the valence and conduction bands spin-splitting energies due to SOC at the K point of buckled GaAs monolayers are found to be weakly dependent on the electric field strength. Finally electric field effects on the spin texture and second harmonic generation are discussed. The present work sheds light on the control of physical properties of GaAs monolayer by the applied electric field.

  1. Optical Orientation of Mn2+ Ions in GaAs in Weak Longitudinal Magnetic Fields

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2011-04-01

    We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.

  2. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.; Ghoneim, Mohamed T.; Droopad, Ravi; Hussain, Muhammad Mustafa

    2014-01-01

    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  3. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.

    2014-08-01

    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  4. GaAs nanocrystals: Structure and vibrational properties

    International Nuclear Information System (INIS)

    Nayak, J.; Sahu, S.N.; Nozaki, S.

    2006-01-01

    GaAs nanocrystals were grown on indium tin oxide substrate by an electrodeposition technique. Atomic force microscopic measurement indicates an increase in the size of the nanocrystal with decrease in the electrolysis current density accompanied by the change in the shape of the crystallite. Transmission electron microscopic measurements identify the crystallite sizes to be in the range of 10-15 nm and the crystal structure to be orthorhombic. On account of the quantum size effect, the first optical transition was blue shifted with respect to the band gap of the bulk GaAs and the excitonic peak appeared prominent. A localized phonon mode ascribed to certain point defect occurred in the room temperature micro-Raman spectrum

  5. A comprehensive study of cryogenic cooled millimeter-wave frequency multipliers based on GaAs Schottky-barrier varactors

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2018-01-01

    The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use...... with a commercial RF and microwave CAD tool. The model implements critical physical phenomena such as thermionic-field emission current transport at cryogenic temperatures, temperature dependent mobility, reverse breakdown, self-heating, and high-field velocity saturation effects. A parallel conduction model...... is employed in order to include the effect of barrier inhomogeneities which is known to cause deviation from the expected I--V characteristics at cryogenic temperatures. The developed model is shown to accurately fit the I--V --T dataset from 25 to 295 K measured on the varactor diode stack. Harmonic balance...

  6. Scattering and mobility in indium gallium arsenide channel, pseudomorphic high electron mobility transistors (InGaAs pHEMTs)

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1999-03-01

    Extensive transport measurements have been completed on deep and shallow-channelled InGaAs p-HEMTs of varying growth temperature, indium content, spacer thickness and doping density, with a view to a thorough characterisation, both in the metallic and the localised regimes. Particular emphasis was given to MBE grown layers, with characteristics applicable for device use, but low measurement temperatures were necessary to resolve the elastic scattering mechanisms. Measurements made in the metallic regime included transport and quantum mobility - the former over a range of temperatures between 1.5K to 300K. Conductivity measurements were also acquired in the strong localisation regime between about 1.5K and 100K. Experimentally determined parameters were tested for comparison with those predicted by an electrostatic model. Excellent agreement was obtained for carrier density. Other parameters were less well predicted, but the relevant experimental measurements, including linear depletion of the 2DEG, were sensitive to any excess doping above a 'critical' value determined by the model. At low temperature (1.5K), it was found that in all samples tested, transport mobility was strongly limited at all carrier densities by a large q mechanism, possibly intrinsic to the channel. This was ascribed either to scattering by the long-range potentials arising from the indium concentration fluctuations or fluctuations in the thickness of the channel layer. This mechanism dominates the transport at low carrier densities for all samples, but at high carrier density, an additional mechanism is significant for samples with the thinnest spacers tested (2.5nm). This is ascribed to direct electron interaction with the states of the donor layer, and produces a characteristic transport mobility peak. At higher carrier densities, past the peak, quantum mobility was found only to increase monotonically in value. Remote ionised impurity scattering while significant, particularly for samples

  7. A low-noise X-band microstrip VCO with 2.5 GHz tuning range using a GaN-on-SiC p-HEMT

    NARCIS (Netherlands)

    Maas, A.M.P.; Vliet, F.E. van

    2005-01-01

    A low-noise X-band microstrip hybrid VCO has been designed and realised using a 2 × 50 μm GaN-on-SiC pseudo-morphic HEMT as the active device. The transistor has been manufactured by TIGER and features a gate-length of 0.15 μm, an fT of 22 GHz, a break-down voltage of 42 Volts and an Idss, close to

  8. Rapid gated Thallium-201 perfusion SPECT - clinically feasible?

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.; Wilkinson, D.; Abatti, D.

    1998-01-01

    Full text: Standard dose energy window optimised Thallium-201 (Tl-201) SPECT has about half the counts of a standard dose from Technetium-99m Sestamibi (Tc99m-Mibi) gated perfusion SPECT. This study investigates the clinical feasibility of rapid energy window optimised Tl-201 gated perfusion SPECT (gated-TI) and compares quantitative left ventricular ejection fraction (LVEF) and visually assessed image quality for wall motion and thickening to analogous values obtained from Tc99m-Mibi gated perfusion SPECT (gated - mibi). Methods: We studied 60 patients with a rest gated Tl-201 SPECT (100 MBq, 77KeV peak, 34% window, 20 sec/projection) followed by a post stress gated Sestamibi SPECT (1GBq, 140KeV, 20% window, 20 sec/projection) separate dual isotope protocol. LVEF quantitation was performed using commercially available software (SPECTEF, General Electric). Visual grading of image quality for wall thickening and motion was performed using a three-point scale (excellent, good and poor). Results: LVEF for gated Tl-201 SPECT was 59.6 ± 12.0% (Mean ± SD). LVEF for gated Sestamibi SPECT was 60.4 ±11.4% (Mean ± SD). These were not significantly different (P=0.27, T-Test). There was good correlation (r=0.9) between gated-TI and gated-mibi LVEF values. The quality of gated-Tl images was ranked as excellent, good and poor in 12, 50 and 38% of the patients respectively. Image quality was better in gated-mibi SPECT, with ratings of 12, 62 and 26% respectively. Conclusion: Rapid gated Thallium-201 acquisition with energy window optimisation can be effectively performed on majority of patients and offers the opportunity to assess not only myocardial perfusion and function, as with Technetium based agents, but also viability using a single day one isotope protocol

  9. Pump-probe studies of travelling coherent longitudinal acoustic phonon oscillations in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Qi, J.; Tolk, Norman [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235 (United States); Miller, J. [Naval air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Cho, Y.J.; Liu, X.; Furdyna, J.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shahbazyan, T.V. [Department of Physics, Jackson State University, MS 39217 (United States)

    2008-07-01

    We report comprehensive studies of long-lived oscillations in femtosecond optical pump-probe measurements on GaAs based systems. The oscillations arise from a photo-generated coherent longitudinal acoustic phonon wave at the sample surface, which subsequently travels from the surface into the GaAs substrate, thus providing information on the optical properties of the material as a function of time/depth. Wavelength-dependent studies of the oscillations near the bandgap of GaAs indicate strong correlations to the optical properties of GaAs. We also use the coherent longitudinal acoustic phonon waves to probe a thin buried Ga{sub 0.1}In{sub 0.9}As layers non-invasively. The observed phonon oscillations experience a reduction in amplitude and a phase change at wavelengths near the bandgap of the GaAs, when it passes through the thin Ga{sub x}In{sub 1-x}As layer. The layer depth and thicknesses can be extracted from the oscillation responses. A model has been developed that satisfactorily characterizes the experimental results. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Comparison of three dosimetric techniques to take in account lung tumor motion: gating-like technique results lead to advice the use of gating device even in the cases of pre-operative irradiation

    International Nuclear Information System (INIS)

    Beneyton, V.; Billaud, G.; Niederst, C.; Meyer, P.; Schumacher, C.; Karamanoukian, D.; Noel, G.; Bourhala, K.

    2010-01-01

    Purpose: Comparison of three dosimetric techniques of lung tumor delineation to integrate tumor motion during breathing. Patients and method: Nineteen patients with T1-3N0M0 malignant lung tumor were treated with definitive chemoradiotherapy (14 cases) or pre-surgery chemo radiation. Doses were, respectively, 66 and 46 Gy. CT-scan for delineation was performed during three phases of breathing: free breathing and deep breath-hold inspiration and expiration. G.T.V. (gross tumor volume) was delineated on the three sequences. The classic technique included G.T.V. from the free-breathing sequence plus a C.T.V. (clinical target volume) margin of 5 to 8 mm plus a P.T.V. (planning target volume) margin of 7 to 10 mm (including I.T.V. [internal target volume] margin and set-up margin). The gating-like technique included G.T.V. from the deep breath-hold inspiration sequence plus a C.T.V. margin of 5 to 8 mm plus a P.T.V. margin of 2 mm. The three-volume technique, included G.T.V. as a result of the fusion of G.T.V.s from the three sequences plus a C.T.V. margin of 5 to 8 mm plus a P.T.V. margin of 2 mm. Dosimetry was calculated for the three P.T.V.s, if possible, with the same fields number and position. Dose constraints and rules were imposed to accept dosimetries: firstly spinal cord maximal dose less than 45 Gy, followed by V95 % for P.T.V. greater than or equal to 95 %, and V20 GY Gy for lung less than or equal to 30 %, V30 GY Gy for lung less than or equal to 20 %. Results: G.T.V.s were not statistically different between the three methods of delineation. P.T.V.s were significantly lower with the gating-like technique. V95% of the P.T.V. were not different between the three techniques. With the classic-, the gating-like- and the 3-volume techniques, dosimetry was considered as acceptable, respectively in 15, 18 and 15 cases. Comparisons of constraint values showed that the gating-like method gave the best results. In the case of pre-operative management, the gating

  11. GaAs optoelectronic neuron arrays

    Science.gov (United States)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  12. SU-F-T-526: A Comparative Study On Gating Efficiency of Varian RPM Device and Calypso System

    Energy Technology Data Exchange (ETDEWEB)

    Ravindran, P [Christian Medical College Hospital, Vellore (India); Wui Ann, W; Lim, Y [The Brunei Cancer Center (Brunei Darussalam)

    2016-06-15

    Purpose: In general, the linear accelerator is gated using respiratory signal obtained by way of external sensors to account for the breathing motion during radiotherapy. One of the commonly used gating devices is the Varian RPM device. Calypso system that uses electromagnetic tracking of implanted or surface transponders could also be used for gating. The aim of this study is to compare the gating efficiency of RPM device and the calypso system by phantom studies. Methods: An ArcCheck insert was used as the phantom with a Gafchromic film placed in its holder. The ArcCheck insert was placed on a Motion Sim platform and moved in the longitudinal direction simulating a respiratory motion with a period of 5 seconds and amplitude of ±6mm. The Gafchromic film was exposed to a 2 × 2cm{sup 2} field, i) with the phantom static, ii) phantom moving but ungated iii) gated with gating window of 2mm and 3mm. This was repeated with Calypso system using surface transponders with the same gating window. The Gafchromic films were read with an EPSON 11000 flatbed scanner and analysed with ‘Medphysto’ software. Results: The full width at half maximum (FWHM) as measured with film at the level of the film holder was 1.65cm when the phantom was static. FWHM measured with phantom moving and without gating was 1.16 cm and penumbra was 7 mm (80–20%) on both sides. When the beam was gated with 2 mm gating window the FWHM was 1.8 cm with RPM device and 1.9 cm with Calypso. Similarly, when the beam was gated with 3 mm window, the FWHM was 1.9cm with RPM device and 2cm with Calypso. Conclusion: This work suggests that the gating efficiency of RPM device is better than that of the Calypso with surface transponder, with reference to the latency in gating.

  13. Comment on ''Reassessment of space-change and central-cell scattering contributions to GaAs electron mobility''

    Science.gov (United States)

    Stringfellow, G. B.

    1982-07-01

    Walukiewicz et al.1 have recently stated that previously reported contributions to the electron mobility of GaAs from space-charge and/or central-cell scattering are in fact insignificant, and that reports of a T-1/2 term in the mobility2,3 are artifacts due to the assumption of Mathiessen's rule. This conclusion is an overstatement of their results and in fact demonstrably incorrect. First, an analysis of the data reported by Stringfellow2 and Stringfellow and Kuenzel3 as well as others has already been performed by Chattopadhyay et al.4 without assuming Mathiessen's rule. Their conclusion is that central-cell scattering is indeed significant. Second, the particular data analyzed by Walukiewicz et al. are in fact acknowledged in Ref. 2 to have very little T-1/2 scattering. The magnitude of the scattering cross section for T-1/2 scattering, SCA, for other samples is more than an order of magnitude larger, too large to be ascribed to errors inherent in using Mathiessen's rule. Experimental data convincingly demonstrate this. The mobility versus temperature curves are lower, especially at higher temperatures, for C as opposed to Zn- or Ge-doped samples where all have the same values of ND+NA (see Fig. 2 of Ref. 3). In addition, recently published data5 for MBE GaAs grown with different C doping levels show that for constant ND+NA, SCA is three times larger for the more highly C doped samples. This could not be due to errors inherent in the use of Mathiessen's rule. For these samples C clearly introduces an increase in the T-1/2 scattering which is not observed for other acceptors. ufc15xr 1W. Walukiewicz, J. Lagowski, and H. C. Gatos, J. Appl. Phys. 52, 5853 (1981). 2G. B. Stringfellow, J. Appl. Phys. 50, 4178 (1979). 3G. B. Stringfellow and H. Kuenzel, J. Appl. Phys. 51, 3254 (1980). 4D. Chattopadhyay, H. J. Queisser, and G. B. Stringfellow, J. Phys. Soc. Jpn. 49, Suppl. A, 293 (1980). 5G. B. Stringfellow, R. Stall, and W. Koschel, Appl. Phys. Lett. 38, 156 (1981

  14. Enhancement of conductance of GaAs sub-microwires under external stimuli

    Science.gov (United States)

    Qu, Xianlin; Deng, Qingsong; Zheng, Kun

    2018-03-01

    Semiconductors with one dimension on the micro-nanometer scale have many unique physical properties that are remarkably different from those of their bulk counterparts. Moreover, changes in the external field will further modulate the properties of the semiconductor micro-nanomaterials. In this study, we used focused ion beam technology to prepare freestanding ⟨111⟩-oriented GaAs sub-microwires from a GaAs substrate. The effects of laser irradiation and bending or buckling deformation induced by compression on the electrical transport properties of an individual GaAs sub-microwire were studied. The experimental results indicate that both laser irradiation and bending deformation can enhance their electrical transport properties, the laser irradiation resulted in a conductance enhancement of ˜30% compared to the result with no irradiation, and in addition, bending deformation changed the conductance by as much as ˜180% when the average strain was approximately 1%. The corresponding mechanisms are also discussed. This study provides beneficial insight into the fabrication of electronic and optoelectronic devices based on GaAs micro/nano-wires.

  15. Response of GaAs charge storage devices to transient ionizing radiation

    Science.gov (United States)

    Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.

    Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.

  16. Comparative research on the transmission-mode GaAs photocathodes of exponential-doping structures

    International Nuclear Information System (INIS)

    Chen Liang; Qian Yun-Sheng; Zhang Yi-Jun; Chang Ben-Kang

    2012-01-01

    Early research has shown that the varied doping structures of the active layer of GaAs photocathodes have been proven to have a higher quantum efficiency than uniform doping structures. On the basis of our early research on the surface photovoltage of GaAs photocathodes, and comparative research before and after activation of reflection-mode GaAs photocathodes, we further the comparative research on transmission-mode GaAs photocathodes. An exponential doping structure is the typical varied doping structure that can form a uniform electric field in the active layer. By solving the one-dimensional diffusion equation for no equilibrium minority carriers of transmission-mode GaAs photocathodes of the exponential doping structure, we can obtain the equations for the surface photovoltage (SPV) curve before activation and the spectral response curve (SRC) after activation. Through experiments and fitting calculations for the designed material, the body-material parameters can be well fitted by the SPV before activation, and proven by the fitting calculation for SRC after activation. Through the comparative research before and after activation, the average surface escape probability (SEP) can also be well fitted. This comparative research method can measure the body parameters and the value of SEP for the transmission-mode GaAs photocathode more exactly than the early method, which only measures the body parameters by SRC after activation. It can also help us to deeply study and exactly measure the parameters of the varied doping structures for transmission-mode GaAs photocathodes, and optimize the Cs-O activation technique in the future. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Metallization systems for stable ohmic contacts to GaAs

    International Nuclear Information System (INIS)

    Tandon, J.L.; Douglas, K.D.; Vendura, G.; Kolawa, E.; So, F.C.T.; Nicolet, M.A.

    1986-01-01

    A metallization scheme to form reproducible and stable ohmic contacts to GaAs is described. The approach is based on the configuration: GaAs/X/Y/Z; where X is a thin metal film (e.g. Pt, Ti, Pd, Ru), Y is an electrically conducting diffusion barrier layer (TiN, W or W/sub 0.7/N/sub 0.3/), and Z is a thick metal layer (e.g. Ag) typically required for bonding or soldering purposes. The value and reproducibility of the contact resistance in these metallization systems results from the uniform steady-state solid-phase reaction of the metal X with GaAs. The stability of the contacts is achieved by the diffusion barrier layer Y, which not only confines the reaction of X with GaAs, but also prevents the top metal layer Z from interfering with this reaction. Applications of such contacts in fabricating stable solar cells are also discussed

  18. Self-assembled colloidal PbS quantum dots on GaAs substrates

    International Nuclear Information System (INIS)

    Lue, Wei; Yamada, Fumihiko; Kamiya, Itaru

    2010-01-01

    We report the fabrication and analysis of self-assembled monolayer and bilayer films of colloidal PbS quantum dots (QDs) on GaAs (001) substrates. 1,6-hexanedithiol is used as link molecule between QDs and GaAs substrates. Atomic force microscopy (AFM) and photoluminescence (PL) measurements confirm the formation of PbS QD film on GaAs. For the monolayer PbS QD film, the temperature-dependent PL shows a feature typical of close-packed film. For the bilayer PbS QD film fabricated from two different mean-sized PbS QDs, we find that the stacking sequence of QDs with different size affects the quantum yield and emission wavelength of the film.

  19. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wenzheng [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)], E-mail: ywz@opt.ac.cn; Bai Yonglin; Liu Baiyu [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Bai Xiaohong; Zhao Junping; Qin Junjun [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)

    2009-09-11

    We describe a soft X-ray picosecond framing camera (XFC) based on Chevron micro-channel plates (MCPs) gated in cascade for ultra-fast process diagnostics. The micro-strip lines are deposited on both the input and the output surfaces of the Chevron MCPs and can be gated by a negative (positive) electric pulse on the first (second) MCP. The gating is controlled by the time delay T{sub d} between two gating pulses. By increasing T{sub d}, the temporal resolution and the gain of the camera are greatly improved compared with a single-gated MCP-XFC. The optimal T{sub d}, which results in the best temporal resolution, is within the electron transit time and transit time spread of the MCP. Using 250 ps, {+-}2.5 kV gating pulses, the temporal resolution of the double-gated Chevron MCPs camera is improved from 60 ps for the single-gated MCP-XFC to 37 ps for T{sub d}=350 ps. The principle is presented in detail and accompanied with a theoretic simulation and experimental results.

  20. Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals

    Directory of Open Access Journals (Sweden)

    Mudar Ahmed Abdulsattar

    2014-12-01

    Full Text Available Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm-1 compared to experimental 0.035 eV (285.2 cm-1. Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å. Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.

  1. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    Science.gov (United States)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  2. Simulation of 50-nm Gate Graphene Nanoribbon Transistors

    Directory of Open Access Journals (Sweden)

    Cedric Nanmeni Bondja

    2016-01-01

    Full Text Available An approach to simulate the steady-state and small-signal behavior of GNR MOSFETs (graphene nanoribbon metal-semiconductor-oxide field-effect transistor is presented. GNR material parameters and a method to account for the density of states of one-dimensional systems like GNRs are implemented in a commercial device simulator. This modified tool is used to calculate the current-voltage characteristics as well the cutoff frequency fT and the maximum frequency of oscillation fmax of GNR MOSFETs. Exemplarily, we consider 50-nm gate GNR MOSFETs with N = 7 armchair GNR channels and examine two transistor configurations. The first configuration is a simplified MOSFET structure with a single GNR channel as usually studied by other groups. Furthermore, and for the first time in the literature, we study in detail a transistor structure with multiple parallel GNR channels and interribbon gates. It is shown that the calculated fT of GNR MOSFETs is significantly lower than that of GFETs (FET with gapless large-area graphene channel with comparable gate length due to the mobility degradation in GNRs. On the other hand, GNR MOSFETs show much higher fmax compared to experimental GFETs due the semiconducting nature of the GNR channels and the resulting better saturation of the drain current. Finally, it is shown that the gate control in FETs with multiple parallel GNR channels is improved while the cutoff frequency is degraded compared to single-channel GNR MOSFETs due to parasitic capacitances of the interribbon gates.

  3. Value of CSF gating for T2-weighted images of the temporal lobes and brain stem

    International Nuclear Information System (INIS)

    Enzmann, D.R.; O'Donohue, J.; Griffin, C.; Rubin, J.B.; Drace, J.; Wright, A.

    1987-01-01

    Ungated and CSF-gated long TR, long TE MR images of the temporal lobes, basal ganglia, and brain stem in health and disease were quantitatively compared. Twenty-five pair of images were evaluated for the following three parameters: signal-to-noise ratio (S/N), object contrast, and resolving power. Ungated sequences were performed in the same fashion as gated sequences for TR (TR = 2,000 msec, TE = 80 msec for ungated sequences; TR = 1,500-1,800 msec, TE = 80 msec for CSF-gated sequences). In both normal and pathologic brain tissue, the CSF-gated image was superior to the ungated image in object contrast and resolving power and equivalent in S/N. The major benefit of CSF gating was elimination of phase shift images arising from the basal cisterns and the third ventricle

  4. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  5. Bubble gate for in-plane flow control.

    Science.gov (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  6. Transient radiation effects in GaAs semiconductor devices

    International Nuclear Information System (INIS)

    Chang, J.Y.; Stauber, M.; Ezzeddine, A.; Howard, J.W.; Constantine, A.G.; Becker, M.; Block, R.C.

    1988-01-01

    This paper describes an ongoing program to identify the response of GaAs devices to intense pulses of ionizing radiation. The program consists of experimental measurements at the Rensselaer Polytechnic Institute's RPI electron linear accelerator (Linac) on generic GaAs devices built by Grumman Tachonics Corporation and the analysis of these results through computer simulation with the circuit model code SPICE (including radiation effects incorporated in the variations TRISPICE and TRIGSPICE and the device model code PISCES IIB). The objective of this program is the observation of the basic response phenomena and the development of accurate simulation tools so that results of Linac irradiations tests can be understood and predicted

  7. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    Science.gov (United States)

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  8. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance

    Science.gov (United States)

    Anand, Sunny; Sarin, R. K.

    2017-02-01

    In this paper, charge-plasma-based tunnel FET is proposed by employing dual material gate with hetero gate dielectric technique and it is named hetero-dielectric dual material gate doping-less TFET (HD_DMG_DLTFET). It is compared with conventional doping-less TFET (DLTFET) and dual material gate doping-less TFET (DMG_DLTFET) on the basis of analog and RF performance. The HD_DMG_DLTFET provides better ON state current ({I}\\text{ON}=94 μ \\text{A}/μ \\text{m}), {I}\\text{ON}/{I}\\text{OFF}(≈ 1.36× {10}13), \\text{point} (≈ 3\\text{mV}/\\text{dec}) and average subthreshold slope (\\text{AV}-\\text{SS}=40.40 \\text{mV}/\\text{dec}). The proposed device offers low total gate capacitance (C gg) along with higher drive current. However, with a better transconductance (g m) and cut-off frequency (f T), the HD_DMG_DLTFET can be a good candidate for RF circuitry. The early voltage (V EA) and output conductance (g d) are also moderate for the proposed device with comparison to other devices and therefore can be a candidate for analog devices. From all these simulation results and their study, it is observed that HD_DMG_DLTFET has improved analog/RF performance compared to DLTFET and DMG_DLTFET.

  9. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  10. Epitaxial grown InP quantum dots on a GaAs buffer realized on GaP/Si(001) templates

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Walter; Wiesner, Michael; Koroknay, Elisabeth; Paul, Matthias; Jetter, Michael; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen und Research Center SCoPE, Universitaet Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2013-07-01

    The increasing necessity of higher computational capacity and security in the information technology requires originally technical solutions, which today's standard microelectronics, as their technical limits are close, can't provide anymore. One way out offers the integration of III-V semiconductor photonics with low-dimensional structures in current CMOS technology, enabling on-chip quantum optical applications, like quantum cryptography or quantum computing. Challenges in the heteroepitaxy of III-V semiconductors and silicon are the mismatches in material properties of the both systems. Defects, like dislocations and anti-phase domains (APDs), inhibit the monolithic integration of III-V semiconductor on Si. We present the growth of a thin GaAs buffer on CMOS-compatible oriented Si(001) by metal-organic vapor-phase epitaxy. To circumvent the forming APDs in the GaAs buffer a GaP on Si template (provided by NAsP{sub III/V} GmbH) was used. The dislocation density was then reduced by integrating several layers of InAs quantum dots in the GaAs buffer to bend the threading misfit dislocations. On top of this structure we grew InP quantum dots embedded in a Al{sub x}Ga{sub 1-x}InP composition and investigated the photoluminescence properties.

  11. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.

    Science.gov (United States)

    Lin, C S; Boltz, R C; Blake, J T; Nguyen, M; Talento, A; Fischer, P A; Springer, M S; Sigal, N H; Slaughter, R S; Garcia, M L

    1993-03-01

    The role that potassium channels play in human T lymphocyte activation has been investigated by using specific potassium channel probes. Charybdotoxin (ChTX), a blocker of small conductance Ca(2+)-activated potassium channels (PK,Ca) and voltage-gated potassium channels (PK,V) that are present in human T cells, inhibits the activation of these cells. ChTX blocks T cell activation induced by signals (e.g., anti-CD2, anti-CD3, ionomycin) that elicit a rise in intracellular calcium ([Ca2+]i) by preventing the elevation of [Ca2+]i in a dose-dependent manner. However, ChTX has no effect on the activation pathways (e.g., anti-CD28, interleukin 2 [IL-2]) that are independent of a rise in [Ca2+]i. In the former case, both proliferative response and lymphokine production (IL-2 and interferon gamma) are inhibited by ChTX. The inhibitory effect of ChTX can be demonstrated when added simultaneously, or up to 4 h after the addition of the stimulants. Since ChTX inhibits both PK,Ca and PK,V, we investigated which channel is responsible for these immunosuppressive effects with the use of two other peptides, noxiustoxin (NxTX) and margatoxin (MgTX), which are specific for PK,V. These studies demonstrate that, similar to ChTX, both NxTX and MgTX inhibit lymphokine production and the rise in [Ca2+]i. Taken together, these data provide evidence that blockade of PK,V affects the Ca(2+)-dependent pathways involved in T lymphocyte proliferation and lymphokine production by diminishing the rise in [Ca2+]i that occurs upon T cell activation.

