WorldWideScience

Sample records for t-cell protein tyrosine

  1. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  2. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling

    NARCIS (Netherlands)

    Chu, D. H.; Spits, H.; Peyron, J. F.; Rowley, R. B.; Bolen, J. B.; Weiss, A.

    1996-01-01

    The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs.

  3. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling...... regarding total protein tyrosine phosphorylation, TCR down-regulation, mobilization of intracellular free calcium, or induction of the activation markers CD69 and CD25....

  4. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    International Nuclear Information System (INIS)

    Mattila, Elina; Marttila, Heidi; Sahlberg, Niko; Kohonen, Pekka; Tähtinen, Siri; Halonen, Pasi; Perälä, Merja; Ivaska, Johanna

    2010-01-01

    T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening

  5. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.

    Science.gov (United States)

    Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R

    1996-08-16

    Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.

  6. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide.

    OpenAIRE

    Garcia-Morales, P; Minami, Y; Luong, E; Klausner, R D; Samelson, L E

    1990-01-01

    Activation of T cells induces rapid tyrosine phosphorylation on the T-cell receptor zeta chain and other substrates. These phosphorylations can be regulated by a number of protein-tyrosine kinases (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112) and protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48). In this study, we demonstrate that phenylarsine oxide can inhibit tyrosine phosphatases while leaving tyrosine kinase function intact. We use this ...

  7. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    Science.gov (United States)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  8. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells.

    Directory of Open Access Journals (Sweden)

    Ildar Gabaev

    2011-12-01

    Full Text Available Human cytomegalovirus (CMV exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV.

  9. Regulation of Src family kinases involved in T cell receptor signaling by protein-tyrosine phosphatase CD148

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Ondřej; Kalina, T.; Dráber, Peter; Skopcová, Tereza; Svojgr, K.; Angelisová, Pavla; Hořejší, Václav; Weiss, A.; Brdička, Tomáš

    2011-01-01

    Roč. 286, č. 25 (2011), s. 22101-22112 ISSN 0021-9258 R&D Projects: GA MŠk 2B06064; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : CD148 * tyrosine phosphatase * Src family kinases Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  10. Selective expression of a protein-tyrosine kinase, p56lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Yamanashi, Yuji; Mori, Shigeo; Inoue, Kazushi; Yamamoto, Tadashi; Toyoshima, Kumao; Yoshida, Mitsuaki; Kishimoto, Tadamitsu

    1989-01-01

    This paper reports the identification of the lyn gene product, a member of the src-related family of protein-tyrosine kinases, and its expression in hematopoietic cells. A lyn-specific sequence (Arg-25 to Ala-119 of the protein) was expressed in Escherichia coli as a fusion protein with β-galactosidase. Antiserum raised against the fusion protein immunoprecipitated a 56-kDa protein from human B lymphocytes. Incubation of the immunoprecipitate with [γ- 32 P]ATP resulted in the phosphorylation of this protein at tyrosine residues. Immunohistological and immunoblotting analyses showed that the lyn gene product was expressed in lymphatic tissues (spleen and tonsil) and in adult lung, which contains many macrophages. Furthermore, both the transcripts and the protein products of the lyn gene accumulated in macrophages/monocytes, platelets, and B lymphocytes but were not expressed appreciably in granulocytes, erythrocytes, or T lymphocytes, suggesting that lyn gene products function primarily in certain differentiated cells of lymphoid and myeloid lineages

  11. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    Science.gov (United States)

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  12. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  13. Signal transduction by HLA-DR is mediated by tyrosine kinase(s) and regulated by CD45 in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L

    1991-01-01

    Recently, it was shown that HLA class II molecules on B cells and activated human T cells can transmit signals involving tyrosine phosphorylation of specific proteins, activation of the inositol phospholipid pathway, and release of cytosolic free Ca2+(Ca2+)i. The regulation of class II induced si...

  14. Tyrosine phosphorylation of WW proteins

    Science.gov (United States)

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  15. Stimulation through the T cell receptor induces Cbl association with Crk proteins and the guanine nucleotide exchange protein C3G

    NARCIS (Netherlands)

    Reedquist, K. A.; Fukazawa, T.; Panchamoorthy, G.; Langdon, W. Y.; Shoelson, S. E.; Druker, B. J.; Band, H.

    1996-01-01

    We and others have recently identified Cbl, the protein product of the c-cbl protooncogene, as an early tyrosine kinase substrate upon T cell activation and have shown that Cbl forms in vivo complexes with Src family tyrosine kinases, Grb2 adaptor protein, and the p85 subunit of PI-3 kinase. Here we

  16. Loss of SHP-1 tyrosine phosphatase expression correlates with the advanced stages of cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Witkiewicz, Agnieszka; Raghunath, Puthiyaveettil; Wasik, Agnieszka

    2007-01-01

    Cutaneous T-cell lymphoma (CTCL) comprises distinct and often progressive stages of skin involvement by patches, plaques, and tumors. We have previously demonstrated that CTCL-derived malignant T-cell lines display loss of a tumor suppressor SHP-1 tyrosine phosphatase because of epigenetic...

  17. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  18. MHC class I signaling in T cells leads to tyrosine kinase activity and PLC-gamma 1 phosphorylation

    DEFF Research Database (Denmark)

    Skov, S; Odum, Niels; Claesson, M H

    1995-01-01

    phosphorylation and the subsequent calcium response. The early tyrosine kinase activity was found to be dependent on expression of the TCR/CD3 complex and the CD45 molecule on the surface of the T cells. Furthermore, MHC-I cross-linking was shown to tyrosine phosphorylate PLC-gamma 1 (phospholipase C-gamma 1...

  19. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  20. Nck adapter proteins: functional versatility in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2009-02-01

    Full Text Available Abstract Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.

  1. The role of Protein Kinase Cη in T cell biology

    Directory of Open Access Journals (Sweden)

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  2. CD27 instructs CD4+ T cells to provide help for the memory CD8+ T cell response after protein immunization

    NARCIS (Netherlands)

    Xiao, Yanling; Peperzak, Victor; Keller, Anna M.; Borst, Jannie

    2008-01-01

    For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell

  3. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  4. MHC class I ligation of human T cells activates the ZAP70 and p56lck tyrosine kinases, leads to an alternative phenotype of the TCR/CD3 zeta-chain, and induces apoptosis

    DEFF Research Database (Denmark)

    Skov, S; Bregenholt, S; Claesson, Mogens Helweg

    1997-01-01

    Cross-linking of MHC class I (MHC-I) molecules on human T cells induces signal-transduction events, including activation of tyrosine kinases, tyrosine phosphorylation of phospholipase C-gamma 1, and elevation of the intracellular free calcium concentration. In this study, we demonstrate...... that the ZAP70 tyrosine kinase is tyrosine phosphorylated in Jurkat T cells and in purified peripheral T cells after MHC-I ligation. The tyrosine-phosphorylated ZAP70 kinase exhibits a particular phenotype with low affinities for proteins at 21, 40, 60, and 120 kDa, proteins normally co-precipitated with ZAP70...... after TCR/CD3 stimulation. The phosphorylation of ZAP70 after MHC-I ligation was dependent on TCR/CD3 surface expression. One of the natural substrates for ZAP70 is the zeta-chain dimer of the TCR/CD3 complex. MHC-I cross-linking induces a phosphorylated zeta-protein that migrates as a dimer at 42 k...

  5. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  6. T cell activation-dependent association between the p85 subunit of the phosphatidylinositol 3-kinase and Grb2/phospholipase C-gamma 1-binding phosphotyrosyl protein pp36/38

    NARCIS (Netherlands)

    Fukazawa, T.; Reedquist, K. A.; Panchamoorthy, G.; Soltoff, S.; Trub, T.; Druker, B.; Cantley, L.; Shoelson, S. E.; Band, H.

    1995-01-01

    Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of

  7. Nuclear Wiskott–Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells

    Directory of Open Access Journals (Sweden)

    Nikolai V. Kuznetsov

    2017-10-01

    Full Text Available Abstract Background The Wiskott–Aldrich syndrome protein (WASp family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined. Methods We performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-seq in thymocytes and spleen CD4+ T cells. Results WASp was enriched at genic and intergenic regions and associated with the transcription start sites of protein-coding genes. Thymocytes and spleen CD4+ T cells showed 15 common WASp-interacting genes, including the gene encoding T cell factor (TCF12. WASp KO thymocytes had reduced nuclear TCF12 whereas thymocytes expressing constitutively active WASpL272P and WASpI296T had increased nuclear TCF12, suggesting that regulated WASp activity controlled nuclear TCF12. We identify a putative DNA element enriched in WASp ChIP-seq samples identical to a TCF1-binding site and we show that WASp directly interacted with TCF1 in the nucleus. Conclusions These data place nuclear WASp in proximity with TCF1 and TCF12, essential factors for T cell development.

  8. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-11-01

    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  9. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  10. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K

    1994-01-01

    MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  11. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment

    Directory of Open Access Journals (Sweden)

    Pek Siew Lim

    2016-03-01

    Full Text Available T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA and calcium ionomycin (I as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278. Keywords: EL4 T cell, Microarray, T cell activation, Inducible genes

  12. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells.

    Directory of Open Access Journals (Sweden)

    Ryunosuke Muro

    Full Text Available The Ras-mitogen-activated protein kinase (MAPK pathway is crucial for T cell receptor (TCR signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3 is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.

  13. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  14. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  15. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment.

    Science.gov (United States)

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M

    2016-03-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278.

  16. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1 into Diverse Memory T-Cell Populations.

    Directory of Open Access Journals (Sweden)

    Drew C Deniger

    Full Text Available T cells modified with chimeric antigen receptors (CARs targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1 is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28 or CD137 (designated ROR1RCD137 and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC, which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.

  17. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    Science.gov (United States)

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  18. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    Science.gov (United States)

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Fernández-Ponce

    2018-01-01

    Full Text Available Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

  20. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    Science.gov (United States)

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  1. Scaffold protein JLP mediates TCR-initiated CD4+T cell activation and CD154 expression.

    Science.gov (United States)

    Yan, Qi; Yang, Cheng; Fu, Qiang; Chen, Zhaowei; Liu, Shan; Fu, Dou; Rahman, Rahmat N; Nakazato, Ryota; Yoshioka, Katsuji; Kung, Sam K P; Ding, Guohua; Wang, Huiming

    2017-07-01

    CD4 + T-cell activation and its subsequent induction of CD154 (CD40 ligand, CD40L) expression are pivotal in shaping both the humoral and cellular immune responses. Scaffold protein JLP regulates signal transduction pathways and molecular trafficking inside cells, thus represents a critical component in maintaining cellular functions. Its role in regulating CD4 + T-cell activation and CD154 expression, however, is unclear. Here, we demonstrated expression of JLP in mouse tissues of lymph nodes, thymus, spleen, and also CD4 + T cells. Using CD4+ T cells from jlp-deficient and jlp-wild-type mice, we demonstrated that JLP-deficiency impaired T-cell proliferation, IL-2 production, and CD154 induction upon TCR stimulations, but had no impacts on the expression of other surface molecules such as CD25, CD69, and TCR. These observed impaired T-cell functions in the jlp-/- CD4 + T cells were associated with defective NF-AT activation and Ca 2 + influx, but not the MAPK, NF-κB, as well as AP-1 signaling pathways. Our findings indicated that, for the first time, JLP plays a critical role in regulating CD4 + T cells response to TCR stimulation partly by mediating the activation of TCR-initiated Ca 2+ /NF-AT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    Science.gov (United States)

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  3. Adhesion and degranulation promoting adapter protein (ADAP is a central hub for phosphotyrosine-mediated interactions in T cells.

    Directory of Open Access Journals (Sweden)

    Marc Sylvester

    Full Text Available TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486-783. Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC we identified SLP-76, PLCgamma, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.

  4. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    Science.gov (United States)

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  5. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Cecilia Fernandez-Ponce

    Full Text Available Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(lowPD-1(highTIM-3(high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.

  6. The T alpha 2 nuclear protein binding site from the human T cell receptor alpha enhancer functions as both a T cell-specific transcriptional activator and repressor

    OpenAIRE

    1990-01-01

    T cell-specific expression of the human T cell receptor alpha (TCR- alpha) gene is regulated by the interaction of variable region promoter elements with a transcriptional enhancer that is located 4.5 kb 3' of the TCR-alpha constant region (C alpha) gene segment. The minimal TCR- alpha enhancer is composed of two nuclear protein binding sites, T alpha 1 and T alpha 2, that are both required for the T cell-specific activity of the enhancer. The T alpha 1 binding site contains a consensus cAMP ...

  7. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  8. Tyrosine phosphorylation switching of a G protein.

    Science.gov (United States)

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method.

    Directory of Open Access Journals (Sweden)

    Susanna Commandeur

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis (Mtb, remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L, which represents a new method for selecting antigen-specific (low frequency T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107 in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.

  10. Protein antigenic structures recognized by T cells: potential applications to vaccine design.

    Science.gov (United States)

    Berzofsky, J A; Cease, K B; Cornette, J L; Spouge, J L; Margalit, H; Berkower, I J; Good, M F; Miller, L H; DeLisi, C

    1987-08-01

    In summary, our results using the model protein antigen myoglobin indicated, in concordance with others, that helper T lymphocytes recognize a limited number of immunodominant antigenic sites of any given protein. Such immunodominant sites are the focus of a polyclonal response of a number of different T cells specific for distinct but overlapping epitopes. Therefore, the immunodominance does not depend on the fine specificity of any given clone of T cells, but rather on other factors, either intrinsic or extrinsic to the structure of the antigen. A major extrinsic factor is the MHC of the responding individual, probably due to a requirement for the immunodominant peptides to bind to the MHC of presenting cells in that individual. In looking for intrinsic factors, we noted that both immunodominant sites of myoglobin were amphipathic helices, i.e., helices having hydrophilic and hydrophobic residues on opposite sides. Studies with synthetic peptides indicated that residues on the hydrophilic side were necessary for T-cell recognition. However, unfolding of the native protein was shown to be the apparent goal of processing of antigen, presumably to expose something not already exposed on the native molecule, such as the hydrophobic sides of these helices. We propose that such exposure is necessary to interact with something on the presenting cell, such as MHC or membrane, where we have demonstrated the presence of antigenic peptides by blocking of presentation of biotinylated peptide with avidin. The membrane may serve as a short-term memory of peptides from antigens encountered by the presenting cell, for dynamic sampling by MHC molecules to be available for presentation to T cells. These ideas, together with the knowledge that T-cell recognition required only short peptides and therefore had to be based only on primary or secondary structure, not tertiary folding of the native protein, led us to propose that T-cell immunodominant epitopes may tend to be amphipathic

  11. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Science.gov (United States)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  12. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    International Nuclear Information System (INIS)

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates

  13. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  14. ImmunoPET Imaging of Murine CD4+ T Cells Using Anti-CD4 Cys-Diabody: Effects of Protein Dose on T Cell Function and Imaging.

    Science.gov (United States)

    Freise, Amanda C; Zettlitz, Kirstin A; Salazar, Felix B; Lu, Xiang; Tavaré, Richard; Wu, Anna M

    2017-08-01

    Molecular imaging of CD4 + T cells throughout the body has implications for monitoring autoimmune disease and immunotherapy of cancer. Given the key role of these cells in regulating immunity, it is important to develop a biologically inert probe. GK1.5 cys-diabody (cDb), a previously developed anti-mouse CD4 antibody fragment, was tested at different doses to assess its effects on positron emission tomography (PET) imaging and CD4 + T cell viability, proliferation, CD4 expression, and function. The effect of protein dose on image contrast (lymphoid tissue-to-muscle ratio) was assessed by administering different amounts of 89 Zr-labeled GK1.5 cDb to mice followed by PET imaging and ex vivo biodistribution analysis. To assess impact of GK1.5 cDb on T cell biology, GK1.5 cDb was incubated with T cells in vitro or administered intravenously to C57BL/6 mice at multiple protein doses. CD4 expression and T cell proliferation were analyzed with flow cytometry and cytokines were assayed. For immunoPET imaging, the lowest protein dose of 2 μg of 89 Zr-labeled GK1.5 cDb resulted in significantly higher % injected dose/g in inguinal lymph nodes (ILN) and spleen compared to the 12-μg protein dose. In vivo administration of GK1.5 cDb at the high dose of 40 μg caused a transient decrease in CD4 expression in spleen, blood, lymph nodes, and thymus, which recovered within 3 days postinjection; this effect was reduced, although not abrogated, when 2 μg was administered. Proliferation was inhibited in vivo in ILN but not the spleen by injection of 40 μg GK1.5 cDb. Concentrations of GK1.5 cDb in excess of 25 nM significantly inhibited CD4 + T cell proliferation and interferon-γ production in vitro. Overall, using low-dose GK1.5 cDb minimized biological effects on CD4 + T cells. Low-dose GK1.5 cDb yields high-contrast immunoPET images with minimal effects on T cell biology in vitro and in vivo and may be a useful tool for investigating CD4 + T cells in the context of

  15. Vitamin D-binding protein controls T cell responses to vitamin D

    DEFF Research Database (Denmark)

    Kongsbak, Martin; von Essen, Marina Rode; Levring, Trine Bøegh

    2014-01-01

    BACKGROUND: In vitro studies have shown that the active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can regulate differentiation of CD4+ T cells by inhibiting Th1 and Th17 cell differentiation and promoting Th2 and Treg cell differentiation. However, the serum concentration of 1...... that activated T cells express the 25(OH)D-1α-hydroxylase CYP27B1 that converts 25(OH)D3 to 1,25(OH)2D3, it is still controversial whether activated T cells have the capacity to produce sufficient amounts of 1,25(OH)2D3 to affect vitamin D-responsive genes. Furthermore, it is not known how the vitamin D......-binding protein (DBP) found in high concentrations in serum affects T cell responses to 25(OH)D3. RESULTS: We found that activated T cells express CYP27B1 and have the capacity to produce sufficient 1,25(OH)2D3 to affect vitamin D-responsive genes when cultured with physiological concentrations of 25(OH)D3...

  16. Blockade of CD26-mediated T cell costimulation with soluble caveolin-1-Ig fusion protein induces anergy in CD4{sup +}T cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Kei [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Uchiyama, Masahiko [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Computational Intelligence and System Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Hatano, Ryo; Takasawa, Wataru; Endo, Yuko [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Dang, Nam H. [Department of Hematologic Malignancies, Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2009-08-21

    CD26 binds to caveolin-1 in antigen-presenting cells (APC), and that ligation of CD26 by caveolin-1 induces T cell proliferation in a TCR/CD3-dependent manner. We report herein the effects of CD26-caveolin-1 costimulatory blockade by fusion protein caveolin-1-Ig (Cav-Ig). Soluble Cav-Ig inhibits T cell proliferation and cytokine production in response to recall antigen, or allogeneic APC. Our data hence suggest that blocking of CD26-associated signaling by soluble Cav-Ig may be an effective approach as immunosuppressive therapy.

  17. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Nagesh R Aragam

    Full Text Available Circumsporozoite protein (CS is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates and Malawi (235 isolates, we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.

  18. Protein Tyrosine Nitration : Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins

    NARCIS (Netherlands)

    Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO(2)). In the present article, we review the main nitration reactions and

  19. Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells.

    Science.gov (United States)

    Djiadeu, Pascal; Kotra, Lakshmi P; Sweezey, Neil; Palaniyar, Nades

    2017-05-01

    Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.

  20. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    International Nuclear Information System (INIS)

    Nagel, Stefan; Scherr, Michaela; MacLeod, Roderick AF; Venturini, Letizia; Przybylski, Grzegorz K; Grabarczyk, Piotr; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; Schmidt, Christian A; Drexler, Hans G

    2009-01-01

    Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3

  1. T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research

    Science.gov (United States)

    Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.

  2. Tyrosine phosphorylation of a 66KD soluble protein and augmentation of lectin induced mitogenesis by DMSO in human T lymphocytes

    International Nuclear Information System (INIS)

    Wedner, H.J.; Bass, G.

    1986-01-01

    The authors have demonstrated that induction of mitogenesis in human T lymphocytes is associated with the tyrosine phosphorylation of a 66KD soluble substrate-TPP 66. Since DMSO has been shown to be a non-specific stimulator of tyrosine protein kinases they have examined the effect of DMSO on both activation and tyrosine phosphorylation in human T cells. Human peripheral blood T lymphocytes were isolated by dextran sedimentation, Ficol/Paque centrifugation and nylon wool filtration. Phosphorylation was performed in cells incubated with [ 32 P] orthophosphate followed by DMSO for 30 min. TPP 66 was identified by 2-D PAGE, autoradiography, and HV electrophoresis of the hydrolyzed protein. Concentrations of DMSO from 1% to 50% induced the tyrosine phosphorylation of TPP 66 with maximal stimulation seen at 20%. DMSO alone did not activate the T cells (measured by [ 3 H] thymidine incorporation) when tested at high concentrations for 30 sec to 10 min. (longer incubations were markedly toxic) or low concentrations for 12 to 48 hrs. Low concentrations of DMSO 0.1%-0.5% did however, markedly augment [ 3 H] thymidine incorporation induced by PHA or Con A. These data suggest that tyrosine phosphorylation of TPP 66 alone may not constitute sufficient signal for the activation sequence to begin but the phosphorylation of this soluble substrate may be a critical factor in the propagation of the activation sequence

  3. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  4. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  5. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Lacoste, J.; Cohen, L.; Hiscott, J.

    1991-01-01

    The effect of constitutive Tax expression on the interaction of NF-κ B with its recognition sequence and on NF-κ B-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-κ B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-κ B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters

  6. Association of connexin43 with a receptor protein tyrosine phosphatase

    NARCIS (Netherlands)

    Giepmans, Ben N G; Feiken, Elles; Gebbink, Martijn F B G; Moolenaar, Wouter H

    2003-01-01

    Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap

  7. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity

    Directory of Open Access Journals (Sweden)

    Aboud Mordechai

    2004-08-01

    Full Text Available Abstract HTLV-1 is the etiological agent of adult T-cell leukemia (ATL, the neurological syndrome TSP/HAM and certain other clinical disorders. The viral Tax protein is considered to play a central role in the process leading to ATL. Tax modulates the expression of many viral and cellular genes through the CREB/ATF-, SRF- and NF-κB-associated pathways. In addition, Tax employs the CBP/p300 and p/CAF co-activators for implementing the full transcriptional activation competence of each of these pathways. Tax also affects the function of various other regulatory proteins by direct protein-protein interaction. Through these activities Tax sets the infected T-cells into continuous uncontrolled replication and destabilizes their genome by interfering with the function of telomerase and topoisomerase-I and by inhibiting DNA repair. Furthermore, Tax prevents cell cycle arrest and apoptosis that would otherwise be induced by the unrepaired DNA damage and enables, thereby, accumulation of mutations that can contribute to the leukemogenic process. Together, these capacities render Tax highly oncogenic as reflected by its ability to transform rodent fibroblasts and primary human T-cells and to induce tumors in transgenic mice. In this article we discuss these effects of Tax and their apparent contribution to the HTLV-1 associated leukemogenic process. Notably, however, shortly after infection the virus enters into a latent state, in which viral gene expression is low in most of the HTLV-1 carriers' infected T-cells and so is the level of Tax protein, although rare infected cells may still display high viral RNA. This low Tax level is evidently insufficient for exerting its multiple oncogenic effects. Therefore, we propose that the latent virus must be activated, at least temporarily, in order to elevate Tax to its effective level and that during this transient activation state the infected cells may acquire some oncogenic mutations which can enable them to

  8. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity.

    Science.gov (United States)

    Azran, Inbal; Schavinsky-Khrapunsky, Yana; Aboud, Mordechai

    2004-08-13

    HTLV-1 is the etiological agent of adult T-cell leukemia (ATL), the neurological syndrome TSP/HAM and certain other clinical disorders. The viral Tax protein is considered to play a central role in the process leading to ATL. Tax modulates the expression of many viral and cellular genes through the CREB/ATF-, SRF- and NF-kappaB-associated pathways. In addition, Tax employs the CBP/p300 and p/CAF co-activators for implementing the full transcriptional activation competence of each of these pathways. Tax also affects the function of various other regulatory proteins by direct protein-protein interaction. Through these activities Tax sets the infected T-cells into continuous uncontrolled replication and destabilizes their genome by interfering with the function of telomerase and topoisomerase-I and by inhibiting DNA repair. Furthermore, Tax prevents cell cycle arrest and apoptosis that would otherwise be induced by the unrepaired DNA damage and enables, thereby, accumulation of mutations that can contribute to the leukemogenic process. Together, these capacities render Tax highly oncogenic as reflected by its ability to transform rodent fibroblasts and primary human T-cells and to induce tumors in transgenic mice. In this article we discuss these effects of Tax and their apparent contribution to the HTLV-1 associated leukemogenic process. Notably, however, shortly after infection the virus enters into a latent state, in which viral gene expression is low in most of the HTLV-1 carriers' infected T-cells and so is the level of Tax protein, although rare infected cells may still display high viral RNA. This low Tax level is evidently insufficient for exerting its multiple oncogenic effects. Therefore, we propose that the latent virus must be activated, at least temporarily, in order to elevate Tax to its effective level and that during this transient activation state the infected cells may acquire some oncogenic mutations which can enable them to further progress towards

  9. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    Science.gov (United States)

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  10. Protein-scaffold Directed Nanoscale Assembly of T Cell Ligands: Artificial Antigen Presentation with Defined Valency, Density and Ratio.

    Science.gov (United States)

    Smith, Mason R; Tolbert, Stephanie V; Wen, Fei

    2018-05-07

    Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein-scaffold directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast-cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency, but instead determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was co-assembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein-scaffold directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.

  11. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  12. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    International Nuclear Information System (INIS)

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-01

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL

  13. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    Science.gov (United States)

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  14. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment

    OpenAIRE

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M.

    2015-01-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin...

  15. Characterisation of the Immunomodulatory Effects of Meningococcal Opa Proteins on Human Peripheral Blood Mononuclear Cells and CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Claire Jones

    Full Text Available Opa proteins are major surface-expressed proteins located in the Neisseria meningitidis outer membrane, and are potential meningococcal vaccine candidates. Although Opa proteins elicit high levels of bactericidal antibodies following immunisation in mice, progress towards human clinical trials has been delayed due to previous findings that Opa inhibits T cell proliferation in some in vitro assays. However, results from previous studies are conflicting, with different Opa preparations and culture conditions being used. We investigated the effects of various Opa+ and Opa- antigens from N. meningitidis strain H44/76 in a range of in vitro conditions using peripheral blood mononuclear cells (PBMCs and purified CD4+ T cells, measuring T cell proliferation by CFSE dilution using flow cytometry. Wild type recombinant and liposomal Opa proteins inhibited CD4+ T cell proliferation after stimulation with IL-2, anti-CD3 and anti-CD28, and these effects were reduced by mutation of the CEACAM1-binding region of Opa. These effects were not observed in culture with ex vivo PBMCs. Opa+ and Opa- OMVs did not consistently exert a stimulatory or inhibitory effect across different culture conditions. These data do not support a hypothesis that Opa proteins would be inhibitory to T cells if given as a vaccine component, and T cell immune responses to OMV vaccines are unlikely to be significantly affected by the presence of Opa proteins.

  16. Surfactant Protein D modulates HIV infection of both T-cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jens Madsen

    Full Text Available Surfactant Protein D (SP-D is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.

  17. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration

    Directory of Open Access Journals (Sweden)

    Silvina Bartesaghi

    2018-04-01

    Full Text Available In this review we provide an analysis of the biochemistry of peroxynitrite and tyrosine nitration. Peroxynitrite is the product of the diffusion-controlled reaction between superoxide (O2•- and nitric oxide (•NO. This process is in competition with the enzymatic dismutation of O2•- and the diffusion of •NO across cells and tissues and its reaction with molecular targets (e.g. guanylate cyclase. Understanding the kinetics and compartmentalization of the O2•- / •NO interplay is critical to rationalize the shift of •NO from a physiological mediator to a cytotoxic intermediate. Once formed, peroxynitrite (ONOO- and ONOOH; pKa = 6,8 behaves as a strong one and two-electron oxidant towards a series of biomolecules including transition metal centers and thiols. In addition, peroxynitrite anion can secondarily evolve to secondary radicals either via its fast reaction with CO2 or through proton-catalyzed homolysis. Thus, peroxynitrite can participate in direct (bimolecular and indirect (through secondary radical intermediates oxidation reactions; through these processes peroxynitrite can participate as cytotoxic effector molecule against invading pathogens and/or as an endogenous pathogenic mediator. Peroxynitrite can cause protein tyrosine nitration in vitro and in vivo. Indeed, tyrosine nitration is a hallmark of the reactions of •NO-derived oxidants in cells and tissues and serves as a biomarker of oxidative damage. Protein tyrosine nitration can mediate changes in protein structure and function that affect cell homeostasis. Tyrosine nitration in biological systems is a free radical process that can be promoted either by peroxynitrite-derived radicals or by other related •NO-dependent oxidative processes. Recently, mechanisms responsible of tyrosine nitration in hydrophobic biostructures such as membranes and lipoproteins have been assessed and involve the parallel occurrence and connection with lipid

  18. Protein energy malnutrition impairs homeostatic proliferation of memory CD8 T cells.

    Science.gov (United States)

    Iyer, Smita S; Chatraw, Janel Hart; Tan, Wendy G; Wherry, E John; Becker, Todd C; Ahmed, Rafi; Kapasi, Zoher F

    2012-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. In this study, we show that protein-energy malnutrition induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate protein (AP)-fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV)-immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that protein-energy malnutrition caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. Whereas Ag-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less responsive to polyinosinic-polycytidylic acid-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13, resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals.

  19. Induction of Multifunctional Broadly Reactive T Cell Responses by a Plasmodium vivax Circumsporozoite Protein Recombinant Chimera.

    Science.gov (United States)

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa; Calvo-Calle, J Mauricio; Moreno, Alberto

    2015-09-01

    Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4(+) and CD8(+) PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development. Copyright © 2015, American Society for Microbiology. All

  20. 1Protein Energy Malnutrition Impairs Homeostatic Proliferation of Memory CD8 T cells

    Science.gov (United States)

    Iyer, Smita S.; Chatraw, Janel Hart; Tan, Wendy G.; Wherry, E. John; Becker, Todd C.; Ahmed, Rafi; Kapasi, Zoher F.

    2011-01-01

    Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. Here we show that protein energy malnutrition (PEM) induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate-protein (AP) fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV) immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that PEM caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. While antigen-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less-responsive to poly(I:C)-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13 resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals. PMID:22116826

  1. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggest that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine

  2. Anxious moments for the protein tyrosine phosphatase PTP1B

    OpenAIRE

    Krishnan, Navasona; Tonks, Nicholas K.

    2015-01-01

    Chronic stress can lead to the development of anxiety and mood disorders. Thus, novel therapies for preventing adverse effects of stress are vitally important. Recently, the protein tyrosine phosphatase PTP1B was identified as a novel regulator of stress-induced anxiety. This opens up exciting opportunities to exploit PTP1B inhibitors as anxiolytics.

  3. Analysis of close associations of uropod-associated proteins in human T-cells using the proximity ligation assay

    Directory of Open Access Journals (Sweden)

    Tommy Baumann

    2013-10-01

    Full Text Available We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90 also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET. We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.

  4. Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology

    NARCIS (Netherlands)

    Wensveen, Felix M.; Klarenbeek, Paul L.; van Gisbergen, Klaas P. J. M.; Pascutti, Maria F.; Derks, Ingrid A. M.; van Schaik, Barbera D. C.; ten Brinke, Anja; de Vries, Niek; Cekinovic, Durdica; Jonjic, Stipan; van Lier, René A. W.; Eldering, Eric

    2013-01-01

    Memory T cells form a highly specific defense layer against reinfection with previously encountered pathogens. In addition, memory T cells provide protection against pathogens that are similar, but not identical to the original infectious agent. This is because each T cell response harbors multiple

  5. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain

    Directory of Open Access Journals (Sweden)

    Liu Huaqing

    2012-06-01

    Full Text Available Abstract Background The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia. The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI, are not well understood. Methods and results Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. Conclusions These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1

  6. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain.

    Science.gov (United States)

    Liu, Huaqing; Shiryaev, Sergey A; Chernov, Andrei V; Kim, Youngsoon; Shubayev, Igor; Remacle, Albert G; Baranovskaya, Svetlana; Golubkov, Vladislav S; Strongin, Alex Y; Shubayev, Veronica I

    2012-06-07

    The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia

  7. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng

    2003-01-01

    Despite clear indications of their importance in lower organisms, the contributions of protein tyrosine phosphatases (PTPs) to development or function of the mammalian nervous system have been poorly explored. In vitro studies have indicated that receptor protein tyrosine phosphatase alpha...

  8. Regulation of hematopoietic cell function by protein tyrosine kinase-encoding oncogenes, a review

    NARCIS (Netherlands)

    Punt, C. J.

    1992-01-01

    Tyrosine phosphorylation of proteins by protein tyrosine kinases (PTKs) is an important mechanism in the regulation of various cellular processes such as proliferation, differentiation, and transformation. Accumulating data implicate PTKs as essential intermediates in the transduction of

  9. MHC class II molecules deliver costimulatory signals in human T cells through a functional linkage with IL-2-receptors

    DEFF Research Database (Denmark)

    Odum, Niels; Kanner, S B; Ledbetter, J A

    1993-01-01

    MHC class II-positive T cells are found in tissues involved in autoimmune and infectious disorders. Because stimulation of class II molecules by mAb or bacterial superantigens induces protein tyrosine phosphorylation through activation of PTK3 in T cells, we hypothesized that class II signals play...... tyrosine phosphorylation of specific substrates including PLC-gamma 1. Combined stimulation of IL-2R and class II molecules had an additive effect on tyrosine phosphorylation. Pretreatment of T cells with a protein tyrosine kinase inhibitor, herbimycin A, inhibited IL-2 and class II-induced proliferation...... a regulatory function in T cell activation. Here, we show that cross-linking HLA-DR and -DP but not -DQ molecules by immobilized mAb enhanced proliferative T cell responses to IL-2. In contrast, class II stimulation had no effect on IL-4-induced proliferation. The costimulatory effect was most pronounced...

  10. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine......-phosphorylated and associated in vivo with the Grb2 protein. This association can be reproduced in stably and transiently transfected cells, as well as in vitro using recombinant Grb2 protein. Association requires the presence of an intact SH2 domain in Grb2, as well as tyrosine phosphorylation of R-PTP-alpha. This observation...... links a receptor tyrosine phosphatase with a key component of a central cellular signalling pathway and provides a basis for addressing R-PTP-alpha function....

  11. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2017-10-01

    Full Text Available Human immunodeficiency virus (HIV hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR. This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS. Quantitative enzyme-linked immunoadsorption assays (ELISA demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.

  12. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpesviruses reacted with fewer HHV-6-infected cell proteins, and only a 135,000-M r polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105k and gp82k, gp116k, gp64k, and gp54k, and gp102k

  13. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpes viruses reacted with few HHV-6-infected cell proteins, and only a 135,000-M/sub r/ polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105K and gp92k, gp116k, gp64k, and gp54k, and gp102k

  14. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Martin Neumann

    Full Text Available Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68 in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%. Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-, a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3 and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements. The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%. To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.

  15. Regulation of leptin and insulin signaling by the t cell protein tyrosine phosphatase

    OpenAIRE

    Loh, Kim Yong

    2017-01-01

    The prevalence of obesity and diabetes are increasing at alarming rates. Both are major health concerns worldwide. Food intake, energy expenditure and hepatic glucose production are regulated by hypothalamic neuronal circuits that respond to peripheral signals including leptin and insulin. Leptin is produced by adipose tissue and acts in the hypothalamus via the JAK2/STAT3 signaling pathway to decrease food intake and increase energy expenditure. It is now also widely appreciated that insulin...

  16. Tax Protein-induced Expression of Antiapoptotic Bfl-1 Protein Contributes to Survival of Human T-cell Leukemia Virus Type 1 (HTLV-1)-infected T-cells*♦

    Science.gov (United States)

    Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène

    2012-01-01

    Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204

  17. Natural compounds as a source of protein tyrosine phosphatase inhibitors : Application to the rational design of small-molecule derivatives

    NARCIS (Netherlands)

    Ferreira, Carmen V.; Justo, Giselle Z.; Souza, Ana C. S.; Queiroz, Karla C. S.; Zambuzzi, William F.; Aoyama, Hiroshi; Peppelenbosch, Maikel P.

    2006-01-01

    Reversible phosphorylation of tyrosine residues is a key regulatory mechanism for numerous cellular events. Protein tyrosine kinases and protein tyrosine phosphatases (PTPs) have a pivotal role in regulating both normal cell physiology and pathophysiology. Accordingly, deregulated activity of both

  18. Enhancing T cell activation and antiviral protection by introducing the HIV-1 protein transduction domain into a DNA vaccine.

    Science.gov (United States)

    Leifert, J A; Lindencrona, J A; Charo, J; Whitton, J L

    2001-10-10

    Protein transduction domains (PTD), which can transport proteins or peptides across biological membranes, have been identified in several proteins of viral, invertebrate, and vertebrate origin. Here, we evaluate the immunological and biological consequences of including PTD in synthetic peptides and in DNA vaccines that contain CD8(+) T cell epitopes from lymphocytic choriomeningitis virus (LCMV). Synthetic PTD-peptides did not induce detectable CD8(+) T cell responses. However, fusion of an open reading frame encoding a PTD to an epitope minigene caused transfected tissue culture cells to stimulate epitope-specific T cells much more effectively. Kinetic studies indicated that the epitope reached the surface of transfected cells more rapidly and that the number of transfected cells needed to stimulate T cell responses was reduced by 35- to 50-fold when compared to cells transfected with a standard minigene plasmid. The mechanism underlying the effect of PTD linkage is not clear, but transit of the PTD-attached epitope from transfected cells to nontransfected cells (cross presentation) seemed to play, at most, a minimal role. Mice immunized once with the plasmid encoding the PTD-linked epitope showed a markedly accelerated CD8(+) T cell response and, unlike mice immunized with a standard plasmid, were completely protected against a normally lethal LCMV challenge administered only 8 days post-immunization.

  19. Src protein-tyrosine kinase structure and regulation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  20. Mycobacterium leprae-specific protein antigens defined by cloned human helper T cells

    NARCIS (Netherlands)

    Ottenhoff, T. H.; Klatser, P. R.; Ivanyi, J.; Elferink, D. G.; de Wit, M. Y.; de Vries, R. R.

    1986-01-01

    Leprosy displays a remarkable spectrum of symptoms correlating with the T-cell-mediated immune reactivity of the host against the causative organism, Mycobacterium leprae. At one pole of this spectrum are lepromatous leprosy patients showing a M. leprae-specific T-cell unresponsiveness; at the other

  1. Identification of H-2d Restricted T Cell Epitope of Foot-and-mouth Disease Virus Structural Protein VP1

    Directory of Open Access Journals (Sweden)

    Zhang Zhong-Wang

    2011-09-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV. The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. Results A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. Conclusions The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.

  2. Role of OCT-1 and partner proteins in T cell differentiation.

    Science.gov (United States)

    Hwang, Soo Seok; Kim, Lark Kyun; Lee, Gap Ryol; Flavell, Richard A

    2016-06-01

    The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells. Copyright © 2016. Published by Elsevier B.V.

  3. A Subset of CD4/CD8 Double-Negative T Cells Expresses HIV Proteins in Patients on Antiretroviral Therapy

    NARCIS (Netherlands)

    DeMaster, Laura K.; Liu, Xiaohe; VanBelzen, D. Jake; Trinité, Benjamin; Zheng, Lingjie; Agosto, Luis M.; Migueles, Stephen A.; Connors, Mark; Sambucetti, Lidia; Levy, David N.; Pasternak, Alexander O.; O'Doherty, Una

    2016-01-01

    A major goal in HIV eradication research is characterizing the reservoir cells that harbor HIV in the presence of antiretroviral therapy (ART), which reseed viremia after treatment is stopped. In general, it is assumed that the reservoir consists of CD4(+) T cells that express no viral proteins.

  4. Special AT rich-binding1 protein (SATB1) in malignant T cells

    DEFF Research Database (Denmark)

    Fredholm, Simon; Willerslev-Olsen, Andreas; Met, Özcan

    2018-01-01

    Deficient expression of Suppressor Special AT-rich Binding-1 (SATB1) hampers thymocyte development and results in inept T cell lineages. Recent data implicate dysregulated SATB1 expression in the pathogenesis of mycosis fungoides (MF), the most frequent variant of cutaneous T cell lymphoma (CTCL......) whereas increased SATB1 expression had the opposite effect indicating that the mir-155 target SATB1 is a repressor of IL-5 and IL-9 in malignant T cells. In accordance, inhibition of STAT5, and its upstream activator Janus Kinase-3 (Jak3), triggered increased SATB1 expression and a concomitant suppression...

  5. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  6. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  7. DETECTION AND PURIFICATION OF TYROSINE-SULFATED PROTEINS USING A NOVEL ANTI-SULFOTYROSINE MONOCLONAL ANTIBODY*

    Science.gov (United States)

    Hoffhines, Adam J.; Damoc, Eugen; Bridges, Kristie G.; Leary, Julie A.; Moore, Kevin L.

    2006-01-01

    Protein-tyrosine O-sulfation is a post-translational modification mediated by one of two Golgi tyrosylprotein sulfotransferases (TPST-1 & TPST-2) that catalyze the transfer of sulfate to tyrosine residues in secreted and transmembrane proteins. Tyrosine sulfation plays a role in protein-protein interactions in several well-defined systems. Although dozens of tyrosine-sulfated proteins are known, many more are likely to exist and await description. Advancing our understanding of the importance of tyrosine sulfation in biological systems requires the development of new tools for the detection and study of tyrosine-sulfated proteins. We have developed a novel anti-sulfotyrosine monoclonal antibody, called PSG2, that binds with high affinity and exquisite specificity to sulfotyrosine residues in peptides and proteins independent of sequence context. We show that it can detect tyrosinesulfated proteins in complex biological samples and can be used as a probe to assess the role of tyrosine sulfation in protein function. We also demonstrate the utility of PSG2 in the purification of tyrosine-sulfated proteins from crude tissue samples. Finally, Western blot analysis using PSG2 indicates that certain sperm/epididymal proteins are undersulfated in Tpst2−/− mice. This indicates that TPST-1 and TPST-2 have distinct macromolecular substrate specificities and provides clues as to the molecular mechanism of the infertility of Tpst2−/− males. PSG2 should be widely applicable for identification of tyrosine-sulfated proteins in other systems and organisms. PMID:17046811

  8. The Adaptor Protein SAP Directly Associates with CD3ζ Chain and Regulates T Cell Receptor Signaling

    Science.gov (United States)

    Proust, Richard; Bertoglio, Jacques; Gesbert, Franck

    2012-01-01

    Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex. PMID:22912825

  9. Rapamycin causes activation of protein phosphatase-2A1 and nuclear translocation of PCNA in CD4+ T cells

    International Nuclear Information System (INIS)

    Morrow, Peter W.; Tung, H.Y. Lim; Hemmings, Hugh C.

    2004-01-01

    Rapamycin is a powerful immunosuppressant that causes cell cycle arrest in T cells and several other cell types. Despite its important clinical role, the mechanism of action of rapamycin is not fully understood. Here, we show that rapamycin causes the activation of protein phosphatase-2A 1 which forms a complex with proliferation cell nuclear antigen (PCNA) in a CD 4+ T cell line. Rapamycin also induces PCNA translocation from the cytoplasm to the nucleus, an effect which is antagonized by okadaic acid, an inhibitor of type 2A protein phosphatases. These findings provide evidence for the existence of a signal transduction pathway that links a rapamycin-activated type 2A protein phosphatase to the control of DNA synthesis, DNA repair, cell cycle, and cell death via PCNA

  10. Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes.

    Science.gov (United States)

    Hanon, E; Hall, S; Taylor, G P; Saito, M; Davis, R; Tanaka, Y; Usuku, K; Osame, M; Weber, J N; Bangham, C R

    2000-02-15

    The role of the cellular immune response in human T-cell leukemia virus type I (HTLV-I) infection is not fully understood. A persistently activated cytotoxic T lymphocyte (CTL) response to HTLV-I is found in the majority of infected individuals. However, it remains unclear whether this CTL response is protective or causes tissue damage. In addition, several observations paradoxically suggest that HTLV-I is transcriptionally silent in most infected cells and, therefore, not detectable by virus-specific CTLs. With the use of a new flow cytometric procedure, we show here that a high proportion of naturally infected CD4+ peripheral blood mononuclear cells (PBMC) (between 10% and 80%) are capable of expressing Tax, the immunodominant target antigen recognized by virus-specific CTLs. Furthermore, we provide direct evidence that autologous CD8+ T cells rapidly kill CD4+ cells naturally infected with HTLV-I and expressing Tax in vitro by a perforin-dependent mechanism. Consistent with these observations, we observed a significant negative correlation between the frequency of Tax(11-19)-specific CD8+ T cells and the percentage of CD4+ T cells in peripheral blood of patients infected with HTLV-I. Those results are in accordance with the view that virus-specific CTLs participate in a highly efficient immune surveillance mechanism that persistently destroys Tax-expressing HTLV-I-infected CD4+ T cells in vivo. (Blood. 2000;95:1386-1392)

  11. Tracking by flow cytometry antigen-specific follicular helper T cells in wild-type animals after protein vaccination.

    Science.gov (United States)

    Chakarov, Svetoslav; Fazilleau, Nicolas

    2015-01-01

    Flow cytometry is a valuable technology used in immunology to characterize and enumerate the different cell subpopulations specific for a nonself-antigen in the context of an ongoing immune response. Among them, follicular helper T cells are the cognate regulators of B cells in secondary lymphoid tissues. Thus, tracking them is of high interest especially in the context of protein vaccination. For this purpose, transgenic antigen-receptor mouse models have been largely used. It is now clear that transgenic models are not always the best means to study the dynamics of the immune response since they can modify the response. In this chapter, we describe how to track endogenous antigen-specific follicular helper T cells by flow cytometry after protein vaccination in nonmodified wild-type animals, which ultimately provides a comprehensive way to enumerate, characterize, and isolate these particular cells in vivo.

  12. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  13. Identification of proteins associated with lipid of Jurlat T-cell line by mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Pompach, Petr; Man, Petr; Novák, Petr; Fišerová, Anna; Havlíček, Vladimír; Bezouška, Karel

    2003-01-01

    Roč. 87, - (2003), s. 319 ISSN 0165-2478 Institutional research plan: CEZ:AV0Z5020903; CEZ:MSM 113100001 Keywords : lipid * rafts * t- cell Subject RIV: EE - Microbiology, Virology Impact factor: 1.710, year: 2003

  14. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    International Nuclear Information System (INIS)

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M.

    1989-01-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation

  15. The non-structural protein 5 and matrix protein are antigenic targets of T cell immunity to genotype 1 porcine reproductive and respiratory syndrome viruses

    Directory of Open Access Journals (Sweden)

    Helen eMokhtar

    2016-02-01

    Full Text Available The porcine reproductive and respiratory syndrome virus (PRRSV is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focussed on envelope glycoproteins to target virus-neutralising antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress towards market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralising antibodies, it has been proposed that T cell mediated immunity plays a key role. We therefore hypothesised that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely-related (subtype 1 or divergent (subtype 3 PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5, and to a lesser extent, the matrix (M protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by co-expression of TNF-α and mobilisation of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved amongst strains of both PRRSV genotypes. Thus M and NSP5 represent attractive vaccine candidate T cell antigens which should be evaluated further in the context of PRRSV vaccine development.

  16. Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation

    Science.gov (United States)

    Alcázar, Isabela; Marqués, Miriam; Kumar, Amit; Hirsch, Emilio; Wymann, Matthias; Carrera, Ana C.; Barber, Domingo F.

    2007-01-01

    Class I phosphoinositide 3–kinases (PI3Ks) constitute a family of enzymes that generates 3-phosphorylated polyphosphoinositides at the cell membrane after stimulation of protein tyrosine (Tyr) kinase–associated receptors or G protein–coupled receptors (GPCRs). The class I PI3Ks are divided into two types: class IA p85/p110 heterodimers, which are activated by Tyr kinases, and the class IB p110γ isoform, which is activated by GPCR. Although the T cell receptor (TCR) is a protein Tyr kinase–associated receptor, p110γ deletion affects TCR-induced T cell stimulation. We examined whether the TCR activates p110γ, as well as the consequences of interfering with p110γ expression or function for T cell activation. We found that after TCR ligation, p110γ interacts with Gαq/11, lymphocyte-specific Tyr kinase, and ζ-associated protein. TCR stimulation activates p110γ, which affects 3-phosphorylated polyphosphoinositide levels at the immunological synapse. We show that TCR-stimulated p110γ controls RAS-related C3 botulinum substrate 1 activity, F-actin polarization, and the interaction between T cells and antigen-presenting cells, illustrating a crucial role for p110γ in TCR-induced T cell activation. PMID:17998387

  17. Protein-protein networks construction and their relevance measurement based on multi-epitope-ligand-kartographie and gene ontology data of T-cell surface proteins for polymyositis.

    Science.gov (United States)

    Li, Fang-Zhen; Gao, Feng

    2012-08-01

    Polymyositis is an inflammatory myopathy characterized by muscle invasion of T-cells penetrating the basal lamina and displacing the plasma membrane of normal muscle fibers. In order to understand the different adhesive mechanisms at the T-cell surface, Schubert randomly selected 19 proteins expressed at the T-cell surface and studied them using MELK technique [4], among which 15 proteins are picked up for further study by us. Two types of functional similarity networks are constructed for these proteins. The first type is MELK similarity network, which is constructed based on their MELK data by using the McNemar's test [24]. The second type is GO similarity network, which is constructed based on their GO annotation data by using the RSS method to measuring functional similarity. Then the subset surprisology theory is employed to measure the degree of similarity between two networks. Our computing results show that these two types of networks are high related. This conclusion added new values on MELK technique and expanded its applications greatly.

  18. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (Sc......SSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically...... by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  19. Protein Arginine Methyltransferase 5 Inhibition Upregulates Foxp3+ Regulatory T Cells Frequency and Function during the Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Yingxia Zheng

    2017-05-01

    Full Text Available Ulcerative colitis (UC pathogenesis is related to imbalance of immune responses, and the equilibrium between inflammatory T cells and Foxp3+ regulatory T cells (Tregs plays an important role in the intestinal homeostasis. Protein arginine methyltransferases (PRMTs regulate chromatin remodeling and gene expression. Here, we investigated whether inhibition of PRMTs affects colitis pathogenesis in mice and inflammatory bowel disease patients and further explored the underlying mechanisms. In this study, we found that protein arginine N-methyltransferase inhibitor 1 (AMI-1 treatments increased Tregs frequency, function, and reduced colitis incidence. Adoptive transfer of AMI-1-treated Tregs could reduce the colitis incidence. Colitis was associated with increased local PRMT5 expression, which was inhibited by AMI-1 treatment. Additionally, PRMT5 knockdown T cells produced a better response to TGFβ and promoted Tregs differentiation through decreased DNA methyltransferase 1 (DNMT1 expression. PRMT5 also enhanced H3K27me3 and DNMT1 binding to Foxp3 promoter, which restricted Tregs differentiation. Furthermore, PRMT5 knockdown led to decreased Foxp3 promoter methylation during Tregs induction. PRMT5 expression had a negative relationship with Tregs in UC patients, knockdown of PRMT5 expression increased Tregs frequency and decreased TNFα, IL-6, and IL-13 levels. Our study outlines a novel regulation of PRMT5 on Tregs development and function. Strategies to decrease PRMT5 expression might have therapeutic potential to control UC.

  20. Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.

    Science.gov (United States)

    Yan, C; Han, R

    1997-01-01

    Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.

  1. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of

  2. Production of interferon-¿ and interleukin-4 by human T cells recognizing Leishmania lipophosphoglycan-associated protein

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Christensen, C B

    1993-01-01

    The Leishmania protein LPGAP which is co-isolated with lipophosphoglycan is a specific activator of T cells from individuals who have recovered from American leishmaniasis. We have tested the effect of LPGAP on peripheral blood mononuclear cells (PBMC) from Kenyan donors cured from L. donovani in....... The results show that both IFN-gamma producing (Th1-like) and IL-4 producing (Th2-like) T cells recognizing LPGAP are expanded after infection with L. donovani in humans....... infections. LPGAP induced vigorous proliferation and production of interferon-gamma (IFN-gamma) by the cells. In addition PBMC incubated with LPGAP released interleukin-4 (IL-4) after pulsing with ionomycin and phorbol myristate acetate. Single cells were isolated from LPGAP-stimulated cell lines...

  3. Central regulation of metabolism by protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Ryan eTsou

    2013-01-01

    Full Text Available Protein tyrosine phosphatases (PTPs are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN, reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.

  4. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  5. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    Science.gov (United States)

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  6. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.

    Directory of Open Access Journals (Sweden)

    Monique van Velzen

    2013-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection results in lifelong chronic infection of trigeminal ganglion (TG neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

  7. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B.

    Science.gov (United States)

    Lapinski, Philip E; Oliver, Jennifer A; Bodie, Jennifer N; Marti, Francesc; King, Philip D

    2009-11-01

    Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.

  8. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma—A Tale of Two Proteins: Tax and HBZ

    Science.gov (United States)

    Giam, Chou-Zen; Semmes, Oliver John

    2016-01-01

    HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided. PMID:27322308

  9. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma—A Tale of Two Proteins: Tax and HBZ

    Directory of Open Access Journals (Sweden)

    Chou-Zen Giam

    2016-06-01

    Full Text Available HTLV-1 (Human T-cell lymphotropic virus type 1 is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ, encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8 and the ubiquitin E2 conjugating enzyme (UBC13—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.

  10. Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax.

    Science.gov (United States)

    Alefantis, Timothy; Barmak, Kate; Harhaj, Edward W; Grant, Christian; Wigdahl, Brian

    2003-06-13

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I transactivator protein Tax plays an integral role in the etiology of adult T cell leukemia, as expression of Tax in T lymphocytes has been shown to result in immortalization. In addition, Tax is known to interface with numerous transcription factor families, including activating transcription factor/cAMP response element-binding protein and nuclear factor-kappaB, requiring Tax to localize to both the nucleus and cytoplasm. In this report, the nucleocytoplasmic localization of Tax was examined in Jurkat, HeLa, and U-87 MG cells. The results reported herein indicate that Tax contains a leucine-rich nuclear export signal (NES) that, when fused to green fluorescent protein (GFP), can direct nuclear export via the CRM-1 pathway, as determined by leptomycin B inhibition of nuclear export. However, cytoplasmic localization of full-length Tax was not altered by treatment with leptomycin B, suggesting that native Tax utilizes another nuclear export pathway. Additional support for the presence of a functional NES has also been shown because the NES mutant Tax(L200A)-GFP localized to the nuclear membrane in the majority of U-87 MG cells. Evidence has also been provided suggesting that the Tax NES likely exists as a conditionally masked signal because the truncation mutant TaxDelta214-GFP localized constitutively to the cytoplasm. These results suggest that Tax localization may be directed by specific changes in Tax conformation or by specific interactions with cellular proteins leading to changes in the availability of the Tax NES and nuclear localization signal.

  11. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.

    2004-01-01

    Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts...... as a general base. Most of our understanding of the role of Asp(181). is derived from studies with the Yersinia PTP and the mammalian PTP1B, and to some extent also TC (T-cell)-PTP and, the related PTPalpha and PTPepsilon. The neighbouring residue 182 is a phenylalanine in these four mammalian enzymes...... and a glutamine in Yersinia PTP. Surprisingly, little attention has been paid to the fact that this residue is a histidine in most other mammalian PTPs. Using a reciprocal single-point mutational approach with introduction of His(182) in PTP1B and Phe(182) in PTPH1, we demonstrate here that His(182)-PTPs...

  12. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  13. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  14. Effects of dendritic cell vaccine activated with protein components of toxoplasma gondii on tumor specific CD8+ T-cells

    Directory of Open Access Journals (Sweden)

    Amari A

    2009-12-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Dendritic Cell (DC is an important antigen-presenting cell that present tumor antigen to CD8+ and CD4+ T- Lymphocytes and induce specific anti-tumor immunity. In order to induce effective anti-tumor response, an option is increasing the efficiency of antigen presentation of dendritic cells and T cell activation capacity. The aim of the present study was to investigate the effect of dendritic cell maturation with protein components of toxoplasma gondii on cytotoxic T lymphocyte activity and their infiltration in to the tumor."n"nMethods: For DC generation, bone marrow cells were cultured in the presence of GM-CSF and IL-4 for five days. After that, LPS, protein components and whole extract of toxoplasma gondii were added to the culture media and incubated for another two days for DC maturation. To generate tumor, mices were injected subcutaneously with WEHI-164 cell line. For immunotherapy 106 DCs matured with different compounds were injected around the tumor site. Infiltration of CD8+ T cells were determined by flow cytometry and cytotoxic activity was measured by LDH detection kit."n"nResults: Immunotherapy with DCs treated with protein components of toxoplasma gondii led to a significant increase in the

  15. Comparison of human memory CD8 T cell responses to adenoviral early and late proteins in peripheral blood and lymphoid tissue.

    Directory of Open Access Journals (Sweden)

    Amita Joshi

    Full Text Available Treatment of invasive adenovirus (Ad disease in hematopoietic stem cell transplant (SCT recipients with capsid protein hexon-specific donor T cells is under investigation. We propose that cytotoxic T cells (CTLs targeted to the late protein hexon may be inefficient in vivo because the early Ad protein E3-19K downregulates HLA class I antigens in infected cells. In this study, CD8+ T cells targeted to highly conserved HLA A2-restricted epitopes from the early regulatory protein DNA polymerase (P-977 and late protein hexon (H-892 were compared in peripheral blood (PB and tonsils of naturally infected adults. In tonsils, epitope-specific pentamers detected a significantly higher frequency of P-977+CD8+ T cells compared to H-892+CD8+ T cells; this trend was reversed in PB. Tonsil epitope-specific CD8+ T cells expressed IFN-γ and IL-2 but not perforin or TNF-α, whereas PB T cells were positive for IFN-γ, TNF-α, and perforin. Tonsil epitope-specific T cells expressed lymphoid homing marker CCR7 and exhibited lower levels of the activation marker CD25 but higher proliferative potential than PB T cells. Finally, in parallel with the kinetics of mRNA expression, P-977-specific CTLs lysed targets as early as 8 hrs post infection. In contrast, H-892-specific CTLs did not kill unless infected fibroblasts were pretreated with IFN-γ to up regulate HLA class I antigens, and cytotoxicity was delayed until 16-24 hours. These data show that, in contrast to hexon CTLs, central memory type DNA polymerase CTLs dominate the lymphoid compartment and kill fibroblasts earlier after infection without requiring exogenous IFN-γ. Thus, use of CTLs targeted to both early and late Ad proteins may improve the efficacy of immunotherapy for life-threatening Ad disease in SCT recipients.

  16. Lymphocyte-specific protein tyrosine kinase (Lck) interacts with CR6-interacting factor 1 (CRIF1) in mitochondria to repress oxidative phosphorylation

    International Nuclear Information System (INIS)

    Vahedi, Shahrooz; Chueh, Fu-Yu; Chandran, Bala; Yu, Chao-Lan

    2015-01-01

    Many cancer cells exhibit reduced mitochondrial respiration as part of metabolic reprogramming to support tumor growth. Mitochondrial localization of several protein tyrosine kinases is linked to this characteristic metabolic shift in solid tumors, but remains largely unknown in blood cancer. Lymphocyte-specific protein tyrosine kinase (Lck) is a key T-cell kinase and widely implicated in blood malignancies. The purpose of our study is to determine whether and how Lck contributes to metabolic shift in T-cell leukemia through mitochondrial localization. We compared the human leukemic T-cell line Jurkat with its Lck-deficient derivative Jcam cell line. Differences in mitochondrial respiration were measured by the levels of mitochondrial membrane potential, oxygen consumption, and mitochondrial superoxide. Detailed mitochondrial structure was visualized by transmission electron microscopy. Lck localization was evaluated by subcellular fractionation and confocal microscopy. Proteomic analysis was performed to identify proteins co-precipitated with Lck in leukemic T-cells. Protein interaction was validated by biochemical co-precipitation and confocal microscopy, followed by in situ proximity ligation assay microscopy to confirm close-range (<16 nm) interaction. Jurkat cells have abnormal mitochondrial structure and reduced levels of mitochondrial respiration, which is associated with the presence of mitochondrial Lck and lower levels of mitochondrion-encoded electron transport chain proteins. Proteomics identified CR6-interacting factor 1 (CRIF1) as the novel Lck-interacting protein. Lck association with CRIF1 in Jurkat mitochondria was confirmed biochemically and by microscopy, but did not lead to CRIF1 tyrosine phosphorylation. Consistent with the role of CRIF1 in functional mitoribosome, shRNA-mediated silencing of CRIF1 in Jcam resulted in mitochondrial dysfunction similar to that observed in Jurkat. Reduced interaction between CRIF1 and Tid1, another key component

  17. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  18. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  19. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of its Functional Effects

    Science.gov (United States)

    Radi, Rafael

    2012-01-01

    CONSPECTUS The nitration of protein tyrosine residues to 3-nitrotyrosine represents an oxidative postranslational modification that unveils the disruption of nitric oxide (•NO) signaling and metabolism towards pro-oxidant processes. Indeed, excess levels of reactive oxygen species in the presence of •NO or •NO-derived metabolites lead to the formation of nitrating species such as peroxynitrite. Thus, protein 3-nitrotyrosine has been established as a biomarker of cell, tissue and systemic “nitroxidative stress”. Moreover, tyrosine nitration modifies key properties of the amino acid (i.e. phenol group pKa, redox potential, hydrophobicity and volume). Thus, the incorporation of a nitro group (−NO2) to protein tyrosines can lead to profound structural and functional changes, some of which contribute to altered cell and tissue homeostasis. In this Account, I describe our current efforts to define 1) biologically-relevant mechanisms of protein tyrosine nitration and 2) how this modification can cause changes in protein structure and function at the molecular level. First, the relevance of protein tyrosine nitration via free radical-mediated reactions (in both peroxynitrite-dependent or independent pathways) involving the intermediacy of tyrosyl radical (Tyr•) will be underscored. This feature of the nitration process becomes critical as Tyr• can take variable fates, including the formation of 3-nitrotyrosine. Fast kinetic techniques, electron paramagnetic resonance (EPR) studies, bioanalytical methods and kinetic simulations have altogether assisted to characterize and fingerprint the reactions of tyrosine with peroxynitrite and one-electron oxidants and its further evolution to 3-nitrotyrosine. Recent findings show that nitration of tyrosines in proteins associated to biomembranes is linked to the lipid peroxidation process via a connecting reaction that involves the one-electron oxidation of tyrosine by lipid peroxyl radicals (LOO•). Second

  20. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...

  1. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    Science.gov (United States)

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  2. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  3. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    International Nuclear Information System (INIS)

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-01-01

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  4. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    Science.gov (United States)

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  6. Expression of the Human Epidermal Growth Factor Receptor in a Murine T- Cell Hybridoma: A Transmembrane Protein Tyrosine Kinase Can Synergize with the T-Cell Antigen Receptor

    Science.gov (United States)

    1992-01-01

    cells to 0.9 pM butyrate for 16 h increased limiting dilution as described (32). Flow cytometry confirmed EGFR modal log channel fluorescence for...1991) Cell 65, 281-291 demonstration that phosphatidyl-inositol pathway activation 9. Ullrich, A., Coussens, L., Hayflick , J. S., Dull, T. J., Gray, A

  7. Loss of Function Studies in Mice and Genetic Association Link Receptor Protein Tyrosine Phosphatase a to Schizophrenia

    DEFF Research Database (Denmark)

    Takahashi, Nagahide; Nielsen, Karin Sandager; Aleksic, Branko

    2011-01-01

    Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPa, in the control of radial neuronal migration, cortical cytoarchitecture...