  12. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  13. Mass and energy dispersive recoil spectrometry of GaAs structures

    International Nuclear Information System (INIS)

    Hult, M.

    1994-01-01

    Mass and energy dispersive Recoil Spectrometry (RS) using heavy ions at energies of about 0.2Α-0.8Α MeV has attracted much interest recently due to its potential for separately and unambiguously generating information on isotopic depth distributions. The principal advantages of mass and energy dispersive RS are that both light and heavy elements can be separately studied simultaneously and problems caused by chemical matrix effects are avoided since the technique is based on high energy nucleus-nucleus scattering. In order to elucidate reactions taking place in various GaAs structures, Time of flight-Energy (ToF-E) RS was developed to allow Ga and As to be studied separately down to depths of about 500-800 nm with a depth resolution of about 16 nm at the surface. This was shown in a study of an Al x Ga 1-x As quantum-well structure. The benefits of using ToF-E RS on GaAs structures were further demonstrated in studies of Co/GaAs and CoSi 2 /GaAs reactions, as well as in a study of the composition of MOCVD grown Al x Ga 1-x As. Most recoil measurements employed 127 I at energies of about 50-90 MeV as projectiles. The recoil detector telescope consisted of a silicon energy detector and two carbon foil time pick-off detectors separated by a variable flight length of 213.5-961 mm. The reactions taking place between various thin films and GaAs were also studied using complementary techniques such as XRD, XPS and SEM. Co was found to react extensively with GaAs, already at about 300 degrees C, making it unsuitable as a contact material. Thin films of Co and Si were found to react extensively with each other and to form CoSi 2 at 500 degrees C and above. CoSi 2 , a low resistivity silicide, turned out to be stable on GaAs, at least up to 700 degrees C. Considerable grain growth could cause problems, however, in the use of CoSi 2 -contacts. 112 refs, figs, tabs

  14. Modified energetics and growth kinetics on H-terminated GaAs (110)

    International Nuclear Information System (INIS)

    Galiana, B.; Benedicto, M.; Díez-Merino, L.; Tejedor, P.; Lorbek, S.; Hlawacek, G.; Teichert, C.

    2013-01-01

    Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As 4 , has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å 2 measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As 4 molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed

  15. Modified energetics and growth kinetics on H-terminated GaAs (110)

    Energy Technology Data Exchange (ETDEWEB)

    Galiana, B. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Departamento de Física, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Madrid (Spain); Benedicto, M.; Díez-Merino, L.; Tejedor, P. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Lorbek, S.; Hlawacek, G.; Teichert, C. [Institut für Physik, Montanuniversität Leoben, Franz Josef St., 18A-8700 Leoben (Austria)

    2013-10-28

    Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As{sub 4}, has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å{sup 2} measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As{sub 4} molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed.

  16. Surface segregation and the Al problem in GaAs quantum wells

    Science.gov (United States)

    Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Shayegan, M.; Pfeiffer, L. N.

    2018-03-01

    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped AlxGa1 -xAs /GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the AlxGa1 -xAs barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the AlxGa1 -xAs barrier beneath the QW is increased, which we attribute to the surface segregation of oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.

  17. Modeling of altered layer formation during reactive ion etching of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Mutzke, A. [Max-Planck-Institute of Plasmaphysics, EURATOM Association, D-17491 Greifswald (Germany); Rai, A., E-mail: Abha.Rai@ipp.mpg.de [Max-Planck-Institute of Plasmaphysics, EURATOM Association, D-17491 Greifswald (Germany); Schneider, R.; Angelin, E.J.; Hippler, R. [Institute of Physics, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Str.6, D-17489 Greifswald (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Experimental result showing the preferential sputtering of GaAs (150 keV Ar{sup +} and thermal O on GaAs) during reactive ion beam etching (RIBE) has been reported. Black-Right-Pointing-Pointer A model based on binary collisions (SDTrimSP) is presented to simulate RIBE. Black-Right-Pointing-Pointer The model is used to explain the reported experimental data and also the results by Grigonis and co-workers [1]. - Abstract: The binary collision based SDTrimSP model has been used to simulate the reactive ion beam etching (RIBE) of GaAs in the presence of energetic Ar ions and thermal O atoms. It includes the collisional effects, diffusive processes and chemical reactions taking place in the system. The model parameters are fitted using the experimental observations of Grigonis and co-workers [1] and validated with the experimental results obtained during the GaAs ion etching presented in this paper. A detailed analysis is presented to understand the effect of the diffusive processes and the role of O during RIBE of GaAs. It is shown how the presence of damage caused by the energetic Ar coupled with the presence of thermal O opens up chemical reaction channels which eventually leads to the preferential sputtering of Ga observed at the ion etching facility at University of Greifswald.

  18. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2015-01-01

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  19. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir

    2015-04-29

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  20. Gating-ML: XML-based gating descriptions in flow cytometry.

    Science.gov (United States)

    Spidlen, Josef; Leif, Robert C; Moore, Wayne; Roederer, Mario; Brinkman, Ryan R

    2008-12-01

    The lack of software interoperability with respect to gating due to lack of a standardized mechanism for data exchange has traditionally been a bottleneck, preventing reproducibility of flow cytometry (FCM) data analysis and the usage of multiple analytical tools. To facilitate interoperability among FCM data analysis tools, members of the International Society for the Advancement of Cytometry (ISAC) Data Standards Task Force (DSTF) have developed an XML-based mechanism to formally describe gates (Gating-ML). Gating-ML, an open specification for encoding gating, data transformations and compensation, has been adopted by the ISAC DSTF as a Candidate Recommendation. Gating-ML can facilitate exchange of gating descriptions the same way that FCS facilitated for exchange of raw FCM data. Its adoption will open new collaborative opportunities as well as possibilities for advanced analyses and methods development. The ISAC DSTF is satisfied that the standard addresses the requirements for a gating exchange standard.

  1. Strain in GaAs / InAs core-shell nanowire heterostructures grown on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik (Germany); Rieger, Torsten; Lepsa, Mihail Ion [Peter Gruenberg Institut 9, Forschungszentrum Juelich (Germany); JARA - Fundamentals of Future Information Technology (Germany)

    2012-07-01

    The growth of semiconductor nanowires (NWs) has attracted significant interest in recent years due to the possible fabrication of novel semiconductor devices for future electronic and opto-electronic applications. Compared to planar heterostructures, the nanowire approach offers an advantage regarding the possibility to form heterostructures between highly lattice mismatched systems, because the free surface of the nanowires allows to relieve the strain more efficiently. One particular way to form heterostructures in the NW geometry, is the fabrication of core-shell devices, in which a NW core is surrounded by a shell of different material. The understanding of the mutual strain between core and shell, as well as the relaxation behavior of the system are crucial for the fabrication of functional devices. In this contribution we report on first X-ray diffraction measurements of GaAs-core/InAs-shell nanowires grown on GaAs(111) by molecular beam epitaxy. Using symmetric- and grazing-incidence X-ray diffraction, the relaxation state of the InAs shell as well as the strain in the GaAs core are measured as function of the InAs shell thickness, showing a gradual relaxation behavior of the shell.

  2. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  3. Structural and electronic properties of isovalent boron atoms in GaAs

    Science.gov (United States)

    Krammel, C. M.; Nattermann, L.; Sterzer, E.; Volz, K.; Koenraad, P. M.

    2018-04-01

    Boron containing GaAs, which is grown by metal organic vapour phase epitaxy, is studied at the atomic level by cross-sectional scanning tunneling microscopy (X-STM) and spectroscopy (STS). In topographic X-STM images, three classes of B related features are identified, which are attributed to individual B atoms on substitutional Ga sites down to the second layer below the natural {110} cleavage planes. The X-STM contrast of B atoms below the surface reflects primarily the structural modification of the GaAs matrix by the small B atoms. However, B atoms in the cleavage plane have in contrast to conventional isovalent impurities, such as Al and In, a strong influence on the local electronic structure similar to donors or acceptors. STS measurements show that B in the GaAs {110} surfaces gives rise to a localized state short below the conduction band (CB) edge while in bulk GaAs, the B impurity state is resonant with the CB. The analysis of BxGa1-xAs/GaAs quantum wells reveals a good crystal quality and shows that the incorporation of B atoms in GaAs can be controlled along the [001] growth direction at the atomic level. Surprisingly, the formation of the first and fourth nearest neighbor B pairs, which are oriented along the directions, is strongly suppressed at a B concentration of 1% while the third nearest neighbor B pairs are found more than twice as often than expected for a completely spatially random pattern.

  4. A NIM (Nuclear Instrumentation Module) system conjugated with optional input for pHEMT amplifier for beta and gamma spectroscopy

    International Nuclear Information System (INIS)

    Konrad, Barbara; Lüdke, Everton

    2014-01-01

    This work presents a high speed NIM module (Nuclear Instrumentation Module) to detect radiation, gamma and muons, as part of a system for natural radiation monitoring and of extraterrestrial origin. The subsystem developed consists of a preamplifier and an integrated SCA (Single Channel Analyzer), including power supplies of ± 12 and ± 24V with derivations of +3.6 and ± 5V. The single channel analyzer board, consisting of discrete logic components, operating in window modes, normal and integral. The pulse shaping block is made up of two voltage comparators working at 120 MHz with a response time > 60 ns and a logic anticoincidence system. The preamplifier promotes a noise reduction and introduces the impedance matching between the output of anode / diode photomultiplier tubes (PMTs) and subsequent equipment, providing an input impedance of 1MΩ and output impedance of 40 to 140Ω. The shaper amplifier is non-inverting and has variable input capacitance of 1000 pF. The upper and lower thresholds of the SCA are adjustable from 0 to ± 10V, and the equipment is compatible with various types of detectors, like PMTs coupled to sodium iodide crystals. For use with liquid scintillators and photodiodes with crystals (CsI: Tl) is proposed to include a preamplifier circuit pHEMT (pseudomorphic High Electron Mobility Transistor) integrated. Yet, the system presents the possibility of applications for various purposes of gamma spectroscopy and automatic detection of events producing of beta particles

  5. SU-E-T-217: Intrinsic Respiratory Gating in Small Animal CT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Smith, M; Mistry, N [University of Maryland School of Medicine, Baltimore, MD (United States)

    2014-06-01

    Purpose: Preclinical animal models of lung cancer can provide a controlled test-bed for testing dose escalation or function-based-treatment-planning studies. However, to extract lung function, i.e. ventilation, one needs to be able to image the lung at different phases of ventilation (in-hale / ex-hale). Most respiratory-gated imaging using micro-CT involves using an external ventilator and surgical intervention limiting the utility in longitudinal studies. A new intrinsic respiratory retrospective gating method was developed and tested in mice. Methods: A fixed region of interest (ROI) that covers the diaphragm was selected on all projection images to estimate the mean intensity (M). The mean intensity depends on the projection angle and diaphragm position. A 3-point moving average (A) of consecutive M values: Mpre, Mcurrent and Mpost, was calculated to be subtracted from Mcurrent. A fixed threshold was used to enable amplitude based sorting into 4 different phases of respiration. Images at full-inhale and end-exhale phases of respiration were reconstructed using the open source OSCaR. Lung volumes estimated at the 2 phases of respiration were validated against literature values. Results: Intrinsic retrospective gating was accomplished without the use of any external breathing waveform. While projection images were acquired at 360 different angles. Only 138 and 104 projections were used to reconstruct images at full-inhale and end-exhale. This often results in non-uniform under-sampled angular projections leading to some minor streaking artifacts. The calculated expiratory, inspiratory and tidal lung volumes correlated well with the values known from the literature. Conclusion: Our initial result demonstrates an intrinsic gating method that is suitable for flat panel cone beam small animal CT systems. Reduction in streaking artifacts can be accomplished by oversampling the data or using iterative reconstruction methods. This initial experience will enable

  6. Spin transport anisotropy in (110)GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Odilon, D.D.C. Jr.; Rudolph, Joerg; Hey, Rudolf; Santos, Paulo V. [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany); Iikawa, Fernando [Universidade Estadual de Campinas, IFGW, Campinas SP (Brazil)

    2007-07-01

    Mobile piezoelectric potentials are used to coherently transport electron spins in GaAs(110) quantum wells (QW) over distances exceeding 60{mu}m. We demonstrate that the dynamics of mobile spins under external magnetic fields depends on the direction of motion in the QW plane. The weak piezoelectric fields impart a non-vanishing average velocity to the carriers, allowing for the direct observation of the carrier momentum dependence of the spin polarization dynamics. While transport along [001] direction presents high in-plane spin relaxation rates, transport along [ anti 110] shows a much weaker external field dependence due to the non-vanishing internal magnetic field. We show that the anisotropy is an intrinsic property of the underling GaAs matrix, associated with the bulk inversion asymmetry contribution to the LS-coupling.

  7. ECG-gated quiescent-interval single-shot MR angiography of the lower extremities: Initial experience at 3 T

    International Nuclear Information System (INIS)

    Knobloch, G.; Gielen, M.; Lauff, M.-T.; Romano, V.C.; Schmitt, P.; Rick, M.; Kröncke, T.J.; Huppertz, A.; Hamm, B.; Wagner, M.

    2014-01-01

    Aim: To evaluate the feasibility of unenhanced electrocardiography (ECG)-gated quiescent-interval single-shot magnetic resonance angiography (QISS-MRA) of the lower extremities at 3 T. Materials and methods: Twenty-five patients with known or suspected peripheral arterial disease underwent ECG-gated QISS-MRA and contrast-enhanced MRA (CE-MRA) at 3 T. Two independent readers performed a per-segment evaluation of the MRA datasets. Image quality was rated on a four-point scale (1 = excellent to 4 = non-diagnostic; presented as medians with interquartile range). Diagnostic performance of QISS-MRA was evaluated using CE-MRA as the reference standard. Results: QISS-MRA and CE-MRA of all patients were considered for analysis, resulting in 807 evaluated vessel segments for each MRA technique. Readers 1 and 2 rated image quality of QISS-MRA as diagnostic in 97.3% and 97% of the vessel segments, respectively. CE-MRA was rated diagnostic in all vessel segments. Image quality of the proximal vessel segments, including the infrarenal aorta, iliac arteries, and common femoral artery, was significantly lower on QISS-MRA compared to CE-MRA [image quality score across readers: 2 (1,3) versus 1 (1,1) p < 0.001]. In the more distal vessel segments, image quality of QISS-MRA was excellent and showed no significant difference compared to CE-MRA [image quality score across readers: 1 (1,1) versus 1 (1,1) p = 0.036]. Diagnostic performance of QISS-MRA was as follows (across readers): sensitivity: 87.5% (95% CI: 80.2–92.4%); specificity: 96.1% (95% CI: 93.6–97.6%); diagnostic accuracy: 94.9% (95% CI: 92.6–96.5%). Conclusions: QISS-MRA of the lower extremities is feasible at 3 T and provides high image quality, especially in the distal vessel segments

  8. Effects produced in GaAs by MeV ion bombardment

    International Nuclear Information System (INIS)

    Wie, C.R.

    1985-01-01

    The first part of this thesis presents work performed on the ionizing energy beam induced adhesion enhancement of thin (approx.500 A) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16 O, 19 F, and 35 Cl), with energies between 1 and 20 MeV. Using the Scratch test for adhesion measurement, and ESCA for chemical analysis of the film substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed that explains the experimental data on the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The second part of the thesis presents research results on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions. Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion

  9. Radiation damages and electro-conductive characteristics of Neutron-Transmutation-Doped GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Kazuo; Sato, Masataka; Sakai, Kiyohiro [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering; Okada, Moritami

    1996-04-01

    Neutron Transmutation Doping (NTD) method made it possible to do homogeneous doping of impurities and to easily control the doping level. Thus, the method has been put into practice for some materials such as silicon. Here, the annealing behavior of anti-site defects generated in neutron-irradiated GaAs was studied. Electric activations of NTD-impurities were started around 550degC in P1 and P2 radiation fields, which were coincident with the beginning of extinction of electron trapping which was caused by anti-site defects due to fast neutron radiation. The electric resistivities of GaAs in neutron radiation fields; P1, P2 and P3 changed depending with the annealing temperature. The electric resistivities of GaAs in P1 and P2 fields indicate the presence of hopping conduction through radiation damages. The resistance of GaAs irradiated in P1 was smaller by nearly 2 orders than that of the untreated control. Further, the electric activation process for NTD-impurities was investigated using ESR and Raman spectroscopy. (M.N.)

  10. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    International Nuclear Information System (INIS)

    Lajnef, M.; Chtourou, R.; Ezzaouia, H.

    2010-01-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height φ b0 parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  11. Nuclear spin warm up in bulk n -GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  12. Implementation of fault-tolerant quantum logic gates via optimal control

    International Nuclear Information System (INIS)

    Nigmatullin, R; Schirmer, S G

    2009-01-01

    The implementation of fault-tolerant quantum gates on encoded logic qubits is considered. It is shown that transversal implementation of logic gates based on simple geometric control ideas is problematic for realistic physical systems suffering from imperfections such as qubit inhomogeneity or uncontrollable interactions between qubits. However, this problem can be overcome by formulating the task as an optimal control problem and designing efficient algorithms to solve it. In particular, we can find solutions that implement all of the elementary logic gates in a fixed amount of time with limited control resources for the five-qubit stabilizer code. Most importantly, logic gates that are extremely difficult to implement using conventional techniques even for ideal systems, such as the T-gate for the five-qubit stabilizer code, do not appear to pose a problem for optimal control.

  13. Amateurism in an Age of Professionalism: An Empirical Examination of an Irish Sporting Culture: The GAA

    Directory of Open Access Journals (Sweden)

    Ian Keeler

    2013-07-01

    This research study recommends that the GAA adopt an innovative approach, through strategic decision-making, to allow the GAA to maintain its amateur ethos, and, yet, successfully compete in the professional sporting market. The strong links with the community must be both nurtured and enhanced. The GAA and Gaelic games must embrace the challenges that the branding success of foreign sports has brought. Player welfare issues for the elite players must be addressed while continuing to protect the club and its amateur structures. The study looks at the key metrics that are required to evolve the GAA. This entails not only focusing on the perceived importance of the amateur ethos to the GAA, but also developing the marketing, branding and profiling of Gaelic games to enhance the performance of an amateur sporting organization in an era of increased professionalism in sport.

  14. Dynamical properties of tertiarybutylarsine on GaAs(0 0 1) surface

    CERN Document Server

    Ozeki, M; Tanaka, Y

    2002-01-01

    The dynamical properties of tertiarybutylarsine (TBA) was studied on GaAs(0 0 1) surface using a supersonic molecular beam. The temperature and incident energy dependence of the reflected beam revealed a reaction channel of TBA on GaAs surface with a large decrease in the activation energy from 2.7 to 1.8 eV as the incident energy increases from 0.04 to 2.5 eV.

  15. Microhardness of epitaxial layers of GaAs doped with rare earths

    International Nuclear Information System (INIS)

    Kulish, U.M.; Gamidov, Z.S.; Kuznetsova, I.Yu.; Petkeeva, L.N.; Borlikova, G.V.

    1989-01-01

    Results of the study of microhardness of GaAS layer doped by certain rare earths - Gd, Tb, Dy - are presented. The assumption is made that the higher is the value of the first potential of rare earth impurity ionization (i.e. the higher is the filling of 4f-shell), the lower is the effect of the element on electric and mechanical properties of GaAs epitaxial layers

  16. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    International Nuclear Information System (INIS)

    Onojima, Norio; Kasamatsu, Akihumi; Hirose, Nobumitsu; Mimura, Takashi; Matsui, Toshiaki

    2008-01-01

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g m ) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f T compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel

  17. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    Energy Technology Data Exchange (ETDEWEB)

    Onojima, Norio [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)], E-mail: nonojima@nict.go.jp; Kasamatsu, Akihumi; Hirose, Nobumitsu [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Mimura, Takashi [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Matsui, Toshiaki [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)

    2008-07-30

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g{sub m}) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f{sub T} compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel.

  18. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Bastarrika, Gorka [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Cardiac Imaging Unit, Clinica Univ. de Navarra, Pamplona (Spain)], e-mail: bastarrika@unav.es

    2012-06-15

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 {+-} 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 {+-} 58.3 mL) with respect to ECG-gated CT (142.7 {+-} 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 {+-} 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols.

  19. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria; Bastarrika, Gorka

    2012-01-01

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 ± 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 ± 58.3 mL) with respect to ECG-gated CT (142.7 ± 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 ± 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols

  20. Doping assessment in GaAs nanowires

    DEFF Research Database (Denmark)

    Goktas, N. Isik; Fiordaliso, Elisabetta Maria; LaPierre, R. R.

    2018-01-01

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p-n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs...

  1. The influence of annealing on manganese implanted GaAs films

    International Nuclear Information System (INIS)

    Buerger, Danilo; Zhou, Shengqiang; Grenzer, Joerg; Reuther, Helfried; Anwand, Wolfgang; Gottschalch, Volker; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Besides low-temperature molecular beam epitaxy, ion implantation provides an alternative route to incorporate Mn into GaAs above the equilibrium solubility limit. Recently, Mn implanted GaAs diluted magnetic semiconductor was obtained by pulsed laser annealing. However, post-implantation annealing can lead to the formation of secondary phases. In order to compare the post-annealing effect, we investigate GaMnAs by implanting up to 6 at% Mn followed by rapid thermal and flashlamp annealing. The structural properties were probed by high resolution X-ray diffraction. The magnetic properties were determined by SQUID measurements. Auger electron spectroscopy has been used to profile the depth distribution of Mn in GaAs after implantation and annealing. We elucidate after implantation a loss of As and that during rapid thermal annealing most of the Mn diffuses towards the surface. Flash lamp annealing prevents out-diffusion, but the recrystallisation efficiency is low. Only the flash lamp annealed samples reveal weak ferromagnetism.

  2. Lateral n-p-n bipolar transistors by ion implantation into semi-insulating GaAs

    International Nuclear Information System (INIS)

    Canfield, P.; Forbes, L.

    1988-01-01

    GaAs bipolar transistors have not seen the major development effort that GaAs MESFETs have due primarily to the short minority carrier lifetimes in GaAs. The short minority carrier lifetimes require that the base region be very thin which, if done by implantation, requires that the doping be high to obtain a well defined base profile. These requirements are very difficult to achieve in GaAs and typically, if high current gain and high speed are desired for a bipolar technology, then heterostructure bipolars are the appropriate technology, although the cost of heterostructure devices will be prohibitive for some time to come. For applications requiring low current gain, more modest fabrication rules can be followed. Lateral bipolars are particularly attractive since they would be easier to fabricate than a planar bipolar or a heterojunction bipolar. Lateral bipolars do not require steps or deep contacts to make contact with the subcollector or highly doped very thin epilayers for the base region and they can draw upon the semi-insulating properties of the GaAs substrates for device isolation. Bipolar transistors are described and shown to work successfully. (author)

  3. Three-channel gated nanosecond integrator

    International Nuclear Information System (INIS)

    Tsirkel', B.I.; Martsinovskij, A.M.

    1981-01-01

    Structure and principle of operation of three-channel gated integrator for investigating the shape of periodical electric and optical signals at high background noise level are described. The integrator consists of an integrating circuit itself for each channel and a circuit of gating pulse formation. If the noise level doesn't exceed the signal, the value of storage capacity can be equal to 22 nF. The value of storage capacity must be increased in the case of a worse signal-to-noise ratio. The gating pulse formation circuit includes a comparator, a sawtooth voltage generator and a reference voltage generator. An integrator flowsheet is given. The time resolution of the system is about 50 ns, time sweep amounts to 5-2000 μs, electric signal sensitivity is about 70 μV. The pulse signal shape recording is performed with manual or automated time sweep at two-coordinate potentiometer. The light signal detection is made on the base of photomultiplier pulse counting rate record by the dynamic capacitor method, sensitivity limit amounts to about 1 pulse/s

  4. Neutron-damaged GaAs detectors for use in a Compton spectrometer

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Sale, K.E.; Wang, C.L.; Baltrusaitis, R.M.

    1992-01-01

    Detectors made of GaAs are being studies for use on the focal plane of a Compton spectrometer which measures 1-MeV to 25-MeV gamma rays with high energy resolution (1% or 100 keV, whichever is greater) and 200-ps time resolution. The detectors are GaAs chips that have been neutron-damaged to improve the time response. The detectors will be used to measure fast transient signals in the current mode. The properties of various GaAs detector configurations are being studied by bombarding sample detectors with short pulses of 4-MeV to 16-MeV electrons at the Linac Facility at EG ampersand G Energy Measurements, Inc., Santa Barbara Operations. Measurements of detector sensitivity and impulse response versus detector bias, thickness, and electron beam energy and intensity have been performed and are presented. 5 refs

  5. Basic mechanisms study for MIS solar cell structures on GaAs

    Science.gov (United States)

    Fonash, S. J.

    1978-01-01

    The solar cell structure examined is the MIS configuration on (n) GaAs. The metal room temperature oxide/(n) GaAs materials system was studied. Metals with electronegativities varying from 2.4 (Au) to 1.5 (Al) were used as the upper electrode. The thinnest metallization that did not interfere with the measurement techniques (by introducing essentially transmission line series resistance problems across a device) was used. Photovoltaic response was not optimized.

  6. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    Science.gov (United States)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  7. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lajnef, M., E-mail: Mohamed.lajnef@yahoo.fr [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia); Chtourou, R.; Ezzaouia, H. [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2010-03-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height {phi}{sub b0} parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  8. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    Science.gov (United States)

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  9. A high performance gate drive for large gate turn off thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, C.P.

    1993-01-01

    Past approaches to gate turn-off (GTO) gating are application oriented, inefficient and dissipate power even when inactive. They allow the gate to avalanch, and do not reduce GTO turn-on and turn-off losses. A new approach is proposed which will allow modular construction and adaptability to large GTOs in the 50 amp to 2000 amp range. The proposed gate driver can be used in large voltage source and current source inverters and other power converters. The approach consists of a power metal-oxide-silicon field effect transistor (MOSFET) technology gating unit, with associated logic and supervisory circuits and an isolated flyback converter as the dc power source for the gating unit. The gate driver formed by the gating unit and the flyback converter is designed for 4000 V isolation. Control and supervisory signals are exchanged between the gate driver and the remote control system via fiber optics. The gating unit has programmable front-porch current amplitude and pulse-width, programmable closed-loop controlled back-porch current, and a turn-off switch capable of supplying negative gate current at demand as a function of peak controllable forward anode current. The GTO turn-on, turn-off and gate avalanch losses are reduced to a minimum. The gate driver itself has minimum operating losses. Analysis, design and practical realization are reported. 19 refs., 54 figs., 1 tab.