  8. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  9. Endogenous stress proteins as targets for anti-inflammatory T cells

    NARCIS (Netherlands)

    Wieten, L.

    2009-01-01

    Stress proteins such as heat shock proteins (Hsp) are important controllers of both cellular and immune homeostasis. Enhanced Hsp expression can be observed in virtually every inflammatory condition and has been proposed by us and others to lead to local activation of Hsp-specific anti-inflammatory

  10. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  11. Peripheral T-Cell Reactivity to Heat Shock Protein 70 and Its Cofactor GrpE from Tropheryma whipplei Is Reduced in Patients with Classical Whipple's Disease.

    Science.gov (United States)

    Trotta, Lucia; Weigt, Kathleen; Schinnerling, Katina; Geelhaar-Karsch, Anika; Oelkers, Gerrit; Biagi, Federico; Corazza, Gino Roberto; Allers, Kristina; Schneider, Thomas; Erben, Ulrike; Moos, Verena

    2017-08-01

    Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward Tropheryma whipplei in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from T. whipplei was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with T. whipplei lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of T. whipplei , the proportions of activated effector CD4 + T cells, determined as CD40L + IFN-γ + , were significantly lower in patients with CWD than in healthy controls; CD8 + T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and T. whipplei -specific degranulation, although CD69 + IFN-γ + CD8 + T cells were reduced upon stimulation with T. whipplei lysate and recombinant T. whipplei -derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against T. whipplei to control bacterial spreading. The lack of specific T-cell responses against these T. whipplei -derived proteins may contribute to the pathogenesis of CWD. Copyright © 2017 American Society for Microbiology.

  12. PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina PBMC

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2005-01-01

    Full Text Available Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP, 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169, a model immunotoxic PCB, or DMSO (vehicle control. Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part by disruption of T cell receptor (TCR signaling and cytokine production.

  13. Decreased SAP expression in T cells from patients with SLE contributes to early signaling abnormalities and reduced IL-2 production

    Science.gov (United States)

    Karampetsou, Maria P.; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C.; Tsokos, George C.

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of functions including increased early signaling events following engagement of the T cell receptor (TCR). Signaling lymphocytic activation molecule family (SLAMF) cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating immune response. Here we present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and 3 men with SLE independently of disease activity. In SLE T cells the SAP protein is also subject to increased degradation by a caspase-3. Forced expression of SAP in SLE T cells simultaneously heightened IL-2 production, calcium (Ca2+) responses and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR antibodies, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. PMID:27183584

  14. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    Science.gov (United States)

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  15. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...... constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1......)) whereas the exocytic rate constant was unaffected. Thus, the TCR becomes a rapidly cycling receptor with kinetics similar to classical cycling receptors subsequent to PKC activation. This results in a reduction of the half-life of cell surface expressed TCR from approximately 58 to 6 min and allows rapid...

  16. In vitro activation of transcription by the human T-cell leukemia virus type I Tax protein.

    Science.gov (United States)

    Matthews, M A; Markowitz, R B; Dynan, W S

    1992-05-01

    The human T-cell leukemia virus type I (HTLV-I) regulatory protein Tax activates transcription of the proviral long terminal repeats and a number of cellular promoters. We have developed an in vitro system to characterize the mechanism by which Tax interacts with the host cell transcription machinery. Tax was purified from cells infected with a baculovirus expression vector. Addition of these Tax preparations to nuclear extracts from uninfected human T lymphocytes activated transcription of the HTLV-I long terminal repeat approximately 10-fold. Transcription-stimulatory activity copurified with the immunoreactive 40-kDa Tax polypeptide on gel filtration chromatography, and, as expected, the effect of recombinant Tax was diminished in HTLV-I-infected T-lymphocyte extracts containing endogenous Tax. Tax-mediated transactivation in vivo has been previously shown to require 21-bp-repeat Tax-responsive elements (TxREs) in the promoter DNA. Stimulation of transcription in vitro was also strongly dependent on these sequences. To investigate the mechanism of Tax transactivation, cellular proteins that bind the 21-bp-repeat TxREs were prepared by DNA affinity chromatography. Recombinant Tax markedly increased the formation of a specific host protein-DNA complex detected in an electrophoretic mobility shift assay. These data suggest that Tax activates transcription through a direct interaction with cellular proteins that bind to the 21-bp-repeat TxREs.

  17. Free radical-mediated stimulation of tyrosine-specific protein kinase in rat liver plasma membrane

    International Nuclear Information System (INIS)

    Chan, T.M.; Tatoyan, A.; Cheng, E.; Shargill, N.S.; Pleta, M.

    1986-01-01

    Incorporation of 32 P from (γ- 32 P)-ATP into endogenous proteins of plasma membranes isolated from rat liver was significantly increased by several naphthoquinones including menadione. This apparent stimulation of membrane-associated protein kinase activity by these compounds was most striking (up to 6-7 fold) when the synthetic copolymers containing glutamate and tyrosine residues (4:1) was used as substrate. Since tyrosine residues are the only possible phosphate acceptor in the copolymers, the quinone-stimulated liver membrane protein kinase is most likely tyrosine specific. Although not required for protein kinase activity, dithiothreitol (DTT) was necessary for its stimulation by these quinonoid compounds. Hydrolysis of ATP was not significantly affected by quinones under the experimental conditions. Both menadione and vitamin k 5 increased phosphorylation of plasma membrane proteins of molecular weight 45 and 60 kd. The stimulatory effect of menadione on protein phosphorylation was prevented by the addition of superoxide dismutase. Dihydroxyfumerate, which spontaneously produces various radical species, and H 2 O 2 , also stimulated tyrosine-specific protein phosphorylation. DTT was also required for their full effect. It, therefore, appears that quinonone stimulation of tyrosine-specific protein phosphorylation is mediated by oxygen radicals

  18. Malignant T cells exhibit CD45 resistant Stat 3 activation and proliferation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, T; Helvad, Rikke; Ralfkiær, Elisabeth

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator...... of transcription (Stat) activation and cytokine-induced proliferation in lymphocytes. Consequently, CD45 dysregulation could be implicated in aberrant Jak/Stat activation and proliferation in lymphoproliferative diseases. Despite high expression of the CD45 ligand, Galectin-1, in skin lesions from cutaneous T......-cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  19. Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings. In this study, we present the first comprehensive analysis of the protein, messenger RNA and microRNA profiles of 293T cell-derived exosomes; then, we characterized these data using Gene Ontology annotation and Kyoto Encyclopedia for Genes and Genomes pathway analysis. Our study will provide the basis for the selection of 293T cell-derived exosome drug delivery systems. Profiling the exosomal signatures of 293T cells will lead to a better understanding of 293T exosome biology and will aid in the identification of any harmful factors in exosomes that could cause adverse clinical effects.

  20. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    Science.gov (United States)

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  1. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts.

    Science.gov (United States)

    Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari

    2014-12-26

    The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Tuberculin purified protein derivative-reactive T cells in cord blood lymphocytes.

    OpenAIRE

    Shiratsuchi, H; Tsuyuguchi, I

    1981-01-01

    Lymphocytes obtained from cord blood of newborn babies who were born of healthy mothers were studied in vitro for their responsiveness to purified protein derivative (PPD) of tuberculin. Cord blood lymphocytes proliferated in vitro by stimulation with PPD, despite wide variations in the results. Studies with fractionated lymphocytes revealed that PPD-responding cells belonged to E-rosetting, nylon wool-nonadherent T lymphocytes. Non-E-rosetting B lymphocytes alone did not proliferate at all a...

  3. Functional implications of plasma membrane condensation for T cell activation.

    Directory of Open Access Journals (Sweden)

    Carles Rentero

    2008-05-01

    Full Text Available The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC, which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process.

  4. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    Science.gov (United States)

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-09

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  7. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  8. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    Science.gov (United States)

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  9. Ligand mobility modulates immunological synapse formation and T cell activation.

    Directory of Open Access Journals (Sweden)

    Chih-Jung Hsu

    Full Text Available T cell receptor (TCR engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70 and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76. This molecular rearrangement results in formation of the immunological synapse (IS, a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca(2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses.

  10. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Science.gov (United States)

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  11. Identification of CD4+ T-cell Epitopes on Mycobacterium Tuberculosis- Secreted MPB51 Protein in C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    A.R. Rafiei

    2006-01-01

    Full Text Available Introduction & Objective: Both CD4+ type 1 helper (Th1 cells and CD8+ T cells play effective roles in protection against Mycobacterium tuberculosis infection. DNA vaccine encoding MPB51 can induce Th1-type immune responses and protective immunity upon challenge with M.tuberculosis. This study address to identify T-cell immunodominant epitopes on MPB51 in C57BL/6 mice.Materials & Methods : We cloned DNA encoding MPB51 molecule in pCI plasmid. After constructing MPB51 DNA-covered gold cartridge, C57BL/6 mice were immunized by using a gene gun system. Two weeks after the last immunization, the immune spleen cells were cultured in the presence of a synthetic overlapping library peptides covering the mature MPB51 sequence or medium alone. Intracellular and cell culture supernatant gamma interferon (IFN- production was analyzed using flow cytometry and ELISA, respectively.Results : Mapping of T-cell epitopes on MPB51 molecule was performed in the spleen lymphocytes restimulated by 20-mer overlapping synthetic peptides of mature MPB51 sequence. Flow cytometric analysis with intracellular IFN- and the T-cell phenotype revealed that P171-190 and P191-210 peptides contain immunodominant CD4+ T-cell epitopes. Further analysis by using T-cell subset depletion and serial peptide dilution revealed that P171 and p191 are H2-Ab-restricted dominant and subdominant CD4+ T cell epitopes, respectively. Conclusion: This study proved that vaccination with plasmid DNA encoding M. tuberculosis-secreted MPB51 protein not only induce CD4+ T cells immune response but also is an appropriate method for identifying immunogenic peptides.

  12. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    International Nuclear Information System (INIS)

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-01-01

    T reg cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T reg cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T reg phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T reg cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T reg cells in SMAR1 −/− mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T reg cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T reg physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T reg cells. • SMAR1 −/− T reg cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1 −/− mice. • Both Foxp3 and SMAR1 maintain T reg phenotype that controls colitis

  13. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    Energy Technology Data Exchange (ETDEWEB)

    Mirlekar, Bhalchandra; Patil, Sachin [Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Bopanna, Ramanamurthy [Experimental Animal Facility, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Chattopadhyay, Samit, E-mail: samit@nccs.res.in [Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India)

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  14. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    International Nuclear Information System (INIS)

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L.

    2006-01-01

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-γ stimulation of blood CD8 + T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS

  15. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148

    DEFF Research Database (Denmark)

    Whiteford, James R; Xian, Xiaojie; Chaussade, Claire

    2011-01-01

    Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is ß1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine...

  16. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    Science.gov (United States)

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  17. Staphylococcal enterotoxin-A directly stimulates signal transduction and interferon-gamma production in psoriatic T-cell lines

    DEFF Research Database (Denmark)

    Nielsen, M B; Odum, N; Gerwien, J

    1998-01-01

    class II. Here we address the question of whether SEA can directly activate psoriatic T cells in the absence of professional antigen-presenting cells. We show that SEA induces i) tyrosine phosphorylation of several proteins, ii) downregulation of the T-cell receptor (TCR), and iii) production......-mediated proliferation. In contrast, SEA with a mutation in the MHC class II alpha-binding site induces IFN-gamma and a qualitatively changed tyrosine phosphorylation profile. Both mutations delete the co-stimulatory effect on cytokine-mediated proliferation. This suggests that both MHC class II binding sites...

  18. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M. [Department of Microbiology, University of Washington, Seattle, WA (United States); Wolf-Yadlin, Alejandro [Department of Genome Sciences, University of Washington, Seattle, WA (United States); Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C. [Department of Microbiology, University of Washington, Seattle, WA (United States); Jahan, Tahmina A. [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States); Krasnoselsky, Alexei L.; Palermo, Robert E. [Department of Microbiology, University of Washington, Seattle, WA (United States); Katze, Michael G., E-mail: honey@uw.edu [Department of Microbiology, University of Washington, Seattle, WA (United States); Washington National Primate Research Center, University of Washington, Seattle, WA (United States)

    2012-07-20

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  19. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  20. High Frequency of CD4+ T Cells Specific for the TB10.4 Protein Correlates with Protection against Mycobacterium tuberculosis Infection

    Czech Academy of Sciences Publication Activity Database

    Hervas-Stubbs, S.; Majlessi, L.; Šimšová, Marcela; Morová, Jana; Rojas, M. J.; Nouzé, C.; Brodin, P.; Šebo, Peter; Leclerc, C.

    2006-01-01

    Roč. 74, č. 6 (2006), s. 3396-3407 ISSN 0019-9567 R&D Projects: GA AV ČR IBS5020311 Institutional research plan: CEZ:AV0Z50200510 Keywords : t cell s * mycobacterium tuberculosis * protein Subject RIV: EE - Microbiology, Virology Impact factor: 4.004, year: 2006

  1. Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity.

    Science.gov (United States)

    Lu, Jennifer V; Weist, Brian M; van Raam, Bram J; Marro, Brett S; Nguyen, Long V; Srinivas, Prathna; Bell, Bryan D; Luhrs, Keith A; Lane, Thomas E; Salvesen, Guy S; Walsh, Craig M

    2011-09-13

    Caspase-8 (casp8) is required for extrinsic apoptosis, and mice deficient in casp8 fail to develop and die in utero while ultimately failing to maintain the proliferation of T cells, B cells, and a host of other cell types. Paradoxically, these failures are not caused by a defect in apoptosis, but by a presumed proliferative function of this protease. Indeed, following mitogenic stimulation, T cells lacking casp8 or its adaptor protein FADD (Fas-associated death domain protein) develop a hyperautophagic morphology, and die a programmed necrosis-like death process termed necroptosis. Recent studies have demonstrated that receptor-interacting protein kinases (RIPKs) RIPK1 and RIPK3 together facilitate TNF-induced necroptosis, but the precise role of RIPKs in the demise of T cells lacking FADD or casp8 activity is unknown. Here we demonstrate that RIPK3 and FADD have opposing and complementary roles in promoting T-cell clonal expansion and homeostasis. We show that the defective proliferation of T cells bearing an interfering form of FADD (FADDdd) is rescued by crossing with RIPK3(-/-) mice, although such rescue ultimately leads to lymphadenopathy. Enhanced recovery of these double-mutant T cells following stimulation demonstrates that FADD, casp8, and RIPK3 are all essential for clonal expansion, contraction, and antiviral responses. Finally, we demonstrate that caspase-mediated cleavage of RIPK1-containing necrosis inducing complexes (necrosomes) is sufficient to prevent necroptosis in the face of death receptor signaling. These studies highlight the "two-faced" nature of casp8 activity, promoting clonal expansion in some situations and apoptotic demise in others.

  2. Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep

    International Nuclear Information System (INIS)

    Krishnamurti, C.R.; Schaefer, A.L.

    1984-01-01

    To determine the effects of acute maternal starvation on intrauterine growth, tyrosine concentration and specific activity values in plasma, intracellular free and protein bound pools were determined in catheterized ovine fetuses following an 8 h continuous infusion of L-[2,3,5,6 3 H] or L-[U- 14 C] tyrosine into the ewe and fetus respectively at 115-125 days of gestation. From the kinetic data the rates of whole body and tissue fractional protein synthesis were calculated. Although placental protein synthesis was not significantly changed as a result of acute maternal starvation, fetal whole body protein synthesis was reduced from 63 g/d/kg in the fed to 25 g/d/kg in the starved condition. There was also a 10 fold reduction in the net placental transfer of tyrosine to the fetus in the starved ewes. In addition, a three fold increase was observed in the quantity of tyrosine used for oxidation by the fetuses of starved ewes, changing from 5.2% of tyrosine net utilization in the fed to 13.7% in the starved condition. Significant reductions in tissue fractional protein synthesis rates were also seen in the liver, brain, lung kidney and GIT tissues from 78, 37, 65, 45 and 71%/d respectively in the fed to 12, 10, 23, 22 and 35%/d in the fetuses of starved ewes. The data indicate that during acute maternal starvation the sheep fetus utilizes more tyrosine for oxidation and less for anabolic purposes which is reflected in a decrease both in whole body and tissue fractional rates of protein synthesis

  3. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  4. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2.

    Science.gov (United States)

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Osterby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.

  5. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2.

    Directory of Open Access Journals (Sweden)

    Peter Braendstrup

    Full Text Available Human cytomegalovirus (HCMV is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2. Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.

  6. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn 2+ and [γ- 32 P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  7. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde.

    Science.gov (United States)

    Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F

    2012-12-19

    4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene glycol) chains (PEGylation), and functional small molecules onto model proteins and to label the surface of living cells.

  8. The Immunodominance Change and Protection of CD4+ T-Cell Responses Elicited by an Envelope Protein Domain III-Based Tetravalent Dengue Vaccine in Mice.

    Directory of Open Access Journals (Sweden)

    Hsin-Wei Chen

    Full Text Available Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3 is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4, we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost. A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.

  9. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    Energy Technology Data Exchange (ETDEWEB)

    Berges, J [Universite Pierre et Marie Curie, UMR 7616, Laboratoire de Chimie Theorique, 75005 Paris (France); Trouillas, P [EA 4021 Faculte de Pharmacie, 2 Rue du Dr. Marcland, 87025 Limoges Cedex (France); Houee-Levin, C, E-mail: jb@lct.jussieu.fr, E-mail: patrick.trouillas@unilim.fr, E-mail: chantal.houee@u-psud.fr [Universite Paris Sud, UMR 8000, Laboratoire de Chimie Physique, 91405 Orsay (France) (France)

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH{sup -} elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  10. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    International Nuclear Information System (INIS)

    Berges, J; Trouillas, P; Houee-Levin, C

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH - elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  11. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    Science.gov (United States)

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  12. Secreted protein acidic and rich in cysteine functions in colitis via IL17A regulation in mucosal CD4+ T cells.

    Science.gov (United States)

    Tanaka, Makoto; Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Hotta, Yuma; Toyokawa, Yuki; Ushiroda, Chihiro; Hirai, Yasuko; Aoi, Wataru; Higashimura, Yasuki; Mizushima, Katsura; Okayama, Tetsuya; Katada, Kazuhiro; Kamada, Kazuhiro; Ishikawa, Takeshi; Handa, Osamu; Itoh, Yoshito

    2018-03-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycol that regulates cell proliferation, tissue repair, and tumorigenesis. Despite evidence linking SPARC to inflammation, the mechanisms are unclear. Accordingly, the role of SPARC in intestinal inflammation was investigated. Colitis was induced in wild-type (WT) and SPARC knockout (KO) mice using trinitrobenzene sulfonic acid (TNBS). Colons were assessed for damage; leukocyte infiltration; Tnf, Ifng, Il17a, and Il10 mRNA expression; and histology. Cytokine profiling of colonic lamina propria mononuclear cells (LPMCs) was performed by flow cytometry. Naïve CD4 + T cells were isolated from WT and SPARC KO mouse spleens, and the effect of SPARC on Th17 cell differentiation was examined. Recombination activating gene 1 knockout (RAG1 KO) mice reconstituted with T cells from either WT or SPARC KO mice were investigated. Trinitrobenzene sulfonic acid exposure significantly reduced bodyweight and increased mucosal inflammation, leukocyte infiltration, and Il17a mRNA expression in WT relative to SPARC KO mice. The percentage of IL17A-producing CD4 + T cells among LPMCs from KO mice was lower than that in WT mice when both groups were exposed to TNBS. Th17 cell differentiation was suppressed in cells from SPARC KO mice. In the T cell transfer colitis model, RAG1 KO mice receiving T cells from WT mice were more severely affected than those reconstituted with cells from SPARC KO mice. Secreted protein acidic and rich in cysteine accelerates colonic mucosal inflammation via modulation of IL17A-producing CD4 + T cells. SPARC is a potential therapeutic target for conditions involving intestinal inflammation. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  13. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters

    Directory of Open Access Journals (Sweden)

    David A. Rhodes

    2018-04-01

    Full Text Available Activation of human Vγ9/Vδ2 T cells by “phosphoantigens” (pAg, the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated

  14. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters

    Science.gov (United States)

    Rhodes, David A.; Chen, Hung-Chang; Williamson, James C.; Hill, Alfred; Yuan, Jack; Smith, Sam; Rhodes, Harriet; Trowsdale, John; Lehner, Paul J.; Herrmann, Thomas; Eberl, Matthias

    2018-01-01

    Activation of human Vγ9/Vδ2 T cells by “phosphoantigens” (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with

  15. Disabled is a putative adaptor protein that functions during signaling by the sevenless receptor tyrosine kinase.

    Science.gov (United States)

    Le, N; Simon, M A

    1998-08-01

    DRK, the Drosophila homolog of the SH2-SH3 domain adaptor protein Grb2, is required during signaling by the sevenless receptor tyrosine kinase (SEV). One role of DRK is to provide a link between activated SEV and the Ras1 activator SOS. We have investigated the possibility that DRK performs other functions by identifying additional DRK-binding proteins. We show that the phosphotyrosine-binding (PTB) domain-containing protein Disabled (DAB) binds to the DRK SH3 domains. DAB is expressed in the ommatidial clusters, and loss of DAB function disrupts ommatidial development. Moreover, reduction of DAB function attenuates signaling by a constitutively activated SEV. Our biochemical analysis suggests that DAB binds SEV directly via its PTB domain, becomes tyrosine phosphorylated upon SEV activation, and then serves as an adaptor protein for SH2 domain-containing proteins. Taken together, these results indicate that DAB is a novel component of the SEV signaling pathway.

  16. Re-directed T cells for the treatment of fibroblast activation protein (FAP-positive malignant pleural mesothelioma (FAPME-1

    Directory of Open Access Journals (Sweden)

    Petrausch Ulf

    2012-12-01

    Full Text Available Abstract Background Asbestos is the main cause of MPM in industrialized countries. Even since asbestos is banned in most developed countries, the peak wave of MPM incidence is anticipated for the next years due to the long latency of asbestos induced MPM. MPM patients not eligible for surgical procedures like decortication or pleuro-pneumectomie have a median survival of 12 months with palliative chemotherapy. Therefore, new therapeutic approaches are of crucial need in this clinical situation. Methods/design This is a phase I trial for patients with malignant pleural mesothelioma with pleural effusion testing the safety of a fixed single dose of 1x106 adoptively transferred FAP-specific re-directed T cells given directly in the pleural effusion. Lymphocytes will be taken 21 days before transfer from peripheral blood. CD8 positive T cells will be isolated and re-programmed by retroviral transfer of a chimeric antigen receptor recognizing FAP which serves as target structure in MPM. At day 0 of the protocol, re-directed T cells will be injected in the pleural effusion and patients will be monitored for 48h under intermediate care conditions. AE, SAE, SADR and SUSAR will be monitored for 35 days and evaluated by an independent safety board to define any dose limiting toxicity (DLT. No further patient can be treated before the previous patient passed day 14 after T cell transfer. The protocol will be judged as save when no DLT occurred in the first 3 patients, or 1 DLT in 6 patients. Secondary objectives are feasibility and immune monitoring. Discussion Adoptive T cell transfer is a new and rapidly expanding branch of immunotherapies focusing on cancer treatment. Recently, objective responses could be observed in patients with chronic lymphatic leukemia treated with adoptively transferred CD19-specific re-directed T cells. The choice of the target antigen determines the possible on-target off-tissue toxicity of such approaches. There are reports of

  17. Expression of protein-tyrosine phosphatases in the major insulin target tissues

    DEFF Research Database (Denmark)

    Norris, K; Norris, F; Kono, D H

    1997-01-01

    Protein-tyrosine phosphatases (PTPs) are key regulators of the insulin receptor signal transduction pathway. We have performed a detailed analysis of PTP expression in the major human insulin target tissues or cells (liver, adipose tissue, skeletal muscle and endothelial cells). To obtain a repre...

  18. Brain tumors : L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate

    NARCIS (Netherlands)

    Pruim, J; Willemsen, A T; Molenaar, W M; Waarde, A van; Paans, A M; Heesters, M A; Go, K G; Visser, Gerben; Franssen, E J; Vaalburg, W

    1995-01-01

    PURPOSE: Positron emission tomography (PET) with the amino acid tracer L-[1-C-11]-tyrosine was evaluated in 27 patients with primary and recurrent brain tumors. MATERIALS AND METHODS: Patients underwent either static (n = 14) or dynamic PET (n = 13), with quantification of protein synthesis rate

  19. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    DEFF Research Database (Denmark)

    Petrone, A; Sap, J

    2000-01-01

    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signal...

  20. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains...

  1. MECHANISM OF PROTEIN TYROSINE PHOSPHATASE INHIBITION IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    Science.gov (United States)

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to Zn2+ inhibits protein tyrosine phosphatase (PTP) activity and leads to activation of epidermal growth factor receptor (EGFR) signaling in ...

  2. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.

    2004-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...

  3. Pterocarpans with inhibitory effects on protein tyrosine phosphatase 1B from Erythrina lysistemon Hutch

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Thuong, Phuong Thien

    2009-01-01

    ',5':3,4]-2'',2''-dimethyldihydropyrano[6'',5'':9,10]pterocarpan (1), furano[5',4':3,4]-9-hydroxy-10-prenylpterocarpan (2), and 8-formyl-3,9-dihydroxy-4,10-diprenylpterocarpan (3), based on spectroscopic analyses. All the isolates, with the exception of 3, 6, and 11, strongly inhibited protein tyrosine phosphatase 1B (PTP1B) activity...

  4. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system......The immune system is a tightly regulated and complex system. An important part of this immune regulation is the assurance of tolerance toward self-antigens to maintain immune homeostasis. However, in recent years, antigen-specific cellular immune responses toward several normal self....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still...

  5. Oxidative stress drives CD8+ T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes.

    Science.gov (United States)

    Li, Shuli; Zhu, Guannan; Yang, Yuqi; Jian, Zhe; Guo, Sen; Dai, Wei; Shi, Qiong; Ge, Rui; Ma, Jingjing; Liu, Ling; Li, Kai; Luan, Qi; Wang, Gang; Gao, Tianwen; Li, Chunying

    2017-07-01

    In patients with vitiligo, an increased reactive oxygen species (ROS) level has been proved to be a key player during disease initiation and progression in melanocytes. Nevertheless, little is known about the effects of ROS on other cells involved in the aberrant microenvironment, such as keratinocytes and the following immune events. CXCL16 is constitutively expressed in keratinocytes and was recently found to mediate homing of CD8 + T cells in human skin. We sought to explicate the effect of oxidative stress on human keratinocytes and its capacity to drive CD8 + T-cell trafficking through CXCL16 regulation. We first detected putative T-cell skin-homing chemokines and ROS in serum and lesions of patients with vitiligo. The production of candidate chemokines was detected by using quantitative real-time PCR and ELISA in keratinocytes exposed to H 2 O 2 . Furthermore, the involved mediators were analyzed by using quantitative real-time PCR, Western blotting, ELISA, and immunofluorescence. Next, we tested the chemotactic migration of CD8 + T cells from patients with vitiligo mediated by the CXCL16-CXCR6 pair using the transwell assay. CXCL16 expression increased and showed a positive correlation with oxidative stress levels in serum and lesions of patients with vitiligo. The H 2 O 2 -induced CXCL16 expression was due to the activation of 2 unfolded protein response pathways: kinase RNA (PKR)-like ER kinase-eukaryotic initiation factor 2α and inositol-requiring enzyme 1α-X-box binding protein 1. CXCL16 produced by stressed keratinocytes induced migration of CXCR6 + CD8 + T cells derived from patients with vitiligo. CXCR6 + CD8 + T-cell skin infiltration is accompanied by melanocyte loss in lesions of patients with vitiligo. Our study demonstrated that CXCL16-CXCR6 mediates CD8 + T-cell skin trafficking under oxidative stress in patients with vitiligo. The CXCL16 expression in human keratinocytes induced by ROS is, at least in part, caused by unfolded protein response

  6. Expression of tyrosine kinase gene in mouse thymic stromal cells

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Izon, D. J.; Revilla, C.; Oosterwegel, M.; Bakker, A. Q.; van Ewijk, W.; Kruisbeek, A. M.

    1996-01-01

    Amongst the most important signal transduction molecules involved in regulating growth and differentiation are the protein tyrosine kinases (PTK). Since T cell development is a consequence of interactions between thymic stromal cells (TSC) and thymocytes, identification of the PTK in both

  7. Incorporation of Ortho- and Meta-Tyrosine Into Cellular Proteins Leads to Erythropoietin-Resistance in an Erythroid Cell Line

    Directory of Open Access Journals (Sweden)

    Esztella Mikolás

    2014-04-01

    Full Text Available Background/Aims: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance. Methods: TF-1 erythroblast cell line was used. Cell concentration was determined on day 1; 2 and 3 by two independent observers simultaneously in Bürker cell counting chambers. Protein concentration was determined with colorimetric method. Para-, ortho- and meta-tyrosine levels were measured using reverse phase-HPLC with fluorescence detection. Using Western blot method activating phosphorylation of STAT5 and ERK1/2 were investigated. Results: We found a time- and concentration-dependent decrease of erythropoietin-induced proliferative activity in case of ortho- and meta-tyrosine treated TF-1 erythroblasts, compared to the para-tyrosine cultured cells. Decreased erythropoietin-response could be regained with a competitive dose of para-tyrosine. Proteins of erythroblasts treated by ortho- or meta-tyrosine had lower para-tyrosine and higher ortho- or meta-tyrosine content. Activating phosphorylation of ERK and STAT5 due to erythropoietin was practically prevented by ortho- or meta-tyrosine treatment. Conclusion: According to this study elevated ortho- and meta-tyrosine content of erythroblasts may lead to the dysfunction of intracellular signaling, resulting in erythropoietin-hyporesponsiveness.

  8. Proteomic Profiling of a Primary CD4+ T Cell Model of HIV-1 Latency Identifies Proteins Whose Differential Expression Correlates with Reactivation of Latent HIV-1.

    Science.gov (United States)

    Saha, Jamaluddin Md; Liu, Hongbing; Hu, Pei-Wen; Nikolai, Bryan C; Wu, Hulin; Miao, Hongyu; Rice, Andrew P

    2018-01-01

    The latent HIV-1 reservoir of memory CD4 + T cells that persists during combination antiviral therapy prevents a cure of infection. Insight into mechanisms of latency and viral reactivation are essential for the rational design of strategies to reduce the latent reservoir. In this study, we quantified the levels of >2,600 proteins in the CCL19 primary CD4 + T cell model of HIV-1 latency. We profiled proteins under conditions that promote latent infection and after cells were treated with phorbol 12-myristate 13-acetate (PMA) + ionomycin, which is known to efficiently induce reactivation of latent HIV-1. In an analysis of cells from two healthy blood donors, we identified 61 proteins that were upregulated ≥2-fold, and 36 proteins that were downregulated ≥2-fold under conditions in which latent viruses were reactivated. These differentially expressed proteins are, therefore, candidates for cellular factors that regulate latency or viral reactivation. Two unexpected findings were obtained from the proteomic data: (1) the interactions among the majority of upregulated proteins are largely undetermined in published protein-protein interaction networks and (2) downregulated proteins are strongly associated with Gene Ontology terms related to mitochondrial protein synthesis. This proteomic data set provides a useful resource for future mechanistic studies of HIV-1 latency.

  9. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde

    OpenAIRE

    Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F.

    2012-01-01

    4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene) glycol chains (PEGylation), and functional small m...

  10. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  11. Structural Simulation of MHC-peptide Interactions using T-cell Epitope in Iron-acquisition Protein of N. meningitides for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Namrata Mishra

    2010-12-01

    Full Text Available The present work uses a structural simulation approach to identify the potential target vaccine candidates or T cell epitopes (antigenic region that can activate T cell response in two iron acquisition proteins from Neisseria. An iron regulated outer membrane protein frpB: extracellular, [NMB1988], and a Major ferric Iron-binding protein fbpA: periplasmic, [NMB0634] critical for the survival of the pathogen in the host were used. Ten novel promiscuous epitopes from the two iron acquisition proteins were identified using bioinformatics interface. Of these epitopes, 630VQKAVGSIL638 present on frpB with high binding affinity for allele HLA*DR1 was identified with an anchor position at P2, an aliphatic residue at P4 and glycine at P6 making it thereby a potential quality choice for linking peptide-loaded MHC dynamics to T-cell activation and vaccine constructs. The feasibility and structural binding of predicted peptide to the respective HLA allele was investigated by molecular modeling and template-based structural simulation. The conformational properties of the linear peptide were investigated by molecular dynamics using GROMOS96 package and Swiss PDB viewer.

  12. The protein pheromone Er-1 of the ciliate Euplotes raikovi stimulates human T-cell activity: Involvement of interleukin-2 system

    Energy Technology Data Exchange (ETDEWEB)

    Cervia, Davide, E-mail: d.cervia@unitus.it [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, University of Milan, Milano (Italy); Catalani, Elisabetta; Belardinelli, Maria Cristina [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Perrotta, Cristiana [Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, University of Milan, Milano (Italy); Picchietti, Simona [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Alimenti, Claudio [Department of Environmental and Natural Sciences, University of Camerino, Camerino (Italy); Casini, Giovanni; Fausto, Anna Maria [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Vallesi, Adriana [Department of Environmental and Natural Sciences, University of Camerino, Camerino (Italy)

    2013-02-01

    Water-soluble protein signals (pheromones) of the ciliate Euplotes have been supposed to be functional precursors of growth factors and cytokines that regulate cell–cell interaction in multi-cellular eukaryotes. This work provides evidence that native preparations of the Euplotes raikovi pheromone Er-1 (a helical protein of 40 amino acids) specifically increases viability, DNA synthesis, proliferation, and the production of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-2, and IL-13 in human Jurkat T-cells. Also, Er-1 significantly decreases the mRNA levels of the β and γ subunits of IL-2 receptor (IL-2R), while the mRNA levels of the α subunit appeared to be not affected. Jurkat T-cell treatments with Er-1 induced the down-regulation of the IL-2Rα subunit by a reversible and time-dependent endocytosis, and increased the levels of phosphorylation of the extracellular signal-regulated kinases (ERK). The cell-type specificity of these effects was supported by the finding that Er-1, although unable to directly influence the growth of human glioma U-373 cells, induced Jurkat cells to synthesize and release factors that, in turn, inhibited the U-373 cell proliferation. Overall, these findings imply that Er-1 coupling to IL-2R and ERK immuno-enhances T-cell activity, and that this effect likely translates to an inhibition of glioma cell growth. -- Highlights: ► Euplotes pheromone Er-1 increases the growth of human Jurkat T-cells. ► Er-1 increases the T-cell production of specific cytokines. ► Er-1 activates interleukin-2 receptor and extracellular signal-regulated kinases. ► The immuno-enhancing effect of Er-1 on Jurkat cells translates to an inhibition of human glioma cell growth.

  13. Phagocytosis by macrophages mediated by receptors for denatured proteins - dependence on tyrosine protein kinases

    Directory of Open Access Journals (Sweden)

    M.R. Hespanhol

    2002-03-01

    Full Text Available Previous studies have demonstrated that some components of the leukocyte cell membrane, CR3 (Mac-1, CD11b/CD18 and p150/95, are able to bind to denatured proteins. Thus, it is of interest to know which effector functions of these cells can be triggered by these receptors when they interact with particles or surfaces covered with denatured proteins. In the present study we analyzed their possible role as mediators of phagocytosis of red cells covered with denatured bovine serum albumin (BSA by mouse peritoneal macrophages. We observed that a macrophages are able to recognize (bind to these red cells, b this interaction can be inhibited by denatured BSA in the fluid phase, c there is no phagocytosis of these particles by normal macrophages, d phagocytosis mediated by denatured BSA can be, however, effectively triggered in inflammatory macrophages induced by glycogen or in macrophages activated in vivo with LPS, and e this phagocytic capacity is strongly dependent on the activity of tyrosine protein kinases in its signal transduction pathway, as demonstrated by using three kinds of enzyme inhibitors (genistein, quercetin and herbimycin A.

  14. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  15. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    NARCIS (Netherlands)

    Ip, Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all-or a part of

  16. Measurement of protein synthesis: in vitro comparison of (68)Ga-DOTA-puromycin, [ (3)H]tyrosine, and 2-fluoro-[ (3)H]tyrosine.

    Science.gov (United States)

    Eigner, Sebastian; Beckford Vera, Denis R; Fellner, Marco; Loktionova, Natalia S; Piel, Markus; Melichar, Frantisek; Rösch, Frank; Roß, Tobias L; Lebeda, Ondrej; Henke, Katerina Eigner

    2013-01-01

    Puromycin has played an important role in our understanding of the eukaryotic ribosome and protein synthesis. It has been known for more than 40 years that this antibiotic is a universal protein synthesis inhibitor that acts as a structural analog of an aminoacyl-transfer RNA (aa-tRNA) in eukaryotic ribosomes. Due to the role of enzymes and their synthesis in situations of need (DNA damage, e.g., after chemo- or radiation therapy), determination of protein synthesis is important for control of antitumor therapy, to enhance long-term survival of tumor patients, and to minimize side-effects of therapy. Multiple attempts to reach this goal have been made through the last decades, mostly using radiolabeled amino acids, with limited or unsatisfactory success. The aim of this study is to estimate the possibility of determining protein synthesis ratios by using (68)Ga-DOTA-puromycin ((68)Ga-DOTA-Pur), [(3)H]tyrosine, and 2-fluoro-[(3)H]tyrosine and to estimate the possibility of different pathways due to the fluorination of tyrosine. DOTA-puromycin was synthesized using a puromycin-tethered controlled-pore glass (CPG) support by the usual protocol for automated DNA and RNA synthesis following our design. (68)Ga was obtained from a (68)Ge/(68)Ga generator as described previously by Zhernosekov et al. (J Nucl Med 48:1741-1748, 2007). The purified eluate was used for labeling of DOTA-puromycin at 95°C for 20 min. [(3)H]Tyrosine and 2-fluoro-[(3)H]tyrosine of the highest purity available were purchased from Moravek (Bera, USA) or Amersham Biosciences (Hammersmith, UK). In vitro uptake and protein incorporation as well as in vitro inhibition experiments using cycloheximide to inhibit protein synthesis were carried out for all three substances in DU145 prostate carcinoma cells (ATCC, USA). (68)Ga-DOTA-Pur was additionally used for μPET imaging of Walker carcinomas and AT1 tumors in rats. Dynamic scans were performed for 45 min after IV application (tail vein) of 20-25 MBq (68

  17. Centrosome polarization in T cells: a task for formins

    Directory of Open Access Journals (Sweden)

    Laura eAndrés-Delgado

    2013-07-01

    Full Text Available T-cell antigen receptor (TCR engagement triggers the rapid reorientation of the centrosome, which is associated with the secretory machinery, towards the immunological synapse (IS for polarized protein trafficking. Recent evidence indicates that upon TCR triggering the INF2 formin, together with the formins DIA1 and FMNL1, promotes the formation of a specialized array of stable detyrosinated MTs that breaks the symmetrical organization of the T-cell microtubule (MT cytoskeleton. The detyrosinated MT array and TCR-induced tyrosine phosphorylation should coincide for centrosome polarization. We propose that the pushing forces produced by the detyrosinated MT array, which modify the position of the centrosome, in concert with Src kinase dependent TCR signaling, which provide the reference frame with respect to which the centrosome reorients, result in the repositioning of the centrosome to the IS.

  18. Three domains of SLP-76 are required for its optimal function in a T cell line.

    Science.gov (United States)

    Musci, M A; Motto, D G; Ross, S E; Fang, N; Koretzky, G A

    1997-08-15

    We and others have shown that overexpression of SLP-76 augments TCR-stimulated IL-2 promoter activity in the Jurkat T cell line. In this report we investigate the signaling mechanisms through which SLP-76 mediates its effect on T cell activation. We show that overexpressed SLP-76 acts downstream of TCR-stimulated protein tyrosine kinases, but does not affect calcium signaling. Overexpression of SLP-76 does, however, augment TCR stimulation of both ERK (extracellular signal-regulated kinase) activity and a reporter construct driven by activating protein-1 binding sites. Structure/function analysis reveals that three distinct regions of SLP-76, each important for protein associations, are required for augmentation of TCR-induced nuclear factor-AT activity. These data suggest that SLP-76 functions as an adapter molecule that requires three unique domains to link proximal TCR signals in T cells.

  19. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  20. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Protein expression dynamics observed in Experiment, Synchronous and. Asynchronous simulation. .... molecular basis for T cell suppression by IL-10: CD28-asso- ciated IL-10 receptor inhibits CD28 tyrosine ...

  1. DJ-1/Park7 Sensitive Na+ /H+ Exchanger 1 (NHE1) in CD4+ T Cells.

    Science.gov (United States)

    Zhou, Yuetao; Shi, Xiaolong; Chen, Hong; Zhang, Shaqiu; Salker, Madhuri S; Mack, Andreas F; Föller, Michael; Mak, Tak W; Singh, Yogesh; Lang, Florian

    2017-11-01

    DJ-1/Park7 is a redox-sensitive chaperone protein counteracting oxidation and presumably contributing to the control of oxidative stress responses and thus inflammation. DJ-1 gene deletion exacerbates the progression of Parkinson's disease presumably by augmenting oxidative stress. Formation of reactive oxygen species (ROS) is paralleled by activation of the Na + /H + exchanger 1 (NHE1). ROS formation in CD4 + T cells plays a decisive role in regulating inflammatory responses. In the present study, we explored whether DJ-1 is expressed in CD4 + T cells, and affects ROS production as well as NHE1 in those cells. To this end, DJ-1 and NHE1 transcript, and protein levels were quantified by qRT-PCR and Western blotting, respectively, intracellular pH (pH i ) utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from realkalinization after an ammonium pulse, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. As a result DJ-1 was expressed in CD4 + T cells. ROS formation, NHE1 transcript levels, NHE1 protein, and NHE activity were higher in CD4 + T cells from DJ-1 deficient mice than in CD4 + T cells from wild type mice. Antioxidant N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor staurosporine decreased the NHE activity in DJ-1 deficient CD4 + T cells, and blunted the difference between DJ-1 -/- and DJ-1 +/+ CD4 + T cells, an observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1 -/- CD4 + T cells. In conclusion, DJ-1 is a powerful regulator of ROS production as well as NHE1 expression and activity in CD4 + T cells. J. Cell. Physiol. 232: 3050-3059, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    Science.gov (United States)

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  3. Acyclovir Therapy Reduces the CD4+ T Cell Response against the Immunodominant pp65 Protein from Cytomegalovirus in Immune Competent Individuals.

    Directory of Open Access Journals (Sweden)

    Annette Pachnio

    Full Text Available Cytomegalovirus (CMV infects the majority of the global population and leads to the development of a strong virus-specific immune response. The CMV-specific CD4+ and CD8+ T cell immune response can comprise between 10 and 50% of the T cell pool within peripheral blood and there is concern that this may impair immunity to other pathogens. Elderly individuals with the highest magnitude of CMV-specific immune response have been demonstrated to be at increased risk of mortality and there is increasing interest in interventions that may serve to moderate this. Acyclovir is an anti-viral drug with activity against a range of herpes viruses and is used as long term treatment to suppress reactivation of herpes simplex virus. We studied the immune response to CMV in patients who were taking acyclovir to assess if therapy could be used to suppress the CMV-specific immune response. The T cell reactivity against the immunodominant late viral protein pp65 was reduced by 53% in people who were taking acyclovir. This effect was seen within one year of therapy and was observed primarily within the CD4+ response. Acyclovir treatment only modestly influenced the immune response to the IE-1 target protein. These data show that low dose acyclovir treatment has the potential to modulate components of the T cell response to CMV antigen proteins and indicate that anti-viral drugs should be further investigated as a means to reduce the magnitude of CMV-specific immune response and potentially improve overall immune function.

  4. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication

    DEFF Research Database (Denmark)

    Petranovic, Dina; Michelsen, Ole; Zahradka, K

    2007-01-01

    Bacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system Ptk...... microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period....

  5. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses

    DEFF Research Database (Denmark)

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses...... proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered...... attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development....

  6. Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production.

    Science.gov (United States)

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C; Tsokos, George C

    2016-06-15

    T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  8. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    Science.gov (United States)

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  9. HLA Class II Defects in Burkitt Lymphoma: Bryostatin-1-Induced 17 kDa Protein Restores CD4+ T-Cell Recognition

    Directory of Open Access Journals (Sweden)

    Azim Hossain

    2011-01-01

    Full Text Available While the defects in HLA class I-mediated Ag presentation by Burkitt lymphoma (BL have been well documented, CD4+ T-cells are also poorly stimulated by HLA class II Ag presentation, and the reasons underlying this defect(s have not yet been fully resolved. Here, we show that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. The observed defect was not associated with low levels of BL-expressed costimulatory molecules, as addition of external co-stimulation failed to result in BL-mediated CD4+ T-cell activation. We further demonstrate that BL cells express the components of the class II pathway, and the defect was not caused by faulty Ag/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Treatment of BL with broystatin-1, a potent modulator of protein kinase C, led to significant improvement of functional class II Ag presentation in BL. The restoration of immune recognition appeared to be linked with an increased expression of a 17 kDa peptidylprolyl-like protein. These results demonstrate the presence of a specific defect in HLA class II-mediated Ag presentation in BL and reveal that treatment with bryostatin-1 could lead to enhanced immunogenicity.

  10. Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells.

    Science.gov (United States)

    Yan, C; Han, R

    1998-07-03

    Protein tyrosine phosphorylation occurs as one of the earlier events in cancer cell-extracellular matrix (ECM) interaction. With immunoblot analysis and immunofluorescence microscopy, genistein was found to suppress the tyrosine phosphorylation of proteins located at the cell periphery, including a 125 kDa protein, when B16-BL6 melanoma cells attached to and interacted with ECM. When accompanied by the suppression of adhesion-induced protein tyrosine phosphorylation, the invasive potential of B16-BL6 cells through reconstituted basement membrane was decreased significantly. However, neither adhesive capability nor cell growth was significantly affected by genistein. Therefore, the interruption of cancer cell-ECM interaction by suppression of protein tyrosine phosphorylation may contribute to invasion prevention of genistein.

  11. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  12. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+ T cells from patients with ALF......BACKGROUND & AIMS: Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86...

  13. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  14. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length

    OpenAIRE

    Lee, Jennifer K; Hallock, Peter T; Burden, Steven J

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myobla...

  15. Abelson tyrosine-protein kinase 2 Regulates Myoblast Proliferation and Controls Muscle Fiber Length

    OpenAIRE

    Burden, Steven; Lee, Jennifer

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among muscles. Here, we show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm and other muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of available myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but expansion of the diaphragm ...

  16. Sorbitol Can Fuel Mouse Sperm Motility and Protein Tyrosine Phosphorylation via Sorbitol Dehydrogenase1

    Science.gov (United States)

    Cao, Wenlei; Aghajanian, Haig K.; Haig-Ladewig, Lisa A.; Gerton, George L.

    2008-01-01

    Energy sources that can be metabolized to yield ATP are essential for normal sperm functions such as motility. Two major monosaccharides, sorbitol and fructose, are present in semen. Furthermore, sorbitol dehydrogenase (SORD) can convert sorbitol to fructose, which can then be metabolized via the glycolytic pathway in sperm to make ATP. Here we characterize Sord mRNA and SORD expression during mouse spermatogenesis and examine the ability of sorbitol to support epididymal sperm motility and tyrosine phosphorylation. Sord mRNA levels increased during the course of spermatogenic differentiation. SORD protein, however, was first detected at the condensing spermatid stage. By indirect immunofluorescence, SORD was present along the length of the flagella of caudal epididymal sperm. Furthermore, immunoelectron microscopy showed that SORD was associated with mitochondria and the plasma membranes of sperm. Sperm incubated with sorbitol maintained motility, indicating that sorbitol was utilized as an energy source. Sorbitol, as well as glucose and fructose, were not essential to induce hyperactive motility. Protein tyrosine phosphorylation increased in a similar manner when sorbitol was substituted for glucose in the incubation medium used for sperm capacitation. These results indicate that sorbitol can serve as an alternative energy source for sperm motility and protein tyrosine phosphorylation. PMID:18799757

  17. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  18. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. Ligand-induced changes in the protein motions

    DEFF Research Database (Denmark)

    Peters, Günther H. J.; Frimurer, T.M.; Andersen, J.N.

    1999-01-01

    Activity of enzymes, such as protein tyrosine phosphatases (PTPs), is often associated with structural changes in the enzyme, resulting in selective and stereospecific reactions with the substrate. To investigate the effect of a substrate on the motions occurring in PTPs, we have performed...... molecular dynamics simulations of PTP1B and PTP1B complexed with a high-affinity peptide DADEpYL, where pY stands for phosphorylated tyrosine. The peptide sequence is derived from the epidermal growth factor receptor (EGFR(988-993)). Simulations were performed in water for 1 ns, and the concerted motions...... in the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by similar to 10%. The largest effect is found...

  19. Noncanonical Expression of a Murine Cytomegalovirus Early Protein CD8 T-Cell Epitope as an Immediate Early Epitope Based on Transcription from an Upstream Gene

    Directory of Open Access Journals (Sweden)

    Annette Fink

    2014-02-01

    Full Text Available Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I glycoproteins, are often identified by “reverse immunology”, a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E phase protein, the m164 epitope is presented already during the Immediate Early (IE phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.

  20. CP-25 Attenuates the Activation of CD4+ T Cells Stimulated with Immunoglobulin D in Human.

    Science.gov (United States)

    Wu, Yu-Jing; Chen, Heng-Shi; Chen, Wen-Sheng; Dong, Jin; Dong, Xiao-Jie; Dai, Xing; Huang, Qiong; Wei, Wei

    2018-01-01

    Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6'- O -benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4 + T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4 + T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4 + T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr 394 ). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4 + T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr 394 ) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4 + T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.

  1. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  2. Effects of undenatured whey protein supplementation on CXCL12- and CCL21-mediated B and T cell chemotaxis in diabetic mice

    Directory of Open Access Journals (Sweden)

    Badr Gamal

    2011-11-01

    Full Text Available Abstract Background Long and persistent uncontrolled diabetes tends to degenerate the immune system and leads to an increased incidence of infection. Whey proteins (WPs enhance immunity during early life and have a protective role in some immune disorders. In this study, the effects of camel WP on the chemotaxis of B and T cells to CXCL12 and CCL21 in diabetic mice were investigated. Results Flow cytometric analysis of the surface expressions of CXCR4 (CXCL12 receptor and CCR7 (CCL21 receptor on B and T cells revealed that the surface expressions of CXCR4 and CCR7 were not significantly altered in diabetic and WP-supplemented diabetic mice compared with control mice. Nevertheless, B and T lymphocytes from diabetic mice were found to be in a stunned state, with a marked and significant (P Conclusion Our data revealed the benefits of WP supplementation in enhancing cytoskeletal rearrangement and chemotaxis in B and T cells, and subsequently improving the immune response in diabetic mice.

  3. A pseudotype baculovirus expressing the capsid protein of foot-and-mouth disease virus and a T-Cell immunogen shows enhanced immunogenicity in mice

    Directory of Open Access Journals (Sweden)

    Liu Xiangtao

    2011-02-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. Methods In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE, and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. Results Indirect immunofluorescence assay (IFA and indirect sandwich-ELISA (IS-ELISA showed both recombinant baculoviruses (with or without T-cell epitopes were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ. Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P P Conclusions These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.

  4. Distinct accessory cell requirements define two types of rat T cell hybridomas specific for unique determinants in the encephalitogenic 68-86 region of myelin basic protein

    International Nuclear Information System (INIS)

    Mannie, M.D.; Paterson, P.Y.; Thomas, D.W.; Nairn, R.

    1990-01-01

    Six clonotypically unique T cell hybridomas from Lewis rats were used to study accessory cell activities required for class II MHC restricted T cell responses to the 68-86 encephalitogenic sequence of myelin basic protein (MBP). T cell hybrids which were cultured with GP68-86 68-86 sequence of guinea pig MBP (GPMBP) and naive splenocytes (SPL) were induced to produce IL-2 as measured by the CTLL indicator cell line. The hybrids were categorized into two subsets (designated THYB-1 and THYB-2), because two distinct subset-specific pathways of communication between accessory cells and T cells were involved in GPMBP-induced IL-2 production. These pathways were distinguished by the following six observations. First, when the duration of a pulse of SPL with GPMBP was lengthened from 1 to 4 h, these SPL lost their ability to induce IL-2 production by THYB-2 hybrids yet nevertheless retained full stimulatory activity for THYB-1 hybrids. Second, paraformaldehyde fixation of GPMBP-pulsed SPL abrogated an activity necessary for Ag-induced IL-2 production by THYB-2 hybrids. These fixed SPL were nevertheless able to stimulate THYB-1 hybrids, albeit to a lesser extent than viable unfixed SPL. Third, the addition of either cycloheximide, cytochalasin B, or 2-deoxyglucose to an Ag pulse of SPL with GPMBP dramatically inhibited the subsequent responses of THYB-2 hybrids yet had little or no effect upon the reactivity of THYB-1 hybrids. Fourth, thymocytes lacked necessary activities for GPMBP evoked IL-2 production by THYB-2 hybrids yet strongly promoted THYB-1 hybrid responses. Fifth, exposure of SPL to as little as 500 rad of gamma-irradiation markedly attenuated THYB-2 hybrid response to GPMBP but did not affect THYB-1 responses. Sixth, anti-GPMBP responses by THYB-2 hybrids were observed only in the presence of both radioresistant adherent SPL and a distinct population of radiosensitive nonadherent SPL

  5. Environmental modulation of autoimmune arthritis involves the spontaneous microbial induction of T cell responses to regulatory determinants within heat shock protein 65.

    Science.gov (United States)

    Moudgil, K D; Kim, E; Yun, O J; Chi, H H; Brahn, E; Sercarz, E E

    2001-03-15

    Both genetic and environmental factors are believed to be involved in the induction of autoimmune diseases. Adjuvant arthritis (AA) is inducible in susceptible rat strains by injection of Mycobacterium tuberculosis, and arthritic rats raise T cell responses to the 65-kDa mycobacterial heat-shock protein (Bhsp65). We observed that Fischer 344 (F344) rats raised in a barrier facility (BF-F344) are susceptible to AA, whereas F344 rats maintained in a conventional facility (CV-F344) show significantly reduced incidence and severity of AA, despite responding well to the arthritogenic determinant within Bhsp65. The acquisition of protection from AA can be circumvented if rats are maintained on neomycin/acidified water. Strikingly, naive unimmunized CV-F344 rats but not BF-F344 rats raised T cell responses to Bhsp65 C-terminal determinants (BCTD) (we have previously shown that BCTD are involved in regulation of acute AA in the Lewis rat); however, T cells of naive CV-F344 and BF-F344 gave a comparable level of proliferative response to a mitogen, but no response at all to an irrelevant Ag. Furthermore, adoptive transfer into naive BF-F344 rats of splenic cells of naive CV-F344 rats (restimulated with BCTD in vitro) before induction of AA resulted in a considerably reduced severity of AA. These results suggest that spontaneous (inadvertent) priming of BCTD-reactive T cells, owing to determinant mimicry between Bhsp65 and its homologues in microbial agents in the conventional environment, is involved in modulating the severity of AA in CV-F344 rats. These results have important implications in broadening understanding of the host-microbe interaction in human autoimmune diseases.

  6. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity.

    Science.gov (United States)

    Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B

    2017-08-15

    Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.

  7. Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes in Jurkat T-cells treated with HIV-1 Tat protein.

    Science.gov (United States)

    Liao, Wenting; Tan, Guangguo; Zhu, Zhenyu; Chen, Qiuli; Lou, Ziyang; Dong, Xin; Zhang, Wei; Pan, Wei; Chai, Yifeng

    2012-11-02

    HIV-1 Tat protein is released by infected cells and can affect bystander uninfected T cells and induce numerous biological responses which contribute to its pathogenesis. To elucidate the complex pathogenic mechanism, we conducted a comprehensive investigation on Tat protein-related extracellular and intracellular metabolic changes in Jurkat T-cells using combined gas chromatography-mass spectrometry (GC-MS), reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and a hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS)-based metabonomics approach. Quantitative real-time PCR (qRT-PCR) analyses were further employed to measure expressions of several relevant enzymes together with perturbed metabolic pathways. Combined metabonomic and qRT-PCR analyses revealed that HIV-1 Tat caused significant and comprehensive metabolic changes, as represented by significant changes of 37 metabolites and 10 relevant enzymes in HIV-1 Tat-treated cells. Using MetaboAnalyst 2.0, it was found that 11 pathways (Impact-value >0.10) among the regulated pathways were acutely perturbed, including sphingolipid metabolism, glycine, serine and threonine metabolism, pyruvate metabolism, inositol phosphate metabolism, arginine and proline metabolism, citrate cycle, phenylalanine metabolism, tryptophan metabolism, pentose phosphate pathway, glycerophospholipid metabolism, glycolysis or gluconeogenesis. These results provide metabolic evidence of the complex pathogenic mechanism of HIV-1 Tat protein as a "viral toxin", and would help obligate Tat protein as "an important target" for therapeutic intervention and vaccine development.

  8. Identification and HLA-Tetramer-Validation of Human CD4(+) and CD8(+) T Cell Responses against HCMV Proteins IE1 and IE2

    DEFF Research Database (Denmark)

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune Frederik Lamdahl

    2014-01-01

    tumor development. Both CD4(+) and CD8(+) T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8(+) T cell...

  9. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  10. Crammed signaling motifs in the T-cell receptor.

    Science.gov (United States)

    Borroto, Aldo; Abia, David; Alarcón, Balbino

    2014-09-01

    Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Jensen, Helle; Pedersen, Marianne T

    2007-01-01

    In this study, we characterize the molecular signal pathways that lead to MHC class I chain-related protein A (MICA) expression after histone deacetylase (HDAC)-inhibitor (HDAC-i) treatment of Jurkat T cells. Chelating calcium with BAPTA-AM or EGTA potently inhibited HDAC- and CMV-mediated MICA......1 site from position -113 to -93 relative to the mRNA start site was important for HDAC and CMV-induced promoter activity. Sp1 was subsequently shown to be important, as targeted mutation of the Sp1 binding sequence or siRNA mediated down modulation of Sp1-inhibited MICA promoter activity...

  12. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  13. The effect of beta-interferon therapy on myelin basic protein-elicited CD4+ T cell proliferation and cytokine production in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus

    2008-01-01

    Interferon (IFN)-beta therapy has well-established clinical benefits in multiple sclerosis (MS), but the underlying modulation of cytokine responses to myelin self-antigens remains poorly understood. We analysed the CD4+ T cell proliferation and cytokine responses elicited by myelin basic protein...... (MBP) and a foreign recall antigen, tetanus toxoid (TT), in mononuclear cell cultures from fourteen MS patients undergoing IFN-beta therapy. The MBP-elicited IFN-gamma-, TNF-alpha- and IL-10 production decreased during therapy (p...

  14. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    Science.gov (United States)

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-04

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.

  15. Computational Identification and Characterization of a Promiscuous T-Cell Epitope on the Extracellular Protein 85B of Mycobacterium spp. for Peptide-Based Subunit Vaccine Design

    Directory of Open Access Journals (Sweden)

    Md. Saddam Hossain

    2017-01-01

    Full Text Available Tuberculosis (TB is a reemerging disease that remains as a leading cause of morbidity and mortality in humans. To identify and characterize a T-cell epitope suitable for vaccine design, we have utilized the Vaxign server to assess all antigenic proteins of Mycobacterium spp. recorded to date in the Protegen database. We found that the extracellular protein 85B displayed the most robust antigenicity among the proteins identified. Computational tools for identifying T-cell epitopes predicted an epitope, 181-QQFIYAGSLSALLDP-195, that could bind to at least 13 major histocompatibility complexes, revealing the promiscuous nature of the epitope. Molecular docking simulation demonstrated that the epitope could bind to the binding groove of MHC II and MHC I molecules by several hydrogen bonds. Molecular docking analysis further revealed that the epitope had a distinctive binding pattern to all DRB1 and A and B series of MHC molecules and presented almost no polymorphism in its binding site. Moreover, using “Allele Frequency Database,” we checked the frequency of HLA alleles in the worldwide population and found a higher frequency of both class I and II HLA alleles in individuals living in TB-endemic regions. Our results indicate that the identified peptide might be a universal candidate to produce an efficient epitope-based vaccine for TB.

  16. A Method for Individualizing the Prediction of Immunogenicity of Protein Vaccines and Biologic Therapeutics: Individualized T Cell Epitope Measure (iTEM

    Directory of Open Access Journals (Sweden)

    Tobias Cohen

    2010-01-01

    Full Text Available The promise of pharmacogenomics depends on advancing predictive medicine. To address this need in the area of immunology, we developed the individualized T cell epitope measure (iTEM tool to estimate an individual's T cell response to a protein antigen based on HLA binding predictions. In this study, we validated prospective iTEM predictions using data from in vitro and in vivo studies. We used a mathematical formula that converts DRB1∗ allele binding predictions generated by EpiMatrix, an epitope-mapping tool, into an allele-specific scoring system. We then demonstrated that iTEM can be used to define an HLA binding threshold above which immune response is likely and below which immune response is likely to be absent. iTEM's predictive power was strongest when the immune response is focused, such as in subunit vaccination and administration of protein therapeutics. iTEM may be a useful tool for clinical trial design and preclinical evaluation of vaccines and protein therapeutics.

  17. The protein tyrosine phosphatase, nonreceptor type 22-1858C->T (rs2476601 polymorphism is not a genetic risk factor for systemic lupus erythematosus in Indian Tamils

    Directory of Open Access Journals (Sweden)

    Panneer Devaraju

    2017-01-01

    Full Text Available Background: Systemic lupus erythematosus (SLE, a systemic autoimmune disease, occurs due to disruption of immune homeostasis against self-antigens. The etiology of SLE is complex and multiple genetic factors contribute to disease susceptibility and clinical phenotypes. Protein tyrosine phosphatase, nonreceptor type 22 (PTPN22 is a lymphoid-specific phosphatase that negatively regulates T-cell receptor signaling and is responsible for the maintenance of T-cell homeostasis. Genetic aberrations affecting the function of PTPN22 result in the proliferation of autoreactive T-cells and development of autoimmune diseases. Methods: We carried out a case–control genetic study to analyze the association of PTPN22 R620W polymorphism (rs2476601 with disease susceptibility and clinical and autoantibody profile in Indian Tamils with SLE. Three hundred SLE patients satisfying the 1997 revised American College of Rheumatology classification criteria for SLE were enrolled in the study. Disease activity was measured using the SLE Disease Activity Index. We recruited 460 age-, sex-, and ethnicity-matched individuals without a family history of autoimmune diseases as control population. Genomic DNA was extracted from the blood sample by salting-out method. The PTPN22-1858C->T (rs2476601 polymorphism was screened by polymerase chain reaction-restriction fragment length polymorphism. Results: The frequency of the ancestral allele “C” was similar in both cases and controls (99.3% and 99.8%, respectively and the mutant allele “T” was less frequent in South Indian Tamil population; it did not influence clinical or serological phenotypes. Conclusion: Our findings suggest that the PTPN22 (rs2476601 polymorphism is less frequent and did not confer a risk for lupus or its associated clinical or serological phenotypes in South Indian Tamils.

  18. Exposure of tropoelastin to peroxynitrous acid gives high yields of nitrated tyrosine residues, di-tyrosine cross-links and altered protein structure and function

    DEFF Research Database (Denmark)

    Degendorfer, Georg; Chuang, Christine Yu-Nung; Mariotti, Michele

    2018-01-01

    Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30–57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous......-protein di-tyrosine cross-links have been characterized by mass spectrometry. Examination of human atherosclerotic lesions shows colocalization of 3-nitroTyr with elastin epitopes, consistent with TE or elastin modification in vivo, and also an association of 3-nitroTyr containing proteins and elastin...

  19. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression.