  10. X-ray electron density distribution of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    Using ten X-ray structure amplitudes of strong reflections and nine weak reflections both, the valence electron and the difference electron density distribution of GaAs, are calculated. The experimental data are corrected for anomalous dispersion using a bond charge model. The calculated plots are compared with up to now published band structure-based and semiempirically calculated density plots. Taking into account the experimental data of germanium, measured on the same absolute scale, the difference density between GaAs and Ge is calculated. This exhibits the charge transfer between both the f.c.c.-sublattices as well as both, the shift and the decrease of the bond charge, quite closely connected to the theoretical results published by Baur et al. (author)

  11. Electrical properties of Ga ion beam implanted GaAs epilayer

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Okamoto, Hiroshi

    1985-01-01

    Resistivity enhancement by 5 orders or more was realized by Ga focused ion beam implantation into n + and p + GaAs epilayers. For originally n + epilayers, this resistivity enhancement is maintained after annealing as high as 800 deg C. However this enhancement disappears after annealing at above 650 deg C for p + epilayer. This property makes GaAs high resistive only in a limited area whose minimum dimension is 0.1 μm or less, and is attractive for a device fabrication process to electrically isolate integrated elements. (author)

  12. Scanning microwave microscopy applied to semiconducting GaAs structures

    Science.gov (United States)

    Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry

    2018-02-01

    A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

  13. Perubahan Sel Imun Pulpitis Akibat Biomodulasi Laser GaA1As

    Directory of Open Access Journals (Sweden)

    Nugrohowati Nugrohowati

    2015-08-01

    Full Text Available The objective of this study was to disclose the effect of GaA1As laser biomodulation on pulpitis immune response. The use of laser is still disputable, because of the biomodulation effect of laser remains unclear, particularly on immune response of pulpitis. Laser is  astressor because it produces stress wave that may cause stress on pulp. Modulation of immune system occurred in each variable of immune system component was considred to be GAS (General Adaptation Syndrome. The applied design of this research was experimental clinical trial that involved laser application on those reversible pulpitis and irreversible pulpitis. Each group consist of 10 samples. To identify biomodulation effect of 2 minutes, 5 minutes laser exposure in reversible and irreversible pulpitis, manova test was done. The different result of biomodulation effect on the control group was only indicated by the exposure of GaAIAs laser for 5 minute in reversible pulpitis on decreasing macrophage, T helper, T cytotoxic, IgM and increasing IgG.

  14. Simulated and experimental spectroscopic performance of GaAs X-ray pixel detectors

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Cola, A.; Fantacci, M.E.

    2001-01-01

    In pixel detectors, the electrode geometry affects the signal shape and therefore the spectroscopic performance of the device. This effect is enhanced in semiconductors where carrier trapping is relevant. In particular, semi insulating (SI) GaAs crystals present an incomplete charge collection due to a high concentration of deep traps in the bulk. In the last few years, SI GaAs pixel detectors have been developed as soft X-ray detectors for medical imaging applications. In this paper, we present a numerical method to evaluate the local charge collection properties of pixel detectors. A bi-dimensional description has been used to represent the detector geometry. According to recent models, the active region of a reverse biased SI GaAs detector is almost neutral. Therefore, the electrostatic potential inside a full active detector has been evaluated using the Laplace equation. A finite difference method with a fixed step orthogonal mesh has been adopted. The photon interaction point has been generated with a Monte Carlo method according to the attenuation length of a monochromatic X-ray beam in GaAs. The number of photogenerated carriers for each interaction has been extracted using a gaussian distribution. The induced signal on the collecting electrode has been calculated according to the Ramo's theorem and the trapping effect has been modeled introducing electron and hole lifetimes. The noise of the charge preamplifier have been also taken into account. A comparison between simulated and experimental X-ray spectra from a 241 Am source acquired with different GaAs pixel detectors has been carried out

  15. 30 nm T-gate enhancement-mode InAlN/AlN/GaN HEMT on SiC substrates for future high power RF applications

    Science.gov (United States)

    Murugapandiyan, P.; Ravimaran, S.; William, J.

    2017-08-01

    The DC and RF performance of 30 nm gate length enhancement mode (E-mode) InAlN/AlN/GaN high electron mobility transistor (HEMT) on SiC substrate with heavily doped source and drain region have been investigated using the Synopsys TCAD tool. The proposed device has the features of a recessed T-gate structure, InGaN back barrier and Al2O3 passivated device surface. The proposed HEMT exhibits a maximum drain current density of 2.1 A/mm, transconductance {g}{{m}} of 1050 mS/mm, current gain cut-off frequency {f}{{t}} of 350 GHz and power gain cut-off frequency {f}\\max of 340 GHz. At room temperature the measured carrier mobility (μ), sheet charge carrier density ({n}{{s}}) and breakdown voltage are 1580 cm2/(V \\cdot s), 1.9× {10}13 {{cm}}-2, and 10.7 V respectively. The superlatives of the proposed HEMTs are bewitching competitor or future sub-millimeter wave high power RF VLSI circuit applications.

  16. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  17. Resistance Fluctuations in GaAs Nanowire Grids

    Directory of Open Access Journals (Sweden)

    Ivan Marasović

    2014-01-01

    Full Text Available We present a numerical study on resistance fluctuations in a series of nanowire-based grids. Each grid is made of GaAs nanowires arranged in parallel with metallic contacts crossing all nanowires perpendicularly. Electrical properties of GaAs nanowires known from previous experimental research are used as input parameters in the simulation procedure. Due to the nonhomogeneous doping, the resistivity changes along nanowire. Allowing two possible nanowire orientations (“upwards” or “downwards”, the resulting grid is partially disordered in vertical direction which causes resistance fluctuations. The system is modeled using a two-dimensional random resistor network. Transfer-matrix computation algorithm is used to calculate the total network resistance. It is found that probability density function (PDF of resistance fluctuations for a series of nanowire grids changes from Gaussian behavior towards the Bramwell-Holdsworth-Pinton distribution when both nanowire orientations are equally represented in the grid.

  18. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  19. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang; Li, Guoqiang

    2014-01-01

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In x Ga 1−x As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In x Ga 1−x As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In x Ga 1−x As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In x Ga 1−x As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In x Ga 1−x As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In x Ga 1−x As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates

  20. Accelerated GaAs growth through MOVPE for low-cost PV applications

    Science.gov (United States)

    Ubukata, Akinori; Sodabanlu, Hassanet; Watanabe, Kentaroh; Koseki, Shuichi; Yano, Yoshiki; Tabuchi, Toshiya; Sugaya, Takeyoshi; Matsumoto, Koh; Nakano, Yoshiaki; Sugiyama, Masakazu

    2018-05-01

    The high growth rate of epitaxial GaAs was investigated using a novel horizontal metalorganic vapor phase epitaxy (MOVPE) reactor, from the point of view of realizing low-cost photovoltaic (PV) solar cells. The GaAs growth rate exhibited an approximately linear relationship with the amount of trimethylgalium (TMGa) supplied, up to a rate of 90 μm/h. The distribution of growth rate was observed for a two-inch wafer, along the flow direction, and the normalized profile of the distribution was found to be independent of the precursor input, from 20 to 70 μm/h. These tendencies indicated that significant parasitic prereaction did not occur in the gaseous phase, for this range of growth rate. GaAs p-n single-junction solar cells were successfully fabricated at growth rates of 20, 60, and 80 μm/h. The conversion efficiency of the cell grown at 80 μm/h was comparable to that of the 20 μm/h cell, indicating the good quality and properties of GaAs. The epitaxial growth exhibited good uniformity, as evidenced by the uniformity of the cell performance across the wafer, from the center to the edge. The result indicated the potential of high-throughput MOVPE for low-cost production, not only for PV devices but also for other semiconductor applications.

  1. Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Fedorov A

    2010-01-01

    Full Text Available Abstract We present the molecular beam epitaxy fabrication and optical properties of complex GaAs nanostructures by droplet epitaxy: concentric triple quantum rings. A significant difference was found between the volumes of the original droplets and the final GaAs structures. By means of atomic force microscopy and photoluminescence spectroscopy, we found that a thin GaAs quantum well-like layer is developed all over the substrate during the growth interruption times, caused by the migration of Ga in a low As background.

  2. High performance top-gated indium–zinc–oxide thin film transistors with in-situ formed HfO{sub 2} gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang, E-mail: yang_song@brown.edu [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Zaslavsky, A. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 (United States); Paine, D.C. [School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 (United States)

    2016-09-01

    We report on top-gated indium–zinc–oxide (IZO) thin film transistors (TFTs) with an in-situ formed HfO{sub 2} gate dielectric insulator. Building on our previous demonstration of high-performance IZO TFTs with Al{sub 2}O{sub 3}/HfO{sub 2} gate dielectric, we now report on a one-step process, in which Hf is evaporated onto the 20 nm thick IZO channel, forming a partially oxidized HfO{sub x} layer, without any additional insulator in-between. After annealing in air at 300 °C, the in-situ reaction between partially oxidized Hf and IZO forms a high quality HfO{sub 2} gate insulator with a low interface trapped charge density N{sub TC} ~ 2.3 × 10{sup 11} cm{sup −2} and acceptably low gate leakage < 3 × 10{sup −7} A/cm{sup 2} at gate voltage V{sub G} = 1 V. The annealed TFTs with gate length L{sub G} = 50 μm have high mobility ~ 95 cm{sup 2}/V ∙ s (determined via the Y-function technique), high on/off ratio ~ 10{sup 7}, near-zero threshold voltage V{sub T} = − 0.02 V, and a subthreshold swing of 0.062 V/decade, near the theoretical limit. The on-current of our proof-of-concept TFTs is relatively low, but can be improved by reducing L{sub G}, indicating that high-performance top-gated HfO{sub 2}-isolated IZO TFTs can be fabricated using a single-step in-situ dielectric formation approach. - Highlights: • High-performance indium–zinc–oxide (IZO) thin film transistors (TFTs). • Single-step in-situ dielectric formation approach simplifies fabrication process. • During anneal, reaction between HfO{sub x} and IZO channel forms a high quality HfO{sub 2} layer. • Gate insulator HfO{sub 2} shows low interface trapped charge and small gate leakage. • TFTs have high mobility, near-zero threshold voltage, and a low subthreshold swing.

  3. Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR.

    Science.gov (United States)

    Alazi, Ebru; Knetsch, Tim; Di Falco, Marcos; Reid, Ian D; Arentshorst, Mark; Visser, Jaap; Tsang, Adrian; Ram, Arthur F J

    2018-03-01

    The transcription factor GaaR is needed for the expression of genes required for pectin degradation and transport and catabolism of the main degradation product, D-galacturonic acid (GA) in Aspergillus niger. In this study, we used the strong constitutive gpdA promoter of Aspergillus nidulans to overexpress gaaR in A. niger. Overexpression of gaaR resulted in an increased transcription of the genes encoding pectinases, (putative) GA transporters, and catabolic pathway enzymes even under non-inducing conditions, i.e., in the absence of GA. Exoproteome analysis of a strain overexpressing gaaR showed that this strain secretes highly elevated levels of pectinases when grown in fructose. The genes encoding exo-polygalacturonases were found to be subjected to CreA-mediated carbon catabolite repression, even in the presence of fructose. Deletion of creA in the strain overexpressing gaaR resulted in a further increase in pectinase production in fructose. We showed that GaaR localizes mainly in the nucleus regardless of the presence of an inducer, and that overexpression of gaaR leads to an increased concentration of GaaR in the nucleus.

  4. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-01-01

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  5. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  6. Nanoscale footprints of self-running gallium droplets on GaAs surface.

    Directory of Open Access Journals (Sweden)

    Jiang Wu

    Full Text Available In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001 surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems.

  7. Polaron binding energy and effective mass in the GaAs film

    International Nuclear Information System (INIS)

    Wu Zhenhua; Yan Liangxing; Tian Qiang; Li Hua; Liu Bingcan

    2012-01-01

    The binding energy and effective mass of a polaron in a GaAs film deposited on the Al 0.3 Ga 0.7 As substrate are studied theoretically by using the fractional-dimensional space approach. Our calculations show that the polaron binding energy and mass shift decrease monotonously with increasing the film thickness. For the film thicknesses with L w ≤ 70Å and the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness influence the polaron binding energy and mass shift in the GaAs film. The polaron binding energy and mass shift increase monotonously with increasing the substrate thickness. For the film thickness with L w ≥ 70Å or the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness have no significant influence on the polaron binding energy and mass shift in the GaAs film deposited on the Al 0.3 Ga 0.7 As substrate.

  8. Sulfidic photochemical passivation of GaAs surfaces in alcoholic solutions

    International Nuclear Information System (INIS)

    Simonsmeier, T.; Ivankov, A.; Bauhofer, W.

    2005-01-01

    We report on a remarkable enhancement of the passivation effect of sulfidic solutions through illumination with above band gap light. Luminescence measurements on GaAs surfaces which have been illuminated during chemical passivation reveal in comparison to nonilluminated samples a further reduction of their surface density of states as well as a significantly increased stability of the passivation. Investigations with photoelectron spectroscopy show that illumination leads to a nearly complete removal of oxides on the surface. Measurements on Schottky diodes which have been manufactured with photochemically passivated GaAs indicate a noticeable decrease in band bending and a depinning of the Fermi level

  9. Pulse GaAs field transistor amplifier with subnanosecond time transient

    International Nuclear Information System (INIS)

    Sidnev, A.N.

    1987-01-01

    Pulse amplifier on fast field effect GaAs transistors with Schottky barrier is described. The amplifier contains four cascades, the first three of which are made on combined transistors on the common-drain circuit. The last cascade is made on high-power field effect GaAs transistor for coordination with 50 ohm load. The amplifier operates within the range of input signals from 0.5 up to 100 mV with repetition frequency up to 16 Hz, The gain of the amplifier is ≅ 20 dB. The setting time at output pulses amplitude up to 1 V constitutes ∼ 0.2 ns

  10. Modeling and Design of Graphene GaAs Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Yawei Kuang

    2015-01-01

    Full Text Available Graphene based GaAs junction solar cell is modeled and investigated by Silvaco TCAD tools. The photovoltaic behaviors have been investigated considering structure and process parameters such as substrate thickness, dependence between graphene work function and transmittance, and n-type doping concentration in GaAs. The results show that the most effective region for photo photogenerated carriers locates very close to the interface under light illumination. Comprehensive technological design for junction yields a significant improvement of power conversion efficiency from 0.772% to 2.218%. These results are in good agreement with the reported experimental work.

  11. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Directory of Open Access Journals (Sweden)

    V. Shutthanandan

    2012-06-01

    Full Text Available Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power free electron lasers (FEL. Photocathode quantum efficiency degradation is due to residual gases in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include helium ion microscopy, Rutherford backscattering spectrometry (RBS, atomic force microscopy, and secondary ion mass spectrometry (SIMS. In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the continuous electron beam accelerator facility (CEBAF photoinjector and one unused, were also analyzed using transmission electron microscopy (TEM and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but show evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements, the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  12. Solvent-mediated self-assembly of hexadecanethiol on GaAs (0 0 1)

    International Nuclear Information System (INIS)

    Huang, Xiaohuan; Dubowski, Jan J.

    2014-01-01

    Graphical abstract: - Highlights: • Outstanding quality hexadecanethiol self-assembled monolayers (HDT SAM) produced on GaAs (0 0 1) due to the mediated role of water in an alcoholic environment. • HDT SAM formed in chloroform exhibit excellent electronic passivation properties in contrast to their structural characteristics. • Low dielectric constant solvents do not necessary provide conditions advantageous for the formation of high quality alkanethiol SAM. • Photoluminescence emitting materials allow to investigate the mechanisms of both electronic and chemical passivation and, thus, they are an excellent platform for studying the mechanisms of SAM formation on solid substrates. - Abstract: We have investigated the influence of solvents on the quality of hexadecanethiol (HDT) self-assembled monolayers (SAM) formed on GaAs (0 0 1) in chloroform, ethanol and ethanol/water 1:1 characterized by their increasing dielectric constants from 4.8 (chloroform) to 24.5 (ethanol) and water (80.1). Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) data show that the incubation in ethanol/water 1:1 solution creates conditions favouring inter-molecular interaction leading to the formation of an outstanding quality HDT SAM on GaAs (0 0 1). Incubation in low-dielectric constant solvents is not offering advantageous conditions for growing HDT SAM on GaAs. The chloroform environment, while weakening the thiol–thiol interaction, induces the oxidation of the GaAs surface and, in particular, formation of Ga 2 O 3 . This reduces the concentration of surface defects responsible for non-radiative recombination and leads to an enhanced photoluminescence emission, despite the fact that HDT SAM formed in chloroform are highly disordered, exhibiting the worst chemical passivation among the investigated samples

  13. Single-Crystal Y2O3 Epitaxially on GaAs(001 and (111 Using Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Y. H. Lin

    2015-10-01

    Full Text Available Single-crystal atomic-layer-deposited (ALD Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films 2 nm thick were epitaxially grown on molecular beam epitaxy (MBE GaAs(001-4 \\(\\times\\ 6 and GaAs(111A-2 \\(\\times\\ 2 reconstructed surfaces. The in-plane epitaxy between the ALD-oxide films and GaAs was observed using \\textit{in-situ} reflection high-energy electron diffraction in our uniquely designed MBE/ALD multi-chamber system. More detailed studies on the crystallography of the hetero-structures were carried out using high-resolution synchrotron radiation X-ray diffraction. When deposited on GaAs(001, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are of a cubic phase and have (110 as the film normal, with the orientation relationship being determined: Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(110\\[\\(001\\][\\(\\overline{1}10\\]//GaAs(\\(001\\[\\(110\\][\\(1\\overline{1}0\\]. On GaAs(\\(111\\A, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are also of a cubic phase with (\\(111\\ as the film normal, having the orientation relationship of Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(111\\[\\(2\\overline{1}\\overline{1}\\] [\\(01\\overline{1}\\]//GaAs (\\(111\\ [\\(\\overline{2}11\\][\\(0\\overline{1}1\\]. The relevant orientation for the present/future integrated circuit platform is (\\(001\\. The ALD-Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\/GaAs(\\(001\\-4 \\(\\times\\ 6 has shown excellent electrical properties. These include small frequency dispersion in the capacitance-voltage CV curves at accumulation of ~7% and ~14% for the respective p- and n-type samples with the measured frequencies of 1 MHz to 100 Hz. The interfacial trap density (Dit is low of ~10\\(^{12}\\ cm\\(^{−2}\\eV\\(^{−1}\\ as extracted from measured quasi-static CVs. The frequency dispersion at accumulation and the D\\(_{it}\\ are the lowest ever achieved among all the ALD-oxides on GaAs(\\(001\\.

  14. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    Science.gov (United States)

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  15. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    Science.gov (United States)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  16. Experimental studies of the charge limit phenomenon in NEA GaAs photocathodes

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.K.; Aoyagi, H.; Clendenin, J.E.; Frisch, J.C.; Mulhollan, G.A.; Saez, P.J.; Schultz, D.C.; Turner, J.L.

    1994-06-01

    Negative electron affinity GaAs photocathodes have been in continuous use at SLAC for generating polarized electron beams since early 1992. If the quantum efficiency of a GaAs cathode is below a critical value, the maximum photoemitted charge with photons of energies close to the band gap in a 2-ns pulse is found to be limited by the intrinsic properties of the cathode instead of by the space charge limit. We have studied this novel charge limit phenomenon in a variety of GaAs photocathodes of different structures and doping densities. We find that the charge limit is strongly dependent on the cathode's quantum efficiency and the extraction electric field, and to a lesser degree on the excitation laser wavelength. In addition, we show that the temporal behavior of the charge limit depends critically on the doping density

  17. Coalescence of GaAs on (001) Si nano-trenches based on three-stage epitaxial lateral overgrowth

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunrui; Wang, Jun, E-mail: wangjun12@bupt.edu.cn; Hu, Haiyang; Wang, Qi; Huang, Yongqing; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-05-18

    The coalescence of selective area grown GaAs regions has been performed on patterned 1.8 μm GaAs buffer layer on Si via metal-organic chemical vapor deposition. We propose a promising method of three-stage epitaxial lateral overgrowth (ELO) to achieve uniform coalescence and flat surface. Rough surface caused by the coalescence of different growth fronts is smoothened by this method. Low root-mean-square surface roughness of 6.29 nm has been obtained on a 410-nm-thick coalesced ELO GaAs layer. Cross-sectional transmission electron microscope study shows that the coalescence of different growth fronts will induce some new dislocations. However, the coalescence-induced dislocations tend to mutually annihilate and only a small part of them reach the GaAs surface. High optical quality of the ELO GaAs layer has been confirmed by low temperature (77 K) photoluminescence measurements. This research promises a very large scale integration platform for the monolithic integration of GaAs-based device on Si.

  18. Growth-temperature- and thermal-anneal-induced crystalline reorientation of aluminum on GaAs (100) grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Xiang, N.

    2007-01-01

    The authors investigated the growth of Al thin films on GaAs (100) substrates by molecular beam epitaxy. It is found that the growth at 550 degree sign C results in a texture that consists of (100)Al[010](parallel sign)(100)GaAs[011] and (100)Al[010](parallel sign)(100)GaAs[010] rotated 45 degree sign with respect to each other, while the growth at 300 degree sign C leads to a mixture phase of (100)Al[010](parallel sign)(100)GaAs[011] and (110)Al[001](parallel sign)(100)GaAs[011]. In situ annealing of the Al film grown at 300 degree sign C causes a reorientation of the crystalline from (100)Al[010](parallel sign)(100)GaAs[011] to (110)Al[001](parallel sign)(100)GaAs[011]. The grain sizes of the Al film are increased by the increased growth temperature and in situ annealing; the ratio of the exposed to the covered surface is not changed significantly by changing the growth temperature but decreased by annealing; and the small islands in between the large ones are removed by annealing. These observations are explained based on island migration and coalescence

  19. Self-assisted GaAs nanowires with selectable number density on Silicon without oxide layer

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Esposito, L; Sanguinetti, S; Frigeri, C; Fedorov, A; Geelhaar, L

    2014-01-01

    We present the growth of self-assisted GaAs nanowires (NWs) with selectable number density on bare Si(1 1 1), not covered by the silicon oxide. We determine the number density of the NWs by initially self-assembling GaAs islands on whose top a single NW is nucleated. The number density of the initial GaAs base islands can be tuned by droplet epitaxy and the same degree of control is then transferred to the NWs. This procedure is completely performed during a single growth in an ultra-high vacuum environment and requires neither an oxide layer covering the substrate, nor any pre-patterning technique. (paper)

  20. Low energy Ar ion bombardment damage of Si, GaAs, and InP surfaces

    International Nuclear Information System (INIS)

    Williams, R.S.

    1982-01-01

    Argon bombardment damage to (100) surfaces of Si, GaAs, and InP for sputter ion-gun potentials of 1, 2, and 3 kilovolts was studied using Rutherford backscattering. Initial damage rates and saturation damage levels were determined. Bombardment damage sensitivity increased for the sequence Si, GaAs, and InP. Saturation damage levels for Si and GaAs correspond reasonably to LSS projected range plus standard deviation estimates; damage to InP exceeded this level significantly. For an ion-gun potential of 3 keV, the initial sputter yield of P from an InP surface exceeded the sputter yield of In by four atoms per incident Ar projectile. (author)

  1. Design Principles of A Sigma-delta Flux-gate Magnetometer

    Science.gov (United States)

    Magnes, W.; Valavanoglou, A.; Pierce, D.; Frank, A.; Schwingenschuh, K.

    A state-of-the-art flux-gate magnetometer is characterised by magnetic field resolution of several pT in a wide frequency range, low power consumption, low weight and high robustness. Therefore, flux-gate magnetometers are frequently used for ground-based Earth's field observation as well as for measurements aboard scientific space missions. But both traditional analogue and recently developed digital flux-gate magnetometers need low power and high-resolution analogue-to-digital converters for signal quan- tization. The disadvantage of such converters is the low radiation hardness. This fact has led to the idea of combining a traditional analogue flux-gate regulation circuit with that of a discretely realized sigma-delta converter in order to get a radiation hard and further miniaturized magnetometer. The name sigma-delta converter is derived from putting an integrator in front of a 1-bit delta modulator which forms the sigma-delta loop. It is followed by a digital decimation filter realized in a field-programmable gate array (FPGA). The flux-gate regulation and the sigma-delta loop are quite similar in the way of realizing the integrator and feedback circuit, which makes it easy to com- bine these two systems. The presented talk deals with the design principles and the results of a first bread board model.

  2. Analysis on RF parameters of nanoscale tunneling field-effect transistor based on InAs/InGaAs/InP heterojunctions.

    Science.gov (United States)

    Woo, Sung Yun; Yoon, Young Jun; Cho, Seongjae; Lee, Jung-Hee; Kang, In Man

    2013-12-01

    Tunneling field-effect transistors (TFETs) based on the quantum mechanical band-to-band tunneling (BTBT) have advantages such as low off-current and subthreshold swing (S) below 60 mV/dec at room temperature. For these reasons, TFETs are considered as promising devices for low standby power (LSTP) applications. On the other hand, silicon (Si)-based TFETs have a drawback in low on-state current (lon) drivability. In this work, we suggest a gate-all-around (GAA) TFET based on compound semiconductors to improve device performances. The proposed device materials consist of InAs (source), InGaAs (channel), and InP (drain). According to the composition (x) of Ga in In1-xGa(x)As layer of the channel region, simulated devices have been investigated in terms of both direct-current (DC) and RF parameters including tunneling rate, transconductance (g(m)), gate capacitance (Cg), intrinsic delay time (tau), cut-off frequency (fT) and maximum oscillation frequency (f(max)). In this study, the obtained maximum values of tau, fT, and f(max) for GAA InAs/In0.9Ga0.1As/InP heterojunction TFET were 21.2 fs, 7 THz, and 18 THz, respectively.