    Science.gov (United States)

    Schaper, F; Gendo, C; Eck, M; Schmitz, J; Grimm, C; Anhuf, D; Kerr, I M; Heinrich, P C

    1998-11-01

    Stimulation of the interleukin-6 (IL-6) signalling pathway occurs via the IL-6 receptor-glycoprotein 130 (IL-6R-gp130) receptor complex and results in the regulation of acute-phase protein genes in liver cells. Ligand binding to the receptor complex leads to tyrosine phosphorylation and activation of Janus kinases (Jak), phosphorylation of the signal transducing subunit gp130, followed by recruitment and phosphorylation of the signal transducer and activator of transcription factors STAT3 and STAT1 and the src homology domain (SH2)-containing protein tyrosine phosphatase (SHP2). The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus where they bind to enhancer sequences of IL-6 target genes. Phosphorylated SHP2 is able to bind growth factor receptor bound protein (grb2) and thus might link the Jak/STAT pathway to the ras/raf/mitogen-activated protein kinase pathway. Here we present data on the dose-dependence, kinetics and kinase requirements for SHP2 phosphorylation after the activation of the signal transducer, gp130, of the IL-6-type family receptor complex. When human fibrosarcoma cell lines deficient in Jak1, Jak2 or tyrosine kinase 2 (Tyk2) were stimulated with IL-6-soluble IL-6R complexes it was found that only in Jak1-, but not in Jak 2- or Tyk2-deficient cells, SHP2 activation was greatly impaired. It is concluded that Jak1 is required for the tyrosine phosphorylation of SHP2. This phosphorylation depends on Tyr-759 in the cytoplasmatic domain of gp130, since a Tyr-759-->Phe exchange abrogates SHP2 activation and in turn leads to elevated and prolonged STAT3 and STAT1 activation as well as enhanced acute-phase protein gene induction. Therefore, SHP2 plays an important role in acute-phase gene regulation.

  20. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells......Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...

  1. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    Science.gov (United States)

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  2. Finding the smoking gun: protein tyrosine phosphatases as tools and targets of unicellular microorganisms and viruses.

    Science.gov (United States)

    Heneberg, P

    2012-01-01

    Protein tyrosine phosphatases (PTPs) are increasingly recognized as important effectors of host-pathogen interactions. Since Guan and Dixon reported in 1990 that phosphatase YopH serves as an essential virulence determinant of Yersinia, the field shifted significantly forward, and dozens of PTPs were identified in various microorganisms and even in viruses. The discovery of extensive tyrosine signaling networks in non-metazoan organisms refuted the moth-eaten paradigm claiming that these organisms rely exclusively on phosphoserine/phosphothreonine signaling. Similarly to humans, phosphotyrosine signaling is thought to comprise a small fraction of total protein phosphorylation, but plays a disproportionately important role in cell-cycle control, differentiation, and invasiveness. Here we summarize the state-of-art knowledge on PTPs of important non-metazoan pathogens (Listeria monocytogenes, Staphylococcus aureus, Porphyromonas gingivalis, Caulobacter crescentus, Yersinia, Synechocystis, Leishmania, Plasmodium falciparum, Entamoeba histolytica, etc.), and focus also at the microbial proteins affecting directly or indirectly the PTPs of the host (Mycobacterium tuberculosis MTSA-10, Bacillus anthracis anthrax toxin, streptococcal β protein, Helicobacter pylori CagA and VacA, Leishmania GP63 and EF-1α, Plasmodium hemozoin, etc.). This is the first review summarizing the knowledge on biological activity and pharmacological inhibition of non-metazoan PTPs, with the emphasis of those important in host-pathogen interactions. Targeting of numerous non-metazoan PTPs is simplified by the fact that they act either as ectophosphatases or are secreted outside of the pathogen. Interfering with tyrosine phosphorylation represents a powerful pharmacologic approach, and even though the PTP inhibitors are difficult to develop, lifting the fog of phosphatase inhibition is of the great market potential and further clinical impact.

  3. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  4. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  5. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    Energy Technology Data Exchange (ETDEWEB)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M. [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Iuliano, Rodolfo [Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, 88100 Catanzaro (Italy); Fusco, Alfredo [Dipartimento di Biologia e Patologia Cellulare e Molecolare, c/o Instituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facolta di Medicina e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Via Pansini 5, 80131 Naples (Italy); NOGEC (Naples Oncogenomocs Center)-CEINGE, Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples (Italy); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Laboratório Nacional de Luz Síncrotron, Campinas, SP (Brazil)

    2006-09-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit.

  6. Striatal-enriched Tyrosine Protein Phosphatase (STEP) in the Mechanisms of Depressive Disorders.

    Science.gov (United States)

    Kulikova, Elizabeth; Kulikov, Alexander

    2017-08-30

    Striatal-enriched tyrosine protein phosphatase (STEP) is expressed mainly in the brain. Its dysregulation is associated with Alzheimer's and Huntington's diseases, schizophrenia, fragile X syndrome, drug abuse and stroke/ischemia. However, an association between STEP and depressive disorders is still obscure. The review discusses the theoretical foundations and experimental facts concerning possible relationship between STEP dysregulation and depression risk. STEP dephosphorylates and inactivates several key neuronal signaling proteins such as extracellular signal-regulating kinase 1 and 2 (ERK1/2), stress activated protein kinases p38, the Src family tyrosine kinases Fyn, Pyk2, NMDA and AMPA glutamate receptors. The inactivation of these proteins decreases the expression of brain derived neurotrophic factor (BDNF) necessary for neurogenesis and neuronal survival. The deficit of BDNF results in progressive degeneration of neurons in the hippocampus and cortex and increases depression risk. At the same time, a STEP inhibitor, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), increases BDNF expression in the hippocampus and attenuated the depressivelike behavior in mice. Thus, STEP is involved in the mechanism of depressive disorders and it is a promising molecular target for atypical antidepressant drugs of new generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    International Nuclear Information System (INIS)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M.; Iuliano, Rodolfo; Fusco, Alfredo; Polikarpov, Igor

    2006-01-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit

  8. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.

    Directory of Open Access Journals (Sweden)

    Marcin Michalik

    Full Text Available An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.

  9. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  10. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  11. Complexes of γ-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells

    International Nuclear Information System (INIS)

    Kukharskyy, Vitaliy; Sulimenko, Vadym; Macurek, Libor; Sulimenko, Tetyana; Draberova, Eduarda; Draber, Pavel

    2004-01-01

    Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that γ-tubulin (γ-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, γ-tubulin, and with anti-phosphotyrosine antibody revealed that γ-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in γ-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated γ-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing γ-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of γ-tubulin interaction with tubulin dimers or other proteins during neurogenesis

  12. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration.

    Science.gov (United States)

    Chaki, Mounira; Álvarez de Morales, Paz; Ruiz, Carmelo; Begara-Morales, Juan C; Barroso, Juan B; Corpas, Francisco J; Palma, José M

    2015-09-01

    Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. The RNS profile reported here indicates that ripening of pepper fruit is characterized by an enhancement of S

  13. The SH3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-kinase

    NARCIS (Netherlands)

    Fukazawa, T.; Reedquist, K. A.; Trub, T.; Soltoff, S.; Panchamoorthy, G.; Druker, B.; Cantley, L.; Shoelson, S. E.; Band, H.

    1995-01-01

    Previously, we have identified p120 as a Fyn/Lck SH3 and SH2 domain-binding protein that is tyrosine phosphorylated rapidly after T cell receptor triggering. Here, we used direct protein purification, amino acid sequence analysis, reactivity with antibodies, and two-dimensional gel analyses to

  14. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells

    DEFF Research Database (Denmark)

    Birkelund, Svend; Johnsen, H; Christiansen, Gunna

    1994-01-01

    . By use of a monoclonal antibody against phosphotyrosine, we showed that three classes of proteins are tyrosine phosphorylated: a triple band of 68, 66, and 64 kDa, a 97-kDa band, and a 140-kDa band. The phosphorylation could be detected by immunoblotting from 15 min after infection of HeLa cells. We...... inactive. Attachment of EBs to host cells is medicated by a heparan sulfate-like glycosaminoglycan. Following attachment, the EB is internalized within a membrane-bound vesicle, and during the first 8 h of infection the vesicles are transported to a perinuclear location where they aggregate and fuse...

  15. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    Science.gov (United States)

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  16. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222.

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.

  17. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells. PMID:24717285

  18. Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients

    DEFF Research Database (Denmark)

    Meier, Anders; Hadrup, Sine Reker; Svane, Inge Marie

    2005-01-01

    for immunotherapy of cancer. To identify HLA-A* 02.01 - restricted epitopes from TRAG-3, we screened cancer patients for spontaneous cytotoxic T-cell responses against TRAG-3 - derived peptides. The TRAG-3 protein sequence was screened for 9mer and 10mer peptides possessing HLA-A* 02.01 - binding motifs. Of 12......Expression of the cancer-testis antigen Taxol resistance - associated gene-3 (TRAG-3) protein is associated with acquired paclitaxel ( Taxol) resistance, and is expressed in various cancer types; e. g., breast cancer, leukemia, and melanoma. Thus, TRAG-3 represents an attractive target...... potential binders, 9 peptides were indeed capable of binding to the HLA-A* 02.01 molecule, with binding affinities ranging from strong to weak binders. Subsequently, lymphocytes from cancer patients ( 9 breast cancer patients, 12 melanoma patients, and 13 patients with hematopoietic malignancies) were...

  19. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32

    Directory of Open Access Journals (Sweden)

    Sugiyama Hideaki

    2011-05-01

    Full Text Available Abstract Background Elevated numbers of regulatory T cells (Tregs have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32, also known as Glycoprotein A Repetitions Predominant (GARP, has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  20. B and T Cell Epitope-Based Peptides Predicted from Evolutionarily Conserved and Whole Protein Sequences of Ebola Virus as Vaccine Targets.

    Science.gov (United States)

    Yasmin, T; Nabi, A H M Nurun

    2016-05-01

    Ebola virus (EBV) has become a serious threat to public health. Different approaches were applied to predict continuous and discontinuous B cell epitopes as well as T cell epitopes from the sequence-based and available three-dimensional structural analyses of each protein of EBV. Peptides '(79) VPSATKRWGFRSGVPP(94) ' from GP1 and '(515) LHYWTTQDEGAAIGLA(530) ' from GP2 of Ebola were found to be the consensus peptidic sequences predicted as linear B cell epitope of which the latter contains a region (519) TTQDEG(524) that fulfilled all the criteria of accessibility, hydrophilicity, flexibility and beta turn region for becoming an ideal B cell epitope. Different nonamers as T cell epitopes were obtained that interacted with different numbers of MHC class I and class II alleles with a binding affinity of <100 nm. Interestingly, these alleles also bound to the MHC class I alleles mostly prevalent in African and South Asian regions. Of these, 'LANETTQAL' and 'FLYDRLAST' nonamers were predicted to be the most potent T cell epitopes and they, respectively, interacted with eight and twelve class I alleles that covered 63.79% and 54.16% of world population, respectively. These nonamers were found to be the core sequences of 15mer peptides that interacted with the most common class II allele, HLA-DRB1*01:01. They were further validated for their binding to specific class I alleles using docking technique. Thus, these predicted epitopes may be used as vaccine targets against EBV and can be validated in model hosts to verify their efficacy as vaccine. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  1. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-01-01

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4 + CD25 + Foxp3 + T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4 + CD25 + Foxp3 + regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune

  2. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling.

    Science.gov (United States)

    Schumacher, Dominik; Lemke, Oliver; Helma, Jonas; Gerszonowicz, Lena; Waller, Verena; Stoschek, Tina; Durkin, Patrick M; Budisa, Nediljko; Leonhardt, Heinrich; Keller, Bettina G; Hackenberger, Christian P R

    2017-05-01

    The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.

  3. Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene

    Energy Technology Data Exchange (ETDEWEB)

    Venkitachalam, Srividya; Chueh, Fu-Yu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States); Yu, Chao-Lan, E-mail: chaolan.yu@rosalindfranklin.edu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Lmo2 expression is elevated in Lck-transformed cells. Black-Right-Pointing-Pointer Both endogenous and exogenous Lck localize in the nucleus. Black-Right-Pointing-Pointer Nuclear Lck is active in Lck-transformed cells. Black-Right-Pointing-Pointer Lck binds to the promoter region of Lmo2 gene in vivo. Black-Right-Pointing-Pointer In contrast to JAK2, Lck does not increase histone H3 phosphorylation on Tyr 41. -- Abstract: LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptor protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.

  4. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    International Nuclear Information System (INIS)

    Rehman, Kanwal; Chen, Zhe; Wang, Wen Wen; Wang, Yan Wei; Sakamoto, Akira; Zhang, Yan Fang; Naranmandura, Hua; Suzuki, Noriyuki

    2012-01-01

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs III ) and its intermediate metabolites such as monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA III and DMA III ) but not by iAs III . Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA III directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA III strongly inhibited activity of PTP1B. ► DMA III directly bound to PTP1B, resulting in inhibition of

  5. Nano titanium dioxide photocatalytic protein tyrosine nitration: A potential hazard of TiO2 on skin

    International Nuclear Information System (INIS)

    Lu, Naihao; Zhu Zhening; Zhao Xuqi; Tao Ran; Yang Xiangliang; Gao Zhonghong

    2008-01-01

    Protein tyrosine nitration is a prevalent post-translational modification which occurs as a result of oxidative and nitrative stress, it may be directly involved in the onset and/or progression of diseases. Considering the existence of nano titanium dioxide (TiO 2 ) in environment and sunscreen products along with the high content of nitrite in sweat, the UV-exposed skin may be a significant target for the photosensitized damage. In this paper, tyrosine nitration of bovine serum albumin (BSA) was initiated in the UV-irradiated reaction mixture containing 0.2-3.0 mg/ml of three commercially nano TiO 2 products and 0.25-1.0 mM NO 2 - . It was found that anatase TiO 2 and Degussa P25 TiO 2 showed prominent photocatalytic activity on promoting the formation of protein tyrosine nitration, and the optimum condition for the reaction was around physiological pH. Meanwhile, the photocatalytic effect of rutile on protein tyrosine nitration was subtle. The potential physiological significance of nano TiO 2 -photocatalytic protein nitration was also demonstrated in mouse skin homogenate. Although the relationship between photocatalytic protein tyrosine nitration and chronic cutaneous diseases needs further study, the toxicity of nano TiO 2 to the skin disease should be paid more attention in the production and utilization process

  6. Protein-tyrosine Phosphatase SHP2 Contributes to GDNF Neurotrophic Activity through Direct Binding to Phospho-Tyr687 in the RET Receptor Tyrosine Kinase*

    Science.gov (United States)

    Perrinjaquet, Maurice; Vilar, Marçal; Ibáñez, Carlos F.

    2010-01-01

    The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr687 in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr687 and association with components of the Tyr1062 signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser696, a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr687 as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions. PMID:20682772

  7. Protein-tyrosine phosphatase SHP2 contributes to GDNF neurotrophic activity through direct binding to phospho-Tyr687 in the RET receptor tyrosine kinase.

    Science.gov (United States)

    Perrinjaquet, Maurice; Vilar, Marçal; Ibáñez, Carlos F

    2010-10-08

    The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr(687) in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr(687) and association with components of the Tyr(1062) signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser(696), a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr(687) as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions.

  8. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

    Science.gov (United States)

    Li, Hui; Li, Kang-shuai; Su, Jing; Chen, Lai-Zhong; Xu, Yun-Fei; Wang, Hong-Mei; Gong, Zheng; Cui, Guo-Ying; Yu, Xiao; Wang, Kai; Yao, Wei; Xin, Tao; Li, Min-Yong; Xiao, Kun-Hong; An, Xiao-fei; Huo, Yuqing; Xu, Zhi-gang; Sun, Jin-Peng; Pang, Qi

    2013-01-01

    Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. PMID:24117863

  9. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  10. Transactivation of the proenkephalin gene promoter by the Tax sub 1 protein of human T-cell lymphotropic virus type I

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, J.B. (National Heart, Lung, and Blood Inst., Bethesda, MD (United States)); Dave, H.P.G. (National Inst. of Health, Bethesda, MD (United States))

    1992-02-01

    Human T-cell lymphotropic virus type I (HTLV-I), an etiologic agent for adult T-cell leukemia, is strongly associated with certain neurological diseases. The HTLV-I genome encodes a protein, Tax{sub 1}, that transactivates viral gene transcription. CD4-positive T helper lymphocytes express the proenkephalin gene, and enkephalins have been implicated as neuroimmunomodulators. The authors have investigated the effect of Tax{sub 1} on the proenkephalin gene promoter in C6 rat glioma cells and demonstrated its transactivation. Analysis using 5{prime} deletion mutants of the promoter region showed that sequences upstream of base pair - 190 are necessary for maximal transactivation. Forskolin, a cAMP modulator, synergistically increased Tax{sub 1}-mediated transactivation of the proenkephalin promoter. Neither Tax{sub 1} transactivation alone nor Tax{sub 1}/cAMP synergism exclusively involved cAMP-responsive elements. Endogenous proenkephalin gene expression increased in Tax{sub 1}-expressing C6 cells. Since HTLV-I infects lymphocytes, which express proenkephalin mRNA, Tax{sub 1} transregulation of proenkephalin expression may provide bidirectional communication between the nervous and immune systems in HTLV-I-related diseases.

  11. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    Science.gov (United States)

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components

    DEFF Research Database (Denmark)

    Tang, Ning; Skibsted, Leif Horsfelt

    2017-01-01

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)=O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine a...

  13. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...... these RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect...

  14. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo.

    Science.gov (United States)

    Yamamoto, Brenda; Li, Min; Kesic, Matthew; Younis, Ihab; Lairmore, Michael D; Green, Patrick L

    2008-05-12

    Human T-cell leukemia virus (HTLV) type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF) II (p30 and p28, respectively) acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Deltap28) was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Deltap28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Deltap28 and the mutant virus failed to establish persistent infection. We provide direct evidence that p28 is dispensable for viral replication and cellular immortalization of

  15. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo

    Directory of Open Access Journals (Sweden)

    Kesic Matthew

    2008-05-01

    Full Text Available Abstract Background Human T-cell leukemia virus (HTLV type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF II (p30 and p28, respectively acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. Results In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28 was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Δp28 and the mutant virus failed to establish persistent infection. Conclusion We provide direct evidence that p28 is dispensable for

  16. Identification of Tyrosine Phosphorylated Proteins by SH2 Domain Affinity Purification and Mass Spectrometry.

    Science.gov (United States)

    Buhs, Sophia; Gerull, Helwe; Nollau, Peter

    2017-01-01

    Phosphotyrosine signaling plays a major role in the control of many important biological functions such as cell proliferation and apoptosis. Deciphering of phosphotyrosine-dependent signaling is therefore of great interest paving the way for the understanding of physiological and pathological processes of signal transduction. On the basis of the specific binding of SH2 domains to phosphotyrosine residues, we here present an experimental workflow for affinity purification and subsequent identification of tyrosine phosphorylated proteins by mass spectrometry. In combination with SH2 profiling, a broadly applicable platform for the characterization of phosphotyrosine profiles in cell extracts, our pull down strategy enables researchers by now to identify proteins in signaling cascades which are differentially phosphorylated and selectively recognized by distinct SH2 domains.

  17. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory

    NARCIS (Netherlands)

    Erkens, M.; Bakker, B.; Duijn, L.M. van; Hendriks, W.J.A.J.; Zee, C.E.E.M. van der

    2014-01-01

    Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal

  18. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation.

    Science.gov (United States)

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Sarma, Potukuchi Venkata Gurunadha Krishna

    2017-03-01

    When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and spread the infection.

  19. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Science.gov (United States)

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  20. Memory T Cell Migration

    OpenAIRE

    Qianqian eZhang; Qianqian eZhang; Fadi G. Lakkis

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review...

  1. T-cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with Merkel cell carcinoma from healthy donors

    DEFF Research Database (Denmark)

    Lyngaa, Rikke; Pedersen, Natasja Wulff; Schrama, David

    2014-01-01

    Purpose: Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with strong evidence of viral carcinogenesis. The association of MCC with the Merkel cell polyomavirus (MCPyV) may explain the explicit immunogenicity of MCC. Indeed, MCPyV-encoded proteins are likely targets for cytotoxic...

  2. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  3. Determination of ortho-tyrosine in irradiated protein containing foods by HPLC

    International Nuclear Information System (INIS)

    Mischke, J.; Voehringer, M.; Helle, N.; Boegl K.W.; Schreiber, G.A.

    1993-01-01

    In order to control the processing and trading of irradiated foodstuffs several chemical and physical methods have been developed to identify irradiation induced changes. The three most promising methods are gas chromatorgraphic determination of radiation induced volatiles from the lipid content of foods, thermoluminescence measurements on minerals and e.s.r.-spectroscopic measurements on solids and food contents with a low water amount. There is a lack in detecting the irradiation in foods with a high protein content. It is based on the radiation induced hydroxylation of phenylalanine, forming small amounts of ortho- (and meta-) tyrosine. This method can be useful for foods with a low lipid content such as shrimps and pure egg-white. The results obtained on shrimps and egg-white are promising. All shrimp samples showed a good dose dependence which was similar to results reported by Chuaqui-Offermanns and McDougall obtained on frozen materials (chicken) irradiated at a slightly higher dose rate. There are not enough data about o-tyrosine-contents in different kinds of unirradiated shrimps. Therfore next step will be the analysis of a great number of various samples. With these information and by the use of an internal standard it should be possible to apply the HPLC method for routine analysis. As internal standards α-methyltyrosine or 4-hydroxyphenylglycine could be used. (orig./vhe)

  4. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    Science.gov (United States)

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  5. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B

    Directory of Open Access Journals (Sweden)

    Marina Mojena

    2018-07-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant. Keywords: Protein tyrosine phosphatase, Cell viability, Irradiation sensitivity, Lethality, p53

  6. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    Science.gov (United States)

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32).

    Science.gov (United States)

    Chan, Derek V; Somani, Ally-Khan; Young, Andrew B; Massari, Jessica V; Ohtola, Jennifer; Sugiyama, Hideaki; Garaczi, Edina; Babineau, Denise; Cooper, Kevin D; McCormick, Thomas S

    2011-05-26

    Elevated numbers of regulatory T cells (T(regs)) have been implicated in certain cancers. Depletion of T(regs) has been shown to increase anti-tumor immunity. T(regs) also play a critical role in the suppression of autoimmune responses. The study of T(regs) has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated T(regs). However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of T(regs) expressing LRRC32. Using naturally-occurring freshly isolated T(regs), we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ T(regs) are distinct from LRRC32- T(regs) with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ T(regs) are more potent suppressors than LRRC32- T(regs). A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent T(reg) populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of T(regs) and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  8. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells.

    Science.gov (United States)

    Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa

    2017-05-01

    The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.

  9. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  10. T-cell epitopes from viral and tumor associated antigens: induction and analysis of antigen-specific T cells

    OpenAIRE

    Nastke, Maria-Dorothea

    2005-01-01

    T cells are important effectors in the defense of human pathogens entering the organism. CD8+ T cells recognize peptides which are presented by MHC class I molecules and lyse cells which are infected by virus or intracellular pathogens. Moreover, they are able to destroy cancer cells. CD4+ T cells recognize peptides from exogenous proteins acquired by endocytosis or from internalized plasma membrane proteins which are presented on MHC class II. CD4+ T cells play an important role in the defen...

  11. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  12. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Gisella L Puga Yung

    Full Text Available Pediatric Crohn's disease is a chronic auto inflammatory bowel disorder affecting children under the age of 17 years. A putative etiopathogenesis of Crohn's disease (CD is associated with disregulation of immune response to antigens commonly present in the gut microenvironment. Heat shock proteins (HSP have been identified as ubiquitous antigens with the ability to modulate inflammatory responses associated with several autoimmune diseases. The present study tested the contribution of immune responses to HSP in the amplification of autoimmune inflammation in chronically inflamed mucosa of pediatric CD patients. Colonic biopsies obtained from normal and CD mucosa were stimulated with pairs of Pan HLA-DR binder HSP60-derived peptides (human/bacterial homologues. The modulation of RNA and protein levels of induced proinflammatory cytokines were measured. We identified two epitopes capable of sustaining proinflammatory responses, specifically TNF< and IFN induction, in the inflamed intestinal mucosa in CD patients. The responses correlated positively with clinical and histological measurements of disease activity, thus suggesting a contribution of immune responses to HSP in pediatric CD site-specific mucosal inflammation.

  13. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5.

    Science.gov (United States)

    Bracho, Gustavo; Zayas, Caridad; Wang, Lina; Coppel, Ross; Pérez, Oliver; Petrovsky, Nikolai

    2009-02-27

    Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP), to boost the immune response against two Plasmodium falciparum antigens, merozoite surface protein 4 (MSP4) and 5 (MSP5), was evaluated. Complete Freund's adjuvant (CFA), which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH), T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline. AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses. Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant.

  14. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5

    Directory of Open Access Journals (Sweden)

    Pérez Oliver

    2009-02-01

    Full Text Available Abstract Background Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP, to boost the immune response against two Plasmodium falciparum antigens, merozoite surface protein 4 (MSP4 and 5 (MSP5, was evaluated. Methods Complete Freund's adjuvant (CFA, which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH, T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline. Results AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses. Conclusion Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant.

  15. Low molecular weight protein tyrosine phosphatases control antibiotic production in Streptomyces coelicolor A3(2)

    DEFF Research Database (Denmark)

    Sohoni, Sujata Vijay; Lieder, Sarah; Bapat, Prashant Madhusudhan

    2014-01-01

    3700 was established usingpara-nitrophenyl phosphate and the tyrosine-phosphorylated protein PtkA from Bacillus subtilis as substrates. Theoptimum pH for the Sco3700 phosphatase activity was 6.8, and KM for pNPP was 14.3 mM compared to pH 6.0and KM0.75 mM for PtpA. The potential of Sco3700...... of ACT in the ptpA over expression strain. Furthermore, a significantly earlier onset of ACT productionwas observed when ptpA was over expressed. Sco3700 overexpression had a pleiotropic effect on the cell, and thestrain exhibited lower productivities and final concentrations of antibiotics. We conclude...... that Sco3700 is indeed atyrosine phosphatase, and it contributes to regulation of antibiotic production in S. coelicolor affecting the timing ofonset of the antibiotic production...

  16. Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from Cratoxylum cochinchinense.

    Science.gov (United States)

    Li, Zuo Peng; Lee, Hyeong-Hwan; Uddin, Zia; Song, Yeong Hun; Park, Ki Hun

    2018-08-01

    Four new caged xanthones (1-4) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (1-6) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (1-6) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC 50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining K m , V max , and the ratio of K ik and K iv , which revealed that all the compounds behaved as competitive inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length.

    Science.gov (United States)

    Lee, Jennifer K; Hallock, Peter T; Burden, Steven J

    2017-12-12

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2 +/- mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation.

  18. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition

    Directory of Open Access Journals (Sweden)

    Ardizzone Michele

    2008-08-01

    Full Text Available Abstract Background The present study has investigated the protein tyrosine phosphatase H1 (PTPH1 expression pattern in mouse brain and its impact on CNS functions. Methods We have previously described a PTPH1-KO mouse, generated by replacing the PTP catalytic and the PDZ domain with a LacZ neomycin cassette. PTPH1 expression pattern was evaluated by LacZ staining in the brain and PTPH1-KO and WT mice (n = 10 per gender per genotype were also behaviorally tested for CNS functions. Results In CNS, PTPH1 is expressed during development and in adulthood and mainly localized in hippocampus, thalamus, cortex and cerebellum neurons. The behavioral tests performed on the PTPH1-KO mice showed an impact on working memory in male mice and an impaired learning performance at rotarod in females. Conclusion These results demonstrate for the first time a neuronal expression of PTPH1 and its functionality at the level of cognition.

  19. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B ( 1 ) contains an additional phenolic hydroxy function at C-6 and exhibits an IC 50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin ( 2 ) did not show any inhibition of this enzymatic activity. Asperentin B ( 1 ) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  20. Stimulation of the human immunodeficiency virus type 1 enhancer by the human T-cell leukemia virus type I tax gene product involves the action of inducible cellular proteins.

    Science.gov (United States)

    Böhnlein, E; Siekevitz, M; Ballard, D W; Lowenthal, J W; Rimsky, L; Bogérd, H; Hoffman, J; Wano, Y; Franza, B R; Greene, W C

    1989-04-01

    The human immunodeficiency virus type 1 (HIV-1) preferentially infects CD4+ T lymphocytes and may exist as a latent provirus within these cells for extended periods. The transition to a productive retroviral infection results in T-cell death and clinically may lead to the acquired immune deficiency syndrome. Accelerated production of infectious HIV-1 virions appears to be closely linked to a heightened state of T-cell activation. The transactivator (Tax) protein of the type I human T-cell leukemia virus (HTLV-I) can produce such an activated T-cell phenotype and augments activity of the HIV-1 long terminal repeat. One Tax-responsive region within the HIV-1 long terminal repeat has been mapped to a locus composed of two 10-base-pair direct repeats sharing homology with the binding site for the eucaryotic transcription factor NF-kappaB (GGGACTTTCC). Tax-expressing Jurkat T cells contain one or more inducible cellular proteins that specifically associate with the HIV-1 enhancer at these binding sites. Microscale DNA affinity precipitation assays identified a Tax-inducible 86-kilodalton protein, HIVEN86A, as one of these HIV-1 enhancer-binding factors. The interaction of HIVEN86A, and presumably other cellular proteins, with the HIV-1 enhancer appears functionally important as oligonucleotides corresponding to this enhancer were sufficient to impart Tax inducibility to an unresponsive heterologous promoter. These findings suggest that the Tax-inducible cellular protein HIVEN86A plays an important role in the transcriptional activation of the HIV-1 enhancer. These specific protein-DNA interactions may also be important for the transition of HIV-1 from a latent to a productive mode of infection. Furthermore, these findings highlight an intriguing biological interplay between HTLV-1 and HIV-1 through a cellular transcriptional pathway that is normally involved in T-cell activation and growth.

  1. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  2. Carbon-11 tyrosine PET for visualization and protein synthesis rate assessment of laryngeal and hypopharyngeal carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Jurjan R. de; Laan, Bernard F.A.M. van der; Albers, Frans W.J. [Department of Otorhinolaryngology and Head and Neck Surgery, Groningen University Hospital, Hanzeplein 1, 9700 RB Groningen (Netherlands); Pruim, Jan; Que, Tjin H.; Willemsen, Antoon T.M.; Vaalburg, Willem [PET Center of Groningen University Hospital, Groningen (Netherlands); Burlage, Fred [Department of Radiotherapy, Groningen University Hospital, Groningen (Netherlands); Krikke, Allard [Department of Radiology, Groningen University Hospital, Groningen (Netherlands); Tiebosch, Anton T.M.G. [Department of Pathology, Groningen University Hospital, Groningen (Netherlands)

    2002-09-01

    Accurate assessment of tumour extent and lymph node involvement in squamous cell carcinomas of the head and neck region is essential for therapy planning. Unfortunately, conventional diagnostic examination and imaging techniques, which monitor tumours on the basis of anatomical parameters, have drawbacks in clinical practice. The aim of this study was to investigate the feasibility of L-[1-{sup 11}C]-tyrosine (TYR) positron emission tomography (PET) for visualisation of squamous cell carcinoma of the larynx and hypopharynx and quantification of tumour activity by assessment of protein synthesis rate (PSR). Dynamic TYR PET was performed on 31 patients with T1-T4 laryngeal or hypopharyngeal carcinoma before therapy. Plasma activity of TYR, {sup 11}CO{sub 2} and {sup 11}C-protein levels were measured, and PSRs were calculated for primary malignancies. All 31 laryngeal and hypopharyngeal tumours were visualised as a hotspot (sensitivity 100%). The median PSR of the tumours (2.06 nmol ml{sup -1} min{sup -1}; range 0.72-6.96) was significantly higher (P<0.001) than that of non-tumour (background) tissue (0.51 nmol ml{sup -1} min{sup -1}; range 0.22-0.89). L-[1-{sup 11}C]-Tyrosine PET appears to be a potential method for visualisation of primary laryngeal and hypopharyngeal tumours. In vivo quantification of tumour activity by assessment of PSR is possible and may have a future role in the therapy planning and therapy evaluation of laryngeal and hypopharyngeal tumours. (orig.)

  3. Tandem truncated rotavirus VP8* subunit protein with T cell epitope as non-replicating parenteral vaccine is highly immunogenic.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Hoshino, Yasutaka; Yuan, Lijuan

    2015-01-01

    The two currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in the developed countries. However, the efficacy of such vaccines in resource deprived countries in Africa and Southeast Asia is low. We reported previously that a bacterially-expressed rotavirus P2-P[8] ΔVP8* subunit vaccine candidate administered intramuscularly elicited high-titers of neutralizing antibodies in guinea pigs and mice and significantly shortened the duration of diarrhea in neonatal gnotobiotic pigs upon oral challenge with virulent human rotavirus Wa strain. To further improve its vaccine potential and provide wider coverage against rotavirus strains of global and regional epidemiologic importance, we constructed 2 tandem recombinant VP8* proteins, P2-P[8] ΔVP8*-P[8] ΔVP8* and P2-P[8] ΔVP8*-P[6] ΔVP8* based on Escherichia coli expression system. The two resulting recombinant tandem proteins were highly soluble and P2-P[8] ΔVP8*-P[8] ΔVP8* was generated with high yield. Moreover, guinea pigs immunized intramuscularly by 3 doses of the P2-P[8] ΔVP8*-P[8] ΔVP8* or P2-P[8] ΔVP8*-P[6] ΔVP8* vaccine with aluminum phosphate adjuvant developed high titers of homotypic and heterotypic neutralizing antibodies against human rotaviruses bearing G1-G4, G8, G9 and G12 with P[8], P[4] or P[6] combination. The results suggest that these 2 subunit vaccines in monovalent or bivalent formulation can provide antigenic coverage to almost all the rotavirus G (VP7) types and major P (VP4) types of global as well as regional epidemiologic importance.

  4. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    Science.gov (United States)

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Ex vivo detection of adenovirus specific CD4+ T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of THELPER cells following stem cell transplantation

    International Nuclear Information System (INIS)

    Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.; Wernet, Dorothee; Lang, Peter; Rammensee, Hans-Georg; Stevanovic, Stefan; Handgretinger, Rupert; Feuchtinger, Tobias

    2010-01-01

    Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4 + T-cell responses against the Hexon-protein, but the frequency of specific T HELPER cells is extremely low or not detectable ex vivo and preference for different CD4 + T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4 + -responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highly conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4 + -proliferation in >50% of individuals, confirmed by intracellular IFN-γ detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4 + T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4 + T cells for adoptive T-cell transfer against HAdV-infection post SCT.

  6. Tailor-Made Protein Tyrosine Phosphatases: In Vitro Site-Directed Mutagenesis of PTEN and PTPRZ-B

    NARCIS (Netherlands)

    Luna, S.; Mingo, J.; Aurtenetxe, O.; Blanco, L.; Amo, L.; Schepens, J.; Hendriks, W.J.A.J.; Pulido, R.

    2016-01-01

    In vitro site-directed mutagenesis (SDM) of protein tyrosine phosphatases (PTPs) is a commonly used approach to experimentally analyze PTP functions at the molecular and cellular level and to establish functional correlations with PTP alterations found in human disease. Here, using the

  7. Dynamic substrate enhancement for the identification of specific, second-site-binding fragments targeting a set of protein tyrosine phosphatases

    NARCIS (Netherlands)

    Schmidt, Marco F; Groves, Matthew R; Rademann, Jörg

    2011-01-01

    Protein tyrosine phosphatases (PTPs) are key regulators in living systems and thus are attractive drug targets. The development of potent, selective PTP inhibitors has been a difficult challenge mainly due to the high homology of the phosphotyrosine substrate pockets. Here, a strategy of dynamic

  8. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  9. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN...

  10. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    International Nuclear Information System (INIS)

    Holowachuk, Eugene W.

    2007-01-01

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3β inhibitors (Li + or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNFα-induced rates of lipolysis by 50%. Adipocytes preincubated with Li + or TZDZ-8 prior to CsA and/or TNFα, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPARγ, ACS and Adn), compared with control or TNFα-treatment, whereas Li + pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPARγ, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li + treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis

  11. Cell surface expression of channel catfish leukocyte immune-type receptors (IpLITRs) and recruitment of both Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2.

    Science.gov (United States)

    Montgomery, Benjamin C S; Mewes, Jacqueline; Davidson, Chelsea; Burshtyn, Deborah N; Stafford, James L

    2009-04-01

    Channel catfish leukocyte immune-type receptors (IpLITRs) are immunoglobulin superfamily (IgSF) members believed to play a role in the control and coordination of cellular immune responses in teleost. Putative stimulatory and inhibitory IpLITRs are co-expressed by different types of catfish immune cells (e.g. NK cells, T cells, B cells, and macrophages) but their signaling potential has not been determined. Following cationic polymer-mediated transfections into human cell lines we examined the surface expression, tyrosine phosphorylation, and phosphatase recruitment potential of two types of putative inhibitory IpLITRs using 'chimeric' expression constructs and an epitope-tagged 'native' IpLITR. We also cloned and expressed the teleost Src homology 2 domain-containing protein tyrosine phosphatases (SHP)-1 and SHP-2 and examined their expression in adult tissues and developing zebrafish embryos. Co-immunoprecipitation experiments support the inhibitory signaling potential of distinct IpLITR-types that bound both SHP-1 and SHP-2 following the phosphorylation of tyrosine residues within their cytoplasmic tail (CYT) regions. Phosphatase recruitment by IpLITRs represents an important first step in understanding their influence on immune cell effector functions and suggests that certain inhibitory signaling pathways are conserved among vertebrates.

  12. A Cell Internalizing Antibody Targeting Capsid Protein (p24 Inhibits the Replication of HIV-1 in T Cells Lines and PBMCs: A Proof of Concept Study.

    Directory of Open Access Journals (Sweden)

    Syed A Ali

    Full Text Available There remains a need for newer therapeutic approaches to combat HIV/AIDS. Viral capsid protein p24 plays important roles in HIV pathogenesis. Peptides and small molecule inhibitors targeting p24 have shown to inhibit virus replication in treated cell. High specificity and biological stability of monoclonal antibodies (mAbs make them an attractive contender for in vivo treatments. However, mAbs do not enter into cells, thus are restricted to target surface molecules. This also makes targeting intracellular HIV-1 p24 a challenge. A mAb specific to p24 that can internalize into the HIV-infected cells is hypothesized to inhibit the virus replication. We selected a mAb that has previously shown to inhibit p24 polymerization in an in vitro assay and chemically conjugated it with cell penetrating peptides (CPP to generate cell internalizing anti-p24 mAbs. Out of 8 CPPs tested, κFGF-MTS -conjugated mAbs internalized T cells most efficiently. At nontoxic concentration, the κFGF-MTS-anti-p24-mAbs reduced the HIV-1 replication up to 73 and 49% in T-lymphocyte and PBMCs respectively. Marked inhibition of HIV-1 replication in relevant cells by κFGF-MTS-anti-p24-mAbs represents a viable strategy to target HIV proteins present inside the cells.

  13. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Hamada, Junichi; Shoda, Katsutoshi; Masuda, Kiyoshi; Fujita, Yuji; Naruto, Takuya; Kohmoto, Tomohiro; Miyakami, Yuko; Watanabe, Miki; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Otsuji, Eigo; Imoto, Issei

    2016-03-29

    T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC.

  14. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  15. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    To understand better T-cell lymphomagenesis, we examined promoter CpG methylation and mRNA expression of closely related genes encoding p16, p15, and p14 tumor suppressor genes in cultured malignant T-cells that were derived from cutaneous, adult type, and anaplastic lymphoma kinase (ALK)-express...

  16. A bipolar clamp mechanism for activation of Jak-family protein tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Dipak Barua

    2009-04-01

    Full Text Available Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2 domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH receptor/Jak2/SH2-Bbeta system. The modeling results suggest that, whereas Jak2-(SH2-Bbeta(2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bbeta and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar 'clamp' that stabilizes the active configuration of two Jak2 molecules in the same macro-complex.

  17. Hepatitis B virus (HBV)-specific T-cell responses to recombinant HBV core protein in patients with normal liver function and co-infected with chronic HBV and human immunodeficiency virus 1 (HIV-1)

    Science.gov (United States)

    2013-01-01

    Background Little is known about HBV-specific T-cell responses in chronic Hepatitis B patients (HBV) that are co-infected with Human immunodeficiency virus type 1 (HIV-1), especially those with normal alanine aminotransferase (ALT) levels. Methods Twenty-five patients with chronic HBV (11 hepatitis B e antigen [HBeAg]-positive, 14 HBeAg-negative) were enrolled in a cross-sectional study. A longitudinal study as also conducted in which follow-up was done at 3, 12, and 24 months, after acute HIV-1 infection, in 11 individuals who also had chronic HBV. Peripheral blood mononuclear cells were stimulated with recombinant HBV surface protein (S protein), core protein (C protein) or gag peptide. IFN-γ-secreting T cells were identified by ELISPOT assay. Results In the cross-sectional study, co-infected chronic HBV patients had lower C protein-specific T-cell responses compared with mono-infected individuals, though the difference was not significant. In co-infected, chronic HBV patients, the magnitude of C protein-specific T-cell responses was significantly greater in HBeAg-positive subjects compared to HBeAg-negative subjects (p = 0.011). C protein-specific T-cell responses were positively correlated with HBV viral load (rs = 0.40, p = 0.046). However, gag-specific T-cell responses were negatively correlated with HIV viral load (rs = −0.44, p = 0.026) and positively correlated with CD4+ count (rs = 0.46, p = 0.021). The results were different in mono-infected individuals. PBMCs from co-infected HBeAg-positive patients secreted more specific-IFN-γ in cultured supernatants compared with PBMCs from co-infected HBeAg-negative patients (p = 0.019). In the longitudinal study, S protein- and C protein-specific T-cell responses were decreased as the length of follow-up increased (p = 0.034, for S protein; p = 0.105, for C protein). Additionally, the S protein- and C protein-specific T-cell responses were significantly higher in HBe

  18. Are tyrosine residues involved in the photoconversion of the water-soluble chlorophyll-binding protein of Chenopodium album?

    Science.gov (United States)

    Takahashi, S; Seki, Y; Uchida, A; Nakayama, K; Satoh, H

    2015-05-01

    Non-photosynthetic and hydrophilic chlorophyll (Chl) proteins, called water-soluble Chl-binding proteins (WSCPs), are distributed in various species of Chenopodiaceae, Amaranthaceae, Polygonaceae and Brassicaceae. Based on their photoconvertibility, WSCPs are categorised into two classes: Class I (photoconvertible) and Class II (non-photoconvertible). Chenopodium album WSCP (CaWSCP; Class I) is able to convert the chlorin skeleton of Chl a into a bacteriochlorin-like skeleton under light in the presence of molecular oxygen. Potassium iodide (KI) is a strong inhibitor of the photoconversion. Because KI attacks tyrosine residues in proteins, tyrosine residues in CaWSCP are considered to be important amino acid residues for the photoconversion. Recently, we identified the gene encoding CaWSCP and found that the mature region of CaWSCP contained four tyrosine residues: Tyr13, Tyr14, Tyr87 and Tyr134. To gain insight into the effect of the tyrosine residues on the photoconversion, we constructed 15 mutant proteins (Y13A, Y14A, Y87A, Y134A, Y13-14A, Y13-87A, Y13-134A, Y14-87A, Y14-134A, Y87-134A, Y13-14-87A, Y13-14-134A, Y13-87-134A, Y14-87-134A and Y13-14-87-134A) using site-directed mutagenesis. Amazingly, all the mutant proteins retained not only chlorophyll-binding activity, but also photoconvertibility. Furthermore, we found that KI strongly inhibited the photoconversion of Y13-14-87-134A. These findings indicated that the four tyrosine residues are not essential for the photoconversion. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Receptor-type Protein Tyrosine Phosphatase β Regulates Met Phosphorylation and Function in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yiru Xu

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and has a high rate of mortality. Emerging evidence indicates that hepatocyte growth factor receptor (or Met pathway plays a pivotal role in HNSCC metastasis and resistance to chemotherapy. Met function is dependent on tyrosine phosphorylation that is under direct control by receptor-type protein tyrosine phosphatase β (RPTP-β. We report here that RPTP-β expression is significantly downregulated in HNSCC cells derived from metastatic tumors compared to subject-matched cells from primary tumors. Knockdown of endogenous RPTP-β in HNSCC cells from primary tumor potentiated Met tyrosine phosphorylation, downstream mitogen-activated protein (MAP kinase pathway activation, cell migration, and invasion. Conversely, restoration of RPTP-β expression in cells from matched metastatic tumor decreased Met tyrosine phosphorylation and downstream functions. Furthermore, we observed that six of eight HNSCC tumors had reduced levels of RPTP-β protein in comparison with normal oral tissues. Collectively, the results demonstrate the importance of RPTP-β in tumor biology of HNSCC through direct dephosphorylation of Met and regulation of downstream signal transduction pathways. Reduced RPTP-β levels, with or without Met overexpression, could promote Met activation in HNSCC tumors.

  20. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mitsuhiro [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Ono, Akira M.; Terauchi, Tsutomu [SAIL Technologies Co., Inc. (Japan); Kainosho, Masatsune, E-mail: kainosho@nmr.chem.metro-u.ac.j [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2010-01-15

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines ({epsilon}- and {zeta}-SAIL Phe) and tyrosine ({epsilon}-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized {delta}-SAIL Phe and {delta}-SAIL Tyr, which allow us to observe and assign {delta}-{sup 13}C/{sup 1}H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the {delta}-, {epsilon}- or {zeta}-{sup 13}C/{sup 1}H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the {delta}-, {epsilon}-, and {zeta}-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly {sup 13}C, {sup 15}N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of {zeta}-SAIL Phe and {epsilon}-SAIL Tyr would be practically the best choice for protein structural determinations.

  1. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination.

    Science.gov (United States)

    Takeda, Mitsuhiro; Ono, Akira M; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (epsilon- and zeta-SAIL Phe) and tyrosine (epsilon-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized delta-SAIL Phe and delta-SAIL Tyr, which allow us to observe and assign delta-(13)C/(1)H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the delta-, epsilon- or zeta-(13)C/(1)H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the delta-, epsilon-, and zeta-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly (13)C, (15)N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of zeta-SAIL Phe and epsilon-SAIL Tyr would be practically the best choice for protein structural determinations.

  2. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Ono, Akira M.; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (ε- and ζ-SAIL Phe) and tyrosine (ε-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized δ-SAIL Phe and δ-SAIL Tyr, which allow us to observe and assign δ- 13 C/ 1 H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the δ-, ε- or ζ- 13 C/ 1 H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the δ-, ε-, and ζ-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly 13 C, 15 N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of ζ-SAIL Phe and ε-SAIL Tyr would be practically the best choice for protein structural determinations.

  3. Apoptosis and T cell depletion during feline infectious peritonitis

    OpenAIRE

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activated T cells. Since feline infectious peritonitis virus does not infect T cells, and viral proteins did not inhibit T-cell proliferation, we postulate that soluble mediators released during the infe...

  4. Auto-reactive T cells revised. Overestimation based on methodology?

    DEFF Research Database (Denmark)

    Thorlacius-Ussing, Gorm; Sørensen, Jesper F; Wandall, Hans H

    2015-01-01

    . Thus, T cell antigen reactivities identified with unmodified antigens in vitro may in part represent in vitro T cell activation against neo-epitopes and not true in vivo autoreactivity as postulated. This methodological problem may have implications for the interpretation of the frequent reporting...... methodology applied to document T cell reactivity against unmodified protein or peptide may lead to overinterpretation of the reported frequencies of autoreactive CD4+ and CD8+ T cells....

  5. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  6. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  7. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger

    2015-02-01

    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  8. Peptide-loaded dendritic cells prime and activate MHC-class I-restricted T cells more efficiently than protein-loaded cross-presenting DC

    DEFF Research Database (Denmark)

    Met, Ozcan; Buus, Søren; Claesson, Mogens H

    2003-01-01

    -pulsed DC. Moreover, SIINFEKL-loaded DC were up to 50 times more efficient than DC-pulsed with OVA-protein for generation of an H-2K(b)-restricted response. Immunization of mice with SIINFEKL-loaded DC resulted in a much stronger H-2K(b)-restricted response than immunization with OVA-pulsed DC. These data......Undifferentiated and differentiated dendritic cells (uDC and dDC, respectively), derived from the bone marrow, were studied in vitro and in vivo. Ovalbumin (OVA) and two OVA-derived peptides binding to H-2K(b) and I-A(b), respectively, were used. Two IL-2 secreting T cell hybridomas specific...... for the OVA-derived epitopes were used in the in vitro read-out. The ability to cross-present the H-2K(b) binding OVA(257-264)-peptide (SIINFEKL) was restricted to dDC, which express CD11c(+), CD86(+), and MHC-II(+). In vitro, the antigenicity of SIINFEKL-loaded DC declined at a slower rate than that of OVA...

  9. Translational up-regulation and high-level protein expression from plasmid vectors by mTOR activation via different pathways in PC3 and 293T cells.

    Directory of Open Access Journals (Sweden)

    Prashanthi Karyala

    Full Text Available BACKGROUND: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B, β-galactosidase (β-gal and green fluorescent protein (GFP from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to

  10. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  11. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia.

    Science.gov (United States)

    Zhu, Liuluan; Kong, Yaxian; Zhang, Jianhong; Claxton, David F; Ehmann, W Christopher; Rybka, Witold B; Palmisiano, Neil D; Wang, Ming; Jia, Bei; Bayerl, Michael; Schell, Todd D; Hohl, Raymond J; Zeng, Hui; Zheng, Hong

    2017-06-19

    T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1 + T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics.

  12. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Liuluan Zhu

    2017-06-01

    Full Text Available Abstract Background T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM domain (TIGIT and programmed cell death protein 1 (PD-1 are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML. In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1 in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Methods Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Results Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Conclusions Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics.

  13. Glucocorticoid-induced TNF receptor family related protein ligand [GITR-L] is requisite for optimal functioning of regulatory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Gongxian eLiao

    2014-02-01

    Full Text Available Glucocorticoid-Induced Tumor necrosis factor Receptor family-related protein (GITR, TNFRSF18, CD357 is constitutively expressed on regulatory T cells (Tregs and is inducible on effector T cells (Teffs. In this report, we examine the role of GITR-Ligand (GITR-L, which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L-/- mice is impaired after injection of the dendritic cells (DCs inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L-/- mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L-/- FoxP3(GFP reporter mice using adeno-associated virus (AAV8-OVA the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen specific CD8+ cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L-/-Rag-/- and Rag-/- mice that had received AAV8-OVA. Surprisingly, administering αCD3 significantly reduced the numbers of FoxP3+ Treg cells in the liver and spleen of GITR-L-/- but not WT mice. Because soluble Fc-GITR-L partially rescues αCD3 induced in vitro depletion of the CD103+ subset of FoxP3+CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.

  14. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    OpenAIRE

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immuniza...

  15. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn

    NARCIS (Netherlands)

    Panchamoorthy, G.; Fukazawa, T.; Stolz, L.; Payne, G.; Reedquist, K.; Shoelson, S.; Songyang, Z.; Cantley, L.; Walsh, C.; Band, H.

    1994-01-01

    The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The

  16. Deficient tyrosine phosphorylation of c-Cbl and associated proteins in phorbol ester-resistant EL4 mouse thymoma cells.

    Science.gov (United States)

    Luo, X; Sando, J J

    1997-05-02

    Two tyrosine phosphoproteins in phorbol ester-sensitive EL4 (S-EL4) mouse thymoma cells have been identified as the p120 c-Cbl protooncogene product and the p85 subunit of phosphatidylinositol 3-kinase. Tyrosine phosphorylation of p120 and p85 increased rapidly after phorbol ester stimulation. Phorbol ester-resistant EL4 (R-EL4) cells expressed comparable amounts of c-Cbl and phosphatidylinositol 3-kinase protein but greatly diminished tyrosine phosphorylation. Co-immunoprecipitation experiments revealed complexes of c-Cbl with p85, and of p85 with the tyrosine kinase Lck in phorbol ester-stimulated S-EL4 but not in unstimulated S-EL4 or in R-EL4 cells. In vitro binding of c-Cbl with Lck SH2 or SH3 domains was detected in both S-EL4 and R-EL4 cells, suggesting that c-Cbl, p85, and Lck may form a ternary complex. In vitro kinase assays revealed phosphorylation of p85 by Lck only in phorbol ester-stimulated S-EL4 cells. Collectively, these results suggest that Cbl-p85 and Lck-p85 complexes may form in unstimulated S-EL4 and R-EL4 cells but were not detected due to absence of tyrosine phosphorylation of p85. Greatly decreased tyrosine phosphorylation of c-Cbl and p85 in the complexes may contribute to the failure of R-EL4 cells to respond to phorbol ester.

  17. Distinct mechanisms regulate Lck spatial organization in activated T cells

    Directory of Open Access Journals (Sweden)

    Natasha eKapoor-Kaushik

    2016-03-01

    Full Text Available Phosphorylation of the T cell receptor (TCR by the kinase Lck is the first detectable signaling event upon antigen engagement. The distribution of Lck within the plasma membrane, its conformational state, kinase activity and protein interactions all contribute to determine how efficiently Lck phosphorylates the engaged TCR. Here we used cross-correlation raster image spectroscopy (ccRICS and photoactivated localization microscopy (PALM to identify two mechanisms of Lck clustering: an intrinsic mechanism of Lck clustering induced by locking Lck in its open conformation, and an extrinsic mechanism of clustering controlled by the phosphorylation of tyrosine 192, which regulates the affinity of Lck SH2 domain. Both mechanisms of clustering were differently affected by the absence of the kinase Zap70 or the adaptor Lat. We further observed that the adaptor TSAd bound to and promoted the diffusion of Lck when it is phosphorylated on tyrosine 192. Our data suggest that while Lck open conformation drives aggregation and clustering, the spatial organization of Lck is further controlled by signaling events downstream of TCR phosphorylation.

  18. Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2002-11-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers' pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH(2)-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions.

  19. Role of Bioavailable Iron in Coal Dust-Induced Activation of Activator Protein-1 and Nuclear Factor of Activated T Cells

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2010-01-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers’ pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH2-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions. PMID:12397016

  20. Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A.

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2010-02-01

    Full Text Available Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC class II. We also characterized spleen- and cervical lymph node (CLN-derived helper T lymphocyte (HTL cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA(199-246 consistently caused the greatest IFN-gamma, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4(+ T cells isolated from S. pneumonia strain EF3030-challeged F(1 (B6xBALB/c mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA(199-246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.

  1. Distinct p300-responsive mechanisms promote caspase-dependent apoptosis by human T-cell lymphotropic virus type 1 Tax protein.

    Science.gov (United States)

    Nicot, C; Harrod, R

    2000-11-01

    The dysregulation of cellular apoptosis pathways has emerged as a critical early event associated with the development of many types of human cancers. Numerous viral and cellular oncogenes, aside from their inherent transforming properties, are known to induce programmed cell death, consistent with the hypothesis that genetic defects are required to support tumor survival. Here, we report that nuclear expression of the CREB-binding protein (CBP)/p300-binding domain of the human T-cell lymphotropic virus type 1 (HTLV-1) transactivator, Tax, triggers an apoptotic death-inducing signal during short-term clonal analyses, as well as in transient cell death assays. Coexpression of the antiapoptotic factor Bcl-2 increased serum stimulation; incubation with the chemical caspase inhibitor z-Val-Ala-DL-Asp fluoromethylketone antagonized Tax-induced cell death. The CBP/p300-binding defective Tax mutants K88A and V89A exhibited markedly reduced cytotoxic effects compared to the wild-type Tax protein. Importantly, nuclear expression of the minimal CBP/p300-binding peptide of Tax induced apoptosis in the absence of Tax-dependent transcriptional activities, while its K88A counterpart did not cause cell death. Further, Tax-mediated apoptosis was effectively prevented by ectopic expression of the p300 coactivator. We also report that activation of the NF-kappaB transcription pathway by Tax, under growth arrest conditions, results in apoptosis that occurs independent of direct Tax coactivator effects. Our results allude to a novel pivotal role for the transcriptional coactivator p300 in determining cell fate and raise the possibility that dysregulated coactivator usage may pose an early barrier to transformation that must be selectively overcome as a prerequisite for the initiation of neoplasia.

  2. Plasmodium vivax VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women.

    Science.gov (United States)

    Requena, Pilar; Rui, Edmilson; Padilla, Norma; Martínez-Espinosa, Flor E; Castellanos, Maria Eugenia; Bôtto-Menezes, Camila; Malheiro, Adriana; Arévalo-Herrera, Myriam; Kochar, Swati; Kochar, Sanjay K; Kochar, Dhanpat K; Umbers, Alexandra J; Ome-Kaius, Maria; Wangnapi, Regina; Hans, Dhiraj; Menegon, Michela; Mateo, Francesca; Sanz, Sergi; Desai, Meghna; Mayor, Alfredo; Chitnis, Chetan C; Bardají, Azucena; Mueller, Ivo; Rogerson, Stephen; Severini, Carlo; Fernández-Becerra, Carmen; Menéndez, Clara; Del Portillo, Hernando; Dobaño, Carlota

    2016-10-01

    P. vivax infection during pregnancy has been associated with poor outcomes such as anemia, low birth weight and congenital malaria, thus representing an important global health problem. However, no vaccine is currently available for its prevention. Vir genes were the first putative virulent factors associated with P. vivax infections, yet very few studies have examined their potential role as targets of immunity. We investigated the immunogenic properties of five VIR proteins and two long synthetic peptides containing conserved VIR sequences (PvLP1 and PvLP2) in the context of the PregVax cohort study including women from five malaria endemic countries: Brazil, Colombia, Guatemala, India and Papua New Guinea (PNG) at different timepoints during and after pregnancy. Antibody responses against all antigens were detected in all populations, with PNG women presenting the highest levels overall. P. vivax infection at sample collection time was positively associated with antibody levels against PvLP1 (fold-increase: 1.60 at recruitment -first antenatal visit-) and PvLP2 (fold-increase: 1.63 at delivery), and P. falciparum co-infection was found to increase those responses (for PvLP1 at recruitment, fold-increase: 2.25). Levels of IgG against two VIR proteins at delivery were associated with higher birth weight (27 g increase per duplicating antibody levels, ppregnant women had significantly higher antigen-specific IFN-γ TH1 responses (p=0.006) and secreted less pro-inflammatory cytokines TNF and IL-6 after PvLP2 stimulation than P. vivax-infected women (p<0.05). These data demonstrate that VIR antigens induce the natural acquisition of antibody and T cell memory responses that might be important in immunity to P. vivax during pregnancy in very diverse geographical settings.

  3. Fas (CD95) expression and death-mediating function are induced by CD4 cross-linking on CD4+ T cells.

    OpenAIRE

    Desbarats, J; Freed, J H; Campbell, P A; Newell, M K

    1996-01-01

    The CD4 receptor contributes to T-cell activation by coligating major histocompatibility complex class II on antigen presenting cells with the T-cell receptor (TCR)/CD3 complex, and triggering a cascade of signaling events including tyrosine phosphorylation of intracellular proteins. Paradoxically, CD3 cross-linking prior to TCR stimulation results in apoptotic cell death, as does injection of anti-CD4 antibodies in vivo of CD4 ligation by HIV glycoprotein (gp) 120. In this report we investig...

  4. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  5. Radical transfer between proteins: role of tyrosine, tryptophan and protein peroxyl radicals

    International Nuclear Information System (INIS)

    Irwin, J.A.; Ostdal, H.; Davies, M.J.

    1998-01-01

    Reaction of the Fe(III) forms of the heme proteins myoglobin (Mb) and horseradish peroxidase (HRP) with H 2 O 2 gives rise to high-oxidation-state heme-derived species which can be described as a Fe(IV)-oxo porphyrin radical-cation ('Compound 1'). In the case of Mb, the Fe(IV)-oxo porphyrin radical-cation undergoes rapid electron transfer with the surrounding protein to give protein (globin)-derived radicals and an Fe(lV)-oxo species ('Compound 2'). The globin-derived radicals have been shown to be located at two (or more) sites: Tyr-103 or Trp-14, with the latter radical known to react with oxygen to give a Trp-derived peroxyl radical (Mb-Trp-OO*). With HRP, the Fe(lV)-oxo porphyrin radical-cation carries out two successive one-electron oxidation reactions at the exposed heme edge to give firstly 'Compound 2' [the Fe(lV)oxo species] and then the resting Fe(III) state of the enzyme. n this study we have investigated whether the Trp-14 peroxyl radical from Mb and the Compound 1 and 2 species from HRP (in the absence and presence of free Tyr) can oxidise amino acids, peptides and proteins. Such reactions constitute intermolecular protein-to-protein radical transfer reactions and hence protein chain-oxidation. We have also examined whether these oxidants react with antioxidants. Reaction of these heme-protein derived oxidants with amino acids, proteins and antioxidants has been carried out at room temperature for defined periods of time before freeze-quenching to 77K to halt reaction. The radical species present in the reaction system at the time of freezing were subsequently examined by EPR spectroscopy at 77K. Three free amino acids, Tyr, Trp and Cys (with Cys the least efficient) have been shown to react rapidly with Mb-Trp-OO*, as evidenced by the loss of the characteristic EPR features of Mb-Trp-OO* on inclusion of increasing concentrations of the amino acids. All other amino acids are much less reactive. Evidence has also been obtained for (inefficient) hydrogen

  6. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Marzia Vezzalini

    2017-06-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor gamma (PTPRG is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML have been reported, only one polyclonal antibody (named chPTPRG has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2 to better define PTPRG protein downregulation in CML patients. Methods TPγ B9-2 specifically recognizes PTPRG (both human and murine by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Results Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells. After effective tyrosine kinase inhibitor (TKI treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI non-responder patients, confirming that downregulation selectively occurs in primary CML cells. Conclusions The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the

  7. The effect of conditional EFNB1 deletion in the T cell compartment on T cell development and function

    Directory of Open Access Journals (Sweden)

    Jin Wei

    2011-12-01

    Full Text Available Abstract Background Eph kinases are the largest family of cell surface receptor tyrosine kinases. The ligands of Ephs, ephrins (EFNs, are also cell surface molecules. Ephs interact with EFNs transmitting signals in both directions, i.e., from Ephs to EFNs and from EFNs to Ephs. EFNB1 is known to be able to co-stimulate T cells in vitro and to modulate thymocyte development in a model of foetal thymus organ culture. To further understand the role of EFNB1 in T cell immunity, we generated T-cell-specific EFNB1 gene knockout mice to assess T cell development and function in these mice. Results The mice were of normal size and cellularity in the thymus and spleen and had normal T cell subpopulations in these organs. The bone marrow progenitors from KO mice and WT control mice repopulated host spleen T cell pool to similar extents. The activation and proliferation of KO T cells was comparable to that of control mice. Naïve KO CD4 cells showed an ability to differentiate into Th1, Th2, Th17 and Treg cells similar to control CD4 cells. Conclusions Our results suggest that the function of EFNB1 in the T cell compartment could be compensated by other members of the EFN family, and that such redundancy safeguards the pivotal roles of EFNB1 in T cell development and function.

  8. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  9. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?

    Science.gov (United States)

    Vieira, Marcelo N N; Lyra E Silva, Natalia M; Ferreira, Sergio T; De Felice, Fernanda G

    2017-01-01

    Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.