  3. Plasma treatment of porous GaAs surface formed by electrochemical etching method: Characterization and properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2008-12-01

    Porous GaAs samples were formed by electrochemical anodic etching of Zn doped p-type GaAs (100) wafers at different etching parameters (time, mode of applied voltage or current and electrolyte). The effect of etching parameters and plasma surface treatment on the optical properties of the prepared sample has been investigated by using room temperature photoluminescence (PL), Raman spectroscopy and reflectance spectroscopic measurements in the range (400-800 nm). The surface morphological changes were studied by using atomic force microscope. It has been found that etching parameters can be controlled to produce a considerably low optical reflectivity porous GaAs layer, attractive for use in solar cells. In addition, it has been observed that the deposition of plasma polymerized HMDSO thin film on porous GaAs surface can be utilized to produce a surface with novel optical properties interesting for solar cells and optoelectronic devices. (author)

  4. Effect of AlSb quantum dots on efficiency of GaAs solar cell (Conference Presentation)

    Science.gov (United States)

    Mansoori, Ahmad; Addamane, Sadhvikas J.; Renteria, Emma J.; Shima, Darryl M.; Hains, Christopher P.; Balakrishnan, Ganesh

    2016-09-01

    Quantum Dots (QDs) have a broad applications in science and specifically in solar cell. Many research groups show that by adding QDs with lower bandgap respect to host material, the overall absorption of sun spectrum coverage will increase. Here, we propose using QDs with higher band gap respect to host material to improve efficiency of solar cell by improving quantum efficiency. GaAs solar cells have the highest efficiency in single junction solar cells. However, the absorption of GaAs is not good enough in wavelength lower than 550nm. AlSb can absorb shorter wavelength with higher absorption coefficient and also recombination rate should be lower because of higher bandgap of AlSb respect to GaAs. We embed AlSb QDs in GaAs solar cells and results show slight improvement in quantum efficiency and also in overall efficiency. Coverage of AlSb QDs has a direct impact on quality of AlSb QDs and efficiency of cell. In the higher coverage, intermixing between GaAs and AlSb causes to shift bandgap to lower value (having AlGaSb QDs instead of pure AlSb QDs). This intermixing decrease the Voc and overall efficiency of cell. In lower coverage, AlSb can survive from intermixing and overall performance of cell improves. Optimizing growth condition of AlSb QDs is a key point for this work. By using AlSb QDs, we can decrease the thickness of active layer of GaAs solar cells and have a thinner solar cell.

  5. Visualization of hypertrophied papillary muscle mimicking left ventricular mass on gated blood pool and T1-201 myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Bunko, H.; Nakajima, K.; Tonami, N.; Asanoi, H.; Hisada, K.

    1981-01-01

    A sixty-year old man with acute myocardial infarction was incidentally found to have a hypertrophied anterolateral papillary muscle (ALPPM) of the left ventricle on gated blood pool (GBP) and T1-201 myocardial perfusion images. Hypertrophy of the ALPPM was visualized as a movable defect in the lateral basal area on GBP imaging throughout the cardiac cycle and on the TI-201 study as a radionuclide accumulating structure, consistent with the defect in the GBP. A combination of these findings may suggest the presence of a hypertrophied papillary muscle of the left ventricle

  6. ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZER

    2003-03-01

    Full Text Available In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a firstorder differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steadystate values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.

  7. Structural and morphological TEM characterization of GaAs based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Marcello

    2012-02-03

    The question of a structural and morphological characterization of GaAs based nanowires is the research interest of this thesis. For this purpose standard and analytical transmission electron microscopy techniques were employed. New investigation methodologies are introduced in order to obtain a reliable interpretation of the results. The principal motivation on developing a new investigation method is the necessity to relate the results of crystal structure and morphology characterizations to microscopic and NW-specific parameters and not to macroscopic and general growth parameters. This allows a reliable comparison of NW characteristics and enhances the comprehension of their growth mechanism.The analysis of the results on crystal structure investigations, assuming this new perspective, delivers the fundamental finding that the axial growth of Au-assisted GaAs NWs can change in a pseudo Ga-assisted growth due to a non steady-state regime of the Ga accumulation process in the liquid droplet. The attempt to associate the observed crystal structures to one of these two growth modes reveals that zinc blende segments are most probably generated when a pseudo Ga-assisted growth occurs. This experimental evidence is in accordance with investigations developed by Glas et al. and Spirkoska et al. and with the current understanding of the NW growth mechanism and unifies the interpretation of catalytic growth of GaAs NWs. A Mn doped GaAs shell deposited at low temperature on core GaAs NWs is characterized for the first time. The growth is found to be epitaxial and to confer the quality of the core crystal to the shell crystal. As a consequence a high stacking fault density of the core NW limits the temperature of the shell growth due to the formation of clusters. Cross sections of (Ga,Mn)As shells are investigated. Simple kinetic and thermodynamical considerations lead to the conclusion of morphological instability of the low temperature radial growth. Analytical

  8. Sulfur passivation of semi-insulating GaAs: Transition from Coulomb blockade to weak localization regime

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru [Ioffe Institute (Russian Federation); Chaikina, E. I. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Division de Fisica Aplicada (Mexico); Danilovskii, E. Yu.; Gets, D. S.; Klyachkin, L. E.; L’vova, T. V.; Malyarenko, A. M. [Ioffe Institute (Russian Federation)

    2016-04-15

    The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.

  9. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet-...

  10. AlGaN/GaN high-electron-mobility transistors with transparent gates by Al-doped ZnO

    International Nuclear Information System (INIS)

    Wang Chong; He Yun-Long; Zheng Xue-Feng; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2013-01-01

    AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current—gain cutoff frequency (f T ) of 10 GHz and a power gain cutoff frequency (f max ) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C—V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C—V dual sweep

  11. Radiation-induced effects in GaAs thin-film optical (10.6 μm) waveguides

    International Nuclear Information System (INIS)

    Share, S.; Epstein, A.S.; Monse, T.; Chang, W.S.C.; Chang, M.S.

    1976-01-01

    Two types of GaAs thin-film optical waveguide structures operating at 10.6 μm were examined before and after exposure to neutron and γ irradiation. The attenuation rate of the GaAs/n + -GaAs structure was particularly sensitive to neutron irradiation of 10 13 cm -2 and exhibited postirradiation annealing at 150 0 C. This is in contrast to the relative neutron irradiation insensitivity of a GaAs/GaAs 1 /sub -//subx/P/subx//n + -GaAs structure. The effect of γ radiation is less pronounced for both structures. The radiation-induced changes are discussed in terms of free-carrier absorption, index of refraction, scattering centers, and absorption by complexes

  12. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Mario, Lorenzo [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Turchini, Stefano, E-mail: stefano.turchini@cnr.it [ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Zamborlini, Giovanni; Feyer, Vitaly [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Tian, Lin [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Schneider, Claus M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany); Rubini, Silvia [IOM-CNR, TASC Laboratory, Basovizza 34149, Trieste (Italy); Martelli, Faustino, E-mail: faustino.martelli@cnr.it [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-11-15

    Highlights: • The Schottky barrier at the interface between Cu and GaAs nanowires was measured. • Individual nanowires were investigated by X-ray Photoemission Microscopy. • The Schottky barrier at different positions along the nanowire was evaluated. - Abstract: We present measurements of the Schottky barrier height on individual GaAs nanowires by means of x-ray photoelectron emission microscopy (XPEEM). Values of 0.73 and 0.51 eV, averaged over the entire wires, were measured on Cu-covered n-doped and p-doped GaAs nanowires, respectively, in agreement with results obtained on bulk material. Our measurements show that XPEEM can become a feasible and reliable investigation tool of interface formation at the nanoscale and pave the way towards the study of size-dependent effects on semiconductor-based structures.

  13. Doped Aluminum Gallium Arsenide (AlGaAs)/Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) Fabrication

    Science.gov (United States)

    2016-09-27

    it as-grown and it densifies as the H leaves when annealed above approximately 500 °C. This densification causes the film to contract, becoming...tensile. The final deposition recipe shown in the Appendix, Section 2 was found after numerous trials and results in a minimum between compressive...marks b) ULVAC etch: 500 -W ICP, 50-W RIE, 4 mT, 16-sccm BCl3, 4-sccm Ar, 12 s (~50 nm)  GaAs etches at 7.54 nm/s after 6-s etch delay. PR etches at

  14. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata

    Directory of Open Access Journals (Sweden)

    Ali Newaz Bahar

    2017-02-01

    Full Text Available This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  15. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.

    Science.gov (United States)

    Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul

    2017-02-01

    This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T =2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  16. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  17. Refined staging in hilar bronchial neoplasms with ECG-gated multislice-CT. Case report

    International Nuclear Information System (INIS)

    Ohlmann, S.; Daliri, A.; Froelich, J.J.; Nowak, R.; Michulla, R.

    2008-01-01

    Equivocal initial CT-based staging in 2 patients with hilar bronchial neoplasms was reassessed with retrospective ECG-gated Multislice-CT and optimized examination parameters prior to definition of treatment. An initially suspected irresectable T 4 tumor with mediastinal infiltration was downstaged to T 2 in one case, while tumor infiltration into the left atrium could be confirmed in the other case. In doubtful conditions, ECG-gated multislice CT with optimized examination parameters may be helpful for refined staging in patients with hilar bronchial neoplasma, thus possibly influencing treatment strategies. (orig.)

  18. Charge collection efficiency in SI GaAs grown from melts with variable composition as a material for solar neutrino detection

    CERN Document Server

    Verbitskaya, E; Ivanov, A; Strokan, N; Vasilev, V; Markov, A; Polyakov, A; Gavrin, V; Kozlova, Y; Veretenkin, E; Bowles, T J

    2000-01-01

    The results on electrical characteristics and charge collection efficiency in the detectors from bulk SI GaAs developed as a material for solar neutrino spectroscopy are presented. SI GaAs crystals were grown by the Czochralski method. The changes in the stoichiometric components are permanently controlled. It is shown that the performance of GaAs p sup + -i-n sup + structures provided the range of operational reverse voltage up to 1 kV. Measurement of deep level spectra and their analysis reveal the dominant deep levels - hole traps E sub v +0.51 and +0.075 eV in GaAs grown from stoichiometric and nonstoichiometric melts, respectively. Investigation of carrier transport properties and bulk homogeneity evinced in charge collection efficiency has shown advantageous results for SI GaAs grown from stoichiometric melt. The reduction of carrier transport parameters and charge collection efficiency in GaAs grown from nonstoichiometric melt is analyzed taking into consideration formation of the hole trap E sub v +0....

  19. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates

    International Nuclear Information System (INIS)

    Li Yanbo; Zhang Yang; Zhang Yuwei; Wang Baoqiang; Zhu Zhanping; Zeng Yiping

    2012-01-01

    We report on the growth of GaSb layers on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). We investigate the influence of the GaAs substrate surface treatment, growth temperature, and V/III flux ratios on the crystal quality and the surface morphology of GaSb epilayers. Comparing to Ga-rich GaAs surface preparation, the Sb-rich GaAs surface preparation can promote the growth of higher-quality GaSb material. It is found that the crystal quality, electrical properties, and surface morphology of the GaSb epilayers are highly dependent on the growth temperature, and Sb/Ga flux ratios. Under the optimized growth conditions, we demonstrate the epitaxial growth of high quality GaSb layers on GaAs substrates. The p-type nature of the unintentionally doped GaSb is studied and from the growth conditions dependence of the hole concentrations of the GaSb, we deduce that the main native acceptor in the GaSb is the Ga antisite (Ga Sb ) defect.

  20. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  1. GaAs nanowire array solar cells with axial p-i-n junctions.

    Science.gov (United States)

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  2. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    NARCIS (Netherlands)

    Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2016-01-01

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the

  3. Direct Growth of High-Quality InP Layers on GaAs Substrates by MOCVD

    Directory of Open Access Journals (Sweden)

    K. F. Yarn

    2003-01-01

    group V partial pressure, growth rate and V/III ratios. A mirror-like, uniform surface and high crystal quality of the metamorphic buffer layer directly grown on a GaAs substrate can be achieved. Finally, to investigate the performance of the metamorphic microwave devices, we also fabricate the InAlAs/InGaAs metamorphic HEMT on GaAs substrates.

  4. An ultra-high-speed direct digital frequency synthesizer implemented in GaAs HBT technology

    International Nuclear Information System (INIS)

    Chen Gaopeng; Wu Danyu; Jin Zhi; Liu Xinyu

    2010-01-01

    This paper presents a 10-GHz 8-bit direct digital synthesizer (DDS) microwave monolithic integrated circuit implemented in 1 μm GaAs HBT technology. The DDS takes a double-edge-trigger (DET) 8-stage pipeline accumulator with sine-weighted DAC-based ROM-less architecture, which can maximize the utilization ratio of the GaAs HBT's high-speed potential. With an output frequency up to 5 GHz, the DDS gives an average spurious free dynamic range of 23.24 dBc through the first Nyquist band, and consumes 2.4 W of DC power from a single -4.6 V DC supply. Using 1651 GaAs HBT transistors, the total area of the DDS chip is 2.4 x 2.0 mm 2 . (semiconductor integrated circuits)

  5. Experimental demonstration of a Hadamard gate for coherent state qubits

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Dong, Ruifang; Laghaout, Amine

    2011-01-01

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for t...... for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere....

  6. Optimization of the doping profile of a MESFET, realized by ion implantation

    International Nuclear Information System (INIS)

    Cazaux, J.L.; Graffeuil, J.; Pavlidis, D.

    1986-01-01

    A method is proposed to investigate the influence of doping profiles on the performance of GaAs Field Effect Transistors. We consider in particular the effect of different ion implantation energies and doses, as well as, the influence of gate recess. The static and dynamic small signal characteristics of GaAs MESFETs with non-uniform doping profiles are studied by combining analytical and numerical techniques to reduce calculation time. Details of the FET analysis and computer simulation are presented. Results are compared with experimental data obtained from FETs with different implantation conditions and gate recess depths. The influence of the doping profile on the equivalent circuit elements of GaAs MESFETs is finally investigated in view of an optimization of their microwave properties [fr

  7. New junctionless RADFET dosimeter design for low-cost radiation monitoring applications

    International Nuclear Information System (INIS)

    Arar, Djemai; Djeffal, Faycal; Bentrcia, Toufik; Chahdi, Mohamed

    2014-01-01

    This paper is devoted to the presentation of a quantitative analysis of the Junctionless Gate All Around RADFET (JL GAA RADFET) dosimeter, where the numerical simulation has been carried out using the Atlas 3-D simulator. The impact of the total dose, alternative gate materials and the channel doping on the threshold voltage of the JL GAA RADFET is addressed. The obtained results have indicated a significant improvement in the subthreshold parameters when compared to the conventional GAA RADFET dosimeter. Therefore, the implementation of junctionless-based sensors in the near future can provide more accurate results with low costs, in addition to alleviating many difficulties in the measurement procedure. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. New junctionless RADFET dosimeter design for low-cost radiation monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Arar, Djemai; Djeffal, Faycal [Department of Electronics, University of Batna, Batna 05000 (Algeria); Bentrcia, Toufik; Chahdi, Mohamed [Department of Physics, University of Batna, Batna 05000 (Algeria)

    2014-01-15

    This paper is devoted to the presentation of a quantitative analysis of the Junctionless Gate All Around RADFET (JL GAA RADFET) dosimeter, where the numerical simulation has been carried out using the Atlas 3-D simulator. The impact of the total dose, alternative gate materials and the channel doping on the threshold voltage of the JL GAA RADFET is addressed. The obtained results have indicated a significant improvement in the subthreshold parameters when compared to the conventional GAA RADFET dosimeter. Therefore, the implementation of junctionless-based sensors in the near future can provide more accurate results with low costs, in addition to alleviating many difficulties in the measurement procedure. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Thermal instability and the growth of the InGaAs/AlGaAs pseudomorphic high electron mobility transistor system

    International Nuclear Information System (INIS)

    Pellegrino, Joseph G.; Qadri, Syed B.; Mahadik, Nadeemullah A.; Rao, Mulpuri V.; Tseng, Wen F.; Thurber, Robert; Gajewski, Donald; Guyer, Jonathan

    2007-01-01

    The effects of temperature overshoot during molecular beam epitaxy growth on the transport properties of conventionally and delta-doped pseudomorphic high electron mobility transistor (pHEMT) structures have been examined. A diffuse reflectance spectroscopy (DRS)-controlled versus a thermocouple (TC)-controlled, growth scheme is compared. Several advantages of the DRS-grown pHEMTs over the TC-controlled version were observed. Modest improvements in mobility, on the order of 2%-3%, were observed in addition to a 20% reduction in carrier freeze-out for the DRS-grown pHEMTs at 77 K

  10. X-ray in-situ study of copper electrodeposition on UHV prepared GaAs(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gruender, Yvonne

    2008-06-02

    For this work a unique setup for in-situ electrochemical studies was employed and improved. This setup permits UHV preparation of the GaAs(001) surface with a defined surface termination (arsenic-rich or gallium-rich) and its characterization by SXRD in UHV, under ambient pressure in inert gas and in electrolyte under potential control without passing through air. The GaAs(001) surfaces were capped by amorphous arsenic. This permitted to ship them through ambient air. Afterwards smooth well defined GaAs(001) surfaces could be recovered by thermal annealing in UHV. A first investigation of the arsenic capped sample was done by atomic force microscopy (AFM) and Surface X-Ray Diffraction (SXRD). The non bulk like termination of the arsenic buried GaAs(001) surface was revealed. For the electrochemical metal deposition, arsenic terminated (2 x 4) reconstructed and gallium terminated (4 x 2) reconstructed GaAs(001) surfaces were employed. These surfaces were characterized by STM, LEED and a first time by SXRD. The surfaces are smooth, however, a higher degree of disorder than for MBE prepared reconstructed GaAs(001) is found. After exposure of the sample to nitrogen, the surfaces were then again studied by SXRD. These two steps characterizing the bare GaAs(001) surfaces permitted us to get a better knowledge of the starting surface and its influence on the later electrodeposited copper. At ambient pressure both reconstructions are lifted, but the surface is not bulk-like terminated as can be deduced from the crystal truncation rods. Epitaxial copper clusters grow upon electrodeposition on the UHV prepared GaAs(001) surface. The copper lattice is rotated and inclined with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains. The influence of the surface termination as well as the nucleation potential on the structure of the electrodeposited copper were investigated. The tilt and rotation angles do not depend on the deposition potential but

  11. Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits

    International Nuclear Information System (INIS)

    Galiautdinov, Andrei

    2007-01-01

    Building on the previous results of the Weyl chamber steering method, we demonstrate how to generate high-fidelity controlled-NOT (CNOT) gates by direct application of certain physically relevant Hamiltonians with fixed coupling constants containing Rabi terms. Such Hamiltonians are often used to describe two superconducting qubits driven by local rf pulses. It is found that in order to achieve 100% fidelity in a system with capacitive coupling of strength g, one Rabi term suffices. We give the exact values of the physical parameters needed to implement such CNOT gates. The gate time and all possible Rabi frequencies are found to be t=π/(2g) and Ω 1 /g=√(64n 2 -1),n=1,2,3,.... Generation of a perfect CNOT gate in a system with inductive coupling, characterized by additional constant k, requires the presence of both Rabi terms. The gate time is again t=π/(2g), but now there is an infinite number of solutions, each of which is valid in a certain range of k and is characterized by a pair of integers (n,m), (Ω 1,2 /g)=√(16n 2 -((k-1/2)) 2 )±√(16m 2 -((k+1/2)) 2 ). We distinguish two cases, depending on the sign of the coupling constant: (i) the antiferromagnetic case (k≥0) with n≥m=0,1,2,... and (ii) the ferromagnetic case (k≤0) with n>m=0,1,2,.... We conclude with consideration of fidelity degradation by switching to resonance. Simulation of time evolution based on the fourth-order Magnus expansion reveals characteristics of the gate similar to those found in the exact case, with slightly shorter gate time and shifted values of the Rabi frequencies

  12. ISAC's Gating-ML 2.0 data exchange standard for gating description.

    Science.gov (United States)

    Spidlen, Josef; Moore, Wayne; Brinkman, Ryan R

    2015-07-01

    The lack of software interoperability with respect to gating has traditionally been a bottleneck preventing the use of multiple analytical tools and reproducibility of flow cytometry data analysis by independent parties. To address this issue, ISAC developed Gating-ML, a computer file format to encode and interchange gates. Gating-ML 1.5 was adopted and published as an ISAC Candidate Recommendation in 2008. Feedback during the probationary period from implementors, including major commercial software companies, instrument vendors, and the wider community, has led to a streamlined Gating-ML 2.0. Gating-ML has been significantly simplified and therefore easier to support by software tools. To aid developers, free, open source reference implementations, compliance tests, and detailed examples are provided to stimulate further commercial adoption. ISAC has approved Gating-ML as a standard ready for deployment in the public domain and encourages its support within the community as it is at a mature stage of development having undergone extensive review and testing, under both theoretical and practical conditions. © 2015 International Society for Advancement of Cytometry.

  13. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Shuo; Gao Song; Wang Lei; Zhu Yan-Chun; Yang Jie; Xie Yao-Qin; Fu Nan; Wang Yi

    2016-01-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed.Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers.The results demonstrate an excellent correlation ( P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac ( H = 0, P > 0.10) and respiratory ( H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90).The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  14. Comparison of the effects of TripleGates and Gates-Glidden burs on cervical dentin thickness and root canal area by using cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Kássio SOUSA

    2015-04-01

    Full Text Available The search for new instruments to promote an appropriate cervical preparation has led to the development of new rotary instruments such as TripleGates. However, to the best of the authors' knowledge, there is no study evaluating TripleGates effect on the “risk zone” of mandibular molars. Objectives : The aim of this study was to evaluate the effects of a crown-down sequence of Gates-Glidden and TripleGates burs on the remaining cervical dentin thickness and the total amount of dentin removed from the root canals during the instrumentation by using cone beam computed tomography. The number of separated instruments was also evaluated. Material and Methods : Mesial roots of 40 mandibular first molars were divided into 2 equal groups: crown-down sequence of Gates-Glidden (#3, #2, #1 and TripleGates burs. Cervical dentin thickness and canal area were measured before and after instrumentation by using cone beam computed tomography and image analysis software. Student’s t-test was used to determine significant differences at p0.05 were observed between the instruments, regarding the root canal area and dentin wall thickness. Conclusion : Both tested instruments used for cervical preparation were safe to be used in the mesial root canal of mandibular molars.

  15. Determination of prospective displacement-based gate threshold for respiratory-gated radiation delivery from retrospective phase-based gate threshold selected at 4D CT simulation

    International Nuclear Information System (INIS)

    Vedam, S.; Archambault, L.; Starkschall, G.; Mohan, R.; Beddar, S.

    2007-01-01

    Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the delivery gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation

  16. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    Science.gov (United States)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  17. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  18. Imaging performance of a Timepix detector based on semi-insulating GaAs

    Science.gov (United States)

    Zaťko, B.; Zápražný, Z.; Jakůbek, J.; Šagátová, A.; Boháček, P.; Sekáčová, M.; Korytár, D.; Nečas, V.; Žemlička, J.; Mora, Y.; Pichotka, M.

    2018-01-01

    This work focused on a Timepix chip [1] coupled with a bulk semi-insulating GaAs sensor. The sensor consisted of a matrix of 256 × 256 pixels with a pitch of 55 μm bump-bonded to a Timepix ASIC. The sensor was processed on a 350 μm-thick SI GaAs wafer. We carried out detector adjustment to optimize its performance. This included threshold equalization with setting up parameters of the Timepix chip, such as Ikrum, Pream, Vfbk, and so on. The energy calibration of the GaAs Timepix detector was realized using a 241Am radioisotope in two Timepix detector modes: time-over-threshold and threshold scan. An energy resolution of 4.4 keV in FWHM (Full Width at Half Maximum) was observed for 59.5 keV γ-photons using threshold scan mode. The X-ray imaging quality of the GaAs Timepix detector was tested using various samples irradiated by an X-ray source with a focal spot size smaller than 8 μm and accelerating voltage up to 80 kV. A 700 μm × 700 μm gold testing object (X-500-200-16Au with Siemens star) fabricated with high precision was used for the spatial resolution testing at different values of X-ray image magnification (up to 45). The measured spatial resolution of our X-ray imaging system was about 4 μm.

  19. Design and analysis of 30 nm T-gate InAlN/GaN HEMT with AlGaN back-barrier for high power microwave applications

    Science.gov (United States)

    Murugapandiyan, P.; Ravimaran, S.; William, J.; Meenakshi Sundaram, K.

    2017-11-01

    In this article, we present the DC and microwave characteristics of a novel 30 nm T-gate InAlN/AlN/GaN HEMT with AlGaN back-barrier. The device structure is simulated by using Synopsys Sentaurus TCAD Drift-Diffusion transport model at room temperature. The device features are heavily doped (n++ GaN) source/drain regions with Si3N4 passivated device surface for reducing the contact resistances and gate capacitances of the device, which uplift the microwave characteristics of the HEMTs. 30 nm gate length D-mode (E-mode) HEMT exhibited a peak drain current density Idmax of 2.3 (2.42) A/mm, transconductance gm of 1.24(1.65) S/mm, current gain cut-off frequency ft of 262 (246) GHz, power gain cut-off frequency fmax of 246(290) GHz and the three terminal off-state breakdown voltage VBR of 40(38) V. The preeminent microwave characteristics with the higher breakdown voltage of the proposed GaN-based HEMT are the expected to be the most optimistic applicant for future high power millimeter wave applications.

  20. Picosecond relaxation of X-ray excited GaAs

    Czech Academy of Sciences Publication Activity Database

    Tkachenko, V.; Medvedev, Nikita; Lipp, V.; Ziaja, B.

    2017-01-01

    Roč. 24, Sep (2017), s. 15-21 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : GaAS * X-ray excitation * picosecond relaxation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  1. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia.

    Directory of Open Access Journals (Sweden)

    Yanhao Lai

    Full Text Available Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA, an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER. We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.

  2. Investigation and statistical modeling of InAs-based double gate tunnel FETs for RF performance enhancement

    Science.gov (United States)

    Poorvasha, S.; Lakshmi, B.

    2018-05-01

    In this paper, RF performance analysis of InAs-based double gate (DG) tunnel field effect transistors (TFETs) is investigated in both qualitative and quantitative fashion. This investigation is carried out by varying the geometrical and doping parameters of TFETs to extract various RF parameters, unity gain cut-off frequency (f t), maximum oscillation frequency (f max), intrinsic gain and admittance (Y) parameters. An asymmetric gate oxide is introduced in the gate-drain overlap and compared with that of DG TFETs. Higher ON-current (I ON) of about 0.2 mA and less leakage current (I OFF) of 29 fA is achieved for DG TFET with gate-drain overlap. Due to increase in transconductance (g m), higher f t and intrinsic gain is attained for DG TFET with gate-drain overlap. Higher f max of 985 GHz is obtained for drain doping of 5 × 1017 cm‑3 because of the reduced gate-drain capacitance (C gd) with DG TFET with gate-drain overlap. In terms of Y-parameters, gate oxide thickness variation offers better performance due to the reduced values of C gd. A second order numerical polynomial model is generated for all the RF responses as a function of geometrical and doping parameters. The simulation results are compared with this numerical model where the predicted values match with the simulated values. Project supported by the Department of Science and Technology, Government of India under SERB Scheme (No. SERB/F/2660).

  3. Charge collection efficiency in SI GaAs grown from melts with variable composition as a material for solar neutrino detection

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ivanov, A.; Strokan, N.; Vasilev, V.; Markov, A.; Polyakov, A.; Gavrin, V.; Kozlova, Yu.; Veretenkin, E.; Bowles, T.J.

    2000-01-01

    The results on electrical characteristics and charge collection efficiency in the detectors from bulk SI GaAs developed as a material for solar neutrino spectroscopy are presented. SI GaAs crystals were grown by the Czochralski method. The changes in the stoichiometric components are permanently controlled. It is shown that the performance of GaAs p + -i-n + structures provided the range of operational reverse voltage up to 1 kV. Measurement of deep level spectra and their analysis reveal the dominant deep levels - hole traps E v +0.51 and +0.075 eV in GaAs grown from stoichiometric and nonstoichiometric melts, respectively. Investigation of carrier transport properties and bulk homogeneity evinced in charge collection efficiency has shown advantageous results for SI GaAs grown from stoichiometric melt. The reduction of carrier transport parameters and charge collection efficiency in GaAs grown from nonstoichiometric melt is analyzed taking into consideration formation of the hole trap E v +0.075 eV, presumably assigned to Ga antisite and its influence on the concentration of the ionized deep donor level EL2 +

  4. Subnanosecond, high-voltage photoconductive switching in GaAs

    Science.gov (United States)

    Druce, Robert L.; Pocha, Michael D.; Griffin, Kenneth L.; O'Bannon, Jim

    1991-03-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating highpower microwaves (HPM) and for high reprate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanchelike mode (the optical pulse only controls switch closing) . Operating in the unear mode we have observed switch closing times of less than 200 Ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lockon modes high fields are switched with lower laser pulse energies resulting in higher efficiencies but with measurable switching delay and jitter. We are currently investigating both large area (1 cm2) and small area 1 mm2) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1. 06 tim.

  5. Modeling the effect of deep impurity ionization on GaAs photoconductive switches

    Energy Technology Data Exchange (ETDEWEB)

    Yee, J.H.; Khanaka, G.H.; Druce, R.L.; Pocha, M.D.

    1992-01-01

    The ionization coefficient of deep traps in GaAs is determined from a gas breakdown model together with the recent experimental data obtained at LLNL (Lawrence Livermore National Laboratory) and Boeing. Using this coefficient in our nonlinear device transport code, we have investigated theoretically the nonlinear switching phenomena in GaAs devices. The results obtained from our investigations show that if we take into consideration the effect of the field ionization of the deep traps, we can show how the Lock-On'' phenomena could occur in the device.

  6. Modeling the effect of deep impurity ionization on GaAs photoconductive switches

    Energy Technology Data Exchange (ETDEWEB)

    Yee, J.H.; Khanaka, G.H.; Druce, R.L.; Pocha, M.D.

    1992-01-01

    The ionization coefficient of deep traps in GaAs is determined from a gas breakdown model together with the recent experimental data obtained at LLNL (Lawrence Livermore National Laboratory) and Boeing. Using this coefficient in our nonlinear device transport code, we have investigated theoretically the nonlinear switching phenomena in GaAs devices. The results obtained from our investigations show that if we take into consideration the effect of the field ionization of the deep traps, we can show how the ``Lock-On`` phenomena could occur in the device.

  7. GaAs thin film solar cells. Final report; Duennschicht-Solarzellen aus Galliumarsenid; Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bett, A.; Bronner, W.; Cardona, S.; Ehrhardt, A.; Habermann, G.; Habich, A.; Lanyi, P.; Lutz, F.; Nguyen, T.; Schetter, C.; Sulima, O.; Welter, H.; Yavas, O.

    1992-11-01

    This R and D project focused on the development of materials and technologies for the production of GaAs solar cells on GaAs and other substrates. Three subjects were gone into on particular: Material preparation (epitaxy), solar cell technology, characterisation of materials and processes. (orig.) [Deutsch] Das vorliegende Forschungsvorhaben hatte die Material- und Technologieentwickung fuer die Herstellung von GaAs-Solarzellen auf Eigen- und Fremdsubstrat zum Gegenstand. Drei Hauptaufgabenbereiche waren: Materialpraeparation (Epitaxie), Solarzellentechnologie, sowie Material- und Prozesscharakterisierung. (orig.)

  8. GaAs monolayer: Excellent SHG responses and semi metallic to metallic transition modulated by vacancy effect

    Science.gov (United States)

    Rozahun, Ilmira; Bahti, Tohtiaji; He, Guijie; Ghupur, Yasenjan; Ablat, Abduleziz; Mamat, Mamatrishat

    2018-05-01

    Monolayer materials are considered as a promising candidate for novel applications due to their attractive magnetic, electronic and optical properties. Investigation on nonlinear optical (NLO) properties and effect of vacancy on monolayer materials are vital to property modulations of monolayers and extending their applications. In this work, with the aid of first-principles calculations, the crystal structure, electronic, magnetic, and optical properties of GaAs monolayers with the vacancy were investigated. The result shows gallium arsenic (GaAs) monolayer produces a strong second harmonic generation (SHG) response. Meanwhile, the vacancy strongly affects structural, electronic, magnetic and optical properties of GaAs monolayers. Furthermore, arsenic vacancy (VAs) brings semi metallic to metallic transition, while gallium vacancy (VGa) causes nonmagnetic to magnetic conversion. Our result reveals that GaAs monolayer possesses application potentials in Nano-amplifying modulator and Nano-optoelectronic devices, and may provide useful guidance in designing new generation of Nano-electronic devices.

  9. Removal of NO {sub x} by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Z.S. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)]. E-mail: weizaishan98@163.com; Du, Z.Y. [School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Lin, Z.H. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, H.M. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Qiu, R.L. [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2007-08-15

    Microwave reactor with the mixture of ammonium bicarbonate (NH{sub 4}HCO{sub 3}) and Ga-A zeolites was set up to study the removal of nitrogen oxides (NO {sub x} ) from waste gas with excess oxygen concentration (14-19%) at low temperature (80-120 deg. C). The results showed that the microwave reactor filled with NH{sub 4}HCO{sub 3} and Ga-A zeolites could reduce NO {sub x} to nitrogen with the best purifying efficiency of 95.45% and the best denitrification amount of 89.28 mg h{sup -1}. The optimal microwave power and residence time (RT) on denitrification was 259-280 W and 0.259 s, respectively. Microwave denitrification effect of the experiment using ammonium bicarbonate and Ga-A zeolites was much higher than that using ammonium bicarbonate or Ga-A zeolites only. The mechanism for microwave-induced NO {sub x} reduction can be explained as the microwave-induced catalytic reaction between NO {sub x} and ammonium bicarbonate with Ga-A zeolites being the catalyst and microwave absorbent.

  10. Reference Range of Functional Data of Gated Myocardial Perfusion SPECT by Quantitative Gated SPECT of Cedars-Sinai and 4D-MSPECT of Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Kim, Moo Hyun; Kim, Young Dae [College of Medicine, Univ. of Donga, Pusan (Korea, Republic of)

    2003-07-01

    Various programs have been developed for gating of myocardial perfusion SPECT. Among the those program, the most popular program is the Quantitative Gated SPECT (QGS)? developed by Cedars-Sinai hospital and most recently released program is 4D-MSPECT? developed by university of Michigan. It is important to know the reference range of the functional data of gated myocardial perfusion SPECT because it is necessary to determine abnormality of individual patient and echocardiographic data is different from those of gated SPECT. Tc-99m MIBI gated myocardial perfusion SPECT image was reconstructed by dual head gamma camera (Siemens, BCAM, esoft) as routine procedure and analyzed using QGS? and 4D-MSPECT? program. All patients (M: F=9: 18, Age 69{+-}9 yrs) showed normal myocardial perfusion. The patients with following characteristics were excluded: previous angina or MI history, ECG change with Q wave or ST-T change, diabetes melitius, hypercholesterolemia, typical chest pain, hypertension and cardiomyopathy. Pre-test likelihood of all patients was low. (1) In stress gated SPECT by QGS?, EDV was 73{+-}25 ml, ESV 25{+-}14 ml, EF 67{+-}11 % and area of first frame of gating 106.4{+-}21cm{sup 2}. In rest gated SPECT, EDV was 76{+-}26 ml, ESV 27{+-}15 ml, EF 66{+-}12 and area of first frame of gating 108{+-}20cm{sup 2}. (2) In stress gated SPECT by 4D-MSPECT?, EDV was 76{+-}28 ml, ESV 23{+-}16 ml, EF 72{+-}11 %, mass 115{+-}24 g and ungated volume 42{+-}15 ml. In rest gated SPECT, EDV was 75{+-}27 ml, ESV 23{+-}12 ml, EF 71{+-}9%, mass 113{+-}25g and ungate dvolume 42{+-}15 ml, (3) s-EDV, s-EF, r-ESV and r-EF were significantly different between QGS? and 4D-MSPECT? (each p=0.016, p<0.001. p=0.003 and p=0.001). We determined the normal reference range of functional parameters by QGS? and 4D-MSPECT? program to diagnose individually the abnormality of patients. And the reference ranges have to adopted to be patients by each specific gating program.

  11. Twins and strain relaxation in zinc-blende GaAs nanowires grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Araújo, D.; Pastore, C.E.; Gutierrez, M. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Frigeri, C. [Istituto CNR-IMEM Parco Area delle Scienze 37/A, Fontanini, 43010, Parma (Italy); Benali, A.; Lelièvre, J.F.; Gendry, M. [INL-Institut des Nanotechnologies de Lyon, UMR 5270 Ecole Centrale de Lyon 36, Avenue Guy de Collongue, 69134, Ecully Cedex (France)

    2017-02-15

    Highlights: • A TEM-HREM study of GaAs nanowires, growth over Si, is presented. • Misfit dislocations are detected in the Si/GaAs magma interface. • The study demonstrates strain relaxation through twin formation in some nanowires. - Abstract: To integrate materials with large lattice mismatch as GaAs on silicon (Si) substrate, one possible approach, to improve the GaAs crystalline quality, is to use nanowires (NWs) technology. In the present contribution, NWs are grown on <111> oriented Si substrates by molecular beam epitaxy (MBE) using vapor-liquid-solid (VLS) method. Transmission electron microscopy (TEM) analyses show that NWs are mainly grown alternating wurtzite and zinc blend (ZB) phases, and only few are purely ZB. On the latter, High Resolution Electron Microscopy (HREM) evidences the presence of twins near the surface of the NW showing limited concordance with the calculations of Yuan (2013) [1], where {111} twin planes in a <111>-oriented GaAs NW attain attractive interactions mediated by surface strain. In addition, such twins allow slight strain relaxation and are probably induced by the local huge elastic strain observed by HREM in the lattice between the twin and the surface. The latter is attributed to some slight bending of the NW as shown by the inversion of the strain from one side to the other side of the NW.

  12. Epitaxial growth on porous GaAs substrates

    Czech Academy of Sciences Publication Activity Database

    Grym, Jan; Nohavica, Dušan; Gladkov, Petar; Hulicius, Eduard; Pangrác, Jiří; Piksová, K.

    2013-01-01

    Roč. 16, č. 1 (2013), s. 59-64 ISSN 1631-0748 R&D Projects: GA ČR GAP102/10/1201; GA ČR GAP108/10/0253 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : Electrochemical etching * Porous semiconductors * Epitaxial growth * GaAs Subject RIV: BH - Optics, Masers, Lasers; JA - Electronics ; Optoelectronics, Electrical Engineering (FZU-D) Impact factor: 1.483, year: 2013

  13. The lower yield point of InP and GaAs

    International Nuclear Information System (INIS)

    Siethoff, H.

    1987-01-01

    A study of the strain-rate and temperature dependence of the lower yield stress (τ ly ) in undoped InP and of the strain-rate dependence of τ ly in undoped and Zn-doped GaAs is reported. The deformation along (123) orientation was carried out in compression at constant strain rates ranging from 10 -5 to 10 -2 s -1 . The temperature range extended from 540 to 780 0 C. The activation energy and stress exponent of the dislocation velocity were calculated. Experiments have shown that τ ly of InP depends on temperature and strain rate in a manner similar to other semiconductors like Si and InSb, whereas τ ly of GaAs shows an unusual strain-rate dependence

  14. Electrons, holes, and excitons in GaAs polytype quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Climente, Juan I.; Segarra, Carlos; Rajadell, Fernando; Planelles, Josep, E-mail: josep.planelles@uji.es [Departament de Química Física i Analítica, Universitat Jaume I, E-12080 Castelló (Spain)

    2016-03-28

    Single and multi-band k⋅p Hamiltonians for GaAs crystal phase quantum dots are used to assess ongoing experimental activity on the role of such factors as quantum confinement, spontaneous polarization, valence band mixing, and exciton Coulomb interaction. Spontaneous polarization is found to be a dominating term. Together with the control of dot thickness [Vainorius et al., Nano Lett. 15, 2652 (2015)], it enables wide exciton wavelength and lifetime tunability. Several new phenomena are predicted for small diameter dots [Loitsch et al., Adv. Mater. 27, 2195 (2015)], including non-heavy hole ground state, strong hole spin admixture, and a type-II to type-I exciton transition, which can be used to improve the absorption strength and reduce the radiative lifetime of GaAs polytypes.

  15. A capacitor cross-coupled common-gate low-noise amplifier

    NARCIS (Netherlands)

    Zhuo, W.; Li, X.; Shekhar, S.; Embabi, S.H.K.; Pineda de Gyvez, J.; Allstot, D.J.; Sanchez-Sinencio, E.

    2005-01-01

    The conventional common-gate low-noise amplifier (CGLNA) exhibits a relatively high noise figure (NF) at low operating frequencies relative to the MOSFET fT, which has limited its adoption notwithstanding its superior linearity, input matching, and stability compared to the inductively degenerated

  16. Gate current for p+-poly PMOS devices under gate injection conditions

    NARCIS (Netherlands)

    Hof, A.J.; Holleman, J.; Woerlee, P.H.

    2001-01-01

    In current CMOS processing both n+-poly and p+-poly gates are used. The I-V –relationship and reliability of n+-poly devices are widely studied and well understood. Gate currents and reliability for p+-poly PMOS devices under gate injection conditions are not well understood. In this paper, the

  17. Volatile and Nonvolatile Characteristics of Asymmetric Dual-Gate Thyristor RAM with Vertical Structure.

    Science.gov (United States)

    Kim, Hyun-Min; Kwon, Dae Woong; Kim, Sihyun; Lee, Kitae; Lee, Junil; Park, Euyhwan; Lee, Ryoongbin; Kim, Hyungjin; Kim, Sangwan; Park, Byung-Gook

    2018-09-01

    In this paper, the volatile and nonvolatile characteristics of asymmetric dual-gate thyristor random access memory (TRAM) are investigated using the technology of a computer-aided design (TCAD) simulation. Owing to the use of two independent gates having different gate dielectric layers, volatile and nonvolatile memory functions can be realized in a single device. The first gate with a silicon oxide layer controls the one-transistor dynamic random access memory (1T-DRAM) characteristics of the device. From the simulation results, a rapid write speed (107) can be achieved. The second gate, whose dielectric material is composed of oxide/nitride/oxide (O/N/O) layers, is used to implement the nonvolatile property by trapping charges in the nitride layer. In addition, this offers an advantage when processing the 3D-stack memory application, as the device has a vertical channel structure with polycrystalline silicon.

  18. Differential effect of T-type voltage-gated calcium channel disruption on renal plasma flow and glomerular filtration rate in vivo

    DEFF Research Database (Denmark)

    Thuesen, Anne D; Andersen, Henrik; Cardel, Majken

    2014-01-01

    Voltage-gated calcium channels (Cav) play an essential role in regulation of renal blood flow and GFR. Because T-type Cavs are differentially expressed in pre- and postglomerular vessels it was hypothesized that they impact renal blood flow and GFR differentially. The question was addressed by use...... of two T-type Cav knock-out mice strains. Continuous recordings of blood pressure and heart rate, and para-aminohippurate clearance (renal plasma flow) and inulin clearance (GFR) were performed in conscious, chronically catheterized, wild type and Cav 3.1-/- and Cav 3.2-/- mice. Contractility of afferent...... and efferent arterioles was determined in isolated perfused blood vessels. Efferent arterioles from Cav 3.2-/- mice constricted significantly more in response to a depolarization compared to Wt mice. GFR was increased in Cav 3.2-/- mice with no significant changes in renal plasma flow, heart rate and blood...

  19. Influence of Coulomb interaction of tunable shapes on the collective transport of ultradilute two-dimensional holes.

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L N; West, K W

    2014-01-24

    In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9)  cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.

  20. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu......A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...

  1. The role of proximity caps during the annealing of UV-ozone oxidized GaAs

    International Nuclear Information System (INIS)

    Ghosh, S. C.; Biesinger, M. C.; LaPierre, R. R.; Kruse, P.

    2007-01-01

    This study provides a deeper insight into the chemistry and physics of the common engineering practice of using a proximity cap, while annealing compound semiconductors such as GaAs. We have studied the cases of a GaAs proximity cap, a Si proximity cap, and no proximity cap. Using x-ray photoelectron spectroscopy, it has been found that annealing increases the gallium to arsenic ratio in the oxide layer in all cases. During the annealing of UV-ozone oxidized GaAs, it has been observed that GaAs proximity caps also serve as a sacrificial layer to accelerate the desorption of oxide species. In all cases surface deterioration due to pit formation has been observed, and the depth of pits is found to depend on the effective role played by the capping material. Energy dispersive x-ray analysis provides additional evidence that pits mainly consist of elemental As and gallium oxide, with most of the elemental As situated at the pit-substrate interface. Deposition of a thin layer of gold and subsequent annealing to 500 deg. C for 300 s under different capping conditions shows the use of a proximate cap to be practically insignificant in annealing Au deposited films

  2. Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot

    Science.gov (United States)

    Wang, Qingwen; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David; Hamilton, Alex

    Electrically defined semiconductor quantum dots are appealing systems for spin manipulation and quantum information processing. Thanks to the weak hyperfine interaction and the strong spin-orbit interaction, heavy-holes in GaAs are promising candidates for all-electrical spin manipulation. However, making stable quantum dots in GaAs has only become possible recently, mainly because of difficulties in device fabrication and device stability. Here we present electrical transport measurements of heavy-holes in a lateral double quantum dot based on a GaAs /AlxGa1 - x As heterostructure. We observe clear Pauli spin blockade and show that the lifting of the spin blockade by an external magnetic field is extremely anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit interaction demonstrate quantitative agreement with experimental results, which indicates that the observed anisotropy can be explained by the anisotropic hole g-factor and the surface Dresselhaus spin-orbit coupling.

  3. Performance of Series Connected GaAs Photovoltaic Converters under Multimode Optical Fiber Illumination

    Directory of Open Access Journals (Sweden)

    Tiqiang Shan

    2014-01-01

    Full Text Available In many military and industrial applications, GaAs photovoltaic (PV converters are connected in series in order to generate the required voltage compatible with most common electronics. Multimode optical fibers are usually used to carry high-intensity laser and illuminate the series connected GaAs PV converters in real time. However, multimode optical fiber illumination has a speckled intensity pattern. The series connected PV array is extremely sensitive to nonuniform illumination; its performance is limited severely by the converter that is illuminated the least. This paper quantifies the effects of multimode optical fiber illumination on the performance of series connected GaAs PV converters, analyzes the loss mechanisms due to speckles, and discusses the maximum illumination efficiency. In order to describe the illumination dependent behavior detailedly, modeling of the series connected PV array is accomplished based on the equivalent circuit for PV cells. Finally, a series of experiments are carried out to demonstrate the theory analysis.

  4. Optimization of the GaAs et GaAs/Si annealing using halogen lamp flashes

    International Nuclear Information System (INIS)

    Blanck, H.

    1989-01-01

    The aim of the work is to check whether the flash annealing of GaAs and GaAs/Si, using halogen lamps, allows an improvement in the results obtained by usual methods. The electrical activation, defects behavior and results uniformity are studied. The results on the activation and diffusion of implanted impurities are shown to be equivalent to those obtained with classical annealing methods. However, residual impurities (or defects) diffusion phenomena are restrained by the flash annealing technique. The Hall effect cartographic measurements showed an improvement of the uniformity of the implanted coating surface resistance. Flash annealing is a suitable method for the Si activation in GaAs. It allows an improvement of the GaAs results obtained with standard techniques, as well as the formation, by means of ion implantation, of active zones in the GaAs/Si layers [fr

  5. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.J.; Chia, C.K.; Liu, H.F.; Wong, L.M.; Chai, J.W.; Chi, D.Z.; Wang, S.J., E-mail: sj-wang@imre.a-star.edu.sg

    2016-07-15

    Highlights: • The heterogeneous integration of p-Ge/GaAs by MOCVD indicates significance for the application in optoelectronic devices such as p-MOSFET, dual band photodetector, etc. • Many undesired pillar-structures were observed on the p-Ge epilayers and we found that the cause of the pillar-like structures was related to the Ge-Ga dimers formed during the growth. • We found that a GaAs substrate with fewer Ga or Ge danglings was helpful in suppressing the formation of the unwanted pillar-like structures and thus obtaining high quality p-Ge epilayers. - Abstract: In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  6. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  7. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  8. Multiple Independent Gate FETs: How Many Gates Do We Need?

    OpenAIRE

    Amarù, Luca; Hills, Gage; Gaillardon, Pierre-Emmanuel; Mitra, Subhasish; De Micheli, Giovanni

    2015-01-01

    Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Rese...

  9. Anomalous degradation behaviors under illuminated gate bias stress in a-Si:H thin film transistor

    International Nuclear Information System (INIS)

    Tsai, Ming-Yen; Chang, Ting-Chang; Chu, Ann-Kuo; Hsieh, Tien-Yu; Lin, Kun-Yao; Wu, Yi-Chun; Huang, Shih-Feng; Chiang, Cheng-Lung; Chen, Po-Lin; Lai, Tzu-Chieh; Lo, Chang-Cheng; Lien, Alan

    2014-01-01

    This study investigates the impact of gate bias stress with and without light illumination in a-Si:H thin film transistors. It has been observed that the I–V curve shifts toward the positive direction after negative and positive gate bias stress due to interface state creation at the gate dielectric. However, this study found that threshold voltages shift negatively and that the transconductance curve maxima are anomalously degraded under illuminated positive gate bias stress. In addition, threshold voltages shift positively under illuminated negative gate bias stress. These degradation behaviors can be ascribed to charge trapping in the passivation layer dominating degradation instability and are verified by a double gate a-Si:H device. - Highlights: • There is abnormal V T shift induced by illuminated gate bias stress in a-Si:H thin film transistors. • Electron–hole pair is generated via trap-assisted photoexcitation. • Abnormal transconductance hump is induced by the leakage current from back channel. • Charge trapping in the passivation layer is likely due to the fact that a constant voltage has been applied to the top gate

  10. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  11. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    Science.gov (United States)

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  12. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    Directory of Open Access Journals (Sweden)

    Florian Dettwiler

    2017-07-01

    Full Text Available The Rashba and Dresselhaus spin-orbit (SO interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α=β, the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH, i.e., a helical spin-density wave excitation with constant pitch P=2π/Q, Q=4mα/ℏ^{2}, has already been experimentally realized at this singular point α=β, enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage V_{T} and back gate voltage V_{B} to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α=β; i.e., we are able to vary both α and β controllably and continuously with V_{T} and V_{B}, while keeping them locked at equal strengths. This makes possible a new concept: “stretchable PSHs,” i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α=β, thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be

  13. RF-MMW Dipole Antenna Arrays From Laser Illuminated GaAs

    National Research Council Canada - National Science Library

    Umphenour, D

    1998-01-01

    High resistivity photoconductive Gallium Arsenide (GaAs) can be used as elemental Hertzian dipole antenna arrays in which the time varying dipole current is produced by temporally modulating a laser (0.63um...

  14. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

    Science.gov (United States)

    Li, Lixia; Pan, Dong; Yu, Xuezhe; So, Hyok; Zhao, Jianhua

    2017-10-01

    Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from [111] to . The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs. Project supported partly by the MOST of China (No. 2015CB921503), the National Natural Science Foundation of China (Nos. 61504133, 61334006, 61404127), and Youth Innovation Promotion Association, CAS (No. 2017156).

  15. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    International Nuclear Information System (INIS)

    Nemcsics, A.

    2005-01-01

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed

  16. Density-dependent electron scattering in photoexcited GaAs

    DEFF Research Database (Denmark)

    Mics, Zoltán; D'’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    —In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...

  17. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    International Nuclear Information System (INIS)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D; Xie, R

    2016-01-01

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  18. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, WA (United States); Xie, R [Ironwood Cancer and Research Centers, Chandler, AZ (United States)

    2016-06-15

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  19. Top-gate pentacene-based organic field-effect transistor with amorphous rubrene gate insulator

    Science.gov (United States)

    Hiroki, Mizuha; Maeda, Yasutaka; Ohmi, Shun-ichiro

    2018-02-01

    The scaling of organic field-effect transistors (OFETs) is necessary for high-density integration and for this, OFETs with a top-gate configuration are required. There have been several reports of damageless lithography processes for organic semiconductor or insulator layers. However, it is still difficult to fabricate scaled OFETs with a top-gate configuration. In this study, the lift-off process and the device characteristics of the OFETs with a top-gate configuration utilizing an amorphous (α) rubrene gate insulator were investigated. We have confirmed that α-rubrene shows an insulating property, and its extracted linear mobility was 2.5 × 10-2 cm2/(V·s). The gate length and width were 10 and 60 µm, respectively. From these results, the OFET with a top-gate configuration utilizing an α-rubrene gate insulator is promising for the high-density integration of scaled OFETs.