  10. Inhibition of Protein Tyrosine Phosphatase 1B by Aurintricarboxylic Acid and Methylenedisalicylic Acid: Polymer versus Monomer

    International Nuclear Information System (INIS)

    Shrestha, Suja; Lee, Keun Hyeung; Cho, Hyeong Jin

    2004-01-01

    In this study, we examined whether the in vitro inhibitory activity of ATA against PTPases resides in the monomer or high molecular weight components. Not to mention commercial ATA, the ATA sample synthesized according to the method previously reported to produce monomer was also found to contain polymeric materials as described below. Therefore, monomeric component of ATA was prepared absolutely free of polymer. Also synthesized in a pure form was methylenedisalicylic acid (MDSA), one of the low molecular weight components formed in the conventional preparation of ATA. Commercial MDSA was also proved to contain polymeric substances. The inhibitory potency of ATA and MDSA synthesized in a polymer-free form was evaluated against human protein tyrosine phosphatase 1B (PTP1B). Commercial ATA, however, contains significant amounts of polymeric materials schematically represented as. In general, ATA is prepared by condensation of salicylic acid with formaldehyde and the branching reaction results in the formation of polymers of molecular weights up to several thousands Dalton

  11. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length

    Science.gov (United States)

    Lee, Jennifer K; Hallock, Peter T

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2+/− mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation. PMID:29231808

  12. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    Science.gov (United States)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  13. Discovery and study of novel protein tyrosine phosphatase 1B inhibitors

    Science.gov (United States)

    Zhang, Qian; Chen, Xi; Feng, Changgen

    2017-10-01

    Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.

  14. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    Science.gov (United States)

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.

  15. Regional differences in endothelial cell cytoskeleton, junctional proteins and phosphorylated tyrosine labeling in the porcine vortex vein system.

    Science.gov (United States)

    Tan, Priscilla Ern Zhi; Yu, Paula K; Yang, Hongfang; Cringle, Stephen J; Yu, Dao-Yi

    2018-07-01

    We previously demonstrated endothelial phenotype heterogeneity in the vortex vein system. This study is to further determine whether regional differences are present in the cytoskeleton, junctional proteins and phosphorylated tyrosine labeling within the system. The vortex vein system of twenty porcine eyes was perfused with labels for f-actin, claudin-5, VE-Cadherin, phosphorylated tyrosine and nucleic acid. The endothelial cells of eight different regions (choroidal veins, pre-ampulla, anterior ampulla, mid-ampulla, posterior ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein) were studied using confocal microscopy. There were regional differences in the endothelial cell structures. Cytoskeleton labeling was relatively even in intensity throughout Regions 1 to 6. Overall VE-Cadherin had a non-uniform distribution and thicker width endothelial cell border staining than claudin-5. Progressing downstream there was an increased variation in thickness of VE-cadherin labeling. There was an overlap in phosphorylated tyrosine and VE-Cadherin labeling in the post-ampulla, intra-scleral canal and extra-ocular vortex vein. Intramural cells were observed that were immune-positive for VE-Cadherin and phosphorylated tyrosine. There were significant differences in the number of intramural cells in different regions. Significant regional differences with endothelial cell labeling of cytoskeleton, junction proteins, and phosphorylated tyrosine were found within the vortex vein system. These findings support existing data on endothelial cell phenotype heterogeneity, and may aid in the knowledge of venous pathologies by understanding regions of vulnerability to endothelial damage within the vortex vein system. It could be valuable to further investigate and characterize the VE-cadherin and phosphotyrosine immune-positive intramural cells. Copyright © 2018. Published by Elsevier Ltd.

  16. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...... by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides.......The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...

  17. A proteomic view at T cell costimulation.

    Directory of Open Access Journals (Sweden)

    Rudolf Lichtenfels

    Full Text Available The "two-signal paradigm" in T cell activation predicts that the cooperation of "signal 1," provided by the T cell receptor (TCR through engagement of major histocompatility complex (MHC-presented peptide, with "signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3(+ CD69(- resting T cells versus cells incubated with (i the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii the agonistic antibody 15E8 triggering CD28-mediated signaling were performed. Differentially regulated spots were defined leading to the identification of proteins involved in the regulation of the metabolism, shaping and maintenance of the cytoskeleton and signal transduction. Representative members of the differentially expressed protein families, such as calmodulin (CALM, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, L-lactate dehydrogenase (LDH, Rho GDP-dissociation inhibitor 2 (GDIR2, and platelet basic protein (CXCL7, were independently verified by flow cytometry. Data provide a detailed map of individual protein alterations at the global proteome level in response to TCR/CD28-mediated T cell activation.

  18. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    Science.gov (United States)

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  19. Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion.

    OpenAIRE

    Carter, W J; Benjamin, W S; Faas, F H

    1982-01-01

    The effect of T3 (3,3',5-tri-iodothyronine) on protein turnover in skeletal and cardiac muscle was measured in intact rats by means of a 6 h [14C]tyrosine-infusion technique. Treatment with 25-30 micrograms of T3/100 g body wt. daily for 4-7 days increased the fractional rate of protein synthesis in skeletal muscle. Since the fractional growth rate of the muscle was decreased or unchanged, T3 treatment increased the rate of muscle protein breakdown. These findings suggest that increased prote...

  20. Changing T cell specificity by retroviral T cell receptor display

    NARCIS (Netherlands)

    Kessels, H. W.; van den Boom, M. D.; Spits, H.; Hooijberg, E.; Schumacher, T. N.

    2000-01-01

    The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T

  1. Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells

    Science.gov (United States)

    Harris, Deshea L.

    2007-01-01

    Purpose The current studies were conducted to determine whether the protein tyrosine phosphatase, PTP1B, plays a role in regulating epidermal growth factor receptor (EGFR) Tyr992 phosphorylation and cell cycle entry in rat corneal endothelial cells. Methods Corneas were obtained from male Sprague-Dawley rats. PTP1B mRNA and protein expression were compared in confluent and subconfluent cells by RT-PCR and western blots. Immunocytochemistry was used to determine the subcellular localization of both PTP1B and EGFR following epidermal growth factor (EGF) stimulation. Western blots were used to analyze the time-dependent effect of EGF on phosphorylation of EGFR Tyr992 plus or minus CinnGEL 2Me, an inhibitor of PTP1B activity. The effect of PTP1B inhibition on cell cycle entry was determined by calculating the percent of Ki67-positive cells following EGF treatment. Results PTP1B mRNA expression was similar in confluent and subconfluent cells, but PTP1B protein was expressed at 3 fold higher levels in subconfluent cells. Positive staining for PTP1B was localized in vesicular structures below the plasma membrane. EGFR staining was located at cell-cell borders in untreated endothelium, but was mainly cytoplasmic by 15 min after EGF treatment. In control cultures, phosphorylation of EGFR Tyr992 peaked by 5 min following EGF stimulation and rapidly decreased to basal levels by 30 min. In cultures pretreated with CinnGEL 2Me, Tyr992 phosphorylation peaked 2 min following EGF addition and was consistently sustained at a higher level than controls until 60 min after treatment. By 18 h following EGF treatment, cultures pretreated with CinnGEL 2Me exhibited a 1.7 fold increase in the number of Ki67-positive cells compared with control cultures. Conclusions Comparison of PTP1B mRNA and protein levels indicates that PTP1B expression is regulated mainly at the protein level and is higher in subconfluent cells. PTP1B was located in vesicles below the plasma membrane. The fact that

  2. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.

    Science.gov (United States)

    Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J

    2007-11-01

    A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.

  3. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter.

    Science.gov (United States)

    Lenzmeier, B A; Giebler, H A; Nyborg, J K

    1998-02-01

    Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.

  4. Protein domains involved in both in vivo and in vitro interactions between human T-cell leukemia virus type I tax and CREB.

    Science.gov (United States)

    Yin, M J; Paulssen, E J; Seeler, J S; Gaynor, R B

    1995-06-01

    Gene expression from the human T-cell leukemia virus type I (HTLV-I) long terminal repeat (LTR) is mediated by three cis-acting regulatory elements known as 21-bp repeats and the transactivator protein Tax. The 21-bp repeats can be subdivided into three motifs known as A, B, and C, each of which is important for maximal gene expression in response to Tax. The B motif contains nucleotide sequences known as a cyclic AMP response element (CRE) or tax-response element which binds members of the ATF/CREB family of transcription factors. Though mutations of this element in the HTLV-I LTR eliminate tax activation, Tax will not activate most other promoters containing these CRE sites. In this study, we investigated the mechanism by which Tax activates gene expression in conjunction with members of the ATF/CREB family. We found that Tax enhanced the binding of one member of the ATF/CREB family, CREB 1, to each of the three HTLV-I LTR 21-bp repeats but not another member designated CRE-BP1 or CREB2. Tax enhanced the binding of CREB1 to nonpalindromic CRE binding sites such as those found in the HTLV-I LTR, but Tax did not enhance the binding of CREB1 to palindromic CRE binding sites such as found in the somatostatin promoter. This finding may help explain the failure of Tax to activate promoters containing consensus CRE sites. These studies were extended by use of the mammalian two-hybrid system. Tax was demonstrated to interact directly with CREB1 but not with other bZIP proteins, including CREB2 and Jun. Site-directed mutagenesis of both Tax and CREB1 demonstrated that the amino terminus of Tax and both the basic and the leucine zipper regions of CREB1 were required for direct interactions between these proteins both in vivo and in vitro. This interaction occurred in vivo and thus did not require the presence of the HTLV-I 21-bp repeats, as previously suggested. These results define the domains required for interaction between Tax and CREB that are likely critical for the

  5. Serum C-reactive protein (CRP) as a simple and independent prognostic factor in extranodal natural killer/T-cell lymphoma, nasal type.

    Science.gov (United States)

    Li, Ya-Jun; Li, Zhi-Ming; Xia, Yi; Huang, Jia-Jia; Huang, Hui-Qiang; Xia, Zhong-Jun; Lin, Tong-Yu; Li, Su; Cai, Xiu-Yu; Wu-Xiao, Zhi-Jun; Jiang, Wen-Qi

    2013-01-01

    C-reactive protein (CRP) is a biomarker of the inflammatory response, and it shows significant prognostic value for several types of solid tumors. The prognostic significance of CRP for lymphoma has not been fully examined. We evaluated the prognostic role of baseline serum CRP levels in patients with extranodal natural killer (NK)/T-cell lymphoma (ENKTL). We retrospectively analyzed 185 patients with newly diagnosed ENKTL. The prognostic value of the serum CRP level was evaluated for the low-CRP group (CRP≤10 mg/L) versus the high-CRP group (CRP>10 mg/L). The prognostic value of the International Prognostic Index (IPI) and the Korean Prognostic Index (KPI) were evaluated and compared with the newly developed prognostic model. Patients in the high-CRP group tended to display increased adverse clinical characteristics, lower rates of complete remission (P60 years, hypoalbuminemia, and elevated lactate dehydrogenase levels were independent adverse predictors of OS. Based on these four independent predictors, we constructed a new prognostic model that identified 4 groups with varying OS: group 1, no adverse factors; group 2, 1 factor; group 3, 2 factors; and group 4, 3 or 4 factors (PKPI in distinguishing between the low- and intermediate-low-risk groups, the intermediate-low- and high-intermediate-risk groups, and the high-intermediate- and high-risk groups. Our results suggest that pretreatment serum CRP levels represent an independent predictor of clinical outcome for patients with ENKTL. The prognostic value of the new prognostic model is superior to both IPI and KPI.

  6. Anaplasma marginale major surface protein 2 CD4+-T-cell epitopes are evenly distributed in conserved and hypervariable regions (HVR), whereas linear B-cell epitopes are predominantly located in the HVR.

    Science.gov (United States)

    Abbott, Jeffrey R; Palmer, Guy H; Howard, Chris J; Hope, Jayne C; Brown, Wendy C

    2004-12-01

    Organisms in the genus Anaplasma express an immunodominant major surface protein 2 (MSP2), composed of a central hypervariable region (HVR) flanked by highly conserved regions. Throughout Anaplasma marginale infection, recombination results in the sequential appearance of novel MSP2 variants and subsequent control of rickettsemia by the immune response, leading to persistent infection. To determine whether immune evasion and selection for variant organisms is associated with a predominant response against HVR epitopes, T-cell and linear B-cell epitopes were localized by measuring peripheral blood gamma interferon-secreting cells, proliferation, and antibody binding to 27 overlapping peptides spanning MSP2 in 16 cattle. Similar numbers of MSP2-specific CD4(+) T-cell epitopes eliciting responses of similar magnitude were found in conserved and hypervariable regions. T-cell epitope clusters recognized by the majority of animals were identified in the HVR (amino acids [aa] 171 to 229) and conserved regions (aa 101 to 170 and 272 to 361). In contrast, linear B-cell epitopes were concentrated in the HVR, residing within hydrophilic sequences. The pattern of recognition of epitope clusters by T cells and of HVR epitopes by B cells is consistent with the influence of protein structure on epitope recognition.

  7. Angioimmunoblastic T-Cell Lymphoma

    Science.gov (United States)

    ... Non-Hodgkin Lymphoma Peripheral T-Cell Lymphoma Primary Central Nervous System Lymphoma T-Cell Lymphoma Transformed Mycosis Fungoides Waldenstrom Macroglobulinemia Young Adult Lymphoma Overview Treatment Options Relapsed/Refractory Long-term ...

  8. Peripheral T-Cell Lymphoma

    Science.gov (United States)

    ... Non-Hodgkin Lymphoma Peripheral T-Cell Lymphoma Primary Central Nervous System Lymphoma T-Cell Lymphoma Transformed Mycosis Fungoides Waldenstrom Macroglobulinemia Young Adult Lymphoma Overview Treatment Options Relapsed/Refractory Long-term ...

  9. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    National Research Council Canada - National Science Library

    Tremblay, Michel

    2006-01-01

    ...). Inappropriate STAT1 and STAT5 activation have been observed in the Philadelphia chromosome-positive CML cell lines K562 and BV17, yet low levels of JAK1 tyrosine phosphorylation were observed...

  10. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3-SH2-Tyrosine Kinase Protein Family.

    Science.gov (United States)

    Dos Santos, Helena G; Siltberg-Liberles, Jessica

    2016-09-19

    One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3-SH2-Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    International Nuclear Information System (INIS)

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [ 32 P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32 P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  12. Fusion of NUP98 and the SET binding protein 1 (SETBP1) gene in a paediatric acute T cell lymphoblastic leukaemia with t(11;18)(p15;q12)

    DEFF Research Database (Denmark)

    Panagopoulos, Ioannis; Kerndrup, Gitte; Carlsen, Niels

    2007-01-01

    Three NUP98 chimaeras have previously been reported in T cell acute lymphoblastic leukaemia (T-ALL): NUP98/ADD3, NUP98/CCDC28A, and NUP98/RAP1GDS1. We report a T-ALL with t(11;18)(p15;q12) resulting in a novel NUP98 fusion. Fluorescent in situ hybridisation showed NUP98 and SET binding protein 1(...... in leukaemias; however, it encodes a protein that specifically interacts with SET, fused to NUP214 in a case of acute undifferentiated leukaemia.......Three NUP98 chimaeras have previously been reported in T cell acute lymphoblastic leukaemia (T-ALL): NUP98/ADD3, NUP98/CCDC28A, and NUP98/RAP1GDS1. We report a T-ALL with t(11;18)(p15;q12) resulting in a novel NUP98 fusion. Fluorescent in situ hybridisation showed NUP98 and SET binding protein 1...

  13. Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs

    Directory of Open Access Journals (Sweden)

    Wang Xile

    2011-09-01

    Full Text Available Abstract Background Coxiella burnetii is an obligate intracellular bacterium and the etiologic agent of Q fever; both coxiella outer membrane protein 1 (Com1 and heat shock protein B (HspB are its major immunodominant antigens. It is not clear whether Com1 and HspB have the ability to mount immune responses against C. burnetii infection. Results The recombinant proteins Com1 and HspB were applied to pulse human monocyte-derived dendritic cells (HMDCs, and the pulsed HMDCs were used to stimulate isogenic T cells. Com1-pulsed HMDCs expressed substantially higher levels of surface molecules (CD83, CD40, CD80, CD86, CD54, and CD58 and a higher level of interleukin-12 than HspB-pulsed HMDCs. Moreover, Com1-pulsed HMDCs induced high-level proliferation and activation of CD4+ and CD8+ cells, which expressed high levels of T-cell activation marker CD69 and inflammatory cytokines IFN-γ and TNF-α. In contrast, HspB-pulsed HMDCs were unable to induce efficient T-cell proliferation and activation. Conclusions Our results demonstrate that Com1-pulsed HMDCs are able to induce efficient T-cell proliferation and drive T cells toward Th1 and Tc1 polarization; however, HspB-pulsed HMDCs are unable to do so. Unlike HspB, Com1 is a protective antigen, which was demonstrated by the adoptive transfer of Com1-pulsed bone marrow dendritic cells into naive BALB/c mice.

  14. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  15. Cellular responses to Plasmodium falciparum erythrocyte membrane protein-1: use of relatively conserved synthetic peptide pools to determine CD4 T cell responses in malaria-exposed individuals in Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Sanni Ambaliou

    2002-04-01

    Full Text Available Abstract Background Plasmodium falciparum erythrocyte membrane protein-1, a variant antigen of the malaria parasite, is potentially a target for the immune response. It would be important to determine whether there are CD4 T cells that recognise conserved regions. However, within the relatively conserved region, there is variation. It is not possible to test T cell responses from small field samples with all possible peptides. Methods We have aligned sequences that are relatively conserved between several PfEMP1 molecules, and chosen a representative sequence similar to most of the PfEMP1 variants. Using these peptides as pools representing CIDRα, CIDRβ and DBLβ-δ domains, DBLα domain, and EXON 2 domain of PfEMP1, we measured the CD4 T cell responses of malaria-exposed donors from Benin, West Africa by a FACS based assay. Results All the three peptide pools elicited a CD4 T cell response in a proportion of malaria-exposed and non-exposed donors. CD4 T cell proliferation occurs at a relatively higher magnitude to peptide pools from the DBLα and EXON 2 in the malaria-exposed donors living in Benin than in the UK malaria-unexposed donors. Conclusions These findings suggest that an immunological recall response to conserved peptides of a variant antigen can be measured. Further testing of individual peptides in a positive pool will allow us to determine those conserved sequences recognised by many individuals. These types of assays may provide information on conserved peptides of PfEMP1 which could be useful for stimulating T cells to provide help to P. falciparum specific B cells.

  16. Effects of peritoneal fluid from endometriosis patients on interferon-gamma-induced protein-10 (CXCL10) and interleukin-8 (CXCL8) released by neutrophils and CD4+ T cells.

    Science.gov (United States)

    Kim, Ji-Yeon; Lee, Dong-Hyung; Joo, Jong-Kil; Jin, Jun-O; Wang, Ji-Won; Hong, Young-Seoub; Kwak, Jong-Young; Lee, Kyu-Sup

    2009-09-01

    Intraperitoneal immuno-inflammatory changes may be associated with the pathogenesis of endometriosis. We evaluated the effects of peritoneal fluid obtained from patients with endometriosis (ePF) on the release of interferon-gamma-induced protein-10 (IP-10/CXCL10) and interleukin-8 (IL-8/CXCL8) by neutrophils, CD4(+) T cells, and monocytes. Neutrophils, CD4(+) T cells, and monocytes were cultured with ePF and the chemokine levels in the supernatants were then measured using enzyme-linked immunosorbent assay. The addition of ePF to cultures of CD4(+) T cells led to a significant increase in the release of IP-10 when compared with control PF without endometriosis (cPF). There was a positive correlation between the levels of IL-8 and IP-10 in ePF (R = 0.89, P = 0.041), but not between the levels of IP-10 and IL-8 released by neutrophils, CD4(+) T cells, and monocytes. The levels of IP-10 in ePF were positively correlated with the release of IP-10 by ePF-treated neutrophils (R = 0.89, P ePF significantly enhanced the interferon-gamma-induced release of IP-10 by nuetrophils and CD4(+) T cells. These findings suggest that neutrophils and T cells release differential levels of IP-10 and IL-8 in response to stimulation with ePF, and that these cells are a major source of IP-10 in the PF of endometriosis patients.

  17. A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9

    International Nuclear Information System (INIS)

    Weyer, Philipp S. van de; Muehlfeit, Michael; Klose, Christoph; Bonventre, Joseph V.; Walz, Gerd; Kuehn, E. Wolfgang

    2006-01-01

    Tim-3 is a member of the TIM family of proteins (T-cell immunoglobulin mucin) involved in the regulation of CD4+ T-cells. Tim-3 is a T H 1-specific type 1 membrane protein and regulates T H 1 proliferation and the development of tolerance. Binding of galectin-9 to the extracellular domain of Tim-3 results in apoptosis of T H 1 cells, but the intracellular pathways involved in the regulatory function of Tim-3 are unknown. Unlike Tim-1, which is expressed in renal epithelia and cancer, Tim-3 has not been described in cells other than neuronal or T-cells. Using RT-PCR we demonstrate that Tim-3 is expressed in malignant and non-malignant epithelial tissues. We have cloned Tim-3 from an immortalized liver cell carcinoma line and identified a highly conserved tyrosine in the intracellular tail of Tim-3 (Y265). We demonstrate that Y265 is specifically phosphorylated in vivo by the interleukin inducible T cell kinase (ITK), a kinase which is located in close proximity of the TIM genes on the allergy susceptibility locus 5q33.3. Stimulation of Tim-3 by its ligand galectin-9 results in increased phosphorylation of Y265, suggesting that this tyrosine residue plays an important role in downstream signalling events regulating T-cell fate. Given the role of TIM proteins in autoimmunity and cancer, the conserved SH2 binding domain surrounding Y265 could represent a possible target site for pharmacological intervention

  18. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for......-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.......Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used...... for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels...

  19. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Serbielle Céline

    2012-12-01

    Full Text Available Abstract Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs, symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication, by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in

  20. Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B.

    Directory of Open Access Journals (Sweden)

    Kosuke Matsuo

    2011-01-01

    Full Text Available Protein-tyrosine phosphatase 1B (PTP1B is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation.To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A and sumoylation-resistant (K/R PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR and insulin receptor substrate 1 (IRS1 tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.

  1. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  2. Plasma membrane of a marine T cell lymphoma: surface labelling, membrane isolation, separation of membrane proteins and distribution of surface label amongst these proteins

    International Nuclear Information System (INIS)

    Crumpton, M.J.; Marchalonis, J.J.; Haustein, D.; Atwell, J.L.; Harris, A.W.

    1976-01-01

    Two established techniques for analysis of plasma membranes, namely, lactoperoxidase catalyzed surface radioiodination of intact cells and bulk membrane isolation following disruption of cells by shear forces, were applied in studies of membrane proteins of continuously cultured cells of the monoclonal T lymphoma line WEHI-22. It was found that macromolecular 125 I-iodide incorporated into plasma membrane proteins of intact cells was at least as good a marker for the plasma as was the commonly used enzyme 5'-nucleotidase, T lymphoma plasma membrane proteins were complex when analysed by polyacrylamide gel electrophoresis in sodium dodecylsulphate-containing buffers and more than thirty distinct components were resolved. More than fifteen of the components observed on a mass basis were also labelled with 125 I-iodide. Certain bands, however, exhibited a degree of label disproportionate to their staining properties with Coomassie Blue. This was interpreted in terms of their accessibility to the solvent in the intact cells. (author)

  3. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S

    1994-01-01

    that stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that IL-2...... induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  4. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    NARCIS (Netherlands)

    Dolen, Y.; Kreutz, M.; Gileadi, U.; Tel, J.; Vasaturo, A.; Dinther, E.A.W. van; Hout-Kuijer, M.A. van; Cerundolo, V.; Figdor, C.G.

    2016-01-01

    Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here,

  5. Overexpression of PTPN2 in Visceral Adipose Tissue Ameliorated Atherosclerosis via T Cells Polarization Shift in Diabetic Apoe-/- Mice

    Directory of Open Access Journals (Sweden)

    Ya Li

    2018-03-01

    Full Text Available Background/Aims: Dysregulated inflammation in adipose tissue, marked by increased pro-inflammatory T-cell accumulation and reduced regulatory T cells (Treg, contributes to diabetes-associated insulin resistance and atherosclerosis. However, the molecular mechanisms underlying T-cell-mediated inflammation in adipose tissue remain largely unknown. Methods: Sixty apolipoprotein E (ApoE-/- mice were randomly divided into chow and diabetes groups. Diabetes was induced by a high-fat and high-sugar diet combined with low-dose streptozotocin. Then we transferred a recombinant adenovirus carrying the protein tyrosine phosphatase non-receptor type 2 (PTPN2 gene into epididymal white adipose tissue (EWAT of ApoE-/- mice. After transfection, all mice were euthanized to evaluate the effects of PTPN2 on T cells polarization and atherosclerosis. Results: PTPN2 was downregulated in EWAT of diabetic ApoE-/- mice. PTPN2 overexpression in EWAT reversed the high Th1/Treg and Th17/Treg ratios in EWAT of diabetic mice. In addition, PTPN2 overexpression in EWAT could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in EWAT, improving insulin resistance. In aortic root lesions, the vulnerability index were significantly decreased by overexpression of PTPN2 in EWAT. Conclusion: These data suggested that PTPN2 overexpression in EWAT would inhibit systemic inflammation and increase the plaque stability via T cells polarization shift in diabetic mice.

  6. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    Science.gov (United States)

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  7. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Li, Haiyu; Ren, Zhenggang; Kang, Xiaonan; Zhang, Lan; Li, Xuefei; Wang, Yan; Xue, Tongchun; Shen, Yuefang; Liu, Yinkun

    2009-01-01

    Aberrant activity of tyrosine-phosphorylated proteins is commonly associated with HCC metastasis. Cell signaling events driven by these proteins are implicated in numerous processes that alter cancer cell behavior. Exploring the activities and signaling pathways of these proteins in HCC metastasis may help in identifying new candidate molecules for HCC-targeted therapy. Hep3B (a nonmetastatic HCC cell line) and MHCC97H (a highly metastatic HCC cell line) were used in this study, and the tyrosine-phosphorylated proteins expressed in these cell lines were profiled by a phosphoproteomics technique based on LC-MS/MS. Protein-protein interaction and functional clustering analyses were performed to determine the activities of the identified proteins and the signaling pathways closely related to HCC metastasis. In both cell lines, a total of 247 phosphotyrosine (pTyr) proteins containing 281 pTyr sites were identified without any stimulation. The involvement of almost 30% of these in liver or liver cancer has not been reported previously. Biological process clustering analysis indicated that pTyr proteins involved in cell motility, migration, protein autophosphorylation, cell-cell communication, and antiapoptosis functions were overexpressed during metastasis. Pathway clustering analysis revealed that signaling pathways such as those involved in EGFR signaling, cytokine- and chemokine-mediated signal transduction, and the PI3K and JAK-STAT cascades were significantly activated during HCC metastasis. Moreover, noncanonical regulation of the JNK cascade might also provide new targets for HCC metastasis. After comparing the pTyr proteins that were differentially expressed during HCC cell metastasis, we selected FER, a nonreceptor tyrosine kinase, and validated its role in terms of both expression and function. The data confirmed that FER might play a critical role in the invasion and metastasis of HCC. The identification of pTyr proteins and signaling pathways associated

  8. A Comparative Study of the Expression of Cytotoxic Proteins in Allergic Contact Dermatitis and Psoriasis : Spongiotic Skin Lesions in Allergic Contact Dermatitis Are Highly Infiltrated by T Cells Expressing Perforin and Granzyme B

    OpenAIRE

    Yawalkar, Nikhil; Hunger, Robert E.; Buri, Caroline; Schmid, Simone; Egli, Fabienne; Brand, Christoph U.; Mueller, Christoph; Pichler, Werner J.; Braathen, Lasse R.

    2001-01-01

    Recent reports indicate that cytotoxic T cells are critically involved in contact hypersensitivity reactions in animals. In this study we sought to investigate the in vivo expression of cytotoxic granule proteins in the elicitation phase of allergic contact dermatitis in humans. Skin biopsy specimens were obtained from patients with allergic contact dermatitis (n = 8) and psoriasis (n = 6) and from controls with normal skin (n = 6). Expression of perforin and granzyme B was investigated by in...

  9. Toxoplasma gondii-derived synthetic peptides containing B- and T-cell epitopes from GRA2 protein are able to enhance mice survival in a model of experimental toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Luciana Machado Bastos

    2016-06-01

    Full Text Available Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2 is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN, as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b, mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-alpha and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.

  10. Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle

    Science.gov (United States)

    Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin

    2014-01-01

    CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IEevasion functions are actually relevant in the context of lytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic insight into the immunodominance pattern seen for CD8+ T cell responses to EBV lytic antigens. PMID:25144360

  11. Inhibition of protein geranylgeranylation and farnesylation protects against graft-versus-host disease via effects on CD4 effector T cells.

    Science.gov (United States)

    Hechinger, Anne-Kathrin; Maas, Kristina; Dürr, Christoph; Leonhardt, Franziska; Prinz, Gabriele; Marks, Reinhard; Gerlach, Ulrike; Hofmann, Maike; Fisch, Paul; Finke, Jürgen; Pircher, Hanspeter; Zeiser, Robert

    2013-01-01

    Despite advances in immunosuppressive regimens, acute graft-versus-host disease remains a frequent complication of allogeneic hematopoietic cell transplantation. Pathogenic donor T cells are dependent on correct attachment of small GTPases to the cell membrane, mediated by farnesyl- or geranylgeranyl residues, which, therefore, constitute potential targets for graft-versus-host disease prophylaxis. A mouse model was used to study the impact of a farnesyl-transferase inhibitor and a geranylgeranyl-transferase inhibitor on acute graft-versus-host disease, anti-cytomegalovirus T-cell responses and graft-versus-leukemia activity. Treatment of mice undergoing allogeneic hematopoietic cell transplantation with farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor reduced the histological severity of graft-versus-host disease and prolonged survival significantly. Mechanistically, farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor treatment resulted in reduced alloantigen-driven expansion of CD4 T cells. In vivo treatment led to increased thymic cellularity and polyclonality of the T-cell receptor repertoire by reducing thymic graft-versus-host disease. These effects were absent when squalene production was blocked. The farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor did not compromise CD8 function against leukemia cells or reconstitution of T cells that were subsequently responsible for anti-murine cytomegalovirus responses. In summary, we observed an immunomodulatory effect of inhibitors of farnesyl-transferase and geranylgeranyl-transferase on graft-versus-host disease, with enhanced functional immune reconstitution. In the light of the modest toxicity of farnesyl-transferase inhibitors such as tipifarnib in patients and the potent reduction of graft-versus-host disease in mice, farnesyl-transferase and geranylgeranyl-transferase inhibitors could help to reduce graft-versus-host disease significantly without

  12. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E

    1995-01-01

    In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heteroge......In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several...... heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic...... (for Eps15-related). Structural comparison of Eps15 and Eps15r defines a family of signal transducers possessing extensive networking abilities including EH-mediated binding and association with Src homology 3-containing proteins....

  13. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    Science.gov (United States)

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells

    DEFF Research Database (Denmark)

    Skov, S; Nielsen, M; Bregenholt, S

    1998-01-01

    Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3......-probe derived from the interferon-gamma activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin......-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest...

  15. Role of tyrosine phosphatase inhibitors in cancer treatment with emphasis on SH2 domain-containing tyrosine phosphatases (SHPs)

    NARCIS (Netherlands)

    Irandoust, Mahban; van den Berg, Timo K.; Kaspers, Gertjan J. L.; Cloos, Jacqueline

    2009-01-01

    Protein tyrosine phosphorylation is one of the key mechanisms involved in signal transduction pathways. This modification is regulated by concerted action of protein tyrosine phosphatases and protein tyrosine kinases. Deregulation of either of these key regulators lead to abnormal cellular

  16. The non-protein coding breast cancer susceptibility locus Mcs5a acts in a non-mammary cell-autonomous fashion through the immune system and modulates T-cell homeostasis and functions.