  20. Computational study of GaAs1-xNx and GaN1-yAsy alloys and arsenic impurities in GaN

    International Nuclear Information System (INIS)

    Laaksonen, K; Komsa, H-P; Arola, E; Rantala, T T; Nieminen, R M

    2006-01-01

    We have studied the structural and electronic properties of As-rich GaAs 1-x N x and N-rich GaN 1-y As y alloys in a large composition range using first-principles methods. We have systematically investigated the effect of the impurity atom configuration near both GaAs and GaN sides of the concentration range on the total energies, lattice constants and bandgaps. The N (As) atoms, replacing substitutionally As (N) atoms in GaAs (GaN), cause the surrounding Ga atoms to relax inwards (outwards), making the Ga-N (Ga-As) bond length about 15% shorter (longer) than the corresponding Ga-As (Ga-N) bond length in GaAs (GaN). The total energies of the relaxed alloy supercells and the bandgaps experience large fluctuations within different configurations and these fluctuations grow stronger if the impurity concentration is increased. Substituting As atoms with N in GaAs induces modifications near the conduction band minimum, while substituting N atoms with As in GaN modifies the states near the valence band maximum. Both lead to bandgap reduction, which is at first rapid but later slows down. The relative size of the fluctuations is much larger in the case of GaAs 1-x N x alloys. We have also looked into the question of which substitutional site (Ga or N) As occupies in GaN. We find that under Ga-rich conditions arsenic prefers the substitutional N site over the Ga site within a large range of Fermi level values

  1. SXPS study of model GaAs(100)/electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Mikhail V. [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Mankel, Eric; Mayer, Thomas; Jaegermann, Wolfram [Institute of Material Sciences, Darmstadt University of Technology, Darmstadt (Germany)

    2010-02-15

    Model GaAs(100)/electrolyte interfaces are prepared in vacuum by co-adsorption of Cl{sub 2} and 2-propanol molecules at LN{sub 2} temperature. On adsorption of Cl{sub 2} molecules gallium chlorides, elemental arsenic and arsenic chlorides are formed. Co-adsorption of 2-propanol causes formation of additional GaCl{sub 3} and AsCl, as well as soluble/volatile As-based complexes, which are released from the surface depleting the sur- face by arsenic. Comparison of the As 3d and Ga 3d spectra obtained after heating the model interface to room temperature with the corresponding spectra obtained after emersion of the GaAs(100) surface from HCl/2-propanol solution allows to conclude that in HCl solution Cl{sup -} ions attack gallium sites and H{sup +} ions mostly attack arsenic sites. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Vacancies and negative ions in GaAs

    International Nuclear Information System (INIS)

    Corbel, C.

    1991-01-01

    We use positron lifetime studies performed in GaAs materials to show the defect properties which can be investigated by implanting positive positrons in semiconductors. The studies concern native and electron irradiation induced defects. These studies show that vacancy charge state and vacancy ionization levels can be determined from positron annihilation. They show also that positrons are trapped by negative ions and give information on their concentration

  3. DATABASE OF MIGRATION AND REPLICATION WITH ORACLE GOLDEN GATE

    Directory of Open Access Journals (Sweden)

    Suharjito Suharjito

    2014-10-01

    Full Text Available The main goal of this research is to analyze and design a database configuration of migration and replication in PT Metro Batavia. Research methodologies used in this research are data collecting, analysis and design model. Data collecting method is conducted with library research and direct survey in the company. Analysis method is conducted by analyzing hangar system, migration and reflection process and the available problems. Design method is conducted by designing a prototype for migration process with the implementation of Oracle SQL Developer and replication process with implementation of Oracle Golden Gate. The result of this research is a prototype for configuration of migration and replication process by using Oracle Golden Gate, which can produce two sets of identical data for the purpose of backup and recovery, and also design a simple tool that is expected to help active-active or active-passive replication process. The conclusion of this research is migration process of MySQL database to Oracle database by using Oracle Golden Gate hasn’t been conducted, because Oracle Golden Gate still has bug related to binary log, so database of migration is conducted by using Oracle Golden Gate. However, replication of bi-directional in between database of Oracle by using Oracle SQL Developer can guarantee data availability and reduce work burden from primary database.

  4. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy.

    Science.gov (United States)

    Tong, C Z; Yoon, S F

    2008-09-10

    We have directly imaged the formation of a GaAs quantum ring (QR) using droplet epitaxy followed by annealing in arsenic ambient. Based on the atomic force micrograph measurement and the analysis of surface energy, we determine that the formation of self-assembled GaAs QRs is due to the gallium atom's diffusion and crystallization driven by the gradient of surface energy. The phenomenon that GaAs is etched by the gallium droplets is reported and analyzed. It has been demonstrated that the epitaxy layers, such as AlAs and InGaP, can be used as the etching stop layer and hence can be used to control the shape and height of the QRs.

  5. Burst annealing of high temperature GaAs solar cells

    Science.gov (United States)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  6. Burst annealing of high temperature GaAs solar cells

    International Nuclear Information System (INIS)

    Brothers, P.R.; Horne, W.E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 degree C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles

  7. Optical properties of GaAs

    International Nuclear Information System (INIS)

    Akinlami, J. O.; Ashamu, A. O.

    2013-01-01

    We have investigated the optical properties of gallium arsenide (GaAs) in the photon energy range 0.6–6.0 eV. We obtained a refractive index which has a maximum value of 5.0 at a photon energy of 3.1 eV; an extinction coefficient which has a maximum value of 4.2 at a photon energy of 5.0 eV; the dielectric constant, the real part of the complex dielectric constant has a maximum value of 24 at a photon energy of 2.8 eV and the imaginary part of the complex dielectric constant has a maximum value of 26.0 at a photon energy of 4.8 eV; the transmittance which has a maximum value of 0.22 at a photon energy of 4.0 eV; the absorption coefficient which has a maximum value of 0.22 × 10 8 m −1 at a photon energy of 4.8 eV, the reflectance which has a maximum value of 0.68 at 5.2eV; the reflection coefficient which has a maximum value of 0.82 at a photon energy of 5.2 eV; the real part of optical conductivity has a maximum value of 14.2 × 10 15 at 4.8 eV and the imaginary part of the optical conductivity has a maximum value of 6.8 × 10 15 at 5.0 eV. The values obtained for the optical properties of GaAs are in good agreement with other results. (semiconductor physics)

  8. Femtosecond coherent emission from GaAs bulk microcavities

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  9. Tunneling effect on double potential barriers GaAs and PbS

    Science.gov (United States)

    Prastowo, S. H. B.; Supriadi, B.; Ridlo, Z. R.; Prihandono, T.

    2018-04-01

    A simple model of transport phenomenon tunnelling effect through double barrier structure was developed. In this research we concentrate on the variation of electron energy which entering double potential barriers to transmission coefficient. The barriers using semiconductor materials GaAs (Galium Arsenide) with band-gap energy 1.424 eV, distance of lattice 0.565 nm, and PbS (Lead Sulphide) with band gap energy 0.41 eV distance of lattice is 18 nm. The Analysisof tunnelling effect on double potentials GaAs and PbS using Schrodinger’s equation, continuity, and matrix propagation to get transmission coefficient. The maximum energy of electron that we use is 1.0 eV, and observable from 0.0025 eV- 1.0 eV. The shows the highest transmission coefficient is0.9982 from electron energy 0.5123eV means electron can pass the barriers with probability 99.82%. Semiconductor from materials GaAs and PbS is one of selected material to design semiconductor device because of transmission coefficient directly proportional to bias the voltage of semiconductor device. Application of the theoretical analysis of resonant tunnelling effect on double barriers was used to design and develop new structure and combination of materials for semiconductor device (diode, transistor, and integrated circuit).

  10. Subnanosecond, high voltage photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L. (Lawrence Livermore National Lab., CA (USA)); O' Bannon, B.J. (Rockwell International Corp., Anaheim, CA (USA))

    1990-01-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating high-power microwaves (HPM) and for high rep-rate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanche-like mode (the optical pulse only controls switch closing). Operating in the linear mode, we have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lock-on modes, high fields are switched with lower laser pulse energies, resulting in higher efficiencies; but with measurable switching delay and jitter. We are currently investigating both large area (1 cm{sup 2}) and small area (<1 mm{sup 2}) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 {mu}m.

  11. X-ray imaging bilinear staggered GaAs detectors

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A.; Dvoryankin, V.F. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A

    2004-09-21

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 {mu}A min/(Gy cm{sup 2}). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received.

  12. X-ray imaging bilinear staggered GaAs detectors

    International Nuclear Information System (INIS)

    Achmadullin, R.A.; Dvoryankin, V.F.; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A.

    2004-01-01

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 μA min/(Gy cm 2 ). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received

  13. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)(n) Repeats by PNA or LNA Targeting

    DEFF Research Database (Denmark)

    Bergquist, Helen; Rocha, Cristina S. J.; Alvarez-Asencio, Ruben

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigen...

  14. Origin of the suppression in low frequency terahertz conductivity in dilute GaAs nitride and bismide alloys

    DEFF Research Database (Denmark)

    Cocker, Tylor; Lu, Xianfeng; Cooke, David

    We have performed time-resolved terahertz spectroscopy on GaAs1-xBix (x=7%) and observed a low-frequency suppression of the real conductivity previously seen only in dilute GaAs nitrides. We have developed a modified Drude model with a frequency-dependent scattering time that provides excellent...

  15. Influence of substrate orientation on the structural properties of GaAs nanowires in MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, R., E-mail: rosnita@utm.my; Othaman, Z., E-mail: zulothaman@gmail.com; Ibrahim, Z., E-mail: zuhairi@utm.my; Sakrani, S., E-mail: samsudi3@yahoo.com [Faculty of Science, UniversitiTeknologi Malaysia, 81310 UTM, Johor (Malaysia); Wahab, Y., E-mail: wyussof@gmail.com [Razak School, UniversitiTeknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2016-04-19

    In this study, the effect of substrate orientation on the structural properties of GaAs nanowires grown by a metal organic chemical vapor deposition has been investigated. Gold colloids were used as catalyst to initiate the growth of nanowiresby the vapour-liquid-solid (VLS) mechanism. From the field-emission scanning electron microscopy (FE-SEM), the growth of the nanowires were at an elevation angle of 90°, 60°, 65° and 35° with respect to the GaAs substrate for (111)B, (311)B, (110) and (100) orientations respectively. The preferential NW growth direction is always <111>B. High-resolution transmission electron microscope (HRTEM) micrograph showed the NWs that grew on the GaAs(111)B has more structural defects when compared to others. Energy dispersive X-ray analysis (EDX) indicated the presence of Au, Ga and As. The bigger diameter NWs dominates the (111)B substrate surface.

  16. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Tang, Xiaohong, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn; Li, Xianqiang [OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wang, Kai, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Avenue, Shenzhen 518055 (China); Olivier, Aurelien [CINTRA UMI 3288, School of Electrical and Electronic Engineering, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore (Singapore)

    2016-03-07

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III–V material NWs and is critical for potential hybrid solar cell application.

  17. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes

    International Nuclear Information System (INIS)

    Dawood, Mohammad; Buether, Florian; Lang, Norbert; Schober, Otmar; Schaefers, Klaus P

    2007-01-01

    Respiratory gating is used for reducing the effects of breathing motion in a wide range of applications from radiotherapy treatment to diagnostical imaging. Different methods are feasible for respiratory gating. In this study seven gating methods were developed and tested on positron emission tomography (PET) listmode data. The results of seven patient studies were compared quantitatively with respect to motion and noise. (1) Equal and (2) variable time-based gating methods use only the time information of the breathing cycle to define respiratory gates. (3) Equal and (4) variable amplitude-based gating approaches utilize the amplitude of the respiratory signal. (5) Cycle-based amplitude gating is a combination of time and amplitude-based techniques. A baseline correction was applied to methods (3) and (4) resulting in two new approaches: Baseline corrected (6) equal and (7) variable amplitude-based gating. Listmode PET data from seven patients were acquired together with a respiratory signal. Images were reconstructed applying the seven gating methods. Two parameters were used to quantify the results: Motion was measured as the displacement of the heart due to respiration and noise was defined as the standard deviation of pixel intensities in a background region. The amplitude-based approaches (3) and (4) were superior to the time-based methods (1) and (2). The improvement in capturing the motion was more than 30% (up to 130%) in all subjects. The variable time (2) and amplitude (4) methods had a more uniform noise distribution among all respiratory gates compared to equal time (1) and amplitude (3) methods. Baseline correction did not improve the results. Out of seven different respiratory gating approaches, the variable amplitude method (4) captures the respiratory motion best while keeping a constant noise level among all respiratory phases

  18. A gate drive circuit for gate-turn-off (GTO) devices in series stack

    International Nuclear Information System (INIS)

    Despe, O.

    1999-01-01

    A gate-turn-off (GTO) switch is under development at the Advanced Photon Source as a replacement for a thyratron switch in high power pulsed application. The high voltage in the application requires multiple GTOs connected in series. One component that is critical to the success of GTO operation is the gate drive circuit. The gate drive circuit has to provide fast high-current pulses to the GTO gate for fast turn-on and turn-off. It also has to be able to operate while floating at high voltage. This paper describes a gate drive circuit that meets these requirements

  19. Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks

    Science.gov (United States)

    Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.

    2013-06-01

    In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.

  20. Sterol Regulation of Voltage-Gated K+ Channels.

    Science.gov (United States)

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  1. GaAs detectors with an ultra-thin Schottky contact for spectrometry of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Chernykh, S.V., E-mail: chsv_84@mail.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Chernykh, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Didenko, S.I.; Baryshnikov, F.M. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Burtebayev, N. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan); Britvich, G.I. [Institute of High Energy Physics, Protvino, Moscow region (Russian Federation); Chubenko, A.P. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Guly, V.G.; Glybin, Yu.N. [LLC “SNIIP Plus”, Moscow (Russian Federation); Zholdybayev, T.K.; Burtebayeva, J.T.; Nassurlla, M. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-02-11

    For the first time, samples of particle detectors based on high-purity GaAs epilayers with an active area of 25 and 80 mm{sup 2} and an ultra-thin Pt Schottky barrier were fabricated for use in the spectrometry of charged particles and their operating characteristics were studied. The obtained FWHM of 14.2 (for 25 mm{sup 2} detector) and 15.5 keV (for 80 mm{sup 2} detector) on the 5.499 MeV line of {sup 238}Pu is at the level of silicon spectrometric detectors. It was found that the main component that determines the energy resolution of the detector is a fluctuation in the number of collected electron–hole pairs. This allows us to state that the obtained energy resolution is close to the limit for VPE GaAs. - Highlights: • VPE GaAs particle detectors with an active area of 25 and 80 mm{sup 2} were fabricated. • 120 Å ultra-thin Pt Schottky barrier was used as a rectifying contact. • The obtained FWHM of 14.2 keV ({sup 238}Pu) is at the level of Si spectrometric detectors. • Various components of the total energy resolution were analyzed. • It was shown that obtained energy resolution is close to its limit for VPE GaAs.

  2. Photoacoustic study of the effect of doping concentration on the transport properties of GaAs epitaxial layers

    NARCIS (Netherlands)

    George, S.D.; Dilna, S.; Prasanth, R.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2003-01-01

    We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho's theory of the PA effect. The

  3. Influence of implantation conditions of He+ ions on the structure of a damaged layer in GaAs(001)

    International Nuclear Information System (INIS)

    Shcherbachev, Kirill; Bailey, Melanie J.

    2011-01-01

    An investigation into the influence of implantation conditions (dose, energy, and target temperature) of He + ions on the damage structure of GaAs (100) substrates was performed by HRXRD, scanning electron microscopy, and Nomarski microscopy. Blistering is shown to become apparent as characteristic features of isolines in RSMs. We propose that the formation of the defects yielding a characteristic XRDS is defined by the behavior of implanted atoms in the GaAs matrix, depending on two competing processes: (1) formation of the gas-filled bubbles; (2) diffusion of the He atoms from the bubbles toward the surface and deep into the GaAs substrate. We conclude that the gas-filled bubbles change the structure of the irradiated layer, resulting in the formation of strained crystalline areas of the GaAs matrix. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.

    Science.gov (United States)

    Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter

    2014-02-07

    Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.

  5. GaAs low-energy X-ray radioluminescence nuclear battery

    Science.gov (United States)

    Zhang, Zheng-Rong; Liu, Yun-Peng; Tang, Xiao-Bin; Xu, Zhi-Heng; Yuan, Zi-Cheng; Liu, Kai; Chen, Wang

    2018-01-01

    The output properties of X-ray radioluminescence (RL) nuclear batteries with different phosphor layers were investigated by using low-energy X-ray. Results indicated that the values of electrical parameters increased as the X-ray energy increased, and the output power of nuclear battery with ZnS:Cu phosphor layer was greater than those of batteries with ZnS:Ag, (Zn,Cd)S:Cu or Y2O3:Eu phosphor layers under the same excitation conditions. To analyze the RL effects of the phosphor layers under X-ray excitation, we measured the RL spectra of the different phosphor layers. Their fluorescence emissions were absorbed by the GaAs device. In addition, considering luminescence utilization in batteries, we introduced an aluminum (Al) film between the X-ray emitter and phosphor layer. Al film is a high performance reflective material and can increase the fluorescence reaching the GaAs photovoltaic device. This approach significantly improved the output power of the battery.

  6. Pseudo-Rhombus-Shaped Subwavelength Crossed Gratings of GaAs for Broadband Antireflection

    International Nuclear Information System (INIS)

    Chen Xi; Zhang Jing; Song Guo-Feng; Chen Liang-Hui; Fan Zhong-Chao

    2010-01-01

    Holographic lithography coupled with the nonlinear response of photoresist to the exposure is adopted to fabricate porous photoresist (PR) mask. Conventional dot PR mask is also generated, and both patterns are transferred into a underlying GaAs substrate by the optimal dry etching process to obtain tapered subwavelength crossed gratings (SWCGs) to mimic the moth-eye structure. In comparison of the experiment and simulation, the closely-packed pseudo-rhombus-shaped GaAs SWCGs resulting from the porous mask outperforms the conical counterpart which comes from the dot mask, and achieves a reported lowest mean spectral reflectance of 1.1%. (fundamental areas of phenomenology(including applications))

  7. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    International Nuclear Information System (INIS)

    Kobulnicky, K; Pawlak, D; Purwar, A

    2015-01-01

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc

  8. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, K; Pawlak, D; Purwar, A [Varian Medical Systems, Inc., Palo Alto, CA (United States)

    2015-06-15

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc.

  9. Magnetic Properties of Fe(001) Thin Films on GaAs(001) Deposited by RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ikeya, Hirokazu; Takahashi, Yutaka; Inaba, Nobuyuki; Kirino, Fumiyoshi; Ohtake, Mitsuru; Futamoto, Masaaki

    2011-01-01

    Fe thin films, down to 6 nm thick, were prepared on GaAs(001) substrates by RF magnetron sputtering. The x-ray diffraction (XRD) analyses show that the epitaxial thin films of Fe(001) were grown with cube-on-cube orientation on GaAs(001). Magnetic properties were investigated by vibrating sample magnetometry (VSM) and ferromagnetic resonance (FMR) spectroscopy. The magnetization curves obtained by applying in-plane magnetic fields indicate that easy (hard) direction is along [100] ([110]) and the saturation magnetization is close to the bulk values. The in-plane magnetic anisotropy measured by FMR shows four-fold symmetry, as expected for bcc Fe. We did not observe the in-plane uniaxial magnetic anisotropy reported on the MBE-grown Fe films on GaAs substrates.

  10. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    International Nuclear Information System (INIS)

    Leonhardt, Darin; Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S.; Han, Sang M.

    2010-01-01

    We have demonstrated the scalability of a process previously dubbed as Ge 'touchdown' on Si to substantially reduce threading dislocations below 10 7 /cm 2 in a Ge film grown on a 2 inch-diameter chemically oxidized Si substrate. This study also elucidates the overall mechanism of the touchdown process. The 1.4 nm thick chemical oxide is first formed by immersing Si substrates in a solution of H 2 O 2 and H 2 SO 4 . Subsequent exposure to Ge flux creates 3 to 7 nm-diameter voids in the oxide at a density greater than 10 11 /cm 2 . Comparison of data taken from many previous studies and ours shows an exponential dependence between oxide thickness and inverse temperature of void formation. Additionally, exposure to a Ge or Si atom flux decreases the temperature at which voids begin to form in the oxide. These results strongly suggest that Ge actively participates in the reaction with SiO 2 in the void formation process. Once voids are created in the oxide under a Ge flux, Ge islands selectively nucleate within the void openings on the newly exposed Si. Island nucleation and growth then compete with the void growth reaction. At substrate temperatures between 823 and 1053 K, nanometer size Ge islands that nucleate within the voids continue to grow and coalesce into a continuous film over the remaining oxide. Coalescence of the Ge islands is believed to result in the creation of stacking faults in the Ge film at a density of 5 x 10 7 /cm 2 . Additionally, coalescence results in films of 3 μm thickness having a root-mean-square roughness of 8 to 10 nm. We have found that polishing the films with dilute H 2 O 2 results in roughness values below 0.5 nm. However, stacking faults originating at the Ge-SiO 2 interface and terminating at the Ge surface are polished at a slightly reduced rate, and show up as 1 to 2 nm raised lines on the polished Ge surface. These lines are then transferred into the subsequent growth morphology of GaAs deposited by metal-organic chemical vapor

  11. Implementation of angular response function modeling in SPECT simulations with GATE

    International Nuclear Information System (INIS)

    Descourt, P; Visvikis, D; Carlier, T; Bardies, M; Du, Y; Song, X; Frey, E C; Tsui, B M W; Buvat, I

    2010-01-01

    Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy. (note)

  12. Implementation of angular response function modeling in SPECT simulations with GATE

    Energy Technology Data Exchange (ETDEWEB)

    Descourt, P; Visvikis, D [INSERM, U650, LaTIM, IFR SclnBioS, Universite de Brest, CHU Brest, Brest, F-29200 (France); Carlier, T; Bardies, M [CRCNA INSERM U892, Nantes (France); Du, Y; Song, X; Frey, E C; Tsui, B M W [Department of Radiology, J Hopkins University, Baltimore, MD (United States); Buvat, I, E-mail: dimitris@univ-brest.f [IMNC-UMR 8165 CNRS Universites Paris 7 et Paris 11, Orsay (France)

    2010-05-07

    Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy. (note)

  13. Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs(001)

    International Nuclear Information System (INIS)

    Kardasz, B.; Watkins, S. P.; Montoya, E. A.; Burrowes, C.; Girt, E.; Heinrich, B.

    2012-01-01

    Sulfur (S) and hydrogen (H) atom passivated GaAs(001) templates were used for deposition of ultrathin crystalline Fe films using molecular beam epitaxy, where the Fe thickness ranged from 10 to 45 atomic layers. Reflection high-energy electron diffraction patterns showed that the S- and H-passivated surfaces had no and very weak (1 x 2) superlattice reconstructions, respectively. This indicates that these GaAs(001) templates have a square-like symmetry. Magnetic anisotropies were investigated using the in-plane angular dependence of ferromagnetic resonance at 36 GHz. The in-plane cubic and uniaxial anisotropies and perpendicular uniaxial field were described by bulk and interface contributions, indicating that the Fe films have a high lattice coherence. The magnetic properties of the Fe films were compared to those grown on more commonly used GaAs(001) templates having a (4 x 6) reconstruction with an As-rich in-plane uniaxial symmetry. The Fe films grown on S-passivated templates exhibited unique magnetic properties caused by a decreased lattice spacing compared to the bulk Fe.

  14. Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kardasz, B.; Watkins, S. P.; Montoya, E. A.; Burrowes, C.; Girt, E.; Heinrich, B.

    2012-04-01

    Sulfur (S) and hydrogen (H) atom passivated GaAs(001) templates were used for deposition of ultrathin crystalline Fe films using molecular beam epitaxy, where the Fe thickness ranged from 10 to 45 atomic layers. Reflection high-energy electron diffraction patterns showed that the S- and H-passivated surfaces had no and very weak (1 x 2) superlattice reconstructions, respectively. This indicates that these GaAs(001) templates have a square-like symmetry. Magnetic anisotropies were investigated using the in-plane angular dependence of ferromagnetic resonance at 36 GHz. The in-plane cubic and uniaxial anisotropies and perpendicular uniaxial field were described by bulk and interface contributions, indicating that the Fe films have a high lattice coherence. The magnetic properties of the Fe films were compared to those grown on more commonly used GaAs(001) templates having a (4 x 6) reconstruction with an As-rich in-plane uniaxial symmetry. The Fe films grown on S-passivated templates exhibited unique magnetic properties caused by a decreased lattice spacing compared to the bulk Fe.

  15. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  16. Promotion effect of monovalent metals (K and Cs) on the GaAs (110) surface oxidation

    International Nuclear Information System (INIS)

    Valeri, S.; Sberveglieri, P.; Angeli, E.

    1987-01-01

    The effect of thin (∼ 1 monolayer) overlayers of low electronegativity metals (Cs and K) on the RT oxidation behaviour of GaAs(110) cleavage surface is studied. This study was with Auger and Photoemission spectroscopies. Attention has been focused on the core-valence-valence and Auger lineshapes on the Ga and As 3d peaks. Presence of the alkali metal enhances the GaAs (110) oxidation rate several orders of magnitude above the clean surface value has been found. The range 0-100 Langmuir is investigated in detail. The oxidation process of the GaAs(110) surface in the presence of both K and Cs overlayer follows a multi-step kinetic and reaches a saturation at exposure lower than 100 Langmuir. Both Ga and As atoms are involved in the oxygen bonding. The metal enhanced semiconductor oxidation is generally reported to be a process involving predominantly the semiconductor surface atoms. However in the Cs - and K - GaAs case, an involvement of the alkali metal atoms too, reflected in the shape modification of their Auger line has been found. The promotion effect of K and Cs is discussed in terms of their low electronegativity and in comparison with the results recently reported in the literature for the other low electronegativity metals

  17. Growth of GaAs “nano ice cream cones” by dual wavelength pulsed laser ablation

    Science.gov (United States)

    Schamp, C. T.; Jesser, W. A.; Shivaram, B. S.

    2007-05-01

    Harmonic generation crystals inherently offer the possibility of using multiple wavelengths of light in a single laser pulse. In the present experiment, the fundamental (1064 nm) and second harmonic (532 nm) wavelengths from an Nd:YAG laser are focused together on GaAs and GaSb targets for ablation. Incident energy densities up to about 45 J/cm 2 at 10 Hz with substrate temperatures between 25 and 600 °C for durations of about 60 s have been used in an ambient gas pressure of about 10 -6 Torr. The ablated material was collected on electron-transparent amorphous carbon films for TEM analysis. Apart from a high density of isolated nanocrystals, the most common morphology observed consists of a crystalline GaAs cone-like structure in contact with a sphere of liquid Ga, resembling an "ice cream cone", typically 50-100 nm in length. For all of the heterostuctures of this type, the liquid/solid/vacuum triple junction is found to correspond to the widest point on the cone. These heterostructures likely form by preferential evaporation of As from molten GaAs drops ablated from the target. The resulting morphology minimizes the interfacial and surface energies of the liquid Ga and solid GaAs.

  18. Sulfur passivation and contact methods for GaAs nanowire solar cells

    International Nuclear Information System (INIS)

    Tajik, N; Peng, Z; Kuyanov, P; LaPierre, R R

    2011-01-01

    The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements.

  19. Diffusion of $^{56}$Co in GaAs and SiGe alloys

    CERN Multimedia

    Koskelo, O K

    2007-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of cobalt in GaAs and SiGe alloys under intrinsic conditions. In the literature only three previous studies for Co diffusion in GaAs may be found and the results differ by over four orders of magnitude from each other. For Co diffusion in SiGe alloys no previous data is available in the literature. For Co diffusion in Ge one study may be found but the results have been obtained with material having increased dislocation density. For dislocation-free material no previous measurements are available. For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{56}$Co$^{+}$ ion beam.

  20. Power Amplifier Design for E-band Wireless System Communications

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke

    2008-01-01

    E-band wireless communications will become important as the microwave backhaul for high-speed data transmission. One of the most critical components is the front-end power amplifier in this system. The paper analyzes different technologies with potential in the E-band frequency range and present...... a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...... power and efficiency reported for an InP HBT power amplifier in this frequency range. The predicted power-added efficiency is higher than that of power amplifiers based on SiGe HBT and GaAs pHEMT technologies. The design shows the capabilities of InP DHBT for power amplifier applications...

  1. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field.

    Science.gov (United States)

    Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru

    2013-08-02

    Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.

  2. Bismuth alloying properties in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lu [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Cao, Huawei; Cai, Ningning; Yu, Zhongyuan [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2013-09-15

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. • The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states.

  3. High Quality GaAs Epilayers Grown on Si Substrate Using 100 nm Ge Buffer Layer

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Kuo

    2016-01-01

    Full Text Available We present high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers. The thin Ge buffer layers were modulated by hydrogen flow rate from 60 to 90 sccm to improve crystal quality by electron cyclotron resonance chemical vapor deposition (ECR-CVD at low growth temperature (180°C. The GaAs and Ge epilayers quality was verified by X-ray diffraction (XRD and spectroscopy ellipsometry (SE. The full width at half maximum (FWHM of the Ge and GaAs epilayers in XRD is 406 arcsec and 220 arcsec, respectively. In addition, the GaAs/Ge/Si interface is observed by transmission electron microscopy (TEM to demonstrate the epitaxial growth. The defects at GaAs/Ge interface are localized within a few nanometers. It is clearly showed that the dislocation is well suppressed. The quality of the Ge buffer layer is the key of III–V/Si tandem cell. Therefore, the high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers is suitable to develop the low cost and high efficiency III–V/Si tandem solar cells.

  4. Transient transition from free carrier metallic state to exciton insulating state in GaAs by ultrafast photoexcitation

    Science.gov (United States)

    Nie, X. C.; Song, Hai-Ying; Zhang, Xiu; Gu, Peng; Liu, Shi-Bing; Li, Fan; Meng, Jian-Qiao; Duan, Yu-Xia; Liu, H. Y.

    2018-03-01

    We present systematic studies of the transient dynamics of GaAs by ultrafast time-resolved reflectivity. In photoexcited non-equilibrium states, we found a sign reverse in reflectivity change ΔR/R, from positive around room temperature to negative at cryogenic temperatures. The former corresponds to a free carrier metallic state, while the latter is attributed to an exciton insulating state, in which the transient electronic properties is mostly dominated by excitons, resulting in a transient metal–insulator transition (MIT). Two transition temperatures (T 1 and T 2) are well identified by analyzing the intensity change of the transient reflectivity. We found that photoexcited MIT starts emerging at T 1 as high as ∼ 230 K, in terms of a dip feature at 0.4 ps, and becomes stabilized below T 2 that is up to ∼ 180 K, associated with a negative constant after 40 ps. Our results address a phase diagram that provides a framework for the inducing of MIT through temperature and photoexcitation, and may shed light on the understanding of light-semiconductor interaction and exciton physics.

  5. Strong coupling between bi-dimensional electron gas and nitrogen localized states in heavily doped GaAs1-xN x structures

    International Nuclear Information System (INIS)

    Hamdouni, A.; Bousbih, F.; Ben Bouzid, S.; Oueslati, M.; Chtourou, R.; Harmand, J.C.

    2005-01-01

    We report a low-temperature photoluminescence spectra (LTPL) of GaAs 1-x N x layers and two-dimension electron gas (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure grown on GaAs substrates by molecular beam epitaxy (MBE) with low nitrogen content [N] = 2 x 10 18 cm -3 . At low temperature, PL spectra of GaAs 1-x N x layers are governed by several features associate to the excitons bound to nitrogen complexes, these features disappear in (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure and the PL peak energy decrease with the laser power excitation. This effect is explained by the strongly coupling of the (2DEG) fundamental state with the nitrogen localized states. An activated energy of about 55 meV is deduced by photoluminescence measurements in the 10-300 K range for a laser power excitation P = 6 W/cm 2

  6. Homozygotic intronic GAA mutation in three siblings with late-onset Pompe's disease Mutação homozigótica intrônica no gene GAA em três irmãos com doença de Pompe de início tardio

    Directory of Open Access Journals (Sweden)

    Anderson Kuntz Grzesiuk

    2010-04-01

    Full Text Available Pompe's disease (PD is a metabolic myopathy caused by the accumulation of lysosomal glycogen, secondary to acid α-glucosidase (GAA enzyme deficiency. Childhood and late-onset forms are described, differing by the age of onset and symptoms. In this study were analyzed affected siblings with Pompe's disease (PD and their distinct clinical and pathological presentations. METHOD: Diagnosis was performed by the clinical presentation of limb-girdle dystrophies and respiratory compromise. Confirmatory diagnoses were conducted by muscle biopsy, GAA activity measurement and by GAA gene genotyping. RESULTS: The findings suggested muscular involvement due to GAA deficiency. GAA genotyping showed they are homozygous for the c.-32-3C>A mutation. CONCLUSION: Herein we reported a family where three out of five siblings were diagnosed with late-onset PD, although it is a rare metabolic disease inherited in an autossomal recessive manner. We emphasize the importance of including this presentation within the differential diagnoses of the limb-girdle dystrophies once enzyme replacement therapy is available.A doença de Pompe (DP é uma miopatia originada do acúmulo lisossomal de glicogênio, devido à deficiência da enzima α-glicosidase ácida (GAA, sendo descritas formas de inicio precoce e tardio. Neste estudo analisamos retrospectivamente o perfil clinico e patológico de 3 irmãos portadores de doença de Pompe de inicio tardio. MÉTODO: O diagnóstico foi realizado mediante apresentação clinica de distrofia de cinturas associado a comprometimento respiratório, sendo confirmado por biópsia muscular e análise da atividade e genotipagem da GAA. RESULTADOS: Os exames clínicos e laboratoriais demonstram envolvimento muscular devido à deficiência da GAA, com uma mutação c.-32-3C>A em homozigose. CONCLUSÃO: Relatamos os aspectos clínicos e laboratoriais de 3 irmãos afetados por doença de Pompe de início tardio. Enfatizamos a importância de

  7. Isolating GaSb Membranes Grown Metamorphically on GaAs Substrates Using Highly Selective Substrate Removal Etch Processes

    Science.gov (United States)

    Renteria, E. J.; Muniz, A. J.; Addamane, S. J.; Shima, D. M.; Hains, C. P.; Balakrishnan, G.

    2015-05-01

    The etch rates of NH4OH:H2O2 and C6H8O7:H2O2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH4OH:H2O2 solution has a greater etch rate differential for the GaSb/GaAs material system than C6H8O7:H2O2 solution. The selectivity of NH4OH:H2O2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11,000 ± 2000, whereas that of C6H8O7:H2O2 has been measured up to 143 ± 2. The etch contrast has been verified by isolating 2- μm-thick GaSb epilayers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high- resolution x-ray diffraction and atomic force microscopy.

  8. Antisites and anisotropic diffusion in GaAs and GaSb

    KAUST Repository

    Tahini, H. A.; Bracht, H.; Chroneos, Alexander; Grimes, R. W.; Murphy, S. T.; Schwingenschlö gl, Udo

    2013-01-01

    The significant diffusion of Ga under Ga-rich conditions in GaAs and GaSb is counter intuitive as the concentration of Ga vacancies should be depressed although Ga vacancies are necessary to interpret the experimental evidence for Ga transport

  9. Optical Properties of InGaAs/ GaAs Multi Quantum Wells Structure Grown By Molecular Beam Epitaxy

    International Nuclear Information System (INIS)

    Mohd Sharizal Alias; Mohd Fauzi Maulud; Mohd Razman Yahya; Abdul Fatah Awang Mat; Suomalainen, Soile

    2008-01-01

    Inclusive analysis on the optical characteristics of InGaAs/ GaAs QW structure for 980 nm semiconductor laser operation is presented from experimental and theoretical point of view. The InGaAs/ GaAs quantum well structure is grown by molecular beam epitaxy at different indium composition and quantum well thickness for optical characteristic comparison. Photoluminescence spectra from the measurement show that the spectrum is in good agreement with the simulation results. Detail simulation on the material gain for the InGaAs/ GaAs quantum well as a function of carrier densities and operating temperature is also performed in order to optimize the semiconductor laser design for device fabrication. (author)

  10. X-ray diffraction study on pressure-induced phase transformation in nanocrystalline GaAs

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J. S.; Gerward, Leif

    2002-01-01

    We have shown that the onset and transition pressures of the GaAs I --> II transition are 17 GPa and 20 GPa, respectively, for both bulk and nanophase material. The observed gradual change in resistivity of nanophase GaAs,at the semiconductor-to-metal transition is explained by the two-component ......We have shown that the onset and transition pressures of the GaAs I --> II transition are 17 GPa and 20 GPa, respectively, for both bulk and nanophase material. The observed gradual change in resistivity of nanophase GaAs,at the semiconductor-to-metal transition is explained by the two...

  11. Stable Amplification and High Current Drop Bistable Switching in Supercritical GaAs Tills

    DEFF Research Database (Denmark)

    Izadpanah, S.H; Jeppsson, B; Jeppesen, Palle

    1974-01-01

    Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance.......Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance....

  12. Diffraction anomalous fine-structure study of strained Ga1-xInxAs on GaAs(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Cross, J.O.; Bouldin, C.E.; Ravel, B.; Pellegrino, J.G.; Steiner, B.; Bompadre, S.G.; Sorensen, L.B.; Miyano, K.E.; Kirkland, J.P.

    1998-01-01

    Diffraction anomalous fine-structure measurements performed at both the Ga and As K edges have determined the Ga-As bond length to be 2.442±0.005thinsp Angstrom in a buried, 213-Angstrom-thick Ga 0.785 In 0.215 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.013±0.005thinsp Angstrom relative to the Ga-As bond length in bulk Ga 1-x In x As of the same composition. Together with recent extended x-ray-absorption fine-structure measurements performed at the In K edge [Woicik et al., Phys. Rev. Lett. 79, 5026 (1997)], excellent agreement is found with the uniform bond-length distortion model for strained-layer semiconductors on (001) substrates. copyright 1998 The American Physical Society

  13. High-resolution X-ray diffraction characterisation of piezoelectric InGaAs / GaAs multiquantum wells and superlattices on (111)B GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Hervas, A.; Aguilar, M. [Madrid, Univ. (Spain). Dept. Tecnologia Electronica. E.T.S.I. Telecomunicacion; Lopez, M.; Llorente, C.; Lorenzo, R.; Abril, E. J. [Valladolid, Real de Burgos Univ. (Spain). Dept. Teoria de la Senal u Comunicaciones e Ingegneria Telematica. E.T.S.I. Telecomunicacion; Sacedon, A.; Sanchez, J. L.; Calleja, E.; Munoz, E. [Madrid, Univ. (Spain). Dept. Ingegnieria Electronica. E.T.S.I. Telecomunicacion

    1997-02-01

    In this paper the authors show some examples of strained InGaAs / GaAs multilayers on (111)B GaAs substrates studied by high-resolution X-ray diffractometry. The samples consisted of a multiquantum well or superlattice embedded in the intrinsic region of a p-i-n photodiode. They have analysed piezoelectric (111)B structures with 3, 7, 10, and 40 periods and different indium contents and compared the results with identical structures simultaneously grown on (001) substrates. The interpretation of the diffraction profiles has been carried out with a computer simulation model developed in our labs, which allows the calculation of symmetric and asymmetric reflections regardless of the substrate orientation or miscut angle. The agreement between the experimental scans and the theory was very satisfactory in all the samples, which has enabled us to determine the main structural parameters of the diodes, Asymmetric 224{+-} reflections on (111)B structures have been simulated for the first time. They have also compared the structural parameters obtained by high-resolution X-ray diffractometry with the results deduced from photoluminescence and photocurrent spectroscopies.

  14. High-resolution X-ray diffraction characterisation of piezoelectric InGaAs / GaAs multiquantum wells and superlattices on (111)B GaAs

    International Nuclear Information System (INIS)

    Sanz-Hervas, A.; Aguilar, M.; Lopez, M.; Llorente, C.; Lorenzo, R.; Abril, E. J.; Sacedon, A.; Sanchez, J. L.; Calleja, E.; Munoz, E.

    1997-01-01

    In this paper the authors show some examples of strained InGaAs / GaAs multilayers on (111)B GaAs substrates studied by high-resolution X-ray diffractometry. The samples consisted of a multiquantum well or superlattice embedded in the intrinsic region of a p-i-n photodiode. They have analysed piezoelectric (111)B structures with 3, 7, 10, and 40 periods and different indium contents and compared the results with identical structures simultaneously grown on (001) substrates. The interpretation of the diffraction profiles has been carried out with a computer simulation model developed in our labs, which allows the calculation of symmetric and asymmetric reflections regardless of the substrate orientation or miscut angle. The agreement between the experimental scans and the theory was very satisfactory in all the samples, which has enabled us to determine the main structural parameters of the diodes, Asymmetric 224± reflections on (111)B structures have been simulated for the first time. They have also compared the structural parameters obtained by high-resolution X-ray diffractometry with the results deduced from photoluminescence and photocurrent spectroscopies

  15. Cardiac magnetic resonance: is phonocardiogram gating reliable in velocity-encoded phase contrast imaging?

    International Nuclear Information System (INIS)

    Nassenstein, Kai; Schlosser, Thomas; Orzada, Stephan; Ladd, Mark E.; Maderwald, Stefan; Haering, Lars; Czylwik, Andreas; Jensen, Christoph; Bruder, Oliver

    2012-01-01

    To assess the diagnostic accuracy of phonocardiogram (PCG) gated velocity-encoded phase contrast magnetic resonance imaging (MRI). Flow quantification above the aortic valve was performed in 68 patients by acquiring a retrospectively PCG- and a retrospectively ECG-gated velocity-encoded GE-sequence at 1.5 T. Peak velocity (PV), average velocity (AV), forward volume (FV), reverse volume (RV), net forward volume (NFV), as well as the regurgitant fraction (RF) were assessed for both datasets, as well as for the PCG-gated datasets after compensation for the PCG trigger delay. PCG-gated image acquisition was feasible in 64 patients, ECG-gated in all patients. PCG-gated flow quantification overestimated PV (Δ 3.8 ± 14.1 cm/s; P = 0.037) and underestimated FV (Δ -4.9 ± 15.7 ml; P = 0.015) and NFV (Δ -4.5 ± 16.5 ml; P = 0.033) compared with ECG-gated imaging. After compensation for the PCG trigger delay, differences were only observed for PV (Δ 3.8 ± 14.1 cm/s; P = 0.037). Wide limits of agreement between PCG- and ECG-gated flow quantification were observed for all variables (PV: -23.9 to 31.4 cm/s; AV: -4.5 to 3.9 cm/s; FV: -35.6 to 25.9 ml; RV: -8.0 to 7.2 ml; NFV: -36.8 to 27.8 ml; RF: -10.4 to 10.2 %). The present study demonstrates that PCG gating in its current form is not reliable enough for flow quantification based on velocity-encoded phase contrast gradient echo (GE) sequences. (orig.)

  16. Expert Oracle GoldenGate

    CERN Document Server

    Prusinski, Ben; Chung, Richard

    2011-01-01

    Expert Oracle GoldenGate is a hands-on guide to creating and managing complex data replication environments using the latest in database replication technology from Oracle. GoldenGate is the future in replication technology from Oracle, and aims to be best-of-breed. GoldenGate supports homogeneous replication between Oracle databases. It supports heterogeneous replication involving other brands such as Microsoft SQL Server and IBM DB2 Universal Server. GoldenGate is high-speed, bidirectional, highly-parallelized, and makes only a light impact on the performance of databases involved in replica

  17. Characterization of 0.18- μm gate length AlGaN/GaN HEMTs on SiC fabricated using two-step gate recessing

    Science.gov (United States)

    Yoon, Hyung Sup; Min, Byoung-Gue; Lee, Jong Min; Kang, Dong Min; Ahn, Ho Kyun; Cho, Kyu-Jun; Do, Jae-Won; Shin, Min Jeong; Jung, Hyun-Wook; Kim, Sung Il; Kim, Hae Cheon; Lim, Jong Won

    2017-09-01

    We fabricated a 0.18- μm gate-length AlGaN/GaN high electron mobility transistor (HEMT) on SiC substrate fabricated by using two-step gate recessing which was composed of inductively coupled plasma (ICP) dry etching with a gas mixture of BCl3/Cl2 and wet chemical etching using the oxygen plasma treatment and HCl-based cleaning. The two-step gate recessing process exhibited an etch depth of 4.5 nm for the AlGaN layer and the clean surface of AlGaN layer at the AlGaN/gate metal contact region for the AlGaN/GaN HEMT structure. The recessed 0.18 μm × 200 μm AlGaN/GaN HEMT devices showed good DC characteristics, having a good Schottky diode ideality factor of 1.25, an extrinsic transconductance ( g m ) of 345 mS/mm, and a threshold voltage ( V th ) of -2.03 V. The recessed HEMT devices exhibited high RF performance, having a cut-off frequency ( f T ) of 48 GHz and a maximum oscillation frequency ( f max ) of 130 GHz. These devices also showed minimum noise figure of 0.83 dB and associated gain of 12.2 dB at 10 GHz.

  18. Optical pumping and negative luminescence polarization in charged GaAs quantum dots

    Science.gov (United States)

    Shabaev, Andrew; Stinaff, Eric A.; Bracker, Allan S.; Gammon, Daniel; Efros, Alexander L.; Korenev, Vladimir L.; Merkulov, Igor

    2009-01-01

    Optical pumping of electron spins and negative photoluminescence polarization are observed when interface quantum dots in a GaAs quantum well are excited nonresonantly by circularly polarized light. Both observations can be explained by the formation of long-lived dark excitons through hole spin relaxation in the GaAs quantum well prior to exciton capture. In this model, optical pumping of resident electron spins is caused by capture of dark excitons and recombination in charged quantum dots. Negative polarization results from accumulation of dark excitons in the quantum well and is enhanced by optical pumping. The dark exciton model describes the experimental results very well, including intensity and bias dependence of the photoluminescence polarization and the Hanle effect.

  19. The influence of γ-irradiation cobalt 60 on electrical properties of undoped GaAs treated with hydrogen plasma

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Bumaj, Yu.A.; Ul'yashin, A.G.

    1999-01-01

    The influence of exposition to a hydrogen plasma (hydrogenation) on the electrical properties alteration under gamma-irradiation in bulk GaAs have been investigated. It is shown that crystals hydrogenation before irradiation leads to particularly passivation of electrically active defects that are responsible for carriers scattering and removing processes in irradiated crystals. Radiation defects thermostability in hydrogenated GaAs crystals is lower than that in non hydrogenated ones. The energetic levels position of main defect that effects on electrical properties alteration after irradiation in GaAs crystals was detected. It is equal to E D =E C -0,125±0,0005 eV

  20. Laser-induced band-gap collapse in GaAs

    Science.gov (United States)

    Glezer, E. N.; Siegal, Y.; Huang, L.; Mazur, E.

    1995-03-01

    We present experimentally determined values of the dielectric constant of GaAs at photon energies of 2.2 and 4.4 eV following excitation of the sample with 1.9-eV, 70-fs laser pulses spanning a fluence range from 0 to 2.5 kJ/m2. The data show that the response of the dielectric constant to the excitation is dominated by changes in the electronic band structure and not by the optical susceptibility of the excited free carriers. The behavior of the dielectric constant indicates a drop in the average bonding-antibonding splitting of GaAs following the laser-pulse excitation. This drop in the average splitting leads to a collapse of the band gap on a picosecond time scale for excitation at fluences near the damage threshold of 1.0 kJ/m2 and on a subpicosecond time scale at higher excitation fluences. The changes in the electronic band structure result from a combination of electronic screening of the ionic potential as well as structural deformation of the lattice caused by the destabilization of the covalent bonds.

  1. Low-energy particle treatment of GaAs surface

    International Nuclear Information System (INIS)

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  2. In situ electron backscattered diffraction of individual GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, S.V. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)], E-mail: sergey@seas.ucla.edu; Sitzman, S. [Oxford Instruments America, Concord, MA 01742 (United States); Gambin, V. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Kodambaka, S. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2008-12-15

    We suggest and demonstrate that electron backscattered diffraction, a scanning electron microscope-based technique, can be used for non-destructive structural and morphological characterization of statistically significant number of nanowires in situ on their growth substrate. We obtain morphological, crystal phase, and crystal orientation information of individual GaAs nanowires in situ on the growth substrate GaAs(1 1 1) B. Our results, verified using transmission electron microscopy and selected area electron diffraction analyses of the same set of wires, indicate that most wires possess a wurtzite structure with a high density of thin structural defects aligned normal to the wire growth axis, while others grow defect-free with a zincblende structure. The demonstrated approach is general, applicable to other material systems, and is expected to provide important insights into the role of substrate structure on nanowire structure on nanowire crystallinity and growth orientation.

  3. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei; Hijikata, Yasuto; Yaguchi, Hiroyuki [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku , Saitama 338-8570 (Japan); Mochizuki, Toshimitsu; Yoshita, Masahiro; Akiyama, Hidefumi [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Kuboya, Shigeyuki; Onabe, Kentaro [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Katayama, Ryuji [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  4. Lifetime measurements by open circuit voltage decay in GaAs and InP diodes

    International Nuclear Information System (INIS)

    Bhimnathwala, H.G.; Tyagi, S.D.; Bothra, S.; Ghandhi, S.K.; Borrego, J.M.

    1990-01-01

    Minority carrier lifetimes in the base of solar cells made in GaAs and InP are measured by open circuit voltage decay method. This paper describes the measurement technique and the conditions under which the minority carrier lifetimes can be measured. Minority carrier lifetimes ranging from 1.6 to 34 ns in InP of different doping concentrations are measured. A minority carrier lifetime of 6 ns was measured in n-type GaAs which agrees well with the lifetime of 5.7 ns measured by transient microwave reflection

  5. Capacitance-voltage characteristics of GaAs ion-implanted structures

    Directory of Open Access Journals (Sweden)

    Privalov E. N.

    2008-08-01

    Full Text Available A noniterative numerical method is proposed to calculate the barrier capacitance of GaAs ion-implanted structures as a function of the Schottky barrier bias. The features of the low- and high-frequency capacitance-voltage characteristics of these structures which are due to the presence of deep traps are elucidated.

  6. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Darin [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Han, Sang M., E-mail: meister@unm.ed [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-08-31

    subsequent growth morphology of GaAs deposited by metal-organic chemical vapor deposition. Room temperature photoluminescence shows that films of GaAs grown on Ge-on-oxidized Si have an intensity that is 20 to 25% compared to the intensity from GaAs grown on commercial Ge or GaAs substrates. Cathodoluminescence shows that nonradiative defects occur in the GaAs that spatially correspond to the stacking faults terminating at the Ge surface. The exact nature of these nonradiative defects in the GaAs is unknown, however, GaAs grown on annealed samples of Ge-on-oxidized Si, whereby annealing removes the stacking faults, have photoluminescence intensity that is comparable to GaAs grown on a GaAs substrate.

  7. The mechanism of fast-gate opening in ClC-0.

    Science.gov (United States)

    Engh, Anita M; Faraldo-Gómez, José D; Maduke, Merritt

    2007-10-01

    ClC-0 is a chloride channel whose gating is sensitive to both voltage and chloride. Based on analysis of gating kinetics using single-channel recordings, a five-state model was proposed to describe the dependence of ClC-0 fast-gate opening on voltage and external chloride (Chen, T.-Y., and C. Miller. 1996. J. Gen. Physiol. 108:237-250). We aimed to use this five-state model as a starting point for understanding the structural changes that occur during gating. Using macroscopic patch recordings, we were able to reproduce the effects of voltage and chloride that were reported by Chen and Miller and to fit our opening rate constant data to the five-state model. Upon further analysis of both our data and those of Chen and Miller, we learned that in contrast to their conclusions, (a) the features in the data are not adequate to rule out a simpler four-state model, and (b) the chloride-binding step is voltage dependent. In order to be able to evaluate the effects of mutants on gating (described in the companion paper, see Engh et al. on p. 351 of this issue), we developed a method for determining the error on gating model parameters, and evaluated the sources of this error. To begin to mesh the kinetic model(s) with the known CLC structures, a model of ClC-0 was generated computationally based on the X-ray crystal structure of the prokaryotic homolog ClC-ec1. Analysis of pore electrostatics in this homology model suggests that at least two of the conclusions derived from the gating kinetics analysis are consistent with the known CLC structures: (1) chloride binding is necessary for channel opening, and (2) chloride binding to any of the three known chloride-binding sites must be voltage dependent.