    Science.gov (United States)

    Smits, Bart M G; Sharma, Deepak; Samuelson, David J; Woditschka, Stephan; Mau, Bob; Haag, Jill D; Gould, Michael N

    2011-08-16

    Mechanisms underlying low-penetrance, common, non-protein coding variants in breast cancer risk loci are largely undefined. We showed previously that the non-protein coding mammary carcinoma susceptibility locus Mcs5a/MCS5A modulates breast cancer risk in rats and women. The Mcs5a allele from the Wistar-Kyoto (WKy) rat strain consists of two genetically interacting elements that have to be present on the same chromosome to confer mammary carcinoma resistance. We also found that the two interacting elements of the resistant allele are required for the downregulation of transcript levels of the Fbxo10 gene specifically in T-cells. Here we describe mechanisms through which Mcs5a may reduce mammary carcinoma susceptibility. We performed mammary carcinoma multiplicity studies with three mammary carcinoma-inducing treatments, namely 7,12-dimethylbenz(a)anthracene (DMBA) and N-nitroso-N-methylurea (NMU) carcinogenesis, and mammary ductal infusion of retrovirus expressing the activated HER2/neu oncogene. We used mammary gland and bone marrow transplantation assays to assess the target tissue of Mcs5a activity. We used immunophenotyping assays on well-defined congenic rat lines carrying susceptible and resistant Mcs5a alleles to identify changes in T-cell homeostasis and function associated with resistance. We show that Mcs5a acts beyond the initial step of mammary epithelial cell transformation, during early cancer progression. We show that Mcs5a controls susceptibility in a non-mammary cell-autonomous manner through the immune system. The resistant Mcs5a allele was found to be associated with an overabundance of gd T-cell receptor (TCR)+ T-cells as well as a CD62L (L-selectin)-high population of all T-cell classes. In contrast to in mammary carcinoma, gdTCR+ T-cells are the predominant T-cell type in the mammary gland and were found to be overabundant in the mammary epithelium of Mcs5a resistant congenic rats. Most of them simultaneously expressed the CD4, CD8, and CD161

  17. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.

    Science.gov (United States)

    Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun

    2016-01-01

    Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Interacción entre proteínas y glicanos en la regulación fisiológica de las células T How do protein-glycan interactions regulate T-cell physiology?

    Directory of Open Access Journals (Sweden)

    Marta A. Toscano

    2006-08-01

    Full Text Available Las interacciones entre proteínas y glicanos juegan un papel fundamental en numerosos eventos de la regulación de la fisiología del sistema inmune, como maduración tímica, activación, migración y apoptosis de células T. Los carbohidratos son capaces de modular la fisiología linfocitaria a través de la interacción específica con lectinas endógenas como selectinas y galectinas. Estas lectinas endógenas son capaces de reconocer estructuras sacarídicas localizadas en glicoproteínas de la superficie celular y regular procesos tan diversos como proliferación, diferenciación y ciclo celular. Existen diversos niveles de control de la interacción entre lectinas y azúcares; en primer lugar podemos mencionar la expresión regulada de estas lectinas durante el desarrollo de una respuesta inmune, y en segundo lugar la regulación espacio-temporal de la actividad de glicosiltranferasas y glicosidasas cuya función es crear y modificar los azúcares específicos para estas lectinas. Existen evidencias de que la expresión y actividad de estas enzimas se regulan en forma positiva o negativa durante diferentes eventos del desarrollo, ejecución y finalización de la respuesta inmune. En este artículo se analizarán los mecanismos a través de los cuales las interacciones entre lectinas con sus carbohidratos específicos modulan en forma específica diversos procesos fisiológicos, como maduración de timocitos, migración linfocitaria, activación y diferenciación de células T y apoptosis.Recent evidence indicates that protein-glycan interactions play a critical role in different events associated with the physiology of T-cell responses including thymocyte maturation, T-cell activation, lymphocyte migration and T-cell apoptosis. Glycans decorating T-cell surface glycoproteins can modulate T-cell physiology by specifically interacting with endogenous lectins including selectins and galectins. These endogenous lectins are capable of

  19. Mechanisms of photosensitization by drugs: Involvement of tyrosines in the photomodification of proteins mediated by tiaprofenic acid in vitro.

    Science.gov (United States)

    Miranda, M A; Castell, J V; Sarabia, Z; Hernández, D; Puertes, I; Morera, I M; Gómez-Lechón, M J

    1997-10-01

    The photosensitizing potential of drugs must be related to their photoreactivity towards the target biomolecules. In this context, a representative photosensitizing drug (tiaprofenic acid) was co-irradiated with a model protein, bovine serum albumin (BSA). This led to a significant degree of protein crosslinking and to the formation of trace amounts of drug-BSA photoadducts. Amino acid analysis of the hydrolysed (HC1) protein showed that His and Tyr undergo a dramatic decrease (approx. 90%) as a consequence of drug-mediated photodynamic processes. When the drug was irradiated in the presence of the pure amino acids, extensive phototransformation of the latter was observed. Other photosensitizing drugs gave rise to similar processes when irradiated in the presence of BSA or the isolated amino acids. In conclusion, histidine and tyrosine appear to be key sites for the photosensitized damage to proteins. Photodegradation of the isolated amino acids in vitro may be an indicator of the photosensitizing potential of drugs.

  20. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  1. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  2. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice...... with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+T cells from patients with ALF have increased...

  3. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  4. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32)

    OpenAIRE

    Chan, Derek V; Somani, Ally-Khan; Young, Andrew B; Massari, Jessica V; Ohtola, Jennifer; Sugiyama, Hideaki; Garaczi, Edina; Babineau, Denise; Cooper, Kevin D; McCormick, Thomas S

    2011-01-01

    Abstract Background Elevated numbers of regulatory T cells (Tregs) have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated Tregs....

  5. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease.

    Science.gov (United States)

    Manuel, Sharrón L; Schell, Todd D; Acheampong, Edward; Rahman, Saifur; Khan, Zafar K; Jain, Pooja

    2009-11-01

    HTLV-1 is the etiologic agent of a debilitating neurologic disorder, HAM/TSP. This disease features a robust immune response including the oligoclonal expansion of CD8+ CTLs specific for the viral oncoprotein Tax. The key pathogenic process resulting in the proliferation of CTLs and the presentation of Tax peptide remains uncharacterized. We have investigated the role of APCs, particularly DCs, in priming of the anti-Tax CTL response under in vitro and in vivo conditions. We investigated two routes (direct vs. indirect) of Tax presentation using live virus, infected primary CD4+/CD25+ T cells, and the CD4+ T cell line (C8166, a HTLV-1-mutated line that only expresses Tax). Our results indicated that DCs are capable of priming a pronounced Tax-specific CTL response in cell cultures consisting of naïve PBLs as well as in HLA-A*0201 transgenic mice (line HHD II). DCs were able to direct the presentation of Tax successfully through infected T cells, live virus, and cell-free Tax. These observations were comparable with those made with a known stimulant of DC maturation, a combination of CD40L and IFN-gamma. Our studies clearly establish a role for this important immune cell component in HTLV-1 immuno/neuropathogenesis and suggest that modulation of DC functions could be an important tool for therapeutic interventions.

  6. Human T-Cell Leukemia Virus Type I-Mediated Repression of PDZ-LIM Domain-Containing Protein 2 Involves DNA Methylation But Independent of the Viral Oncoprotein Tax

    Directory of Open Access Journals (Sweden)

    Pengrong Yan

    2009-10-01

    Full Text Available Human T-cell leukemia virus type I (HTLV-I is the etiological agent of adult T-cell leukemia (ATL. Our recent studies have shown that one important mechanism of HTLV-I-Mediated tumorigenesis is through PDZ-LIM domain-containing protein 2 (PDLIM2 repression, although the involved mechanism remains unknown. Here, we further report that HTLV-I-Mediated PDLIM2 repression was a pathophysiological event and the PDLIM2 repression involved DNA methylation. Whereas DNA methyltransferases 1 and 3b but not 3a were upregulated in HTLV-I-transformed T cells, the hypomethylating agent 5-aza-2′-deoxycytidine (5-aza-dC restored PDLIM2 expression and induced death of these malignant cells. Notably, the PDLIM2 repression was independent of the viral regulatory protein Tax because neither short-term induction nor long-term stable expression of Tax could downregulate PDLIM2 expression. These studies provide important insights into PDLIM2 regulation, HTLV-I leukemogenicity, long latency, and cancer health disparities. Given the efficient antitumor activity with no obvious toxicity of 5-aza-dC, these studies also suggest potential therapeutic strategies for ATL.

  7. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2017-08-02

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)═O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine and epinephrine are the most efficient food components reducing ferrylmyoglobin to oxymyoglobin, MbFe(II)O 2 , and metmyoglobin, MbFe(III), as revealed by multivariate curve resolution alternating least-squares with second order rate constants of 33.6 ± 2.3 L/mol/s (ΔH ⧧ of 19 ± 5 kJ/mol, ΔS ⧧ of -136 ± 18 J/mol K) and 228.9 ± 13.3 L/mol/s (ΔH ⧧ of 110 ± 7 kJ/mol, ΔS ⧧ of 131 ± 25 J/mol K), respectively, at pH 7.4 and 25 °C. The other tyrosine based food components were found to reduce ferrylmyoglobin to metmyoglobin with similar reduction rates at pH 7.4 and 25 °C. These reduction reactions were enhanced by protonation of ferrylmyoglobin and facilitated proton transfer at acidic conditions. Enthalpy-entropy compensation effects were observed for the activation parameters (ΔH ⧧ and ΔS ⧧ ), indicating the common reaction mechanism. Moreover, principal component analysis combined with heat map were performed to understand the relationship between density functional theory calculated molecular descriptors and kinetic data, which was further modeled by partial least squares for quantitative structure-activity relationship analysis. In addition, a three tyrosine residue containing protein, lysozyme, was also found to be able to reduce ferrylmyoglobin with a second order rate constant of 66 ± 28 L/mol/s as determined by a competitive kinetic method.

  8. Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia.

    Science.gov (United States)

    Nemoto, Michiko; Hattori, Hiroyoshi; Maeda, Naoko; Akita, Nobuhiro; Muramatsu, Hideki; Moritani, Suzuko; Kawasaki, Tomonori; Maejima, Masami; Ode, Hirotaka; Hachiya, Atsuko; Sugiura, Wataru; Yokomaku, Yoshiyuki; Horibe, Keizo; Iwatani, Yasumasa

    2018-05-03

    Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4 + T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.

  9. CD1 and mycobacterial lipids activate human T cells.

    Science.gov (United States)

    Van Rhijn, Ildiko; Moody, D Branch

    2015-03-01

    For decades, proteins were thought to be the sole or at least the dominant source of antigens for T cells. Studies in the 1990s demonstrated that CD1 proteins and mycobacterial lipids form specific targets of human αβ T cells. The molecular basis by which T-cell receptors (TCRs) recognize CD1-lipid complexes is now well understood. Many types of mycobacterial lipids function as antigens in the CD1 system, and new studies done with CD1 tetramers identify T-cell populations in the blood of tuberculosis patients. In human populations, a fundamental difference between the CD1 and major histocompatibility complex systems is that all humans express nearly identical CD1 proteins. Correspondingly, human CD1 responsive T cells show evidence of conserved TCRs. In addition to natural killer T cells and mucosal-associated invariant T (MAIT cells), conserved TCRs define other subsets of human T cells, including germline-encoded mycolyl-reactive (GEM) T cells. The simple immunogenetics of the CD1 system and new investigative tools to measure T-cell responses in humans now creates a situation in which known lipid antigens can be developed as immunodiagnostic and immunotherapeutic reagents for tuberculosis disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of (13)C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly......Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...

  11. Cooperation between Epstein-Barr virus immune evasion proteins spreads protection from CD8+ T cell recognition across all three phases of the lytic cycle.

    Directory of Open Access Journals (Sweden)

    Laura L Quinn

    2014-08-01

    Full Text Available CD8+ T cell responses to Epstein-Barr virus (EBV lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE and some early (E antigens are more frequently observed than responses to epitopes of late (L expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE- and early (E-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L, interference by BILF1 increases with progression through lytic cycle (IE

  12. Role of MbtH-like Proteins in the Adenylation of Tyrosine during Aminocoumarin and Vancomycin Biosynthesis*

    Science.gov (United States)

    Boll, Björn; Taubitz, Tatjana; Heide, Lutz

    2011-01-01

    MbtH-like proteins consist of ∼70 amino acids and are encoded in the biosynthetic gene clusters of non-ribosomally formed peptides and other secondary metabolites derived from amino acids. Recently, several MbtH-like proteins have been shown to be required for the adenylation of amino acid in non-ribosomal peptide synthesis. We now investigated the role of MbtH-like proteins in the biosynthesis of the aminocoumarin antibiotics novobiocin, clorobiocin, and simocyclinone D8 and of the glycopeptide antibiotic vancomycin. The tyrosine-adenylating enzymes CloH, SimH, and Pcza361.18, involved in the biosynthesis of clorobiocin, simocyclinone D8, and vancomycin, respectively, required the presence of MbtH-like proteins in a 1:1 molar ratio, forming heterotetrameric complexes. In contrast, NovH, involved in novobiocin biosynthesis, showed activity in the absence of MbtH-like proteins. Comparison of the active centers of CloH and NovH showed only one amino acid to be different, i.e. Leu-383 versus Met-383. Mutation of this amino acid in CloH (L383M) indeed led to MbtH-independent adenylating activity. All investigated tyrosine-adenylating enzymes exhibited remarkable promiscuity for MbtH-like proteins from different pathways and organisms. YbdZ, the MbtH-like protein from the expression host Escherichia coli, was found to bind to adenylating enzymes during expression and to influence their biochemical properties markedly. Therefore, the use of ybdZ-deficient expression hosts is important in biochemical studies of adenylating enzymes. PMID:21890635

  13. Tim-4 inhibition of T-cell activation and T helper type 17 differentiation requires both the immunoglobulin V and mucin domains and occurs via the mitogen-activated protein kinase pathway

    Science.gov (United States)

    Cao, Wei; Ryan, Michelle; Buckley, Deirdre; O'Connor, Rosemary; Clarkson, Michael R

    2011-01-01

    Emerging experimental data suggest an important role for the T-cell immunoglobulin mucin 1 (Tim-1):Tim-4 pathway in autoimmune and alloimmune responses in vivo. Using a Tim-4 ectodomain human IgG Fc fusion protein we studied the role of Tim-4 in T-cell activation, signalling and differentiation responses in vitro. We demonstrate that Tim-4Fc can inhibit naive and pre-activated T-cell activation, proliferation and cytokine secretion via a Tim-1-independent pathway. Tim-4 contains immunoglobulin variable (IgV) and mucin domains; to identify which domain accounts for the inhibitory effect novel Tim-4 fusion proteins containing either the IgV or mucin domain were generated. We demonstrate that both IgV and mucin domains are required for the inhibitory effects and that they are mediated at least in part by inhibition of extracellular signal-regulated kinase pathway activity. Given the emerging interest in the role of the Tim family in T helper type 17 (Th17) cells, which play an important role in autoimmune disease and transplantation tolerance, our data show that Tim-4Fc can prevent polarization of CD4+ T cells to the Th17 phenotype. Collectively, our results highlight an inhibitory role for Tim-4Fc in vitro, which we propose is mediated by a receptor other than Tim-1. In addition, this study provides new insights into the role of Tim-4Fc in regulating Th17 immune responses and may open a new avenue for autoimmune therapy. PMID:21463297

  14. Tim-4 inhibition of T-cell activation and T helper type 17 differentiation requires both the immunoglobulin V and mucin domains and occurs via the mitogen-activated protein kinase pathway.

    LENUS (Irish Health Repository)

    Cao, Wei

    2011-06-01

    Emerging experimental data suggest an important role for the T-cell immunoglobulin mucin 1 (Tim-1):Tim-4 pathway in autoimmune and alloimmune responses in vivo. Using a Tim-4 ectodomain human IgG Fc fusion protein we studied the role of Tim-4 in T-cell activation, signalling and differentiation responses in vitro. We demonstrate that Tim-4Fc can inhibit naive and pre-activated T-cell activation, proliferation and cytokine secretion via a Tim-1-independent pathway. Tim-4 contains immunoglobulin variable (IgV) and mucin domains; to identify which domain accounts for the inhibitory effect novel Tim-4 fusion proteins containing either the IgV or mucin domain were generated. We demonstrate that both IgV and mucin domains are required for the inhibitory effects and that they are mediated at least in part by inhibition of extracellular signal-regulated kinase pathway activity. Given the emerging interest in the role of the Tim family in T helper type 17 (Th17) cells, which play an important role in autoimmune disease and transplantation tolerance, our data show that Tim-4Fc can prevent polarization of CD4(+) T cells to the Th17 phenotype. Collectively, our results highlight an inhibitory role for Tim-4Fc in vitro, which we propose is mediated by a receptor other than Tim-1. In addition, this study provides new insights into the role of Tim-4Fc in regulating Th17 immune responses and may open a new avenue for autoimmune therapy.

  15. Molecular dynamics simulations of protein-tyrosine phosphatase 1B: II. Substrate-enzyme interactions and dynamics

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Frimurer, T. M.; Andersen, J. N.

    2000-01-01

    Molecular dynamics simulations of protein tyrosine phosphatase 1B (PTP1B) complexed with the phosphorylated peptide substrate DADEpYL and the free substrate have been conducted to investigate 1) the physical forces involved in substrate-protein interactions, 2) the importance of enzyme...... to substrate binding. Based on essential dynamics analysis of the PTP1B/DADEpYL trajectory, it is shown that internal motions in the binding pocket occur in a subspace of only a few degrees of freedom. in particular, relatively large flexibilities are observed along several eigenvectors in the segments: Arg(24...... for catalysis. Analysis of the individual enzyme-substrate interaction energies revealed that mainly electrostatic forces contribute to binding. Indeed, calculation of the electrostatic field of the enzyme reveals that only the field surrounding the binding pocket is positive, while the remaining protein...

  16. Immunoreactivity of protein tyrosine phosphatase A (PtpA) in sera from sheep infected with Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; Bach, Horacio; Whittington, Richard J

    2014-07-15

    Evasion of host defense mechanisms and survival inside infected host macrophages are features of pathogenic mycobacteria including Mycobacterium avium subspecies paratuberculosis, the causative agent of Johne's disease in ruminants. Protein tyrosine phosphatase A (PtpA) has been identified as a secreted protein critical for survival of mycobacteria within infected macrophages. The host may mount an immune response to such secreted proteins. In this study, the humoral immune response to purified recombinant M. avium subsp. paratuberculosis PtpA was investigated using sera from a cohort of sheep infected with M. avium subsp. paratuberculosis and compared with uninfected healthy controls. A significantly higher level of reactivity to PtpA was observed in sera collected from M. avium subspecies paratuberculosis infected sheep when compared to those from uninfected healthy controls. PtpA could be a potential candidate antigen for detection of humoral immune responses in sheep infected with M. avium subspecies paratuberculosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    Science.gov (United States)

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  18. Neurotrophin-3 Enhances the Synaptic Organizing Function of TrkC-Protein Tyrosine Phosphatase σ in Rat Hippocampal Neurons.

    Science.gov (United States)

    Ammendrup-Johnsen, Ina; Naito, Yusuke; Craig, Ann Marie; Takahashi, Hideto

    2015-09-09

    Neurotrophin-3 (NT-3) and its high-affinity receptor TrkC play crucial trophic roles in neuronal differentiation, axon outgrowth, and synapse development and plasticity in the nervous system. We demonstrated previously that postsynaptic TrkC functions as a glutamatergic synapse-inducing (synaptogenic) cell adhesion molecule trans-interacting with presynaptic protein tyrosine phosphatase σ (PTPσ). Given that NT-3 and PTPσ bind distinct domains of the TrkC extracellular region, here we tested the hypothesis that NT-3 modulates TrkC/PTPσ binding and synaptogenic activity. NT-3 enhanced PTPσ binding to cell surface-expressed TrkC and facilitated the presynapse-inducing activity of TrkC in rat hippocampal neurons. Imaging of recycling presynaptic vesicles combined with TrkC knockdown and rescue approaches demonstrated that NT-3 rapidly potentiates presynaptic function via binding endogenous postsynaptic TrkC in a tyrosine kinase-independent manner. Thus, NT-3 positively modulates the TrkC-PTPσ complex for glutamatergic presynaptic assembly and function independently from TrkC kinase activation. Our findings provide new insight into synaptic roles of neurotrophin signaling and mechanisms controlling synaptic organizing complexes. Significance statement: Although many synaptogenic adhesion complexes have been identified in recent years, little is known about modulatory mechanisms. Here, we demonstrate a novel role of neurotrophin-3 in synaptic assembly and function as a positive modulator of the TrkC-protein tyrosine phosphatase σ complex. This study provides new insight into the involvement of neurotrophin signaling in synapse development and plasticity, presenting a molecular mechanism that may underlie previous observations of short- and long-term enhancement of presynaptic function by neurotrophin. Given the links of synaptogenic adhesion molecules to autism and schizophrenia, this study might also contribute to a better understanding of the pathogenesis of

  19. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  20. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    International Nuclear Information System (INIS)

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2016-01-01

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  1. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Sanyue [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Qu, Xiuhua [General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037 (China); Li, Ping; Ma, Qingjun [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Liu, Xuan, E-mail: liux931932@163.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Cao, Cheng, E-mail: cao_c@sohu.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China)

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  3. Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions

    International Nuclear Information System (INIS)

    Arreygue-Garcia, Naela A; Delgado-Rizo, Vidal; Garcia-Iglesias, Trinidad; Hernandez-Flores, Georgina; Toro-Arreola, Susana del; Daneri-Navarro, Adrian; Toro-Arreola, Alicia del; Cid-Arregui, Angel; Gonzalez-Ramella, Oscar; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana; Troyo-Sanroman, Rogelio; Bravo-Cuellar, Alejandro

    2008-01-01

    Cervical cancer is the second most common cancer in women worldwide. NK and cytotoxic T cells play an important role in the elimination of virus-infected and tumor cells through NKG2D activating receptors, which can promote the lysis of target cells by binding to the major histocompatibility complex class I-related chain A (MICA) proteins. Increased serum levels of MICA have been found in patients with epithelial tumors. The aim of this study was to compare the levels of soluble MICA (sMICA) and NKG2D-expressing NK and T cells in blood samples from patients with cervical cancer or precursor lesions with those from healthy donors. Peripheral blood with or without heparin was collected to obtain mononuclear cells or sera, respectively. Serum sMICA levels were measured by ELISA and NKG2D-expressing immune cells were analyzed by flow cytometry. Also, a correlation analysis was performed to associate sMICA levels with either NKG2D expression or with the stage of the lesion. Significant amounts of sMICA were detected in sera from nearly all patients. We found a decrease in the number of NKG2D-expressing NK and T cells in both cervical cancer and lesion groups when compared to healthy donors. Pearson analysis showed a negative correlation between sMICA and NKG2D-expressing T cells; however, we did not find a significant correlation when the analysis was applied to sMICA and NKG2D expression on NK cells. Our results show for the first time that high sMICA levels are found in sera from patients with both cervical cancer and precursor lesions when compared with healthy donors. We also observed a diminution in the number of NKG2D-expressing NK and T cells in the patient samples; however, a significant negative correlation between sMICA and NKG2D expression was only seen in T cells

  4. Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance.

    Science.gov (United States)

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; di Gianni, Pedro; Isturiz, Martín A; Linskens, Susana; Speziale, Norma; Meiss, Roberto P; Bustuoabad, Oscar D; Pasqualini, Christiane D

    2011-11-15

    Concomitant tumor resistance (CR) is a phenomenon originally described in 1906 in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although recent studies have indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In this study, we identify this serum factor as tyrosine in its meta and ortho isoforms. In three different murine models of cancer that generate CR, both meta-tyrosine and ortho-tyrosine inhibited tumor growth. In addition, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isoforms were mediated, in part, by early inhibition of mitogen-activated protein/extracellular signal-regulated kinase pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors, an issue of pivotal importance to oncologists and their patients. ©2011 AACR

  5. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells.

    Science.gov (United States)

    Coelho-Dos-Reis, Jordana G; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-07-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    Science.gov (United States)

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8+ T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44+CD62L−NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. PMID:27132023

  7. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  8. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  9. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    International Nuclear Information System (INIS)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R. Jr; Waugh, David S.

    2011-01-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors

  10. Role of Zinc and Magnesium Ions in the Modulation of Phosphoryl Transfer in Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Bellomo, Elisa; Abro, Asma; Hogstrand, Christer; Maret, Wolfgang; Domene, Carmen

    2018-03-28

    While the majority of phosphatases are metalloenzymes, the prevailing model for the reactions catalyzed by protein tyrosine phosphatases does not involve any metal ion, yet both metal cations and oxoanions affect their enzymatic activity. Mg 2+ and Zn 2+ activate and inhibit, respectively, protein tyrosine phosphatase 1B (PTP1B). Molecular dynamics simulations, metadynamics, and quantum chemical calculations in combination with experimental investigations demonstrate that Mg 2+ and Zn 2+ compete for the same binding site in the active site only in the closed conformation of the enzyme in its phosphorylated state. The two cations have different effects on the arrangements and activities of water molecules that are necessary for the hydrolysis of the phosphocysteine intermediate in the second catalytic step of the reaction. Remarkable differences between the established structural enzymology of PTP1B investigated ex vivo and the function of PTP1B in vivo become evident. Different reaction pathways are viable when the presence of metal ions and their cellular concentrations are considered. The findings suggest that the substrate delivers the inhibitory Zn 2+ ion to the active site. The inhibition and activation can be ascribed to the different coordination chemistries of Zn 2+ and Mg 2+ ions and the orientation of the metal-coordinated water molecules. Metallochemistry adds an additional dimension to the regulation of PTP1B and presumably other members of this enzyme family.

  11. Tyrosine 129 of the murine gammaherpesvirus M2 protein is critical for M2 function in vivo.

    Science.gov (United States)

    Rangaswamy, Udaya S; O'Flaherty, Brigid M; Speck, Samuel H

    2014-01-01

    A common strategy shared by all known gammaherpesviruses is their ability to establish a latent infection in lymphocytes--predominantly in B cells. In immunocompromised patients, such as transplant recipients or AIDS patients, gammaherpesvirus infections can lead to the development of lymphoproliferative disease and lymphoid malignancies. The human gamma-herpesviruses, EBV and KSHV, encode proteins that are capable of modulating the host immune signaling machinery, thereby subverting host immune responses. Murine gamma-herpesvirus 68 (MHV68) infection of laboratory strains of mice has proven to be useful small-animal model that shares important pathogenic strategies with the human gamma-herpesviruses. The MHV68 M2 protein is known to manipulate B cell signaling and, dependent on route and dose of virus inoculation, plays a role in both the establishment of latency and virus reactivation. M2 contains two tyrosines that are targets for phosphorylation, and have been shown to interact with the B cell signaling machinery. Here we describe in vitro and in vivo studies of M2 mutants which reveals that while both tyrosines Y120 and Y129 are required for M2 induction of IL-10 expression from primary murine B cells in vitro, only Y129 is critical for reactivation from latency and plasma cell differentiation in vivo.

  12. Tyrosine 129 of the murine gammaherpesvirus M2 protein is critical for M2 function in vivo.

    Directory of Open Access Journals (Sweden)

    Udaya S Rangaswamy

    Full Text Available A common strategy shared by all known gammaherpesviruses is their ability to establish a latent infection in lymphocytes--predominantly in B cells. In immunocompromised patients, such as transplant recipients or AIDS patients, gammaherpesvirus infections can lead to the development of lymphoproliferative disease and lymphoid malignancies. The human gamma-herpesviruses, EBV and KSHV, encode proteins that are capable of modulating the host immune signaling machinery, thereby subverting host immune responses. Murine gamma-herpesvirus 68 (MHV68 infection of laboratory strains of mice has proven to be useful small-animal model that shares important pathogenic strategies with the human gamma-herpesviruses. The MHV68 M2 protein is known to manipulate B cell signaling and, dependent on route and dose of virus inoculation, plays a role in both the establishment of latency and virus reactivation. M2 contains two tyrosines that are targets for phosphorylation, and have been shown to interact with the B cell signaling machinery. Here we describe in vitro and in vivo studies of M2 mutants which reveals that while both tyrosines Y120 and Y129 are required for M2 induction of IL-10 expression from primary murine B cells in vitro, only Y129 is critical for reactivation from latency and plasma cell differentiation in vivo.

  13. Cloning and characterization of R-PTP-kappa, a new member of the receptor protein tyrosine phosphatase family with a proteolytically cleaved cellular adhesion molecule-like extracellular region

    DEFF Research Database (Denmark)

    Jiang, Y P; Wang, H; D'Eustachio, P

    1993-01-01

    We describe a new member of the receptor protein tyrosine phosphatase family, R-PTP-kappa, cDNA cloning predicts that R-PTP-kappa is synthesized from a precursor protein of 1,457 amino acids. Its intracellular domain displays the classical tandemly repeated protein tyrosine phosphatase homology, ...

  14. Glucocorticoid induced TNFR-related protein (GITR as marker of human regulatory T cells: expansion of the GITR+CD25- cell subset in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    E. Bartoloni Bocci

    2011-06-01

    Full Text Available Objectives: Regulatory T cells (TREG represent a T cell subset able to modulate immune response by suppressing autoreactive T-lymphocytes. The evidence of a reduced number and an impaired function of this cell population in autoimmune/ inflammatory chronic diseases led to the hypothesis of its involvement in the pathogenesis of these disorders. Glucocorticoid-induced TNFR-related protein (GITR is a well known marker of murine TREG cells, but little is known in humans. The aim of this study was to investigate the characteristics of TREG cells in systemic lupus erythematosus (SLE and the potential role of GITR as marker of human TREG. Methods: Nineteen SLE patients and 15 sex- and age-matched normal controls (NC were enrolled. CD4+ T cells were magnetic sorted from peripheral blood by negative selection. Cell phenotype was analyzed through flow-cytometry using primary and secondary antibodies and real time polymerase-chain reaction (PCR using TaqMan probes. Results: The CD25highGITRhigh subset was significantly decreased in SLE patients with respect to NC (0.37±0.21% vs 0.72±0.19%; p<0.05. On the opposite, the CD25-GITRhigh cell population was expanded in the peripheral blood of SLE patients (3.5±2.25 vs 0.70±0.32%, p<0.01. Interestingly, FoxP3 at mRNA level was expressed in both CD25- GITRhigh and CD25highGITRhigh cells, suggesting that both cell subsets have regulatory activity. Conclusions: CD4+CD25-GITRhigh cells are increased in SLE as compared to NC. The expression of high level of GITR, but not CD25, on FoxP3+ cells appears to point to a regulatory phenotype of this peculiar T cell subset.

  15. Presence of ecto-protein tyrosine phosphatase activity is vital for survival of Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Heneberg, Petr; Rathaur, Sushma

    2014-10-01

    The ecto protein tyrosine phosphatases (PTP) are known to play a crucial role in the pathogenesis and survival of the intracellular parasites. However, their presence and role in filarial parasites is still unknown. We found a significant amount of tyrosine phosphatase activity in the surface antigen fraction extracted from Setaria cervi (S. cervi), a bovine filarial parasite. An antibody designed against the conserved catalytic core of human protein tyrosine phosphatases, PTP1B cross reacted with a 63 kDa band in the surface antigen. We detected a significant amount of PTP activity in the intact S. cervi adult parasites as well as microfilariae in this study for the first time. This PTP may be localized on the surface of the parasite with an exposed active site available for the external substrates. The PTP activity was also inhibited by sodium orthovanadate and phenyl arsine oxide, specific inhibitors of PTP in both the life stages. The Km and Vmax for PTP in the adult parasites and microfilariae were determined to be 2.574 ± 0.14 mM; 206.3 ± 2.75 μM Pi/h/two parasites and 5.510 ± 0.59 mM; 62.27 ± 2.27 μM Pi/h/10(6) parasites respectively using O-P-L-Tyrosine as substrate. Interestingly, a positive correlation was observed between the inhibition in PTP activity and reduction in the motility/ viability of the parasites when they were subjected to the specific PTP inhibitors (Orthovanadate and Phenyl arsine oxide) for 4 h in the KRB maintenance medium. The activity was also significantly inhibited in the parasites exposed to antifilarial drug/compounds for e.g. Diethylcarbamazine, Acetylsalicylic Acid and SK7, a methyl chalcone. Therefore suggesting a possible role played by PTP in the survival of the parasite, its interaction with the host as well as in the screening of newly synthesized antifilarials/drugs.

  16. Biological and immunological characterization of recombinant Yellow Fever 17D Viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome

    Directory of Open Access Journals (Sweden)

    Bonaldo Myrna C

    2011-03-01

    Full Text Available Abstract Background The attenuated Yellow fever (YF 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2 to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Results Recombinant viruses replicated similarly to va