  8. Design of a GaAs X-ray imaging sensor with integrated HEMT readout circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, D

    2002-01-01

    A new monolithic semi-insulating (SI) GaAs sensor design for X-ray imaging applications between 10-100keV has been proposed. Monolithic pixel detectors offer a number of advantages over hybrid bump-bonded detectors, such as high device yield, low costs and are easier to produce large scale arrays. In this thesis, an investigation is made of the use of a SI GaAs wafer as both a detector element and substrate for the epitaxially grown High Electron Mobility Transistors (HEMTs). The design of the HEMT transistors, optimised for this application, were produced with the aid of the Silvaco 'Virtual Wafer Fab' simulation package. It was determined that the device characteristics would consist of a small positive threshold voltage, a low off-state drain current and high transconductance. The final HEMT transistor design, that would be integrated to a pixel detector, had a threshold voltage of 0.17V, an off-state leakage current of {approx}1nA and a transconductance of 7.4mS. A number of test detectors were characterised using an ion beam induced charge technique. Charge collection efficiency maps of the test detectors were produced to determine their quality as a X-ray detection material. From the results, the inhomogeneity of SI GaAs, homogeneity of epitaxial GaAs and granular nature of polycrystalline GaAs, were observed. The best of these detectors was used in conjunction with a commercial field effect transistor to produce a hybrid device. The charge switching nature of the hybrid device was shown and a sensitivity of 0.44pC/{mu}Gy mm{sup 2}, for a detector bias of 60V, was found. The functionality of the hybrid sensor was the same to that proposed for the monolithic sensor. The fabrication of the monolithic sensor, with an integrated HEMT transistor and external capacitor, was achieved. To reach the next stage of producing a monolithic sensor that integrates charge, requires further work in the design and the fabrication process. (author)

  9. Design of a GaAs X-ray imaging sensor with integrated HEMT readout circuitry

    International Nuclear Information System (INIS)

    Boardman, D.

    2002-01-01

    A new monolithic semi-insulating (SI) GaAs sensor design for X-ray imaging applications between 10-100keV has been proposed. Monolithic pixel detectors offer a number of advantages over hybrid bump-bonded detectors, such as high device yield, low costs and are easier to produce large scale arrays. In this thesis, an investigation is made of the use of a SI GaAs wafer as both a detector element and substrate for the epitaxially grown High Electron Mobility Transistors (HEMTs). The design of the HEMT transistors, optimised for this application, were produced with the aid of the Silvaco 'Virtual Wafer Fab' simulation package. It was determined that the device characteristics would consist of a small positive threshold voltage, a low off-state drain current and high transconductance. The final HEMT transistor design, that would be integrated to a pixel detector, had a threshold voltage of 0.17V, an off-state leakage current of ∼1nA and a transconductance of 7.4mS. A number of test detectors were characterised using an ion beam induced charge technique. Charge collection efficiency maps of the test detectors were produced to determine their quality as a X-ray detection material. From the results, the inhomogeneity of SI GaAs, homogeneity of epitaxial GaAs and granular nature of polycrystalline GaAs, were observed. The best of these detectors was used in conjunction with a commercial field effect transistor to produce a hybrid device. The charge switching nature of the hybrid device was shown and a sensitivity of 0.44pC/μGy mm 2 , for a detector bias of 60V, was found. The functionality of the hybrid sensor was the same to that proposed for the monolithic sensor. The fabrication of the monolithic sensor, with an integrated HEMT transistor and external capacitor, was achieved. To reach the next stage of producing a monolithic sensor that integrates charge, requires further work in the design and the fabrication process. (author)

  10. Study of irradiation defects in GaAs

    International Nuclear Information System (INIS)

    Loualiche, S.

    1982-11-01

    Characterization techniques: C(V) differential capacity, DLTS deep level transient spectroscopy, DDLTS double deep level transient spectroscopy and DLOS deep level optical spectroscopy are studied and theoretical and experimental fundamentals are re-examined. In particular the centres created by ionic or electronic bombardment of p-type GaAs. New quantitative theoretical bases for the C(V) method are obtained. Study of the optical properties of traps due to irradiation using DLOS. The nature of irradiation defects are discussed [fr

  11. Semi-insulating GaAs detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sagatova, A.; Sedlackova, K.; Necas, V.; Zatko, B.; Dubecky, F.; Bohacek, P.

    2012-01-01

    The present work deals with the technology of HDPE neutron conversion layer application on the surface of semi-insulating (SI) GaAs detectors via developed polypropylene (PP) based glue. The influence of glue deposition on the electric properties of the detectors was studied as well as the ability of the detectors to register the fast neutrons from "2"3"9Pu-Be neutron source. (authors)

  12. Plasma treatment of porous GaAs surface formed by electrochemical etching method: Characterization and properties

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2010-01-01

    Porous GaAs samples were formed by electrochemical anodic etching of Zn doped p-type GaAs (100) wafers at different etching parameters (time, mode of applied voltage or current and electrolyte). The effect of etching parameters and plasma surface treatment on the optical properties of the prepared sample has been investigated by using room temperature photoluminescence (PL), Raman spectroscopy and reflectance spectroscopic measurements in the range (400-800 nm). The surface morphological changes were studied by using atomic force microscope. (author)

  13. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jan, S; Becheva, E [DSV/I2BM/SHFJ, Commissariat a l' Energie Atomique, Orsay (France); Benoit, D; Rehfeld, N; Stute, S; Buvat, I [IMNC-UMR 8165 CNRS-Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Carlier, T [INSERM U892-Cancer Research Center, University of Nantes, Nantes (France); Cassol, F; Morel, C [Centre de physique des particules de Marseille, CNRS-IN2P3 and Universite de la Mediterranee, Aix-Marseille II, 163, avenue de Luminy, 13288 Marseille Cedex 09 (France); Descourt, P; Visvikis, D [INSERM, U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France); Frisson, T; Grevillot, L; Guigues, L; Sarrut, D; Zahra, N [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U630, INSA-Lyon, Universite Lyon 1, Centre Leon Berard (France); Maigne, L; Perrot, Y [Laboratoire de Physique Corpusculaire, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Schaart, D R [Delft University of Technology, Radiation Detection and Medical Imaging, Mekelweg 15, 2629 JB Delft (Netherlands); Pietrzyk, U, E-mail: buvat@imnc.in2p3.fr [Reseach Center Juelich, Institute of Neurosciences and Medicine and Department of Physics, University of Wuppertal (Germany)

    2011-02-21

    GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.

  14. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    Science.gov (United States)

    Li, Shuo; Wang, Lei; Zhu, Yan-Chun; Yang, Jie; Xie, Yao-Qin; Fu, Nan; Wang, Yi; Gao, Song

    2016-12-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P > 0.10) and respiratory (H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  15. Real-time observation of rotational twin formation during molecular-beam epitaxial growth of GaAs on Si (111) by x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Nakata, Yuka; Takahasi, Masamitu [Graduate School of Materials Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Hyogo 678-1297 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Hyogo 679-5148 (Japan); Ikeda, Kazuma [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Ohshita, Yoshio; Morohara, Osamu; Geka, Hirotaka; Moriyasu, Yoshitaka [Advanced Devices and Sensor Systems Development Center, Asahi Kasei Co. Ltd., 2-1 Samejima, Fuji 416-8501 (Japan)

    2016-03-15

    The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain size was smaller for all film thicknesses.

  16. Very fast, high peak-power, planar triode amplifiers for driving optical gates

    International Nuclear Information System (INIS)

    Howland, M.M.; Davis, S.J.; Gagnon, W.L.

    1979-01-01

    Recent extensions of the peak power capabilities of planar triodes have made possible the latter's use as very fast pulse amplifiers, to drive optical gates within high-power Nd:glass laser chains. These pulse amplifiers switch voltages in the 20 kV range with rise times of a few nanoseconds, into crystal optical gates that are essentially capacitive loads. This paper describes a simplified procedure for designing these pulse amplifiers. It further outlines the use of bridged-T constant resistance networks to transform load capacitance into pure resistance, independent of frequency

  17. GaAs Solar Cells on V-Grooved Silicon via Selective Area Growth: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vaisman, Michelle [Yale University; Li, Qiang [Hong Kong University of Science and Technology; Lau, Kei May [Hong Kong University of Science and Technology

    2017-08-31

    Interest in integrating III-Vs onto Si has recently resurged as a promising pathway towards high-efficiency, low-cost tandem photovoltaics. Here, we present a single junction GaAs solar cell grown monolithically on polished Si (001) substrates using V-grooves, selective area growth, and aspect ratio trapping to mitigate defect formation without the use of expensive, thick graded buffers. The GaAs is free of antiphase domains and maintains a relatively low TDD of 4x107 cm-2, despite the lack of a graded buffer. This 6.25 percent-efficient demonstration solar cell shows promise for further improvements to III-V/Si tandems to enable cost-competitive photovoltaics.

  18. Temperature-Driven Change in the Unstable Growth Mode on Patterned GaAs(001)

    International Nuclear Information System (INIS)

    Tadayyon-Eslami, T.; Phaneuf, R. J.; Kan, H.-C.; Calhoun, L. C.

    2006-01-01

    We observe a dramatic change in the unstable growth mode during GaAs molecular beam epitaxy on patterned GaAs(001) as the temperature is lowered through approximately 540 deg. C, roughly coincident with the preroughening temperature. Observations of the As 2 flux dependence, however, rule out thermodynamic preroughening as driving the growth mode change. Similar observations rule out the change in surface reconstruction as the cause. Instead, we find evidence that the change in the unstable growth mode can be explained by a competition between the decreased adatom collection rate on small terraces and a small anisotropic barrier to adatom diffusion downward across step bunches

  19. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering

    International Nuclear Information System (INIS)

    Yamamura, Jin; Frisch, Michael; Ecker, Hannes; Adam, Gerhard; Wedegaertner, Ulrike; Graessner, Joachim; Hecher, Kurt

    2011-01-01

    To investigate the self-gating technique for MR imaging of the fetal heart in a sheep model. MR images of 6 fetal sheep heart were obtained at 1.5T. For self-gating MRI of the fetal heart a cine SSFP in short axis, two and four chamber view was used. Self-gated images were compared with real cardiac triggered MR images (pulse-wave triggering). MRI of the fetal heart was performed using both techniques simultaneously. Image quality was assessed and the left ventricular volume and function were measured and compared. Compared with pulse-wave triggering, the self-gating technique produced slightly inferior images with artifacts. Especially the atrial septum could not be so clearly depicted. The contraction of the fetal heart was shown in cine sequences in both techniques. The average blood volumes could be measured with both techniques with no significant difference: at end-systole 3.1 ml (SD± 0.2), at end-diastole 4.9 ml (±0.2), with ejection fractions at 38.6%, respectively 39%. Both self-gating and pulse-wave triggered cardiac MRI of the fetal heart allowed the evaluation of anatomical structures and functional information. Images obtained by self-gating technique were slightly inferior than the pulse-wave triggered MRI. (orig.)

  20. Investigating transfer gate potential barrier by feed-forward effect measurement

    NARCIS (Netherlands)

    Xu, Y.; Ge, X.; Theuwissen, A.J.P.

    2015-01-01

    In a 4T pixel, the transfer gate (TG) “OFF” surface potential is one of the important parameters, which determines the pinned photodiode (PPD) full well capacity. The feed-forward effect measurement is a powerful tool to characterize the relationship of the PPD injection potential and the

  1. Negative ion formation in the scattering of state-selected NO+ on GaAs(110)

    International Nuclear Information System (INIS)

    Martin, J.S.; Greeley, J.N.; Morris, J.R.; Ferenchok, B.T.; Jacobs, D.C.

    1993-01-01

    A hyperthermal beam of state-selected NO + X 1 Σ + (v,j) impinges on a clean, well characterized GaAs(110) surface. The resulting two-electron transfer products NO-and O- are independently interrogated with a novel ion imaging technique as a function of NO + translational and vibrational energies. The products are shown to have different appearance thresholds, product translational energy distributions, and NO + vibrational energy dependencies. Most notably, vibrational energy is an order of magnitude more effective that translational energy in activating O- formation at a collision energy of 45 eV. The O- angular distribution exhibits a correlation with translational energy which is asymmetric about the surface normal. These results suggest that the probability of O- formation is dependent on the molecules point of impact with the GaAs (110) surface. The dynamical features of the NO + /GaAs(110) reaction will be discussed in terms of the three independent coordinates addressed in this experiment: the diatom internuclear separation, the molecule-surface distance, and the surface impact parameter

  2. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2006-01-01

    .5 GHz and ≫ 10 GHz for SiGe BiCMOS and GaAs MMIC, respectively. Analysis of the frequency behaviour of frequency converting devices is presented for improved mixer design. Millimeter-wave front-end components for advanced microwave imaging and communications purposes have also been demonstrated......Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat...... conversion gain with a 3 dB bandwidth of 10 GHz for SiGe and in excess of 20 GHz for GaAs processes. The concurrent LO-IF isolation is better than -25 dB, without including the improvement due to the combiner circuit. The converter circuits exhibit similar instantaneous bandwidth at IF and RF ports of ≫ 7...

  3. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    Science.gov (United States)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  4. Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates

    International Nuclear Information System (INIS)

    Yum, J.H.; Akyol, T.; Lei, M.; Ferrer, D.A.; Hudnall, Todd W.; Downer, M.; Bielawski, C.W.; Bersuker, G.; Lee, J.C.; Banerjee, S.K.

    2012-01-01

    In a previous study, atomic layer deposited (ALD) BeO exhibited less interface defect density and hysteresis, as well as less frequency dispersion and leakage current density, at the same equivalent oxide thickness than Al 2 O 3 . Furthermore, its self-cleaning effect was better. In this study, the physical and electrical characteristics of ALD BeO grown on Si and GaAs substrates are further evaluated as a gate dielectric layer in III–V metal-oxide-semiconductor devices using transmission electron microscopy, selective area electron diffraction, second harmonic generation, and electrical analysis. An as-grown ALD BeO thin film was revealed as a layered single crystal structure, unlike the well-known ALD dielectrics that exhibit either poly-crystalline or amorphous structures. Low defect density in highly ordered ALD BeO film, less variability in electrical characteristics, and great stability under electrical stress were demonstrated. - Highlights: ► BeO is an excellent electrical insulator, but good thermal conductor. ► Highly crystalline film of BeO has been grown using atomic layer deposition. ► An ALD BeO precursor, which is not commercially available, has been synthesized. ► Physical and electrical characteristics have been investigated.

  5. Novel Quantum Dot Gate FETs and Nonvolatile Memories Using Lattice-Matched II-VI Gate Insulators

    Science.gov (United States)

    Jain, F. C.; Suarez, E.; Gogna, M.; Alamoody, F.; Butkiewicus, D.; Hohner, R.; Liaskas, T.; Karmakar, S.; Chan, P.-Y.; Miller, B.; Chandy, J.; Heller, E.

    2009-08-01

    This paper presents the successful use of ZnS/ZnMgS and other II-VI layers (lattice-matched or pseudomorphic) as high- k gate dielectrics in the fabrication of quantum dot (QD) gate Si field-effect transistors (FETs) and nonvolatile memory structures. Quantum dot gate FETs and nonvolatile memories have been fabricated in two basic configurations: (1) monodispersed cladded Ge nanocrystals (e.g., GeO x -cladded-Ge quantum dots) site-specifically self-assembled over the lattice-matched ZnMgS gate insulator in the channel region, and (2) ZnTe-ZnMgTe quantum dots formed by self-organization, using metalorganic chemical vapor-phase deposition (MOCVD), on ZnS-ZnMgS gate insulator layers grown epitaxially on Si substrates. Self-assembled GeO x -cladded Ge QD gate FETs, exhibiting three-state behavior, are also described. Preliminary results on InGaAs-on-InP FETs, using ZnMgSeTe/ZnSe gate insulator layers, are presented.

  6. Integration of single-photon sources and detectors on GaAs

    NARCIS (Netherlands)

    Digeronimo, G.E.; Petruzzella, Maurangelo; Birindelli, Simone; Gaudio, Rosalinda; Poor, Sartoon Fattah; van Otten, Frank W.M.; Fiore, Andrea

    2016-01-01

    Quantum photonic integrated circuits (QPICs) on a GaAs platform allow the generation, manipulation, routing, and detection of non-classical states of light, which could pave the way for quantum information processing based on photons. In this article, the prototype of a multi-functional QPIC is

  7. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    Science.gov (United States)

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-04

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  8. Surface study of organopalladium molecules on S-terminated GaAs

    International Nuclear Information System (INIS)

    Konishi, Tomoya; Toujyou, Takashi; Ishikawa, Takuma; Teraoka, Teruki; Ueta, Yukiko; Kihara, Yoshifumi; Moritoki, Hideji; Tono, Tatsuo; Musashi, Mio; Tada, Takashi; Tsukamoto, Shiro; Nishiwaki, Nagatoshi; Fujikawa, Seiji; Takahasi, Masamitu; Bell, Gavin; Shimoda, Masahiko

    2011-01-01

    Organopalladium species ({Pd}) immobilized on an S-terminated GaAs substrate (S/GaAs) effectively catalyzes C-C bond formation in the Mizoroki-Heck reaction with cycle durability. However, the immobilizing mechanism of {Pd} is unknown. In this study, we deposited Pd(OCOCH 3 ) 2 on S/GaAs in two different methods, namely dry-physical vapor-deposition and wetchemical deposition, and compared the catalytic activities in the Mizoroki-Heck reaction. Also, S-termination and {Pd}-immobilization on GaAs grains were performed by the wet-chemical method to monitor the change in the surface chemical structure during the preparation process with diffuse reflectance Fourier transform infrared spectroscopy (FT-IR). FT-IR measurements implied that the immobilization of catalytic active {Pd} was related to the OH groups on the S-terminated surface. {Pd}-S/GaAs prepared dryphysically showed poor catalytic activity, because {Pd} was not immobilized under absence of OH groups. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. The Mn site in Mn-doped GaAs nanowires: an EXAFS study

    International Nuclear Information System (INIS)

    D’Acapito, F; Rovezzi, M; Boscherini, F; Jabeen, F; Bais, G; Piccin, M; Rubini, S; Martelli, F

    2012-01-01

    We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs nanowires. Mn doping has been obtained either via the diffusion of the Mn used as seed for the nanowire growth or by providing Mn during the growth of Au-induced wires. As a general finding, we observe that Mn forms chemical bonds with As but is not incorporated in a substitutional site. In Mn-induced GaAs wires, Mn is mostly found bonded to As in a rather disordered environment and with a stretched bond length, reminiscent of that exhibited by MnAs phases. In Au-seeded nanowires, along with stretched MnAs coordination, we have found the presence of Mn in a MnAu intermetallic compound. (paper)

  10. Formation of columnar (In,Ga)As quantum dots on GaAs(100)

    International Nuclear Information System (INIS)

    He, J.; Noetzel, R.; Offermans, P.; Koenraad, P.M.; Gong, Q.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.

    2004-01-01

    Columnar (In,Ga)As quantum dots (QDs) with homogeneous composition and shape in the growth direction are realized by molecular-beam epitaxy on GaAs(100) substrates. The columnar (In,Ga)As QDs are formed on InAs seed QDs by alternating deposition of thin GaAs intermediate layers and monolayers of InAs with extended growth interruptions after each layer. The height of the columnar (In,Ga)As QDs is controlled by varying the number of stacked GaAs/InAs layers. The structural and optical properties are studied by cross-sectional scanning tunneling microscopy, atomic force microscopy, and photoluminescence spectroscopy. With increase of the aspect ratio of the columnar QDs, the emission wavelength is redshifted and the linewidth is reduced

  11. Lattice location of diffused Zn atoms in GaAs and InP single crystals

    International Nuclear Information System (INIS)

    Chan, L.Y.; Yu, K.M.; Ben-Tzur, M.; Haller, E.E.; Jaklevic, J.M.; Walukiewicz, W.; Hanson, C.M.

    1991-01-01

    We have investigated the saturation phenomenon of the free carrier concentration in p-type GaAs and InP single crystals doped by zinc diffusion. The free hole saturation occurs at 10 20 cm -3 for GaAs, but the maximum concentration for InP appears at mid 10 18 cm -3 . The difference in the saturation hole concentrations for these materials is investigated by studying the incorporation and the lattice location of the impurity zinc, an acceptor when located on a group III atom site. Zinc is diffused into the III-V wafers in a sealed quartz ampoule. Particle-induced x-ray emission with ion-channeling techniques are employed to determine the exact lattice location of the zinc atoms. We have found that over 90% of all zinc atoms occupy Ga sites in the diffused GaAs samples, while for the InP case, the zinc substitutionality is dependent on the cooling rate of the sample after high-temperature diffusion. For the slowly cooled sample, a large fraction (∼90%) of the zinc atoms form random precipitates of Zn 3 P 2 and elemental Zn. However, when rapidly cooled only 60% of the zinc forms such precipitates while the rest occupies specific sites in the InP. We analyze our results in terms of the amphoteric native defect model. We show that the difference in the electrical activity of the Zn atoms in GaAs and InP is a consequence of the different location of the Fermi level stabilization energy in these two materials

  12. Low flip angle spin-echo MR imaging to obtain better Gd-DTPA enhanced imaging with ECG gating

    International Nuclear Information System (INIS)

    Sugimura, Kazuro; Kawamitsu, Hideaki; Yoshikawa, Kazuaki; Kasai, Toshifumi; Yuasa, Koji; Ishida, Tetsuya

    1992-01-01

    ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifact. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. In computer simulation, the predicted image contrast and single-to-noise ratio (SNR) obtained for each flip angle (0-180deg) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR=500 msec, TE=20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muslce) 2* 100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38deg was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100deg, and that at 53deg was identical to that with T1-weighted spin-echo. CI on LFSE (74.0±52.0) was significantly higher than CI on CSE (40.9±35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging. (author)

  13. Optical XOR gate

    Science.gov (United States)

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  14. Type I band alignment in GaAs{sub 81}Sb{sub 19}/GaAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T. [Institut d' Electronique, de Microélectronique et de Nanotechnologies (IEMN), CNRS, UMR 8520, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France); Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Wei, M. J. [Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Capiod, P.; Díaz Álvarez, A.; Han, X. L.; Troadec, D.; Nys, J. P.; Berthe, M.; Lefebvre, I.; Grandidier, B., E-mail: bruno.grandidier@isen.iemn.univ-lille1.fr [Institut d' Electronique, de Microélectronique et de Nanotechnologies (IEMN), CNRS, UMR 8520, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France); Patriarche, G. [CNRS-Laboratoire de Photonique et de Nanostructures (LPN), Route de Nozay, 91460 Marcoussis (France); Plissard, S. R. [Institut d' Electronique, de Microélectronique et de Nanotechnologies (IEMN), CNRS, UMR 8520, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France); CNRS-Laboratoire d' Analyse et d' Architecture des Systèmes (LAAS), Univ. de Toulouse, 7 Avenue du Colonel Roche, F-31400 Toulouse (France); Caroff, P. [Institut d' Electronique, de Microélectronique et de Nanotechnologies (IEMN), CNRS, UMR 8520, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200 (Australia); and others

    2015-09-14

    The composition and band gap of the shell that formed during the growth of axial GaAs/GaAs{sub 81}Sb{sub 19}/ GaAs heterostructure nanowires have been investigated by transmission electron microscopy combined with energy dispersion spectroscopy, scanning tunneling spectroscopy, and density functional theory calculations. On the GaAs{sub 81}Sb{sub 19} intermediate segment, the shell is found to be free of Sb (pure GaAs shell) and transparent to the tunneling electrons, despite the (110) biaxial strain that affects its band gap. As a result, a direct measurement of the core band gap allows the quantitative determination of the band offset between the GaAs{sub 81}Sb{sub 19} core and the GaAs shell and identifies it as a type I band alignment.

  15. Intrinsic respiratory gating in small-animal CT

    International Nuclear Information System (INIS)

    Bartling, Soenke H.; Dinkel, Julien; Kauczor, Hans-Ulrich; Stiller, Wolfram; Semmler, Wolfhard; Grasruck, Michael; Madisch, Ijad; Gupta, Rajiv; Kiessling, Fabian

    2008-01-01

    Gating in small-animal CT imaging can compensate artefacts caused by physiological motion during scanning. However, all published gating approaches for small animals rely on additional hardware to derive the gating signals. In contrast, in this study a novel method of intrinsic respiratory gating of rodents was developed and tested for mice (n=5), rats (n=5) and rabbits (n=2) in a flat-panel cone-beam CT system. In a consensus read image quality was compared with that of non-gated and retrospective extrinsically gated scans performed using a pneumatic cushion. In comparison to non-gated images, image quality improved significantly using intrinsic and extrinsic gating. Delineation of diaphragm and lung structure improved in all animals. Image quality of intrinsically gated CT was judged to be equivalent to extrinsically gated ones. Additionally 4D datasets were calculated using both gating methods. Values for expiratory, inspiratory and tidal lung volumes determined with the two gating methods were comparable and correlated well with values known from the literature. We could show that intrinsic respiratory gating in rodents makes additional gating hardware and preparatory efforts superfluous. This method improves image quality and allows derivation of functional data. Therefore it bears the potential to find wide applications in small-animal CT imaging. (orig.)

  16. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    Science.gov (United States)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  17. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    International Nuclear Information System (INIS)

    Lu, J.; Meng, X.; SpringThorpe, A.J.; Shepherd, F.R.; Poirier, M.

    2004-01-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated 'T electrodes' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl 2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ∼0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl 2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 deg. C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes

  18. Radiation effects in pigtailed GaAs and GaA1As LEDs

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1981-06-01

    Permanent and transient radiation effects have been studied in Plessey pigtailed, high radiance GaAs and GaAlAs LEDs using neutron, gamma ray and X-ray sources. The radiation-induced source of degradation in these devices was determined by also examining both bare, unpigtailed LEDs and separate samples of the Corning fibers used as pigtails. No transient effects were observed in the unpigtailed LEDs during either pulsed neutron or X-ray exposure. In contrast, the Corning doped silica fibers exhibited strong transient attenuation following pulsed X-ray bombardment. Permanent neutron damage in these pigtailed LEDs consisted essentially of light output degradation in the LED itself. Permanent gamma ray effects due to a Co-60 irradiation of 1 megarad were restricted to a small increase in attenuation in the fiber. The two primary radiation effects were then transient attenuation in the fiber pigtail and permanent neutron-induced degradation of the LED

  19. Simulations of interference effects in gated two-dimensional ballistic electron systems

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Pichugin, K.N.; Sadreev, A.F.

    1999-01-01

    We present detailed simulations addressing recent electronic interference experiments,where a metallic gate is used to locally modify the Fermi wavelength of the charge carriers. Our numerical calculations are based on a solution of the one-particle Schrodinger equation for a realistic model of t...

  20. Annealing of proton-damaged GaAs and 1/f noise

    NARCIS (Netherlands)

    Chen, X.Y.; Folter, de L.C.

    1997-01-01

    GaAs layers were grown by MBE. The layers were then damaged by 3 MeV proton irradiation and later annealed. We performed Hall effect and low-frequency noise measurements at temperatures between 77 K and 300 K after each step. Several generation - recombination noise components created by proton